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C H A P T E R

1

A short history of SPM
K. Friston

INTRODUCTION

For a young person entering imaging neuroscience it
must seem that the field is very large and complicated,
with numerous approaches to experimental design and
analysis. This impression is probably compounded by the
abundance of TLAs (three-letter-acronyms) and obscure
terminology. In fact, most of the principles behind design
and analysis are quite simple and had to be established
in a relatively short period of time at the inception of
brain mapping. This chapter presents an anecdotal per-
spective on this period. It serves to explain why some
ideas, like t-maps or, more technically, statistical para-
metric maps, were introduced and why other issues, like
global normalization, were crucial, even if they are not
so important nowadays.

The history of human brain mapping is probably
shorter than many people might think. Activation stud-
ies depend on imaging changes in brain state within the
same scanning session. This was made possible using
short-half-life radiotracers and positron emission tomog-
raphy (PET). These techniques became available in the
eighties (e.g. Herscovitch et al., 1983) and the first activa-
tion maps appeared soon after (e.g. Lauter et al., 1985; Fox
et al., 1986). Up until this time, regional differences among
brain scans had been characterized using hand-drawn
regions of interest (ROI), reducing hundreds of thou-
sands of voxels to a handful of ROI measurements, with
a somewhat imprecise anatomical validity. The idea of
making voxel-specific statistical inferences, through the
use of statistical parametric maps, emerged in response to
the clear need to make inferences about brain responses
without knowing where those responses were going to
be expressed. The first t-map was used to establish func-
tional specialization for colour processing in 1989 (Lueck
et al., 1989). The underlying methodology was described
in a paper entitled: ‘The relationship between global and
local changes in PET scans’ (Friston et al., 1990). This

may seem an odd title to introduce statistical parametric
mapping (SPM) but it belies a key motivation behind the
approach.

Statistical maps versus regions of interest

Until that time, images were usually analysed with
analysis of variance (ANOVA) using ROI averages.
This approach had become established in the analy-
sis of autoradiographic data in basic neuroscience and
metabolic scans in human subjects. Critically, each region
was treated as a level of a factor. This meant that the
regional specificity of a particular treatment was encoded
in the region by treatment interaction. In other words,
a main effect of treatment per se was not sufficient to
infer a regionally specific response. This is because some
treatments induced a global effect that was expressed in
all the ROIs. Global effects were, therefore, one of the
first major conceptual issues in the development of SPM.
The approach taken was to treat global activity as a con-
found in a separate analysis of covariance (ANCOVA)
at each voxel, thereby endowing inference with a regional
specificity that could not be explained by global changes.
The resulting SPMs were like X-rays of region-specific
changes and, like X-rays, are still reported in maximum-
intensity projection format (known colloquially as glass-
brains). The issue of regional versus global changes and
the validity of global estimators were debated for several
years, with many publications in the specialist literature.
Interestingly, it is a theme that enjoyed a reprise with the
advent of functional magnetic resonance imaging (fMRI)
(e.g. Aguirre et al., 1998) and still attracts some research
interest today.

Adopting a voxel-wise ANCOVA model paved the
way for a divergence between the mass-univariate
approach used by SPM (i.e. a statistic for each voxel)
and multivariate models used previously. A subtle but

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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4 1. A SHORT HISTORY OF SPM

important motivation for mass-univariate approaches
was the fact that a measured haemodynamic response
in one part of the brain may differ from the response
in another, even if the underlying neuronal activation was
exactly the same. This meant that the convention of using
region-by-condition interactions as a test for regionally
specific effects was not tenable. In other words, even
if one showed that two regions activated differently in
terms of measured haemodynamics, this did not mean
there was a regionally specific difference at the neuronal
or computational level. This issue seems to have escaped
the electroencephalography (EEG) community, who still
use ANOVA with region as a factor, despite the fact that
the link between neuronal responses and channel mea-
surements is even more indeterminate than for metabolic
imaging. However, the move to voxel-wise, whole-brain
analysis entailed two special problems: the problem of
registering images from different subjects so that they
could be compared on a voxel-by-voxel basis and the
multiple-comparisons problem that ensued.

Spatial normalization

The pioneering work of the St Louis group had already
established the notion of a common anatomical or stereo-
tactic space (Fox et al., 1988) in which to place subtraction
or difference maps, using skull X-rays as a reference. The
issue was how to get images into that space efficiently.
Initially, we tried identifying landmarks in the functional
data themselves to drive the registration (Friston et al.,
1989). This approach was dropped almost immediately
because it relied on landmark identification and was not a
hundred per cent reproducible. Within a year, a more reli-
able, if less accurate, solution was devised that matched
images to a template without the need for landmarks
(Friston et al., 1991a). The techniques for spatial normal-
ization using template- or model-based approaches have
developed consistently since that time and current treat-
ments regard normalization as the inversion of genera-
tive models for anatomical variation that involve warp-
ing templates to produce subject-specific images (e.g.
Ashburner and Friston, 2005).

Topological inference

Clearly, performing a statistical test at each voxel engen-
dered an enormous false positive rate when using unad-
justed thresholds to declare activations significant. The
problem was further compounded by the fact that the
data were not spatially independent and a simple Bonfer-
roni correction was inappropriate (PET and SPECT (sin-
gle photon emission computerized tomography) data are

inherently very smooth and fMRI had not been invented
at this stage). This was the second major theme that occu-
pied people trying to characterize functional neuroimag-
ing data. What was needed was a way of predicting the
probabilistic behaviour of SPMs, under the null hypothe-
sis of no activation, which accounted for the smoothness
or spatial correlations among voxels. From practical expe-
rience, it was obvious that controlling the false positive
rate of voxels was not the answer. One could increase
the number of positive voxels by simply making the vox-
els smaller but without changing the topology of the
SPM. It became evident that conventional control proce-
dures developed for controlling family-wise error (e.g.
the Bonferroni correction) had no role in making infer-
ences on continuous images. What was needed was a new
framework in which one could control the false positive
rate of the regional effects themselves, noting a regional
effect is a topological feature, not a voxel.

The search for a framework for topological infer-
ence in neuroimaging started in the theory of stochas-
tic processes and level-crossings (Friston et al., 1991b).
It quickly transpired that the resulting heuristics were
the same as established results from the theory of ran-
dom fields. Random fields are stochastic processes that
conform very nicely to realizations of brain scans under
normal situations. Within months, the technology to cor-
rect p-values was defined within random field theory
(Worsley et al., 1992). Although the basic principles of
topological inference were established at this time, there
were further exciting mathematical developments with
extensions to different sorts of SPMs and the ability to
adjust the p-values for small bounded volumes of inter-
est (see Worsley et al., 1996). Robert Adler, one of the
world’s contemporary experts in random field theory,
who had abandoned it years before, was understandably
very pleased and is currently writing a book with a pro-
tégé of Keith Worsley (Adler and Taylor, in preparation).

Statistical parametric mapping

The name ‘statistical parametric mapping’ was chosen
carefully for a number of reasons. First, it acknowledged
the TLA of ‘significance probability mapping’, devel-
oped for EEG. Significance probability mapping involved
creating interpolated pseudo-maps of p-values to dis-
close the spatiotemporal organization of evoked electrical
responses (Duffy et al., 1981). The second reason was
more colloquial. In PET, many images are derived from
the raw data reflecting a number of different physiolog-
ical parameters (e.g. oxygen metabolism, oxygen extrac-
tion fraction, regional cerebral blood flow etc.). These
were referred to as parametric maps. All parametric
maps are non-linear functions of the original data. The
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distinctive thing about statistical parametric maps is that
they have a known distribution under the null hypoth-
esis. This is because they are predicated on a statistical
model of the data (as opposed to a physiological para-
metric model).

One important controversy, about the statistical mod-
els employed, was whether the random fluctuations or
error variance was the same from brain region to brain
region. We maintained that it was not (on common sense
grounds that the frontal operculum and ventricles were
not going to show the same fluctuations in blood flow)
and adhered to voxel-specific estimates of error. For PET,
the Montreal group considered that the differences in
variability could be discounted. This allowed them to
pool their error variance estimator over voxels to give
very sensitive SPMs (under the assumption of stationary
error variance). Because the error variance was assumed
to be the same everywhere, the resulting t-maps were
simply scaled subtraction or difference maps (see Fox
et al., 1988). This issue has not dogged fMRI, where it is
generally accepted that error variance is voxel-specific.

The third motivation for the ‘statistical paramet-
ric mapping’ was that it reminded people they were
using parametric statistics that assume the errors are
additive and Gaussian. This is in contradistinction to
non-parametric approaches that are generally less sensi-
tive, more computationally intensive, but do not make
any assumptions about the distribution of error terms.
Although there are some important applications of
non-parametric approaches, they are generally a spe-
cialist application in the imaging community. This is
largely because brain imaging data conform almost
exactly to parametric assumptions by the nature of
image reconstruction, post-processing and experimental
design.

THE PET YEARS

In the first few years of the nineties, many landmark
papers were published using PET and the agenda for
a functional neuroimaging programme was established.
SPM proved to be the most popular way of characteriz-
ing brain activation data. It was encoded in Matlab and
used extensively by the MRC Cyclotron Unit at the Ham-
mersmith Hospital in the UK and was then distributed
to collaborators and other interested units around the
world. The first people outside the Hammersmith group
to use SPM were researchers at NIH (National Institutes
of Health, UDA) (e.g. Grady et al., 1994). Within a cou-
ple of years, SPM had become the community standard
for analysing PET activation studies and the assump-
tions behind SPM were largely taken for granted. By

this stage, SPM was synonymous with the general lin-
ear model and random field theory. Although originally
framed in terms of ANCOVA, it was quickly realized
that any general linear model could be used to produce
an SPM. This spawned a simple taxonomy of experimen-
tal designs and their associated statistical models. These
were summarized in terms of subtraction or categorical
designs, parametric designs and factorial designs (Friston
et al., 1995a). The adoption of factorial designs was one of
the most important advances at this point. The first facto-
rial designs focused on adaptation during motor learning
and studies looking at the interaction between a psycho-
logical and pharmacological challenge in psychopharma-
cological studies (e.g. Friston et al., 1992). The ability to
look at the effect of changes in the level of one factor on
activations induced by another led to a rethink of cogni-
tive subtraction and pure insertion and the appreciation
of context-sensitive activations in the brain. The latitude
afforded by factorial designs is reflected in the fact that
most studies are now multifactorial in nature.

THE fMRI YEARS

In 1992, at the annual meeting of the Society of Cerebral
Blood Flow and Metabolism in Miami, Florida, Jack Bel-
liveau presented, in the first presentation of the opening
session, provisional results using photic stimulation with
fMRI. This was quite a shock to the imaging commu-
nity that was just starting to relax: most of the problems
had been resolved, community standards had been estab-
lished and the way forward seemed clear. It was immedi-
ately apparent that this new technology was going to re-
shape brain mapping radically, the community was going
to enlarge and established researchers were going to have
to re-skill. The benefits of fMRI were clear, in terms of the
ability to take many hundreds of scans within one scan-
ning session and to repeat these sessions indefinitely in
the same subject. Some people say that the main advances
in a field, following a technological breakthrough, are
made within the first few years. Imaging neuroscience
must be fairly unique in the biological sciences, in that
exactly five years after the inception of PET activation
studies, fMRI arrived. The advent of fMRI brought with
it a new wave of innovation and enthusiasm.

From the point of view of SPM, there were two prob-
lems, one easy and one hard. The first problem was how
to model evoked haemodynamic responses in fMRI time-
series. This was an easy problem to resolve because SPM
could use any general linear model, including convolu-
tion models of the way haemodynamic responses were
caused (Friston et al., 1994). Stimulus functions encod-
ing the occurrence of a particular event or experimental
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6 1. A SHORT HISTORY OF SPM

state (e.g. boxcar-functions) were simply convolved with
a haemodynamic response function (HRF) to form regres-
sors in a general linear model (cf multiple linear regres-
sion).

Serial correlations

The second problem that SPM had to contend with was
the fact that successive scans in fMRI time-series were
not independent. In PET, each observation was statisti-
cally independent of its precedent but, in fMRI coloured
time-series, noise rendered this assumption invalid. The
existence of temporal correlations originally met with
some scepticism, but is now established as an impor-
tant aspect of fMRI time-series. The SPM community
tried a series of heuristic solutions until it arrived at
the solution presented in Worsley and Friston (1995).
This procedure, also known as ‘pre-colouring’, replaced
the unknown endogenous autocorrelation by imposing
a known autocorrelation structure. Inference was based
on the Satterthwaite conjecture and is formally identi-
cal to the non-specificity correction developed by Geisser
and Greenhouse in conventional parametric statistics. An
alternative approach was ‘pre-whitening’ which tried to
estimate a filter matrix from the data to de-correlate
the errors (Bullmore et al., 2001). The issue of serial
correlations, and more generally non-sphericity, is still
important and attracts much research interest, particu-
larly in the context of maximum likelihood techniques
and empirical Bayes (Friston et al., 2002).

New problems and old problems

The fMRI community adopted many of the develop-
ments from the early days of PET. Among these were
the use of the standard anatomical space provided by the
atlas of Talairach and Tournoux (1988) and conceptual
issues relating to experimental design and interpretation.
Many debates that had dogged early PET research were
resolved rapidly in fMRI; for example, ‘What constitutes
a baseline?’ This question, which had preoccupied the
whole community at the start of PET, appeared to be a
non-issue in fMRI with the use of well-controlled exper-
imental paradigms. Other issues, such as global normal-
ization were briefly revisited, given the different nature
of global effects in fMRI (multiplicative) relative to PET
(additive). However, one issue remained largely ignored
by the fMRI community. This was the issue of adjusting
p-values for the multiplicity of tests performed. While
people using SPM quite happily adjusted their p-values
using random field theory, others seemed unaware of the
need to control false positive rates. The literature now

entertained reports based on uncorrected p-values, an
issue which still confounds editorial decisions today. It is
interesting to contrast this, historically, with the appear-
ance of the first PET studies.

When people first started reporting PET experiments
there was an enormous concern about the rigor and valid-
ity of the inferences that were being made. Much of
this concern came from outside the imaging community
who, understandably, wanted to be convinced that the
‘blobs’ that they saw in papers (usually Nature or Sci-
ence) reflected true activations as opposed to noise. The
culture at that time was hostile to capricious reporting
and there was a clear message from the broader scien-
tific community that the issue of false positives had to
be resolved. This was a primary motivation for develop-
ing the machinery to adjust p-values to protect against
family-wise false positives. In a sense, SPM was a reac-
tion to the clear mandate set by the larger community,
to develop a valid and rigorous framework for activa-
tion studies. In short, SPM was developed in a culture
of scepticism about brain mapping that was most eas-
ily articulated by critiquing its validity. This meant that
the emphasis was on specificity and reproducibility, as
opposed to sensitivity and flexibility. Current standards
for reporting brain mapping studies are much more
forgiving than they were at its beginning, which may
explain why recent developments have focused on sen-
sitivity (e.g. Genovese et al., 2002).

The convolution model

In the mid-nineties, there was lots of fMRI research;
some of it was novel, some recapitulating earlier find-
ings with PET. From a methodological point of view,
notable advances included the development of event-
related paradigms that furnished an escape from the
constraints imposed by block designs and the use of
retinotopic mapping to establish the organization of cor-
tical areas in human visual cortex. This inspired a whole
sub-field of cortical surface mapping that is an important
endeavour in early sensory neuroimaging. For SPM there
were three challenges that needed to be addressed:

Temporal basis functions

The first involved a refinement of the models of evoked
responses. The convolution model had become a cor-
nerstone for fMRI with SPM. The only remaining issue
was the form of the convolution kernel or haemody-
namic response function that should be adopted and
whether the form changed from region to region. This
was resolved simply by convolving the stimulus func-
tion with not one response function but several [basis
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functions]. This meant that one could model condi-
tion, voxel and subject-specific haemodynamic responses
using established approaches. Temporal basis functions
(Friston et al., 1995b) were important because they
allowed one to define a family of HRFs that could change
their form from voxel to voxel. Temporal basis functions
found an important application in the analysis of event-
related fMRI. The general acceptance of the convolution
model was consolidated by the influential paper of Boyn-
ton a year later (Boynton et al., 1996). However, at this
time, people were starting to notice some non-linearities
in fMRI responses (Vazquez and Noll, 1998) that were
formulated, in the context of SPM, as a Volterra series
expansion of the stimulus function (Friston et al., 1998).
This was simple because the Volterra series can be for-
mulated as another linear model (compare with a Taylor
expansion). These Volterra characterizations would later
be used to link empirical data and balloon models of
haemodynamic responses.

Efficiency and experimental design

The second issue that concerned the developers of SPM
arose from the growing number and design of event-
related fMRI studies. This was the efficiency with which
responses could be detected and estimated. Using an
analytical formulation, it was simple to show that the
boxcar paradigms were much more efficient that event-
related paradigms, but event-related paradigms could be
made efficient by randomizing the occurrence of partic-
ular events such that they ‘bunched’ together to increase
experimental variance. This was an interesting time in
the development of data analysis techniques because it
enforced a signal processing perspective on the general
linear models employed.

Hierarchical models

The third area motivating the development of SPM was
especially important in fMRI and reflects the fact that
many scans can be obtained in many individuals. Unlike
in PET, the within-subject scan-to-scan variability can be
very different from the between-subject variability. This
difference in variability has meant that inferences about
responses in a single subject (using within-subject vari-
ability) are distinct from inferences about the population
from which that subject was drawn (using between-
subject variability). More formally, this distinction is
between fixed- and random-effects analyses. This distinc-
tion speaks to hierarchical observation models for fMRI
data. Because SPM only had the machinery to do single-
level (fixed-effects) analyses, a device was required to
implement random-effects analyses. This turned out to
be relatively easy and intuitive: subject-specific effects
were estimated in a first-level analysis and the contrasts

of parameter estimates (e.g. activations) were then re-
entered into a second-level SPM analysis (Holmes and
Friston, 1998). This recursive use of a single-level statis-
tical model is fortuitously equivalent to multilevel hier-
archical analyses (compare with the summary statistic
approach in conventional statistics).

Bayesian developments

Understanding hierarchical models of fMRI data was
important for another reason: these models support
empirical Bayesian treatments. Empirical Bayes was one
important component of a paradigm shift in SPM from
classical inference to a Bayesian perspective. From the
late nineties, Bayesian inversion of anatomical models
had been a central part of spatial normalization. How-
ever, despite early attempts (Holmes and Ford, 1993),
the appropriate priors for functional data remained elu-
sive. Hierarchical models provided the answer, in the
form of empirical priors that could be evaluated from
the data themselves. This evaluation depends on the con-
ditional dependence implicit in hierarchical models and
brought previous maximum likelihood schemes into the
more general Bayesian framework. In short, the classi-
cal schemes SPM had been using were all special cases
of hierarchical Bayes (in the same way that the original
ANCOVA models for PET were special cases of the gen-
eral linear models for fMRI). In some instances, this con-
nection was very revealing, for example, the equivalence
between classical covariance component estimation using
restricted maximum likelihood (i.e. ReML) and the inver-
sion of two-level models with expectation maximization
(EM) meant we could use the same techniques used to
estimate serial correlations to estimate empirical priors
on activations (Friston et al., 2002).

The shift to a Bayesian perspective had a number of
motivations. The most principled was an appreciation
that estimation and inference corresponded to Bayesian
inversion of generative models of imaging data. This
placed an emphasis on generative or forward models for
fMRI that underpinned work on biophysical modelling
of haemodynamic responses and, indeed, the frame-
work entailed by dynamic causal modelling (e.g. Fris-
ton et al., 2003; Penny et al., 2004). This reformulation
led to more informed spatiotemporal models for fMRI
(e.g. Penny et al., 2005) that effectively estimate the opti-
mum smoothing by embedding spatial dependencies
in a hierarchical model. It is probably no coincidence
that these developments coincided with the arrival of
the Gatsby Computational Neuroscience Unit next to
the Wellcome Department of Imaging Neuroscience. The
Gatsby housed several experts in Bayesian inversion and
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8 1. A SHORT HISTORY OF SPM

machine learning and the Wellcome was home to many
of the SPM co-authors.

The second motivation for Bayesian treatments of
imaging data was to bring the analysis of EEG and
fMRI data into the same forum. Source reconstruction
in EEG and MEG (magnetoencephalography) is an ill-
posed problem that depends explicitly on regularization
or priors on the solution. The notion of forward models
in EEG-MEG, and their Bayesian inversion had been well
established for decades and SPM needed to place fMRI
on the same footing.

THE MEG-EEG YEARS

At the turn of the century people had started applying
SPM to source reconstructed EEG data (e.g. Bosch-Bayard
et al., 2001). Although SPM is not used widely for the
analysis of EEG-MEG data, over the past five years most
of the development work in SPM has focused on this
modality. The motivation was to accommodate differ-
ent modalities (e.g. fMRI-EEG) within the same analytic
and anatomical framework. This reflected the growing
appreciation that fMRI and EEG could offer complemen-
tary constraints on the inversion of generative models.
At a deeper level, the focus had shifted from generative
models of a particular modality (e.g. convolution mod-
els for fMRI) and towards models of neuronal dynamics
that could explain any modality. The inversion of these

TABLE 1-1 Some common TLAs

TLA Three letter acronym
SPM Statistical parametric

map(ping)
GLM General linear model
RFT Random field theory
VBM Voxel-based

morphometry
FWE Family-wise error
FDR False discovery rate
IID Independent and

identically distributed
MRI Magnetic resonance

imaging
PET Positron emission

tomography
EEG Electroencephalography
MEG

Magnetoencephalography
HRF Haemodynamic response
function
IRF Impulse response function
FIR Finite impulse response

ERP Event-related potential
ERF Event-related field
MMN Mis-match negativity
PPI Psychophysiological

interaction
DCM Dynamic causal model
SEM Structural equation model
SSM State-space model
MAR Multivariate

autoregression
LTI Linear time invariant
PEB Parametric empirical

Bayes
DEM Dynamic expectation
maximization
GEM Generalized expectation

maximization
BEM Boundary-element

method
FEM Finite-element method

models corresponds to true multimodal fusion and is the
aim of recent and current developments within SPM.

In concrete terms, this period saw the application of
random field theory to SPMs of evoked and induced
responses, highlighting the fact that SPMs can be applied
to non-anatomical spaces, such as space-peristimulus-
time or time-frequency (e.g. Kilner et al., 2005). It has seen
the application of hierarchical Bayes to the source recon-
struction problem, rendering previous heuristics, like L-
curve analysis, redundant (e.g. Phillips et al., 2002) and
it has seen the extension of dynamic causal modelling to
cover evoked responses in EEG-MEG (David et al., 2006).

This section is necessarily short because the history
of SPM stops here. Despite this, a lot of the material in
this book is devoted to biophysical models of neuronal
responses that can, in principle, explain any modality.
Much of SPM is about the inversion of these models. In
what follows, we try to explain the meaning of the more
important TLAs entailed by SPM (Table 1-1).
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C H A P T E R

10

Covariance Components
D. Glaser and K. Friston

INTRODUCTION

In this chapter, we take a closer look at covariance
components and non-sphericity. This is an important
aspect of the general linear model that we will encounter
in different contexts in later chapters. The validity of F -
statistics in classical inference depends on the sphericity
assumption. This assumption states that the difference
between two measurement sets (e.g. from two levels of
a particular factor) has equal variance for all pairs of
such sets. In practice, this assumption can be violated
in several ways, for example, by differences in variance
induced by different experimental conditions or by serial
correlations within imaging time-series.

A considerable literature exists in applied statistics that
describes and compares various techniques for dealing
with sphericity violation in the context of repeated mea-
surements (see e.g. Keselman et al., 2001). The analysis
techniques exploited by statistical parametrical mapping
(SPM) also employ a range of strategies for dealing
with the variance structure of random effects in imag-
ing data. Here, we will compare them with conventional
approaches.

Inference in imaging depends on a detailed model of
what might arise by chance. If you do not know about
the structure of random fluctuations in your signal, you
will not know what features you should find ‘surprising’.
A key component of this structure is the covariance of
the data. That is, the extent to which different sets of
observations depend on each other. If this structure is
specified incorrectly, one might obtain incorrect estimates
of the variability of the parameters estimated from the
data. This in turn can lead to false inferences.

Classical inference rests on the expected distribution of
a test statistic under the null hypothesis. Both the statistic
and its distribution depend on hyperparameters control-
ling different components of the error covariance (this
can be just the variance, �2 in simple models). Estimates

of variance components are used to compute statistics
and variability in these estimates determines the statis-
tic’s degrees of freedom. Sensitivity depends, in part,
upon precise estimates of the hyperparameters (i.e. high
degrees of freedom).

In the early years of functional neuroimaging, there
was debate about whether one could ‘pool’ (error
variance) hyperparameter estimates over voxels. The
motivation for this was an enormous increase in the pre-
cision of the hyperparameter estimates that rendered the
ensuing t-statistics normally distributed with very high
degrees of freedom. The disadvantage was that ‘pooling’
rested on the assumption that the error variance was the
same at all voxels. Although this assumption was highly
implausible, the small number of observations in positron
emission tomography (PET) renders the voxel-specific
hyperparameter estimates highly variable and it was not
easy to show significant regional differences in error vari-
ance. With the advent of functional magnetic resonance
imaging (fMRI) and more precise hyperparameter esti-
mation, this regional heteroscedasticity was established
and pooling was contraindicated. Consequently, most
analyses of neuroimaging data use voxel-specific hyper-
parameter estimates. This is quite simple to implement,
provided there is only one hyperparameter, because
its restricted maximum likelihood (ReML) estimate (see
Chapter 22) can be obtained non-iteratively and simul-
taneously through the sum of squared residuals at each
voxel. However, in many situations, the errors have a
number of variance components (e.g. serial correlations
in fMRI or inhomogeneity of variance in hierarchical
models). The ensuing non-sphericity presents a poten-
tial problem for mass-univariate tests of the sort imple-
mented by SPM.

Two approaches to this problem can be adopted. First,
departures from a simple distribution of the errors can
be modelled using tricks borrowed from the classical sta-
tistical literature. This correction procedure is somewhat
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crude, but can protect against the tendency towards
liberal conclusions. This post hoc correction depends on
an estimated or known non-sphericity. This estimation
can be finessed by imposing a correlation structure on
the data. Although this runs the risk of inefficient param-
eter estimation, it can condition the noise to ensure
valid inference. Second, the non-sphericity, estimated in
terms of different covariance components, can be used
to whiten the data and effectively restore sphericity,
enabling the use of conventional statistics without the
need for a post hoc correction. However, this means we
have to estimate the non-sphericity from the data.

In this chapter, we describe how the problem has been
addressed in various implementations of SPM. We point
first to a mathematical equivalence between the classical
statistical literature and how SPM treats non-sphericity
when using ordinary least squares parameter estimates.
In earlier implementations of SPM, a temporal smoothing
was employed to deal with non-sphericity in time-series
models, as described in Worsley and Friston (1995). This
smoothing ‘swamps’ any intrinsic autocorrelation and
imposes a known temporal covariance structure. While
this structure does not correspond to the assumptions
underlying the classical analysis, it is known and can be
used to provide post hoc adjustments to the degrees of
freedom of the sort used in the classical literature. This
correction is mathematically identical to that employed
by the Greenhouse-Geisser univariate F -test.

In the second part of the chapter, we will describe
a more principled approach to the problem of non-
sphericity. Instead of imposing an arbitrarily covariance
structure, we will show how iterative techniques can be
used to estimate the actual nature of the errors, along-
side the estimation of the model. While traditional multi-
variate techniques also estimate covariances, the iterative
scheme allows the experimenter to ‘build in’ knowl-
edge or assumptions about the covariance structure. This
can reduce the number of hyperparameters which must
be estimated and can restrict the solutions to plausi-
ble forms. These iterative estimates of non-sphericity use
ReML. In fMRI time-series, for example, these variance
components model the white noise component as well
as the covariance induced by, for example, an AR(1)
component. In a mixed-effects analysis, the components
correspond to the within-subject variance (possibly dif-
ferent for each subject) and the between-subject variance.
More generally, when the population of subjects con-
sists of different groups, we may have different resid-
ual variance in each group. ReML partitions the overall
degrees of freedom (e.g. total number of fMRI scans) in
such a way as to ensure that the variance estimates are
unbiased.

SOME MATHEMATICAL
EQUIVALENCES

Assumptions underlying repeated-measures
ANOVA

Inference on imaging data under SPM proceeds by the
construction of an F -test based on the null distribution.
Our inferences are vulnerable to violations of assump-
tions about the covariance structure of the data in just the
same way as, for example, in the behavioural sciences:

Specifically, ‘the conventional univariate method of
analysis assumes that the data have been obtained from
populations that have the well-known normal (multi-
variate) form, that the degree of variability (covariance)
among the levels of the variable conforms to a spheri-
cal pattern, and that the data conform to independence
assumptions. Since the data obtained in many areas of
psychological inquiry are not likely to conform to these
requirements � � � researchers using the conventional pro-
cedure will erroneously claim treatment effects when
none are present, thus filling their literatures with false
positive claims’ (Keselman et al., 2001).

It could be argued that limits on the computational
power available to researchers led to a focus on mod-
els that can be estimated without recourse to iterative
algorithms. In this account, sphericity and its associated
literature could be considered a historically specific issue.
Nevertheless, while the development of methods such as
those described in Worsley and Friston (1995) and imple-
mented in SPM do not refer explicitly to repeated mea-
sures designs they are, in fact, mathematically identical,
as we will now show.

The assumptions required for both sorts of analysis
can be seen easily by considering the variance-covariance
matrix of the observation error. Consider a popula-
tion variance-covariance matrix for a measurement error
x under k treatments with n subjects. The errors on
each subject can be viewed as a k-element vector with
associated covariance matrix:

�x =

⎡
⎢⎢⎢⎣

�11 �12 � � � �1k

�21 �22 � � � �2k

���
���

�k1 �k2 � � � �kk

⎤
⎥⎥⎥⎦ 10.1

This matrix can be estimated by the sample covariance
matrix of the residuals:

�̂x = Sx =

⎡
⎢⎢⎢⎣

S11 S12 � � � S1k

S21 S22 � � � S2k

���
���

Sk1 Sk2 � � � Skk

⎤
⎥⎥⎥⎦ 10.2
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What is the most liberal criterion, which we can apply
to this matrix, without violating the assumptions under-
lying repeated-measures analysis of variance (ANOVA)?
By definition, the following equivalent properties are
obeyed by the covariance matrix if the covariance struc-
ture is spherical:

∀i �= j

�ii +�jj −2�ij = 2�

�2
Xi−Xj

= 2�

10.3

In words, the statements in Eqn. 10.3 say that for any pair
of levels, the sum of their variances minus twice their
covariance is equal to a constant. Equivalently, the vari-
ance of the difference between a pair of levels is the same
for all pairs. Intuitively, it is clear that this assumption is
violated, for example, in the case of temporal autocorre-
lation. In such a case, by definition, pairs of nearby levels
(in this case time points) are more highly correlated than
those separated by longer times. Another example might
be an analysis which took three activations from each
member of two groups. Consider, for example, activation
while reading, while writing, and while doing arithmetic.
Imagine one wanted to test whether the populations from
which two groups were drawn were significantly differ-
ent, while considering the three types of task together.
This would involve an F -test, and would assume that
the covariation between the subject-specific residuals for
reading and writing was the same as that between the
writing and arithmetic. This may or may not be true. If
it were not, sphericity would be violated, and the test
would be overly liberal.

To illuminate the derivation of the term sphericity, we
state without proof an equivalent condition to that in
Eqn. 10.3. The condition is that there can be found an
orthonormal projection matrix M∗ which can be used
to transform the variables x of the original distribution
to a new set of variables y. This new set of variables
has a covariance matrix �y which is spherical (i.e. is a
scalar multiple of the identity matrix). This relation will
be exploited in the next section.

M∗M∗T = I

M∗�xM
∗T = �y = �I =

⎡
⎢⎣

� 0 · · ·
0 �
���

� � �

⎤
⎥⎦

2� = �ii +�jj −2�ij

10.4

It is worth mentioning for completeness that while
sphericity is necessary, it is not necessarily clear
whether any particular dataset is spherical. Therefore,
a more restricted sufficient condition has been adopted,

namely compound symmetry. A matrix has compound
symmetry if it has the following form:

�x =

⎡
⎢⎢⎢⎣

�2 ��2 · · · ��2

��2 �2 · · · ��2

���
���

��2 ��2 · · · �2

⎤
⎥⎥⎥⎦ 10.5

To describe the relation in Eqn. 10.5 in words – all the
within group variances are assumed equal, and sepa-
rately all the covariances are assumed equal and this can
be assessed directly from the data. There exist approaches
to assess whether a dataset deviates from sphericity such
as Mauchly’s test (see e.g. Winer et al., 1991), but these
have low power.

A measure of departure from sphericity

Using the notation of the covariance matrix from
Eqn. 10.1, we can define a measure of departure from
sphericity after Box (1954):

� = k2	�̄ii −�••
2

	k−1

∑∑

	�ij −�i• −�•i +�••

10.6

where �̄ii is the mean of diagonal entries, �•• is the mean
of all entries, �i• is the mean for row i� �•i is mean for
column i. We can rewrite Eqn. 10.6 in terms of �i, the
characteristic roots of the transformed matrix �y from
Eqn. 10.4:

� = 	
∑

�i

2

	k−1

∑

�2
i

10.7

We now informally derive upper and lower bounds for
our new measure. If �y is spherical, i.e. of form �I then the
roots are equal and since �y is of size 	k−1
×	k−1
 then:

� = 	
∑

�
2

	k−1

∑

�2
= 		k−1
�
2

	k−1
	k−1
�2
= 1 10.8

At the opposite extreme, it can be shown that for a max-
imum departure from sphericity:

�x =

⎡
⎢⎢⎢⎣

c c · · · c
c c c
���

���
���

c c · · · c

⎤
⎥⎥⎥⎦ 10.9

for some constant c. Then the first characteristic root �1 =
	k−1
c and the rest are zeroes. From this we see that:

� = 	
∑

�i

2

	k−1

∑

�2
i

= �2
1

	k−1
�2
1

= 1
	k−1


10.10
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Thus we have the following bounds:

1
	k−1


≤ � ≤ 1 10.11

In summary, we have seen that the measure � is well-
defined using basic matrix algebra and expresses the
degree to which the standard assumptions underlying
the distribution are violated. In the next section, we
employ this measure to protect ourselves against falsely
positive inferences by correcting the parameters of the
F -distribution.

Correcting degrees of freedom:
the Satterthwaite approximation

Box’s motivation for using this measure for the depar-
ture from sphericity was to harness an approximation
due to Satterthwaite. This deals with the fact that the
actual distribution of the variance estimator is not 2

if the errors are not spherical, and thus the F -statistic
used for hypothesis testing is inaccurate. The solution
adopted is to approximate the true distribution with a
moment-matched scaled 2 distribution – matching the
first and second moments. Under this approximation,
in the context of repeated measures ANOVA with k
measures and n subjects, the F -statistic is distributed as
F �	k−1
�� 	n−1
	k−1
��. To understand the elegance
of this approach, note that, as shown above, when the
sphericity assumptions underlying the model are met,
� = 1 and the F -distribution is then just F �	k−1
� 	n−1

	k − 1
�, the standard degrees of freedom. In short, the
correction ‘vanishes’ when not needed.

Finally, we note that this approximation has been
adopted for neuroimaging data in SPM. Consider the
expression for the effective degrees of freedom from
Worsley and Friston (1995):

� = tr	RV
2

tr	RVRV

10.12

Compare this with Eqn. 10.7 above, and see Chapter 8
for a derivation. Here R is the model’s residual forming
matrix and V are the serial correlations in the errors. In
the present context: �x = RVR. If we remember that the
conventional degrees of freedom for the t-statistic are
k − 1 and consider � as a correction for the degrees of
freedom, then:

� = 	k−1
� = 	k−1

	
∑

�i

2

	k−1

∑

�2
i

= 	
∑

�i

2

∑
�2

i

= tr	RV
2

tr	RVRV


10.13

Thus, SPM applies the Satterthwaite approximation to
correct the F -statistic, implicitly using a measure of

sphericity violation. Next, we will see that this approach
corresponds to that employed in conventional statistical
packages.

But which covariance matrix is used
to estimate the degrees of freedom?

Returning to the classical approach, in practice of course
we do not know � and so it is estimated by S , the
sample covariance matrix in Eqn. 10.2. From this we can
generate an �̂ by substituting sij for the �ij in Eqn. 10.6.
This correction, using the sample covariance, is often
referred to as the ‘Greenhouse-Geisser’ correction (e.g.
Winer et al., 1991). An extensive literature treats the fur-
ther steps in harnessing this correction and its variants.
For example, the correction can be made more conser-
vative by taking the lower bound on �̂ as derived in
Eqn. 10.10. This highly conservative test is [confusingly]
also referred to as the ‘Greenhouse-Geisser conservative
correction’.

The important point to note, however, is that the con-
struction of the F -statistic is predicated upon a model
covariance structure, which satisfies the assumptions of
sphericity as outlined above, but the degrees of freedom
are adjusted based on the sample covariance structure.
This contrasts with the approach taken in SPM which
assumes either independent and identically distributed
(IID) errors (a covariance matrix which is a scalar mul-
tiple of the identity matrix) or a simple autocorrelation
structure, but corrects the degrees of freedom only on
the basis of the modelled covariance structure. In the IID
case, no correction is made. In the autocorrelation case,
an appropriate correction was made, but ignoring the
sample covariance matrix and assuming that the data
structure was as modelled. These strategic differences are
summarized in Table 10-1.

ESTIMATING COVARIANCE
COMPONENTS

In earlier versions of SPM, the covariance structure V
was imposed upon the data by smoothing them. Current
implementations avoid this smoothing by modelling the
non-sphericity. This is accomplished by defining a basis
set of components for the covariance structure and then
using an iterative ReML algorithm to estimate hyper-
parameters controlling these components. In this way,
a wide range of sphericity violations can be modelled
explicitly. Examples include temporal autocorrelation
and more subtle effects of correlations induced by taking
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TABLE 10-1 Different approaches to modelling non-sphericity

Classical approach
Greenhouse-Geisser

SPM99 SPM2/SPM5

Choice of model Assume sphericity Assume sphericity
or AR(1)

Use ReML to estimate
non-sphericity
parameterized with
a basis set

Corrected degrees of
freedom based on
covariance structure of:

Residuals Model Model

Estimation of degrees of
freedom is voxel-wise
or for whole brain

Single voxel Many voxels Many voxels

several measures on each of several subjects. In all cases,
however, the modelled covariance structure is used to
calculate the appropriate degrees of freedom using the
moment-matching procedure described in Chapter 8. We
do not discuss estimation in detail since this is covered in
Part 4 (and Appendix 3). We will focus on the form of the
covariance structure, and look at some typical examples.
We model the covariance matrix as:

�x =∑
�iQi 10.14

where �I are some hyperparameters and Qi represent
some basis set. The term Qi embodies the form of the
covariance components and could model different vari-
ances for different blocks of data or different forms of
correlations within blocks. Estimation takes place using
an ReML procedure where the model coefficients and
variance estimates are re-estimated iteratively.

As will be discussed in the final section, what we in fact
estimate is a correlation matrix or normalized covariance
for many voxels at once. This can be multiplied by a scalar
variance estimate calculated for each voxel separately.
Since this scalar does not affect the correlation structure,
the corrected degrees of freedom are the same for all
voxels.

These components can be thought of as ‘design matri-
ces’ for the second-order behaviour of the response
variable and form a basis set for estimating the error
covariance, where the hyperparameters scale the con-
tribution of each constraint. Figure 10.1 illustrates two
possible applications of this technique: one for first-level
analyses and one for random effect analyses.

Pooling non-sphericity estimates over voxels

So far we have discussed the covariance structure, draw-
ing from a univariate approach. In this section, we ask
whether we can harness the fact that our voxels come
from the same brain. First, we will motivate the question

V         =       λ1Q1       +       λ 2 Q2       +     λ 3Q 3 + . . .

V         =       λ1Q1       +       λ 2 Q2       +     λ 3Q 3 

FIGURE 10.1 Examples of covariance components. Top row:
here we imagine that we have a number of observations over time
and a number of subjects. We decide to model the autocorrelation
structure by a sum of a simple autocorrelation AR(1) component
and a white noise component. A separately scaled combination of
these two can approximate a wide range of actual structures, since
the white noise component affects the ‘peakiness’ of the overall
autocorrelation. For this purpose we generate two bases for each
subject, and here we illustrate the first three. The first is an identity
matrix (no correlation) restricted to the observations from the first
subject; the second is the same but blurred in time and with the
diagonal removed. The third illustrated component is the white
noise for the second subject and so on. Second row: in this case we
imagine that we have three measures for each of several subjects. For
example, consider a second-level analysis in which we have a scan
while reading, while writing and while doing arithmetic for several
members of a population. We would like to make an inference about
the population from which the subjects are drawn. We want to
estimate what the covariation structure of the three measures is, but
we assume that this structure is the same for each of the individuals.
Here we generate three bases in total, one for all the reading scores,
one for all the writing, and one for all the arithmetic. We then
iteratively estimate the hyperparameters controlling each basis, and
hence the covariance structure. After this has been normalized, so
that tr	V 
 = rank	V 
, it is the desired correlation.

by demonstrating that sphericity estimation involves a
noisy measure, and that it might, therefore, be beneficial
to pool over voxels. We will then show that under certain
assumptions this strategy can be justified, and illustrate
an implementation.
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Simulating noise in sphericity measures

To assess the practicality of voxel-wise estimation of the
covariance structure we simulated 10 000 voxels drawn
from a known population with eight measures of three
levels of a repeated measure. For each voxel we esti-
mated the variance-covariance matrix using ReML and
a basis set corresponding to the true distribution. We
then calculated the � correction factor and plotted a his-
togram for the distribution of this over the 10 000 voxels
(Figure 10.2). Note the wide distribution, even for a uni-
form underlying covariance structure. The voxel-wide
estimate was 0.65, which is higher (more spherical) than
the average of the voxel-wise estimates (i.e. 0.56). In this
case, the � for the generating distribution was indeed
0.65. This highlights the utility of pooling the estimate
over many voxels to generate a correlation matrix.

Degrees of freedom reprised

As the simulation shows, to make the estimate of effective
degrees of freedom valid, we require very precise esti-
mates of non-sphericity. However, as mentioned at the
start of this chapter ‘pooling’ is problematic because the
true error variance may change from voxel to voxel. We
will now expand upon the form described in Eqn. 10.14
to describe in detail the strategy used by current fMRI
analysis packages like SPM and multistat (Worsley et al.,
2002).

Critically, we factorize the error covariance at the i-th
voxel �i = �2

i V	�
 into a voxel-specific error variance and
a voxel-wide correlation matrix. The correlation matrix
is a function of hyperparameters controlling covari-
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FIGURE 10.2 Histogram illustrating voxel-wise sphericity
measure, �, for 10 000 simulated voxels drawn from a known pop-
ulation with eight measures of three levels of a repeated measure.
The average of the voxel-wise estimates is 0.56. The voxel-wide
estimate was 0.65, and the � for the generating distribution was
indeed 0.65.

ance components V	�
 = �1Q1+� · · · �+�nQn that can
be estimated with high precision over a large number
of voxels. This allows one to use the reduced single-
hyperparameter model and the effective degrees of free-
dom as in Eqn. 10.1, while still allowing error variance to
vary from voxel to voxel. Here the pooling is over ‘simi-
lar’ voxels (e.g. those that activate) and that are assumed
to express various error variance components in the same
proportion but not in the same amounts. In summary, we
factorize the error covariance into voxel-specific variance
and a correlation that is the same for all voxels in the
subset. For time-series, this effectively factorizes the spa-
tiotemporal covariance into non-stationary spatial vari-
ance and stationary temporal correlation. This enables
pooling for, and only for, estimates of serial correlations.

Once the serial correlations have been estimated, infer-
ence can then be based on the post hoc adjustment for
the non-sphericity described above using the Satterth-
waite approximation. The Satterthwaite approximation
is exactly the same as that employed in the Greenhouse-
Geisser (G-G) correction for non-sphericity in commercial
packages. However, there is a fundamental distinction
between the SPM adjustment and the G-G correction.
This is because the non-sphericity V enters as a known
constant (or as an estimate with very high precision) in
SPM. In contradistinction, the non-sphericity in G-G uses
the sample covariance matrix or multiple hyperparam-
eter estimates, usually ReML, based on the data them-
selves to give V̂ = �̂1Q1 +· · ·+ �̂nQn. This gives corrected
degrees of freedom that are generally too high, leading
to mildly capricious inferences. This is only a problem
if the variance components interact (e.g. as with serial
correlations in fMRI).

Compare the following with Eqn. 10.12:

vGG = tr	R
�GG = tr	RV̂ 
2

tr	RV̂RV̂ 

10.15

The reason the degrees of freedom are too high is that
G-G fails to take into account the variability in the
ReML hyperparameter estimates and ensuing variability
in V̂ . There are solutions to this that involve abandon-
ing the single variance component model and forming
statistics using multiple hyperparameters directly (see
Kiebel et al., 2003 for details). However, in SPM this
is unnecessary. The critical difference between conven-
tional G-G corrections and the SPM adjustment lies in
the fact that SPM is a mass-univariate approach that
can pool non-sphericity estimates V̂ over subsets of vox-
els to give a highly precise estimate V , which can be
treated as a known quantity. Conventional univariate
packages cannot do this because there is only one data
sequence.
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Non-sphericity, whitening and maximum
likelihood

In this chapter, we have introduced the concept of non-
sphericity and covariance component estimation through
its impact on the distributional assumptions that under-
lie classical statistics. In this context, the non-sphericity
is used to make a post hoc correction to the degrees
of freedom of the statistics employed. Although current
implementations of SPM can use non-sphericity to make
post hoc adjustments to statistics based on ordinary least
squares statistics, the default procedure is very different
and much simpler; the non-sphericity is used to whiten
the model. This renders the errors spherical and makes
any correction redundant. Consider the general linear
model (GLM) at voxel i, with non-spherical error:

yi = X�i + ei

ei ∼ N	0��2
i V


10.16

After V has been estimated using ReML (see below) it
can be used to pre-multiply the model by a whitening
matrix W = V −1/2 giving:

Wyi = WX�i +wi

wi ∼ N	0��2
i I


wi = Wei

10.17

This new model now conforms to sphericity assump-
tions and can be inverted in the usual way at each voxel.
Critically, the degrees of freedom revert to their classi-
cal values, without the need for any correction. Further-
more, the parameter estimates of this whitened model
correspond to the maximum likelihood estimates of the
parameters �i and are the most efficient estimates for
this model. This is used in current implementations of
SPM and entails a two-pass procedure, in which the
non-sphericity is estimated in a first pass and then the
whitened model is inverted in a second pass to give
maximum likelihood parameter and restricted maximum
likelihood variance estimates. We will revisit this issue
in later chapters that consider hierarchal models and the
relationship of ReML to more general model inversion
schemes. Note that both the post hoc and whitening pro-
cedures rest on knowing the non-sphericity. In the final
section we take a closer look at this estimation.

Separable errors

The final issue we address is how the voxel-independent
hyperparameters are estimated and how precise these
estimates are. There are many situations in which

the hyperparameters of mass-univariate observations
factorize. In the present context, we can regard fMRI
time-series as having both spatial and temporal correla-
tions among the errors that factorize into a Kronecker
tensor product. Consider the data matrix Y = �y1� � � � � yn�
with one column, over time, for each of n voxels. The
spatiotemporal correlations can be expressed as the error
covariance matrix in a vectorized GLM:

Y = X�+�

vec	Y
 =
⎡
⎢⎣

y1
���

yn

⎤
⎥⎦=

⎡
⎢⎣

X · · · 0
���

� � �
���

0 · · · X

⎤
⎥⎦
⎡
⎢⎣

�1
���

�n

⎤
⎥⎦+

⎡
⎢⎣

�1
���

�n

⎤
⎥⎦

cov	vec	�

 = �⊗V =
⎡
⎢⎣

�1V · · · �1nV
���

� � �
���

�n1V · · · �nnV

⎤
⎥⎦ 10.18

Note that Eqn. 10.16 assumes a separable form for the
errors. This is the key assumption underlying the pooling
procedure. Here V embodies the temporal non-sphericity
and � the spatial non-sphericity. Notice that the elements
of � are voxel-specific, whereas the elements of V are
the same for all voxels. We could now enter the vec-
torized data into a ReML scheme, directly, to estimate
the spatial and temporal hyperparameters. However, we
can capitalize on the separable form of the non-sphericity
over time and space by only estimating the hyperparam-
eters of V and then use the usual estimator (Worsley and
Friston, 1995) to compute a single hyperparameter �̂i for
each voxel.

The hyperparameters of V can be estimated with the
algorithm presented in Friston et al. (2002, Appendix 3).
This uses a Fisher scoring scheme to maximize the log
likelihood ln p	Y ����
 (i.e. the ReML objective function)
to find the ReML estimates. In the current context this
scheme is:

� ← �+H−1g

gi = � ln p	Y ����


��i

= n
2 tr�PQi�+ 1

2 tr	PT QiPY �−1Y T 


Hij = −
〈

�2 ln p	Y ����


��2
ij

〉
= n

2 tr	PQiPQj


P = V −1 −V −1X	XT V −1X
−1XT V −1

V = �1Q1 +· · ·+�nQn 10.19

This scheme is derived from basic principles in
Appendix 4. Notice that the Kronecker tensor products
and vectorized forms disappear. Critically H , the preci-
sion of the hyperparameter estimates, increases linearly
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with the number of voxels. With sufficient voxels this
allows us to enter the resulting estimates, through V ,
into Eqn. 10.16 as known quantities, because they are
so precise. The nice thing about Eqn. 10.19 is that the
data enter only as Y �−1Y T whose size is determined by
the number of scans as opposed to the massive num-
ber of voxels. The term Y �−1Y T is effectively the sam-
ple temporal covariance matrix, sampling over voxels
(after spatial whitening) and can be assembled voxel by
voxel in an efficient fashion. Eqn. 10.19 assumes that
we know the spatial covariances. In practice, Y �−1Y T is
approximated by selecting voxels that are spatially dis-
persed (so that �ij = 0) and scaling the data by an esti-
mate of �−1

i obtained non-iteratively, assuming temporal
sphericity.

CONCLUSION

We have shown that classical approaches do not explic-
itly estimate the covariance structure of the noise in the
data but instead assume it has a tractable form, and then
correct for any deviations from the assumptions. This
approximation can be based on the actual data, or on a
defined structure which is imposed on the data. More
principled approaches explicitly model those types of
correlations which the experimenter expects to find in
the data. This estimation can be noisy but, in the context
of SPM, can be finessed by pooling over many voxels.

Estimating the non-sphericity allows the experimenter
to perform types of analysis which were previously ‘for-
bidden’ under the less sophisticated approaches. These
are of real interest to many researchers and include bet-
ter estimation of the autocorrelation structure for fMRI
data and the ability to take more than one scan per

subject to a second level analysis and thus conduct F -
tests. In event-related studies, where the exact form of
the haemodynamic response can be critical, more than
one aspect of this response can be analysed in a random-
effects context. For example, a canonical form and a mea-
sure of latency or dispersion can cover a wide range of
real responses. Alternatively, a more general basis set
(e.g. Fourier or finite impulse response) can be used,
allowing for non-sphericity among the different compo-
nents of the set.

In this chapter, we have focused on the implications of
non-sphericity for inference. In the next chapter we look
at a family of models that have very distinct covariance
components that can induce profound non-sphericity.
These are hierarchical models.

REFERENCES

Box GEP (1954) Some theorems on quadratic forms applied in
the study of analysis of variance problems. Ann Math Stat 25:
290–302

Friston KJ, Glaser DE, Henson RN et al. (2002) Classical and
Bayesian inference in neuroimaging: applications. NeuroImage
16: 484–512�∗∗10�5�

Keselman HJ, Algina J, Kowalchuk RK (2001) The analysis of
repeated measures designs: a review. Br J Math Stat Psychol
54: 1–20

Kiebel SJ, Glaser DE, Friston KJ (2003) A heuristic for the degrees
of freedom of statistics based on multiple hyperparameters.
NeuroImage 20: 591–600

Winer BJ et al. (1991) Statistical principles in experimental design,
McGraw-Hill 3rd edition, New York

Worsley KJ, Liao CH, Aston J et al. (2002) A general statistical anal-
ysis for fMRI data. NeuroImage 15: 1–15

Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series
revisited – again. NeuroImage 2: 173–81



Elsevier UK Chapter: Ch11-P372560 3-10-2006 3:05p.m. Page:148 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

C H A P T E R

11

Hierarchical Models
W. Penny and R. Henson

INTRODUCTION

Hierarchical models are central to many current analyses
of functional imaging data including random effects anal-
ysis (Chapter 12), electroencephalographic (EEG) source
localization (Chapters 28 to 30) and spatiotemporal mod-
els of imaging data (Chapters 25 and 26 and Friston et al.,
2002b). These hierarchical models posit linear relations
among variables with error terms that are Gaussian. The
general linear model (GLM), which to date has been so
central to the analysis of functional imaging data, is a
special case of these hierarchical models consisting of just
a single layer.

Model fitting and statistical inference for hierarchical
models can be implemented using a parametric empiri-
cal Bayes (PEB) algorithm described in Chapter 24 and
in Friston et al. (2002a). The algorithm is sufficiently
general to accommodate multiple hierarchical levels and
allows for the error covariances to take on arbitrary form.
This generality is particularly appealing as it renders
the method applicable to a wide variety of modelling
scenarios. Because of this generality, however, and the
complexity of scenarios in which the method is applied,
readers wishing to learn about PEB for the first time are
advised to read this chapter first. Chapter 24 then goes
on to discuss the more general case. It also shows that
the variance components that are estimated using PEB,
can also be estimated using an algorithm from classical
statistics called restricted maximum likelihood (ReML).

In this chapter, we provide an introduction to hier-
archical models and focus on some relatively simple
examples. This chapter covers the relevant mathematics
and numerical examples are presented in the following
chapter. Each model and PEB algorithm we present is
a special case of that described in Friston et al. (2002a).
While there are a number of tutorials on hierarchical
modelling (Lee, 1997; Carlin and Louis, 2000) what we

describe here has been tailored for functional imaging
applications. We also note that a tutorial on hierarchi-
cal models is, to our minds, also a tutorial on Bayesian
inference, as higher levels act as priors for parameters
in lower levels. Readers are therefore encouraged to also
consult background texts on Bayesian inference, such as
Gelman et al. (1995).

This chapter focuses on two-level models and shows
how one computes the posterior distributions over the
first- and second-level parameters. These are derived,
initially, for completely general designs and error covari-
ance matrices. We then consider two special cases: (i)
models with equal error variances; and (ii) separable
models. We assume initially that the covariance compo-
nents are known, and then in the section on PEB, we
show how they can be estimated. A numerical example
is then given showing PEB in action. The chapter then
describes how Bayesian inference can be implemented
for hierarchical models with arbitrary probability distri-
butions (e.g. non-Gaussian), using the belief propagation
algorithm. We close with a discussion.

In what follows, the notation N�m��� denotes a
uni/multivariate normal distribution with mean m and
variance/covariance � and lower-case ps denote proba-
bility densities. Upper case letters denote matrices, lower
case denote column vectors and xT denotes the trans-
pose of x. We will also make extensive use of the normal
density, i.e. if p(x)=N�m��� then:

p�x� ∝ exp
(

−1
2

�x−m�T �−1�x−m�

)
11.1

We also use Var[] to denote variance, ⊗ to denote
the Kronecker product and X+ to denote the pseudo-
inverse.

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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TWO-LEVEL MODELS

We consider two-level linear Gaussian models of the
form:

y = Xw+ e

w = M�+z 11.2

where the errors are zero mean Gaussian with covari-
ances Cov �e� = C and Cov�z� = P. The model is shown
graphically in Figure 11.1. The column vectors y and w
have K and N entries respectively. The vectors w and
� are the first- and second-level parameters and X and
M are the first- and second-level design matrices. Mod-
els of this form have been used in functional imaging.
For example, in random effects analysis, the second level
models describe the variation of subject effect sizes about
a population effect size, �. In Bayesian inference with
shrinkage priors, the second-level models variation of
effect-size over voxels around a whole-brain mean effect
size of � − 0 (i.e. for a given cognitive challenge, the
response of a voxel chosen at random is, on average,
zero). See, for example, Friston et al. (2002b).

The aim of Bayesian inference is to make inferences
about w and � based on the posterior distributions p�w�y�
and p���y�. These can be derived as follows. We first note
that the above equations specify the likelihood and prior
probability distributions:

p�y�w� ∝ exp
(

−1
2

�y −Xw�T C−1�y −Xw�

)
11.3

p�w� ∝ exp
(

−1
2

�w−M��T P−1�w−M��

)

w

y

P

C

µ

FIGURE 11.1 Two-level hierarchical model. The data y are
explained as deriving from an effect w and a zero-mean Gaussian
random variation with covariance C. The effects w in turn are ran-
dom effects deriving from a superordinate effect � and zero-mean
Gaussian random variation with covariance P. The goal of Bayesian
inference is to make inferences about � and w from the posterior
distributions p���y� and p�w�y�.

The posterior distribution is then:

p�w�y� ∝ p�y�w�p�w� 11.4

Taking logs and keeping only those terms that depend
on w gives:

log p�w�y� = −1
2

�y −Xw�T C−1�y −Xw� 11.5

− 1
2

�w−M��T P−1�w−M��+ 		

= −1
2

wT �XT C−1X +P−1�w

+wT �XT C−1y +P−1M��+ 		

Taking logs of the Gaussian density p�x� in Eqn. 11.1 and
keeping only those terms that depend on x gives:

log p�x� = −1
2

xT �−1x+xT �−1m+ 		 11.6

Comparing Eqn. 11.5 with terms in the above equation
shows that:

p�w�y� = N�m��� 11.7

�−1 = XT C−1X +P−1

m = ��XT C−1y +P−1M��

The posterior distribution over the second-level coeffi-
cient is given by Bayes’ rule as:

p���y� = p�y���p���

p�y�
11.8

However, because we do not have a prior p���, this poste-
rior distribution becomes identical to the likelihood term,
p�y���, which can be found by eliminating the first-level
parameters from our two equations, i.e. by substituting
the second-level equation into the first giving:

y = XM�+Xz+ e 11.9

which can be written as:

y = X̃�+ ẽ 11.10

where X̃ = XM and ẽ = Xz+e. The solution to Eqn. 11.10
then gives:

p���y� = N��̂���� 11.11

�̂ = �X̃T C̃−1X̃�−1X̃T C̃−1y

�� = �X̃T C̃−1X̃�−1
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where the covariance term:

C̃ = Cov�ẽ� 11.12

= XPXT +C

We have now achieved our first goal, the posterior dis-
tributions of first- and second-level parameters being
expressed in terms of the data, design and error-
covariance matrices. We now consider the special cases
of sensor fusion, equal variance models and separable
models.

Sensor fusion

The first special case is the univariate model:

y = w+ e 11.13

w = �+z

with a single scalar data point, y, and variances C =
1/
� P = 1/� specified in terms of the data precision 

and the prior precision � (the ‘precision’ is the inverse
variance). Plugging these values into Eqn. 11.7 gives

p�w�y� = N�m��−1� 11.14

� = 
+�

m = 


�
y + �

�
�

Despite its simplicity, this model possesses two impor-
tant features of Bayesian learning in linear-Gaussian
models. The first is that ‘precisions add’ – the poste-
rior precision is the sum of the data precision and the
prior precision. The second is that the posterior mean
is the sum of the data mean and the prior mean, each
weighted by their relative precisions. A numerical exam-
ple is shown in Figure 11.2.

Equal variance

This special case is a two-level multivariate model as
in Eqn. 11.2, but with isotropic covariances at both the
first and second levels. We have C = 
−1IK and P =
�−1IN . This means that observations are independent and
have the same error variance. This is an example of
the errors being independent and identically distributed
(IID), where, in this case, the distribution is a zero-mean
Gaussian having a particular variance. In this chapter,
we will also use the term ‘sphericity’ for any model with
IID errors. Models without IID errors will have ‘non-
sphericity’ (as an aside we note that IID is not actually
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FIGURE 11.2 Bayes’ rule for univariate Gaussians. The two
solid curves show the probability densities for the prior p�w� =
N����−1� with � = 20 and � = 1 and the likelihood p�y�w� =
N�w�
−1� with w = 25 and 
 = 3. The dotted curve shows the pos-
terior distribution, p�w�y� = N�m��−1� with m = 23	75 and � = 4, as
computed from Eqn. 11.14. The posterior distribution is closer to
the likelihood because the likelihood has higher precision.

a requirement of ‘sphericity’ and readers looking for a
precise definition are referred to Winer et al. (1991) and
to Chapter 10).

On a further point of terminology, the unknown vec-
tors w and � will be referred to as ‘parameters’, whereas
variables related to error covariances will be called
‘hyperparameters’. The variables � and 
 are therefore
hyperparameters. The posterior distribution over first
level parameters is given by:

p�w�y� = N�ŵ� �̂� 11.15

�̂ = �
XT X +�IN �−1

ŵ = �̂
(

XT y +�M�

)

Note that if � = 0, we recover the maximum likelihood
estimate:

ŵML = �XT X�−1XT y 11.16

This is the familiar ordinary least squares (OLS) estimate
used in the GLM (Holmes et al., 1997). The posterior
distribution over the second level parameters is given by
Eqn. 11.12 with:

C̃ = 
−1IK +�−1XXT 11.17

Separable model

We now consider ‘separable models’ which can be used,
for example, for random effects analysis. Figure 11.3
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FIGURE 11.3 Generative model for random effects analysis.

shows the corresponding generative model. In these
models, the first-level splits into N separate submod-
els. For each submodel, i, there are ni observations.
These form the ni-element vector yi giving informa-
tion about the parameter wi via the design vector
xi. For functional magnetic resonance imaging (fMRI)
analysis, these design vectors comprise stimulus func-
tions, e.g. boxcars or delta functions, convolved with
an assumed haemodynamic response. The overall first-
level design matrix X then has a block-diagonal form
X = blkdiag�x1� 	 	 � xi� 	 	 � xN � and the covariance is given
by C = diag�
11T

n1
� 	 	 �
i1T

ni
� 	 	 �
N 1T

nN
�, where 1n is a col-

umn vector of 1s with n entries. For example, for N = 3
groups with n1 = 2� n2 = 3 and n3 = 2 observations in each
group:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1�1� 0 0
x1�2� 0 0

0 x2�1� 0
0 x2�2� 0
0 x2�3� 0
0 0 x3�1�
0 0 x3�2�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

11.18

and C−1 = diag�
1�
1�
2�
2�
2�
3�
3�. The covari-
ance at the second level is P = �−1IN , as before, and
we also assume that the second level design matrix
is a column of 1s, M = 1N . The posterior distribu-
tion over first level parameters is found by substitut-
ing X and C into Eqn. ??. This gives a distribution
which factorizes over the different first level coefficients
such that:

p�w�y� =
N∏

i=1

p�wi�y� 11.19

p�wi�y� = N�ŵi� �̂ii�

�̂−1
ii = 
ix

T
i xi +�

ŵi = �̂ii
ix
T
i yi + �̂ii��

The posterior distribution over second level parameters
is, from Eqn. 11.12, given by:

p���y� = N��̂�2
�� 11.20

2
� = 1∑N

i=1 xT
i ��−1xix

T
i +
−1

i �−1xi

�̂ = 2
�

N∑
i=1

xT
i ��−1xix

T
i +
−1

i �−1yi

We note that, in the absence of any second level variabil-
ity, i.e. � → �, the estimate �̂ reduces to the mean of the
first level coefficients weighted by their precision:

�̂ =
∑

i 
ix
T
i yi∑

i 
ix
T
i xi

11.21

PARAMETRIC EMPIRICAL BAYES

In the previous section, we have shown how to com-
pute the posterior distributions p�w�y� and p���y�. As can
be seen from Eqns 11.7 and 11.11, however, these equa-
tions depend on covariances P and C. In this section, we
show how covariance components can be estimated for
the special cases of equal variance models and separable
models.

In Friston et al. (2002a), the covariances are decom-
posed using:

C =∑
j

�1
j Q

1
j 11.22

P =∑
j

�2
j Q

2
j

where Q1
j and Q2

j are basis functions that are specified
by the modeller, depending on the application in mind.
For example, for analysis of fMRI data from a single sub-
ject, two basis functions are used, the first relating to
error variance and the second relating to temporal auto-
correlation (Friston et al., 2002b). The hyperparameters
� = ���1

j �� ��2
j �� are unknown, but can be estimated using

the PEB algorithm described in Friston et al. (2002a). Vari-
ants of this algorithm are known as the evidence framework
(Mackay, 1992) or maximum likelihood II (ML-II) (Berger,
1985). The PEB algorithm is also referred to as simply
empirical Bayes, but we use the term PEB to differenti-
ate it from the non-parametric empirical Bayes’ methods
described in Carlin and Louis (2000). The hyperparame-
ters are set so as to maximize the evidence (also known
as the marginal likelihood):

p�y��� =
∫

p�y�w���p�w���dw 11.23



Elsevier UK Chapter: Ch11-P372560 3-10-2006 3:05p.m. Page:152 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines
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This is the likelihood of the data after we have inte-
grated out the first-level parameters. For the two multi-
variate special cases described above, by substituting in
our expressions for the prior and likelihood, integrating,
taking logs and then setting the derivatives to zero, we
can derive a set of update rules for the hyperparame-
ters. These derivations are provided in the following two
sections.

Equal variance

For the equal variance model, the objective function is:

p�y���
� =
∫

p�y�w�
�p�w���dw 11.24

Substituting in expressions for the likelihood and prior
gives:

p�y���
� =
(




2�

)K/2 ( �

2�

)N/2

×
∫

exp
(

−


2
e�w�T e�w�− �

2
z�w�T z�w�

)
dw

where e�w� = y−Xw and z�w� = w−M�. By rearranging
the terms in the exponent (and keeping all of them, unlike
before where we were only interested in w-dependent
terms) the integral can be written as:

I =
[∫

exp
(

−1
2

�w− ŵ�T �̂−1�w− ŵ�

)
dw

]
11.25

×
[

exp
(

−


2
e�ŵ�T e�ŵ�− �

2
z�ŵ�T z�ŵ�

)]

where the second term is not dependent on w. The first
factor is then simply given by the normalizing constant
of the multivariate Gaussian density:

�2��N/2��̂�1/2 11.26

Hence,

p�y���
� =
(




2�

)K/2

�N/2��̂�1/2

×exp
(

−


2
e�ŵ�T e�ŵ�− �

2
z�ŵ�T z�ŵ�

)

where ��̂� denotes the determinant of �̂. Taking logs gives
the ‘log-evidence’:

F = K

2
log




2�
+ N

2
log �+ 1

2
log ��̂�

− 


2
e�ŵ�T e�ŵ�− �

2
z�ŵ�T z�ŵ� 11.27

To find equations for updating the hyperparameters,
we must differentiate F with respect to � and 
 and
set the derivative to zero. The only possibly problematic
term is the log-determinant, but this can be differentiated
by first noting that the inverse covariance is given by:

�̂−1 = 
XT X +�IN 11.28

If �j are the eigenvalues of the first term, then the eigen-
values of �̂−1 are �j +�. Hence,

��̂−1� =∏
j

��j +�� 11.29

��̂� = 1∏
j��j +��

log ��̂� = −∑
j

log��j +��

�

��
log ��̂� = −∑

j

1
�j +�

Setting the derivative �F/�� to zero then gives:

�z�ŵ�T z�ŵ� = N −∑
j

�

�j +�
11.30

=∑
j

�j +�

�j +�
−∑

j

�

�j +�

=∑
j

�j

�j +�

This is an implicit equation in � which leads to the fol-
lowing update rule. We first define the quantity � which
is computed from the ‘old’ value of �:

� =
N∑

j=1

�j

�j +�
11.31

and then let:

1
�

= z�ŵ�T z�ŵ�

�
11.32

The update for 
 is derived by first noting that the eigen-
values �j are linearly dependent on 
. Hence,

��j

�

= �j



11.33

The derivative of the log-determinant is then given by:

�

�

log ��̂−1� = 1




∑
j

�j

�j +�
11.34
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which leads to the update:

1



= e�ŵ�T e�ŵ�

K −�
11.35

The PEB algorithm consists of iterating the update rules
in Eqn. 11.31, Eqn. 11.32, Eqn. 11.35 and the posterior
estimates in Eqn. 11.15, until convergence.

The update rules in Eqn. 11.31, Eqn. 11.32 and
Eqn. 11.35 can be interpreted as follows. For every j for
which �j >> �, the quantity � increases by 1. As � is
the prior precision and �j is the data precision (of the
jth ‘eigencoefficient’), � therefore measures the number
of parameters that are determined by the data. Given K
data points, the quantity K −� therefore corresponds to
the number of degrees of freedom in the data set. The
variances �−1 and 
−1 are then updated based on the
sum of squares divided by the appropriate degrees of
freedom.

Separable models

For separable models, the objective function is:

p�y��� �
i�� =
∫

p�y�w��
i��p�w���dw 11.36

Because the second-level here is the same as for the equal
variance case, so is the update for alpha. The updates
for 
i are derived in a similar manner as before, but we
also make use of the fact that the first-level posterior
distribution factorizes (see Eqn. 11.19). This decouples
the updates for each 
i and results in the following PEB
algorithm:

êi = yi − ŵixi 11.37

ẑi = ŵi − �̂

�i = 
ix
T
i xi

�i = �i

�i +�

� =∑
i

�i


i = �ni −�i�/êT
i êi

� = �/ẑT ẑ

ŵi = �
ix
T
i yi +���/��i +��

di = ��−1xix
T
i +
−1

i Ini
�−1

2
� = 1/�

∑
i

xT
i dixi�

�̂ = 2
�

∑
i

xT
i diyi

ei

Prediction
errors

Predictions

w1 w2 wi

yi

wN

yN

yi

µ
µ

zi

y2y1

ˆ
ˆ

ˆˆ

FIGURE 11.4 Part of the PEB algorithm for separable models
requires the upwards propagation of prediction errors and down-
wards propagation of predictions. This passing of messages between
nodes in the hierarchy is a special case of the more general belief
propagation algorithm referred to in Figure 11.5.

Initial values for ŵi and 
i are set using OLS, �̂ is ini-
tially set to the mean of ŵi and � is initially set to 0.
The equations are then iterated until convergence (in our
examples in Chapter 12, we never required more than
ten iterations). While the above updates may seem some-
what complex, they can perhaps be better understood in
terms of messages passing among nodes in a hierarchical
network. This is shown in Figure 11.4 for the ‘prediction’
and ‘prediction error’ variables.

The PEB algorithms we have described show how
Bayesian inference can take place when the variance
components are unknown (in the previous section, we
assumed the variance components were known). An
application of this PEB algorithm to random effects anal-
ysis is provided in the next chapter. We now provide
a brief numerical example demonstrating the iterations
with PEB updates.

NUMERICAL EXAMPLE

This numerical example caricatures the use of PEB for
estimating effect sizes from functional imaging data
described in Chapter 23. The approach uses a ‘global
shrinkage prior’ which embodies a prior belief that,
across the brain: (i) the average effect is zero, � = 0; and
(ii) the variability of responses follows a Gaussian dis-
tribution with precision �. Mathematically, we can write
p�wi� = N�0��−1�. Plate 5(a) (see colour plate section)
shows effect sizes generated from this prior for an N =
20-voxel brain and � = 1.

Chapter 23 allows for multiple effects to be expressed
at each voxel and for positron emission tomography
(PET)/fMRI data to be related to effect sizes using the full
flexibility of general linear models. Here, we just assume
that data at each voxel are normally distributed about
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the effect size at that voxel. That is, p�yi�wi� = N�wi�
−1
i �.

Plate 5(b) shows ni = 10 data points at each voxel gen-
erated from this likelihood. We have allowed the obser-
vation noise precision 
i to be different at each voxel.
Voxels 2, 15 and 18, for example, have noisier data than
others.

Effect sizes were then estimated from these data using
maximum likelihood (ML) and PEB. ML estimates are
shown in Plate 5(c) and (d). These are simply computed
as the mean value observed at each voxel. PEB was imple-
mented using the updates in Eqn. 11.37 with � = 0 and
xi = 1ni

and initialized with � = 0 and 
i and ŵi set to
ML-estimated values.

Eqn. 11.37 was then iterated, resulting in effect size
estimates shown in Plate 6 before iterations one, three,
five and seven. These estimates seem rather stable after
only two or three iterations. Only the effects at voxels 5
and 15 seem markedly changed between iterations three
and seven. The corresponding estimates of � were 0,
0.82, 0.91 and 0.95, showing convergence to the true prior
response precision value of 1.

It is well known that PEB provides estimates that are,
on average, more accurate than ML. Here, we quantify
this using, s, the standard deviation across voxels of the
difference between the true and estimated effects. For
ML, s = 0	71 and for PEB, s = 0	34. That PEB estimates
are twice as accurate on average can be seen by com-
paring Plate 6(a) and (d). Of course, PEB is only better
‘on average’. It does better at most voxels at the expense
of being worse at a minority, for example, voxel 2. This
trade-off is discussed further in Chapter 22.

PEB can do better than ML because it uses more infor-
mation: here, the information that effects have a mean
of zero across the brain and follow a Gaussian variabil-
ity profile. This shows the power of Bayesian estima-
tion, which combines prior information with data in an
optimal way. In this example, a key parameter in this
trade-off is the parameter �i which is computed as in
Eqn. 11.37. This quantity is the ratio of the data precision
to the posterior precision. A value of 1 indicates that the
estimated effect is determined solely by the data, as in
ML. A value of 0 indicates the estimate is determined
solely by the prior. For most voxels in our data set, we
have �i ≈ 0	9, but for the noisy voxels 2, 15 and 18, we
have �i ≈ 0	5. PEB thus relies more on prior information
where data are unreliable.

PEB will only do better than ML if the prior is chosen
appropriately. For functional imaging data, we will never
know what the ‘true prior’ is, just as we will never know
what the ‘true model’ is. But some priors and models are
better than others, and there is a formal method for decid-
ing between them. This is ‘Bayesian model selection’ and
is described in Chapter 35.

Finally, we note that the prior used here does not use
spatial information, i.e. there is no notion that voxel 5 is
‘next to’ voxel 6. It turns out that for functional imag-
ing data, spatial information is important. In Chapter 25,
we describe Bayesian fMRI inference with spatial pri-
ors. Bayesian model selection shows that models with
spatial priors are preferred to those without (Penny
et al., 2006).

BELIEF PROPAGATION

This chapter has focused on the special case of two-
level models and Gaussian distributions. It is worth-
while noting that the general solution to inference in
tree-structured hierarchical models, which holds for all
distributions, is provided by the ‘sum-product’ or ‘belief
propagation’ algorithm (Pearl, 1988; Jordan and Weiss,
2002). This is a message passing algorithm which aims
to deliver the marginal distributions1 at each point in the
hierarchy. It does this by propagating evidence up the
hierarchy and marginal distributions down. If the down-
ward messages are passed after the upward messages
have reached the top, then this is equivalent to propa-
gating the posterior beliefs down the hierarchy. This is
shown schematically in Figure 11.5.

This general solution is important as it impacts on
non-Gaussian and/or non-linear hierarchical models. Of
particular relevance are the models of inference in cor-
tical hierarchies (Friston, 2003) referred to in later chap-
ters of the book. In these models, evidence flows up
the hierarchy, in the form of prediction errors, and
marginal distributions flow down, in the form of predic-
tions. Completion of the downward pass explains late
components of event-related potentials which are cor-
related with, e.g. extra-classical receptive field effects
(Friston, 2003). This general solution also motivates a
data analysis approach known as Bayesian model aver-
aging (BMA), described further in Chapter 35, where,
e.g. x3 in Figure 11.5 embodies assumptions about
model structure. The downward pass of belief prop-
agation then renders our final inferences independent
of these assumptions. See Chapter 16 of Mackay (2003)
and Ghahramani (1998) for further discussion of these
issues.

1 The probability distribution over a set of variables is known as
the joint distribution. The distribution over a subset is known
as the marginal distribution.
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Inference based on
upward pass

Upward
message

Downward
message

Final
inference

p (x3|y) =
p (y )

p (y |x3)p (x3)

p (x2|y,x3) =
p (y |x3)

p (y |x2)p (x2|x3)

p (x1 y,x2) =
p (y x2)

p (y  x1)p (x1 x2)

x3

x2

x1

y

p (y  |x3 ) p (x3 
|y ) 

p (x2 y) = ∫p (x2|y,x3)p (x3|y )dx3

p(y  |x2) 

p (y  |x1) 

p (x2  
y) 

p (x1 y) = ∫p (x1|y,x2)p (x2|y )dx2

FIGURE 11.5 Belief propagation for inference
in hierarchical models. This algorithm is used to
update the marginal densities, i.e. to update p�xi�
to p�xi�y�. Inferences based on purely the upward
pass are contingent on variables in the layer above,
whereas inferences based on upward and down-
ward passes are not. Completion of the downward
pass delivers the marginal density. Application of
this algorithm to the two-level Gaussian model will
produce the update Eqn. 11.7 and Eqn. 11.11. More
generally, this algorithm can be used for Bayesian
model averaging, where e.g. x3 embodies assump-
tions about model structure, and as a model of infer-
ence in cortical hierarchies, where e.g. completion of
the downward pass explains extra-classical receptive
field effects (Friston, 2003).

DISCUSSION

We have described Bayesian inference for some par-
ticular two-level linear-Gaussian hierarchical models.
A key feature of Bayesian inference in this context
is that the posterior distributions are Gaussian with
precisions that are the sum of the data and prior
precisions. The posterior means are the sum of the
data and prior means, but each weighted according
to their relative precision. With zero prior precision,
two-level models reduce to a single-level model (i.e.
a GLM) and Bayesian inference reduces to the famil-
iar maximum-likelihood estimation scheme. With non-
zero and, in general unknown, prior means and pre-
cisions, these parameters can be estimated using PEB.
These covariance components can also be estimated using
the ReML algorithm from classical statistics. The rela-
tion between PEB and ReML is discussed further in
Chapter 22.

We have described two special cases of the PEB algo-
rithm, one for equal variances and one for separable
models. Both algorithms are special cases of a gen-
eral approach described in Friston et al. (2002a) and
in Chapter 24. In these contexts, we have shown that
PEB automatically partitions the total degrees of free-
dom (i.e. number of data points) into those to be used
to estimate the hyperparameters of the prior distribu-
tion and those to be used to estimate hyperparameters
of the likelihood distribution. The next chapter describes
how PEB can be used in the context of random effects
analysis.
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12

Random Effects Analysis
W.D. Penny and A.J. Holmes

INTRODUCTION

In this chapter, we are concerned with making statistical
inferences involving many subjects. One can envisage
two main reasons for studying multiple subjects. The first
is that one may be interested in individual differences,
as in many areas of psychology. The second, which is
the one that concerns us here, is that one is interested
in what is common to the subjects. In other words, we
are interested in the stereotypical effect in the population
from which the subjects are drawn.

As every experimentalist knows, a subject’s response
will vary from trial to trial. Further, this response will
vary from subject to subject. These two sources of vari-
ability, within-subject (also called between-scan) and
between-subject, must both be taken into account when
making inferences about the population.

In statistical terminology, if we wish to take the vari-
ability of an effect into account we must treat it as a
‘random effect’. In a 12-subject functional magnetic res-
onance imaging (fMRI) study, for example, we can view
those 12 subjects as being randomly drawn from the pop-
ulation at large. The subject variable is then a random
effect and, in this way, we are able to take the sampling
variability into account and make inferences about the
population from which the subjects were drawn. Con-
versely, if we view the subject variable as a ‘fixed effect’
then our inferences will relate only to those 12 subjects
chosen.

The majority of early studies in neuroimaging com-
bined data from multiple subjects using a ‘fixed-effects’
(FFX) approach. This methodology only takes into
account the within-subject variability. It is used to report
results as case studies. It is not possible to make formal
inferences about population effects using FFX. Random-
effects (RFX) analysis, however, takes into account both
sources of variation and makes it possible to make formal

inferences about the population from which the subjects
are drawn.

In this chapter, we describe FFX and RFX analyses of
multiple-subject data. We first describe the mathemat-
ics behind RFX, for balanced designs, and show how
RFX can be implemented using the computationally effi-
cient ‘summary-statistic’ approach. We then describe the
mathematics behind FFX and show that it only takes into
account within-subject variance. The next section shows
that RFX for unbalanced designs is optimally imple-
mented using the PEB algorithm described in the previ-
ous chapter. This section includes a numerical example
which shows that, although not optimal, the summary
statistic approach performs well, even for unbalanced
designs.

RANDOM EFFECTS ANALYSIS

Maximum likelihood

Underlying RFX analysis is a probability model defined
as follows. We first envisage that the mean effect in the
population (i.e. averaged across subjects) is of size wpop

and that the variability of this effect between subjects
is �2

b . The mean effect for the ith subject (i.e. averaged
across scans), wi, is then assumed to be drawn from a
Gaussian with mean wpop and variance �2

b . This process
reflects the fact that we are drawing subjects at random
from a large population. We then take into account the
within-subject (i.e. across scan) variability by modelling
the jth observed effect in subject i as being drawn from
a Gaussian with mean wi and variance �2

w. Note that
�2

w is assumed to be the same for all subjects. This is a
requirement of a balanced design. This two-stage process
is shown graphically in Figure 12.1.

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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FIGURE 12.1 Synthetic data illustrating the probability model
underlying random effects analysis. The dotted line is the Gaussian
distribution underlying the second-level model with mean wpop, the
population effect, and variance �2

b , the between-subject variance.
The mean subject effects, wi, are drawn from this distribution. The
solid lines are the Gaussians underlying the first level models with
means wi and variances �2

w. The crosses are the observed effects yij

which are drawn from the solid Gaussians.

Given a data set of effects from N subjects with n
replications of that effect per subject, the population effect
is modelled by a two-level process:

yij = wi + eij 12.1

wi = wpop +zi

where wi is the true mean effect for subject i and yij is the
jth observed effect for subject i, and zi is the between-
subject error for the ith subject. These Gaussian errors
have the same variance, �2

b . For the positron emission
tomography (PET) data considered below this is a differ-
ential effect, the difference in activation between word
generation and word shadowing. The first equation cap-
tures the within-subject variability and the second equa-
tion the between-subject variability.

The within-subject Gaussian error eij has zero mean
and variance Var�eij� = �2

w. This assumes that the errors
are independent over subjects and over replications
within subject. The between-subject Gaussian error zi has
zero mean and variance Var�zi� = �2

b . Collapsing the two
levels into one gives:

yij = wpop +zi + eij 12.2

The maximum-likelihood estimate of the population
mean is:

ŵpop = 1
Nn

N∑
i=1

n∑
j=1

yij 12.3

We now make use of a number of statistical relations
defined in Appendix 12.1 to show that this estimate has
a mean E�ŵpop� = wpop and a variance given by:

Var�ŵpop� = Var

[
N∑

i=1

1
N

n∑
j=1

1
n

�wpop +zi + eij�

]
12.4

= Var

[
N∑

i=1

1
N

zi

]
+Var

[
N∑

i=1

1
N

n∑
j=1

1
n

eij

]

= �2
b

N
+ �2

w

Nn

The variance of the population mean estimate contains
contributions from both the within-subject and between-
subject variance.

Summary statistics

Implicit in the summary-statistic RFX approach is the
two-level model:

w̄i = wi + ei 12.5

wi = wpop +zi

where wi is the true mean effect for subject i, w̄i is the
sample mean effect for subject i and wpop is the true effect
for the population.

The summary-statistic (SS) approach is of interest
because it is computationally much simpler to implement
than the full random effects model of Eqn. 12.1. This is
because it is based on the sample mean value, w̄i, rather
than on all of the samples yij . This is important for neu-
roimaging as in a typical functional imaging group study
there can be thousands of images, each containing tens
of thousands of voxels.

In the first level, we consider the variation of the sam-
ple mean for each subject around the true mean for
each subject. The corresponding variance is Var�ei� =
�2

w/n, where �2
w is the within-subject variance. At the sec-

ond level, we consider the variation of the true subject
means about the population mean where Var�zi� = �2

b , the
between-subject variance. We also have E�ei� = E�zi� = 0.
Consequently:

w̄i = wpop +zi + ei 12.6

The population mean is then estimated as:

ŵpop = 1
N

N∑
i=1

w̄i 12.7
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This estimate has a mean E�ŵpop� = wpop and a variance
given by:

Var�ŵpop� = Var

[
N∑

i=1

1
N

w̄i

]
12.8

= Var

[
N∑

i=1

1
N

zi

]
+Var

[
N∑

i=1

1
N

ei

]

= �2
b

N
+ �2

w

Nn

Thus, the variance of the estimate of the population
mean contains contributions from both the within-
subject and between-subject variances. Importantly, both
E�ŵpop� and Var�ŵpop� are identical to the maximum-
likelihood estimates derived earlier. This validates the
summary-statistic approach. Informally, the validity of
the summary-statistic approach lies in the fact that what
is brought forward to the second level is a sample mean. It
contains an element of within-subject variability which,
when operated on at the second level, produces just the
right balance of within- and between-subject variance.

FIXED EFFECTS ANALYSIS

Implicit in FFX analysis is a single-level model:

yij = wi + eij 12.9

The parameter estimates for each subject are:

ŵi = 1
n

n∑
j=1

yij 12.10

which have a variance given by:

Var�ŵi� = Var

[
n∑

j=1

1
n

yij

]
12.11

= �2
w

n

The estimate of the group mean is then:

ŵpop = 1
N

N∑
i=1

ŵi 12.12

which has a variance:

Var�ŵpop� = Var

[
N∑

i=1

1
N

ŵi

]
12.13

= 1
N

Var�d̂i�

= �2
w

Nn

The variance of the fixed-effects group mean estimate
contains contributions from within-subject terms only.
It is not sensitive to between-subject variance. We are
not therefore able to make formal inferences about pop-
ulation effects using FFX. We are restricted to informal
inferences based on separate case studies or summary
images showing the average group effect. This will be
demonstrated empirically in a later section.

PARAMETRIC EMPIRICAL BAYES

We now return to RFX analysis. We have previously
shown how the SS approach can be used for the analy-
sis of balanced designs, i.e. identical �2

w for all subjects.
This section starts by showing how parametric empirical
Bayes (PEB) can also be used for balanced designs. It then
shows how PEB can be used for unbalanced designs and
provides a numerical comparison between PEB and SS
on unbalanced data.

Before proceeding, we note that an algorithm from clas-
sical statistics, known as restricted maximum likelihood
(ReML), can also be used for variance component estima-
tion. Indeed, many of the papers on random effects anal-
ysis use ReML instead of PEB (Friston et al., 2002, 2005).

The model described in this section is identical to the
separable model in the previous chapter but with xi = 1n

and �i = �. Given a data set of contrasts from N subjects
with n scans per subject, the population effect can be
modelled by the two-level process:

yij = wi + eij 12.14

wi = wpop +zi

where yij (a scalar) is the data from the ith subject and
the jth scan at a particular voxel. These data points are
accompanied by errors eij with wi being the size of the
effect for subject i, wpop being the size of the effect in
the population and zi being the between-subject error.
This may be viewed as a Bayesian model where the first
equation acts as a likelihood and the second equation
acts as a prior. That is:

p�yij�wi� = N�wi��2
w� 12.15

p�wi� = N�wpop��2
b �

where �2
b is the between-subject variance and �2

w is the
within-subject variance. We can make contact with the
hierarchical formalism of the previous chapter by making
the following identities. We place the yij in the column
vector y in the order – all from subject 1, all from subject 2,
etc. (this is described mathematically by the vec operator
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and is implemented in MATLAB (Mathworks, Inc.) by
the colon operator). We also let X = IN ⊗1n where ⊗ is the
Kronecker product and let w = �w1�w2� 	 	 	 �wN �T . With
these values, the first level in Eqn. 11.2 of the previous
chapter is then the matrix equivalent of the first level in
Eqn. 12.14 (i.e. it holds for all i� j). For y = Xw + e and
e.g. N = 3�n = 2 we then have:

⎡
⎢⎢⎢⎢⎢⎢⎣

y11

y12

y21

y22

y31

y32

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣w1

w2

w3

⎤
⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

e11

e12

e21

e22

e31

e32

⎤
⎥⎥⎥⎥⎥⎥⎦

12.16

We then note that XT X = nIN �
∑̂ = diag�Var�w1��

Var�w2�� 	 	 	 � Var�wN �� and the ith element of XT y is
equal to

∑n
j=1 yij .

If we let M = 1N , then the second level in Eqn. 11.2
of the previous chapter is the matrix equivalent of the
second-level in Eqn. 12.14 (i.e. it holds for all i). Plugging
in our values for M and X and letting � = 1/�2

w and

 = 1/�2

b gives:

Var�ŵpop� = 1
N


+�n


�n
12.17

and

ŵpop = 1
N


+�n


�n


�


+�n

∑
i�j

yij 12.18

= 1
Nn

∑
i�j

yij

So the estimate of the population mean is simply the
average value of yij . The variance can be re-written as:

Var�ŵpop� = �2
b

N
+ �2

w

Nn
12.19

This result is identical to the maximum-likelihood and
summary-statistic results derived earlier. The equiva-
lence between the Bayesian and ML results derives from
the fact that there is no prior at the population level.
Hence, p�Y ��� = p���Y�, as indicated in the previous
chapter.

Unbalanced designs

The model described in this section is identical to the
separable model in the previous chapter, but with xi = 1ni

.
If the error covariance matrix is non-isotropic, i.e. C �=
�2

wI , then the population estimates will change. This can
occur, for example, if the design matrices are different for

different subjects (so-called unbalanced-designs), or if the
data from some of the subjects are particularly ill-fitting.
In these cases, we consider the within-subject variances
�2

w�i� and the number of events ni to be subject-specific.
This will be the case in experimental paradigms where
the number of events is not under experimental control,
e.g. in memory paradigms where ni may refer to the
number of remembered items.

If we let M = 1N , then the second level in Eqn. 11.2
in the previous chapter is the matrix equivalent of the
second-level in Eqn. 12.14 (i.e. it holds for all i). Plugging
in our values for M and X gives:

Var�ŵpop� =
(

N∑
i=1


�ini


+ni�i

)−1

12.20

and

ŵpop =
(

N∑
i=1


�ini


+�ini

)−1
N∑

i=1


�i


+�ini

ni∑
j=1

yij 12.21

This reduces to the earlier result if �i = � and ni =
n. Both of these results are different to the summary-
statistic approach, which we note is therefore math-
ematically inexact for unbalanced designs. But as we
shall see in the numerical example below, the summary-
statistic approach is remarkably robust to departures
from assumptions about balanced designs.

Estimation

To implement the PEB estimation scheme for the unequal
variance case, we first compute the errors êij = yij −Xŵi,
ẑi = ŵi − Mŵpop. We then substitute xi = 1ni

into the
update rules derived in the PEB section of the previous
chapter to obtain:

�2
b ≡ 1



= 1

�

N∑
i=1

ẑ2
i 12.22

�2
w�i� ≡ 1

�i

= 1
ni −�i

ni∑
j=1

ê2
ij 12.23

where:

� =
N∑

i=1

�i 12.24

and

�i = ni�i


+ni�i

12.25
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For balanced designs �i = � and ni = n we get:

�2
b ≡ 1



= 1

�

N∑
i=1

ẑ2
i 12.26

�2
w ≡ 1

�
= 1

Nn−�

N∑
i=1

n∑
j=1

ê2
ij 12.27

where:

� = n�


+n�
N 12.28

Effectively, the degrees of freedom in the data set �Nn�
are partitioned into those that are used to estimate the
between-subject variance, �, and those that are used to
estimate the within-subject variance, Nn−�.

The posterior distribution of the first-level coeffi-
cients is:

p�wi�yij� ≡ p�ŵi� = N�w̄i� Var�ŵi�� 12.29

where:

Var�ŵi� = 1

+ni�i

12.30

ŵi = �i


+ni�i

ni∑
j=1

yij +




+ni�i

ŵpop 12.31

Overall, the PEB estimation scheme is implemented by
first initializing ŵi� ŵpop and 
� �i (e.g. to values given
from the equal error-variance scheme). We then compute
the errors êij� ẑi and re-estimate the 
 and �is using the
above equations. The coefficients ŵi and ŵpop are then
re-estimated and the last two steps are iterated until con-
vergence. This algorithm is identical to the PEB algorithm
for the separable model in the previous chapter but with
xi = 1ni

.

Numerical example

We now give an example of random effects analysis on
simulated data. The purpose is to compare the PEB and
SS algorithms. We generated data from a three-subject,
two-level model with population mean � = 2, subject
effect sizes w = �22� 18� 00�T and within subject vari-
ances �2

w�1� = 1� �2
w�2� = 1. For the third subject �2

w�3�
was varied from 1 to 10. The second-level design matrix
was M = �1� 1� 1�T and the first-level design matrix was
given by X = blkdiag�x1�x2�x3� with xi being a boxcar.

Figure 12.2 shows a realization of the three time-series
for �2

w�3� = 2. The first two time-series contain stimulus-
related activity but the third does not. We then applied
the PEB algorithm, described in the previous section, to

FIGURE 12.2 Simulated data for random effects analysis.
Three representative time-series produced from the two-level hier-
archical model. The first two time-series contain stimulus-related
activity but the third does not.

obtain estimates of the population mean �̂ and estimated
variances, �2

�. For comparison, we also obtained equiva-
lent estimates using the SS approach. We then computed
the accuracy with which the population mean was esti-
mated using the criterion ��̂ − ��2. This was repeated
for 1000 different data sets generated using the above
parameter values, and for 10 different values of �2

w�3�.
The results are shown in Figures 12.3 and 12.4.

First, we note that, as predicted by theory, both PEB
and SS give identical results when the first-level error
variances are equal. When the variance on the ‘rogue’
time-series approaches double that of the others we see
different estimates of both �̂ and �2

�. With increasing

FIGURE 12.3 A plot of the error in estimating the population
mean E =< ��̂ − ��2 > versus the observation noise level for the
third subject, �2

w�3�, for the parametric empirical Bayes approach
(solid line) and the summary-statistic approach (dotted line).
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FIGURE 12.4 A plot of the estimated variance of the popu-
lation mean, �2

�, versus the observation noise level for the third
subject, �2

w�3�, for the parametric empirical Bayes approach (solid
line) and the summary-statistic approach (dotted line).

rogue error variance, the SS estimates get worse but the
PEB estimates get better. There is an improvement with
respect to the true values, as shown in Figure 12.3, and
with respect to the variability of the estimate, as shown in
Figure 12.4. This is because the third time-series is more
readily recognized by PEB as containing less reliable
information about the population mean and is increas-
ingly ignored. This gives better estimates �̂ and a reduced
uncertainty, �2

�.
We created the above example to reiterate a key point

of this chapter, that SS gives identical results to PEB for
equal within-subject error variances (homoscedasticity)
and unbalanced designs, but not otherwise. In the numer-
ical example, divergent behaviour is observed when the
error variances differ by a factor of two. For studies with
more subjects (12 being a typical number), however, this
divergence requires a much greater disparity in error
variances. In fact, we initially found it difficult to generate
data sets where PEB showed a consistent improvement
over SS! It is therefore our experience that the vanilla
SS approach is particularly robust to departures from
homoscedasticity. This conclusion is supported by what
is known of the robustness of the t-test that is central to
the SS approach. Lack of homoscedasticity only causes
problems when the sample size (i.e. number of subjects)
is small. As sample size increases so does the robustness
(see e.g. Yandell, 1997).

PET DATA EXAMPLE

We now illustrate the difference between FFX and RFX
analysis using data from a PET study of verbal fluency.

These data come from five subjects and were recorded
under two alternating conditions. Subjects were asked
either to repeat a heard letter or to respond with a word
that began with that letter. These tasks are referred to
as word shadowing and word generation and were per-
formed in alternation over 12 scans and the order ran-
domized over subjects. Both conditions were identically
paced with one word being generated every two seconds.
PET images were re-aligned, normalized and smoothed
with a 16 mm isotropic Gaussian kernel.1

Fixed-effects analysis

Analysis of multiple-subject data takes place within
the machinery of the general linear model (GLM) as
described in earlier chapters. However, instead of having
data from a single-subject at each voxel, we now have
data from multiple subjects. This is entered into a GLM
by concatenating data from all subjects into the single
column vector Y . Commensurate with this augmented
data vector is an augmented multisubject design matrix,2

X, which is shown in Figure 12.5. Columns 1 and 2 indi-
cate scans taken during the word shadowing and word
generation conditions respectively, for the first subject.

FIGURE 12.5 Design matrix for the five-subject FFX analysis
of PET data. There are 60 rows, 12 for each subject. The first ten
columns contain indicator variables showing which condition (word
shadowing or word generation) relates to which scan. Columns 11
to 15 contain time variables, columns 16 to 20 subject-specific offsets
and the last 5 columns the global effect at each scan.

1 This data set and full details of the pre-processing are available
from http://www.fil.ion.ucl.ac.uk/spm/data.
2 This design was created using the ‘Multisubject: condition by
subject interaction and covariates’ option in SPM-99.
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Columns 3 to 10 indicate these conditions for the other
subjects. The time variables in columns 11 to 15 are used
to probe habituation effects. These variables are not of
interest to us in this chapter but we include them to
improve the fit of the model. The GLM can be written as:

Y = X�+E 12.32

where � are regression coefficients and E is a vector of
errors. The effects of interest can then be examined using
an augmented contrast vector, c. For example, for the
verbal fluency data the contrast vector:

c = �−1� 1�−1� 1�−1� 1�−1� 1�−1� 1� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�T

12.33

would be used to examine the differential effect of word
generation versus word shadowing, averaged over the
group of subjects. The corresponding t-statistic:

t = cT �̂√
Var�cT �̂�

12.34

where Var�� denotes variance, highlights voxels with sig-
nificantly non-zero differential activity. This shows the
‘average effect in the group’ and is a type of fixed-effects
analysis. The resulting statistical parametric map (SPM)
is shown in Plate 7(b) (see colour plate section).

It is also possible to look for differential effects in
each subject separately using subject-specific contrasts.
For example, to look at the activation from subject 2 one
would use the contrast vector:

c2 = �0� 0�−1� 1� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0� 0�T

12.35

The corresponding subject-specific SPMs are shown in
Plate 7(a).

We note that we have been able to look at subject-
specific effects because the design matrix specified a
‘subject-separable model’. In these models, the parame-
ter estimates for each subject are unaffected by data from
other subjects. This arises from the block-diagonal struc-
ture in the design matrix.

Random-effects analysis via summary
statistics

An RFX analysis can be implemented using the
‘summary-statistic (SS)’ approach as follows (Frison and
Pocock, 1992; Holmes and Friston, 1998).

1 Fit the model for each subject using different GLMs
for each subject or by using a multiple-subject subject-
separable GLM, as described above. The latter approach

may be procedurally more convenient while the for-
mer is less computationally demanding. The two appr-
oaches are equivalent for the purposes of RFX analysis.

2 Define the effect of interest for each subject with a con-
trast vector. Each produces a contrast image containing
the contrast of the parameter estimates at each voxel.

3 Feed the contrast images into a GLM that implements
a one-sample t-test.

Modelling in step 1 is referred to as the ‘first-level’ of
analysis, whereas modelling in step 3 is referred to as
the ‘second-level’. A balanced design is one in which all
subjects have identical design matrices and error vari-
ances. Strictly, balanced designs are a requirement for
the SS approach to be valid. But, as we have seen with
the numerical example, the SS approach is remarkably
robust to violations of this assumption.

If there are, say, two populations of interest and
one is interested in making inferences about differences
between populations, then a two-sample t-test is used at
the second level. It is not necessary that the numbers of
subjects in each population be the same, but it is neces-
sary to have the same design matrices for subjects in the
same population, i.e. balanced designs at the first-level.

In step 3, we have specified that only one contrast per
subject be taken to the second level. This constraint may
be relaxed if one takes into account the possibility that
the contrasts may be correlated or be of unequal variance.
This can be implemented using within-subject analyses
of variance (ANOVAs) at the second level, a topic which
is covered in Chapter 13.

An SPM of the RFX analysis is shown in Plate 7(c).
We note that, as compared to the SPM from the average
effect in the group, there are far fewer voxels deemed
significantly active. This is because RFX analysis takes
into account the between-subject variability. If, for exam-
ple, we were to ask the question: ‘Would a new subject
drawn from this population show any significant pos-
terior activity?’, the answer would be uncertain. This is
because three of the subjects in our sample show such
activity but two subjects do not. Thus, based on such a
small sample, we would say that our data do not show
sufficient evidence against the null hypothesis that there
is no population effect in posterior cortex. In contrast, the
average effect in the group (in plate 7(b)) is significant
over posterior cortex. But this inference is with respect
to the group of five subjects, not the population.

We end this section with a disclaimer, which is that
the results presented in this section have been presented
for tutorial purposes only. This is because between-scan
variance is so high in PET that results on single subjects
are unreliable. For this reason, we have used uncorrected
thresholds for the SPMs and, given that we have no prior
anatomical hypothesis, this is not the correct thing to
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do (Frackowiak et al., 1997) (see Chapter 14). But as our
concern is merely to present a tutorial on the difference
between RFX and FFX we have neglected these otherwise
important points.

fMRI DATA EXAMPLE

This section compares RFX analysis as implemented
using SS versus PEB. The dataset we chose to analyse
comprised 1200 images that were acquired in 10 contigu-
ous sessions of 120 scans. These data have been described
elsewhere (Friston et al., 1998).

The reason we chose these data was that each of the
10 sessions was slightly different in terms of design. The
experimental design involved 30-second epochs of single
word streams and a passive listening task. The words
were concrete, monosyllabic nouns presented at a num-
ber of different rates. The word rate was varied pseudo-
randomly over epochs within each session.

We modelled responses using an event-related model
where the occurrence of each word was modelled with a
delta function. The ensuing stimulus function was con-
volved with a canonical haemodynamic response func-
tion and its temporal derivative to give two regressors of
interest for each of the 10 sessions. These effects were sup-
plemented with confounding and nuisance effects com-
prising a mean and the first few components of a discrete
cosine transform, removing drifts lower than 1/128 Hz.
Further details of the paradigm and analysis details are
given in Friston et al. (2005).

The results of the SS and PEB analyses are presented
in Figure 12.6 and have been thresholded at p < 005,
corrected for the entire search volume. These results are
taken from Friston et al. (2005) where PEB was imple-
mented using the ReML formulation. It is evident that the
inferences from these two procedures are almost identi-
cal, with PEB being slightly more sensitive. The results
remain relatively unchanged despite the fact that the
first-level designs were not balanced. This contributes to
non-sphericity at the second level which is illustrated
in Figure 12.7 for the SS and PEB approaches. This
figure shows that heteroscedasticity can vary by up to a
factor of 4.

DISCUSSION

We have shown how neuroimaging data from multi-
ple subjects can be analysed using fixed-effects (FFX) or
random-effects (RFX) analysis. FFX analysis is used for
reporting case studies and RFX is used to make inferences

FIGURE 12.6 SPMs showing the effect of words in the popu-
lation using (a) SS and (b) PEB approaches.

about the population from which subjects are drawn. For
a comparison of these and other methods for combining
data from multiple subjects see Lazar et al. (2002).

In neuroimaging, RFX is implemented using the com-
putationally efficient summary-statistic approach. We
have shown that this is mathematically equivalent to
the more computationally demanding maximum likeli-
hood procedure. For unbalanced designs, however, the
summary-statistic approach is no longer equivalent. But
we have shown, using a simulation study and fMRI data,
that this lack of formal equivalence is not practically
relevant.

For more advanced treatments of random effects anal-
ysis3 see e.g. Yandell (1997). These allow, for example,

3 Strictly, what in neuroimaging is known as random-effects
analysis is known in statistics as mixed-effects analysis as the
statistical models contain both fixed and random effects.
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FIGURE 12.7 Within-session variance as (a) assumed by SS and (b) estimated using PEB. This shows that within-session variance can
vary by up to a factor of 4, although this makes little difference to the final inference (see Figure 12.6).

for subject-specific within-subject variances, unbalanced
designs and for Bayesian inference (Carlin and Louis,
2000). For a recent application of these ideas to neu-
roimaging, readers are referred to Chapter 17 in which
hierarhical models are applied to single and multiple sub-
ject fMRI studies. As groundwork for this more advanced
material readers are encouraged to first read the tutorial
in Chapter 11.

A general point to note, especially for fMRI, is that
because the between-subject variance is typically larger
than the within-subject variance your scanning time is
best used to scan more subjects rather than to scan indi-
vidual subjects for longer. In practice, this must be traded
off against the time required to recruit and train subjects
(Worsley et al., 2002).

Further points

We have so far described how to make inferences about
univariate effects in a single population. This is achieved
in the summary-statistic approach by taking forward a
single contrast image per subject to the second level and
then using a one sample t-test.

This methodology carries over naturally to more com-
plex scenarios where we may have multiple populations
or multivariate effects. For two populations, for exam-
ple, we perform two-sample t-tests at the second level.
An extreme example of this approach is the compari-
son of a single case study with a control group. While
this may sound unfeasible, as one population has only a
single member, a viable test can in fact be implemented
by assuming that the two populations have the same
variance.

For multivariate effects, we take forward multiple con-
trast images per subject to the second level and perform
an analysis of variance. This can be implemented in the
usual way with a GLM but, importantly, we must take

into account the fact that we have repeated measures for
each subject and that each characteristic of interest may
have a different variability. This topic is covered in the
next chapter.

As well as testing for whether univariate population
effects are significantly different from hypothesized val-
ues (typically zero), it is possible to test whether they are
correlated with other variables of interest. For example,
one can test whether task-related activation in the motor
system correlates with age (Ward and Frackowiak, 2003).
It is also possible to look for conjunctions at the second
level, e.g. to test for areas that are conjointly active for
pleasant, unpleasant and neutral odour valences (Got-
tfried et al., 2002). For a statistical test involving con-
junctions of contrasts, it is necessary that the contrast
effects be uncorrelated. This can be ensured by taking
into account the covariance structure at the second level.
This is also described in the next chapter on analysis of
variance.

The validity of all of the above approaches relies on the
same criteria that underpin the univariate single popula-
tion summary-statistic approach. Namely, that the vari-
ance components and estimated parameter values are, on
average, identical to those that would be obtained by the
equivalent two-level maximum likelihood model.

APPENDIX 12.1
EXPECTATIONS AND
TRANSFORMATIONS

We use E�� to denote the expectation operator and Var��
to denote variance and make use of the following results.
Under a linear transform y = ax + b, the variance of x
changes according to:

Var�ax+ b� = a2Var�x� 12.36
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Secondly, if Var�xi� = Var�x� for all i then:

Var

[
1
N

N∑
i=1

xi

]
= 1

N
Var�x� 12.37

For background reading on expectations, variance trans-
formations and introductory mathematical statistics see
Wackerley et al. (1996).
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C H A P T E R

13

Analysis of Variance
W. Penny and R. Henson

INTRODUCTION

The mainstay of many scientific experiments is
the factorial design. These comprise a number of
experimental factors which are each expressed over a
number of levels. Data are collected for each factor/level
combination and then analysed using analysis of vari-
ance (ANOVA). The ANOVA uses F-tests to examine a
pre-specified set of standard effects, e.g. ‘main effects’
and ‘interactions’, as described in Winer et al. (1991).

ANOVAs are commonly used in the analysis of
positron emission tomography (PET), electroencephalog-
raphy (EEG), magnetoencephalography (MEG) and func-
tional magnetic resonance imaging (fMRI) data. For PET,
this analysis usually takes place at the ‘first’ level. This
involves direct modelling of PET scans. For EEG, MEG
and fMRI, ANOVAs are usually implemented at the ‘sec-
ond level’. As described in the previous chapter, first
level models are used to create contrast images for each
subject. These are then used as data for a second level or
‘random-effects’ analysis.

Some different types of ANOVA are tabulated in
Table 13-1. A two-way ANOVA, for example, is an
ANOVA with 2 factors; a K1-by-K2 ANOVA is a two-way
ANOVA with K1 levels of one factor and K2 levels of the

TABLE 13-1 Types of ANOVA

Factors Levels Simple Repeated measures

1 2 Two-sample
t-test

Paired t-test

1 K One-way
ANOVA

One-way ANOVA
within-subject

M K1� K2� ��� KM M-way
ANOVA

M-way ANOVA
within-subject

other. A repeated measures ANOVA is one in which the
levels of one or more factors are measured from the same
unit (e.g. subjects). Repeated measures ANOVAs are
also sometimes called within-subject ANOVAs, whereas
designs in which each level is measured from a differ-
ent group of subjects are called between-subject ANOVAs.
Designs in which some factors are within-subject, and
others between-subject, are sometimes called mixed
designs.

This terminology arises because in a between-subject
design the difference between levels of a factor is given
by the difference between subject responses, e.g. the dif-
ference between levels 1 and 2 is given by the differ-
ence between those subjects assigned to level 1 and those
assigned to level 2. In a within-subject design, the levels
of a factor are expressed within each subject, e.g. the dif-
ference between levels 1 and 2 is given by the average
difference of subject responses to levels 1 and 2. This is
like the difference between two-sample t-tests and paired
t-tests.

The benefit of repeated measures is that we can match
the measurements better. However, we must allow for
the possibility that the measurements are correlated (so-
called ‘non-sphericity’ – see below).

The level of a factor is also sometimes referred to as a
‘treatment’ or a ‘group’ and each factor/level combina-
tion is referred to as a ‘cell’ or ‘condition’. For each type of
ANOVA, we describe the relevant statistical models and
show how they can be implemented in a general linear
model (GLM). We also give examples of how main effects
and interactions can be tested for using F-contrasts.

The chapter is structured as follows: the first section
describes one-way between-subject ANOVAs. The next
section describes one-way within-subject ANOVAs and
introduces the notion of non-sphericity. We then describe
two-way within-subject ANOVAs and make a distinction

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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between models with pooled versus partitioned errors.
The last section discusses issues particular to fMRI and
we end with a discussion.

Notation

In the mathematical formulations below, N�m��� denotes
a uni/multivariate Gaussian with mean m and vari-
ance/covariance �. IK denotes the K ×K identity matrix,
XT denotes transpose, X−T the inverse transpose, X− the
generalized-inverse, 1K is a K × 1 vector of 1s, 0K is a
K×1 vector of zeroes and 0KN is a K×N matrix of zeroes.
We consider factorial designs with n = 1��N subjects and
m = 1��M factors where the mth factor has k = 1��Km

levels.

ONE-WAY BETWEEN-SUBJECT ANOVA

In a between-subject ANOVA, differences between levels
of a factor are given by the differences between sub-
ject responses. We have one measurement per subject
and different subjects are assigned to different lev-
els/treatments/groups. The response from the nth sub-
ject �yn� is modelled as:

yn = �k +�+ en 13.1

where �k are the treatment effects, k = 1��K� k = g�n� and
g�n� is an indicator function whereby g�n� = k means the
nth subject is assigned to the kth group, e.g. g�13� = 2
indicates the 13th subject being assigned to group 2. This
is the single experimental factor that is expressed over K
levels. The variable � is sometimes called the grand mean
or intercept or constant term. The random variable en is the
residual error, assumed to be drawn from a zero mean
Gaussian distribution.

If the factor is significant, then the above model is
a significantly better model of the data than the sim-
pler model:

yn = �+ en 13.2

where we just view all of the measurements as random
variation about the grand mean. Figure 13.2 compares
these two models on some simulated data.

In order to test whether one model is better than
another, we can use an F-test based on the extra sum of
squares principle (see Chapter 8). We refer to Eqn. 13.1 as
the ‘full’ model and Eqn. 13.2 as the ‘reduced’ model. If

RSS denotes the residual sum of squares (i.e. the sum of
squares left after fitting a model) then:

F = �RSSreduced −RSSfull�/�K −1�

RSSfull/�N −K�
13.3

has an F-distribution with K − 1�N −K degrees of free-
dom. If F is significantly non-zero then the full model has
a significantly smaller error variance than the reduced
model. That is to say, the full model is a significantly
better model, or the main effect of the factor is significant.

The above expression is also sometimes expressed in
terms of sums of squares (SS) due to treatment and due
to error:

F = SStreat/DFtreat

SSerror/DFerror

13.4

where

SStreat = RSSreduced −RSSfull 13.5

DFtreat = K −1

SSerror = RSSfull

DFerror = N −K

DFtotal = DFtreat +DFerror = N −1

Eqns 13.3 and 13.4 are therefore equivalent.

Numerical example

This subsection shows how an ANOVA can be imple-
mented in a GLM. Consider a one-way ANOVA with
K = 4 groups each having n = 12 subjects (i.e. N = Kn =
48 subjects/observations in total). The GLM for the full
model in Eqn. 13.1 is:

y = X	+ e 13.6

where the design matrix X = 
IK ⊗ 1n� 1N � is shown in
Figure 13.1, where ⊗ denotes the Kronecker product
(see Appendix 13.1). The vector of parameters is 	 =

�1� �2� �3� �4���T .

Eqn. 13.3 can then be implemented using the effects of
interest F-contrast, as introduced in Chapter 9:

CT =

⎡
⎢⎢⎣

1 −1/3 −1/3 −1/3 0
−1/3 1 −1/3 −1/3 0
−1/3 −1/3 1 −1/3 0
−1/3 −1/3 −1/3 1 0

⎤
⎥⎥⎦ 13.7

or equivalently:

CT =
⎡
⎣ 1 −1 0 0 0

0 1 −1 0 0
0 0 1 −1 0

⎤
⎦ 13.8
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FIGURE 13.1 Design matrix for one-way �1 × 4� between-
subject ANOVA. White and grey represent 1 and 0. There are 48
rows, one for each subject ordered by condition, and 5 columns, the
first 4 for group effects and the 5th for the grand mean.

These contrasts can be thought of as testing the null
hypothesis �0:

�0 � �1 = �2 = �3 = �4 13.9

Note that a significant departure from �0 can arise from
any pattern of these treatment means (parameter esti-
mates) – they need not be monotonic across the four
groups for example.

The correspondence between this F-contrast and
the classical formulation in Eqn. 13.3 is detailed in
Chapter 10. We now analyse the example data set shown
in Figure 13.2. The results of a one-way between-subjects
ANOVA are shown in Table 13-2. This shows that there
is a significant main effect of treatment �p < 0�02�.

Note that the design matrix in Figure 13.1 is rank-
deficient (see Chapter 8) and the alternative design
matrix X = 
IK ⊗ 1n� could be used with appropriate F-
contrasts (though the parameter estimates themselves
would include a contribution of the grand mean, equiv-
alent to the contrast 
1� 1� 1� 1�T ). If 	1 is a vector of
parameter estimates after the first four columns of X
are mean-corrected (orthogonalized with respect to the
fifth column), and 	0 is the parameter estimate for the
corresponding fifth column, then:

SStreatment = n	T
1 	1 = 51�6 13.10

SSmean = nK	2
0 = 224�1

SSerror = rT r = 208�9

SStotal = yT y = SStreatment +SSmean +SSerror = 484�5

where the residual errors are r = y −XX−y.

FIGURE 13.2 One-way between-subject ANOVA. 48 subjects
are assigned to one of four groups. The plot shows the data points
for each of the four conditions (crosses), the predictions from the
‘one-way between-subjects model’ or the ‘full model’ (solid lines)
and the predicitons from the ‘reduced model’ (dotted lines). In the
reduced model (Eqn. 13.2), we view the data as random variation
about a grand mean. In the full model (Eqn. 13.1), we view the
data as random variation about condition means. Is the full model
significantly better than the reduced model? That responses are
much higher in condition 4 suggests that this is indeed the case and
this is confirmed by the results in Table 13-2.

TABLE 13-2 Results of one-way �1×4�
between-subject ANOVA

Main effect of treatment F = 3�62 DF = 
3� 44� p = 0�02

ONE-WAY WITHIN-SUBJECT ANOVA

In this model we have K measurements per subject. The
treatment effects for subject n = 1   N are measured
relative to the average response made by subject n on
all treatments. The kth response from the nth subject is
modelled as:

ynk = �k +�n + enk 13.11

where �k are the treatment effects (or within-subject effects),
�n are the subject effects and enk are the residual errors.
We are not normally interested in �n, but its explicit
modelling allows us to remove variability due to differ-
ences in average responsiveness of each subject. See, for
example, the data set in Figure 13.3. It is also possible
to express the full model in terms of differences between
treatments (see e.g. Eqn. 13.15 for the two-way case).
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FIGURE 13.3 Portion of example data for one-way within-
subject ANOVA. The plot shows the data points for 3 subjects
in each of 4 conditions (in the whole data set there are 12 sub-
jects). Notice how subject 6’s responses are always high, and subject
2’s are always low. This motivates modelling subject effects as in
Eqns. 13.11 and 13.12.

To test whether the experimental factor is signifi-
cant, we compare the full model in Eqn. 13.11 with the
reduced model:

ynk = �n + enk 13.12

An example of comparing these full and reduced models
is shown in Figure 13.4. The equations for computing the
relevant F-statistic and degrees of freedom are given, for
example, in Chapter 14 of Howell (1992).

Numerical example

The design matrix X = 
IK ⊗ 1N � 1K ⊗ IN � for Eqn. 13.11,
with K = 4 and N = 12, is shown in Figure 13.5. The first 4
columns are treatment effects and the next 12 are subject
effects. The main effect of the factor can be assessed using
the same effects of interest F-contrast as in Eqn. 13.7, but
with additional zeroes for the columns corresponding to
the subject effects.

We now analyse another example data set, a portion of
which is shown in Figure 13.3. Measurements have been
obtained from 12 subjects under each of K = 4 conditions.

Assuming sphericity (see below), we obtain the
ANOVA results in Table 13-3. In fact this dataset con-
tains exactly the same numerical values as the between-
subjects example data. We have just relabelled the data
as being measured from 12 subjects with 4 responses
each instead of from 48 subjects with 1 response each.
The reason that the p-value is less than in the between-
subjects example (it has reduced from 0.02 to 0.001) is
that the data were created to include subject effects. Thus,

(a)

(b)

FIGURE 13.4 One-way within-subject ANOVA. The plot
shows the data points for each of the four conditions for subjects
(a) 4 and (b) 6, the predictions from the one-way within-subjects
model (solid lines) and the reduced model (dotted lines).

in repeated measures designs, the modelling of subject
effects normally increases the sensitivity of the inference.

Non-sphericity

Due to the nature of the levels in an experiment, it may
be the case that if a subject responds strongly to level i,
he may respond strongly to level j. In other words, there
may be a correlation between responses. In Figure 13.6
we plot subject responses for level i against level j for
the example data set. These show that for some pairs
of conditions there does indeed seem to be a correla-
tion. This correlation can be characterized graphically
by fitting a Gaussian to each 2D data cloud and then
plotting probability contours. If these contours form a
sphere (a circle, in two dimensions) then the data are
independent and identically distributed (IID), i.e. same
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FIGURE 13.5 Design matrix for one-way �1×4� within-subject
ANOVA. The first 4 columns are treatment effects and the last 12
are subject effects.

TABLE 13-3 Results of one-way �1×4�
within-subjects ANOVA

Main effect of treatment F = 6�89 DF = 
3� 33� p = 0�001

variance in all dimensions and there is no correlation.
The more these contours look like ellipses, the more ‘non-
sphericity’ there is in the data.

FIGURE 13.6 One-way within-subjects ANOVA: Non-
sphericity. Each subgraph plots each subject’s response to condi-
tion i versus condition j as a cross. There are twelve crosses, one
from each subject. We also plot probability contours from the cor-
responding Gaussian densities. Subject responses, for example, to
conditions 1 and 3 seem correlated – the sample correlation coef-
ficient is −0�75. Overall, the more non-spherical the contours the
greater the non-sphericity.

The possible non-sphericity can be taken into account
in the analysis using a correction to the degrees of free-
dom (DFs). In the above example, a Greenhouse-Geisser
(GG) correction (see Appendix 13.1 and Chapter 10)
estimates � = �7, giving DFs of 
2�1� 23�0� and a p-value
(with GG we use the same F-statistic, i.e. F = 6�89) of
p = 0�004. Assuming sphericity, as before, we computed
p = 0�001. Thus the presence of non-sphericity in the data
makes us less confident of the significance of the effect.

An alternative representation of the within-subjects
model is given in Appendix 13.2. This shows how one can
take into account non-sphericity. Various other relevant
terminology is also defined in Appendices 13.1 and 13.2.

TWO-WAY WITHIN-SUBJECT ANOVAs

The full model for a two-way, K1-by-K2 repeated
measures ANOVA, with P = K1K2 measurements taken
from each of N subjects, can be written as:

ynkl = �kl +�n + enkl 13.13

where k = 1   K1 and l = 1   K2 index the levels of factor
A and factor B respectively. Here we can think of indica-
tor functions k = gk�i�� l = gl�i� and n = gn�i� that return
the levels of both factors and subject identity for the ith
scan. Again, �n are subject effects and enkl are residual
errors. This equation can be written in matrix form:

y = X	+ e 13.14

where X = 
IP ⊗1N � 1N ⊗ IP� is the design matrix and 	 =

�kl��n�T are the regression coefficients. This is identical
to the one-way within-subject design but with P instead
of K treatment effects.

However, rather than considering each factor/level
combination separately, the key concept of ANOVA is to
model the data in terms of a standard set of experimental
effects. These consist of main effects and interactions. Each
factor has an associated main effect, which is the dif-
ference between the levels of that factor, averaging over
the levels of all other factors. Each pair of factors (and
higher-order tuples; see below) has an associated interac-
tion. Interactions represent the degree to which the effect
of one factor depends on the levels of the other factor(s).
A two-way ANOVA thus has two main effects and one
interaction.

Eqn. 13.13 can be rewritten as:

y = X	+ e 13.15

= XC−T CT 	+ e

= Xr	̃+ e
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where Xr = XC−T is a rotated design matrix, the regres-
sion coefficients are 	̃ = CT 	, and C is a ‘contrast matrix’.
This equation is important as it says that the effects 	̃ can
be estimated by either (i) fitting the data using a GLM
with design matrix Xr or (ii) fitting the original GLM,
with design matrix X, and applying the contrast matrix
	̃ = CT 	.

For our two-way within-subjects ANOVA we choose
C such that:

	̃ = 
�A
q � �B

r � �AB
qr �m��n�T 13.16

Here, �A
q represents the differences between each succe-

sive level q = 1   �K1 −1� of factor A (e.g. the differences
between levels 1 and 2, 2 and 3, 3 and 4 etc.), averaging
over the levels of factor B. In other words, the main effect
of A is modelled as K1 − 1 differences among K1 levels.
The quantity �B

r represents the differences between each
successive level r = 1   �K2 −1� of factor B, averaging over
the levels of factor A; and �AB

qr represents the differences
between the differences of each level q = 1   �K1 − 1�
of factor A across each level r = 1   �K2 − 1� of factor
B. The quantity m is the mean treatment effect. Exam-
ples of contrast matrices and rotated design matrices are
given below.

Pooled versus partitioned errors

In the above model, e is sometimes called a pooled error,
since it does not distinguish between different sources of
error for each experimental effect. This is in contrast to
an alternative model in which the original residual error
e is split into three terms eA

nq� eB
nr and eAB

nqr , each specific
to a main effect or interaction. This is a different form of
variance partitioning. Each error term is a random variable
and is equivalent to the interaction between that effect
and the subject variable.

The F-test for, say, the main effect of factor A is then:

F = SSk/DFk

SSnk/DFnk

13.17

where SSk is the sum of squares for the effect, SSnk is
the sum of squares for the interaction of that effect with
subjects, DFk = K1 −1 and DFnk = N�K1 −1�.

Note that, if there are no more than two levels of
every factor in an M-way repeated measures ANOVA
(i.e., Km = 2 for all m = 1   M), then the covariance of the
errors �e for each effect is a 2-by-2 matrix which neces-
sarily has compound symmetry, and so there is no need
for a non-sphericity correction.1 A heuristic for this is

1 Although one could model inhomegeneity of variance.

that there is only one difference q = 1 between two levels
Km = 2. This is not necessarily the case if a pooled error
is used, as in Eqn. 13.15.

Models and null hypotheses

The difference between pooled and partitioned error
models can be expressed by specifying the relevant mod-
els and null hypotheses.

Pooled errors

The pooled error model is given by Eqn. 13.15. For the
main effect of A we test the null hypothesis �0 � �A

q = 0 for
all q. Similarly, for the main effect of B. For an interaction
we test the null hypothesis �0 � �AB

qr = 0 for all q� r.
For example, for the 3-by-3 design shown in Figure 13.7

there are q = 1��2 differential effects for factor A and

FIGURE 13.7 In a 3×3 ANOVA there are 9 cells or conditions.
The numbers in the cells correspond to the ordering of the measure-
ments when rearranged as a column vector y for a single-subject
general linear model. For a repeated measures ANOVA there are
9 measurements per subject. The variable ynkl is the measurement
at the kth level of factor A, the lth level of factor B and for the nth
subject. To implement the partitioned error models we use these
original measurements to create differential effects for each subject.
The differential effect �A

1 is given by row 1 minus row 2 (or cells 1, 2,
3 minus cells 4, 5, 6 – this is reflected in the first row of the contrast
matrix in Eqn. 13.28). The differential effect �A

2 is given by row 2
minus row 3. These are used to assess the main effect of A. Simi-
larly, to assess the main effect of B we use the differential effects �B

1
(column 1 minus column 2) and �B

2 (column 2 minus column 3). To
assess the interaction between A and B, we compute the four ‘sim-
ple interaction’ effects �AB

11 (cells (1–4)-(2–5)), �AB
12 (cells (2–5)-(3–6)),

�AB
21 (cells (4–7)-(5–8)) and �AB

22 (cells (5–8)-(6–9)). These correspond
to the rows of the interaction contrast matrix in Eqn. 13.30.
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r = 1��2 for factor B. The pooled error model therefore
has regression coefficients:

	̃ = 
�A
1 � �A

2 � �B
1 � �B

2 � �AB
11 � �AB

12 � �AB
21 � �AB

22 �m��n�T 13.18

For the main effect of A we test the null hypothesis �0 �
�A

1 = �A
2 = 0. For the interaction we test the null hypothesis

�0 � �AB
11 = �AB

12 = �AB
21 = �AB

22 = 0.

Partitioned errors

For partitioned errors, we first transform our data set
ynkl into a set of differential effects for each subject and
then model these in a GLM. This set of differential effects
for each subject is created using appropriate contrasts at
the ‘first-level’. The models that we describe below then
correspond to a ‘second-level’ analysis. The difference
between first and second level analyses are described in
the previous chapter on random effects analysis.

To test for the main effect of A, we first create the new
data points �nq which are the differential effects between
the levels in A for each subject n. We then compare the
full model:

�nq = �A
q + enq

to the reduced model �nq = enq . We are therefore testing
the null hypothesis, �0 � �A

q = 0 for all q.
Similarly for the main effect of B. To test for an inter-

action, we first create the new data points �nqr which are
the differences of differential effects for each subject. For
a K1 by K2 ANOVA there will be �K1 −1��K2 −1� of these.
We then compare the full model:

�nqr = �AB
qr + enqr

to the reduced model �nqr = enqr . We are therefore testing
the null hypothesis, �0 � �AB

qr = 0 for all q� r.
For example, for a 3-by-3 design, there are q = 1��2

differential effects for factor A and r = 1��2 for factor B.
We first create the differential effects �nq . To test for the
main effect of A we compare the full model:

�nq = �A
1 +�A

2 + enq

to the reduced model �nq = enq . We are therefore testing
the null hypothesis, �0 � �A

1 = �A
2 = 0. Similarly for the

main effect of B.
To test for an interaction we first create the differences

of differential effects for each subject. There are 2×2 = 4
of these. We then compare the full model:

�nqr = �AB
11 +�AB

12 +�AB
21 +�AB

22 + enqr

to the reduced model �nqr = enqr . We are therefore testing
the null hypothesis, �0 � �AB

11 = �AB
12 = �AB

21 = �AB
22 = 0� i.e.

that all the ‘simple’ interactions are zero. See Figure 13.7
for an example with a 3-by-3 design.

Numerical example

Pooled error

Consider a 2 × 2 ANOVA of the same data used in the
previous examples, with K1 = K2 = 2� P = K1K2 = 4� N =
12� J = PN = 48. The design matrix for Eqn. 13.15 with
a pooled error term is the same as that in Figure 13.5,
assuming that the four columns/conditions are ordered:

1 2 3 4
A1B1 A1B2 A2B1 A2B2

13.19

where A1 represents the first level of factor A� B2 repre-
sents the second level of factor B etc., and the rows are
ordered; all subjects data for cell A1B1; all for A1B2 etc.
The basic contrasts for the three experimental effects are
shown in Table 13-4 with the contrast weights for the
subject-effects in the remaining columns 5–16 set to 0.

Assuming sphericity, the resulting F-tests give the
ANOVA results in Table 13-5. With a Greenhouse-Geisser
correction for non-sphericity, on the other hand, � is esti-
mated as 0.7, giving the ANOVA results in Table 13-6.

Main effects are not really meaningful in the presence
of a significant interaction. In the presence of an interac-
tion, one does not normally report the main effects, but
proceeds by testing the differences between the levels of
one factor for each of the levels of the other factor in the
interaction (so-called simple effects). In this case, the pres-
ence of a significant interaction could be used to justify
further simple effect contrasts (see above), e.g. the effect
of B at the first and second levels of A are given by the
contrasts c = 
1�−1� 0� 0�T and c = 
0� 0� 1�−1�T .

Equivalent results would be obtained if the design
matrix were rotated so that the first three columns reflect
the experimental effects plus a constant term in the fourth
column (only the first four columns would be rotated).
This is perhaps a better conception of the ANOVA
approach, since it is closer to Eqn. 13.15, reflecting the

TABLE 13-4 Contrasts for experimental
effects in a two-way ANOVA

Main effect of A [1 1 −1 −1]
Main effect of B [1 −1 1 −1]
Interaction, A ×B [1 −1 −1 1]

TABLE 13-5 Results of 2×2 within-subject ANOVA with
pooled error assuming sphericity

Main effect of A F = 9�83 DF = 
1� 33� p = 0�004
Main effect of B F = 5�21 DF = 
1� 33� p = 0�029
Interaction, A ×B F = 5�64 DF = 
1� 33� p = 0�024
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TABLE 13-6 Results of 2×2 within-subject ANOVA with
pooled error using Greenhouse-Geisser correction

Main effect of A F = 9�83 DF = 
0�7� 23�0� p = 0�009
Main effect of B F = 5�21 DF = 
0�7� 23�0� p = 0�043
Interaction, A ×B F = 5�64 DF = 
0�7� 23�0� p = 0�036

conception of factorial designs in terms of the experi-
mental effects rather than the individual conditions. This
rotation is achieved by setting the new design matrix:

Xr = X

[
CT 04�12

012�4 I12

]
13.20

where

CT =

⎡
⎢⎢⎣

−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1

⎤
⎥⎥⎦ 13.21

Notice that the rows of CT are identical to the con-
trasts for the main effects and interactions plus a
constant term (cf. Table 13-4). This rotated design
matrix is shown in Figure 13.8. The three experimen-
tal effects can now be tested by the contrast weights

1� 0� 0� 0�T � 
0� 1� 0� 0�T � 
0� 0� 1� 0�T (again, padded with
zeroes).

In this example, each factor only has two levels which
results in one-dimensional contrasts for testing main

FIGURE 13.8 Design matrix for 2×2 within-subject ANOVA.
This design is the same as in Figure 13.5 except that the first four
columns are rotated. The rows are ordered all subjects for cell A1B1,
all for A1B2 etc. White, grey and black represent 1, 0 and −1. The
first four columns model the main effect of A, the main effect of B,
the interaction between A and B and a constant term. The last 12
columns model subject effects. This model is a GLM instantiation
of Eqn. 13.15.

TABLE 13-7 Results of ANOVA using partitioned errors

Main effect of A F = 12�17 DF = 
1� 11� p = 0�005
Main effect of B F = 11�35 DF = 
1� 11� p = 0�006
Interaction, A ×B F = 3�25 DF = 
1� 11� p = 0�099

effects and interactions. The contrast weights form a vec-
tor. But factors with more than two levels require multi-
dimensional contrasts. Main effects, for example, can be
expressed as a linear combination of differences between
successive levels (e.g. between levels 1 and 2, and 2
and 3). The contrast weights therefore form a matrix. An
example using a 3-by-3 design is given later on.

Partitioned errors

Partitioned error models can be implemented by apply-
ing contrasts to the data, and then creating a separate
model (i.e. separate GLM analysis) to test each effect.
In other words, a two-stage approach can be taken, as
described in the previous chapter on random effects anal-
ysis. The first stage is to create contrasts of the condi-
tions for each subject, and the second stage is to put
these contrasts or ‘summary statistics’ into a model with
a block-diagonal design matrix.

Using the example dataset, and analogous contrasts for
the main effect of B and for the interaction, we get the
results in Table 13-7. Note how (1) the degrees of free-
dom have been reduced relative to Table 13-5, being split
equally among the three effects; (2) there is no need for a
non-sphericity correction in this case (since K1 = K2 = 2,
see above); and (3) the p-values for some of the effects
have decreased relative to Tables 13-5 and 13-6, while
those for the other effects have increased. Whether p-
values increase or decrease depends on the nature of the
data (particularly correlations between conditions across
subjects), but in many real data sets partitioned error
comparisons yield more sensitive inferences. This is why,
for repeated-measures analyses, the partitioning of the
error into effect-specific terms is normally preferred over
using a pooled error (Howell, 1992). But the partitioned
error approach requires a new model to be specified for
every effect we want to test.

GENERALIZATION TO M-WAY ANOVAs

The above examples can be generalized to M-way
ANOVAs. For a K1-by-K2-..-by-KM design, there are

P =
M∏

m=1

Km 13.22
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conditions. An M-way ANOVA has 2M − 1 experimen-
tal effects in total, consisting of M main effects plus M!/
�M − r�!r! interactions of order r = 2   M . A 3-way
ANOVA for example has three main effects (A, B,
C), three second-order interactions �A ×B� B×C� A ×C�
and one third-order interaction �A ×B×C�. Or more gen-
erally, an M-way ANOVA has 2M −1 interactions of order
r = 0   M , where a 0th-order interaction is equivalent to
a main effect.

We consider models where every cell has its own coef-
ficient (like Eqn. 13.13). We will assume these conditions
are ordered in a GLM so that the first factor rotates slow-
est, the second factor next slowest, etc., so that for a 3-way
ANOVA with factors A, B, C:

1 2    K3    P
A1B1C1 A1B1C2    A1B1CK3

   AK1
BK2

CK3

13.23

The data are ordered all subjects for cell A1B1C1, all sub-
jects for cell A1B1C2 etc.

The F -contrasts for testing main effects and interactions
can be constructed in an iterative fashion as follows. We
define initial component contrasts.2

Cm = 1Km
Dm = −diff�IKm

�T 13.24

where diff�A� is a matrix of column differences of A (as
in the Matlab function diff ). So for a 2-by-2 ANOVA:

C1 = C2 = 
1� 1�T D1 = D2 = 
1�−1�T 13.25

The term Cm can be thought of as the common effect for
the mth factor and Dm as the differential effect. Then con-
trasts for each experimental effect can be obtained by
the Kronecker products of Cms and Dms for each factor
m = 1   M . For a 2-by-2 ANOVA, for example, the two
main effects and interaction are respectively:

D1 ⊗C2 = 
1 1 −1 −1�T

C1 ⊗D2 = 
1 −1 1 −1�T

D1 ⊗D2 = 
1 −1 −1 1�T

13.26

This also illustrates why an interaction can be thought of
as a difference of differences. The product C1 ⊗C2 represents
the constant term.

2 In fact, the contrasts presented here are incorrect. But we
present them in this format for didactic reasons, because the
rows of the resulting contrast matrices, which test for main
effects and interactions, are then readily interpretable. The
correct contrasts, which normalize row lengths, are given in
Appendix 13.2. We also note that the minus sign is unnecessary.
It makes no difference to the results but we have included it so
that the contrast weights have the canonical form 
1� −1�    �
etc. instead of 
−1� 1�    �.

For a 3-by-3 ANOVA:

C1 = C2 = 
1� 1� 1�T D1 = D2 =
[

1 −1 0
0 1 −1

]T

13.27

and the two main effects and interaction are respectively:

D1 ⊗C2 =
[

1 1 1 −1 −1 −1 0 0 0
0 0 0 1 1 1 −1 −1 −1

]T

13.28

C1 ⊗D2 =
[

1 −1 0 1 −1 0 1 −1 0
0 1 −1 0 1 −1 0 1 −1

]T

13.29

D1 ⊗D2 =

⎡
⎢⎢⎣

1 −1 0 −1 1 0 0 0 0
0 1 −1 0 −1 1 0 0 0
0 0 0 1 −1 0 −1 1 0
0 0 0 0 1 −1 0 −1 1

⎤
⎥⎥⎦

T

13.30

The four rows of this interaction contrast correspond
to the four ‘simple interactions’ �AB

11 � �AB
12 � �AB

21 , and �AB
22

depicted in Figure 13.7. This reflects the fact that an inter-
action can arise from the presence of one or more simple
interactions.

Two-stage procedure for partitioned errors

Repeated measures M-way ANOVAs with partitioned
errors can be implemented using the following summary-
statistic approach.

1 Set up first-level design matrices where each cell is
modelled separately as indicated in Eqn. 13.23.

2 Fit first-level models.
3 For the effect you wish to test, use the Kronecker

product rules outlined in the previous section to see
what F-contrast you’d need to use to test the effect
at the first level. For example, to test for an interac-
tion in a 3 × 3 ANOVA you’d use the F -contrast in
Eqn. 13.30 (application of this contrast to subject n’s
data tells you how significant that effect is in that
subject).

4 If the F-contrast in the previous step has Rc rows then,
for each subject, create the corresponding Rc contrast
images. For N subjects this then gives a total of N Rc

contrast images that will be modelled at the second-
level.

5 Set up a second-level design matrix, X2 = IRc
⊗1N . The

number of conditions is Rc. For example, in a 3 × 3
ANOVA, X2 = I4 ⊗1N as shown in Figure 13.9.

6 Fit the second-level model.
7 Test for the effect using the F-contrast C2 = IRc

.

For each effect we wish to test we must get the appro-
priate contrast images from the first level (step 3) and
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FIGURE 13.9 Second-stage design matrix for interaction in 3×
3 ANOVA (partitioned errors).

implement a new second-level analysis (steps 4 to 7).
Because we are taking differential effects to the second
level we don’t need to include subject effects at the
second level.

fMRI BASIS FUNCTIONS

There are situations where one uses an ‘ANOVA-type’
model, but does not want to test a conventional main
effect or interaction. One example is when one factor
represents the basis functions used in an event-related
fMRI analysis. So if one used three basis functions, such
as a canonical haemodynamic response function (HRF)
and two partial derivatives (see Chapter 14), to model
a single event-type (versus baseline), one might want to
test the reliability of this response over subjects. In this
case, one would create for each subject the first-level con-
trasts: 
1� 0� 0�T � 
0� 1� 0�T and 
0� 0� 1�T , and enter these
as the data for a second-level 1-by-3 ANOVA, without a
constant term.

In this model, we do not want to test for differences
between the means of each basis function. For example, it
is not meaningful to ask whether the parameter estimate
for the canonical HRF differs from that for the temporal
derivative. In other words, we do not want to test the null
hypothesis for a conventional main effect, as described
in Eqn. 13.9. Rather, we want to test whether the sum
of squares of the mean of each basis function explains
significant variability relative to the total variability over
subjects. This corresponds to the F-contrast:

c2 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ 13.31

This is quite different from the F-contrast:

c2 =
⎡
⎣ 1 −0�5 −0�5

−0�5 1 −0�5
−0�5 −0�5 1

⎤
⎦ 13.32

which is the default ‘effects of interest’ contrast given for
a model that includes a constant term (or subject effects)
in statistical parametric mapping (SPM), and would be
appropriate instead for testing the main effect of such a
3-level factor.

DISCUSSION

The mainstay of many neuroimaging experiments is the
factorial design and data from these experiments can
be analysed using an analysis of variance. This chapter
has described ANOVAs in terms of model comparison.
To test, for example for a main effect of a factor, one
compares two models, a ‘full model’ in which all levels
of the factor are modelled separately, versus a ‘reduced
model’, in which they are modelled together. If the full
model explains the data significantly better than the
reduced model then there is a significant main effect.
We have shown how these model comparisons can be
implemented using F-tests and general linear models.

This chapter has also revisited the notion of non-
sphericity, within the context of within-subject ANOVAs.
Informally, if a subject’s response to levels i and j of a
factorial manipulation is correlated, then a plot of the
bivariate responses will appear non-spherical. This can
be handled at the inferential stage by making an adjust-
ment to the degrees of freedom. In current implemen-
tations of SPM this is generally unnecessary, as global
non-sphericty estimates are used which have very high
precision. This non-sphericity is then implicitly removed
during the formation of maximum-likelihood parameter
estimates (see Chapter 10).

We have also described inference in multiway within-
subject ANOVAs and made a distinction between mod-
els with pooled versus partitioned errors and noted that
partitioning is normally the preferred approach. One can
implement partitioning using the multistage summary-
statistic procedure until, at the last level, there is only one
contrast per subject. This is a simple way to implement
inference based on partitioned errors using the pooled-
errors machinery of SPM.
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APPENDIX 13.1
THE KRONECKER PRODUCT

If A is an m1 ×m2 matrix and B is an n1 ×n2 matrix, then
the Kronecker product of A and B is the �m1n1�× �m2n2�
matrix:

A⊗B =
⎡
⎣ a11B    a1m2

B
  

am11B am1m2
B

⎤
⎦ 13.33

Circularity

A covariance matrix � is circular if:

�ii +�jj −2�ij = 2� 13.34

for all i� j.

Compound symmetry

If all the variances are equal to �1 and all the covariances
are equal to �2 then we have compound symmetry.

Non-sphericity

If � is a K×K covariance matrix and the first K−1 eigen-
values are identically equal to:

� = 0�5��ii +�jj −2�ij� 13.35

then � is spherical. Every other matrix is non-spherical or
has non-sphericity.

Greenhouse-Geisser correction

For a 1-way ANOVA between subjects with N subjects
and K levels the overall F-statistic is approximately dis-
tributed as:

F 
�K −1��� �N −1��K −1��� 13.36

where

� = �
∑K−1

i=1 �i�
2

�K −1�
∑K−1

i=1 �2
i

13.37

and �i are the eigenvalues of the normalized matrix
�z where

�z = MT �yM 13.38

and M is a K by K − 1 matrix with orthogonal columns
(e.g. the columns are the first K −1 eigenvectors of �y).

APPENDIX 13.2
WITHIN-SUBJECT MODELS

The model in Eqn. 13.11 can also be written as:

yn = 1K�n +� + en 13.39

where yn is now the K ×1 vector of measurements from
the nth subject, 1K is a K ×1 vector of 1s, and � is a K ×1
vector with kth entry �k and en is a K ×1 vector with kth
entry enk where:

p�en� = N�0��e� 13.40

We have a choice as to whether to treat the subject
effects �n as fixed-effects or random-effects. If we choose
random-effects then:

p��n� = N����2
�� 13.41

and overall we have a mixed-effects model as the typical
response for subject n� �n, is viewed as a random variable
whereas the typical response to treatment k� �k, is not a
random variable. The reduced model is:

yn = 1K�n + en 13.42

For the full model we can write:

p�y� =
N∏

n=1

p�yn� 13.43

p�yn� = N�my��y�

and

my = 1K�+� 13.44

�y = 1K�2
�1T

K +�e

if the subject effects are random effects, and �y = �e oth-
erwise. If �e = �2

e IK then �y has compound symmetry. It is
also spherical (see Appendix 13.1). For K = 4 for example:

�y =

⎡
⎢⎢⎣

�2
� +�2

e �2
� �2

� �2
�

�2
� �2

� +�2
e �2

� �2
�

�2
� �2

� �2
� +�2

e �2
�

�2
� �2

� �2
� �2

� +�2
e

⎤
⎥⎥⎦ 13.45

If we let �y = ��2
� +�2

e �Ry then:

Ry =

⎡
⎢⎢⎣

1 � � �
� 1 � �
� � 1 �
� � � 1

⎤
⎥⎥⎦ 13.46
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where

� = �2
�

�2
� +�2

e

13.47

For a more general �e, however, �y will be non-
spherical. In this case, we can attempt to correct for the
non-sphericity. One approach is to reduce the degrees of
freedom by a factor 1

K−1 ≤ � ≤ 1, which is an estimate of
the degree of non-sphericity of �y (the Greenhouse-Geisser
correction; see Appendix 13.1). Various improvements
of this correction (e.g. Huhn-Feldt) have also been sug-
gested (Howell, 1992). Another approach is to parameter-
ize explicitly the error covariance matrix �e using a linear
expansion and estimate the parameters using ReML, as
described in Chapter 22.

Contrasts for M-way ANOVAs

The contrasts presented in the section ‘Generaliza-
tion to M-way ANOVAs’ are actually incorrect. They
were presented in a format that allowed the rows of
the resulting contrast matrices, which test for main
effects and interactions, to be readily interpretable.
We now give the correct contrasts, which derive
from speciying the initial differential component con-
trast as:

Dm = −orth�diff�IKm
�T � 13.48

where orth�A� is the orthonormal basis of A (as in the
Matlab function orth). This is identical to the expression
in the main text but with the addition of an orth func-
tion which is necessary to ensure that the length of the
contrast vector is unity.

This results in the following contrasts for the 2-by-2
ANOVA:

C1 = C2 = 
1� 1�T D1 = D2 = 
0�71�−0�71�T 13.49

D1 ⊗C2 = 
0�71 0�71 −0�71 −0�71�T

C1 ⊗D2 = 
0�71 −0�71 0�71 −0�71�T

D1 ⊗D2 = 
0�71 −0�71 −0�71 0�71�T

13.50

For the 3-by-3 ANOVA:

C1 = C2 = 
1� 1� 1�T D1 = D2 =
[

0�41 −0�82 0�41
0�71 0�00 −0�71

]T

13.51

and the two main effects and interaction are respectively:

D1 ⊗C2 =
[

0�41 0�41 0�41 −0�82 −0�82
0�71 0�71 0�71 0 0

−0�82 0�41 0�41 0�41
0 −0�71 −0�71 −0�71

]T

13.52

C1 ⊗D2 =
[

0�41 −0�82 0�41 0�41 −0�82
0�71 0 −0�71 0�71 0

0�41 0�41 −0�82 0�41
−0�71 0�71 0 −0�71

]T

13.53

D1 ⊗D2 =

⎡
⎢⎢⎣

0�17 −0�33 0�17 −0�33 0�67
0�29 0 −0�29 −0�58 0
0�29 −0�58 0�29 0 0
0�5 0 −0�5 0 0

−0�33 0�17 −0�33 0�17
0�58 0�29 0 −0�29

0 −0�29 0�58 −0�29
0 −0�5 0 0�5

⎤
⎥⎥⎦

T

13.54
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Convolution Models for fMRI
R. Henson and K. Friston

INTRODUCTION

This chapter reviews issues specific to the analysis of
functional magnetic resonance imaging (fMRI) data. It
extends the general linear model (GLM) introduced in
Chapter 8 to convolution models, in which the blood
oxygenation-level-dependent (BOLD) signal is modelled
by neuronal causes that are expressed via a haemody-
namic response function (HRF). We begin by considering
linear convolution models and introduce the concept of
temporal basis functions. We then consider the related
issues of temporal filtering and temporal autocorrelation.
Finally, we extend the convolution model to include non-
linear terms and conclude with some example analyses
of fMRI data.

THE HAEMODYNAMIC RESPONSE
FUNCTION (HRF)

A typical BOLD response to a single, impulsive stimula-
tion (‘event’) is shown in Figure 14.1. The response peaks
approximately 5 s after stimulation, and is followed by
an undershoot that lasts as long as 30 s (at high magnetic
fields, an initial undershoot can sometimes be observed)
(Malonek and Ginvald, 1996). Early event-related studies
therefore used a long time between events (i.e. a long
stimulus onset asynchrony (SOA)) to allow the response
to return to baseline between stimulations. However,
although the responses to successive events will overlap
at shorter SOAs, this overlap can be modelled explicitly
within the GLM via a convolution model and an HRF,
as described below. Short SOAs of a few seconds are
desirable because they are comparable to those typically
used in behavioural and electrophysiological studies, and

because they are generally more efficient from a statistical
perspective, as we will see in the next chapter.

The shape of the BOLD impulse response appears sim-
ilar across early sensory regions, such as V1 (Boynton
et al., 1996), A1 (Josephs et al., 1997) and S1 (Zarahn
et al., 1997a). However, the precise shape has been shown
to vary across the brain, particularly in higher cortical
regions (Schacter et al., 1997), presumably due mainly
to variations in the vasculature of different regions (Lee
et al., 1995). Moreover, the BOLD response appears to
vary considerably across people (Aguirre et al., 1998).1
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FIGURE 14.1 Typical (canonical) BOLD impulse response
(power spectrum inset).

1 This has prompted some to use subject-specific HRFs derived
from a reference region known to respond to a specific task,
(e.g. from central sulcus during a simple manual task performed
during a pilot scan on each subject; Aguirre et al., 1998). How-
ever, while this allows for inter-subject variability, it does not
allow for inter-regional variability within subjects (or potential
error in estimation of the reference response).
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These types of variability can be accommodated by
expressing the HRF in terms of a set of temporal basis
functions.

A linear convolution model assumes that successive
responses summate (superpose). However, there is good
evidence for non-linearity in the amplitude of the BOLD
response, as a function of the stimulus duration or stim-
ulus magnitude (e.g. Vasquez and Noll, 1998), and as
a function of SOA (Pollmann et al., 1998; Friston et al.,
1998a; Miezin et al., 2000). These non-linearities also
appear to vary across different brain regions (Birn et al.
2001; Huettel and McCarthy, 2001). The non-linearity
found as a function of SOA is typically a ‘saturation’
whereby the response to a run of events is smaller than
would be predicted by the summation of responses to
each event alone. This saturation is believed to arise in
the mapping from blood flow to BOLD signal (Friston
et al., 2000a), though may also have a neuronal locus,
particularly for very short SOAs or long stimulus dura-
tions (for biophysical models that incorporate such non-
linearities, see Chapter 27). Saturation has been found for
SOAs below approximately 8 s, and the degree of satura-
tion increases as the SOA decreases. For typical SOAs of
2–4 s, however, its magnitude can be small (typically less
than 20 per cent) (Miezin et al., 2000). Later we will see
how the linear convolution model is extended to handle
such non-linearities via a Volterra expansion.

Linear time-invariant (convolution) models

It is useful to treat a session of fMRI scans as a time-
series. This is because the data tend to be correlated
across successive scans, given that the typical measure-
ment interval, TR, of 1–3 s, is less than the duration of the
BOLD response. The GLM can be expressed as a function
of time (Friston et al., 1994):

y�t� = X�t��+��t� 14.1

��t� ∼ N�0��2��

where the data, y�t�, comprise the fMRI time-series, the
explanatory variables, X�t� are now functions of time, �
are (time-invariant) parameters, and � is the noise auto-
correlation. Though y�t� and X�t� are really discrete (sam-
pled) time-series (normally represented by the vectory and
design matrix X respectively), we will initially treat the
data and model in terms of continuous time. For simplicity,
we will consider the case of a single cause or regressor.

The explanatory variables X�t� represents the predicted
BOLD time course arising from neuronal activity, u�t�,
up to some scaling factor. This neuronal activity (e.g. the
mean synaptic activity of an ensemble of neurons – see
Chapter 32) is assumed to be caused by a sequence of

experimental manipulations and is usually referred to as
the stimulus function. If we assume that the BOLD sig-
nal is the output of a linear time-invariant (LTI) system
(Boynton et al., 1996), i.e. that the BOLD response to a
brief input has a finite duration and is independent of
time, and that the responses to successive inputs super-
pose in a linear fashion, then we can express X�t� as the
convolution of the stimulus function with an impulse
response, or HRF, h�t�:

X�t� = u�t�⊗h�	� =
T∫

0

u�t −	�h�	�d	 14.2

where 	 indexes the peristimulus time (PST), over which
the BOLD impulse response is expressed. The HRF is
equivalent to the first-order Volterra kernel described
below. The stimulus function u�t� is usually a stick-
function or boxcar function encoding the occurrence of
an event or epoch. The result of convolving a random
sequence of neuronal events with a ‘canonical’ HRF (see
Figure 14.1) is shown in Figure 14.2(a). The smoothness of
the resulting response is why the HRF is often viewed as
a low-pass filter. The result of convolving more sustained
periods of neuronal activity (called epochs in SPM) with
the canonical HRF is shown in Figure 14.2(b). Note that
the dominant effect of increasing the duration of neu-
ronal activity, up to a few seconds, is to increase the peak
amplitude of the BOLD response. In other words, the
BOLD response integrates neuronal activity over a few
seconds. The corollary is that a difference in the ampli-
tude of the BOLD response (as tested conventionally)
does not necessarily imply a difference in the mean level
of neuronal activity: the difference could reflect differ-
ent durations of neuronal activity at same mean level.
One way to distinguish between these scenarios is to test
for differences in the peak latency of the BOLD impulse
response (Henson and Rugg, 2001).

In practice, the convolution must be performed in dis-
crete time. Given that significant information may exist in
the predicted BOLD time course beyond that captured by
typical TRs of 1–3 s, SPM performs the convolution at a
higher temporal resolution withN time points per scan (i.e.
withresolution,
t = TR/N seconds).Thismeans, forexam-
ple, that stimulus onsets do not need to be synchronized
with scans (they can be specified in fractions of scans).2 To
create the explanatory variables, the predicted BOLD time
course is then down-sampled every TR with reference to a
specified time point T0 (Plate 8, see colour plate section).

2 In SPM, an ‘event’ is defined as having a duration of 0, which in
practice corresponds to a single non-zero value for one time bin
of duration 
t, where the value of the stimulus function is 1/
t.
For epochs, the stimulus function is scaled so that it sums to one
over a second.
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FIGURE 14.2 Linear convolution with a
canonical HRF illustrated for (a) randomly
presented events, and (b) epochs of neuronal
activity with durations increasing from 200 ms
to 16 s.
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TEMPORAL BASIS FUNCTIONS

Given that the precise shape of the HRF may vary over
brain regions and over individuals, variability in its shape
needs to be accommodated. The simplest way to achieve
this within the GLM is via an expansion in terms of K
temporal basis functions, fk�	�:

h�	� =
K∑

k=1

�kfk�	� 14.3

If the stimulation and resulting neuronal activity were a
sequence of J impulses at times oj , we can construct a
stimulus stick-function:

u�t� =
J∑

j=1

�j��t −oj� 14.4

where ��t� is the Dirac delta function. Note that vari-
ations in the stimulus – for example, its magnitude �j

on each trial – can be accommodated by modulating the
delta-functions, prior to convolution with the HRF. These
are called ‘parametric modulations’ in SPM. We will see
an example of this parametric modulation in the last
section. It is quite common to use a series of modulated
stick-functions to model a single event type by using a
polynomial or other expansions of �j . For simplicity, we
will assume that �j = 1 (i.e. a zeroth-order term).

Having specified the form of the stimulus and haemo-
dynamic response functions in this way, the GLM equa-
tion in Eqn. 14.1 can be written:

y�t� =
J∑

j=1

K∑
k=1

�kfk�t −oj�+��t� 14.5

where �k are the parameters to be estimated. Several
temporal basis sets are offered in SPM, though not all
are true ‘basis’ sets in the (mathematical) sense that they
span the space of all possible impulse response shapes
(over the finite duration of that response); the term ‘basis’
is used to reflect the user’s assumption that the set of
functions chosen capture BOLD impulse response shapes
that occur in reality.

FIR and Fourier sets

The most flexible basis sets are the finite impulse response
(FIR) and Fourier basis sets, which make the least
assumptions about the shape of the response. The FIR
set consists of contiguous boxcar functions of PST, each
lasting T/KFIR seconds (see Plate 9(a)), where T is dura-
tion of the HRF. The Fourier set (see Plate 9(b)) consists
of a constant and KF sine and KF cosine functions of har-
monic periods T�T/2�    �T/KF seconds (i.e. K = 2 KF +1
basis functions). Linear combinations of the (orthonor-
mal) FIR or Fourier basis functions can capture any shape
of response up to a specified timescale (T/KFIR in the
case of the FIR) or frequency (KF /T in the case of the
Fourier set).

Relationship between FIR and ‘selective averaging’

In practice, there is little to choose between the FIR and
Fourier sets. The Fourier set can be better suited when
the sampling of peristimulus time (as determined by the
relationship between the SOA and TR) is non-uniform,
whereas the parameter estimates for the FIR functions
have a more direct interpretation in terms of the ‘aver-
aged’ peristimulus time histogram (PSTH). Indeed, in the
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special case when T/KFIR = TR = 
t, the FIR functions can
be considered as approximate delta-functions:

h�	� =
K∑

k=1

�k��	 −k� 14.6

where 	 ranges over post-stimulus scans. Then the model
becomes (with some abuse of the delta-function):

y�t� =
J∑

j=1

K∑
k=1

�k��t −k−oj�+��t� ⇒ 14.7

y = X�+�

Xtk =
J∑

j=1

��t −k−oj�

For the special case of non-overlapping responses and
independent and identically distributed (IID) error (i.e.
� = 1), the maximum likelihood estimates of the FIR
parameters are equivalent to the simple trial-averaged
data (much like with ERPs):

�̂k = 1
J

J∑
j=1

y�oj +k−1� ⇒ 14.8

� = 1
J

XT y

Estimating the haemodynamic response like this has been
called ‘selective averaging’ (Dale and Buckner, 1997).
However, in practice, this estimator is biased and subop-
timal because it requires the information matrix (called
the ‘overlap correction matrix’ (Dale, 1999)) to be a lead-
ing diagonal matrix, i.e. XT X = JI , in which case the
ordinary least-squares estimates become the selective
average:

�̂ = �XT X�−1XT y = 1
J

XT y 14.9

With careful counterbalancing of different stimuli and the
use of variable SOAs (e.g. via null events; see Chapter 15),
this requirement can be met approximately. However,
selective averaging as a procedure is redundant and
represents a special case of the general deconvolution
that obtains when simply inverting a linear convolu-
tion model. Selective averaging rests on undesirable and
unnecessary constraints on the experimental design and
is seldom used anymore.

Gamma functions

More parsimonious basis sets can be chosen that are
informed about the shape of the HRF. For example, since

the HRF is assumed to be bounded at zero for 	 ≤ 0 and
	 ≥ T , the Fourier basis functions can also be windowed
(e.g. by a Hanning window) within this range. An alter-
native is based on the gamma function:

f�t� =
(

t −o

d

)p−1(exp�−�t −o�/d�

d�p−1�!
)p−1

14.10

where o is the onset delay, d is the time-scaling, and p is
an integer phase-delay (the peak delay is given by pd, and
the dispersion by pd2�. This function is bounded and pos-
itively skewed (unlike a Gaussian for example). A single
gamma function has been shown to provide a reasonably
good fit to the BOLD impulse response (Boynton et al.,
1996), though it lacks an undershoot (Fransson et al., 1999;
Glover, 1999). A set of gamma functions of increasing dis-
persions can be obtained by increasing p (see Plate 9(c)).
In SPM, these functions (as with all basis functions) are
orthogonalized with respect to one another. This set is
more parsimonious, in that fewer functions are required
to capture the typical range of BOLD impulse responses
than required by Fourier or FIR sets. This precludes over-
fitting and reduces the model’s degrees of freedom, to
provide more powerful tests.

The ‘informed’ basis set and the canonical
HRF

Another more parsimonious basis set, suggested by
Friston et al. (1998b), is based on a ‘canonical HRF’ and
its partial derivatives (see Plate 9(d)). The canonical HRF
is a ‘typical’ BOLD impulse response characterized by
two gamma functions, one modelling the peak and one
modelling the undershoot. The canonical HRF is parame-
terized by a peak delay of 6 s and an undershoot delay of
16 s, with a peak-undershoot amplitude ratio of six; these
values were derived from a principal component analysis
of the data reported in Friston et al. (1998a). To allow for
variations about the canonical form, the partial deriva-
tives of the canonical HRF with respect to its delay and
dispersion can be added as further basis functions. For
example, if the real BOLD impulse response is shifted by
a small amount in time 	, then by the first-order Taylor
expansion:

h�t +	� ≈ h�t�+	h′�t� 14.11

This is the same as adding a small amount of the tempo-
ral derivative of h′�t�. Thus, if h�t� and h′�t� are used as
two basis functions in the GLM to estimate the param-
eters �1 and �2 respectively, then small changes in the
latency of the response can be captured by the parame-
ter estimate for the temporal derivative (more precisely,
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	 ≈ �̂2/�̂1; see Henson et al., 2002a; Liao et al., 2002,
for a fuller treatment). In SPM, the temporal derivative
is created from the finite difference between a canon-
ical HRF and a canonical HRF shifted by one sec-
ond. Thus, using the temporal derivative as a further
response can capture differences in the latency of the
BOLD response up to plus or minus a second (beyond
this range, the first-order Taylor approximation breaks
down). A similar logic applies to the use of dispersion
derivative to capture [small] differences in the dura-
tion of the peak response. Together, these three func-
tions comprise SPM’s ‘informed’ basis set, in that they
are informed by the range of typical BOLD impulse
response shapes observed. Subsequent work, using more
biophysically informed models of the haemodynamic
response, revealed that the informed set is almost identi-
cal to the principal components of variation, with respect
to the parameters of the Balloon model described in
Chapter 27.

The temporal derivatives of an assumed HRF can
also be used to allow for differences in the acquisition
times of different slices with echo-planar imaging (EPI)
sequences, in order to address the so-called slice-timing
problem (see Chapter 15). The ability of the temporal
derivative to capture these latency differences is appro-
priate for a TR of up to 2 s (after synchronizing the
model with the slice acquired half way though each scan),
assuming that the true BOLD impulse responses match
the canonical HRF in all brain regions (i.e. all slices;
Henson et al., 1999).

Other methods

Other methods for estimating the shape of the BOLD
impulse response use non-linear (iterative) fitting tech-
niques, beyond the GLM. These approaches are more
powerful, but computationally more expensive. Various
parameterizations have been used, such as a Gaussian
function parameterized by amplitude, onset latency and
dispersion (Rajapakse et al., 1998), a gamma function
parameterized by amplitude, onset latency and peak
latency (Miezin et al., 2000), or even SPM’s canonical
HRF, with the amplitude, onset latency and peak latency
parameters free to vary (Henson and Rugg, 2001). A
problem with unconstrained iterative fitting techniques is
that the parameter estimates may not be optimal, because
of local minima in the search space. Parameters that
have correlated effects compound this problem (often
requiring a re-parameterization into orthogonal compo-
nents). One solution is to put priors on the parameters
in a Bayesian estimation scheme (Chapter 34) in order
to ‘regularize’ the solutions (see Gossl et al., 2001, and
Woolrich et al., 2004, for other examples). Indeed, more

recent Bayesian methods not only provide posterior den-
sities for HRF parameters, but also provide metrics of
the ‘goodness’ of different HRF models, using Bayesian
model evidence (Friston, 2002; Penny et al., in press).

Which temporal basis set?

Inferences using multiple basis functions are made with
F -contrasts (see Chapter 9). An example F -contrast that
tests for any difference in the event-related response to
two trial-types modelled by SPM’s informed basis set
is shown in Plate13(c). If the real response matches an
assumed HRF, models using just that HRF are statisti-
cally more powerful (Ollinger et al., 2001). In such cases,
t-tests on the parameter estimate for the HRF can be
interpreted directly in terms of the ‘amplitude’ of the
response. However, when the real response differs appre-
ciably from the assumed form, tests on the HRF param-
eter estimates are biased (and unmodelled structure will
exist in the residuals). In such cases, the parameter esti-
mate for the canonical HRF, for example, can no longer
necessarily be interpreted in terms of amplitude. The
addition of partial derivatives of the HRF can amelio-
rate this problem: the inclusion of a temporal derivative,
for example, can reduce the residual error by capturing
systematic delays relative to the assumed HRF. Nonethe-
less, for responses that differ by more than a second in
their latency (i.e. when the first-order Taylor approxima-
tion fails), different canonical HRF parameters will be
estimated even when the responses have identical peak
amplitudes (Henson et al., 2002a).3

An important empirical question then arises: how
much variability exists in the BOLD impulse response?
Henson et al. (2001) addressed this question for a dataset
involving rapid motor responses to the brief presenta-
tions of faces across twelve subjects. By modelling the
event-related response with a canonical HRF, its partial
derivatives and an FIR basis set, the authors assessed
the contribution of the different basis functions using a
series of F -contrasts (that collapsed over subjects within
a single first-level design matrix). Significant additional
variability was captured by both the temporal deriva-
tive and dispersion derivative, confirming that different
regions exhibit variations around the canonical form (see

3 Note that the inclusion of the partial derivatives of SPM’s
canonical HRF does not necessarily affect the parameter esti-
mate for the HRF itself, since the basis functions are orthogo-
nalized (unless correlations between the regressors arise due to
under-sampling by the TR, or by temporal correlations between
the onsets of events of different types). Thus, their inclusion
does not necessarily affect second-level t-tests on the canonical
HRF parameter estimate alone.
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Plate 10(a)). Little additional variability was captured
by the FIR basis set. This suggests that the canonical
HRF and its two partial derivatives are sufficient to cap-
ture the majority of experimental variability (at least in
regions that were activated in this task). The same con-
clusion was reached using a second-level model and the
twelve parameter estimates of a (pure) FIR model, by
testing F -contrasts that specify the ‘null-space’ of either
the canonical HRF or the canonical HRF plus its partial
derivatives. Significant variability was not captured by
the canonical HRF alone but there was little significant
variability that could not be captured once the two partial
derivatives were added (see Plate 10(b)). The latter data
and analyses can be downloaded from the SPM website
(http://www.fil.ion.ucl.ac.uk/spm/data).

This sufficiency of the informed basis set may be
specific to this dataset and reflect the fact that neuronal
activity was reasonably well approximated by a delta
function. It is unlikely to hold for more complex exper-
imental trials, such as working memory trials where
information must be maintained for several seconds (e.g.
Ollinger et al., 2001). Nonetheless, such trials may be bet-
ter accommodated by more complex neuronal models.
This usually entails using multiple stimulus functions
for different components of each trial (e.g. onset, delay-
period, offset, etc.) while still using an informed model
for the HRF. This allows more direct inferences about
stimulus, response and delay components of a trial for
example (Zarahn, 2000). More generally, the question of
which basis set and how may components to use becomes
a problem of model selection that can be addressed sim-
ply using F -contrasts or Bayesian techniques (Penny et al.,
in press).

One issue arises when one wishes to use multiple
basis functions to make inferences in second-level anal-
yses (e.g. in ‘random effects’ analyses over subjects;
see Chapter 12). Subject-specific contrast images cre-
ated after fitting an FIR model in a first-level analy-
sis could, for example, enter into a second-level model
as a peristimulus time factor (differential F -contrasts
which would correspond to a condition-by-time inter-
action in a conventional repeated-measures analysis of
variance (ANOVA); Chapter 13). However, the param-
eter estimates are unlikely to be independent or identi-
cally distributed over subjects, violating the ‘sphericity’
assumption of univariate, parametric statistical tests
(Chapter 10). This is one reason why researchers have
tended to stick with t-tests on (contrasts of) the parameter
estimate for a single canonical HRF at the second-level.
This is at the expense of potentially missing response
differences with a non-canonical form. One solution is to
use multivariate tests (Henson et al., 2000), though these
are generally less sensitive (by virtue of making mini-
mal assumptions about the data covariance) (Kiebel and

Friston, 2004). Alternatively, restricted maximum like-
lihood (ReML) can be used to estimate the covariance
components subtending any non-sphericity (Friston et al.,
2002; Chapter 22). In this case, one generally needs to
model both unequal variances (given that different basis
functions can have different scaling) and unequal covari-
ances (given that parameter estimates for different basis
functions are likely to be correlated across subjects). This
allows one to make statistical inferences over multiple
basis functions at the second-level, provided one is pre-
pared to assume that the basic correlational structure of
the error is invariant across ‘activated’ voxels (the ‘pool-
ing device’; see Chapter 10).

TEMPORAL FILTERING AND
AUTOCORRELATION

We can also view our time-series in terms of frequency
components via the Fourier transform. A schematic of
the power spectrum, typical of a subject at rest in the
scanner, is shown in Plate 11(a). This ‘noise’ spectrum is
dominated by low frequencies and has been character-
ized by a 1/f form when expressed in amplitude (Zarahn
et al., 1997b). The noise arises from physical sources,
sometimes referred to as ‘scanner drift’ (e.g. slowly vary-
ing changes in ambient temperature); from physiological
sources (e.g. biorhythms, such as ∼ 1 Hz respiratory or
∼ 0�25 Hz cardiac cycles, which are aliased by the slower
sampling rate); and from residual movement effects and
their interaction with the static magnetic field (Turner
et al., 1998). When the subject is performing a task,
signal components are added to this noise. For example,
Plate 11(b) shows the approximate signal spectrum
induced by a square-wave stimulation, with a duty cycle
of 64 s. When averaging over all frequencies, this signal
might be difficult to detect against background noise.
However, by filtering the data with an appropriate high-
pass filter (see Plate 11(c)), we can remove most of the
noise. Ideally, the remaining noise spectrum would be flat
(i.e. ‘white’ noise, with equal power at all frequencies).

Highpass filtering

The choice of the highpass cut-off would ideally maxi-
mize the signal-to-noise ratio. However, we cannot dis-
tinguish signal from noise on the basis of the power
spectrum alone. Usually, a cut-off period of approxi-
mately 128 s is used, based on observations that the
noise becomes appreciable at frequencies below approx-
imately 0.008 Hz (though this may vary considerably
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across scanners and subjects). In other words, some loss
of signal may be necessary to minimize noise. Experi-
mental designs therefore try to avoid significant power at
low frequencies (i.e. conditions to be contrasted should
be presented too far apart in time; see Chapter 15).

In the time domain, a highpass filter can be imple-
mented by a discrete cosine transform (DCT) with har-
monic periods up to the cut-off. These basis functions can
be made explicit as confounds in the design matrix X0

or they can be viewed as part of a filter matrix, S (as in
current implementations of SPM).4 This matrix is applied
to both data and model:

y = X�+X0�0 +� 14.12

⇔
Sy = SX�+S�

S = I −X0X
+
0

The effect of applying a highpass filter to real data (taken
from a 42 s-epoch experiment; data available from the
SPM website) is illustrated in Plate 11(d). Plate 11(e)
shows the fitted responses after the filter S is applied to
two boxcar models, one with and one without convo-
lution with the HRF. The importance of convolving the
neuronal model with an HRF is evident in the residu-
als (see Plate 11(f)); had the explanatory variables been
directly equated with the stimulus function (or neuronal
activity), significant temporal structure would remain in
the residuals (e.g. as negative deviations at the start of
each block, i.e. at higher frequency harmonics of the box-
car function).

Temporal autocorrelations

There are various reasons why the noise component
may not be white even after highpass filtering. These
include unmodelled neuronal sources that have their
own haemodynamic correlates. Because these compo-
nents live in the same frequency range as the effects of
interest, they cannot be removed by the highpass filter.
These noise sources induce temporal correlation between
the residual errors. Such autocorrelation is a special case
of non-sphericity, which is treated more generally in
Chapter 10. Here, we review briefly the various (histor-
ical) solutions to the specific problem of temporal auto-
correlation in fMRI time-series (see Friston et al., 2000b,
for a fuller treatment).

4 Though the matrix form expedites mathematical analysis, in
practice highpass filtering is implemented by the computation-
ally efficient subtraction Sy = y−X0X

+
0 y, where X0 is the matrix

containing the DCT.

Pre-colouring

One solution proposed by Worsley and Friston (1995)
is to apply temporal smoothing. This is equivalent to
adding a lowpass filter component to S (such that S,
together with the highpass filter, becomes a ‘bandpass’
filter). If the time-constants of the smoothing kernel are
sufficiently large, the temporal autocorrelation induced
by the smoothing can be assumed to swamp any intrinsic
autocorrelation, �, such that:

V = S�ST ≈ SST 14.13

The effective degrees of freedom can then be calcu-
lated using the classical Satterthwaite correction (see
Appendix 8.2):

v = tr�RV�2

tr�RVRV�
14.14

R = I −SX�SX�+

solely via knowledge of the filter matrix. Lowpass fil-
ters derived from a Gaussian smoothing kernel with full-
width at half maximum (FWHM) of 4–6 s, or derived
from the canonical HRF (see Figure 14.1, inset), have been
suggested (Friston et al., 2000b).

Pre-whitening

An alternative solution is to estimate the intrinsic auto-
correlation directly, which can be used to create a filter
to ‘pre-whiten’ the data before fitting the GLM. In other
words, the smoothing matrix is set to S = K−1, where
KKT = � is the estimated autocorrelation matrix. If the
estimation is exact, then:

V = S�ST = I 14.15

All methods for estimating the autocorrelation rest on
a model of its components. These include autoregres-
sive (AR) models (Bullmore et al., 1996) and 1/f models
(Zarahn et al., 1997b). An AR(p) is a pth-order autore-
gressive model, having the time domain form:

zt = a1zt−1 +a2zt−2 +    +apzt−p +wt ⇒
z = Az+w

wt ∼ N�0��w� 14.16

A =

⎡
⎢⎢⎢⎣

0 0 0   
a1 0 0
a2 a1 0
���

� � �

⎤
⎥⎥⎥⎦

where wt is an IID innovation or Gaussian process and
A is a lower-triangular matrix containing the coefficients
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in its lower leading diagonals. The regression coeffi-
cients ai can be estimated by ordinary least-squares. Sev-
eral authors (e.g. Bullmore et al., 1996; Kruggel and von
Cramon, 1999) use an AR(1) model, in which the autore-
gression parameters are estimated from the residuals
after fitting the GLM. These estimates are then used to
create the filter S = �I − A�−1 that is applied to the data
before re-fitting the GLM (a procedure that can be iter-
ated until the residuals are white).

The 1/f model is a linear model with the frequency �
domain form:

s��� = b1/�+ b2

g��� = 
s���
2 14.17

where g(�) is the power spectrum, whose parameters, b1

and b2, can be estimated from the Fourier-transformed
data. The advantage of these pre-whitening methods
is that they produce the most efficient parameter esti-
mates, under Gaussian assumptions (corresponding to
Gauss-Markov or minimum variance estimators). Tem-
poral smoothing is generally less efficient because it
removes high-frequency components, which may contain
signal. The disadvantage of the temporal autocorrelation
models is that they can produce biased parameter esti-
mates if the autocorrelation is not estimated accurately
(i.e. they do not necessarily produce ‘minimum bias esti-
mators’).

Friston et al. (2000b) argued that the AR(1) and 1/f
models are not sufficient to estimate the typical tempo-
ral autocorrelation in fMRI data. This is illustrated in
Plate 12(a), which shows the power spectra and ‘autocor-
relation functions’5 for the residuals of an event-related
dataset (used below). It can be seen that the AR(1)
model underpredicts the intermediate-range correlations,
whereas the 1/f model overpredicts the long-range cor-
relations. Such a mismatch between the assumed and
intrinsic autocorrelation will bias the statistics produced
by pre-whitening the data.6 This mismatch can be ame-
liorated by combining bandpass filtering (see Plate 12(b))
and modelling the autocorrelation, in which case both
models provide a reasonable fit (see Plate12(c)). Indeed,
highpass filtering alone (with an appropriate cut-off)
is normally sufficient to allow either model to fit the
remaining autocorrelation (Friston et al., 2000b).

5 An autocorrelation function plots the correlation, ��t�, as a
function of ‘lag’, t=0…n-1, and is the Fourier transform of the
power spectrum, g(�).
6 More complex models of the temporal autocorrelation have
since been shown to minimize bias, such as Tukey tapers (Wool-
rich et al., 2001) and autoregessive moving average (ARMA)
models, a special case of the latter being an AR(1)+white noise
model (Burock and Dale, 2000).

Estimating non-sphericity hyperparameters

The estimation of the autocovariance parameters or hyper-
parameters described so far is based on the residuals of
the time-series and represents rather ad hoc procedures.
They are ad hoc and biased because they do not allow for
uncertainty about the fitted components that are removed
from the data to produce the residuals. In other words,
they fail to account for the loss of degrees of freedom due
to parameter estimation per se. Current implementations
of SPM avoid this shortcoming by partitioning the data
covariance (rather than the residuals) using restricted
maximum likelihood. This removes the bias resulting
from correlations among the residuals induced by remov-
ing modelled effects (Friston et al., 2002; though there are
ways of reducing this bias, Worsley et al., 2002).

Restricted maximum likelihood

Restricted maximum likelihood (ReML), allows simulta-
neous estimation of model parameters and hyperparam-
eters, with proper partitioning of the effective degrees of
freedom (see Chapter 22 for more details). ReML can be
used with any temporal autocorrelation model. Friston
et al. (2002) use an ‘AR(1)+white noise’ model (Purdon
and Weisskoff, 1998) with an autoregressive error term,
zt and a white noise term et:

yt = Xt�+zt + et

zt = a1zt−1 +wt 14.18

et ∼ N�0��e�

wt ∼ N�0��w�

The autocorrelation coefficient a1 = exp�−1� was fixed,
leaving two unknown hyperparameters; �e and �w. The
white-noise component contributes to the zero-lag auto-
correlation, which allows the AR(1) model to capture
better the shape of the autocorrelation at longer lags.
Note that this approach still requires a highpass filter
to provide accurate fits (see Plate 12(d)), though a sub-
tle difference from the residual-based approaches is that
the highpass filter is also treated as part of the complete
model to be estimated, rather than a pre-whitening filter.

Pooled hyperparameter estimates

Iterative schemes like ReML are computationally expen-
sive when performed at every voxel. Furthermore, the
hyperparameter estimates from a single voxel can be
quite imprecise. An expedient solution to both these
issues is to assume that the relative values of the hyper-
parameters � are stationary over voxels. This allows the
data to be pooled over voxels in order to estimate the
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hyperparameters and implicitly ���� for all voxels con-
sidered, in a single iterative procedure (see Chapter 22
for details). The ensuing autocorrelation matrix ���� is
extremely precise because thousands of voxel time-series
have been used to estimate it. This means it can now
be used to estimate the parameters in the usual way,
assuming known non-sphericity. This ReML approach to
modelling serial correlations or temporal non-sphericity
retains the efficiency of pre-whitening approaches, prop-
erly accounts for the loss of degrees of freedom when
estimating the parameters, and allows for spatial vari-
ability in the error variance. This obviates the need for
temporal smoothing, a consequence particularly impor-
tant for event-related designs, in which appreciable signal
can exist at high frequencies.

It should be noted that if the temporal autocorrela-
tion varies over voxels (Zarahn et al., 1997) pooling may
not be appropriate. For example, serial correlations are
thought be higher in grey than white matter (Woolrich
et al., 2001). This can be accommodated by estimating
voxel-specific hyperparameters with some spatial regu-
larization (Worsley et al., 2002). However, this means that
different voxels can have different effective degrees of
freedom, which complicates the application of random
field theory (Chapter 17). The solution we prefer is to
pool over a homogeneous subset of voxels that are likely
to show the same serial correlations (e.g. all those that
respond to the paradigm).

NON-LINEAR CONVOLUTION MODELS

The convolution model assumed thus far has been based
on a linear approximation, for which there is counter-
evidence, e.g. for events close together in time (see
above). To allow non-linearities, a generalized convolu-
tion model can be used. This is based on the Volterra
expansion (Friston et al., 1998a; Josephs and Henson,
1999), which can be thought of as a generalization of the
Taylor series approximation to dynamic systems and has
the form:

y�t� = h0 +
�∫

−�
h1�	1� ·u�t −	1� ·d	1

+
�∫

−�

�∫
−�

h2�	1� 	2� ·u�t −	1� ·u�t −	2� ·d	1d	2 +   

14.19

(with only terms up to second order shown here), where
hn is the n-th order Volterra kernel. This expansion can
model any analytic time-invariant system, and is often

used where the state equations (e.g. biophysical model)
determining that system are unknown. In the present
context, we assume we have a ‘causal’ system with finite
memory (i.e. the integrals run from 0 to T ) and that a
second-order approximation is sufficient.

Basis functions and generalized HRFs

Again, temporal basis functions can be used to model the
Volterra kernels:

h0 = f0

h�	1� =
K∑

k=1

��1�
k fk�	1� 14.20

h�	1� 	2� =
K∑

k=1

K∑
l=1

��2�
kl fk�	1�fl�	2�

This allows us to express (linearize) the Volterra expan-
sion within the GLM, with each basis function coeffi-
cient associated with a column of the design matrix.
The regressors for the first-order coefficients ��1�

k are sim-
ply the input convolved with each basis function in the
usual way. The second-order coefficients ��2�

kl have regres-
sors that are the [Hadamard] products of the first-order
regressors. Friston et al. (1998a) used three gamma func-
tions, leading to three columns for the first-order kernel
plus a further nine columns for the second-order kernel
(to model quadratic non-linearities). Using fMRI data
from an experiment in which words were presented at
different rates, F -tests on the non-linear partition showed
reliable effects in bilateral superior temporal regions. The
estimated first and second-order kernels are shown in
Figure 14.3(a). The first-order kernel (a linear combina-
tion of the three gamma functions) closely resembles
the canonical HRF. The second-order kernel shows evi-
dence of under-additivity (e.g. saturation) at short SOAs
below 5 s (the dark region in the lower left), consistent
with other studies (see above). Interestingly, evidence of
super-additivity was also found for SOAs of approxi-
mately 8 s (the light regions between 5 and 10 s; the kernel
is necessarily symmetric).

Using these first- and second-order kernels, the
response to any temporal pattern of word presentations
can be simulated. Using only the first-order kernel (i.e.
a linear convolution model), the response to two words
presented one second apart is simply the sum of the
BOLD responses to each word alone (Figure 14.3(b), top
panel). However, adding the second-order kernel shows
the expected effect of saturation, whereby the response to
the pair of events is less than the sum of their responses
when presented alone (Figure 14.3(b), bottom panel). In
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FIGURE 14.3 Volterra kernels. (a) shows the first-order (upper) and second-order (lower) Volterra kernels from superior temporal cortex
in an experiment in which auditory words were presented at different rates (see Friston et al., 1998a for more details). The second-order kernel
shows non-linearities, resulting in both underadditivity (dark regions) and superadditivity (light regions). (b) shows the response predicted
for two stimuli 1 s apart when using a linear convolution model – i.e. the first-order kernel only (upper) – and when adding the second-order
kernel from (a), resulting in a predicted saturation of the response relative to the linear case.

principle, this saturation could be caused by neuronal fac-
tors, blood-flow factors or even blood-oxygenation fac-
tors. However, the fact that a PET experiment, using
the same paradigm, showed that blood-flow increased
linearly with word presentation rate suggests that the
dominant source of saturation in these fMRI data arose
in the mapping between perfusion and BOLD signal.
Indeed, using a detailed biophysical, ‘balloon’ model
of the BOLD response, Friston et al. (2000a) proposed
that the reason the second stimulus is compromised,
in terms of elaborating a BOLD signal, is because of
the venous pooling, and consequent dilution of deoxy-
haemoglobin, incurred by the first stimulus. This means

that less deoxyhaemoglobin can be cleared for a given
increase in flow. The second type of non-linearity – the
superadditivity for events presented approximately 8 s
apart – was attributed to the fact that, during the flow
undershoot following a first stimulus, deoxyhaemoglobin
concentration is greater than normal, thereby facilitat-
ing clearance of deoxyhaemoglobin following a second
stimulus.

Although these non-linearities may be specific to this
particular paradigm and auditory cortex, they do sug-
gest caution in using event-related designs with very
short SOAs. The saturation in particular provides impor-
tant (and intuitive) limits on the statistical efficiency
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of event-related designs as a function of SOA (see
next chapter). Even if the significant non-linearities are
small enough that SOAs below 5 s (but above 1 s) are
still more efficient from the statistical perspective, one
could consider adding a second-order Volterra kernel
(linearized via a number of basis functions) in order
to capture systematic, event-related variability in the
residuals.

A WORKED EXAMPLE

In this section, the concepts of this chapter are illus-
trated in a single-session event-related fMRI dataset
from one of the 12 subjects reported in Henson
et al. (2002b), and freely available from the SPM
website http://www.fil.ion.ucl.ac.uk/spm/data. Events
comprised 500 ms presentations of faces, to which the
subject made a famous/non-famous decision with the
index and middle fingers of their right hand. One half of
the faces were famous, one half were novel (unfamiliar),
and each face was presented twice during the session.
This corresponds to a 2 × 2 factorial design consisting
of first and second presentations of novel and famous
faces (conditions N1, N2, F1 and F2 respectively, each
containing J = 26 events). To these 104 events, 52 null
events were added and the whole sequence permuted.
This meant that the order of novel/famous faces was
pseudo-randomized (given the finite sequence), though
the order of first and second presentations, while inter-
mixed, was constrained by the fact that second presen-
tations were necessarily later than first presentations on
average. The minimum SOA �SOAmin� was 4.5 s, but var-
ied near-exponentially over multiples of SOAmin due to
the null events (see next chapter). The time series com-
prised 351 images acquired continuously with a TR of 2 s.
The images were realigned spatially, slice-time corrected
to the middle slice, normalized with a bilinear inter-
polation to 3 × 3 × 3 mm voxels and smoothed with an
isotropic Gaussian FWHM of 8 mm. The ratio of SOAmin

to TR ensured an effective peristimulus sampling rate
of 2 Hz.

Events were modelled with K = 3 basis functions con-
sisting of the canonical HRF, its temporal derivative and
its dispersion derivative. The resolution of the simu-
lated BOLD signal was set to 83 ms �N = 24� and the
event onsets synchronized with the middle slice �T0 =
12�. Six user-specified regressors, derived from the rigid-
body realignment parameters (3 translations and 3 rota-
tions) were included to model residual (linear) movement

effects.7 A highpass filter with cut-off period of 120 s was
applied to both model and data, with an AR(1) model for
temporal autocorrelations. No global scaling was used.
Two different models are considered below: a ‘categori-
cal’ one and a ‘parametric’ one. In the categorical model,
each event-type is modelled separately. In the parametric
model, a single event-type representing all face-trials is
modulated by their familiarity and the ‘lag’ since their
last presentation.

Categorical model

The design matrix for the categorical model is shown in
Figure 14.4(a). A (modified) effects-of-interest F -contrast,
corresponding to a reduced F -test on the first 12 columns
of the design matrix (i.e. removing linear movement
effects), is shown in Figure 14.4(b) and the resulting
SPM�F� in Figure 14.4(c). Several regions, most notably
in bilateral posterior inferior temporal, lateral occipi-
tal, left motor and right prefrontal cortices, show some
form of significant response to the events (versus base-
line) at p < 0�05, corrected for whole brain. Note that
these responses could be activations (positive amplitude)
or deactivations (negative amplitude), and may differ
across the event-types. A t-contrast like that inset in
Figure 14.4(b) would test a more constrained hypoth-
esis, namely that the response is positive when aver-
aged across all event-types, and is a more powerful test
for such responses (producing more suprathreshold vox-
els in this dataset). Also inset in Figure 14.4(c) is the
SPM�F� from an F -contrast on the realignment parame-
ters, in which movement effects can be seen at the edge
of the brain.

The parameter estimates (plotting the modified
effects-of-interest contrast) and best-fitting event-related
responses for a right fusiform voxel (close to what
has been called the ‘Fusiform Face Area’, Kanwisher
et al., 1997) are shown in Plate 13(a) and 13(b). First
presentations of famous faces produced the greatest
response (green fitted response). Furthermore, responses
in this region appear to be slightly earlier and narrower
than the canonical response (indicated by the positive

7 One might also include the temporal derivatives of the realign-
ment parameters, and higher-order interactions between them,
in a Volterra approximation to residual movement effects
(regardless of their cause). Note also that the (rare) events, for
which the fame decision was erroneous, could be modelled
as a separate event-type (since they may involve physiological
changes that are not typical of face recognition). This was per-
formed in the demonstration on the website, but is ignored here
for simplicity.
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(a)

(b)

(c)

SPM{F }

SPM{F }

FIGURE 14.4 Categorical model: effects of interest. (a) Design matrix. (b) F -contrast for effects of interest (inset is t-contrast that tests for
positive mean parameter estimate for canonical HRF). (c) SPM�F� MIP for effects of interest F -contrast, thresholded at p < 0�05 whole-brain
corrected, together with SPM tabulated output (inset is SPM�F� for contrast on movement parameters, also at p < 0�05 corrected).

parameter estimates for the temporal and dispersion
derivatives).

There are three obvious further effects of interest: the
main effects of familiarity and repetition, and their inter-
action. The results from an F -contrast for the repetition
effect are shown in Plate 13(c), after inclusive masking
with the effects-of-interest F -contrast in Figure 14.4(c).
This mask restricts analysis to regions that are gener-
ally responsive to faces (without needing a separate face-
localizer scan, cf. Kanwisher et al., 1997), and could be
used for a small-volume correction (see Chapter 17). Note
that this masking is facilitated by the inclusion of null
events (otherwise the main effect of faces versus baseline
could not be estimated efficiently, see Chapter 15). The
contrast of parameter estimates and fitted responses for
the single right posterior occipitotemporal region identi-
fied by the repetition contrast are shown in Plate 13(d).

Differential effects were seen on all three basis functions,
and represent decreased responses to repeated faces.8

Plate 14(a) shows the design matrix using a more gen-
eral FIR basis set of K = 16� 2 s time bins. The effects-
of-interest contrast (see Plate 14(b)) reveals a subset of
the regions identified with the canonical basis set (cf.
Plate 14(c) and Figure 14.4(c)). The absence of additional
suprathreshold voxels when using the FIR model is likely
to reflect the reduced statistical power for this F -test to
detect BOLD responses with a canonical form (and the

8 Note that this difference in the temporal derivative parameter
estimates does not imply a difference in latency, given the con-
current difference in canonical parameter estimates: i.e. larger
canonical responses require larger temporal derivatives to shift
them in time (Henson et al., 2002a); as mentioned previously, it
is the ratio of the two parameter estimates that estimates latency.
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SPM{F }

(a) (c)

(b)

0

100

200

300
(d)

FIGURE 14.5 Parametric model (a) Design matrix, columns ordered by basis function – canonical HRF, temporal derivative, dispersion
derivative – and within each basis function by parametric effect – main effect, lag, familiarity, lag-x-familiarity. (b) F -contrasts for main
effect (top) and lag effect (bottom). (c) SPM�F� MIP for lag effect, together with SPM tabulated output, thresholded at p < 0�005 uncorrected,
after inclusive masking with main effect at p < 0�05 corrected. (d) Parametric plot of fitted response from right occipitotemporal region
�+45�−60�−15�, close to that in Plate 14(c), in terms of percentage signal change versus PST and lag (infinite lag values for first presentations
not shown).

likely absence of non-canonical responses). Plate 14(d)
shows the parameter estimates from a right fusiform
voxel for each of the event-types (concatenated), which
clearly demonstrate canonical-like impulse responses in
all four cases. No right occipitotemporal region was iden-
tified by an F -contrast testing for the repetition effect
(inset in Plate 14(c)) when using the FIR basis set. This
reflects the reduced power of this unconstrained contrast.
Note that assumptions about the shape of the HRF can be
imposed via appropriate contrasts within this FIR model,
as illustrated by the t-contrast inset in Plate 14(b), which
corresponds to a canonical HRF.

Parametric model

In this model, a single event-type was defined (collaps-
ing the onsets for the four event-types above), which

was modulated by three parametric modulations. The
first modelled how the response varied according to
the recency with which a face had been seen. This was
achieved by an exponential parametric modulation of the
form:

�j = exp�−Lj/50� 14.21

where Lj is the ‘lag’ for the j-th face presentation, defined
as the number of stimuli between that presentation and
the previous presentation of that face. The choice of
an exponential function (rather than, say, a polyno-
mial expansion) was based simply on the observation
that many biological processes have exponential time-
dependency, and the half-life of the function (50 scans)
was somewhat arbitrary (ideally it would be derived
empirically from separate data). Thus, as lag increases,
the modulation decreases. For first presentations of faces,
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Lj = � and the modulation is zero (i.e. there is no possible
adaptation or repetition suppression).

The second parametric modulation had a binary value
of 1 or −1, indicating whether the face was famous or
novel; the third modulation was the interaction between
face familiarity and lag (i.e. the product of the first and
second modulations, after mean-correction). Each mod-
ulation was applied to the three temporal basis func-
tions, producing the design matrix in Figure 14.5(a). The
F -contrast for the main effect of faces versus baseline
(upper contrast in Figure 14.5(b)) identified regions sim-
ilar to those identified by the effects-of-interest contrast
in the categorical model above (since the models span
similar spaces). As expected, the F -contrast for the lag
effect (lower contrast in Figure 14.5(b)), after masking
with the main effect, revealed the same right occipi-
totemporal region (Figure 14.5(c)) that showed a main
effect of repetition in the categorical model. The best-
fitting event-related parametric response in Figure 14.5(d)
shows that the response increases with lag, suggesting
that the repetition-related decrease observed in the cate-
gorical model may be transient.

These examples illustrate the use of basis functions
and the convolution model for detecting non-stationary
(adapting) haemodynamic responses of unknown form in
the brain. The experimental design in this instance was as
efficient as possible, under the psychological constraints
imposed by our question. In the next chapter, we use the
basic principles behind the convolution model to look at
the design of efficient experiments.
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Efficient Experimental Design for fMRI
R. Henson

INTRODUCTION

This chapter begins with an overview of the various
types of experimental design, before proceeding to vari-
ous modelling choices, such as the use of events versus
epochs. It then covers some practical issues concerning
the effective temporal sampling of blood oxygenation-
level-dependent (BOLD) responses and the problem of
different slice acquisition times. The final and main
part of the chapter concerns the statistical efficiency of
functional magnetic resonance imaging (fMRI) designs,
as a function of stimulus onset asynchrony (SOA) and
the ordering of different stimulus-types. These consider-
ations allow researchers to optimize the efficiency of their
fMRI designs.

TAXONOMY OF EXPERIMENTAL
DESIGN

Most experiments involve the manipulation of a number
of factors over a number of levels. For example, a factor
of spatial attention might have two levels of left versus
right covert attention (relative to fixation), while a second
factor might be whether a stimulus is presented to the
left or right visual hemi-field. Orthogonal manipulation
of these two factors corresponds to a ‘2 × 2’ ‘factorial’
design, in which each factor-level combination consti-
tutes an experimental condition (i.e. four conditions in
this case; see Chapter 13). Factors with a discrete number
of levels, as in the above example, are often called ‘cat-
egorical’. Other factors may have continuous values (the
duration of the stimulus for example), and may have as
many ‘levels’ as there are values. Such factors are called
‘parametric’. Below, we discuss briefly different designs
in the context of the general linear model (GLM) and
some of the assumptions they entail.

Single-factor subtraction designs and ‘pure
insertion’

The easiest way to illustrate different types of design
is with examples. Plate 15(a) (see colour plate section)
shows an example design matrix with 12 conditions and
5 sessions (e.g. 5 subjects). The data could come from a
positron emission tomography (PET) experiment or from
a second-level analysis of contrast images from an fMRI
experiment. We use this example to illustrate a number
of designs and contrasts below. Initially, we will assume
that there was only one factor of interest, with two levels
(that happened to occur six times in alternation). These
might be reading a visually presented cue word (‘Read’
condition) and generating a semantic associate of the cue
(‘Generate’ condition). If one were interested in the brain
regions involved in semantic association, then one might
subtract the Read condition from the Generate condi-
tion, as shown by the t-contrast in Plate 15(a). The logic
behind this subtraction is that brain regions involved in
processes common to both conditions (such as visual pro-
cessing of the cue word) will be equally active in both
conditions, and therefore not appear in the resulting sta-
tistical parametric maps (SPM). In other words, the con-
trast should reveal activations related to those processes
unique to generating semantic associations, relative to
reading words.

A criticism often levelled at such ‘cognitive subtra-
ctions’ is that the conditions may differ in ways other than
those assumed by the specific cognitive theory under
investigation. For example, the Generate and Read con-
ditions might differ in phonological processes, as well as
semantic processes (i.e. the subtraction is ‘confounded’).
The assumption that tasks can be elaborated so that they
call upon a single extra process is called the ‘pure inser-
tion’ assumption, and has been the source of much debate
in neuroimaging (Friston et al., 1996). In fact, the debate
goes back to the early days of experimental psychol-
ogy, e.g. the ‘Donders’ method of subtraction and its
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subsequent refinements (Sternberg, 1969). In short, the
concerns about the pure insertion assumption are not
unique to neuroimaging (Henson, 2005). Below we will
consider some ways to ameliorate such concerns.

Cognitive conjunctions

One way to minimize the probability that interpret-
ation of activation is confounded is to isolate the pro-
cess of interest using multiple different subtractions. The
probability of each subtraction being confounded by the
same (uninteresting) differences is thus reduced. In other
words, one only considers activation that is common to
all subtractions: a method called ‘cognitive conjunction’
(Price and Friston, 1997). For example, consider an exper-
iment with four conditions (Plate 16): passively viewing
a colour-field (Viewing Colour), naming the colour of
that field (Naming Colour), passively viewing an object
(Viewing Object), and naming an object (Naming Object).
One might try to isolate the neuronal correlates of visual
object recognition by performing a conjunction of the
two subtractions: (1) Object versus Colour Viewing and
(2) Object versus Colour Naming. Both subtractions share
a difference in the stimulus (the presence or absence of an
object), but differ in the nature of the tasks (or ‘contexts’).
Thus a potential confound, such as number of possible
names, which might confound the second subtraction,
would not necessarily apply to the first subtraction, and
thus would not apply to the conjunction as a whole.

The precise (statistical) definition of a conjunction has
changed with the history of SPM, and different defi-
nitions may be appropriate for different contexts (the
details are beyond the present remit, but for further dis-
cussion, see Friston et al., 2005; Nichols et al., 2005). In the
present context of ‘cognitive’ conjunctions, a sufficient
definition is that a region survives a statistical thresh-
old in all component subtractions (‘inclusive’ masking),
with the possible further constraint of no interaction
between the subtractions (‘exclusive’ masking). A poste-
rior temporal region shows this type of pattern in Plate 16
(upper panel) and might be associated with implicit
object recognition.

A single parametric factor

To illustrate a parametric factor, let us return to the
Generate and Read experiment in Plate 15. One might be
interested whether there is any effect of time during the
experiment (e.g. activation may decrease over the experi-
ment as subjects acquire more practice). In this case, a
time factor can be modelled with 12 discrete levels, over
which the effects of time could be expressed in a number

of different ways. For example, time may have a linear
effect, or it may have a greater effect towards the start
than towards the end of the experiment (e.g. an exp-
onential effect). The t-contrast, testing the former linear
effect – more specifically, for regions showing a decrease
in activation over time – is shown in Plate 15(b) (in fact,
the plot of activity in the highlighted region suggests an
exponential decrease, but with a sufficiently linear comp-
onent that it is identified with the linear contrast).

When the precise function relating a parametric exper-
imental factor to neuronal activity is unknown, one
option is to express the function in terms of a polynomial
expansion, i.e.:

f�x� = �0 +�1x+�2x
2 +· · · 15.1

where �i are the parameters to be estimated. For N levels
of a factor, the expansion is complete when the terms
run from 0th-order up to order N − 1. In the latter case,
the corresponding design matrix is simply a rotation of
a design matrix where each level is modelled as a sep-
arate column. An example design matrix for an expan-
sion up to second-order, over 12 images, is shown in
Plate 17(a) (e.g. for a single subject in Plate 15): the first
column models linear effects, the second column models
quadratic effects, and the third column models the 0th-
order (constant) effect. An F -contrast on the second col-
umn identifies a region that shows an inverted-U shape
when activity is plotted as a function of the 12 levels
of the factor. If this factor were rate of word genera-
tion, for example, one might conclude that activity in this
region increases as the word rate increases to a certain
level, but then decreases if that (optimal) level is sur-
passed. Parametric modulations that have only one level
per value (i.e. are modelled as continuous rather than
discrete values) can be modelled by a ‘parametric modu-
lation’ in SPM. An example of a parametric modulation
of event-related responses is shown in Chapter 14.

Factorial designs

Many experiments manipulate more than one factor con-
currently. When each condition is associated with one
level of every factor, it is called a ‘factorial’ design. These
are common in experimental sciences because they allow
tests of not only differences between the levels of each
factor, collapsing over other factors (‘main effects’), but
also how the effect of one factor depends on the level
of another factor (‘interactions’). Let us return to the
object–colour experiment in Plate 16. This experiment
can be conceived as a ‘2 × 2’ design, where one fac-
tor, Task, has two levels (viewing versus naming) and
the other, Stimulus, also has two levels (colour-field or
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object). This ‘2-way’ design, therefore, offers tests of two
main effects and one interaction (see Chapter 13 for a
generalization to ‘M-way’ factorial designs). The compo-
nent subtractions considered for the cognitive conjunc-
tion above are sometimes called the ‘simple effects’. The
interaction in this design would test where the differ-
ence between objects and colour-fields varies between
a naming task and a viewing task. If these conditions
were ordered: Viewing Object, Viewing Colour, Naming
Object, Naming Colour (i.e. with the Task factor ‘rotat-
ing’ slowest), then the interaction would have contrast
weights�1 −1 −1 1�. This can be conceived as the differ-
ence of two differences, i.e. difference of the two simple
effects, i.e. �1 −1 0 0�− �0 0 1 −1�, or as the ‘product’ of
two differences, i.e. �1 − 1� ⊗ �1 − 1�, where ⊗ is the
Kronecker product.

When testing one tail of the interaction (i.e. with a t-
rather than F -contrast), namely where objects produce
greater activation relative to colour-fields when named,
rather than when viewed, a region was found in tem-
poral cortex (see Plate 16 – lower SPM), anterior to that
in the conjunction (upper SPM). Given that the region
showed little difference between objects and colour-fields
under passive viewing (i.e. this simple effect was not
significant), the pattern in Plate 16 might be termed
‘naming-specific object-recognition’. Note also that, if one
attempted to isolate visual object-recognition using only
a naming task, this interaction could be used as evidence
of a failure of pure insertion, i.e. that naming an object in
the visual field involves more than simply visual recog-
nition (Price and Friston, 1997).

An example of an interaction involving a paramet-
ric factor is shown in Plate 17(b). This contrast tests for
a linear time-by-condition interaction in the Generate-
Read experiment (when conceived as a 2 × 6 factorial
design). Again, the contrast weights can be viewed as
the Kronecker product of the Generate versus Read effect
and the linear time effect, i.e. �1 −1�⊗ �5 3 1 −1 −3 −5�.
This t-contrast asks where in the brain the process of
semantic association decreases (linearly) over time (as
might happen, for example, if subjects showed stronger
practice effects on the generation task than the read task).

A final example of an interaction is shown in
Figure 15.1. In this case, the effects Task (Generate versus
Read), Time, and their interactions have been expressed
in the design matrix (for a single subject), rather than
in the contrast weights (cf. Plate 17(a)). This illustrates
the general point that one can always re-represent con-
trasts by rotating both the design matrix and the contrast
weights (see Chapter 13 for further discussion). More
precisely, the columns of the design matrix in Figure 15.1
model (from left to right): effect of Task, linear then
quadratic effects of Time, linear then quadratic inter-
action effects, and the constant. The F -contrast shown,

G-R Time Time G × R G × R
LinLin QuadQuad

F-contrast

FIGURE 15.1 A single-subject design matrix and F -contrast
showing non-linear (linear + quadratic) interactions in a 2×6 facto-
rial design.

which picks out the fourth and fifth columns, would
test for any type of time-by-condition interaction up to
second order. Note that another common example of an
interaction between a categorical factor and a paramet-
ric factor arises in psychophysiological interactions (PPIs;
Chapter 38): in these cases, the psychological factor is
often categorical (e.g. attended versus unattended) and
the physiological factor is invariably parametric, since it
reflects the continuous signal sampled by each scan from
the source region of interest.

EVENT-RELATED fMRI, AND
RANDOMIZED VERSUS BLOCKED

DESIGNS

Event-related fMRI is simply the use of fMRI to
detect responses to individual trials, in a manner
analogous to the time-locked event-related potentials
(ERPs) recorded with electroencephalography (EEG). The
neuronal activity associated with each trial is normally
(though not necessarily) modelled as a delta function –
an ‘event’ – at the trial onset.

Historically, the advent of event-related methods (Dale
and Buckner, 1997; Josephs et al., 1997; Zarahn et al., 1997),
based on linear convolution models (see Chapter 14),
offered several advantages. Foremost was the ability
to intermix trials of different types (so-called random-
ized designs), rather than blocking them in the manner
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required for PET and initially adopted for fMRI (so-called
blocked designs). The counterbalancing or randomizing
of different trial-types, as is standard in behavioural
or electrophysiological studies, ensures that the average
response to a trial-type is not biased by a specific con-
text or history of preceding trial-types. This is important
because the blocking of trial-types might, for example,
induce differences in the cognitive ‘set’ or strategies
adopted by subjects. Johnson et al. (1997) for example,
provided direct evidence that the presentation format –
randomized or blocked – can affect the ERP associated
with a trial-based memory effect.

Note that there are also disadvantages associated
with randomized designs. Foremost, such designs are
generally less efficient for detecting effects than are
blocked designs (with short SOAs and reasonable block
lengths; see below). In addition, some psychological
manipulations, such as changes in selective attention or
task, may be more appropriate when blocked.

Other advantages of event-related methods include:

1 the post hoc categorization of trial-types according to
the subject’s behaviour (e.g. Henson et al., 1999b), or
post hoc parametric modulation of neuronal activity by
reaction time (RT) for each trial

2 modelling events whose occurrence is beyond exper-
imental control, such as those that can only be indicated
by the subject (e.g. perceptual transitions in the fac-
evase illusion, Kleinschmidt et al., 1998)

3 the use of ‘oddball’ designs, in which the stimulus of
interest is one that deviates from the prevailing context,
and which therefore cannot be blocked (e.g. Strange
et al., 2000).

Epochs versus events and state- versus
item-effects

It is important to distinguish between the experimental
design (randomized versus blocked) and the neuronal
model (events versus epochs). For example, a blocked
design can be modelled as a series of events. Indeed,
modelling the BOLD response to each stimulus within a
block may capture variability that is not captured by a
simple ‘epoch’ (or boxcar) model, particularly for SOAs
of more than a few seconds, which will lead to small fluc-
tuations of the BOLD response around the mean ‘block’
response (Price et al., 1999; Mechelli et al., 2003a; see, e.g.
Figure 15.2 bottom left).

In SPM, the choice of events versus epochs can also
have important conceptual consequences. Consider, for
example, an experiment with two blocks of words pres-
ented at different rates (once every 4 s versus once
every 2 s). The data may be such that mean activity dur-
ing the block of words presented at the fast rate may

Rate = 1/4s Rate = 1/2s

Epoch
model

Event
model

β = 3 β = 5

β = 9β = 11ˆ

ˆˆ

ˆ

FIGURE 15.2 Effects of modelling the same data with events
or epochs.

be greater, but not twice as great, as that for the slow
rate. When modelling both conditions as epochs (upper
panels of Figure 15.2), the parameter estimates for the two
rates may be, for example, 3 and 5 respectively. If ind-
ividual words were modelled as events, however (lower
panels of Figure 15.2), the relative size of the parameter
estimates could be reversed, e.g. 11 and 9 respectively.
This is simply because the parameter estimates have dif-
ferent interpretations for the two types of model: in the
epoch model, they reflect the response per block, whereas
in the event model, they reflect the response per word.
Since there are twice as many words in the fast- relative
to slow-rate blocks, and yet the mean block activity is
not double, the response per word must be less (i.e. a
non-linear saturation as a function of word rate).

Another situation where this issue arises concerns trials
of different duration. If all trials are of the same dura-
tion (and that duration is below ∼ 2 s), then they can be
modelled effectively as events because, after convolution
with the haemodynamic response function (HRF), a dif-
ference in the duration of a trial causes a difference in
the scaling of the predicted response, but has little effect
on its shape (see Chapter 14). Since it is the scaling of the
predicted response that is estimated in the GLM, chang-
ing the duration of all trials (from approx. 0 to 2 s) simply
changes the size of the resulting parameter estimates,
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but has no effect on statistics.1 For longer duration trials,
the response begins to plateau, meaning that an ‘epoch
model’ can be a better model. More important, however,
is the case of trials that vary in duration from trial to trial
within a condition, or across conditions. Whether these
are better modelled as events, or as epochs of different
durations (e.g. with duration equal to the RT for each
trial), is debatable. For example, if the stimulus duration
were constant and only RTs varied, then the activity in
V1 may not be expected to vary with RT, so an event
model might fit better (and in this case, the parameter
estimate can be interpreted as the response per trial). For
activity in premotor cortex on the other hand, greater
activity might be expected for trials with longer RTs, so
a ‘varying-duration’ epoch model might fit better (and
in this case, the parameter estimate can be interpreted
as the response per unit time). So the choice of model
depends on the assumptions about the duration of neu-
ronal activity in the particular region of interest. If this
is unknown, trials whose durations vary over a few sec-
onds (as with typical RTs) are probably best modelled
with two regressors: one modelling events, and a second
modelling a parametric modulation of the response, by
the RT on each trial.

Finally, note that one can combine both events and
epochs within the same model. A common example of
this is when trying to distinguish between sustained
(‘state’) effects and transient (‘item’) effects. Chawla et al.
(1999), for example, investigated the interaction between
selective attention (a state-effect) and transient stimu-
lus changes (an item-effect) in such a ‘mixed epoch-
event’ design. Subjects viewed a visual stimulus that
occasionally changed in either colour or motion. In some
blocks, they detected the colour changes, in other blocks
they detected the motion changes. By varying the inter-
val between changes within a block, Chawla et al. were
able to reduce the correlation between the correspond-
ing epoch- and event-related regressors (which increases
the statistical efficiency to detect either effect alone;
see below). Tests of the epoch-related effect showed
that attending to a specific visual attribute (e.g. colour)
increased the baseline activity in regions selective for
that attribute (e.g. V4). Tests of the event-related effect
showed that the impulse response to the same change
in visual attribute was augmented when subjects were

1 This is despite the fact that the ‘efficiency’, as calculated by
Eqn. 15.3, increases with greater scaling of the regressors. This
increase is correct, in the sense that a larger signal will be easier
to detect in the presence of the same noise, but misleading in
the sense that it is the size of the signal that we are estimating
with our model (i.e. the data are unaffected by how we model
the trials).

attending to it (Plate 18). These combined effects of selec-
tive attention – raising endogenous baseline activity and
increasing the gain of the exogenous response – could
not be distinguished in a blocked or fully randomized
design.

Timing issues

There are two practical issues concerning the timing
within randomized designs (which also apply to blocked
designs, but to a lesser extent): the effective sampling
rate of the BOLD response, and the different acquisition
times for different slices within a scan (i.e. volume) when
using echo-planar imaging (EPI).

It is possible to sample the impulse response at post-
stimulus intervals, TS , shorter than the inter-scan interval,
TR, by dephasing event onsets with respect to scan onsets
(Josephs et al., 1997). This uncoupling can be effected
by ensuring the SOA is not a simple multiple of the
TR, or by adding a random trial-by-trial delay in stim-
ulus onsets relative to scan onsets (Figure 15.3). In both
cases, responses at different peristimulus times (PST) are
sampled over trials. The main difference between the
two methods is simply whether the SOA is fixed or ran-
dom, i.e. whether or not the stimulus onset is predictable.
For example, an effective PST sampling of 0.5 Hz can
be achieved with an SOA of 6 s and a TR of 4 s; or by
adding a delay of 0 or 2 s randomly to each trial (pro-
ducing SOAs of 4–8 s, with a mean of 6 s). While effec-
tive sampling rates higher than the TR do not necessarily
improve response detection (since there is little power
in the canonical response above 0.2 Hz), higher sam-
pling rates are important for quantifying the response
shape, such as its latency (Miezin et al., 2000; Henson and
Rugg, 2001).

Dephasing event onsets with respect to scan onsets
does not help the second practical issue concerning
different slice acquisition times. This ‘slice-timing’ prob-
lem (Henson et al., 1999a) refers to the fact that, with a
descending EPI sequence for example, the bottom slice
is acquired TR seconds later than the top slice. If a sin-
gle basis function (such as a canonical HRF) were used
to model the response, and onset times were specified
relative to the start of each scan, the data in the bot-
tom slice would be systematically delayed by TR seconds
relative to the model.2 This would produce poor (and
biased) parameter estimates for later slices, and mean

2 One solution would be to allow different event onsets for dif-
ferent slices. However, slice-timing information is usually lost
as soon as images are re-sliced relative to a different orientation
(e.g. during spatial normalization).
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FIGURE 15.3 Effective sampling rate.
Schematic (left) of event onsets relative to
scan onsets (tall vertical lines represent first
slice per scan; shorter lines represent sub-
sequent slices) and resulting peristimulus
sampling points (right).
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that different sensitivities would apply to different slices
(Figure 15.4(a)). There are two main solutions to this
problem: to interpolate the data during pre-processing
to make it seem as if the slices were acquired simulta-
neously; or use a temporal basis set that allows different
response onset latencies.

Temporal interpolation of the data (using a full
Fourier interpolation) is possible during pre-processing

of images in SPM. One question that often arises is
whether such temporal realignment should be performed
before or after spatial realignment, given that move-
ment often occurs. The answer depends on the order
that slices are acquired within each scan. For sequential
(contiguous) slice-acquisition, temporal interpolation is
probably better performed after spatial realignment. This
is because nearby voxels in space are sampled close in

FIGURE 15.4 The slice-timing problem (from
Henson et al., 1999a) for a TR of 3 s. (a) SPM�t� for a
[1] contrast on a canonical HRF synchronized with
the top slice (left) or synchronized with the bot-
tom slice (right). Note increased sensitivity to visual
regions in the latter case, but reduced sensitivity to
motor regions. (b) SPM�t� when the model is syn-
chronized with the top slice, but the data have been
interpolated as if all slices were acquired at the time
of the top slice. Note sensitivity recovered in both
motor and visual regions. (c) SPM�F� for the canoni-
cal HRF and its temporal derivative. Note sensitivity
again recovered in both motor and visual regions.

DerivativeInterpolated

Bottom sliceTop slice

TR = 3s

(b) (c)

(a)
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time. Therefore, the temporal error for a voxel whose
signal comes from different acquisition slices, due to
re-slicing after correction for movement across scans, will
be small (given that movement is rarely more than a
few ‘slices-worth’). The alternative, of performing tem-
poral realignment before spatial realignment could cause
greater error, particularly for voxels close to boundaries
with large signal differences (e.g. the edge of the cortex):
in such cases, rapid movement may cause the same voxel
to sample quite different signal intensities across succes-
sive scans. Such high-frequency changes are difficult to
interpolate (temporally in this case). The order of pre-
processing is not so clear for interleaved slice-acquisition
schemes, in which adjacent slices can be sampled 1

2 TR

seconds apart. In this case, and when there is no rapid
movement, it may be better to perform temporal realign-
ment before spatial realignment.

During slice-time correction, the data are interpolated
by an amount proportional to their sampling time rela-
tive to a reference slice (whose data are unchanged). The
event onsets can then be synchronized with the acqui-
sition of that reference slice. In SPM, this is equivalent
to maintaining event onsets relative to scan onsets, but
setting the time-point T0 in the simulated time-space of
N time bins, from which the regressors are sampled
(see Chapter 14), to T0 = round�nN

/
S� where the refer-

ence slice is the nth slice acquired of the S slices per
scan. This can ameliorate the slice-timing problem, if one
wishes to use a single assumed response form (e.g. canon-
ical HRF; see Figure 15.4(b)). A problem with slice-timing
correction is that the interpolation will alias frequencies
above the Nyquist limit 1

/
�2TR�. Ironically, this means

that the interpolation accuracy decreases as the slice-
timing problem (i.e. TR) increases. For short TR < 2–3 s,
the interpolation error is likely to be small. For longer
TR, the severity of the interpolation error may depend
on whether appreciable signal power exists above the
Nyquist limit (which is more likely for rapid, randomized
event-related designs).

An alternative solution to the slice-timing problem
is to include additional temporal basis functions (see
Chapter 14) to accommodate the timing errors within
the GLM. The Fourier basis set, for example, does not
have a slice-timing problem (i.e. it is phase-invariant).
For more constrained sets, the addition of the temporal
derivative of the response functions may be sufficient (see
Figure 15.4(c)). The parameter estimates for the deriva-
tives will vary across slices, to capture shifts in the data
relative to the model, while those for the response func-
tions can remain constant (up to a first-order Taylor
approximation; Chapter 14). The temporal derivative of
the canonical HRF, for example, can accommodate slice-
timing differences of approximately plus or minus a sec-
ond, or a TR up to 2 s (when the model is synchronized

to the middle slice in time). A potential problem with
this approach occurs when the true impulse responses
are also shifted in time relative to the assumed response
functions: the combined latency shift may exceed the
range afforded by the temporal derivatives.

EFFICIENCY AND OPTIMIZATION OF
fMRI DESIGNS

This section is concerned with optimizing experimen-
tal fMRI designs for a specific contrast of inter-
est. The properties of the BOLD signal measured by
fMRI – particularly the ‘sluggish’ nature of the impulse
response and the presence of low-frequency noise – can
make the design of efficient experiments difficult to
intuit. This section therefore starts with some general
advice, before explaining the reasons for this advice from
the perspectives of:

1 signal-processing
2 statistical ‘efficiency’
3 correlations among regressors.

General points

Scan for as long as possible

This advice is of course conditional on the subject being
able to perform the task satisfactorily in a sustained fash-
ion. Longer is better because the power of a statistical
inference depends primarily on the degrees of freedom
(df), and the df depend on the number of scans. One might
therefore think that reducing the TR (inter-scan interval)
will also increase your power. This is true to a certain
extent, though the ‘effective’ df depend on the tempo-
ral autocorrelation of the sampled data (i.e. 100 scans
rarely means 100 independent observations; Chapter 14),
so there is a limit to the power increase afforded by a
shorter TR.

If you are only interested in group results (e.g. extrapo-
lating from a random sample of subjects to a population),
then the statistical power normally depends more heav-
ily on the number of subjects than the number of scans
per subject (Friston et al., 2002). In other words, you are
likely to have more power with 100 scans on 20 subjects,
than with 400 scans on 5 subjects, particularly given that
inter-subject variability tends to exceed inter-scan vari-
ability. Having said this, there are practical issues, like
the preparation time necessary to position the subject in
the scanner; that means that 100 scans on 20 subjects
takes more time than 400 scans on 5 subjects. A common
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strategy is therefore to run several experiments on each
subject while they are in the scanner.

Keep the subject as busy as possible

This refers to the idea that ‘dead-time’ – time during
which the subject is not engaged in the task of inter-
est – should be minimized. Again, of course, there may
be psychological limits to the subject’s performance (e.g.
they may need rests), but apart from this, factors such
as the SOA should be kept as short as possible (even
within blocks of trials). The only situation where you
might want longer SOAs (or blocks of rest) is if you
want to measure ‘baseline’. From a cognitive perspective
though, baseline is rarely meaningful, since it is rarely
under strong experimental control (see below).

Only stop the scanner – i.e. break your experiment into
sessions – if it is strictly necessary. Breaks in scanning
disrupt the spin equilibrium (i.e. require extra dummy
scans), reduce the efficiency of any temporal filtering
(since the data no longer constitute a single time-series),
and introduce other potential ‘session’ effects (McGonigle
et al., 2000).

Do not contrast trials that are remote in time

One problem with fMRI is that there is a lot of low-
frequency noise. This has various causes, from aliased
biorhythms to gradual changes in physical parameters
(e.g. ambient temperature). Thus, any low-frequency ‘sig-
nal’ (induced by your experiment) may be difficult to
distinguish from background noise. This is why SPM
recommends a highpass filter (see Chapter 14). Since con-
trasts between trials that are far apart in time correspond
to low-frequency effects, they may be filtered out.

In SPM, for example, a typical highpass cut-off is
1/128 s ∼ 0	01 Hz, based on the observation that the
amplitude as a function of frequency, f , for a subject
at rest has a ‘1/f+ white noise’ form (Plate 19), in
which amplitude reaches a plateau for frequencies above
approximately 0.01 Hz (the inflection point of the ‘1/f’
and ‘white’ noise components). When summing over fre-
quencies (in a statistical analysis), the removal of frequen-
cies below this cut-off will increase the signal-to-noise
ratio (SNR), provided that most of the signal is above
this frequency.

In the context of blocked designs, the implication is
not to use blocks that are too long. For two alternating
conditions, for example, block lengths of more than 50 s
would cause the majority of the signal (i.e. that at the
fundamental frequency of the square-wave alternation)
to be removed when using a highpass cut-off of 0.01 Hz.
In fact, the optimal block length in an on-off design,
regardless of any highpass filtering, is approximately 16 s
(see below).

Randomize the order, or SOA, of trials close together in
time

As will be explained below, in order to be sensitive to
differences between trials close together in time (e.g. less
than 20 s), one either uses a fixed SOA but varies the
order of different trial-types (conditions), or constrains
their order but varies the SOA. Thus, a design in which
two trials alternate every 4 s is inefficient for detecting
the difference between them. One could either randomize
their order (keeping the SOA fixed at 4 s), or vary their
SOA (keeping the alternating order).3

Signal-processing perspective

We begin by assuming that one has an event-related
design, and the interest is in detecting the presence (i.e.
measuring the amplitude) of a BOLD impulse response
whose shape is well-characterized (i.e. a canonical HRF).4

Given that we can treat fMRI scans as time-series, some
intuition can be gained from adopting a signal-processing
perspective, and by considering a number of simple
examples.

To begin with, consider an event every 16 s. The result
of convolving delta functions representing the events
with the canonical HRF is shown in Figure 15.5(a) (see
Chapter 14 for a discussion of linear convolution mod-
els). Maximizing the efficiency of a design is equiva-
lent to maximizing the ‘energy’ of the predicted fMRI
time-series, i.e. the sum of squared signal values at each
scan (equal to the variance of the signal, after mean-
correction). In other words, to be best able to detect the

3 Note that, in this context, blocks can be viewed as runs of
trials of the same type, and a blocked design corresponds to a
varying-SOA design in which there is bimodal distribution of
SOAs: a short SOA corresponding to the SOA within blocks,
and a long SOA corresponding to the SOA between the last trial
of one block and the first of the next.
4 A distinction has been made between the ability to detect a
response of known shape, ‘detection efficiency’ (as considered
here), and the ability to estimate the shape of a response, ‘esti-
mation efficiency’ [0] (Liu et al., 2001; Birn et al., 2002). This
distinction actually reduces simply to the choice of temporal
basis functions: The same efficiency equation (Eqn.15.3 below)
can be used to optimize either detection or estimation efficiency
by using different response functions: e.g. either a canonical
HRF or a FIR basis set respectively. A blocked design will opti-
mize detection efficiency; whereas a randomized design with
null events will optimize estimation efficiency (see Henson, 2004
for further details). Hagberg et al. (2001) considered a range
of possible SOA distributions (bimodal in the case of blocked
designs, exponential in the case of fully randomized designs)
and showed that ‘long-tail’ distributions combine reasonable
detection and estimation efficiency.
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FIGURE 15.5 Effect of convolution
by an assumed HRF on neuronal activity
evoked by (a) events every 16 s, (b) events
every 4 s and (c) events occurring with a
50 per cent probability every 4 s.

signal in the presence of background noise, we want
to maximize the variability of that signal. A signal that
varies little will be difficult to detect.

The above example (a fixed SOA of 16 s) is not particu-
larly efficient, as we shall see later. What if we present the
stimuli much faster, say every 4 s? The result is shown
in Figure 15.5(b). Because the responses to successive
events now overlap considerably, we see an initial build-
up (transient) followed by small oscillations around a
‘raised baseline’. Although the overall signal is high, its
variance is low, and the majority of stimulus energy will
be lost after highpass filtering (particularly after removal
of the mean, i.e. lowest frequency). So this is an even less
efficient design.

What if we vary the SOA randomly? Let’s say we have
a minimal SOA of 4 s, but only a 50 per cent probability of
an event every 4 s. This is called a stochastic design (and
one way to implement it is to intermix an equal number
of ‘null events’ with ‘true events’; see next section). This
is shown in Figure 15.5(c). Though we only use half as
many stimuli as in Figure 15.5(b), this is a more efficient
design. This is because there is a much larger variability
in the signal.

We could also vary the SOA in a more systematic
fashion. We could have runs of events, followed by
runs of no (null) events. This corresponds to a blocked
design. For example, we could have blocks of 5 stimuli
presented every 4 s, alternating with 20 s of rest, as shown
in Figure 15.6(a). This is even more efficient than the
previous stochastic design. To see why, we shall con-
sider the Fourier transform of these time-series. First,

however, note that, with short SOAs, the predicted fMRI
time-series for a blocked design is similar to what would
obtain if neuronal activity were sustained throughout
the block (i.e. during the Interstimulus interval (ISI)
as well) as in an epoch model (Figure 15.6(b)). Now,
if we take the Fourier transform of each function in
Figure 15.6(b), we can plot amplitude (magnitude) as
a function of frequency (Figure 15.6(c)). The amplitude
spectrum of the square-wave stimulus function has a
dominant frequency corresponding to its ‘fundamental’
frequency �Fo = 1/�20 s+20 s� = 0	025 Hz�, plus a series of
‘harmonics’ �3Fo
 5Fo
 � � � etc	� of progressively decreas-
ing amplitude. The fundamental frequency corresponds
to the frequency of a sinusoidal that best matches the
basic on-off alternation; the harmonics can be thought
of as capturing the ‘sharper’ edges of the square-wave
function relative to this fundamental sinusoid.

The reason for performing the Fourier transform is
that it offers a slightly different perspective. Foremost, a
convolution in time is equivalent to a multiplication in
frequency space. In this way, we can regard the stim-
ulus function as our original data and the HRF as a
‘filter’. One can see immediately from the shape of the
Fourier transform of the HRF that this filter will ‘pass’
low frequencies, but attenuate higher frequencies (this is
why it is sometimes called a ‘lowpass filter’ or ‘tempo-
ral smoothing kernel’). This property is why, for exam-
ple, much high-frequency information was lost with the
fixed SOA of 4 s in Figure 15.5(b). In the present exam-
ple, the result of multiplying the amplitude spectrum of
the stimulus function by that of the filter is that some of
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FIGURE 15.6 Effect of convolu-
tion by an assumed HRF on neuronal
activity evoked by (a) blocks of events,
(b) epochs of 20 s, and (c) the amplitude
spectra after Fourier transform of (b).
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the higher-frequency harmonics are attenuated, but the
amplitude of the fundamental frequency is not. In other
words, the majority of the signal is ‘passed’ by the HRF
filter.

We are now in a position to answer the question:
what is the most efficient design of all? Well, assum-
ing we had a limited amount of total ‘stimulus energy’,
the optimal design would be to modulate the neuronal
activity in a sinusoidal fashion, with a frequency that
matches the peak of the amplitude spectrum of the HRF
filter. With the canonical HRF used here, this would be
∼0	03 Hz (1/30 s). The sinusoidal modulation places all

the stimulus energy at this single frequency, shown by
the single line in frequency space in Figure 15.7.

We can now also turn to the question of highpass filter-
ing. Because the filtering is commutative, we can apply
the highpass filter to the lowpass filter inherent in the
HRF to create a single bandpass filter (or ‘effective HRF’,
Josephs and Henson, 1999). This is shown in Figure 15.8,
in which the highpass filter reflects the ‘chunk’ of low
frequencies that has been removed from the HRF filter
(highpass cut-off here = 1/120 s ∼0	008 Hz). The conse-
quence of highpass filtering is shown for long blocks
of 80 s (20 trials every 4 s). Because the fundamental

FIGURE 15.7 Effect of convolution
by an assumed HRF on sinusoidal neu-
ronal activity of 0.03 Hz.
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FIGURE 15.8 Effect of convolution
by an ‘effective’ HRF (i.e. including a high-
pass filter) on 80-s blocks of trials.

frequency in this design �1/160 s ∼0	006 Hz� is lower than
the highpass cut-off, a large proportion of signal energy is
lost (reflected by the rather strange shape of the predicted
fMRI time-series, in which the lowest frequency has been
removed). This is therefore not an efficient design (with
this specific highpass cut-off). This illustrates the general
point that blocked designs are only efficient when the
block length is not too long: approx. 15 s-on, 15 s-off is
optimal (see Figure 15.7). Block durations of up to 50 s-on,
50 s-off are also fine (given that the HRF filter does not
attenuate low frequencies much), but block durations
much longer than this (or contrasts between two of many
different types of 50 s-blocks) may be in danger of being
swamped by low-frequency noise.

Finally, we can return to consider what happens in a
stochastic design like that in Figure 15.5(c). The effect

of the randomized SOA is to ‘spread’ the signal energy
across a range of frequencies, as shown in Figure 15.9.
Some of the high- and low-frequency components are lost
to the effective HRF filter, but much is passed, making it
a reasonably efficient design.

Statistical perspective

From the statistical perspective, the aim is to minimize
the standard error of a t-contrast, cT �̂ (i.e. the denomina-
tor of a t-statistic; Chapter 8). Given the specified contrast
of interest, c, and parameter estimates, �̂, the variance of
cT �̂ is given by (Friston et al., 2000):

var�cT �̂� = �2cT �SX�+SVST �SX�+T c 15.2
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FIGURE 15.9 Effect of convolution
by an ‘effective’ HRF on randomized
SOA events (minimum = 4 s).
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where S is a filter matrix incorporating the highpass fil-
ter and any temporal smoothing, and V is the noise
autocorrelation matrix. We want to minimize this variance
with respect to the design matrix, X. If we assume that
the filter matrix S is specified appropriately to ‘whiten’
the residuals, such that SVST = I (i.e. when S = K−1, where
KKT = V ; Chapter 14), and we incorporate S into X, then
this is equivalent to maximizing the efficiency,  :

���2
 c
X� = ��2cT �XT X�−1c�−1 15.3

For a given contrast, c, this equation can be split into the
‘noise variance’, �2, and the ‘design variance’, �XT X�−1

(Mechelli et al., 2003b). If one assumes that the noise var-
iance is independent of the specific design used (which
may not be the case, Mechelli et al., 2003b; see later),
then the efficiency of a contrast for a given design is
proportional to:

��c
X� = �cT �XT X�−1c�−1 15.4

(For F -contrasts, where c is a matrix, the trace operator
can be used to reduce efficiency to a single number; Dale,
1999). Note that ��c
X� has no units; it is a relative mea-
sure. It depends on the scaling of the design matrix and
the scaling of the contrasts. Thus, all we can really say is
that one design is more efficient than another (for a given
contrast). In what follows, we use Eqn. 15.4 to evaluate
the efficiency of different sorts of design and look at how
designs can be characterized probabilistically.

Stochastic designs

For a single event-type, the space of possible
experimental designs can be captured by two parame-
ters: the minimal SOA ��t� and the probability, pt, of
an event occurring at every �t (Friston et al., 1999). In
‘deterministic’ designs, pt = 1 or pt = 0, giving a series of
events with fixed SOA, as in Figure 15.5(a). In ‘stochas-
tic’ designs 0 ≤ pt ≤ 1, producing a range of SOAs (as
in Figure 15.5(c)). For ‘stationary’ stochastic designs, pt

is constant, giving an exponential distribution of SOAs;
for ‘dynamic’ stochastic designs, pt changes with time.
The extreme case of a dynamic stochastic design is one
in which the temporal modulation of pt conforms to a
square-wave, corresponding to a blocked design. Notice
that the quantities pt and �t parameterize a space of
design matrices probabilistically. In other words, they
specify the probability p�X�pt
�t� of getting any par-
ticular design matrix. This allows one to compute the
expected design efficiency for any class that can be
parameterized in this way:

���c
 pt
�t�� =
∫

p�X�pt
�t���c
X�dX 15.5

This expected design efficiency can be evaluated numer-
ically by generating large numbers of design matri-
ces (using pt and �t) and taking the average efficiency
according to Eqn. 15.4. Alternatively, one can com-
pute the expected efficiency analytically as described in
Friston et al. (1999). This allows one to explore different
sorts of designs by treating the design matrix itself as a
random variable. For stochastic designs, efficiency is gen-
erally maximal when the �t is minimal and the (mean)
pt = 1

/
�L+1�, where L is the number of trial types (see

Friston et al., 1999).
Figure 15.10 shows the expected efficiency for detecting

canonical responses to a single event-type versus base-
line, i.e. L = 1 and c = 1, for a range of possible designs.
The deterministic design with �t = 8 s (top row) is least
efficient, whereas the dynamic stochastic design with a
square-wave modulation with �t = 1 s is the most effi-
cient (corresponding, in this case, to a 32 s on-off blocked
design). Intermediate between these extremes are the
dynamic stochastic designs that use a sinusoidal modula-
tion of pt. In other words, these designs produce clumps
of events close together in time, interspersed with peri-
ods in which events are rarer. Though such designs are
less efficient than the blocked (square-wave) design, they
are more efficient than the stationary stochastic design
with �t = 1 s (second row of Figure 15.10), and assum-
ing that subjects are less likely to notice the ‘clumping’
of events (relative to a fully blocked design), may offer
a good compromise between efficiency and subjective
unpredictability.

Transition probabilities

The space of possible designs can also be characterized by
�t and a ‘transition matrix’ (Josephs and Henson, 1999).
This is a generalization of the above formulation that
introduces conditional dependencies over time. For L > 1
different event-types, a Lm ×L transition matrix captures
the probability of an event being of each type, given the
history of the last m event-types. A fully randomized
design with two event-types (A and B) has a simple first-
order transition matrix in which each probability is a half.
The efficiencies of two contrasts, the main effect of A and
B (versus baseline), c = �1 1�T , and the differential effect,
c = �1 −1�T , are shown as a function of �t in Plate 20(a).
The optimal SOA for the main effect under these con-
ditions is approximately 20 s. The efficiency of the main
effect decreases for shorter SOAs, whereas the efficiency
of the differential effect increases. Clearly, the efficiency
for the differential contrast cannot increase indefinitely
as the SOA decreases; at some point, the BOLD response
must saturate (see below). Nonetheless, this graph clearly
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FIGURE 15.10 Efficiency for a single event-type (from Fris-
ton et al., 1999). Probability of event each SOA (left column) and
expected design efficiency (right column, increasing left-to-right) for
a deterministic design with �t = 8 s �1st row�, a stationary stochastic
(randomized) design with pt = 0	5 �2nd row� and dynamic stochastic
designs with modulations of pt by different sinusoidal frequencies
(3rd to 5th rows) and in a blocked manner every 32 s (6th row).

demonstrates how the optimal SOA depends on the spe-
cific contrast of interest.5

Various experimental constraints on multiple event-
type designs can also be considered. In some situations,
the order of event-types might be fixed, and the design
question relates to the optimal SOA. For a design in
which A and B must alternate (e.g. where A and B are
transitions between two perceptual states), the optimal
SOA for a differential effect is 10 s (Plate 20(b), i.e. half of
that for the main effect). In other situations, experimental

5 The main effect, which does not distinguish A and B, is of
course equivalent to a deterministic design, while the differen-
tial effect is equivalent to a stochastic design (from the perspec-
tive of any one event-type).

constraints may limit the SOA, to at least 10 s say, and the
design question relates to the optimal stimulus ordering.
An alternating design is more efficient than a random-
ized design for such intermediate SOAs. However, an
alternating design may not be advisable for psychologi-
cal reasons (subjects’ behaviour might be influenced by
the predictable pattern). In such cases, a permuted design
(in which each of trial-types is presented successively
in a randomly-permuted order) may be a more suitable
choice (see Plate 20(b)).

A further design concept concerns ‘null events’. These
are not real events, in that they do not differ from the
baseline and hence are not detectable by subjects (so are
not generally modelled in the design matrix). They were
introduced by Dale and Buckner (1997) as ‘fixation tri-
als’, to allow ‘selective averaging’ (see Chapter 14). In
fact, they are simply a convenient means of creating a
stochastic design by shuffling a certain proportion of null
events among the events of interest (producing an expo-
nential distribution of SOAs). From the perspective of
multiple event-type designs, the reason for null events is
to buy efficiency for both the main effect and differential
effect at short SOAs (at a slight cost to the efficiency for
the differential effect; see Plate 20(c)).

The efficiencies shown in Plate 20 are unlikely to
map simply (e.g. linearly) onto the size of the t-statistic.
Nonetheless, if the noise variance, in Eqn. 15.3, is inde-
pendent of experimental design, the relationship should
at least be monotonic. Mechelli et al. (2003b) showed
that the noise variance can vary significantly between
a blocked and a randomized design (both modelled
with events). This suggests that the stimulus ordering
did affect (un-modelled) psychological or physiological
effects in this dataset, contributing to the residual error.
When the data were highpass filtered however, the noise
variance no longer differed significantly between the two
designs. In this case, the statistical results were in agree-
ment with the relative efficiencies predicted from the
estimation variances.

Efficiency in terms of correlations

Another way of thinking about efficiency is in terms of
the correlation between (contrasts of) regressors within
the design matrix. In Eqn. 15.3 the term XT X is called
the information matrix and reflects the orthogonality
of the design matrix. High covariance between the
columns of the design matrix introduces redundancy.
This can increase the covariance of the parameter esti-
mates �XT X�−1 and lead to low efficiency (depending on
the particular contrast).

Consider the earlier example of two event-types, A and
B, randomly intermixed, with a short SOA. If we plot
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FIGURE 15.11 Scatter plot for two mean-corrected regressors
(one point per scan) corresponding to two event-types randomly
intermixed with a short SOA.

the resulting two regressors (after convolution with an
HRF) against each other, we would end up with a scatter
plot something like that in Figure 15.11, where each point
reflects one scan. The high negative correlation between
the regressors is because whenever there is high signal
for A, there tends to be low signal for B, and vice versa.
If we consider the projection of this distribution onto the
x = −y direction (corresponding to a �1 − 1� contrast), it
will have a large dispersion, i.e. high experimental vari-
ance, which means the difference between A and B will be
detected efficiently in this design. However, if we project
the distribution onto the x = y direction (corresponding to
a [1 1] contrast), it will have little spread, i.e. low experi-
mental variance, which means that we will not detect the
common effect of A and B versus baseline efficiently. This
demonstrates the markedly different efficiency for these
two contrasts at short SOAs that was shown in Plate 20(a).

Projection onto the x or y axes (i.e. [1 0] or [0 1] con-
trasts) will have less spread than if the two regressors
were orthogonal and formed a spherical cloud of points.
This shows how correlations can reduce efficiency and
makes an important general point about correlations.
High correlation between two regressors means that the
parameter estimate for each one will be estimated inef-
ficiently, i.e. the parameter estimate itself will have high
variance. In other words, if we estimated each parameter
many times we would get wildly different results. In the
extreme case, that the regressors are perfectly correlated,
the parameters would be inestimable (i.e. they would
have infinite variance). Nonetheless, we could still esti-
mate efficiently the difference between them. Thus, high
correlations within the orthogonality matrix shown by
SPM should not be a cause of concern for some contrasts:
what is really relevant is the correlation between the con-
trasts of interest (i.e. linear combinations of columns of

the design matrix) relative to the rest of the design matrix
(i.e. null space of the contrast).

In short-SOA, randomized designs with no null events,
for example, we might detect brain regions showing a
reliable difference between event-types, yet when we
plot the event-related response, we might find they are
all ‘activations’ versus baseline, all ‘deactivations’ ver-
sus baseline or some activations and some deactivations.
However, these impressions are more apparent than
real (and should not really be shown). If we tested the
reliability of these activations or deactivations, they are
unlikely to be significant. This is because we cannot esti-
mate the baseline reliably in such designs. This is why,
for such designs, it does not make sense to plot error
bars showing the variability of each condition alone: one
should plot error bars pertaining to the variability of the
difference (i.e. that of the contrast actually tested).

Orthogonalizing

Another common misapprehension is that one can
overcome the problem of correlated regressors by
‘orthogonalizing’ one regressor with respect to the other.
This rarely solves the problem. The parameter estimates
always pertain to the orthogonal part of each regres-
sor (this is an automatic property of fitting within the
GLM). Thus, neither the parameter estimate for the
orthogonalized regressor, nor its variance, will change.
The parameter estimate for the other regressor will
change. However, this parameter estimate now reflects
the assumption that the common variance is uniquely
attributed to this regressor. We must have an a priori rea-
son for assuming this (i.e. without such prior knowledge,
there is no way to determine which of the two correlated
regressors caused the common effect). In the absence of
such knowledge, there is no reason to orthogonalize.

The conception of efficiency in terms of correlations
can help with the design of experiments where there is
necessarily some degree of correlation among regressors.
Two main experimental situations where this arises are:

1 when trials consist of two events, one of which must
follow the other

2 blocks of events in which one wishes to distinguish
‘item-’ from ‘state-’ effects (see above).

A common example of the first type of experiment are
‘working memory’ designs, in which a trial consists of a
stimulus, a short retention interval, and then a response.
We shall ignore the retention interval and concentrate on
how one can separate effects of the stimulus from those
of the response. With short SOAs between each event-
type (e.g. 4 s), the regressors for the stimulus and response
will be negatively correlated, as shown in Figure 15.12(a).
Two possible solutions to this problem are shown in
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FIGURE 15.12 Regressors for ‘working memory’ trials presented every 8 s, consisting of (a) stimulus followed after 4 s by a response,
(b) stimulus-response intervals varied from 0 to 8 s, and (c) responses following stimuli by 4 s, but only on 50 per cent of trials.

Figure 15.12(b) and 15.12(c). The first is to vary the time
between successive stimuli and responses (assuming this
is possible and that this variation is large; e.g. 1–8 s). The
second is to keep the stimulus-response interval fixed at 4 s,
but only cue a response on a random half of trials. The effect
of both is to reduce the correlation between the regressors,
which increases the efficiency of separate brain activity
related to stimuli from that related to responses.

The second type of experiment tries to distinguish tran-
sient responses (item-effects) from sustained responses
(state-effects). Such separation of transient and sustained
effects requires modelling blocks of trials in terms of both
individual events within blocks and sustained epochs
throughout the blocks. An example with a fixed SOA of
4 s between events is shown in Figure 15.13(a). Here, the
correlation between the event and epoch regressors is nat-
urally high, and the efficiency for detecting either effect
alone is low. Using the same total number of events per
block, but with a pseudo-randomized design in which
the events are randomly spread over the block with a
minimal SOA of 2 s (Figure 15.13(b)), the correlation is
reduced and efficiency increased. (Note that one perverse
consequence of having to introduce some long SOAs
between events within blocks in such ‘mixed designs’
is that subjects may be less able to maintain a specific
cognitive ‘state’.)

Effect of non-linearities on efficiency

The above efficiency arguments have assumed linear-
ity, i.e. that the responses to successive trials summate
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FIGURE 15.13 Regressors for ‘mixed designs’ that attempt
to separate transient (item) from sustained (state) effects. (a) 10
events per block presented every SOA of 4 s, (b) 10 events per block
distributed randomly over 2-s SOAs.

linearly, no matter how close together in time they
occur. In reality, we know there is a ‘saturation’, or
under-additivity, even for SOAs of about 10 s (see
Chapters 14 and 27). This means that the efficiency
for stochastic designs does not increase indefinitely as
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the SOA decreases (e.g. for the differential effect in
Plate 20(a)). By estimating non-linearity with a Volterra
expansion (Chapter 14), Friston et al. (1998) calculated the
impact of such non-linearity on evoked responses. The
result is shown in the insert in Plate 20(a). The dotted line
shows the average response to a train of stimuli under
linear assumptions; the solid line shows the effects of
saturation (using a second-order Volterra kernel). While
the solid line is below the dotted line for all SOAs (below
10 s), the divergence is small until SOAs of 1–2 s. Indeed,
the prediction of this calculation is that the optimal SOA
can be as low as 1 s, i.e. the advantage of short SOAs
can outweigh the saturation of responses until surpris-
ingly short SOAs (though it should be noted that this
prediction is based on a specific dataset, and may not
generalize). Indeed, differential responses between ran-
domized event-types have been detected with SOAs as
short as 0.5 s (Burock et al., 1998).

In this chapter, we have looked at how to detect evoked
fMRI responses efficiently. Before turning to models of
evoked responses in EEG in the next chapter, we will con-
clude with some common questions that exercise people
designing fMRI studies

COMMON QUESTIONS

What is the minimum number of events I
need?

Unfortunately, there is no answer to this, other than ‘the
more, the better’. The statistical power depends on the
effect size and variability, and this is normally unknown.
Heuristics like ‘you cannot do an event-related fMRI
analysis with less than N events’ are fairly meaningless,
unless one has a specific effect size in mind (which is
likely to be a function of the brain region, the scanner
strength, the sequence type, etc.). Note it is possible that
fewer trials are required (for a given power) than for an
equivalent contrast of behavioural data (e.g. if the noise
level in, say, RTs exceeds that in a specific cortical region
contributing to those RTs). Furthermore, it is not even
the number of events per se that is relevant, it is also the
SOA and event-ordering (see next question).

Do shorter SOAs mean more power simply
because there are more trials?

It is not simply the number of trials: the temporal deploy-
ment of those trials is vital (as explained above). Thus
400 stimuli every 3 s is less efficient than 40 stimuli every
30 s for detecting a single event-related response (since

a fixed SOA of 3 s produces little experimental variabil-
ity after convolution by the HRF). Two hundred stim-
uli occurring with a 50 per cent probably every 3 s (i.e.
pseudo-randomly mixed with 200 null events) is much
more efficient than either.

What is the maximum number of conditions I
can have?

A common interpretation of the rule – do not compare
trials that are too far apart in time – is not to design exper-
iments with too many experimental conditions. More
conditions necessarily mean that replications of a par-
ticular condition will be further apart in time. How-
ever, the critical factor is not the number of conditions
per se, but the specific contrasts performed over those
conditions. For pair-wise comparisons of only two of, say,
eight blocked conditions the above caveat would apply:
if there were equal numbers of blocks of each condi-
tion, blocks longer than 12.5 s (100 s/8) are likely to entail
a substantial loss of signal when using a highpass cut-
off of 0.01 Hz. However, this caveat would not apply if
the contrasts of interest included (i.e. ‘spanned’) all eight
conditions. This would be the case if the experimenter
were only interested in the two main effects and the
interaction within a 2 × 4 factorial design (i.e. contrasts
like [1 1 1 1 −1 −1 −1 −1]). If you must compare or
plot only a subset of many such blocked conditions, you
should consider presenting those blocks in a fixed order,
rather than random or counterbalanced order, which will
minimize the time between replications of each condition,
i.e. maximize the frequency of the contrast.

Should I use null events?

Null events are simply a convenient means of achieving
a stochastic distribution of SOAs, in order to allow esti-
mation of the response versus inter-stimulus baseline, by
randomly intermixing them with the events of interest.
However, the ‘baseline’ may not always be meaningful.
It may be well defined for V1, in terms of visual flashes
versus a dark background. It becomes less well defined
for ‘higher’ regions associated with cognition because it
is unclear what these regions are ‘doing’ during the inter-
stimulus interval. The experimenter normally has little
control over this. Moreover, the baseline does not con-
trol for the fact that the events of interest are impulsive
(rapid changes), whereas the baseline is sustained (and
may entail adaptation or reduced attention). For this rea-
son, it is often better to forget about baseline and add an
extra low-level control event instead.
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Another problem with null events is that, if they are
too rare (e.g. less than approximately 33 per cent), they
actually become ‘true’ events in the sense that subjects
may be expecting an event at the next SOA and so be
surprised when it does not occur (the so-called missing
stimulus effect that is well-known in event-related poten-
tial (ERP) research). One solution is to replace randomly
intermixed null events with periods of baseline between
runs of events (i.e. ‘block’ the baseline periods). This will
increase the efficiency for detecting the common effect
versus baseline, at a slight cost in efficiency for detecting
differences between the randomized event-types within
each block. Yet another problem is that the unpredictabil-
ity of the occurrence of true events (caused by the ran-
domly intermixed null events) can cause delayed or even
missed processing of the events of interest, if subjects
cannot prepare for them.

In summary, null events are probably only worth-
while if:

1 you think the mean activity during the constant inter-
stimulus interval is meaningful to contrast against

2 you do not mind null events being reasonably frequent
(to avoid ‘missing stimulus’ effects)

3 you do not mind the stimulus occurrence being unpre-
dictable (as far as the subject is concerned).

Having said this, some form of baseline can often serve
as a useful ‘safety net’ (e.g. if you fail to detect differences
between two visual event-types of interest, you can at
least examine V1 responses and check that you are seeing
a basic evoked response to both event-types – if not, you
can question the quality of your data or accuracy of your
model). Moreover, you may need randomly to inter-mix
null events if you want to estimate more precisely the
shape of the BOLD impulse response (see footnote 4). It is
often the case that people include a low-level baseline or
null event to use as reference for a localizing contrast on
tests for differences among true events. In other words,
the contrast testing for all events versus baseline can
serve as a useful constraint on the search volume for
interesting comparisons among events.

Should I generate multiple random designs
and choose the most efficient?

This is certainly possible, though be wary that such
designs are likely to converge on designs with some
structure (e.g. blocked designs, given that they tend to be
optimal, as explained above). This may be problematic
if such structure affects subjects’ behaviour (particularly
if they notice the structure). Note, however, that there
are software tools available that optimize designs at the
same time as allowing users to specify a certain level

of counterbalancing (to avoid fully blocked designs, e.g.
Wager and Nichols, 2003).
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Hierarchical models for EEG and MEG
S. Kiebel, J. Kilner and K. Friston

INTRODUCTION

In this chapter, we will look at hierarchical linear mod-
els for magneto- and electroencephalographic (M/EEG)
data. Traditionally, the analysis of evoked responses is
based on analysis of variance (ANOVA) (see Chapter 13).
Statistical parametric mapping (SPM) follows the same
route, but we motivate the model within a hierarchical
framework, paying special attention to the distinction
between time as a factor and time as a dimension of a
multivariate response variable. We describe the analysis
of both event-related responses (ERR)1 and power data.

The chapter is divided into two parts. First, we discuss
some fundamental modelling issues pertaining to the
analysis of M/EEG data over space and time. Equivalent
considerations emerged in positron emission tomogra-
phy/functional magnetic resonance imaging (PET/fMRI)
more than a decade ago where one can treat imaging
data either in a mass-univariate (Friston et al., 1991) or
multivariate fashion (Friston et al., 1995; Worsley et al.,
1997). The same considerations also apply to time bins
in M/EEG data. However, the situation is different for
event-related responses, because one might want to make
inferences about the temporal form of responses. This
means time has to be treated as an experiential factor,
as opposed to another dimension of the response space.
Finely resolved temporal features in M/EEG are impor-
tant, because they may contain important information
about neuronal dynamics. The implications for models
of M/EEG are that the data can be analysed in one of
two ways: they can be regarded as high-dimensional

1 By ERR, we mean averaged event-related time courses (Rugg
and Coles, 1995), where each of these time courses has been
averaged within subject and trial-type (condition) to provide
one peristimulus time-series for each trial-type and each subject.
The modality can be either EEG or MEG.

responses in space and time, or they can be treated as a
time-series at each point in space. The first section dis-
closes this distinction and their relative merits. In the
second part, we describe the analysis of M/EEG data
using linear models in which time becomes a factor. The
models are essentially the same as those presented in
Chapters 8 and 13 and we recommend these chapters are
read first.

We will focus on the analysis of averaged (ERR) data
(Figure 16.1) and then extend the ideas to cover other
forms of M/EEG data analysis (e.g. single-trial and
power data). Source reconstruction, using informed basis
functions and restricted maximum likelihood (ReML)
covariance estimates, artefact removal or correction and
averaging are considered here to be pre-processing issues
(see Chapters 28 and 29). After pre-processing, the ERR
data constitute a time-series of three-dimensional images
over peristimulus time bins. These images may be scalar
images corresponding to current source density or three-
variate images retaining information about source ori-
entation. Here, we assume that we are dealing with
univariate or scalar response variables, at each voxel and
time bin.

The approaches we consider can also be applied to ERR
data which have been projected onto the scalp surface.
Of course, this two-dimensional representation does not
allow for a full integration with other neuroimaging data
(e.g. fMRI) but might be an appropriate way to proceed
when source reconstruction is not feasible (Plate 21; see
colour plate section).

Some key issues

After projection to voxel-space during interpolation or
source reconstruction, the data can be represented as an
array of several dimensions. These dimensions include:
(i) space (in two or three dimensions); (ii) peristimulus

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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FIGURE 16.1 The average ERR is estimated over single trials
for each trial type and each subject.

time or peristimulus time-frequency; and (iii) design fac-
tors (e.g. group, subjects, experimental conditions, single
trials). For a given experiment, our task is to specify a
model that captures not only experimental effects, but
also the correlations between space, time and design.
These correlations are important, because they allow us to
assess the significance of experimentally induced effects.
A failure to capture correlations properly will cause inex-
act inference, which will lead to either lenient or conser-
vative tests.

The three key questions addressed in the first part of
this chapter are:

1 Shall we treat space as an experimental factor or as a
dimension of the data?

2 Shall we treat time as an experimental factor or as a
dimension of the data?

3 If time is an experimental factor, what is a good (lin-
ear) model?

In the following sections we explain what these questions
mean and why they are important.

Notation

We assume that the source reconstructed data consists
of three-dimensional images with M voxels. Each image
contains data for one time bin. In other words, each voxel
in three-dimensional space has one time-series over peri-
stimulus time. We assume that we have measured the
same trial types in each subject and all ERR data have
the same number of time bins.2 The number of subjects is

2 These assumptions are not strictly necessary but simplify our
notation.

Single subject Multiple subjects

Subject 1

Subject
Nsubjects

Trial type
Ntypes

Trial type1

N
bins

FIGURE 16.2 Data vectorization. For each voxel, one has
NsubjectsNtypes ERRs, giving N = NsubjectsNtypesNbins data points.

Nsubjects, the number of trial types is Ntypes, and the number
of time bins per ERR is Nbins. The total number of images
is given by:

N = NsubjectsNtypesNbins

(see also Figure 16.2).

SPATIAL MODELS

In this section, we discuss the different ways one can
model spatial correlations in the error (spatial non-
sphericity). As described in Chapter 10, accounting for
these correlations is important for valid inference. To
avoid confusing this issue with temporal correlations, we
will assume that the data comprise one point in peris-
timulus time. The difference between treating space (i.e.
voxel) as an experimental factor and a treating it as a
dimension of the data array is closely related to the dif-
ference between a multivariate and a mass-univariate
approach. This is the difference between treating the
data as a single M-dimensional response or M univariate
observations. In other words, we consider each image as
a single observation or as a family of single-voxel obser-
vations.

Multivariate models

Statistical parametric mapping (SPM) represents a mass-
univariate approach, while something like a multivari-
ate analysis of variance (MANOVA) would constitute
a multivariate approach (cf. Yandell, 1997). These are
fundamentally different because the mass-univariate
approach ignores correlations between voxels during
estimation and precludes inference about effects that are
expressed in more than one voxel. Conversely, multi-
variate approaches model spatial correlations explicitly.
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Furthermore, we can rearrange multivariate models and
test for voxel-times-treatment interactions. We will look
first at this rearrangement because it shows that conven-
tional multivariate models can be treated as large univari-
ate models, in which the components of the multivariate
response become levels of an extra factor.

We can convert a multivariate observation model into
a univariate observation model by simply rearranging
the matrix formulation. Consider the multivariate lin-
ear model with a response variable y comprising Nd =
Nsubjects Ntypes images (e.g. images of current source den-
sity at 100 ms after presentation of a visual stimulus) over
M voxels:

y = X�+� 16.1

where y is the Nd ×M data matrix, X is an Nd ×P design
matrix, � is a P ×M parameter matrix and � is an Nd ×M
error matrix, where each row of � is assumed to be sam-
pled independently from the same multivariate normal
distribution with zero mean. The classical analysis of this
model, the MANOVA, proceeds by computing sample
covariance matrices of the predicted or treatment effects
and the residuals. Wilk’s lambda (Chatfield and Collins,
1980) is then used to test for treatment effects, relative to
the covariance of the residuals and, after transformation,
compared with an F distribution. The important point
about MANOVA is that the errors are assumed to be cor-
related over all pairs of voxels and that this correlation
is taken into account when deriving the statistic.

Vectorized forms

It is helpful to understand the implicit assumptions about
spatio-temporal non-sphericity in MANOVA by consid-
ering a more general univariate formulation: Eqn. 16.1
can be rearranged into a univariate model by stacking
the columns of the response matrix on top of each other
to form a response vector and forming an augmented
design matrix using a Kronecker tensor product. The
parameter and error matrices are similarly vectorized:

vec�y� = �IM ⊗X�vec���+vec��� 16.2

where ⊗ denotes the Kronecker tensor product and vec(.)
is the operator that stacks a matrix column-wise to pro-
duce one column vector. The matrix IM is the M ×M iden-
tity matrix. The essential difference between Eqn. 16.1
and Eqn. 16.2, lies in the, hitherto, unspecified assump-
tions about the error terms on the right hand side. Gener-
ally, when using MANOVA, the covariance matrix of the
error has M ×M elements. A covariance matrix is sym-
metrical and therefore contains M�M +1�/2 unknown ele-
ments or, in our case, variance parameters. Each variance
parameter controls the (co)variance between the error at

voxels i and j. These variance parameters must be esti-
mated. In MANOVA, this is done using the residuals of
the fitted model.

Similarly, in Eqn. 16.2, the error covariance matrix has
dimensions NdM ×NdM and is fully specified by M�M +
1�/2 variance parameters (remember that we assume that
each row of � is sampled from the same distribution):

Cov�vec���� = M∑
i�j=1

�ijQij

Qij = Q̃ij ⊗ INd

16.3

where Q̃ij is an M ×M matrix with Q̃ij�k� l� = Q̃ij�k� l� =
1 and zeroes elsewhere. The quantities �ij are variance
parameters (i.e. hyperparameters) that can be estimated
using restricted maximum likelihood (ReML). However,
one does not need to estimate all the variance parameters
in an unconstrained way. The point made by Eqn. 16.3 is
that it can accept constraints on the variance parameters.
Such constraints allow us to use (and estimate) much
fewer variance components. The use of constraints is crit-
ical in neuroimaging, because the number of images N is
typically much smaller than the number of voxels M . It
would be impossible to estimate all the variance param-
eters (Eqn. 16.3) from the data without using constraints.
This is the reason why one cannot apply a MANOVA
to neuroimaging data directly. Instead, one reduces its
dimensionality by using a principal component analysis
(PCA) or a similar device (Friston et al., 1996; Worsley
et al., 1997).

In summary, multivariate models have an equivalent
vectorized form. In both forms, the number of covari-
ance components scales quadratically with the number
of components, in our case voxels. However, the vector-
ized form offers an opportunity to specify these compo-
nents explicitly and any constraints upon them. There
is another important opportunity that is afforded by
the vectorized form; this is the specification of contrasts
that span the different components of the multivari-
ate response variable. One can specify these contrasts
because the Kronecker product IM ⊗X in Eqn. 16.2 treats
the different components (e.g. voxels) as different levels
of an additional factor. This will be an important con-
sideration below when we consider whether time bins
should be treated as components of a response or as
difference of time factor.

Mass-univariate models

In contrast to multivariate approaches and their vector-
ized forms, mass-univariate approaches consider the data
at each voxel i in isolation:

yi = X�i +�i 16.4
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by ignoring the spatial correlations (at this stage). Note
that ordinary least squares (OLS) estimates of � are iden-
tical for Eqns 16.1, 16.2 and 16.4. This enables us to esti-
mate, for each voxel i� P parameters �I and one variance
parameter �i independently of other voxels.

The critical issue for mass-univariate approaches is
how to deal with the spatial covariances that have been
ignored in Eqn. 16.4. The impact of spatial covariance is
accommodated at the inference stage through adjusting
the p-values associated with the SPM. This adjustment or
correction uses random field theory (RFT) and assumes
that the error terms conform to a good lattice approxi-
mation to an underlying continuous spatially extended
process (Chapters 17 and 18). In other words, it assumes
that the errors are continuous in space. The RFT cor-
rection plays the same role as a Bonferroni correction
(Yandell, 1997) for discrete data. The power of the RFT
approach is that valid inference needs only one spatial
covariance parameter for each voxel. This is the smooth-
ness, which is the determinant of the covariance matrix
of the spatial first partial derivatives of the error fields
(Worsley et al., 1999). As with the MANOVA, these are
estimated using the residuals about the fitted model. The
RFT correction does not assume spatial stationarity of the
errors or that the spatial autocovariance function is Gaus-
sian. All it assumes is that the error fields are continuous
(i.e. smooth). The important distinction between the SPM
mass-univariate approach with RFT correction and the
equivalent MANOVA approach, with a full covariance
matrix, is that the former only requires 2M (M spatial
and M temporal) variance parameters, whereas the latter
requires M�M +1�/2 variance parameters.

A further difference between SPM and multivariate
approaches is that SPM inferences are based on regionally
specific effects as opposed to spatially distributed modes.
In SPM, classical inference proceeds using the voxel-
specific t- or F -value, whereas in multivariate statistics
inference is made about effects over all voxels. Rejec-
tion of the null hypothesis in MANOVA allows one to
infer that there is a treatment effect in some voxel(s)
but it does not tell one where. In principle, if the treat-
ment effect was truly spatially distributed, SPM would be
much less sensitive than MANOVA. However, the aim
of functional neuroimaging is to establish regionally spe-
cific responses. By definition, diffuse spatially distributed
responses are not useful in trying to characterize func-
tional specialization. Furthermore, the goal of fMRI or
EEG integration is to endow electrophysiological mea-
sures with a spatial precision. This goal is met sufficiently
by mass-univariate approaches.

In conclusion, the special nature of neuroimaging data
and the nature of the regionally specific questions that
are asked of them, point clearly to the adoption of mass-
univariate approaches and the use of RFT to accom-

modate spatial non-sphericity. This conclusion is based
upon the fact that, for spatially continuous data, we only
need the covariances of the first partial derivatives of the
error at each point in space, as opposed to the spatial
error covariances among all pairs of points. Secondly,
the nature of the hypotheses we wish to test is inher-
ently region-specific. The price we pay is that there is no
opportunity to specify contrasts over different voxels as
in a vectorized multivariate approach that treats voxels
as a factor.

TEMPORAL MODELS

Having motivated a mass-univariate approach for the
analysis of each voxel time-series, we now have to consider
whether time (and/or frequency) is an extra dimension
of the response variable (mass-univariate) or an experi-
mental factor (vectorized-multivariate). One could simply
treat time as another dimension of the response variable
to produce four-dimensional SPMs that span anatomical
space and peristimulus time. These SPMs would have acti-
vations or regions above the threshold (excursion sets)
that covered a cortical region and a temporal domain
following the stimulus. This would allow both for
anatomical and temporal specificity of inferences using
adjusted p-values. We will see an example of this later.

The appeal of this approach echoes the points made in
the previous section. The nice thing about creating four-
dimensional (over space and time) SPMs is that temporal
correlations or non-sphericity among the errors over time
can be dealt with in a parsimonious way, at the infer-
ence stage, using random field corrections. This means
that one only needs to estimate the temporal smoothness
at each time bin as opposed to the temporal correlations
over all time bins. The assumption underpinning the RFT
is clearly tenable because the M/EEG data are continu-
ous in time. An example of this approach is shown in
Figure 16.3 (see also Kilner et al., 2006).

The alternative to treating time as a dimension is to
assume that it is an experimental factor with the same
number of levels as there are bins in peristimulus time.
This is simply a time-series model at each voxel, of the
sort used by fMRI. In this instance, one has to estimate
the temporal variance parameters by analogy with the
spatial variance parameters in Eqn. 16.3. In other words,
one has to estimate the temporal correlations of the
error to make an appropriate non-sphericity adjustment
to ensure valid inference.3 ReML estimation procedures

3 This applies if one uses OLS parameter estimates. For maxi-
mum likelihood (ML) estimates, temporal correlations have to
be estimated to whiten the data.
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(a) (b)

FIGURE 16.3 Analysis of ERP data based on a spatio-temporal
SPM, at the sensor level (see (Kilner et al., 2006 for details). The
two plots show orthogonal slices through a 3-dimensional statistical
image SPM	t
, thresholded at p < 0�001 (uncorrected). In (a), the
display is centred on a left parietal sensor, in (b) on a right parietal
sensor. In the top row, the temporal profiles are over the spatial
x-axis at the two selected y-locations.

based upon expectation maximization (EM) allow the
temporal variance parameters to be specified in terms
of separable covariance components (see Chapters 10
and 22, and Friston et al., 2002). This technique allows
for a flexible model of serial correlations, where the esti-
mated non-sphericity is used either to whiten the data
(to furnish maximum likelihood estimates) or in the esti-
mation of the effective degrees of freedom (for ordinary
least-squares estimates).

Both the mass-univariate (spatio-temporal SPM) and
time-series SPM approaches are available to us. Which is
the most suitable for a given study? The answer is that
both approaches have their pros and cons, i.e. it depends
on the data and the question.

Time-series SPM

The advantage of treating time as an experimental effect
is that one can specify contrasts that cover different peri-
stimulus times. It is not possible to make inferences
about the spatial extent of activation foci in SPMs (this
is because mass-univariate approaches do not need any
spatial parameters on which they could infer). Similarly,
in the context of space-time SPMs, inferences about the
temporal extent of evoked responses (e.g. differential

latencies among trial-types) are precluded. To enable
inferences about the temporal form of an effect, it is nec-
essary to specify contrasts that encompass many time
bins. This means time has to enter as an experimental
effect or factor.

In the spatial domain, we are interested in region- or
voxel-specific inferences because activation in one part
of the brain does not have any quantitative meaning
in relation to activation in a different structure. Con-
versely, the relative responses over time, a given voxel,
are meaningful because they define the form of the
evoked transient. Therefore, in some instances, it is use-
ful to compare responses over time explicitly. This means
time is an experimental factor. An example of a ques-
tion requiring a time-series SPM would be a contrast
testing for a decreased latency of the N170 under a
particular level of attention (e.g. by using a temporal
derivative in a time-series model). Because the N170 is
defined by its temporal form and deployment (a compo-
nent that peaks around 170 ms that is typically evoked by
face stimuli) this contrast would necessarily cover many
time bins.

Spatio-temporal SPMs

Conversely, when the question cannot be framed in terms
effects with an explicit temporal form, a spatio-temporal
SPM may be more appropriate. These SPMs will iden-
tify differences in evoked responses where and whenever
they occur. In this context, the search for effects with a
specific temporal form or scale can be implemented by
temporally convolving the data with the desired form
in accord with the match filter theorem (see Figure 16.3
for an example and Kilner et al., 2006). This allows
one to search for effects, over peristimulus time, in an
exploratory way. Importantly, inference using random
field theory adjusts p-values to accommodate the fact that
one was searching over serially correlated time bins. We
have found that treating time as a dimension is especially
useful for time-frequency power analyses (Kilner et al.,
2005). See Figure 16.4 for an example of this approach
using time-frequency SPMs.

Summary

We have addressed some key issues about how one
models responses in the spatial and temporal (or time-
frequency) domains. These issues touch upon the under-
lying question of how to model the error covariance
of spatio-temporal data. By assuming a factorization
of the spatial and temporal domain, we can separate
the modelling of the spatial and temporal correlations.
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Time-frequency data

Time (s) Time (s)

subject

1
2
3

n

70

4

2

3

1

60

50

40

30

20

10
–0.75 –0.5 –0.25 0

SPMsmoothing

Peak pixel Z = 3.36, p < 0.001 uncorrected

F
re

qu
en

cy
 (

H
z)

70

60

50

40

30

20

10

–0.75 –0.5 –0.25 0

F
re

qu
en

cy
 (

H
z)

(T
 v

al
ue

)

FIGURE 16.4 Upper panels: the pipeline for time-frequency SPMs. Time-frequency contrasts were calculated for each subject and
smoothed by convolution with a Gaussian kernel. These data were then analysed in SPM (Wellcome Department of Imaging Neuroscience,
London, UK). Lower left: the SPM calculated from the smoothed time-frequency images and thresholded at p < 0�01 uncorrected. The location
of the peak time-frequency bin is shown. The white dotted box indicates our illustrative a priori window of interest. Lower right: the significant
cluster of bins at p < 0�01 uncorrected. With this analysis, both the cluster level and bin level results are significant at p < 0�05 corrected for
family-wise error (FWE). Although the data were smoothed with a Gaussian kernel of FWHM 96 ms and 12 Hz, the smoothness calculated
from the data was greater with FWHM of 107.8 ms and 16.8 Hz. This difference reflects the correlation in the underlying data between adjacent
bins in both the time and frequency dimensions.

(See Figure 16.5 for a schematic summary of these
issues.) The discussion about multivariate versus mass-
univariate approaches concerns the modelling of spatial
correlations among voxels. In space, we chose the mass-
univariate approach. Using this approach, at the estima-
tion stage, the spatial correlations are ignored. To account
for spatial correlations, we use random field corrections
at the subsequent inference stage. The same arguments
can be applied to the temporal aspect of the response.
Generally, one searches for differences in space-time
or time-frequency in the usual way using established
SPM protocols. These include the use of summary statis-
tics to emulate random-effect analyses (as described in
Chapter 12) to look at between-trial, between-subject
or between-group effects. However, in some cases, one
might want to treat time as an experimental factor so
that questions about the temporal deployment or form
of response differences can be addressed. In the next
section, we focus on the ensuing time-series models.

Hierarchical models

When electing to treat time as a factor, we create an
interesting distinction between explanatory variables that

model time effects and experimental design variables
that model the treatment effects of other experimen-
tal factors (e.g. trial differences). As mentioned above,
we assume that each peristimulus time series represents
one particular trial-type within an M/EEG session. The
temporal explanatory variables model responses in each
subject- and trial-type-specific ERR. Further explana-
tory variables model treatment effects among trial types
and/or sessions or subjects. We will refer to the tem-
poral explanatory variables as temporal effects and to
the experimental design variables as experimental effects.
These are encoded by the design matrices Xt and Xd,
respectively. This natural distinction points to a hierarchi-
cal modelling framework (see Chapter 11). A hierarchical
model can be used to decompose the data into within-
ERR (temporal effects) and between-ERR components
(experimental effects). There is an important difference
between the sorts of inferences that can be made with
ERR data. This distinction rests upon the form of the
hierarchical observation model and the level in the hier-
archy at which the inferences are made. Usually, these
hierarchical observation models have two levels, engen-
dering the distinction between fixed- and random-effects
analyses. In two-level hierarchical observation models,
the response at the first level is caused by first-level
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FIGURE 16.5 Schematic demonstrating the different formulations of observation models implied by the multivariate versus mass-
univariate and temporal dimension versus factor distinctions. The upper panels represent multivariate formulations in which there is no
opportunity to place continuity constraints on the spatial or (upper left) spatio-temporal correlations. By treating each time bin or brain
location as a separate component of the observed response, one effectively creates a model which is not informed about the continuity of these
responses over space and time. The mass-univariate model in the lower left panel can be used to embody continuity constraints in both space
and time through the application of random field theory. However, there would be no opportunity to assess design by time interactions. The
lower right panel represents the formulation in which time is treated as a factor but space is not.

parameters that themselves are modelled as random or
stochastic variables at the second level, i.e.:

y = X�1���1� +��1�

��1� = X�2���2� +��2�

X�1� = INsubjectsNtypes
⊗Xt

X�2� = Xd ⊗ INp

16.5

where the data y consists of one column vector of length
NsubjectsNtypesNbins (see Figure 16.2). The ERR data are
ordered such that trial type-specific ERRs of an individ-
ual subject are next to each other. This means the first-
level design is X�1� = INsubjects

⊗ INtypes
⊗Xt, where Xt is some

first-level design matrix, embodying temporal effects, for
a single ERR. The second-level design matrix is given by
X�2� = Xd ⊗ INp

, where, for example, Xd = 1Nsubjects
⊗ INtypes

would be a simple averaging matrix. Np is the number of
columns in Xt and 1N denotes a column vector of ones
of length N .

The model in Eqn. 16.5 reflects the natural hierar-
chy of observed data. At the first level, the observations

are modelled in a subject- and trial-type-specific fashion
within peristimulus time, where ��1� is the observation
error. At the second level, we model the parameters ��1�

over subjects and trial types. In other words, the ensuing
hierarchy models temporal within-trial effects at the first
level and between-trial effects at the second. At this level,
the error ��2� represents between-subject variability not
modelled in Xd.

There are several reasons why hierarchical linear mod-
els are useful for characterizing ERR data. To start
with, they afford substantial latitude for modelling and
hypothesis testing. Note that the first-level design matrix
X�1� defines a projection onto some subspace of the data.
Each parameter is associated with a specific dimension
of this subspace. One can consider many subspaces for
ERR data, where the Fourier transform or the wavelet
transform are just two examples. The Fourier transform
is useful for making inferences about power in some
frequency range. The wavelet transform is appropriate
when making inferences about localized time-frequency
effects. By specifying contrasts on the first- or second-
level parameter estimates, we can test for effects localized
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in peristimulus time and within certain frequency ranges
(Kiebel and Friston, 2004). The important point about the
two-level hierarchical model is that it enables different
(linear) transforms at the first level.

A further motivation for hierarchical models is that
they finesse the parameterization of non-sphericity. In
this context, the error is decomposed into level-specific
components. From Eqn. 16.5, we see that the first-level
error ��1� is the error about the fitted response, i.e. the
observation error. The second-level error ��2�, with an
averaging design component Xd, is the deviation of
each first-level parameter from the average value for
a particular trial-type in a specific subject. This error
arises from between-subject variability. The distinction
between these two components allows the decomposi-
tion of the overall error into two partitions, the within-
and between-subject variability. These partitions have
distinct non-sphericity structures, which can be modelled
using level-specific variance components. These facilitate
robust and accurate error estimation, which is necessary
for valid inference.

An advantage of level-specific error components is that
one can make inferences at either level. This relates to the
distinction between fixed- and random-effects analyses
(see Chapter 12). For example, in Eqn. 16.5, ��2� corre-
sponds to the average response over subjects for a par-
ticular trial type. The variability of ��2� (its covariance),
can be derived by first collapsing the two-level model to
one level:

y = X�1�X�2���2� +X�1���2� +��1� 16.6

Using an ordinary least-squares estimator, the covariance
matrix of the parameter estimates is:

Cov��̂�2�� = �X�1�X�2��−Cov�X�1���2� +��1���X�1�X�2��−T 16.7

where X− denotes the generalized inverse. Eqn. 16.7
says that the covariance of the estimated second-level
parameters is given by the projected error covariance
of the collapsed model. This is a mixture of the vari-
ability of the errors from both levels. Therefore, �̂�2� not
only varies because of inter-subject, but also because of
within-subject variability.

In summary, the two-level model is useful if there is
a meaningful linear projection to some low-dimensional
space. For instance, in fMRI, the blood oxygenation-level-
dependent (BOLD) response can be linearly modelled
with three basis functions. These capture a large part of
the stimulus-induced variability. Similarly, in M/EEG,
temporal basis functions in Xt allow us to summarize
a response with a few parameters. At the second level,
we can then test hypotheses about these parameters (i.e.
differences and interactions). This dimension reduction
is an efficient way of testing for effects. Note that these

basis functions can extend over peristimulus time. They
can describe simple averages or other more complicated
shapes like damped oscillations.

An alternative is to forgo modelling the first level
completely and employ the identity matrix as temporal
design matrix Xt = I . This effectively renders the two-
level model (Eqn. 16.5) a one-level model, because there
is no error ��1� at the first level. This is the traditional
way of analysing evoked responses. One simply forms
contrasts at the first level and models them at the second.
Traditionally, researchers test for averages over a partic-
ular window of peristimulus time, but one can actually
use any linear combination over peristimulus time. The
advantage of this analysis is that it is simple and straight-
forward and appeals to exactly the same arguments as
the summary-statistic approach to hierarchical models of
fMRI data.

This concludes our discussion about how we model the
spatio-temporal and experimental dimensions of M/EEG
data. Next we focus on modelling the experimental fac-
tors, e.g. groups or trial-types. To simplify things we will
use the identity matrix (i.e. a complete basis set) as tem-
poral design matrix Xt.

HYPOTHESIS TESTING WITH
HIERARCHICAL MODELS

Hierarchical models for M/EEG are the same as those
used for other imaging modalities (see Chapter 13) and
inference can proceed using the same multistage proto-
col, by taking contrasts from one level to the next. This
summary statistic approach can be used for the analysis
of either evoked responses or time-frequency power data.
In this section, we describe how contrasts can be specified
to ask a wide range of questions about evoked responses
in multisubject studies, using time-series SPMs.

For ERR data, we follow the approach outlined above.
First, one projects data from channel to voxel-space. This
can be either a two-dimensional approximation to the
scalp surface or a three-dimensional source reconstruc-
tion (Phillips et al., 2002; Mattout et al., 2005). These time-
series of images form the input to the first level of a
hierarchical model to provide estimates of the response
for each temporal basis function (in this case each time
bin), each trial-type and each subject. The inputs to the
second level are contrasts over time bins, for each subject
and trial type. These can be simple averages over several
time points in peristimulus time, e.g. the average between
150 and 190 ms to measure the N170 component. Note
that one can choose any temporal shape as contrast, e.g.
a Gaussian or damped sinusoid.
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For time-frequency analyses, one first computes power
in the time-frequency domain (Kiebel et al., 2005). In
current software implementations of SPM, we use the
Morlet wavelet transform. This renders the data 4- or
5-dimensional (2 or 3 spatial dimensions, time, and fre-
quency). As outlined above, there are two different
approaches to these data. One could treat space, time, and
frequency as dimensions of a random field. This leaves
only dimensions like subject or trial-types as experimen-
tal factors (see Figure 16.4 and Kilner et al., 2005). An
alternative is to treat both time and frequency as fac-
tors. In this case, the input to the second level is formed
by subject and trial type-specific contrasts over time and
frequency (e.g. averages in windows of time-frequency
space). In the following, we describe some common
second-level models for M/EEG.

Evoked responses

A typical analysis of ERRs is the one-way (repeated mea-
sures) analysis of variance. For each of the n = 1� � � � �N
subjects there are K measurements (i.e. trial-types). The
second-level summary statistics are contrasts over peris-
timulus time, for each subject and trial type. The design
matrix in this case is X�2� = IK ⊗ 1N � 1K ⊗ IN � (see also
Chapter 13). In terms of the model’s covariance compo-
nents, one could assume that the between-subject errors
��2� are uncorrelated and have unequal variances for each
trial-type. This results in K covariance components. After
parameter estimation, one tests for main effects or inter-
actions among the trial-types at the between-subject level,
with the appropriate contrast. Note that this model uses
a ‘pooled’ estimate of non-sphericity over voxels (see
Chapter 13). An alternative is to compute the relevant
contrasts (e.g. a main effect or interaction) at the first
level and use a series of one-sample t-tests at the second.

Induced responses

In SPM, the time-frequency decomposition of data uses
the Morlet wavelet transform. Note that other approaches
using short-term Fourier transform, or the Hilbert trans-
form on bandpassed filtered data are largely equivalent
to the wavelet decomposition (Kiebel et al., 2005). For
frequency � = 2�f and peristimulus time t, the Morlet
wavelet kernel is:

h�t��� = c� exp�− t2

�2
t

� exp�i�t� 16.8

where c� is some normalization factor and �2
t is the tem-

poral width of the kernel. The transform itself is the
convolution:

z�t���ij = h���∗ yij 16.9

where yij is the i-th (single) trial measured at the j-
th channel (or voxel) and ∗ denotes convolution. The
power is:

P�t���ij = z�t���ijz�t���∗
ij 16.10

where z�t���∗
ij is the complex conjugate. Induced activity

is computed by averaging Pij over trials and subtract-
ing the power of the evoked response. When time and
frequency are considered experimental factors, we com-
pute contrasts at the first level and pass them to the
second. This might be an average in the time-frequency
plane (e.g. Kilner et al., 2005). Alternatively, one can com-
pute, per trial type and subject, several averages in the
time-frequency plane and take them up to the second
level. These contrasts can be modelled using repeated-
measures ANOVA, where time and frequency are both
factors with multiple levels.

In general, we assume that the second-level error
for contrasts of power is normally distributed, whereas
power data per se have a �2-distribution. However,
in most cases, the contrasts have a near-normal dis-
tribution because of averaging over time, frequency
and trials and, more importantly, taking differences
between peristimulus times or trial-types. These averag-
ing operations render the contrasts or summary statis-
tics normally distributed, by central limit theorem. When
there is still doubt about the normality assumption,
one can apply a log or square-root transform (Kiebel
et al., 2005).

SUMMARY

In this chapter, we have covered various ways of
analysing M/EEG data, with a special focus on the dis-
tinction between treating time as a factor and treat-
ing it as a dimension of the response variable. This
corresponds to the distinction between inference based
on time-series models (of the sort using in fMRI) and
spatio-temporal SPMs that span space and time. In the
case of time-series models, the hierarchical nature of
our observation models calls for a multistage summary-
statistic approach, in which contrasts at each level are
passed to higher levels to enable between-trial, between-
subject and between-group inferences. The central role
of hierarchal models will be taken up again in Section 4,
in the context of empirical Bayes. In the next section
we consider, in greater depth, the nature of inference
on SPMs.
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Parametric procedures
M. Brett, W. Penny and S. Kiebel

INTRODUCTION

This chapter is an introduction to inference using
parametric procedures with focus on the multiple com-
parison problem in functional imaging, and the way it
can be solved using random field theory (RFT).

In a standard functional imaging analysis, we fit a sta-
tistical model to the data, to give us model parameters.
We then use the model parameters to look for an effect
we are interested in, such as the difference between a task
and baseline. To do this, we usually calculate a statistic
for each brain voxel that tests for the effect of interest in
that voxel. The result is a large volume of statistic values.

We now need to decide if this volume shows any evi-
dence of the effect. To do this, we have to take into
account that there are many thousands of voxels and
therefore many thousands of statistic values. This is
the multiple comparison problem in functional imaging.
Random field theory is a recent branch of mathematics
that can be used to solve this problem.

To explain the use of RFT, we will first go back to
the basics of hypothesis testing in statistics. We describe
the multiple comparison problem and the usual solution,
which is the Bonferroni correction. We explain why spa-
tial correlation in imaging data causes problems for the
Bonferroni correction and introduce RFT as a solution.
Finally, we discuss the assumptions underlying RFT and
the problems that arise when these assumptions do not
hold. We hope this chapter will be accessible to those
with no specific expertise in mathematics or statistics.
Those more interested in mathematical details and recent
developments are referred to Chapters 18 and 19.

Rejecting the null hypothesis

When we calculate a statistic, we often want to decide
whether the statistic represents convincing evidence of

the effect we are interested in. Usually, we test the
statistic against the null hypothesis, which is the hypoth-
esis that there is no effect. If the statistic is not compatible
with the null hypothesis, we may conclude that there is
an effect. To test against the null hypothesis, we can com-
pare our statistic value to a null distribution, which is the
distribution of statistic values we would expect if there
is no effect. Using the null distribution, we can estimate
how likely it is that our statistic could have come about
by chance. We may find that the result we found has a
5 per cent chance of resulting from a null distribution.
We therefore decide to reject the null hypothesis, and
accept the alternative hypothesis that there is an effect. In
rejecting the null hypothesis, we must accept a 5 per cent
chance that the result has in fact arisen when there is in
fact no effect, i.e. the null hypothesis is true. Five per cent
is our expected type I error rate, or the chance that we take
that we are wrong when we reject the null hypothesis.

For example, when we do a single t-test, we compare
the t-value we have found to the null distribution for the
t-statistic. Let us say we have found a t-value of 2.42,
and have 40 degrees of freedom. The null distribution of
t-statistics with 40 degrees of freedom tells us that the
probability of observing a value greater than or equal to
2.42, if there is no effect, is only 0.01. In our case, we can
reject the null hypothesis with a 1 per cent risk of type
I error.

The situation is more complicated in functional imag-
ing because we have many voxels and therefore many
statistic values. If we do not know where in the brain our
effect will occur, our hypothesis refers to the whole vol-
ume of statistics in the brain. Evidence against the null
hypothesis would be that the whole observed volume of
values is unlikely to have arisen from a null distribution.
The question we are asking is now a question about the
volume, or family of voxel statistics, and the risk of error
that we are prepared to accept is the family-wise error
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rate (FWE) – which is the likelihood that this family of
voxel values could have arisen by chance.

We can test a family-wise null hypothesis in a variety
of ways, but one useful method is to look for any statistic
values that are larger than we would expect, if they all
had come from a null distribution. The method requires
that we find a threshold to apply to every statistic value,
so that any values above the threshold are unlikely to
have arisen by chance. This is often referred to as ‘height
thresholding’, and it has the advantage that if we find
voxels above threshold, we can conclude that there is an
effect at these voxel locations, i.e. the test has localizing
power. Alternative procedures based on cluster- and set-
level inferences are discussed in the next chapter.

A height threshold that can control family-wise error
must take into account the number of tests. We saw above
that a single t-statistic value from a null distribution with
40 degrees of freedom has a 1 per cent probability of
being greater than 2.42. Now imagine our experiment has
generated 1000 t values with 40 degrees of freedom. If we
look at any single statistic, then by chance it will have
a 1 per cent probability of being greater than 2.42. This
means that we would expect 10 t values in our sample of
1000 to be greater than 2.42. So, if we see one or more t
values above 2.42 in this family of tests, this is not good
evidence against the family-wise null hypothesis, which
is that all these values have been drawn from a null
distribution. We need to find a new threshold, such that,
in a family of 1000 t statistic values, there is a 1 per cent
probability of there being one or more t values above that
threshold. The Bonferroni correction is a simple method
of setting this threshold.

THE BONFERRONI CORRECTION

The Bonferroni correction is based on simple probability
rules. Imagine we have taken our t values and used the
null t distribution to convert them to probability values.
We then apply a probability threshold � to each of our n
probability values; in our previous example � was 0.01,
and n was 1000. If all the test values are drawn from a
null distribution, then each of our n probability values
has a probability � of being greater than threshold. The
probability of all the tests being less than � is therefore
�1−��n. The family-wise error rate �PFWE� is the probabil-
ity that one or more values will be greater than �, which
is simply:

PFWE = 1− �1−��n 17.1

Because � is small this can be approximated by the
simpler expression:

PFWE ≤ n� 17.2

Using Eqn. 17.2, we can find a single-voxel probability
threshold � that will give us our required family-wise
error rate, PFWE , such that we have a PFWE probability of
seeing any voxel above threshold in all of the n values.
We simply solve Eqn. 17.2 for �:

� = PFWE/n 17.3

If we have a brain volume of 100 000 t-statistics, all with
40 degrees of freedom, and we want an FWE rate of 0.05,
then the required probability threshold for a single voxel,
using the Bonferroni correction, would be 0�05/100� 000 =
0�0000005. The corresponding t-statistic is 5.77. If any
voxel t-statistic is above 5.77, then we can conclude that
a voxel statistic of this magnitude has only a 5 per cent
chance of arising anywhere in a volume of 100 000 t-
statistics drawn from the null distribution.

The Bonferroni procedure gives a corrected p-value; in
the case above, the uncorrected p-value for a voxel with
a t-statistic of 5.77 was 0.0000005; the p-value corrected
for the number of comparisons is 0.05.

The Bonferroni correction is used for calculating FWE
rates for some functional imaging analyses. However, in
many cases, the Bonferroni correction is too conservative
because most functional imaging data have some degree
of spatial correlation, i.e. there is correlation between
neighbouring statistic values. In this case, there are fewer
independent values in the statistic volume than there are
voxels.

Spatial correlation

Some degree of spatial correlation is almost universally
present in functional imaging data. In general, data from
any one voxel in the functional image will tend to be sim-
ilar to data from nearby voxels, even after the modelled
effects have been removed. Thus the errors from the sta-
tistical model will tend to be correlated for nearby voxels.
The reasons for this include factors inherent in collecting
and reconstructing the image, physiological signal that
has not been modelled, and spatial preprocessing applied
to the data before statistical analysis.

For positron emission tomography (PET) data, much
more than for functional magnetic resonance imaging
(fMRI), nearby voxels are related because of the way that
the scanner collects and reconstructs the image. Thus,
data that do in fact arise from a single voxel location in
the brain will also cause some degree of signal change in
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neighbouring voxels in the resulting image. The extent
to which this occurs is a measure of the performance of
the PET scanner, and is referred to as the point spread
function.

Spatial pre-processing of functional data introduces
spatial correlation. Typically, we will realign images for
an individual subject to correct for motion during the
scanning session (see Chapter 4), and may also spatially
normalize a subject’s brain to a template to compare data
between subjects (see Chapter 5). These transformations
will require the creation of new resampled images, which
have voxel centres that are very unlikely to be the same as
those in the original images. The resampling requires that
we estimate the signal for these new voxel locations from
the values in the original image, and typical resampling
methods require some degree of averaging of neighbour-
ing voxels to derive the new voxel value (see Chapter 4).

It is very common to smooth the functional images
before statistical analysis. A proportion of the noise in
functional images is independent from voxel to voxel,
whereas the signal of interest usually extends over
several voxels. This is due both to the distributed
nature of neuronal sources and to the spatially extended
nature of the haemodynamic response. According to
the matched filter theorem, smoothing will therefore
improve the signal-to-noise ratio. For multiple subject
analyses, smoothing may also be useful for blurring
the residual differences in location between correspond-
ing areas of functional activation. Smoothing involves
averaging over voxels, which will by definition increase
spatial correlation.

The Bonferroni correction and independent
observations

Spatial correlation means that there are fewer indepen-
dent observations in the data than there are voxels. This
means that the Bonferroni correction will be too conser-
vative because the family-wise probability from Eqn. 17.1
relies on the individual probability values being indepen-
dent, so that we can use multiplication to calculate the
probability of combined events. For Eqn. 17.1, we used
multiplication to calculate the probability that all tests
will be below threshold with �1−��n. Thus, the n in the
equation must be the number of independent observations.
If we have n voxels in our data, but there are only ni

independent observations, then Eqn. 17.1 becomes PFWE =
1 − �1 −��ni , and the corresponding � from Eqn. 17.3 is
given by � = PFWE/ni. This is best illustrated by example.

Let us take a single image slice, of 100 by 100 voxels,
with a t-statistic value for each voxel. For the sake of
simplicity, let the t-statistics have very high degrees of
freedom, so that we can consider the t-statistic values as

being from the normal distribution, i.e. that they are Z
scores. We can simulate this slice from a null distribu-
tion by filling the voxel values with independent random
numbers from the normal distribution, which results in
an image such as that in Figure 17.1.

If this image had come from the analysis of real data,
we might want to test if any of the numbers in the
image are more positive than is likely by chance. The
values are independent, so the Bonferroni correction will
give an accurate threshold. There are 10 000 Z scores, so
the Bonferroni threshold, �, for an FWE rate of 0.05, is
0.05/10 000=0.000005. This corresponds to a Z-score of
4.42. Given the null hypothesis (which is true in this case)
we would expect only 5 out of 100 such images to have
one or more Z scores more positive than 4.42.

The situation changes if we add spatial correlation.
Let us perform the following procedure on the image:
break up the image into squares of 10 by 10 pixels; for
each square, calculate the mean of the 100 values con-
tained; replace the 100 random numbers in the square
by the mean value.1 The image that results is shown in
Figure 17.2.

We still have 10 000 numbers in our image, but there
are only 10 by 10 = 100 numbers that are independent.
The appropriate Bonferroni correction is now 0�05/100 =
0�0005, which corresponds to a Z-score of 3.29. We would
expect only 5 of 100 of such images to have a square block
of values greater than 3.29 by chance. If we had assumed

FIGURE 17.1 Simulated image slice using independent
random numbers from the normal distribution. Whiter pixels are
more positive.

1 Averaging the random numbers will make them tend to zero;
to return the image to a variance of 1, we need to multiply the
numbers in the image by 10; this is

√
n, where n is the number

of values we have averaged.
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FIGURE 17.2 Random number image from Figure 17.1 after
replacing values in the 10 by 10 squares by the value of the mean
within each square.

all the values were independent, then we would have
used the correction for 10 000 values, of � = 0�000005.
Because we actually have only 100 independent observa-
tions, Eqn. 17.2, with n = 100 and � = 0�000005, tells us
that we expect an FWE rate of 0.0005, which is one hun-
dred times lower (i.e. more conservative) than the rate
that we wanted.

Smoothing and independent observations

In the preceding section, we replaced a block of values in
the image with their mean in order to show the effect of
reducing the number of independent observations. This
procedure is a very simple form of smoothing. When
we smooth an image with a smoothing kernel, such as
a Gaussian, each value in the image is replaced with a
weighted average of itself and its neighbours. Figure 17.3
shows the image from Figure 17.1 after smoothing with a
Gaussian kernel of full width at half maximum (FWHM)
of 10 pixels.2 An FWHM of 10 pixels means that, at five
pixels from the centre, the value of the kernel is half
its peak value. Smoothing has the effect of blurring the
image, and reduces the number of independent observa-
tions.

2 As for the procedure where we took the mean of the 100 obser-
vations in each square, the smoothed values will no longer have
a variance of one, because the averaging involved in smoothing
will make the values tend to zero. As for the square example,
we need to multiply the values in the smoothed image by a
scale factor to return the variance to one; the derivation of the
scale factor is rather technical, and not relevant to our current
discussion.

FIGURE 17.3 Random number image from Figure 17.1 after
smoothing with a Gaussian smoothing kernel of full width at half
maximum of 10 pixels.

The smoothed image contains spatial correlation,
which is typical of the output from the analysis of func-
tional imaging data. We now have a problem, because
there is no simple way of calculating the number of inde-
pendent observations in the smoothed data, so we can-
not use the Bonferroni correction. This problem can be
addressed using random field theory.

RANDOM FIELD THEORY

Random field theory (RFT) is a recent body of mathe-
matics defining theoretical results for smooth statistical
maps. The theory has been versatile in dealing with many
of the thresholding problems that we encounter in func-
tional imaging. Among many other applications, it can be
used to solve our problem of finding the height thresh-
old for a smooth statistical map which gives the required
family-wise error rate.

The way that RFT solves this problem is by using
results that give the expected Euler characteristic (EC) for
a smooth statistical map that has been thresholded. We
will discuss the EC in more detail below; for now it is
only necessary to note that the expected EC leads directly
to the expected number of clusters above a given thresh-
old, and that this in turn gives the height threshold that
we need.

The application of RFT proceeds in stages. First, we
estimate the smoothness (spatial correlation) of our sta-
tistical map. Then we use the smoothness values in
the appropriate RFT equation, to give the expected EC
at different thresholds. This allows us to calculate the
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threshold at which we would expect 5 per cent of equiv-
alent statistical maps arising under the null hypothesis
to contain at least one area above threshold.

Smoothness and resels

Usually we do not know the smoothness of our statistical
map. This is so even if the map resulted from smoothed
data, because we usually do not know the extent of spa-
tial correlation in the underlying data before smoothing.
If we do not know the smoothness, it can be calculated
using the observed spatial correlation in the images. For
our example (see Figure 17.3), however, we know the
smoothness, because the data were independent before
smoothing. In this case, the smoothness results entirely
from the smoothing we have applied. The smoothness
can be expressed as the width of the smoothing kernel,
which was 10 pixels FWHM in the X and Y direction.
We can use the FWHM to calculate the number of resels
in the image. ‘Resel’ was a term introduced by Worsley
(Worsley et al., 1992) and allows us to express the search
volume in terms of the number of ‘resolution elements’
in the statistical map. This can be thought of as similar
to the number of independent observations, but it is not
the same, as we will see below. A resel is defined as a
volume (in our case, of pixels) that has the same size as
the FWHM. For the image in Figure 17.3, the FWHMs
were 10 by 10 pixels, so that a resel is a block of 100
pixels. As there are 10 000 pixels in our image, there are
100 resels. Note that the number of resels depends only
on the smoothness (FWHM) and the number of pixels.

The Euler characteristic

The Euler characteristic is a property of an image after
it has been thresholded. For our purposes, the EC can
be thought of as the number of blobs in an image
after thresholding. For example, we can threshold our
smoothed image (Figure 17.3) at Z = 2�5; all pixels with
Z scores less than 2.5 are set to zero, and the rest are set
to one. This results in the image in Figure 17.4.

There are three white blobs in Figure 17.4, correspond-
ing to three areas with Z scores higher than 2.5. The
EC of this image is therefore 3. If we increase the Z-
score threshold to 2.75, we find that the two central
blobs disappear – because the Z scores were less than
2.75 (Figure 17.5).

The area in the upper right of the image remains; the
EC of the image in Figure 17.5 is therefore one. At high
thresholds the EC is either one or zero. Hence, the aver-
age or expected EC, written E�EC�, corresponds (approx-
imately) to the probability of finding an above threshold

FIGURE 17.4 Smoothed random number image from
Figure 17.3 after thresholding at Z = 2�5. Values less than 2.5 have
been set to zero (displayed as black). The remaining values have
been set to one (displayed as white).

FIGURE 17.5 Smoothed random number image from
Figure 17.3 after thresholding at Z = 2�75. Values less than 2.75
have been set to zero (displayed as black). The remaining values
have been set to one (displayed as white).

blob in our statistic image. That is, the probability of
a family-wise error is approximately equivalent to the
expected Euler characteristic, PFWE ≈ E�EC�.

It turns out that if we know the number of resels in
our image, it is possible to calculate E�EC� at any given
threshold. For an image of two dimensions E�EC� is given
by Worsley (Worsley et al., 1992). If R is the number of
resels, Zt is the Z-score threshold, then:

E �EC� = R�4loge2��2	�− 3
2 Zte

− 1
2 Z2

t 
 17.4
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FIGURE 17.6 Expected EC values for an image of 100 resels.

Figure 17.6 shows E�EC� for an image of 100 resels, for
Z-score thresholds between zero and five. As the thresh-
old drops from one to zero, E�EC� drops to zero; this is
because the precise definition of the EC is more complex
than simply the number of blobs (Worsley et al., 1994).
This makes a difference at low thresholds but is not rel-
evant for our purposes because, as explained above, we
are only interested in the properties of E�EC� at high
thresholds, i.e. when it approximates PFWE .

Note also that the graph in Figure 17.6 does a reason-
able job of predicting the EC in our image; at a Z thresh-
old of 2.5 it predicted an EC of 1.9, when we observed
a value of 3; at Z = 2�75 it predicted an EC of 1.1, for an
observed EC of 1.

We can now apply RFT to our smoothed image
(Figure 17.3) which has 100 resels. For 100 resels,
Eqn. 17.4 gives an E�EC� of 0.049 for a Z threshold of
3.8 (cf. the graph in Figure 17.6). If we have a two-
dimensional image with 100 resels, then the probability
of getting one or more blobs where Z is greater than
3.8, is 0.049. We can use this for thresholding. Let x be
the Z-score threshold that gives an E�EC� of 0.05. If we
threshold our image at x, we can conclude that any blobs
that remain have a probability of less than or equal to
0.05 that they have occurred by chance. From Eqn. 17.4,
the threshold, x, depends only on the number of resels
in our image.

Random field thresholds and the Bonferroni
correction

The random field correction derived using the EC is not
the same as a Bonferroni correction for the number of

resels. We stated above that the resel count in an image
is not exactly the same as the number of independent
observations. If it were the same, we could use a Bonfer-
roni correction based on the number of resels, instead of
using RFT. However, these two corrections give differ-
ent answers. For � = 0�05, the Z threshold according to
RFT, for our 100 resel image, is Z = 3�8. The Bonferroni
threshold for 100 independent tests is 0.05/100, which
equates to a Z-score of 3.3. Although the RFT maths gives
us a correction that is similar in principle to a Bonferroni
correction, it is not the same. If the assumptions of RFT
are met (see Section 4) then the RFT threshold is more
accurate than the Bonferroni.

Random fields and functional imaging

Analyses of functional imaging data usually lead to three-
dimensional statistical images. So far we have discussed
the application of RFT to an image of two dimensions,
but the same principles apply in three dimensions. The
EC is the number of 3D blobs of Z scores above a certain
threshold and a resel is a cube of voxels of size (FWHM
in x) by (FWHM in y) by (FWHM in z). The equation for
E�EC� is different in the 3D case, but still depends only
on the resels in the image.

For the sake of simplicity, we have only considered a
random field of Z-scores, i.e. numbers drawn from the
normal distribution. There are now equivalent results for
t, F and �2 random fields (Worsley, 1994). For example,
the statistical parametric mapping (SPM) software uses
formulae for t and F random fields to calculate corrected
thresholds for height.

As noted above, we usually do not know the
smoothness of a statistic volume from a functional imag-
ing analysis, because we do not know the extent of spatial
correlation before smoothing. We cannot assume that the
smoothness is the same as any explicit smoothing that
we have applied and will need to calculate smoothness
from the images themselves. In practice, smoothness is
calculated using the residual values from the statistical
analysis as described in Kiebel et al. (1999).

Small volume correction

We noted above that the results for the expected Euler
characteristic depend only on the number of resels con-
tained in the volume of voxels we are analysing. This is
not strictly accurate, although it is a very close approx-
imation when the voxel volume is large compared to
the size of a resel (Worsley et al. 1996). In fact, E�EC�
also depends on the shape and size of the volume. The
shape of the volume becomes important when we have
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a small or oddly shaped region. This is unusual if we are
analysing statistics from the whole brain, but there are
often situations where we wish to restrict our search to
a smaller subset of the volume, for example where we
have a specific hypothesis as to where our signal is likely
to occur.

The reason that the shape of the volume may influ-
ence the correction is best explained by example. Let us
return to the 2D image of smoothed random numbers
(Figure 17.3). We could imagine that we had reason to
believe that signal change will occur only in the centre
of the image. Our search region will not be the whole
image, but might be a box at the image centre, with size
30 by 30 pixels (Figure 17.7).

The box contains 9 resels. The figure shows a grid of
X-shaped markers; these are spaced at the width of a
resel, i.e. 10 pixels. The box can contain a maximum of
16 of these markers. Now let us imagine we had a more
unusually shaped search region. For some reason, we
might expect that our signal of interest will occur within
a frame 2.5 pixels wide around the outside of the image.
The frame contains the same number of voxels as the box,
and therefore has the same volume in terms of resels.
However, the frame contains many more markers (32), so
the frame is sampling from the data of more resels than
the box. Multiple comparison correction for the frame
must therefore be more stringent than for the box.

In fact, E�EC� depends on the volume, surface area, and
diameter of the search region (Worsley et al., 1996). These
parameters can be calculated for continuous shapes for
which formulae are available for volume, surface area
and diameter, such as spheres or boxes (see Appendix 6).

FIGURE 17.7 Smoothed random number image from
Figure 17.3 with two example search regions: a box (centre) and
a frame (outer border of image). X-shaped markers are spaced at
one-resel widths across the image.

FIGURE 17.8 t threshold giving an FWE rate of 0.05, for
spheres of increasing radius. Smoothness was 8 mm in X Y and Z
directions, and the example analysis had 200 degrees of freedom.

Otherwise, the parameters can be estimated from any
shape that has been defined in an image. Restricting the
search region to a small volume within a statistical map
can lead to greatly reduced thresholds for given FWE
rates. For Figure 17.8, we assumed a statistical analysis
that resulted in a t-statistic map with 8 mm smoothness in
the X, Y and Z directions. The t-statistic has 200 degrees
of freedom, and we have a spherical search region. The
graph shows the t-statistic value that gives a corrected
p-value of 0.05 for spheres of increasing radius.

For a sphere of zero radius, the threshold is simply that
for a single t-statistic (uncorrected = corrected p = 0�05
for t = 1�65 with 200 degrees of freedom). The corrected
t threshold increases sharply as the radius increases to
≈ 10 mm, and less steeply thereafter.

Uncorrected p values and regional hypotheses

When making inferences about regional effects (e.g. acti-
vations) in SPMs, one often has some idea about where
the activation should be. In this instance a correction for
the entire search volume is inappropriate.

If the hypothesized region contained a single voxel,
then inference could be made using an uncorrected
p-value (as there is no extra search volume to correct for).
In practice, however, the hypothesized region will usu-
ally contain many voxels and can be characterized, for
example, using spheres or boxes centred on the region
of interest, and we must therefore use a p-value that
has been appropriately corrected. As described in the
previous section, this corrected p-value will depend on



Elsevier UK Chapter: Ch17-P372560 30-9-2006 5:15p.m. Page:230 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

230 17. PARAMETRIC PROCEDURES

the size and shape of the hypothesized region, and the
smoothness of the statistic image.

Some research groups have used uncorrected p-value
thresholds, such as p < 0�001, in order to control FWE
when there is a regional hypothesis of where the activa-
tion will occur. This approach gives unquantified error
control, however, because any hypothesized region is
likely to contain more than a single voxel. For example,
for 8 mm smoothness, a spherical region with a radius
greater than 6.7 mm will require an uncorrected p-value
threshold of less than 0.001 for a FWE rate ≤ 0�05. For a
sphere of radius 15 mm, an uncorrected p-value threshold
of 0.001 gives an E�EC� of 0.36, so there is approximately
a 36 per cent chance of seeing one or more voxels above
threshold even if the null hypothesis is true.

DISCUSSION

In this chapter, we have focused on voxel-level infer-
ence based on height thresholds to ask the question: is
activation at a given voxel significantly non-zero? More
generally, however, voxel-level inference can be placed in
a larger framework involving cluster-level and set-level
inference. These require height and spatial extent thresh-
olds to be specified by the user. Corrected p-values can
then be derived that pertain to: (i) the number of activated
regions (i.e. number of clusters above the height and
volume threshold) – set-level inferences; (ii) the number
of activated voxels (i.e. volume) comprising a particu-
lar region – cluster-level inferences; and (iii) the p-value
for each peak within that cluster – peak-level inferences.
Typically, people use peak-level inferences and a spatial
extent threshold of zero. This reflects the fact that char-
acterizations of functional anatomy are generally more
useful when specified with a high degree of anatomical
precision (see Chapter 19 for more details)

There are two assumptions underlying RFT. The first
is that the error fields are a reasonable lattice approxima-
tion to an underlying random field with a multivariate
Gaussian distribution. The second is that these fields are
continuous, with a twice-differentiable autocorrelation
function. A common misconception is that the autocorre-
lation function has to be Gaussian, but this is not the case.

If the data have been sufficiently smoothed and the
general linear models correctly specified (so that the
errors are indeed Gaussian) then the RFT assumptions
will be met. If the data are not smooth; one solution is
to reduce the voxel size by subsampling. Alternatively,
one can turn to different inference procedures. One such
alternative is the non-parametric framework described in
Chapter 21.

Other inference frameworks are the false discovery rate
(FDR) approach and Bayesian inference. While RFT con-
trols the family-wise error, the probability of reporting
a false positive anywhere in the volume, FDR controls
the proportion of false positive voxels, among those that
are declared positive. This very different approach is
discussed in Chapter 20. Finally, Chapter 22 introduces
Bayesian inference where, instead of focusing on how
unlikely the data are under a null hypothesis, inferences
are made on the basis of a posterior distribution which
characterizes our uncertainty about the parameter esti-
mates, without reference to a null distribution.

Bibliography

The mathematical basis of RFT is described in a series of
peer-reviewed articles in statistical journals (Siegmund
and Worsley, 1994; Worsley, 1994; Cao, 1999). The core
paper for RFT as applied to functional imaging is Worsley
et al., (1996) (see also Worsley et al., 2004). This provides
estimates of p-values for local maxima of Gaussian, t� �2

and F fields over search regions of any shape or size in
any number of dimensions. This unifies earlier results
on 2D (Friston et al., 1991) and 3D (Worsley et al., 1992)
images.

The above analysis requires an estimate of the smooth-
ness of the images. Poline et al. (1995) estimate the
dependence of the resulting SPMs on the estimate of
this parameter. While the applied smoothness is usu-
ally fixed, Worsley et al., (1995) propose a scale-space
procedure for assessing significance of activations over
a range of proposed smoothings. In Kiebel et al. (1999),
the authors implement an unbiased smoothness estima-
tor for Gaussianized t-fields and t-fields. Worsley et al.
(1999) derive a further improved estimator, which takes
into account non-stationarity of the statistic field.

Another approach to assessing significance is based,
not on the height of activity, but on spatial extent (Fris-
ton et al., 1994), as described in the previous section. In
Friston et al. (1996), the authors consider a hierarchy of
tests that are regarded as peak-level, cluster-level and
set-level inferences. If the approximate location of an acti-
vation can be specified in advance then the significance
of the activation can be assessed using the spatial extent
or volume of the nearest activated region (Friston, 1997).
This test is particularly elegant as it does not require a
correction for multiple comparisons.

More recent developments in applying RFT to
neuroimaging are described in the following chap-
ters. Finally, we refer readers to an online resource,
http://www.mrc-cbu.cam.ac.uk/Imaging/Common/
randomfields.shtml, from which much of the material in
this chapter was collated.
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Random Field Theory
K. Worsley

INTRODUCTION

Random field theory is used in the statistical analysis
of statistical parametric maps (SPMs) whenever there is
a spatial component to the inference. Most important is
the question of detecting an effect or activation at an
unknown spatial location. Very often we do not know in
advance where to look for an effect, and we are inter-
ested in searching the whole brain, or part of it. This
chapter presents special statistical problems related to
the problem of multiple comparisons, or multiple tests.
Two methods have been proposed, the first based on the
maximum of the T or F statistic, the second based on the
spatial extent of the region where these statistics exceed
some threshold value. Both involve results from random
field theory (Adler, 1981).

THE MAXIMUM TEST STATISTIC

An obvious method is to select those locations where a
test statistic Z (which could be a T� �2� F or Hotelling’s
T 2 statistic) is large, i.e. to threshold the image of Z at
a height z. The problem is then to choose the threshold
z to exclude false positives with a high probability, say
0.95. Setting z to the usual (uncorrected) p = 0�05 criti-
cal value of Z (1.64 in the Gaussian case) means that 5
per cent of the unactivated parts of the brain will show
false positives. We need to raise z so that the probability
of finding any activation in the non-activated regions is
0.05. This is a type of multiple comparison problem, since
we are testing the hypothesis of no activation at a very
large number of voxels.

A simple solution is to apply a Bonferroni correc-
tion. The probability of detecting any activation in the
unactivated locations is bounded by assuming that the

unactivated locations cover the entire search region. By
the Bonferroni inequality, the probability of detecting any
activation is further bounded by:

P�max Z > z� ≤ N P�Z > z� 18.1

where the maximum is taken over all N voxels in the
search region. For a p = 0�05 test of Gaussian statistics,
critical thresholds of 4–5 are common. This procedure is
conservative if the image is smooth, although for func-
tional magnetic resonance imaging (fMRI) data it can give
accurate thresholds in single-subject analyses in which
no smoothing has been applied.

Random field theory gives a less conservative (lower)
p-value if the image is smooth:

P�max Z > z� ≈
D∑

d=0

ReselsdECd�z� 18.2

where D is the number of dimensions of the search
region, Reselsd is the number of d-dimensional resels (res-
olution elements) in the search region, and ECd�z� is the
d-dimensional Euler characteristic density. The approxi-
mation Eqn. 18.2 is based on the fact that the left hand
side is the exact expectation of the Euler characteristic of
the region above the threshold z. The Euler characteristic
(EC) counts the number of clusters if the region has no
holes, which is likely to be the case if z is large. Details
can be found in Appendix 6 and Worsley et al. (1996a).

The approximation Eqn. 18.2 is accurate for search
regions of any size or shape, even a single point, but it
is best for search regions that are not too concave. Some-
times it is better to surround a highly convoluted search
region, such as grey matter, by a convex hull with slightly
higher volume but less surface area, to get a lower and
more accurate p-value. This is because the Euler charac-
teristic includes terms that depend on both the volume
and surface area of the search volume.

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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For large search regions, the last term �d = D� is the
most important. The number of resels is:

ReselsD = V/FWHMD

where V is the volume of the search region and FWHM
is the effective full width at half maximum of a Gaussian
kernel that encodes the smoothness (i.e. the kernel that
would be applied to an unsmooth image to produce the
same smoothness). The corresponding EC density for a
T -statistic image with � degrees of freedom is:

EC3�z� = �4 loge 2�
3
2

�2��2

(
� −1

�
z2 −1

)(
1+ z2

�

)− 1
2 ��−1�

For small search regions, the lower dimensional terms
d < D become important. However the p-value (Eqn. 18.2)
is not very sensitive to the shape of the search region,
so that assuming a spherical search region gives a very
good approximation.

Figure 18.1 shows the threshold z for a p = 0�05 test
calculated by the two methods. If the FWHM is small
relative to the voxel size, then the Bonferroni threshold
is actually less than the random field one (Eqn. 18.2). In
practice, it is better to take the minimum of the the two
thresholds (Eqn. 18.1 and Eqn. 18.2).

EC densities for F fields can be found in Worsley et al.
(1996a), and for Hotelling’s T 2, see Cao and Worsley
(1999a). Similar results are also available for correlation
random fields, useful for detecting functional connectiv-
ity (see Cao and Worsley, 1999b).

Thresholds for 32 768 voxels (p = 0.05, corrected)
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FIGURE 18.1 Thresholds for a volume with N = 323 = 32 768
voxels (p = 0�05, corrected). Note that if the full width half maxim
(FWHM) is less than ∼ 3 voxels, then the Bonferroni (BON) method
is better than the random field (RFT) method for a Gaussian statistic.
For T statistics with � = 20 df, this limit is higher �∼ 4�, and much
higher �∼ 6� with � = 10 df. The discrete maxim (DLM) method
bridges the gap between the two, and gives the best results.

Extensions of the result in Eqn. 18.2 to scale space
random fields are given in Worsley et al. (1996b). Here,
the search is over all spatial filter widths as well over
location, so that the width of the signal is estimated as
well as its location. The price paid is an increase in critical
threshold of about 0.5.

A recent improvement fills in the gap between low
FWHM (when Bonferroni is accurate) and high FWHM
(when random field theory is accurate). This new
method, based on discrete local maxima (DLM), uses
the correlation between adjacent voxels. The formula is
somewhat complicated, and can be found in Worsley
(2005). Like Bonferroni, DLM is a lower bound, so we
suggest taking the minimum of Bonferroni, random field
theory, and DLM. Thresholds found using DLM are also
shown in Figure 18.1.

THE MAXIMUM SPATIAL EXTENT OF
THE TEST STATISTIC

An alternative test can be based on the spatial extent of
clusters of connected components of suprathreshold vox-
els where Z > z (Friston et al., 1994). Typically z is chosen
to be about 3 for a Gaussian random field. Once again,
the image must be a smooth stationary random field.
The idea is to approximate the shape of the image by a
quadratic with a peak at the local maximum. For a Gaus-
sian random field, the spatial extent S is then approxi-
mated by the volume where the quadratic of height H
above z cuts the threshold z:

S ≈ cHD/2 18.3

where

c = FWHMD�2�/z�D/2�4 log 2�−D/2/	�D/2+1�

For large z, the upper tail probability of H is well approx-
imated by:

P�H > h� = P�max Z > z+h�/P�max Z > z� ≈ exp�−zh�
18.4

from which we conclude that H has an approximate
exponential distribution with mean 1/z. From this we can
find the approximate p-value of the spatial extent S of a
single cluster:

P�S > s� ≈ exp�−z�s/c�2/D� 18.5



Elsevier UK Chapter: Ch18-P372560 30-9-2006 5:16p.m. Page:234 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

234 18. RANDOM FIELD THEORY

The p-value for the largest spatial extent can be obtained
by a simple Bonferroni correction for the expected num-
ber of clusters K:

P�max S > s� ≈ E�K� P�S > s�� where E�K� ≈ P�max Z > z�
18.6

from Eqn. 18.2. See Chapter 19 for a fuller discussion.
We can substantially improve the value of the constant

c by equating the expected total spatial extent, given by
V P�Z > z�, to that obtained by summing up the spatial
extents of all the clusters S1� 
 
 
 � SK :

V P�Z > z� = E�S1 +· · ·+SK� = E�K� E�S�

Using the fact that:

E�S� ≈ c	�D/2+1�/zD/2

from Eqn. 18.3, and the expected number of clusters from
Eqn. 18.2, it follows that:

c ≈ FWHMDzD/2P�Z > z�/�ECD�z� 	�D/2+1��

Cao (1999) has extended these results to T� �2 and F
fields, but unfortunately there are no theoretical results
for non-smooth fields such as raw fMRI data.

SEARCHING IN SMALL REGIONS

For small prespecified search regions such as the cingu-
late, the p-values for the maximum test statistic are very
well estimated by Eqn. 18.2, but the results in the pre-
vious section only apply to large search regions. Friston
(1997) has proposed a fascinating method that avoids the
awkward problem of prespecifying a small search region
altogether. We threshold the image of test statistics at z,
then simply pick the nearest peak to a point or region of
interest. The clever part is this. Since we have identified
this peak based only on its spatial location and not based
on its height or extent, there is now no need to correct
for searching over all peaks. Hence, the p-value for its
spatial extent S is simply P�S > s� from Eqn. 18.5, and the
p-value for its peak height H above z is simply P�H > h�
from Eqn. 18.4.

ESTIMATING THE FWHM

The only data-dependent component required for setting
the random field threshold is ReselsD, and indirectly, the

15

10

5

0

FWHM (mm)

FIGURE 18.2 The estimated FWHM for one slice of raw fMRI
data. Note the ∼ 6 mm FWHM outside the brain due to smoothing
imposed by motion correction. The FWHM in cortex is much higher,
∼ 10 mm, while white matter is lower ∼ 6 mm.

FWHM. The FWHM often depends on the location: raw
fMRI data are considerably smoother in cortex than white
matter (Figure 18.2). This means that the random field
is not isotropic, so the above random field theory is not
valid. Fortunately, there is a simple way of allowing for
this by estimating the FWHM separately at each voxel.

Let r be the n-vector of least-squares residuals from the
(possibly whitened) linear model fitted at each voxel, and
let u be the vector of normalized residuals u = r/�r′r�1/2.
Let u̇ be the n × 3 spatial derivative of u in the three
orthogonal directions of the voxel lattice. The estimated
FWHM is:

̂FWHM = �4 log 2�1/2�u̇′u̇�−1/�2D� 18.7

and the estimated ReselsD is:

̂ReselsD = ∑
volume

̂FWHM
−D

v

where summation is over all voxels in the search region
and v is the volume of a single voxel (Worsley et al., 1999).
The extra randomness added by estimating ReselsD can
be ignored if the search region is large.

However, spatially varying FWHM can have a strong
effect on the validity of the p-value for spatial extent. If
the cluster is in a region where FWHM is large, then its
extent will be larger by chance alone, and so its p-value
will be too small. In other words, clusters will look more
significant in smooth regions than in rough regions of
the image. To correct for this, we simply replace cluster
volume by cluster resels, defined as:

S̃ = ∑
cluster

v ̂FWHM
−D

where summation is over all voxels in the cluster
(Hayasaka et al., 2004).
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There is one remaining problem: since the above sum-
mation is over a small cluster, rather than a large search
region, the randomness in estimating FWHM now makes
a significant contribution to the randomness of S̃, and
hence its p-value. Hayasaka et al. (2004) suggest allowing
for this by the approximation:

S̃ ≈ c̃HD/2
D+1∏
k=1

X
pk

k 18.8

where X1� 
 
 
 �XD+1 are independent �2 random vari-
ables. The degrees of freedom of Xk is � − k + 1 where
� = n − p and p is the number of regressors in the lin-
ear model, raised to the power pk = −D/2 if k = 1 and
pk = 1/2 if k > 1. Again the constant c̃ is chosen so that
the expected total resels of all clusters matches the prob-
ability of exceeding the threshold times the volume of
the search region:

c̃ ≈ zD/2P�Z > z�/�ECD�z� 	�D/2+1��

Combining this with the approximate distributions of
spatial extents for T� �2 and F fields from Cao (1999)
requires no extra computational effort. H is replaced by
a beta random variable in Eqn. 18.8, multiplied by pow-
ers of yet more �2 random variables, with appropriate
adjustments to c̃.

In practice, the distribution function of S̃ is best cal-
culated by first taking logarithms, so that log S̃ is then
a sum of independent random variables. The density of
a sum is the convolution of the densities whose Fourier

transform is the sum of the Fourier transforms. It is eas-
ier to find the upper tail probability of log S̃ by replac-
ing the density of one of the random variables by its
upper tail probability before doing the convolution. The
obvious choice is the exponential or beta random vari-
able, since its upper tail probability has a simple closed
form expression. This method has been implemented in
the stat_threshold.m function of fmristat, available from
http://www. math.mcgill.ca/keith/fmristat.

FALSE DISCOVERY RATE

A remarkable breakthrough in multiple testing was made
by Benjamini and Hochberg, in 1995, who took a com-
pletely different approach. Instead of controlling the
probability of ever reporting a false positive, they devised
a procedure for controlling the false discovery rate (FDR),
the expected proportion of false positives amongst those
voxels declared positive (the discoveries) (Figure 18.3). The
procedure is extremely simple to implement. Simply cal-
culate the uncorrected p-value for each voxel and order
them so that the ordered p-values are P1 ≤ P2 ≤ 
 
 
 ≤ PN .
To control the FDR at , find the largest value k so that
Pk < k/N . This procedure is conservative if the voxels
are positively dependent, which is a reasonable assump-
tion for most unsmoothed or smoothed imaging data. See
Chapter 20 and Genovese et al. (2002) for an application
of this method to fMRI data, and for further references.
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FIGURE 18.3 Illustration of the difference
between false discovery rate and Bonferroni/
random field methods for thresholding an image.
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TABLE 18-1 Examples of the thresholds of false discovery
rate, Bonferroni and random field methods for thresholding a

Gaussian image

Proportion of true + in image 1 0.1 0.01 0.001 0.0001
FDR threshold 1.64 2.56 3.28 3.88 4.41
Number of voxels in image 1 10 100 1000 10 000
Bonferroni threshold 1.64 2.58 3.29 3.89 4.42
Number of resels in image 0 1 10 100 1000
Random fields threshold 1.64 2.82 3.46 4.09 4.65

The resulting threshold, corresponding to the value of
Z for Pk, depends on the amount of signal in the data, not
on the number of voxels or the smoothness. Table 18-1
compares thresholds for the FDR, Bonferroni and random
field methods. Thresholds of 2–3 are typical for brain
mapping data with a reasonably strong signal, quite a bit
lower than the Bonferroni or random field thresholds.

But we must remember that the interpretation of the
FDR is quite different. False positives will be detected;
we are simply controlling them so that they make up no
more than  of our discoveries. On the other hand, the
Bonferroni and random field methods control the proba-
bility of ever reporting a false discovery (see Figure 18.3).
Furthermore, FDR controls the expected false discovery
rate of voxels or volume (i.e. the proportion of the volume
that is false positive), whereas RFT controls the false pos-
itive rate of regions or maxima (note that in Figure 18.3
(lower left panel), there are 9 false maxima but there is
only one regional effect).

CONCLUSION

The idea of using a hypothesis test to detect activated
regions does contain a fundamental flaw that all exper-
imenters should be aware of. Think of it this way: if
we had enough data, T statistics would increase (as the
square root of the number of scans or subjects) until all
voxels were ‘activated’! In reality, every voxel must be
affected by the stimulus, perhaps by a very tiny amount;
it is impossible to believe that there is never any signal at
all. So thresholding simply excludes those voxels where

we don’t yet have enough evidence to distinguish their
effects from zero. If we had more evidence, perhaps with
better scanners, or simply more subjects, we surely would
be able to do so. But then we would probably not want
to detect activated regions. As for satellite images, the job
for statisticians would then be signal enhancement rather
than signal detection (see also Chapter 23 for a Bayesian
perspective on this issue). The distinguishing feature of
most brain mapping data is that there is so little sig-
nal to enhance. Even with the advent of better scanners
this is still likely to be the case, because neuroscientists
will surely devise yet more subtle experiments that are
always pushing the signal to the limits of detectability.
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Topological Inference
K. Friston

INTRODUCTION

The previous two chapters have established the heuristics
behind inference on statistical maps and how this infer-
ence rests upon random field theory. In this chapter, we
revisit these themes by looking at the nature of topolog-
ical inference and the different ways it can be employed.
The key difference between statistical parametric map-
ping (SPM) and conventional statistics lies in the thing
one is making an inference about. In conventional statis-
tics, this is usually a scalar quantity (i.e. a model parame-
ter) that generates measurements, such as reaction times.
This inference is based on the size of a statistic that is a
function of scalar measurements. In contrast, in SPM one
makes inferences about the topological features of a statis-
tical process that is a function of space or time. The SPM
is a function of the data, which is a function of position
in the image. This renders the SPM a functional (a func-
tion of a function). Put succinctly, conventional inference
is based on a statistic, which is a function of the data. Topo-
logical inference is based on an SPM which is a functional
of the data. This is important because a statistic can only
have one attribute – its size. Conversely, an SPM can have
many topological attributes, such as the height of a peak,
the number of peaks, the volume or extent of an excur-
sion set (part of the SPM above some height). All these
topological features are quantities that have a distribution
under the null hypothesis and can be used for inference.
Critically, the nature of this inference is determined by the
topological quantity used. This chapter introduces some
common topological inferences and their relative sensitiv-
ities to different sorts of treatments effects or activations.

TOPOLOGICAL INFERENCE

This chapter is about detecting activations in statistical
parametric maps and considers the relative sensitivity of

a nested hierarchy of tests that are framed in terms of the
level of inference (peak-level, cluster-level, and set-level).
These tests are based on the probability of obtaining c,
or more, clusters with k, or more, voxels, above a thresh-
old u. This probability has a reasonably simple form and
is derived using distributional approximations from dif-
ferential topology (i.e. the theory of random fields; see
below and Chapter 18). The different levels of inference
pertain to different topological quantities, which vary
in their spatial specificity: set-level inference refers to
the inference that the number of clusters comprising an
observed activation profile is unlikely to have occurred
by chance. This inference pertains to the set of clusters
(connected excursion sets) reaching criteria and repre-
sents an inference about distributed effects. Cluster-level
inferences are a special case of set-level inferences, which
obtain when the number of clusters c is one. Similarly,
peak-level inferences are special cases of cluster-level
inferences that result when the cluster is very small (i.e.
k < 0). Set-level inferences are generally more powerful
than cluster-level inferences and cluster-level inferences
are generally more powerful than peak-level inferences.
The price paid for this increased sensitivity is reduced
localizing power: peak-level tests permit individual max-
ima to be identified as significant, whereas cluster and
set-level inferences only allow clusters or sets of clusters
to be so identified.

Peaks, clusters and sets

In what follows, we consider tests based on three topo-
logical features: a peak, a cluster, and a set of clus-
ters. We then consider the relative sensitivity of the
ensuing tests in terms of power and how that power
varies as a function of resolution and the nature of
the underlying signal. This treatment is concerned pri-
marily with distributed signals that have no a priori
anatomical specification. Activations in positron emission
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tomography (PET) and functional magnetic resonance
imaging (fMRI) are almost universally detected using
some form of statistical mapping. The statistical processes
that ensue (i.e. statistical parametric maps) are character-
ized in terms of regional excursions above some thresh-
old and p-values are assigned to these excursions. These
p-values reflect the probability of false positives or type
1 error. There are two forms of control over family-wise
error (FWE), weak and strong, which determine the level
at which departures from the null hypothesis can be
reported. A test procedure controls FWE in the weak
sense if the probability of false rejection is less than �.
A procedure with only weak control has no localizing
power. If the null hypothesis is rejected, then all that can
be said is that there is a departure from the null hypothe-
sis somewhere in the SPM. Here, the level of inference is
the whole volume analysed. A procedure controls FWE
in the strong sense if the probability of a false positive
peak or cluster, for which the null hypothesis is true, is
less than �, regardless of the truth of the null hypothesis
elsewhere. This more stringent criterion gives localizing
power. Peaks or clusters identified by such a procedure
may be declared individually significant. Another way of
looking at this is in terms of the attributes of the topolog-
ical features whose false positive rate is controlled. Con-
trolling the family-wise false positive rate of peaks means
that inference is about a peak, which has the attribute
‘location’. Controlling the false positive rate of clusters
enables one to infer the cluster is significant and implic-
itly its spatial support. However, inferring a set of clusters
is significant controls FWE in a weaker sense because it
is the ensemble that is significant, not any single cluster.

As noted in Chapter 17, the simplest multiple compar-
isons procedure which maintains strong control over the
error rate in a family of discrete tests is based on the
Bonferroni inequality. Here, the p-values belong, not to
peaks, but to voxels and are adjusted for the number of
voxels. However, for even mild dependencies between
the voxels, this method is excessively conservative and
inappropriate. It is inappropriate because we are not
interested in controlling the false positive rate of voxels;
we want to control the false positive rate of peaks. The
peak is a topological feature, a voxel is not. Critically,
for any given threshold, there will be more suprathresh-
old voxels than peaks. This means the false positive rate
of voxels is always greater than the false positive rate
of peaks. This is why SPM uses a lower threshold than
required by a Bonferroni correction and why SPM is more
powerful. It is easy to see that controlling the false pos-
itive rate of voxels is meaningless; imagine we simply
halved the size of each voxel by interpolating the SPM.
This would increase the false positive rate of voxels by
a factor of eight. But nothing has changed. On the other
hand, the false positive rate of peaks remains constant

and the inference furnished by SPM remains exact. This
simple example illustrates that SPM and the topologi-
cal inference it entails, is central to the analysis of data
that are a function of some position in space, time, fre-
quency etc.

Random field theory

The most successful approach to statistical inference on
analytic (continuous) statistical processes is predicated on
the theory of random fields. Early work was based on the
theory of level crossings (Friston et al., 1991) and differ-
ential topology (Worsley et al., 1992). These approaches
control FWE strongly, allowing for inference at the peak-
level: a corrected p-value is assigned to a peak using the
probability that its height, or a higher one, could have
occurred by chance in the volume analysed. There have
been a number of interesting elaborations at this level
of inference (e.g. searching scale-space and other high-
dimensional SPMs (e.g. Siegmund and Worsley 1994))
and results for many statistics exist (e.g. Worsley, 1994).
The next development, using the random field theory,
was to use the spatial extent of a cluster of voxels defined
by a height threshold (Friston et al., 1994; see also Poline
and Mazoyer, 1993, and Roland et al., 1993). These pro-
cedures control FWE strongly at the cluster-level, per-
mitting inference about each cluster, and are based on
the probability of getting a cluster of the extent observed
(defined by a height threshold), or a larger one, in the
volume analysed. In Friston et al. (1996) set-level infer-
ence was introduced. This is based on the probability of
getting the observed number of clusters (defined by a
height and an extent threshold), or more, in the volume
analysed. This inference is about the set of clusters (con-
tiguous regions above some height and size thresholds)
or more simply about the excursion set. In this chapter,
we compare the relative power of these different lev-
els of inference, under different conditions. In the sense
that all these inferences are based on adjusted p-values,
we consider only the case where no a priori knowledge
about the deployment of activation is available, within
the volume considered. This volume may be the entire
cerebrum, or could be a smaller volume encompassing a
region in which one wants to focus statistical power. The
underlying theory is exactly the same for whole brain
and small volume corrections and all levels of inference
apply.

The results in the previous two chapters and used
below, derive from random field theory. The assump-
tions implicit in this approach are: that the SPMs are rea-
sonable lattice representations of underlying continuous
fields; that the components of the fields have a multivari-
ate Gaussian distribution; and that the height thresholds
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employed are high. These are reasonable assumptions
in neuroimaging as long as the voxel-size or bin-size is
small relative to the smoothness. There has been some
interest in revising cluster-level approaches in the con-
text of fMRI (where the voxel sizes are larger in relation
to resolution) using Monte Carlo simulations and adjust-
ments to the smoothness estimators (e.g. Forman et al.,
1995). Usual estimates of smoothness (e.g. Friston et al.,
1991; Worsley et al., 1992; Kiebel et al., 1999) fail when the
reasonable lattice assumption is violated. In our work,
we sidestep this issue by interpolating the data to reduce
voxel size or smoothing the data to increase smoothness.
It is generally accepted that the voxel size should be less
than half the full width at half maximum (FWHM) of
the smoothness. The good lattice and Gaussian assump-
tions can be further ensured by slight spatial smoothing
of the data, which usually increases the sensitivity of the
ensuing analysis.

Control, levels and regional specificity

There is a fundamental difference between rejecting the
null hypothesis of no activation at a particular peak and
rejecting the null hypothesis over the entire volume anal-
ysed. As noted above, the former requires the strongest
control over FWE and the latter the weakest. One way
of thinking about this difference is to note that if acti-
vation is confirmed at a particular point in the brain
then, implicitly, the hypothesis of activation somewhere
is also confirmed (but the converse is not true). The dis-
tinction between weak and strong control, in the context
of statistical parametric mapping, relates to the level at
which the inference is made. The stronger the control, the
more regional specificity it confers. For example, a peak-
level inference is stronger than a cluster-level inference
because the latter disallows inferences about any peak
within the cluster. In other words, cluster level inferences
maintain strong control at the cluster level but only weak
control at the peak level. Similarly, set-level inferences are
weaker than cluster-level inferences because they refer to
the set of regional effects but not any individual peak or
cluster in that set. Procedures with the weakest control
have been referred to as ‘omnibus’ tests (e.g. Fox and
Mintun, 1989) and frame the alternative hypothesis in
terms of effects anywhere in the brain. These hypotheses
are usually tested using the volume above some thresh-
old (e.g. exceedence proportion tests, Friston et al., 1991)
or use all the SPM values (e.g. quadratic tests, Worsley
et al., 1995). A weaker control over FWE, or high-level
inference, has less regional specificity but remains a valid
way of establishing the significance of an activation pro-
file. Intuitively, one might guess that the weaker pro-
cedures provide more powerful tests because there is a

trade-off between sensitivity and regional specificity (see
below).

Here we focus on the weaker hypotheses and consider
peak-level and cluster-level inferences subordinate to set-
level inferences. This allows us to ask: which is the most
powerful approach for detecting brain activations? The
remainder of this chapter is divided into two sections.
The first section reprises the distributional approxima-
tions used to make statistical inferences about an SPM
and frames the results to show that all levels of inference
can be regarded as special cases of a single probability
(namely, the probability of getting c, or more, clusters
with k, or more, voxels above height u). The final section
deals with the relative power of voxel-level, cluster-level,
and set-level inferences and its dependency on signal
characteristics, namely, the spatial extent of the underly-
ing haemodynamics and the signal-to-noise ratio.

THEORY AND DISTRIBUTIONAL
APPROXIMATIONS

In this section, we review the basic results from the
random field theory that are used to provide a general
expression for the probability of getting any excursion
set defined by three quantities: a height-threshold; a spa-
tial extent threshold; and a threshold on the number of
clusters. We then show that peak-level, cluster-level and
set-level inferences are all special cases of this general
formulation and introduce its special cases.

A general formulation

We assume that a D-dimensional SPM conforms to a rea-
sonable lattice representation of a statistical functional of
volume R(�) expressed in resolution elements, or resels.
This volume is a function of the volume’s size �, for
example radius. This measure is statistically flattened or
normalized by the smoothness W . The smoothness is,
as before, W = ���1/2D = �4 ln 2�− 1

2 FWHM , where � is the
covariance matrix of the first partial derivatives of the
underlying component fields and FWHM is the full width
at half maximum. An excursion set is defined as the set
of voxels that exceeds some threshold u. This excursion
set comprises m clusters each with a volume of n voxels.
At high thresholds, m approximates the number of max-
ima and has been shown to have a Poisson distribution
(Adler and Hasofer, 1981, Theorem 6.9.3):

p�m = c� = ��c�	0� = 1
c!	0

ce−	0 19.1



Elsevier UK Chapter: Ch19-P372560 30-9-2006 5:16p.m. Page:240 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

240 19. TOPOLOGICAL INFERENCE

where 	0 is the expected number of maxima (i.e. clusters).
This depends on the search volume and height thresh-
old. The expected number of maxima (Hasofer, 1978)
would generally be approximated with the expected
Euler characteristic 	0 = ECD, for the SPM in question
(see Chapter 18, Appendix 6 and Figure 19.1). The vol-
ume of a cluster n is distributed according to (e.g. Friston
et al., 1994):

p �n ≥ k� = exp�−
k2/D�


 =
(

�� D
2 +1�

�

)2/D 19.2

where � is the expected volume of each cluster. This is
simply the total number of voxels expected by chance
divided by expected number of maxima (see Figure 19.1).
This specific form for the distribution of cluster volume
is for SPM{Z} and should be replaced with more accurate
expressions for SPM{t} or SPM{F} (see Cao, 1999 and
Chapter 18), but serves here to illustrate the general form
of topological inference. With these results it is possible
to construct an expression for the probability of getting c,
or more, clusters of volume k, or more, above a threshold
u (Friston et al., 1996)

P�u�k� c� � = 1−
c−1∑
i=0

��i�	0p�n ≥ k�� 19.3

Eqn. 19.3 can be interpreted in the following way: con-
sider clusters as ‘rare events’ that occur in a volume
according to the Poisson distribution with expectation 	0.
The proportion of these rare events that meets the spatial
extent criterion will be p�n ≥ k�. These criterion events
will themselves occur according to a Poisson distribu-
tion with expectation 	0p�n ≥ k�. The probability that the
number of events will be c or more is simply one minus
the probability that the number of events lies between 0
and c minus one (i.e. the sum in Eqn. 19.3).

We now consider various ways in which P�u� c�k� can
be used to make inferences about brain activations. In
brief, if the number of clusters c = 1, the probability
reduces to that of getting one, or more, clusters with k,
or more, voxels. This is the p-value for a single cluster of
volume k. This corresponds to a cluster-level inference.
Similarly if c = 1 and the number of suprathreshold vox-
els k = 0, the resulting cluster-level probability (i.e. the
probability of getting one or more excursions of any vol-
ume above u) is the p-value of any peak of height u. In
other words, cluster and peak-level inferences are special
cases of set-level inferences.

Peak-level inferences

Consider the situation in which the threshold u is the
height of a peak. The probability of this happening by

chance is the probability of getting one or more clusters
(i.e. c = 1) with non-zero volume (i.e. k−0). The p-value
is therefore:

P�u� 0� 1� = 1−exp�−	0� 19.4

This is simply the corrected probability based on the
expected number of maxima or Euler characteristic.

Cluster-level inferences

Consider now the case in which we base our inference on
spatial extent k, which is defined by specifying a height
threshold u. The probability of getting more than one
cluster of volume k or more is:

P�u�k� 1� = 1−exp�−	0p�n ≥ k� 19.5

This is the corrected p-value based on spatial extent
(Friston et al., 1994) and has proved to be more pow-
erful than peak-based inference when applied to high-
resolution data (see below).

Set-level inferences

Now consider the instance where inference is based on
cluster number c. In this case, both height u and extent
k threshold need to be specified before the statistic c
is defined. The corresponding probability is given by
Eqn. 19.3 and is the corrected p-value for the set of
activation foci surviving these joint criteria. There is a
conceptual relationship between set-level inferences and
non-localizing tests based on the exceedence proportion
(i.e. the total number of voxels above a threshold u).
Exceedence proportion tests (e.g. Friston et al., 1991) and
threshold-less quadratic tests (Worsley et al., 1995) have
been proposed to test for activation effects over the vol-
ume analysed in an omnibus sense. These tests have
not been widely used because they have no localizing
power and do not pertain to a set of well-defined activa-
tions. In this sense, these tests differ from set-level tests
because the latter do refer to a well-defined set of activa-
tion foci. However, in the limiting case of a small spatial
extent threshold k the set-level inference approaches an
omnibus test:

P�u� 0� c� = 1−
c−1∑
i=0

��i�	0� 19.6

This test simply compares the expected and observed
number of maxima in an SPM using the Poisson distribu-
tion under the null hypothesis. These set-level inferences
are seldom employed in conventional analyses because
they have no localizing power. However, they form a ref-
erence for the sensitivity of alternative (e.g. multivariate)
analyses that focus on more distributed responses.
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FIGURE 19.1 Schematic illustrating the use of random field theory in making inferences about SPMs. A fuller treatment is provided in
Appendix 6. If one knew where to look exactly, then inference can be based on the value of the statistic at a specified location in the SPM,
without correction. However, if one did not have an anatomical constraint a priori, then an adjustment for multiple dependent comparisons has
to be made. These corrections are usually made using distributional approximations from Gaussian random field (GRF) theory. This schematic
deals with a general case of n SPMt� whose voxels all survive a common threshold u (i.e. a conjunction of n component SPMs). The central
probability, upon which all peak-, cluster- or set-level inferences are made, is the probability P�u� c�k� of getting c or more clusters with k or
more resels (resolution elements) above this threshold. By assuming that clusters behave like a multidimensional Poisson point process (i.e.
the Poisson clumping heuristic) P�u� c�k� is simply determined. The distribution of c is Poisson with an expectation that corresponds to the
product of the expected number of clusters, of any size, and the probability that any cluster will be bigger than k resels. The latter probability
is shown using a form for a single Z-variate field constrained by the expected number of resels per cluster �. The expected number of resels
per cluster is simply the expected number of resels in total divided by the expected number of clusters. The expected number of clusters 	0 is
estimated with the Euler characteristic (EC) (effectively the number of blobs minus the number of holes). This estimate is, in turn, a function
of the EC density for the statistic in question (with degrees of freedom v) and the resel counts. The EC density is the expected EC per unit of
D-dimensional volume of the SPM where the D-dimensional volume of the search space is given by the corresponding element in the vector
of resel counts. Resel counts can be thought of as a volume metric that has been normalized by the smoothness of the SPM’s component fields
expressed in terms of the full width at half maximum (FWHM). This is estimated from the determinant of the variance-covariance matrix
of the first spatial derivatives of e, the normalized residual fields r (from Plate 2, see colour plate section). In this example, equations for a
sphere of radius � are given. � denotes the cumulative density function for the statistic in question.
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POWER ANALYSES

In this section, we describe a model which enables ana-
lytic power analyses and use it to compare various levels
of inference and thresholds in the final section. The speci-
ficity of a test is the probability of correctly rejecting the
null hypothesis. The sensitivity of a test is the probabil-
ity of correctly accepting the alternative hypothesis. A
plot of specificity against sensitivity is called a receiver
operator characteristic (ROC) curve. Examples of these
curves will be provided below. In order to determine the
power of a test analytically, it is necessary to define the
nature of the signal implied by the alternative hypothe-
sis. In this chapter, we consider a simple model (Friston
et al., 1996) which assumes that the activations are spa-
tially distributed with no predilection for a particular
anatomical area. Although this model is used for math-
ematical convenience, it is not physiologically unreason-
able and embodies an ignorance of where activations will
be found. More specifically, it models activations that are
distributed throughout the volume and the power analy-
sis below applies to this, and only this, model. Different
models (i.e. a single activation focus) would yield dif-
ferent results. Here we focus on a ‘distributed’ model,
where we expect set-level inferences to be more sensitive.
Suppose the signal comprises Gaussian foci, of random
height, distributed continuously throughout the volume.
The shape of the signal is characterized by the width
w of these foci expressed as a proportion of W . This
signal can be modelled by a continuous ensemble of ker-
nels with randomly distributed heights or equivalently
by convolving an uncorrelated Gaussian random process
with a kernel of the same height. Let the signal (following
convolution with the point spread function) have a stan-
dard deviation s, where s corresponds to the amplitude
of the measured signal. Following Friston et al. (1996) the
specificity and power at a given specificity are:

1−� = P�u� c�k�W

� = P�̃u� c�k�W̃

ũ = u√
1+ s2

W̃ = W

√
1+ s2

1+ s2/�1+f 2�

19.7

This simple approach assumes that the SPM under the
alternate hypothesis is smoother and has larger amplitude
than the SPM under the null hypothesis. The sensitivity
is simply the probability of an outcome under the alter-
nate hypothesis. Applying the threshold u to the alternate
SPM is the same as applying the threshold ũ to a null SPM
of smoothness W̃ under the null hypothesis, which means
� = P�̃u� c�k�W̃ can be taken as a measure of sensitivity.

Eqn. 19.7 allows us to compute the specificity and sen-
sitivity as function of thresholds, amplitude or smooth-
ness of the signal. In what follows we will compare the
power of voxel-, cluster-, and set-level inferences for sig-
nals of different sorts to identify the most powerful sorts
of inference.

Peak-level inferences

In this instance, the only parameter that can be varied
is the threshold u. An example of an ROC curve for
peak-level inferences is seen in Figure 19.2 (top). The
influence of signal parameters on power is shown in the
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FIGURE 19.2 (Top) ROC curve for peak-level inference, where
W corresponds to an FWHM of 3 voxels and a volume of 64 voxels
cubed. Signal amplitude s = 0�3 and width w = 2. The dotted line
corresponds to 95 per cent specificity. Three-dimensional plot of
power (at 95 per cent specificity) as a function of signal amplitude
s and width.
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lower panel by plotting the sensitivity (at 95 per cent
specificity) as a function of amplitude s and size w. It
can be seen that power is a strong function of signal
amplitude for all sizes of signal. It is also evident that
higher thresholds are slightly more powerful, when the
signals are smaller than the resolution �w < 1�. High-
resolution fMRI and optical imaging data suggest that
haemodynamic changes are typically expressed on a spa-
tial scale of 2–4 mm. This is around or below the reso-
lution of PET (especially when the data are smoothed),
however, it is greater than the resolution of fMRI data
which, before any interpolation or smoothing, can be
equated with voxel size (e.g. 3 mm). This suggests that
peak-level tests might be more powerful for PET than for
fMRI, in the absence of any smoothing. This dependency
of power on signal smoothness is consistent with the
matched filter theorem, which says that the best smooth-
ing to apply to a signal matches the smoothness of the
signal. In the present context, smoothing in accord with
the matched filter theorem will increase the smoothness
of noise (i.e. decrease w) without markedly suppressing
signal. It should be noted that this link with the matched
filter theorem is very heuristic.

Cluster-level inferences

In this context, we reiterate previous observations that
cluster-level inferences are generally more powerful than
peak-level inferences (although they have weaker con-
trol). Figure 19.3 (top) shows an ROC curve for cluster-
level inferences at threshold u = 2�8 (solid line). This
curve was calculated by varying the cluster threshold k
(Eqn. 19.7). The equivalent ROC curve from the previ-
ous analysis is also shown (broken line). The lower panel
of Figure 19.3 demonstrates the effect of different signal
sizes (for signal amplitude of 0.3). This represents a plot
of sensitivity (at 95 per cent specificity) as a function of u
and w. This shows a number of interesting features: it is
immediately obvious that, for small signals (i.e. low res-
olution), the most powerful tests obtain when the height
threshold is high and k is small (cf. peak-tests). Conversely,
when the signal is smooth, relative to noise, the more
powerful tests are associated with a low height thresh-
old and a high extent threshold. In practical terms, this
is consistent with the experience of people searching for
smooth, non-focal effects in SPMs, such as in voxel-based-
morphometry, in which cluster-level tests are often used.

Set-level inferences

Here we observe that set-level inferences are generally
more powerful than cluster-level inferences and that this
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FIGURE 19.3 (Top) ROC curve for cluster-level inference,
where W corresponds to an FWHM of 3 voxels and a volume of
64 voxels cubed. Signal amplitude s = 0�3 and width w = 2. Here
u = 2�8. The broken line corresponds to the equivalent peak-level
ROC curve of the previous figure. (Bottom) Three-dimensional plot
of power (at 95 per cent specificity) as a function of signal width w
and threshold u.

holds irrespective of signal characteristics. Figure 19.4
shows an ROC curve that obtains by varying the number
of clusters c for a fixed height and extent threshold. It can
be seen that the set-level inference (solid line) is much
more powerful than either the cluster-level (dashed line)
or peak-level (broken line) tests. To determine whether
there are any special cases of the set-level test (i.e. cluster
or voxel level) that are more powerful than the general
case, we computed sensitivity (at 95 per cent specificity)
by allowing k to vary for different values of u and c.
The lower panels of Figure 19.4 show the results of this
analysis and demonstrate that the most powerful tests
result when c > 1 (i.e. set level). This is the case for both
low- and high-resolution data (left and right lower pan-
els, respectively).
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FIGURE 19.4 (Top) ROC curve for set-level inference, where W corresponds to an FWHM of 3 voxels and a volume of 64 voxels cubed.
Signal amplitude s = 0�3 and width w = 2. Here u = 2�8 and k = 16. The dashed and broken lines correspond to the equivalent cluster- and
peak-level ROC curves of the previous figures, respectively. (Bottom). Three-dimensional plot of sensitivity (at 95 per cent specificity) as a
function of cluster number c and threshold u. Left w = 0�2 and right w = 2.

SUMMARY

We have addressed the sensitivity of various tests for
activation foci in the brain considering levels of inference
(voxel-level, cluster-level and set-level) in a topological
context. All these tests inferences are based on a sin-
gle probability of obtaining c, or more, clusters with k,
or more, voxels above a threshold u. High levels have
weaker regional specificity (cf. control over family-wise
error). The weakest case of set-level inference is based
on the total number of maxima above a height threshold
and corresponds to omnibus tests. Cluster-level infer-
ences are a special case of set-level inferences that obtain
when the number of clusters is one. Similarly, peak-level
inferences are special cases of cluster-level inferences that
result when the cluster has an unspecified volume. On
the basis of an analytical power analysis, we concluded
that set-level inferences are generally more powerful than
cluster-level inferences and cluster-level inferences are

generally more powerful than peak-level inferences, for
distributed signals.

Generally speaking, people use peak-level inferences
because of their local specificity. This is appropriate for
carefully designed experiments that elicit responses in
one region (or a small number of foci), where set-level
inferences may not be appropriate. However, set-level
tests are sometimes useful in studies of cognitive func-
tion with many separable cognitive components that
are instantiated in distributed neuronal systems. In this
context, the set of activation foci that ensue are probably
more comprehensive descriptors of evoked responses.
An important point that can be made here is that set-
level inferences do not preclude lower-level inferences.
When confronted with the task of characterizing an
unknown and probably distributed activation profile, set-
level inferences should clearly be considered, provided
the implicit loss of regional specificity is acceptable. How-
ever voxel-, cluster-, and set-level inferences can be made
concurrently. For example, using thresholds of u = 2�4
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and k = 4 allows for a set-level inference in terms of the
clusters reaching criteria. At the same time, each cluster
in that set has a corrected p-value based on its size and
the cluster-level inference. Similarly, each peak in that
cluster has a corrected p-value based on the voxel-level
inference (i.e. its value). The nested taxonomy presented
here allows for all levels to be reported, each providing
protection for the lower level. As long as the levels are
clearly specified, there is no reason why different levels
cannot be employed, in a step-down fashion, in charac-
terizing an SPM.
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2

Statistical parametric mapping
K. Friston

INTRODUCTION

This chapter summarizes the ideas and procedures used
in the analysis of brain imaging data. It provides suffi-
cient background to understand the principles of experi-
mental design and data analysis and serves to introduce
the main themes covered by subsequent chapters. These
chapters have been organized into six parts. The first
three parts follow the key stages of analysis: image trans-
formations, modelling, and inference. These parts focus
on identifying, and making inferences about, regionally
specific effects in the brain. The final three parts address
biophysical models of distributed neuronal responses,
closing with analyses of functional and effective connec-
tivity.

Characterizing a regionally specific effect rests on esti-
mation and inference. Inferences in neuroimaging may be
about differences expressed when comparing one group
of subjects to another or, within subjects, changes over
a sequence of observations. They may pertain to struc-
tural differences (e.g. in voxel-based morphometry) (Ash-
burner and Friston, 2000) or neurophysiological measures
of brain functions (e.g. fMRI or functional magnetic reso-
nance imaging). The principles of data analysis are very
similar for all of these applications and constitute the
subject of this and subsequent chapters. We will focus on
the analysis of fMRI time-series because this covers many
of the issues that are encountered in other modalities.
Generally, the analyses of structural and PET (positron
emission tomography) data are simpler because they do
not have to deal with correlated errors from one scan to
the next. Conversely, EEG and MEG (electro- and magne-
toencephalography) present special problems for model
inversion, however, many of the basic principles are
shared by fMRI and EEG, because they are both caused
by distributed neuronal dynamics. This chapter focuses
on the design and analysis of neuroimaging studies. In
the next chapter, we will look at conceptual and mathe-

matical models that underpin the operational issues cov-
ered here.

Background

Statistical parametric mapping is used to identify
regionally specific effects in neuroimaging data and is a
prevalent approach to characterizing functional anatomy,
specialization and disease-related changes. The com-
plementary perspective, namely functional integration,
requires a different set of approaches that examine the
relationship among changes in one brain region rela-
tive to changes in others. Statistical parametric mapping
is a voxel-based approach, employing topological infer-
ence, to make some comment about regionally specific
responses to experimental factors. In order to assign an
observed response to a particular brain structure, or cor-
tical area, the data are usually mapped into an anatomical
space. Before considering statistical modelling, we deal
briefly with how images are realigned and normalized
into some standard anatomical space. The general ideas
behind statistical parametric mapping are then described
and illustrated with attention to the different sorts of
inferences that can be made with different experimental
designs.

EEG, MEG and fMRI data lend themselves to a signal
processing perspective. This can be exploited to ensure
that both the design and analysis are as efficient as pos-
sible. Linear time invariant models provide the bridge
between inferential models employed by statistical map-
ping and conventional signal processing approaches. We
will touch on these and develop them further in the next
chapter. Temporal autocorrelations in noise processes
represent another important issue, especially in fMRI,
and approaches to maximizing efficiency in the context
of serially correlated errors will be discussed. We will
also consider event and epoch-related designs in terms of
efficiency. The chapter closes by looking at the distinction
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SPATIAL TRANSFORMS AND COMPUTATIONAL ANATOMY 11

between fixed and random-effect analyses and how this
relates to inferences about the subjects studied or the
population from which these subjects came.

In summary, this chapter reviews the three main stages
of data analysis: spatial or image transforms, modelling
and inference; these are the areas covered in the first three
parts of this book and are summarized schematically in
Plate 1 (see colour plate section). We then look at exper-
imental design in light of the models covered in earlier
parts. The next chapter deals with different models of
distributed responses and previews the material covered
in the final three parts of this book.

SPATIAL TRANSFORMS AND
COMPUTATIONAL ANATOMY

A central theme in this book is the inversion of forward
or generative models of how data are caused. We will
see this in many different contexts, from the inversion
of linear models of fMRI time-series to the inversion of
dynamic causal models of distributed EEG responses.
Image reconstruction, in imaging modalities like PET and
fMRI, can be regarded as inverting a forward model
of how signals, deployed in anatomical space, conspire
to produce measured signals. In other modalities, like
EEG and MEG, this inversion, or source reconstruction,
can be a substantial problem in its own right. In most
instances, it is expedient to decompose the inversion of
forward spatiotemporal models into spatial and temporal
parts. Operationally, this corresponds to reconstructing
the spatial signal at each time point and then invert-
ing a temporal model of the time-series at each spatial
source (although we will consider full spatiotemporal
models in Chapters 25 and 26). This view of source or
image reconstruction as model inversion can be extended
to cover the inversion of anatomical models describing
anatomical variation within and between subjects. The
inversion of these models corresponds to registration and
normalization respectively. The aim of these anatomical
inversions or transformations is to remove or character-
ize anatomical differences. Chapters 4 to 6 deal with the
inversion of anatomical models for imaging modalities.
Figure 2.1 shows an example of a generative model for
structural images that is presented in Chapter 6. Chap-
ters 28 and 29 deal with the corresponding inversion for
EEG and MEG data.

This inversion corresponds to a series of spatial trans-
formations that try to reduce unwanted variance com-
ponents in the voxel time-series. These components are
induced by movement or shape differences among a
series of scans. Voxel-based analyses assume that data
from a particular voxel derive from the same part of

the brain. Violations of this assumption will introduce
artefactual changes in the time-series that may obscure
changes, or differences, of interest. Even single-subject
analyses usually proceed in a standard anatomical space,
simply to enable reporting of regionally-specific effects in
a frame of reference that can be related to other studies.
The first step is to realign the data to undo the effects
of subject movement during the scanning session (see
Chapter 4). After realignment, the data are then trans-
formed using linear or non-linear warps into a standard
anatomical space (see Chapters 5 and 6). Finally, the data
are usually spatially smoothed before inverting the tem-
poral part of the model.

Realignment

Changes in signal intensity over time, from any one
voxel, can arise from head motion and this represents a
serious confound, particularly in fMRI studies. Despite
restraints on head movement, cooperative subjects still
show displacements of up several millimetres. Realign-
ment involves estimating the six parameters of an affine
‘rigid-body’ transformation that minimizes the differ-
ences between each successive scan and a reference scan
(usually the first or the average of all scans in the
time series). The transformation is then applied by re-
sampling the data using an interpolation scheme. Esti-
mation of the affine transformation is usually effected
with a first-order approximation of the Taylor expansion
of the effect of movement on signal intensity using the
spatial derivatives of the images (see below). This allows
for a simple iterative least square solution that corre-
sponds to a Gauss-Newton search (Friston et al., 1995a).
For most imaging modalities this procedure is sufficient
to realign scans to, in some instances, a hundred microns
or so (Friston et al., 1996a). However, in fMRI, even after
perfect realignment, movement-related signals can still
persist. This calls for a further step in which the data are
adjusted for residual movement-related effects.

Adjusting for movement-related effects

In extreme cases, as much as 90 per cent of the variance
in fMRI time-series can be accounted for by the effects
of movement after realignment (Friston et al., 1996a).
Causes of these movement-related components are due to
movement effects that cannot be modelled using a linear
model. These non-linear effects include: subject move-
ment between slice acquisition, interpolation artefacts
(Grootoonk et al., 2000), non-linear distortion due to mag-
netic field inhomogeneities (Andersson et al., 2001) and
spin-excitation history effects (Friston et al., 1996a). The
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A generative model for images

y

p(α) = N(0,Cα)

p(β) = N(0,Cβ)

p(ci = k⏐α,γ) =
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FIGURE 2.1 A graphical model describing the generation of an image. The boxes or ‘nodes’ represent quantities required to generate an
image and the lines or ‘edges’ encode conditional dependencies among these quantities. This graphical description is a useful way to describe
a generative model and makes all the conditional dependencies explicit. In this example, one starts by sampling some warping parameters �
from their prior density p���. These are used to resample (i.e. warp) a series of tissue-class maps to give b���ik for each voxel and tissue class.
The warping parameters model subject-specific anatomical deformations. Mixing parameters � are then selected from their prior density p���;
these control the relative proportions of different tissue-classes over the brain. The mixing parameters scale the tissue-class maps to provide a
density from which a voxel-specific tissue-class ci is sampled. This specifies a mixture of Gaussians from which the voxel intensity is sampled.
This mixture is specified in terms of the expectations � and variances � of their constituent Gaussians that are sampled from the prior density
p�����. The final stage of image construction is to scale the voxel values with some slowly varying intensity field whose parameters 	 are
sampled from their prior p�	�. The resulting image embodies random effects expressed at the level of anatomical deformation, amount of
different tissue types, the expression of those tissues in the measurement, and image-specific inhomogeneities. Inversion of this generative
model implicitly corrects for intensity variations, classifies each voxel probabilistically (i.e. segments) and spatially normalizes the image.
Critically, this inversion accounts properly for all the conditional dependencies among the model’s parameters and provides the most likely
estimates given the data (see Chapter 6 for details of this model and its inversion).

latter can be pronounced if the repetition time approaches
T1 making the current signal a function of movement
history. These effects can render the movement-related
signal a non-linear function of displacement in the n-th
and previous scans:

yn = f�xn�xn−1� 
 
 
 �

By assuming a sensible form for this function, one can
include these effects in the temporal model, so that they
are explained away when making inferences about acti-
vations. This relies on accurate displacement estimates
from the realignment and assumes activations are not
correlated with the movements (any component that is
correlated will be explained away).

The form for f�xn�xn−1� 
 
 
 �, proposed in Friston et al.
(1996a), was a non-linear autoregression model that used
polynomial expansions to second order. This model was
motivated by spin-excitation history effects and allowed

displacement in previous scans to explain movement-
related signal in the current scan. However, it is also a
reasonable model for other sources of movement-related
confounds. Generally, for repetition times (TR) of several
seconds, interpolation artefacts supersede (Grootoonk
et al., 2000) and first-order terms, comprising an expan-
sion of the current displacement in terms of periodic basis
functions, are sufficient.

This section has considered spatial realignment. In mul-
tislice acquisition, different slices are acquired at different
times. This raises the possibility of temporal realignment to
ensure that the data from any given volume were sampled
at the same time. This is usually performed using inter-
polation over time and only when the TR is sufficiently
small to permit interpolation. Generally, timing effects of
this sort are not considered problematic because they man-
ifest as artefactual latency differences in evoked responses
from region to region. Given that biological latency differ-
ences are in the order of a few seconds, inferences about
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these differences are only made when comparing differ-
ent trial types at the same voxel. Provided the effects of
latency differences are modelled (see Chapter 14) temporal
realignment is unnecessary in most applications.

Spatial normalization

In realignment, the generative model for within-subject
movements is a rigid-body displacement of the first
image. The generative model for spatial normalization
is a canonical image or template that is distorted to
produce a subject-specific image. Spatial normalization
inverts this model by undoing the warp using a template-
matching procedure. We focus on this simple model
here, but note that more comprehensive models can be
adopted (see Figure 2.1 and Chapter 6).

After realigning the data, a mean image of the series,
or some other co-registered (e.g. a T1-weighted) image,
is used to estimate some warping parameters that map
it onto a template that already conforms to some stan-
dard anatomical space (e.g. Talairach and Tournoux,
1988). This estimation can use a variety of models for
the mapping, including: a twelve-parameter affine trans-
formation, where the parameters constitute a spatial
transformation matrix; low-frequency basis functions,
usually a discrete cosine set or polynomials, where the
parameters are the coefficients of the basis functions
employed; or a vector field specifying the mapping for
each control point (e.g. voxel). In the latter case, the
parameters are vast in number and constitute a vector
field that is bigger than the image itself. Estimation of
the parameters of all these models can be accommo-
dated in a Bayesian framework, in which one is trying
to find the warping parameters � that have the maxi-
mum posterior probability p���y� given the data y, where
p���y�p�y� = p�y���p���. Put simply, one wants to find
the deformation that is most likely given the data. This
deformation can be found by maximizing the probabil-
ity of getting the data, given the current parameters,
times the probability of those parameters. In practice, the
deformation is updated iteratively using a Gauss-Newton
scheme to maximize p���y�. This involves jointly minimiz-
ing the likelihood and prior potentials H�y��� = ln p�y���
and H��� = ln p���. The likelihood potential is generally
taken to be the sum of squared differences between the
template and deformed image and reflects the probability
of actually getting that image if the transformation was
correct. The prior potential can be used to incorporate
prior information or constraints on the warp. Priors can
be determined empirically or motivated by constraints
on the mappings. Priors play a more essential role as the
number of parameters specifying the mapping increases
and are central to high-dimensional warping schemes
(Ashburner et al., 1997 and see Chapter 5).

In practice, most people use an affine or spatial basis
function warps and iterative least squares to minimize the
posterior potential. A nice extension of this approach is
that the likelihood potential can be refined and taken as
the difference between the index image and a mixture of
templates (e.g. depicting grey, white and skull tissue parti-
tions). This models intensity differences that are unrelated
to registration differences and allows different modalities
to be co-registered (see Friston et al., 1995a; Figure 2.2).

A special consideration is the spatial normalization of
brains that have gross anatomical pathology. This pathol-
ogy can be of two sorts: quantitative changes in the
amount of a particular tissue compartment (e.g. cortical
atrophy), or qualitative changes in anatomy involving the
insertion or deletion of normal tissue compartments (e.g.
ischaemic tissue in stroke or cortical dysplasia). The for-
mer case is, generally, not problematic in the sense that
changes in the amount of cortical tissue will not affect its
optimum spatial location in reference to some template
(and, even if it does, a disease-specific template is easily
constructed). The second sort of pathology can introduce
bias in the normalization (because the generative model
does not have a lesion) unless special precautions are
taken. These usually involve imposing constraints on the
warping to ensure that the pathology does not bias the
deformation of undamaged tissue. This involves hard
constraints implicit in using a small number of basis func-
tions or soft constraints implemented by increasing the
role of priors in Bayesian estimation. This can involve
decreasing the precision of the data in the region of
pathology so that more importance is afforded to the pri-
ors (cf. lesion masking). An alternative strategy is to use
another modality that is less sensitive to the pathology
as the basis of the spatial normalization procedure.

Registration of functional and anatomical data

It is sometimes useful to co-register functional and
anatomical images. However, with echo-planar imaging,
geometric distortions of T2∗ images, relative to anatomi-
cal T1-weighted data, can be a serious problem because
of the very low frequency per point in the phase encod-
ing direction. Typically, for echo-planar fMRI, magnetic
field inhomogeneity, sufficient to cause de-phasing of 2�
through the slice, corresponds to an in-plane distortion of
a voxel. Un-warping schemes have been proposed to cor-
rect for the distortion effects (Jezzard and Balaban, 1995).
However, this distortion is not an issue if one spatially
normalizes the functional data.

Spatial smoothing

The motivations for smoothing the data are four-
fold. By the matched filter theorem, the optimum
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FIGURE 2.2 Schematic illustrating a Gauss-Newton scheme for maximizing the posterior probability p���y� of the parameters required to
spatially normalize an image. This scheme is iterative. At each step, the conditional estimate of the parameters obtains by jointly minimizing
the likelihood and the prior potentials. The former is the difference between a resampled (i.e. warped) version y = f�x+x� of the image f�x�
and the best linear combination of some templates g�x�1� 
 
 
 . These parameters are used to mix the templates and resample the image to
reduce progressively both the spatial and intensity differences. After convergence, the resampled image can be considered normalized.

smoothing kernel corresponds to the size of the effect
that one anticipates. The spatial scale of haemodynamic
responses is, according to high-resolution optical imag-
ing experiments, about 2–5 mm. Despite the potentially
high resolution afforded by fMRI, an equivalent smooth-
ing is suggested for most applications. By the central
limit theorem, smoothing the data will render the errors
more normal in their distribution and ensure the validity
of inferences based on parametric tests. When making
inferences about regional effects using random field the-
ory (see below) the assumption is that the error terms
are a reasonable lattice representation of an underlying
continuous scalar field. This necessitates smoothness to
be substantially greater than voxel size. If the voxels are
large, then they can be reduced by sub-sampling the data
and smoothing (with the original point spread function)
with little loss of intrinsic resolution. In the context of
inter-subject averaging it is often necessary to smooth
more (e.g. 8 mm in fMRI or 16 mm in PET) to project the
data onto a spatial scale where homologies in functional
anatomy are expressed among subjects.

Summary

Spatial registration and normalization can proceed at a
number of spatial scales depending on how one param-
eterizes variations in anatomy. We have focused on the
role of normalization to remove unwanted differences
to enable subsequent analysis of the data. However, it
is important to note that the products of spatial nor-

malization are twofold: a spatially normalized image
and a deformation field (Plate 2). This deformation field
contains important information about anatomy, in rela-
tion to the template used in the normalization proce-
dure. The analysis of this information forms a key part
of computational neuroanatomy. The tensor fields can
be analysed directly (deformation-based morphometry –
Ashburner et al., 1998; Chung et al., 2001) or used to create
maps of specific anatomical attributes (e.g. compression,
shears etc.). These maps can then be analysed on a voxel
by voxel basis (tensor-based morphometry). Finally, the
normalized structural images can themselves be sub-
ject to statistical analysis after some suitable segmenta-
tion procedure. This is known as voxel-based morphometry.
Voxel-based morphometry is the most commonly used
voxel-based neuroanatomical procedure and can easily
be extended to incorporate tensor-based approaches (see
Chapters 6 and 7).

STATISTICAL PARAMETRIC MAPPING
AND THE GENERAL LINEAR MODEL

Functional mapping studies are usually analysed with
some form of statistical parametric mapping. Statis-
tical parametric mapping entails the construction of
continuous statistical processes to test hypotheses about
regionally specific effects (Friston et al., 1991). Statisti-
cal parametric maps (SPMs) are images or fields with
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values that are, under the null hypothesis, distributed
according to a known probability density function, usu-
ally the Student’s t or F -distributions. These are known
colloquially as t- or F -maps. The success of statistical
parametric mapping is due largely to the simplicity of
the idea. Namely, one analyses each and every voxel
using any standard (univariate) statistical test. The result-
ing statistical parameters are assembled into an image –
the SPM. SPMs are interpreted as continuous statistical
processes by referring to the probabilistic behaviour of
random fields (Adler, 1981; Worsley et al., 1992, 1996;
Friston et al., 1994). Random fields model both the uni-
variate probabilistic characteristics of an SPM and any
non-stationary spatial covariance structure. ‘Unlikely’
topological features of the SPM, like peaks, are inter-
preted as regionally specific effects, attributable to the
experimental manipulation.

Over the years, statistical parametric mapping has
come to refer to the conjoint use of the general linear model
(GLM) and random field theory (RFT) theory to analyse and
make classical inferences about topological features of the
statistical parametric maps (SPM). The GLM is used to
estimate some parameters that explain continuous data in
exactly the same way as in conventional analyses of dis-
crete data (see Part 2). RFT is used to resolve the multiple
comparison problem that ensues when making inferences
over the volume analysed (see Part 3). RFT provides a
method for adjusting p-values for the search volume and
plays the same role for continuous data (i.e. images) as
the Bonferroni correction for a number of discontinuous
or discrete statistical tests.

The approach was called SPM for three reasons:

1 To acknowledge significance probability mapping,
where interpolated pseudo-maps of p-values are used
to summarize the analysis of multichannel event-
related potential (ERP) studies.

2 For consistency with the nomenclature of paramet-
ric maps of physiological or physical parameters (e.g.
parametric maps of regional cerebral blood flow (rCBF)
or volume).

3 In reference to the parametric statistics that populate
the maps.

Despite its simplicity, there are some fairly subtle moti-
vations for the approach that deserve mention. Usually,
given a response or dependent variable, comprising
many thousands of voxels, one would use multivari-
ate analyses as opposed to the mass-univariate approach
that SPM represents. The problems with multivariate
approaches are that:

1 they do not support inferences about regionally specific
effects (i.e. topological features with a unique localizing
attribute)

2 they require more observations than the dimension of
the response variable (i.e. need more scans than voxels)

3 even in the context of dimension reduction, they are
less sensitive to focal effects than mass-univariate
approaches.

A heuristic, for their relative lack of power, is that mul-
tivariate approaches estimate the model’s error covari-
ances using lots of parameters (e.g. the covariance
between the errors at all pairs of voxels). Conversely,
SPM characterizes spatial covariance with a smoothness
parameter, for each voxel. In general, the more parame-
ters (and hyperparameters) an estimation procedure has
to deal with, the more variable the estimate of any one
parameter becomes. This renders inferences about any
single estimate less efficient.

Multivariate approaches consider voxels as different
levels of an experimental or treatment factor and use
classical analysis of variance, not at each voxel but by
considering the data sequences from all voxels together,
as replications over voxels. The problem here is that
regional changes in error variance, and spatial correla-
tions in the data, induce profound non-sphericity1 in
the error terms. This non-sphericity would again require
large numbers of parameters to be estimated for each
voxel using conventional techniques. In SPM, the non-
sphericity is parameterized in a parsimonious way with
just two parameters for each voxel. These are the error
variance and smoothness estimators (see Part 3). This
minimal parameterization lends SPM a sensitivity that
surpasses multivariate approaches. SPM can do this
because RFT implicitly harnesses constraints on the non-
sphericity implied by the continuous (i.e. analytic) nature
of the data. This is something that conventional mul-
tivariate and equivalent univariate approaches cannot
accommodate, to their cost.

Some analyses use statistical maps based on non-
parametric tests that eschew distributional assumptions
about the data (see Chapter 21). These approaches are
generally less powerful (i.e. less sensitive) than paramet-
ric approaches (see Aguirre et al., 1998). However, they
have an important role in evaluating the assumptions

1 Sphericity refers to the assumption of identically and indepen-
dently distributed error terms (IID). Under IID assumptions the
probability density function of the errors, from all observations,
has spherical iso-contours, hence sphericity. Deviations from
either of the IID criteria constitute non-sphericity. If the error
terms are not identically distributed then different observa-
tions have different error variances. Correlations among errors
reflect dependencies among the error terms (e.g. serial correla-
tion in fMRI time series) and constitute the second component
of non-sphericity. In neuroimaging both spatial and temporal
non-sphericity can be quite profound.
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behind parametric approaches and may supervene in
terms of sensitivity when these assumptions are violated
(e.g. when degrees of freedom are very small and voxel
sizes are large in relation to smoothness).

In Part 4 we consider Bayesian alternatives to classical
inference with SPMs. This rests on conditional inferences
about an effect, given the data, as opposed to classi-
cal inferences about the data, given the effect is zero.
Bayesian inferences on continuous fields or images use
posterior probability maps (PPMs). Although less com-
monly used than SPMs, PPMs are potentially useful,
not least because they do not have to contend with the
multiple comparisons problem induced by classical infer-
ence. In contradistinction to SPM, this means that infer-
ences about a given regional response do not depend on
inferences about responses elsewhere. Next we consider
parameter estimation in the context of the GLM. This
is followed by an introduction to the role of RFT when
making classical inferences about continuous data.

The general linear model

Statistical analysis of imaging data corresponds to invert-
ing generative models of the data to partition observed
responses into components of interest, confounds and
error. Inferences are then pursued using statistics that
compare interesting effects and the error. This classi-
cal inference can be regarded as a direct comparison of
the variance due to an interesting experimental manip-
ulation with the error variance (compare with the F -
statistic and other likelihood ratios). Alternatively, one
can view the statistic as an estimate of the response, or
difference of interest, divided by an estimate of its stan-
dard deviation. This is a useful way to think about the
t-statistic.

A brief review of the literature may give the impression
that there are numerous ways to analyse PET and fMRI
time-series with a diversity of statistical and conceptual
approaches. This is not the case. With very few excep-
tions, every analysis is a variant of the general linear
model. This includes simple t-tests on scans assigned to
one condition or another, correlation coefficients between
observed responses and boxcar stimulus functions in
fMRI, inferences made using multiple linear regression,
evoked responses estimated using linear time invariant
models, and selective averaging to estimate event-related
responses in fMRI. Mathematically, they are all formally
identical and can be implemented with the same equa-
tions and algorithms. The only thing that distinguishes
among them is the design matrix encoding the temporal
model or experimental design. The use of the correlation
coefficient deserves special mention because of its popu-
larity in fMRI (Bandettini et al., 1993). The significance of

a correlation is identical to the significance of the equiv-
alent t-statistic testing for a regression of the data on a
stimulus function. The correlation coefficient approach is
useful but the inference is effectively based on a limiting
case of multiple linear regression that obtains when there
is only one regressor. In fMRI, many regressors usually
enter a statistical model. Therefore, the t-statistic pro-
vides a more versatile and generic way of assessing the
significance of regional effects and is usually preferred
over the correlation coefficient.

The general linear model is an equation Y = X	+�
that expresses the observed response variable in terms
of a linear combination of explanatory variables X plus
a well behaved error term (Figure 2.3 and Friston et al.,
1995b). The general linear model is variously known as
‘analysis of covariance’ or ‘multiple regression analysis’
and subsumes simpler variants, like the ‘t-test’ for a dif-
ference in means, to more elaborate linear convolution
models such as finite impulse response (FIR) models.
The matrix that contains the explanatory variables (e.g.
designed effects or confounds) is called the design matrix.
Each column of the design matrix corresponds to an
effect one has built into the experiment or that may
confound the results. These are referred to as explana-
tory variables, covariates or regressors. The example in
Plate 1 relates to an fMRI study of visual stimulation
under four conditions. The effects on the response vari-
able are modelled in terms of functions of the pres-
ence of these conditions (i.e. boxcars smoothed with a
haemodynamic response function) and constitute the first
four columns of the design matrix. There then follows
a series of terms that are designed to remove or model
low-frequency variations in signal due to artefacts such
as aliased biorhythms and other drift terms. The final
column is whole brain activity. The relative contribution
of each of these columns is assessed using standard maxi-
mum likelihood and inferences about these contributions
are made using t or F -statistics, depending upon whether
one is looking at a particular linear combination (e.g.
a subtraction), or all of them together. The operational
equations are depicted schematically in Figure 2.3. In
this scheme, the general linear model has been extended
(Worsley and Friston, 1995) to incorporate intrinsic non-
sphericity, or correlations among the error terms, and to
allow for some temporal filtering of the data with the
matrix S. This generalization brings with it the notion
of effective degrees of freedom, which are less than the
conventional degrees of freedom under IID assumptions
(see footnote). They are smaller because the temporal
correlations reduce the effective number of independent
observations. The statistics are constructed using the
approximation of Satterthwaite. This is the same approx-
imation used in classical non-sphericity corrections such
as the Geisser-Greenhouse correction. However, in the
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FIGURE 2.3 The general linear model. The general linear model is an equation expressing the response variable Y in terms of a linear
combination of explanatory variables in a design matrix X and an error term with assumed or known autocorrelation �. The data can be
filtered with a convolution or residual forming matrix (or a combination) S, leading to a generalized linear model that includes [intrinsic]
serial correlations and applied [extrinsic] filtering. Different choices of S correspond to different estimation schemes. The parameter estimates
obtain in a least squares sense using the pseudo-inverse (denoted by +) of the filtered design matrix. Generally, an effect of interest is specified
by a vector of contrast weights c that give a weighted sum or compound of parameter estimates referred to as a contrast. The t-statistic is
simply this contrast divided by its standard error (i.e. square root of its estimated variance). The ensuing t-statistic is distributed with v
degrees of freedom. The equations for estimating the variance of the contrast and the degrees of freedom are provided in the right-hand
panel. Efficiency is simply the inverse of the variance of the contrast. These expressions are useful when assessing the relative efficiency of
different designs encoded in X. The parameter estimates can be examined directly or used to compute the fitted responses (see lower left
panel). Adjusted data refer to data from which fitted components (e.g. confounds) have been removed. The residuals r, obtain from applying
the residual-forming matrix R to the data. These residual fields are used to estimate the smoothness of the component fields of the SPM and
are needed by random field theory (see Figure 2.4).

Worsley and Friston (1995) scheme, this approximation
is used to construct the statistics and appropriate degrees
of freedom, not simply to provide a post hoc correction to
the degrees of freedom.

There is a special and important case of temporal filter-
ing. This is when the filtering de-correlates (i.e. whitens)
the error terms by using S = �−1/2. This is the filter-
ing scheme used in current implementations of the SPM
software and renders the ordinary least squares (OLS)
parameter estimates maximum likelihood (ML) estima-
tors. These are optimal in the sense that they are the min-
imum variance estimators of all unbiased estimators. The
estimation of S = �−1/2 uses expectation maximization
(EM) to provide restricted maximum likelihood (ReML)
estimates of � = ���� in terms of hyperparameters � cor-
responding to variance components (see Chapter 11 and
Chapter 24 for an explanation of EM). In this case, the
effective degrees of freedom revert to the maximum that
would be attained in the absence of temporal correlations
or non-sphericity.

Contrasts

The equations summarized in Figure 2.3 can be used to
implement a vast range of statistical analyses. The issue
is therefore not the mathematics but the formulation of a
design matrix appropriate to the study design and infer-
ences that are sought. The design matrix can contain both
covariates and indicator variables. Each column has an
associated unknown or free parameter 	. Some of these
parameters will be of interest (e.g. the effect of a partic-
ular sensorimotor or cognitive condition or the regres-
sion coefficient of haemodynamic responses on reaction
time). The remaining parameters will be of no interest
and pertain to confounding effects (e.g. the effect of being
a particular subject or the regression slope of voxel activ-
ity on global activity). Inferences about the parameter
estimates are made using their estimated variance. This
allows one to test the null hypothesis, that all the esti-
mates are zero, using the F -statistic to give an SPM�F�
or that some particular linear combination (e.g. a sub-
traction) of the estimates is zero using an SPM�t�. The
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t-statistic obtains by dividing a contrast or compound
(specified by contrast weights) of the ensuing parame-
ter estimates by the standard error of that compound.
The latter is estimated using the variance of the residu-
als about the least-squares fit. An example of a contrast
weight vector would be �−1 1 0
 
 
 � �� to compare the dif-
ference in responses evoked by two conditions, modelled
by the first two condition-specific regressors in the design
matrix. Sometimes several contrasts of parameter esti-
mates are jointly interesting. For example, when using
polynomial (Büchel et al., 1996) or basis function expan-
sions of some experimental factor. In these instances, the
SPM�F� is used and is specified with a matrix of con-
trast weights that can be thought of as a collection of
‘t-contrasts’ (see Chapter 9 for a fuller explanation). An
F -contrast may look like:

[−1 0 0 0 
 
 

0 1 0 0 
 
 


]

This would test for the significance of the first or second
parameter estimates. The fact that the first weight is neg-
ative has no effect on the test because the F -statistic is
based on sums of squares.

In most analyses, the design matrix contains indica-
tor variables or parametric variables encoding the exper-
imental manipulations. These are formally identical to
classical analysis of covariance (i.e. ANCOVA) models.
An important instance of the GLM, from the perspective
of fMRI, is the linear time-invariant (LTI) model. Mathe-
matically, this is no different from any other GLM. How-
ever, it explicitly treats the data-sequence as an ordered
time-series and enables a signal processing perspective
that can be very useful (see next chapter and Chapter 14).

TOPOLOGICAL INFERENCE AND THE
THEORY OF RANDOM FIELDS

Classical inferences using SPMs can be of two sorts,
depending on whether one knows where to look in
advance. With an anatomically constrained hypothesis,
about effects in a particular brain region, the uncorrected
p-value associated with the height or extent of that region
in the SPM can be used to test the hypothesis. With an
anatomically open hypothesis (i.e. a null hypothesis that
there is no effect anywhere in a specified volume of the
brain), a correction for multiple dependent comparisons
is necessary. The theory of random fields provides a way
of adjusting the p-value that takes into account the fact
that neighbouring voxels are not independent by virtue
of continuity in the original data. Provided the data are
smooth the RFT adjustment is less severe (i.e. is more

sensitive) than a Bonferroni correction for the number
of voxels. As noted above, RFT deals with the multiple
comparisons problem in the context of continuous, statis-
tical fields, in a way that is analogous to the Bonferroni
procedure for families of discrete statistical tests. There
are many ways to appreciate the difference between RFT
and Bonferroni corrections. Perhaps the most intuitive is
to consider the fundamental difference between an SPM
and a collection of discrete t-values. When declaring a
peak or cluster of the SPM to be significant, we refer
collectively to all the voxels associated with that feature.
The false positive rate is expressed in terms of peaks
or clusters, under the null hypothesis of no activation.
This is not the expected false positive rate of voxels. One
false positive peak may be associated with hundreds of
voxels, if the SPM is very smooth. Bonferroni correc-
tion controls the expected number of false positive vox-
els, whereas RFT controls the expected number of false
positive peaks. Because the number of peaks is always
less than the number of voxels, RFT can use a lower
threshold, rendering it much more sensitive. In fact, the
number of false positive voxels is somewhat irrelevant
because it is a function of smoothness. The RFT correc-
tion discounts voxel size by expressing the search volume
in terms of smoothness or resolution elements (Resels)
(Figure 2.4). This intuitive perspective is expressed for-
mally in terms of differential topology using the Euler
characteristic (Worsley et al., 1992). At high thresholds the
Euler characteristic corresponds to the number of peaks
above threshold.

There are only two assumptions underlying the use of
the RFT correction:

1 the error fields (but not necessarily the data) are a rea-
sonable lattice approximation to an underlying random
field with a multivariate Gaussian distribution

2 these fields are continuous, with a differentiable and
invertible autocorrelation function.

A common misconception is that the autocorrelation
function has to be Gaussian. It does not. The only way in
which these assumptions can be violated is if:

1 the data are not smooth, violating the reasonable lattice
assumption or

2 the statistical model is mis-specified so that the errors
are not normally distributed.

Early formulations of the RFT correction were based on the
assumption that the spatial correlation structure was wide-
sense stationary. This assumption can now be relaxed due
to a revision of the way in which the smoothness estima-
tor enters the correction procedure (Kiebel et al., 1999). In
other words, the corrections retain their validity, even if the
smoothness varies from voxel to voxel.
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FIGURE 2.4 Schematic illustrating the use of random field theory (RFT) in making inferences about SPMs. If one knew precisely where
to look, then inference can be based on the value of the statistic at the specified location in the SPM. However, generally, one does not have
a precise anatomical prior, and an adjustment for multiple dependent comparisons has to be made to the p-values. These corrections use
distributional approximations from RFT. This schematic deals with a general case of n SPM�t� whose voxels all survive a common threshold
u (i.e. a conjunction of n component SPMs). The central probability, upon which all peak, cluster or set-level inferences are made, is the
probability P�u� c�k� of getting c or more clusters with k or more resels (resolution elements) above this threshold. By assuming that clusters
behave like a multidimensional Poisson point-process (i.e. the Poisson clumping heuristic) P�u� c�k� is determined simply; the distribution
of c is Poisson with an expectation that corresponds to the product of the expected number of clusters, of any size, and the probability that
any cluster will be bigger than k resels. The latter probability depends on the expected number of resels per cluster �. This is simply the
expected suprathreshold volume, divided by the expected number of clusters. The expected number of clusters �0 is estimated with the Euler
characteristic (EC) (effectively the number of blobs minus the number of holes). This depends on the EC density for the statistic in question
(with degrees of freedom v) and the resel counts. The EC density is the expected EC per unit of D-dimensional volume of the SPM where
the volume of the search is given by the resel counts. Resel counts are a volume measure that has been normalized by the smoothness of
the SPMs component fields, expressed in terms of the full width at half maximum (FWHM). This is estimated from the determinant of the
variance-covariance matrix of the first spatial derivatives of e, the normalized residual fields r (from Figure 2.3). In this example equations
for a sphere of radius � are given. � denotes the cumulative density function for the statistic in question. (See Appendix 6 for technical
details.)

Anatomically closed hypotheses

When making inferences about regional effects (e.g. acti-
vations) in SPMs, one often has some idea about where
the activation should be. In this instance, a correction
for the entire search volume is inappropriate. However,
a problem remains in the sense that one would like to
consider activations that are ‘near’ the predicted location,
even if they are not exactly coincident. There are two
approaches one can adopt: pre-specify a small search vol-
ume and make the appropriate RFT correction (Worsley
et al., 1996); or use the uncorrected p-value based on
spatial extent of the nearest cluster (Friston, 1997). This
probability is based on getting the observed number of
voxels, or more, in a given cluster (conditional on that
cluster existing). Both these procedures are based on dis-
tributional approximations from RFT.

Anatomically open hypotheses and levels of inference

To make inferences about regionally specific effects,
the SPM is thresholded using some height and spatial
extent thresholds that are specified by the user. Corrected
p-values can then be derived that pertain to:

1 The number of activated regions (i.e. number of clusters
above the height and volume threshold). These are set-
level inferences.

2 The number of activated voxels (i.e. volume) compris-
ing a particular region. These are cluster-level inferences.

3 The p-value for each peak within that cluster, i.e. peak-
level inferences.

These p-values are corrected for the multiple depen-
dent comparisons and are based on the probability of
obtaining c, or more, clusters with k, or more, voxels,
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above a threshold u in an SPM of known or estimated
smoothness. This probability has a reasonably simple
form (see Figure 2.4 for details).

Set-level refers to the inference that the number of clus-
ters comprising an observed activation profile is highly
unlikely to have occurred by chance and is a statement
about the activation profile, as characterized by its con-
stituent regions. Cluster-level inferences are a special case
of set-level inferences that obtain when the number of
clusters c = 1. Similarly, peak-level inferences are special
cases of cluster-level inferences that result when the clus-
ter can be small (i.e. k = 0). Using a theoretical power
analysis (see Friston et al., 1996b and Chapter 19) of dis-
tributed activations, one observes that set-level inferences
are generally more powerful than cluster-level inferences
and that cluster-level inferences are generally more pow-
erful than peak-level inferences. The price paid for this
increased sensitivity is reduced localizing power. Peak-
level tests permit individual maxima to be identified as
significant, whereas cluster and set-level inferences only
allow clusters or sets of clusters to be declared signif-
icant. It should be remembered that these conclusions,
about the relative power of different inference levels, are
based on distributed activations. Focal activation may
well be detected with greater sensitivity using tests based
on peak height. Typically, people use peak-level infer-
ences and a spatial extent threshold of zero. This reflects
the fact that characterizations of functional anatomy are
generally more useful when specified with a high degree
of anatomical precision.

EXPERIMENTAL AND MODEL DESIGN

This section considers the different sorts of designs that
can be employed in neuroimaging studies. Experimen-
tal designs can be classified as single factor or multifactor
designs; within this classification the levels of each factor
can be categorical or parametric. We will start by discussing
categorical and parametric designs and then deal with
multifactor designs. We then move on to some more tech-
nical issues that attend the analysis of fMRI experiments.
These are considered in terms of model design, using a
signal processing perspective.

Categorical designs, cognitive subtraction and
conjunctions

The tenet of cognitive subtraction is that the difference
between two tasks can be formulated as a separable
cognitive or sensorimotor component and that region-
ally specific differences in haemodynamic responses,

evoked by the two tasks, identify the corresponding func-
tionally selective area. Early applications of subtraction
range from the functional anatomy of word process-
ing (Petersen et al., 1989) to functional specialization in
extrastriate cortex (Lueck et al., 1989). The latter stud-
ies involved presenting visual stimuli with and with-
out some sensory attribute (e.g. colour, motion etc.). The
areas highlighted by subtraction were identified with
homologous areas in monkeys that showed selective elec-
trophysiological responses to equivalent visual stimuli.

Cognitive conjunctions (Price and Friston, 1997) can be
thought of as an extension of the subtraction technique,
in the sense that they combine a series of subtractions.
In subtraction, one tests a single hypothesis pertaining
to the activation in one task relative to another. In con-
junction analyses, several hypotheses are tested, asking
whether the activations, in a series of task pairs, are col-
lectively significant (cf. an F -test). Consider the problem
of identifying regionally specific activations due to a par-
ticular cognitive component (e.g. object recognition). If
one can identify a series of task pairs whose differences
have only that component in common, then the region
which activates, in all the corresponding subtractions,
can be associated with the common component. Con-
junction analyses allow one to demonstrate the context-
invariant nature of regional responses. One important
application of conjunction analyses is in multisubject
fMRI studies, where generic effects are identified as those
that are jointly significant in all the subjects studied
(see below).

Parametric designs

The premise behind parametric designs is that regional
physiology will vary systematically with the degree of
cognitive or sensorimotor processing or deficits thereof.
Examples of this approach include the PET experiments
of Grafton et al. (1992) that demonstrated significant cor-
relations between haemodynamic responses and the per-
formance of a visually guided motor tracking task. On the
sensory side, Price et al. (1992) demonstrated a remark-
able linear relationship between perfusion in periaudi-
tory regions and frequency of aural word presentation.
This correlation was not observed in Wernicke’s area,
where perfusion appeared to correlate, not with the dis-
criminative attributes of the stimulus, but with the pres-
ence or absence of semantic content. These relationships
or neurometric functions may be linear or non-linear. Using
polynomial regression, in the context of the GLM, one
can identify non-linear relationships between stimulus
parameters (e.g. stimulus duration or presentation rate)
and evoked responses. To do this one usually uses an
SPM�F� (see Büchel et al., 1996).
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The example provided in Figure 2.5 illustrates both cat-
egorical and parametric aspects of design and analysis.
These data were obtained from an fMRI study of visual
motion processing using radially moving dots. The stim-
uli were presented over a range of speeds using isolumi-
nant and isochromatic stimuli. To identify areas involved
in visual motion, a stationary dots condition was sub-
tracted from the moving dots conditions (see the con-
trast weights in the upper right). To ensure significant
motion-sensitive responses, using colour and luminance
cues, a conjunction of the equivalent subtractions was
assessed under both viewing contexts. Areas V5 and V3a
are seen in the ensuing SPM�t�. The t-values in this SPM

are simply the minimum of the t-values for each sub-
traction. Thresholding this SPM ensures that all voxels
survive the threshold u in each subtraction separately.
This conjunction SPM has an equivalent interpretation; it
represents the intersection of the excursion sets, defined
by the threshold u, of each component SPM. This intersec-
tion is the essence of a conjunction. The expressions in
Figure 2.4 pertain to the general case of the minimum of
n t-values. The special case where n = 1 corresponds to
a conventional SPM�t�.

The responses in left V5 are shown in the lower panel
of Figure 2.5 and speak to a compelling inverted ‘U’ rela-
tionship between speed and evoked response that peaks
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FIGURE 2.5 Top right: design matrix: this is an image
representation of the design matrix. Contrasts: these are the
vectors of contrast weights defining the linear compounds
of parameters tested. The contrast weights are displayed
over the column of the design matrix that corresponds to
the effects in question. The design matrix here includes
condition-specific effects (boxcar-functions convolved with
a haemodynamic response function). Odd columns corre-
spond to stimuli shown under isochromatic conditions and
even columns model responses to isoluminant stimuli. The
first two columns are for stationary stimuli and the remain-
ing columns are for conditions of increasing speed. The
final column is a constant term. Top left: SPM�t�: this is
a maximum intensity projection conforming to the stan-
dard anatomical space of Talairach and Tournoux (1988).
The values here are the minimum t-values from both con-
trasts, thresholded at p = 0�001 uncorrected. The most sig-
nificant conjunction is seen in left V5. Lower panel: plot of
the condition-specific parameter estimates for this voxel. The
t-value was 9.25 (p <0�001 corrected – see Figure 2.4).
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at around eight degrees per second. It is this sort of rela-
tionship that parametric designs try to characterize. Inter-
estingly, the form of these speed-dependent responses
was similar using both stimulus types, although lumi-
nance cues are seen to elicit a greater response. From the
point of view of a factorial design there is a main effect of
cue (isoluminant versus isochromatic), a main effect of
speed, but no speed by cue interaction.

Clinical neuroscience studies can use parametric
designs by looking for the neuronal correlates of clini-
cal (e.g. symptom) ratings over subjects. In many cases,
multiple clinical scores are available for each subject and
the statistical design can usually be seen as a multi-
linear regression. In situations where the clinical scores
are correlated, principal component analysis or factor
analysis is sometimes applied to generate a new, and
smaller, set of explanatory variables that are orthogonal
to each other. This has proved particularly useful in psy-
chiatric studies where syndromes can be expressed over
a number of different dimensions (e.g. the degree of psy-
chomotor poverty, disorganization and reality distortion
in schizophrenia; see Liddle et al., 1992). In this way,
regionally specific correlates of various symptoms may
point to their distinct pathogenesis in a way that tran-
scends the syndrome itself. For example, psychomotor
poverty may be associated with left dorso-lateral pre-
frontal dysfunction, irrespective of whether the patient is
suffering from schizophrenia or depression.

Factorial designs

Factorial designs are more prevalent than single-factor
designs because they enable inferences about interac-
tions. At its simplest, an interaction represents a change
in a change. Interactions are associated with factorial
designs where two or more factors are combined in the
same experiment. The effect of one factor, on the effect of
the other, is assessed by the interaction. Factorial designs
have a wide range of applications. An early application,
in neuroimaging, examined adaptation and plasticity
during motor performance by assessing time by condi-
tion interactions (Friston et al., 1992a). Psychopharmaco-
logical activation studies are further examples of factorial
designs (Friston et al., 1992b). In these studies, cogni-
tively evoked responses are assessed before and after
being given a drug. The interaction term reflects the phar-
macological modulation of task-dependent activations.
Factorial designs have an important role in the context
of cognitive subtraction and additive factors logic by
virtue of being able to test for interactions, or context-
sensitive activations, i.e. to demonstrate the fallacy of
pure-insertion (see Friston et al., 1996c). These interaction
effects can sometimes be interpreted as the integration of

the two or more [cognitive] processes or the modulation
of one [perceptual] process by another. Figure 2.6 shows
an example which takes an unusual perspective on the
modulation of event-related responses as the interaction
between stimulus presentation and experiential context.

From the point of view of clinical studies, interactions
are central. The effect of a disease process on sensorimo-
tor or cognitive activation is simply an interaction and
involves replicating a subtraction experiment in subjects
with and without the pathology. Factorial designs can
also embody parametric factors. If one of the factors has
a number of parametric levels, the interaction can be
expressed as a difference in regression slope of regional
activity on the parameter, under both levels of the other
[categorical] factor. An important example of factorial
designs, that mix categorical and parameter factors, are
those looking for psychophysiological interactions. Here the
parametric factor is brain activity measured in a par-
ticular brain region. These designs have proven useful
in looking at the interaction between bottom-up and
top-down influences within processing hierarchies in the
brain (Friston et al., 1997). This issue will be addressed
below and in Part 6, from the point of view of effective
connectivity.

Designing fMRI studies

In this section, we consider fMRI time-series from a signal
processing perspective with particular focus on optimal
experimental design and efficiency. fMRI time-series can
be viewed as a linear admixture of signal and noise. Sig-
nal corresponds to neuronally mediated haemodynamic
changes that can be modelled as a convolution of some
underlying neuronal process, responding to changes in
experimental factors, by a haemodynamic response func-
tion. Noise has many contributions that render it rather
complicated in relation to some neurophysiological mea-
surements. These include neuronal and non-neuronal
sources. Neuronal noise refers to neurogenic signal not
modelled by the explanatory variables and has the same
frequency structure as the signal itself. Non-neuronal
components have both white (e.g. Johnson noise) and
coloured components (e.g. pulsatile motion of the brain
caused by cardiac cycles and local modulation of the
static magnetic field by respiratory movement). These
effects are typically low-frequency or wide-band (e.g.
aliased cardiac-locked pulsatile motion). The superposi-
tion of all these components induces temporal correla-
tions among the error terms (denoted by � in Figure 2.3)
that can affect sensitivity to experimental effects. Sensi-
tivity depends upon the relative amounts of signal and
noise and the efficiency of the experimental design. Effi-
ciency is simply a measure of how reliable the parameter
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Interactions between set and event-related responses:
Attentional modulation of V5 responses

FIGURE 2.6 Results showing attentional modulation of visually-evoked responses. Subjects viewed stationary monochromatic stimuli
that occasionally changed colour and moved at the same time. These compound events were presented under two levels of attentional set
(attention to colour and attention to motion). The event-related responses are modelled, in an attention-specific fashion by the first four
regressors (stick-functions convolved with a haemodynamic response function and its derivative) in the design matrix on the right. The main
effects of attention are modelled as similarly convolved boxcars. The interaction between attentional set and visually evoked responses is
simply the difference in evoked responses under both levels of attention and is tested for with the appropriate contrast weights (upper right).
Only the first 256 rows of the design matrix are shown. The most significant modulation of evoked responses, under attention to motion, was
seen in left V5 (insert). The fitted responses and their standard errors are shown on the left as functions of peristimulus time.

estimates are and can be defined as the inverse of the vari-
ance of a contrast of parameter estimates (see Figure 2.3).
There are two important considerations that arise from
this perspective on fMRI time-series: the first pertains to
optimal experimental design and the second to optimum
de-convolution of the time-series to obtain the most effi-
cient parameter estimates.

The haemodynamic response function and
optimum design

As noted above, an LTI model of neuronally mediated
signals in fMRI suggests that only those experimentally
induced signals that survive convolution with the haemo-
dynamic response function (HRF) can be estimated with
any efficiency. By convolution theorem, the frequency
structure of experimental variance should therefore be
designed to match the transfer function of the HRF. The
corresponding frequency profile of this transfer function
is shown in Figure 2.7 (solid line). It can be seen that fre-
quencies around 0.03 Hz are optimal, corresponding to
periodic designs with 32-second periods (i.e. 16-second
epochs). Generally, the first objective of experimental
design is to comply with the natural constraints imposed

by the HRF and ensure that experimental variance occu-
pies these intermediate frequencies.

Serial correlations and filtering

This is quite a complicated but important area. Conven-
tional signal processing approaches dictate that whiten-
ing the data engenders the most efficient parameter
estimation. This corresponds to filtering with a convo-
lution matrix S = K−1 that is the inverse of the intrinsic
convolution matrix, i.e. KKT = � (see Figure 2.3). This
whitening strategy renders the least-square estimator in
Figure 2.3 equivalent to the ML or Gauss-Markov esti-
mator. However, one generally does not know the form
of the intrinsic correlations, which means they have to
be estimated. This estimation usually proceeds using a
restricted maximum likelihood (ReML) estimate of the
serial correlations, among the residuals, that properly
accommodates the effects of the residual-forming matrix
and associated loss of degrees of freedom. However,
using this estimate of the intrinsic non-sphericity to form
a Gauss-Markov estimator at each voxel is not easy. First,
the estimate of non-sphericity can itself be imprecise
leading to bias in the standard error (Friston et al., 2000).
Second, ReML estimation requires a computationally
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FIGURE 2.7 Transfer function of a canonical
haemodynamic response function (HRF), with (bro-
ken line) and without (solid line) the application of a
highpass filter. This transfer function corresponds to
the spectral density of a white-noise process after con-
volution with the HRF and places constraints on the
frequencies that survive haemodynamic convolution.
This follows from convolution theorem (summarized
in the equations). The insert is the filter expressed
in time, corresponding to the spectral density that
obtains after convolution with the HRF and highpass
filtering.

A signal processing perspective
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prohibitive iterative procedure at every voxel. There are
a number of approaches to these problems that aim to
increase the efficiency of the estimation and reduce the
computational burden. The approach adopted in current
versions of our software is to use ReML estimates based
on all voxels that respond to experimental manipulation.
This affords very efficient hyperparameter estimates2

and, furthermore, allows one to use the same matrices at
each voxel when computing the parameter estimates.

Although we usually make S = �−1/2 = K−1, using a
first-pass ReML estimate of the serial correlations, we will
deal with the simpler and more general case where S can
take any form. In this case, the parameter estimates are
generalized least square (GLS) estimators. The GLS esti-
mator is unbiased and, luckily, is identical to the Gauss-
Markov estimator if the regressors in the design matrix
are periodic.3 After GLS estimation, the ReML estimate
of V = S�ST enters into the expressions for the standard
error and degrees of freedom provided in Figure 2.3.

2 The efficiency scales with the number of voxels.
3 More exactly, the GLS and ML estimators are the same if the
design matrix is spanned by the eigenvectors of the Toeplitz
autocorrelation matrix �.

fMRI noise has been variously characterized as a 1/f
process (Zarahn et al., 1997) or an autoregressive pro-
cess (Bullmore et al., 1996) with white noise (Purdon
and Weisskoff, 1998). Irrespective of the exact form these
serial correlations take, treating low-frequency drifts as
fixed effects can finesse the hyperparameterization of
serial correlations. Removing low frequencies from the
time-series allows the model to fit serial correlations over
a more restricted frequency range or shorter time spans.
Drift removal can be implemented by including drift
terms in the design matrix or by including the implicit
residual forming matrix in S to make it a highpass filter.
An example of a highpass filter with a highpass cut-off
of 1/64 Hz is shown in the inset of Figure 2.7. This fil-
ter’s transfer function (the broken line in the main panel)
illustrates the frequency structure of neurogenic signals
after highpass filtering.

Spatially coherent confounds and global
normalization

Implicit in the use of highpass filtering is the removal
of low-frequency components that can be regarded
as confounds. Other important confounds are signal
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components that are artefactual or have no regional
specificity. These are referred to as global confounds
and have a number of causes. These can be divided
into physiological (e.g. global perfusion changes in PET)
and non-physiological (e.g. transmitter power calibra-
tion or receiver gain in fMRI). The latter generally scale
the signal before the MRI sampling process. Other non-
physiological effects may have a non-scaling effect (e.g.
Nyquist ghosting, movement-related effects etc.). In PET,
it is generally accepted that regional changes in rCBF,
evoked neuronally, mix additively with global changes to
give the measured signal. This calls for a global normal-
ization procedure where the global estimator enters into
the statistical model as a confound. In fMRI, instrumen-
tation effects that scale the data motivate a global nor-
malization by proportional scaling, using the whole brain
mean, before the data enter into the statistical model.

It is important to differentiate between global con-
founds and their estimators. By definition, the global
mean over intracranial voxels will subsume all regionally
specific effects. This means that the global estimator may
be partially collinear with effects of interest, especially
if evoked responses are substantial and widespread. In
these situations, global normalization may induce appar-
ent deactivations in regions not expressing a physiologi-
cal response. These are not artefacts in the sense that they
are real, relative to global changes, but they have less
face validity in terms of the underlying neurophysiol-
ogy. In instances where regionally specific effects bias the
global estimator, some investigators prefer to omit global
normalization. Provided drift terms are removed from
the time-series, this is generally acceptable because most
global effects have slow time constants. However, the
issue of normalization-induced deactivations is better cir-
cumnavigated with experimental designs that use well-
controlled conditions, which elicit differential responses
in restricted brain systems.

Non-linear system identification approaches

So far, we have only considered linear models and first-
order HRFs. Another signal processing perspective is
provided by non-linear system identification (Vazquez
and Noll, 1998). This section considers non-linear models
as a prelude to the next subsection on event-related fMRI,
where non-linear interactions among evoked responses
provide constraints for experimental design and analysis.
We have described an approach to characterizing evoked
haemodynamic responses in fMRI based on non-linear
system identification, in particular the use of Volterra
series (Friston et al., 1998). This approach enables one to
estimate Volterra kernels that describe the relationship
between stimulus presentation and the haemodynamic

responses that ensue. Volterra series are essentially high-
order extensions of linear convolution models. These ker-
nels therefore represent a non-linear characterization of
the HRF that can model the responses to stimuli in dif-
ferent contexts and interactions among stimuli. In fMRI,
the kernel coefficients can be estimated by using a sec-
ond order approximation to the Volterra series to formu-
late the problem in terms of a general linear model and
expanding the kernels in terms of temporal basis func-
tions (see Chapter 27). This allows the use of the standard
techniques described above to estimate the kernels and
to make inferences about their significance on a voxel-
specific basis using SPMs.

One important manifestation of non-linear effects,
captured by second order kernels, is a modulation of
stimulus-specific responses by preceding stimuli that
are proximate in time. This means that responses
at high stimulus presentation rates saturate and, in
some instances, show an inverted U behaviour. This
behaviour appears to be specific to blood oxygenation-
level-dependent (BOLD) effects (as distinct from evoked
changes in cerebral blood flow) and may represent a
haemodynamic refractoriness. This effect has important
implications for event-related fMRI, where one may want
to present trials in quick succession.

The results of a typical non-linear analysis are given
in Figure 2.8. The results in the right panel represent the
average response, integrated over a 32-second train of
stimuli as a function of stimulus onset asynchrony (SOA)
within that train. These responses are based on the kernel
estimates (left hand panels) using data from a voxel in
the left posterior temporal region of a subject obtained
during the presentation of single words at different rates.
The solid line represents the estimated response and
shows a clear maximum at just less than one second.
The dots are responses based on empirical data from the
same experiment. The broken line shows the expected
response in the absence of non-linear effects (i.e. that
predicted by setting the second order kernel to zero). It
is clear that non-linearities become important at around
two seconds leading to an actual diminution of the inte-
grated response at sub-second SOAs. The implication of
this sort of result is that SOAs should not really fall much
below one second and at short SOAs the assumptions of
linearity are violated. It should be noted that these data
pertain to single word processing in auditory association
cortex. More linear behaviours may be expressed in pri-
mary sensory cortex where the feasibility of using min-
imum SOAs, as low as 500 ms, has been demonstrated
(Burock et al., 1998). This lower bound on SOA is impor-
tant because some effects are detected more efficiently
with high presentation rates. We now consider this from
the point of view of event-related designs.
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FIGURE 2.8 Left panels: Volterra kernels from a voxel in the left superior temporal gyrus at −56� −28� 12 mm. These kernel estimates
were based on a single-subject study of aural word presentation at different rates (from zero to ninety words per minute) using a second
order approximation to a Volterra series expansion modelling the observed haemodynamic response to stimulus input (a delta function for
each word). These kernels can be thought of as a characterization of the second order haemodynamic response function. The first order
kernel (h1 – upper panel) represents the (first order) component usually presented in linear analyses. The second order kernel (h2 – lower
panel) is presented in image format. The colour scale is arbitrary; white is positive and black is negative. The insert on the right represents
h1h1

T , the second order kernel that would be predicted by a simple model that involved linear convolution with h1 followed by some static
non-linearity. Right panel: integrated responses over a 32-second stimulus train as a function of SOA. Solid line: estimates based on the
non-linear convolution model parameterized by the kernels on the left. Broken line: the responses expected in the absence of second order
effects (i.e. in a truly linear system). Dots: empirical averages based on the presentation of actual stimulus trains.

Event and epoch-related designs

A crucial distinction in experimental design for fMRI is
that between epoch and event-related designs. In single
photon emission computerized tomography (SPECT) and
positron emission tomography (PET) only epoch-related
responses can be assessed because of the relatively long
half-life of the radiotracers used. However, in fMRI there
is an opportunity to measure event-related responses,
not unlike the paradigm used in electroencephalography
(EEG) and magnetoencephalography (MEG). An impor-
tant issue, in event-related fMRI, is the choice of inter-
stimulus interval or more precisely SOA. The SOA, or
the distribution of SOAs, is a critical factor and is chosen,
subject to psychological or psychophysical constraints, to
maximize the efficiency of response estimation. The con-
straints on the SOA clearly depend upon the nature of
the experiment but are generally satisfied when the SOA
is small and derives from a random distribution. Rapid
presentation rates allow for the maintenance of a par-
ticular cognitive or attentional set, decrease the latitude
that the subject has for engaging alternative strategies,

or incidental processing, and allows the integration of
event-related paradigms using fMRI and electrophysiol-
ogy. Random SOAs ensure that preparatory or anticipa-
tory factors do not confound event-related responses and
ensure a uniform context in which events are presented.
These constraints speak of the well-documented advan-
tages of event-related fMRI over conventional blocked
designs (Buckner et al., 1996; Clark et al., 1998).

In order to compare the efficiency of different designs,
it is useful to have a common framework that encom-
passes all of them. The efficiency can then be examined
in relation to the parameters of the designs. Designs can
be stochastic or deterministic depending on whether there
is a random element to their specification. In stochas-
tic designs (Heid et al., 1997) one needs to specify the
probabilities of an event occurring at all times those
events could occur. In deterministic designs, the occur-
rence probability is unity and the design is completely
specified by the times of stimulus presentation or tri-
als. The distinction between stochastic and determinis-
tic designs pertains to how a particular realization or
stimulus sequence is created. The efficiency afforded
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by a particular event sequence is a function of the
event sequence itself, and not of the process generating
the sequence (i.e. deterministic or stochastic). However,
within stochastic designs, the design matrix X, and asso-
ciated efficiency, are random variables and the expected
or average efficiency, over realizations of X is easily com-
puted.

In the framework considered here (Friston et al., 1999a),
the occurrence probability p of any event occurring is
specified at each time that it could occur (i.e. every
SOA or stimulus onset asynchrony). Here p is a vec-
tor with an element for every SOA. This formulation
engenders the distinction between stationary stochastic
designs, where the occurrence probabilities are constant
and non-stationary stochastic designs, where they change
over time. For deterministic designs, the elements of p are
0 or 1, the presence of a 1 denoting the occurrence of an
event. An example of p might be the boxcars used in con-
ventional block designs. Stochastic designs correspond to
a vector of identical values and are therefore stationary
in nature. Stochastic designs with temporal modulation

of occurrence probability have time-dependent probabili-
ties varying between 0 and 1. With these probabilities the
expected design matrices and expected efficiencies can be
computed. A useful thing about this formulation is that
by setting the mean of the probabilities p to a constant,
one can compare different deterministic and stochastic
designs given the same number of events. Some common
examples are given in Figure 2.9 (right panel) for an SOA
of one second and 32 expected events or trials over a 64
second period (except for the first deterministic exam-
ple with four events and an SOA of 16 seconds). It can
be seen that the least efficient is the sparse deterministic
design (despite the fact that the SOA is roughly opti-
mal for this class), whereas the most efficient is a block
design. A slow modulation of occurrence probabilities
gives high efficiency while retaining the advantages of
stochastic designs and may represent a useful compro-
mise between the high efficiency of block designs and the
psychological benefits and latitude afforded by stochastic
designs. However, it is important not to generalize these
conclusions too far. An efficient design for one effect may
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not be the optimum for another, even within the same
experiment. This can be illustrated by comparing the effi-
ciency with which evoked responses are detected and the
efficiency of detecting the difference in evoked responses
elicited by two sorts of trials.

Consider a stationary stochastic design with two trial
types. Because the design is stationary, the vector of
occurrence probabilities, for each trial type, is specified
by a single probability. Let us assume that the two trial
types occur with the same probability p. By varying p and
SOA one can find the most efficient design depending
upon whether one is looking for evoked responses per se
or differences among evoked responses. These two situ-
ations are depicted in the left panels of Figure 2.9. It is
immediately apparent that, for both sorts of effects, very
small SOAs are optimal. However, the optimal occur-
rence probabilities are not the same. More infrequent
events (corresponding to a smaller p = 1/3) are required
to estimate the responses themselves efficiently. This is
equivalent to treating the baseline or control condition as
any other condition (i.e. by including null events, with
equal probability, as further event types). Conversely, if
we are only interested in making inferences about the
differences, one of the events plays the role of a null
event and the most efficient design ensues when one or
the other event occurs (i.e. p = 1/2). In short, the most
efficient designs obtain when the events subtending the
differences of interest occur with equal probability.

Another example of how the efficiency is sensitive
to the effect of interest is apparent when we consider
different parameterizations of the HRF. This issue is
sometimes addressed through distinguishing between
the efficiency of response detection and response estima-
tion. However, the principles are identical and the dis-
tinction reduces to how many parameters one uses to
model the HRF for each trial type (one basis function
is used for detection and a number are required to esti-
mate the shape of the HRF). Here the contrasts may be
the same but the shape of the regressors will change
depending on the temporal basis set employed. The con-
clusions above were based on a single canonical HRF.
Had we used a more refined parameterization of the
HRF, say using three-basis functions, the most efficient
design to estimate one basis function coefficient would
not be the most efficient for another. This is most easily
seen from the signal processing perspective where basis
functions with high-frequency structure (e.g. temporal
derivatives) require the experimental variance to contain
high-frequency components. For these basis functions a
randomized stochastic design may be more efficient than
a deterministic block design, simply because the former
embodies higher frequencies. In the limiting case of finite
impulse response (FIR) estimation, the regressors become
a series of stick functions all of which have high fre-

quencies. This parameterization of the HRF calls for high
frequencies in the experimental variance. However, the
use of FIR models is contraindicated by model selection
procedures (see Chapter 14) that suggest only two or
three HRF parameters can be estimated with any effi-
ciency. Results that are reported in terms of FIRs should
be treated with caution because the inferences about
evoked responses are seldom based on the FIR parame-
ter estimates. This is precisely because they are estimated
inefficiently and contain little useful information.

INFERENCE IN HIERARCHICAL
MODELS

In this section, we consider some issues that are generic
to brain mapping studies that have repeated measures
or replications over subjects. The critical issue is whether
we want to make an inference about the effect in rela-
tion to the within-subject variability or with respect to the
between-subject variability. For a given group of subjects,
there is a fundamental distinction between saying that
the response is significant relative to the precision4 with
which that response is measured and saying that it is
significant in relation to the inter-subject variability. This
distinction relates directly to the difference between fixed-
and random-effect analyses. The following example tries
to make this clear. Consider what would happen if we
scanned six subjects during the performance of a task
and baseline. We then construct a statistical model where
task-specific effects were modelled separately for each
subject. Unknown to us, only one of the subjects activated
a particular brain region. When we examine the contrast
of parameter estimates, assessing the mean activation
over all subjects, we see that it is greater than zero by
virtue of this subject’s activation. Furthermore, because
that model fits the data extremely well (modelling no
activation in five subjects and a substantial activation
in the sixth), the error variance, on a scan-to-scan basis,
is small and the t-statistic is very significant. Can we
then say that the group shows an activation? On the one
hand, we can say, quite properly, that the mean group
response embodies an activation but, clearly, this does
not constitute an inference that the group’s response is
significant (i.e. that this sample of subjects shows a con-
sistent activation). The problem here is that we are using
the scan-to-scan error variance and this is not necessarily
appropriate for an inference about group responses. To
make the inference that the group showed a significant
activation, one would have to assess the variability in

4 Precision is the inverse of the variance.
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activation effects from subject to subject (using the con-
trast of parameter estimates for each subject). This vari-
ability now constitutes the proper error variance. In this
example, the variance of these six measurements would
be large relative to their mean and the corresponding
t-statistic would not be significant.

The distinction between the two approaches above
relates to how one computes the appropriate error vari-
ance. The first represents a fixed-effects analysis and
the second a random-effects analysis (or more exactly
a mixed-effects analysis). In the former, the error vari-
ance is estimated on a scan-to-scan basis, assuming that
each scan represents an independent observation (ignor-
ing serial correlations). Here the degrees of freedom are
essentially the number of scans (minus the rank of the
design matrix). Conversely, in random-effects analyses,
the appropriate error variance is based on the activation
from subject to subject where the effect per se constitutes
an independent observation and the degrees of freedom
fall dramatically to the number of subjects. The term ‘ran-
dom effect’ indicates that we have accommodated the
randomness of different responses from subject to sub-
ject. Both analyses are perfectly valid but only in relation
to the inferences that are being made: inferences based on
fixed-effects analyses are about the particular subject(s)
studied. Random-effects analyses are usually more con-

servative but allow the inference to be generalized to the
population from which the subjects were selected.

Random-effects analyses

The implementation of random-effects analyses in SPM
is fairly straightforward and involves taking the con-
trasts of parameters estimated from a first-level (within-
subject) analysis and entering them into a second-level
(between-subject) analysis. This ensures that there is only
one observation (i.e. contrast) per subject in the second-
level analysis and that the error variance is computed
using the subject-to-subject variability of estimates from
the first level. This is also known as a summary statistic
approach and, in the context of fully balanced designs is
formally identical to mixed-effects analysis. The nature
of the inference made is determined by the contrasts
that enter the second level (Figure 2.10). The second-
level design matrix simply tests the null hypothesis that
the contrasts are zero (and is usually a column of ones,
implementing a single-sample t-test).

The reason this multistage procedure emulates a full
mixed-effects analysis, using a hierarchical observation
model (see Chapters 11 and 12), rests upon the fact that
the design matrices for each subject are the same (or suf-
ficiently similar). In this special case, the estimator of the
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variance at the second level contains the right mixture
of within- and between-subject error. It is important to
appreciate this because the efficiency of the design at
the first level percolates to higher levels. It is therefore
important to use efficient strategies at all levels in a hier-
archical design.

Conjunction analyses and population
inferences

In some instances, a fixed-effects analysis is more appro-
priate, particularly when reporting single-case studies.
With a series of single cases, it is natural to ask what are
common features of functional anatomy (e.g. the location
of V5) and what aspects are subject specific (e.g. the loca-
tion of ocular dominance columns)? One way to address
commonalties is to use a conjunction analysis over sub-
jects. It is important to understand the nature of the infer-
ence provided by conjunction analyses, because there has
been some confusion (see Nichols et al., 2005; Friston
et al., 2005). Imagine that, in sixteen subjects the activa-
tion in V5, elicited by a motion stimulus, was greater
than zero. The probability of this occurring by chance,
in the same area, is extremely small and is the p-value
returned by a conjunction analysis using a threshold of
p = 0�5 (i.e. t = 0) for each subject. This constitutes evi-
dence that V5 is engaged by motion. However, it is not
an assertion that each subject activated significantly (we
only require the t-value to be greater than zero for each
subject). In other words, a significant conjunction is not
a conjunction of significance.

The motivations for conjunction analyses, in the con-
text of multisubject studies, are twofold. They provide
an inference, in a fixed-effects context, testing the null
hypotheses of no activation in any of the subjects, which
can be much more sensitive than testing for the average
activation. Second, they can be used to make inferences
about the population in terms of confidence intervals on
the proportion of subjects showing an effect (see Friston
et al., 1999b).

CONCLUSION

In this chapter, we have reviewed the main components
of image analysis and have introduced the tenets of sta-
tistical parametric mapping. We have also considered
the design of experiments and their statistical models,
with a special focus on fMRI. This chapter has covered
the key operational issues in identifying regionally spe-
cific effects in neuroimaging. In the next chapter, we

look at models for neuroimaging from a broader perspec-
tive and address the functional integration of distributed
responses in the brain.
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False Discovery Rate procedures
T. Nichols

INTRODUCTION

In the previous three chapters, we have seen how
inferences can be made to control false positives while
searching the brain for activations. While those chapters
consider inferences on different types of features of a
statistic image (e.g. cluster-level versus peak-level), they
all focus on a single measure of false positives, the family-
wise error rate (FWE). Methods that control FWE are very
specific: if one were to use a level 0.05 FWE threshold
throughout one’s career, one is guaranteed that, on aver-
age, no more than 1 out of 20 of the examined statistical
parametric maps (SPMs) will have any false positives. In
statistical terms, we say that a 0.05 FWE method has 95
per cent confidence of producing results totally free of
type I errors. This remarkable control of false positives,
however, comes with relatively poor sensitivity, or risk
of false negatives.

A new perspective on the multiple testing problem is
the consideration of a different, more lenient measure
of false positives. Instead of controlling the chance of
one or more false positives, one could instead control
the fraction of false positives present. More precisely, the
false discovery rate (FDR) is the expected proportion of
false positives among all detected voxels. A level 0.05
FDR procedure allows some false positives but, on aver-
age, the false positives are controlled to be no more than
5 per cent of the number of voxels above the thresh-
old used.

This chapter introduces FDR and related false posi-
tive measures and describes methods that control FDR.
We illustrate FDR control with two synthetic exam-
ples and one real dataset. Throughout, we assume that
peak or voxel-level inferences are of interest, though
cluster-level inferences are briefly mentioned in the first
illustration.

MULTIPLE TESTING DEFINITIONS

Our starting point is a completed SPM analysis, with a
statistic image that assesses evidence of an experimental
or group effect. Let a statistic image comprised of v voxels
be denoted �Ti� = �T1�T2� � � � �Tv�, and their correspond-
ing p-values be �Pi� = �P1�P2� � � � �Pv�. Consider applying
a threshold u to the image, classifying VP suprathreshold
voxels as ‘positives’ and VN = v−VP subthreshold voxels
as ‘negatives’. As shown in Table 20-1, each voxel can be
cross-classified according to whether or not there is truly
any signal, and whether or not the voxel is classified as
signal (possibly incorrectly). When there is truly no sig-
nal at a voxel, we say that the voxel’s null hypothesis
is true, and here we will refer to such voxels as ‘null
voxels’. When there is a signal present the null is false,
and we call these ‘non-null voxels’. Based on threshold
u, we either reject (for Ti ≥ u) or fail to reject the null
hypothesis (for Ti < u). We say the ‘complete null’ is true
when every voxel’s null hypothesis is true �v0 = v�.

Table 20-1 defines all of the quantities needed to
define a range of false positive measures. Note that these
measures are not generally observable. For example,

TABLE 20-1 Cross-classification of all v voxels in an image.
For some threshold applied, VP positives are found, while v1
true signal voxels actually exist in the image. Among the VP

detections, V0P are false positives, while V1N false
negatives exist

Negatives
Do not reject
Ho ‘Sub-
threshold’

Positives
Reject Ho
‘Suprathreshold’

Ho True,
‘True noise’

V0N V0P v0

Ho False,
‘True signal’

V1N V1P v1

VN VP v
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while we can count the number of detected positives VP ,
we can never know the number of true positive voxels
v1. (Following the statistical convention, the quantities
in lower case are fixed, while upper case variables are
random and will vary from realization to realization.)
Among the VP detected positives, V0P are false positives.

Family-wise error rate

The presence of any false positives �V0P ≥ 1� is referred to
as a family-wise (type I) error, and the family-wise error
rate (FWE) is defined as:

FWE = P�V0P ≥ 1� 20.1

There are two types of FWE control, strong and weak. A
procedure that controls the chance of a family-wise error
when there is no signal (v0 = v) has weak FWE control.
When there is some signal present (v1 > 0), a procedure
that controls the chance of a family-wise error over any
collection of null voxels has strong FWE control. A test
with strong FWE can localize an activation, asserting that
any group of voxels are falsely detected with probability
at most � (Holmes, 1996). A test with weak FWE is an
omnibus test, and can only assert that there is some signal
somewhere. Hence, for imaging, strong FWE methods
are generally sought, and all the methods described in
Chapters 17 through 19 (save set-level inference) control
FWE strongly.

False discovery proportion and false discovery
rate

By measuring false positives as a fraction, we now define
the false discovery proportion (FDP) as:

FDP = V0P

VP

20.2

Throughout this chapter, we use the convention that
zero divided by zero is defined to be zero �0/0� 0�. While
for any given model of a statistic image FWE is a fixed
number, FDP is, in contrast, a random quantity; with each
new realized statistic image, VP and V0P will vary, even
for well-behaved data. One way of summarizing FDP
is through its expectation, which defines false discovery
rate (FDR) as:

FDR = E�FDP� 20.3

Per-comparison error rate

Finally, for completeness, we define the per-comparison
error rate (PCE), the nominal false positive rate for
any voxel:

PCE = P�Ti > u�Ho� 20.4

For a single test and a given threshold u, PCE is the
�-level of the test.

Note that we use � generically, i.e. as the tolerable limit
of some measure of false positives. We can thus discuss a
level � PCE, a level � FDR and a level � FWE threshold,
often referring to PCE procedures as ‘uncorrected’ and
FDR and FWE methods as ‘corrected’, as they account
for the multiplicity of v tests.

False discovery rate versus family-wise error
rate

An important connection between FDR and FWE is in the
case of a totally null image (v0 = v). In this setting, there
can be no true positives (V1P = 0), and so the FDP takes on
only two values, 0 when there are no detections (VP = 0)
or 1 when there are one or more (all false) detections. For
this particular case, FDR is equivalent to FWE:

FDR = E�FDP� = P�V0P > 0� = FWE 20.5

showing that FDR has weak control of FWE. This is an
important feature of FDR and contributes to the inter-
pretability of FDR results: when there is no signal in
a statistic image, FDR and FWE methods control false
positives in exactly the same manner.

False discovery exceedance and the control of
the number of false positives

A common misconception about FDR is that it controls
the number of false positives present �V0P�. Consider a
dataset where an � = 0	05 FDR procedure is used and
yields VP = 260 detections. One is tempted to conclude
that there are V0P = �×VP = 0	05×260 = 13 false positives
present. However, this is incorrect, as shown by:

E�V0P/VP� ≤ �� E�V0P� ≤ �×VP 20.6

In words, FDR controls the random fraction FDP in
expectation, which does not imply that the expected
false positive count V0P is controlled by a fraction of the
random VP .

A recent direction in FDR methodology is to control the
chance that FDP exceeds some quantity, or to control the
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false discovery exceedance (FDX). While this is a more
stringent measure of false positives, it allows control on
V0P . A level �� �1 −
� confidence FDX procedure guar-
antees that the FDP is controlled at � with probability
�1−
�:

P�FDP ≤ �� ≥ 1−
 20.7

Inference on V0P follows:

P�FDP ≤ �� ≥ 1−
 ⇔ P�V0P ≤ �×VP� ≥ 1−
 20.8

In words, control of the random FDP implies the false
positive count is controlled as a fraction of the number
of detections VP .

Now consider a dataset where a level 0	05, 90 per cent
confidence FDX procedure is used that detects 200 voxels;
we could conclude with 90 per cent confidence that no
more than 200 × 0	05 = 10 voxels were false detections.
While a few authors have proposed FDX methods (e.g.
Pacifico et al., 2004; Farcomeni et al., 2005), they are not
widely used in neuroimaging, though they are mentioned
to highlight a limitation of FDR.

FDR METHODS

Like FWE, FDR is simply a measure of false positives and,
as with FWE, there are many different proposed meth-
ods which produce thresholds that control FDR. The first
authors who defined FDR, however, proposed a method
which is straightforward and consequently is the most
widely used FDR method.

Benjamini and Hochberg (BH) FDR method

Benjamini and Hochberg (1995) introduced the FDR met-
ric and proved that the Simes method, an existing weak
FWE procedure, controlled their newly defined measure
for independent tests. The level � FDR threshold method
starts by finding the p-values �Pi� for each of the test
statistics �Ti� and by ranking the p-values from smallest
to largest �P�i�� = �P�i� � P�1� ≤ P�2� ≤ · · · ≤ P�v��. Next, the
following expression is considered for different i:

P�i� ≤ i

v
� 20.9

and largest index i′ is found such that the inequality
holds. The value P�i′� can then used as a statistic threshold,
and all p-values less than or equal to it can have their

null hypotheses rejected. Benjamini and Hochberg show
this procedure to control FDR conservatively:

FDR ≤ v0

v
� ≤ � 20.10

with the inequality becoming equality for continu-
ous �Ti�.

P-P plot interpretation

The defining inequality (Eqn. 20.9) can be plotted versus
i/v, giving insight to how the FDR threshold is found
(see plots in Figure 20.2). When the left side is plotted
it produces a ‘P-P plot’, ordered p-values �P�i�� plotted
versus i/v, a scale of their index. Plotting the right-hand-
side produces a line of slope �. The FDR threshold P�i� is
found as the largest p-value below the line.

The value of this plot stems from two observations.
First is the fundamental property of p-values: under the
null hypothesis, p-values follow a uniform distribution,
Pi ∼ uniform�0� 1�. Thus when v0 = v the p-values should
be uniformly spread between 0 and 1, each with E�P�i�� =
i/�v+1� ≈ i/v. This shows the P-P plot to be the ordered
p-values plotted against their null-hypothesis expected
value (almost), and under the complete null the p-values
should roughly follow the identity.

The second observation is simply that, when there is
signal present, we expect an excess of small p-values,
causing the P-P plot to bend down at the left and below
the slope-� line. This also shows that the exact thresh-
old found will depend on the distribution of p-values
observed, something considered in the second illustra-
tion in the next section.

Conservativeness of the BH FDR method

It may seem that the conservativeness of the method, by
a factor of v0/v, would reduce its utility. However, in the
context of brain imaging this is not a problem.

An aspect of most functional imaging experiments is
that the number of tests considered (v) is quite large and
the fraction of active voxels is quite small �v1 	 v�. Con-
sequently, the fraction of null voxels is large �v0/v ≈ 1�
and as a result the conservativeness implicit in the BH
FDR method is not severe. Some authors (e.g. Benjamini
et al., 2003) propose to estimate v0 with v̂0 and replace
� with � × �v/v̂0� in the BH FDR method (Eqn. 20.9),
though that same work suggests these methods do not
work well under dependence and when v0/v is close to
1. Hence, estimation of v0 probably will not aid most
neuroimaging applications.

BH FDR method under-dependence

An assumption of independence between voxels is unten-
able in brain imaging, and so it would seem that the BH
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FDR method would not be applicable. Fortunately, this
assumption was relaxed in a subsequent paper, in which
Benjamini and Yekutieli (2001) proved that the BH FDR
procedure is valid under positive regression dependency
on subsets (PRDS). PRDS is a very technical, generalized
notion of dependence, but can be concisely stated for
Gaussian data:

Corr�Ti�Tj� ≥ 0� for i = 1� � � � � v� j ∈ �0 20.11

where �0 is the set of indices for all null tests. This
condition requires that there must be zero or positive
correlation between all pairs of null voxels, and between
all pairs of null and signal voxels. No constraint is made
on the correlation between pairs of signal voxels. For
smooth imaging data, this assumption seems reasonable,
though strong physiological artefacts could induce struc-
tured noise with negative correlations.

If the PRDS assumption is regarded as untenable,
Benjamini and Yekutieli (2001) provide a version of
the BH FDR method that is valid for any correlation
structure. In Eqn. 20.9 replace � with �/c�v�, where
c�v� = ∑

i=1� � � � �v 1/i ≈ log�v� + 0	5772. This modified
method is, however, much more stringent and is much
less sensitive than the original BH FDR method.

EXAMPLES AND DEMONSTRATIONS

In the following section, we demonstrate a number of
important features of FDR with simulated examples
and data.

Comparison of PCE, FWE and FDR

Figure 20.1 demonstrates the application of three dif-
ferent measures of false positive control. The top row
shows ten statistic images, each of which is a realization
of smooth background noise with a deterministic signal
in the centre. In the bottom two rows, signal voxels are
indicated by a grey line. Think of the ten images as the
results of one’s next ten experiments.

Per-comparison error rate

The second row shows the use of an uncorrected � = 0	1
threshold, i.e., control of the per comparison error rate at
10 per cent. There are many false positives: 11.3 per cent
of the first image’s null voxels are marked as significant,
12.5 per cent of the second image, etc. Theory dictates
10 per cent of the null voxels are falsely detected on
average, but for any particular experiment it may be either
higher or lower. While the magnitude of false positives

FIGURE 20.1 Monte Carlo demonstration of the control of
different false positive metrics.

is unacceptable, observe that such an approach is very
sensitive, and most of the non-null voxels are correctly
identified as signal.

Family-wise error rate

The third row shows the use of a 0.1-level FWE thresh-
old. In nine out of ten images no false positives occur; in
one image a family-wise error is visible due to the two
false positive voxels. This illustrates how a valid FWE
procedure controls the long-run chance of any false posi-
tives: over many, many experiments, no more than 1 out
of 10 will have any false positives. That is, there is 90
per cent confidence of the FWE thresholded image being
false-positive-free. This precise specificity sacrifices sen-
sitivity: only a small fraction of signal voxels have been
detected in each case.

False discovery rate

The fourth row depicts the use of a 0.1-level FDR
threshold. There are fewer false positives than with PCE;
measured as the false discovery proportion (FDP), false
positives vary from image to image: 6.7 per cent of the
first image’s significant voxels are false positives; 14.9 per
cent of the second image’s detections are false positives.
Note that the FDP can be large at times, here as much
as 16.2 per cent over these ten realizations and could be
even larger in other realizations. As an extreme, recall
that for complete null data FDP can only be either 0 or
100 per cent. A valid FDR procedure merely guarantees
that on average FDP will not exceed the nominal 10 per
cent. The use of this more liberal false positive measure,
though, results in more true positives than with FWE,
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with most of the true positive voxels being detected in
each of the ten cases.

BH FDR method and cluster size

In this simulation, where we know the true signal is a
large contiguous region, an obvious way to improve the
FDR method would be to use cluster size. In the FDR
result, the largest clusters are those in the true signal
region, while the smaller clusters tend to be in the null
region. The BH FDR method makes no use of spatial
information, and while some cluster-based FDR methods
have been proposed (Pacifico et al., 2004), they have not
been fully validated or implemented in SPM.

Figure 20.1 shows how FDR is a compromise between
PCE, with no control of the multiple testing problem, and
FWE, with very stringent control. We have highlighted
the variation from realization to realization to emphasize
that, for any one dataset, one cannot know whether a
family-wise error has occurred or if the FDP is below �.
Rather, valid FWE and FDR procedures guarantee the
long-run behaviour of the method.

Adaptiveness of FDR

An important feature of FDR-controlling procedures is
how they adapt to the signal in the data. One can
build intuition with the following artificial case: con-
sider a situation where all v1 non-null voxels have
extremely strong signal, to such an extent that the p-
values are essentially zero, and the remaining null v0 =
v − v1 voxels have p-values that follow a uniform dis-
tribution. Specifically, let us assume that P�i� ≈ 0 for i =
1� � � � � v1, and P�i� ∼ Uniform (0,1) for i = v1 + 1� � � � � v,
with E�P�i�� = �i−v1 +1�/�v0�.

Figure 20.2 shows three cases: the complete null, an
intermediate case where half of the nulls are true, and
an extreme case where exactly one test is null and all
others have signal. In each case, we have plotted the
assumed p-values (0 or expected value) as open circles,
a fine dotted line showing expected p-values under the

complete null, a solid line of slope � = 0	1, and a dot on
the solid line showing the likely p-value threshold that
will be obtained.

In the first case, there is no signal at all �v1 = 0� and
the p-values fall nearly on the identity. Since there are no
unusually small p-values, we could guess that the p-value
threshold will come from i′ = 1 in Eqn. 20.9

P�1� ≤ 1
v

� 20.12

A p-value threshold of �/v is of course the threshold that
the Bonferroni method specifies.

Now consider the second case, where half of the tests
have strong signal. Here the smallest v1 = v/2 p-values
are zero and the remaining are uniformly spread between
zero and one. For the smallest non-null p-value, Eqn. 20.9
implies a p-value threshold of:

P�v1+1� ≤ v1 +1
v

� ≈ 1
2

� 20.13

a much less stringent threshold than with Bonferroni.
The third case shows a most extreme situation, in

which all but one of the tests have strong signal �v1 =
v − 1�. All but one of the p-values are zero, so the sole
non-null test has a p-value threshold of:

P�v� ≤ v

v
� = � 20.14

In other words, here the FDR procedure will use an
uncorrected �-level threshold. This result may seem
startling, as we have to search v tests for activation, but
actually it is quite sensible. In this setting, with exactly
one null test, there is only one opportunity for a false
positive to occur, namely when the test corresponding
to P�v� is falsely detected. Hence, in this extreme case,
the multiple comparisons problem has vanished and the
ordinary � threshold is appropriate.

FIGURE 20.2 Demonstration of adap-
tiveness of the Benjamini and Hochberg FDR
procedure.
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FIGURE 20.3 Application of the FDR method to real data, with comparison to a FWE result.

This illustration demonstrates the adaptiveness of the
BH FDR procedure. As the number of signal voxels �v1�
increases, the number of opportunities for a false positive
to occur �v0� shrinks, and hence we have a less severe
multiple testing problem. At the same time, as the num-
ber of detections VP increases, a greater absolute number
of false positives can be tolerated. Both of these factors
contribute to the BH FDR method finding a threshold
that is somewhere between Bonferroni and uncorrected,
depending on the relative abundance of signal voxels.

Application to real data

Figure 20.3 illustrates the application of the FDR method
to a real data set. Marshuetz et al. (2000) studied order-
effects in working memory using functional magnetic res-
onance imaging (fMRI). They analysed 12 subjects using
a random-effects analysis (see Chapter 12 on random
effects, and Marshuetz et al. (2000) for complete details
on the study). The contrast considered compares item
recognition with a control condition.

On the top left of Figure 20.3 is the P-P plot and on the
top right plot is the data rootogram1 showing both the
null-hypothesis distribution and the empirical FDR rate
for every possible threshold.

The bottom right of the figure shows the results from
using a permutation method (see Chapter 21) to find
a level 0.05 FWE threshold (permutation can be more
sensitive than RFT thresholds, and hence is used here).
The bottom right depicts the results with a level-0.05 FDR
threshold. The FDR threshold 3.83 detects 3073 voxels,
while the FWE threshold of 7.67 detects 58 voxels. The
FDR finds the same three regions as the FWE result (left
anterior cingulate, thalamus, right parietal), as well as
several others (right anterior cingulate, left pre-motor,
and left parietal).

1 A rootogram is similar to a histogram, except that the bars plot
the square root counts of observations that fall in each bin. This
type of plot allows better visualization of the low-count tails of
a distribution.
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While the FDR result is clearly more powerful, it is
important to remember the limitations of the result. For
the FWE result, we have 95 per cent confidence that there
are no false positives in the image, while in the FDR
result we expect (on average) 5 per cent of the detected
voxels to be false.

CONCLUSION

This chapter has described the false discovery rate and
related false positive metrics. We have reviewed the
Benjamini-Hochberg method implemented in SPM and
used demonstrations and real data to illustrate the prop-
erties of the method. We have emphasized how the
method is adaptive and generally more sensitive than
FWE methods, but also have highlighted some of the
limitations of FDR.
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Non-parametric procedures
T. Nichols and A. Holmes

INTRODUCTION

The statistical analyses of functional mapping experi-
ments usually proceed at the voxel level, involving the
formation and assessment of a statistic image: at each
voxel, a statistic indicating evidence of the experimen-
tal effect of interest, at that voxel, is computed, giving
an image of statistics, a statistic image or statistical para-
metric map (SPM). In the absence of a priori anatomical
hypotheses, the entire statistic image must be assessed
for significant experimental effects, using a method that
accounts for the inherent multiplicity incurred by testing
all voxels simultaneously.

Traditionally, this has been accomplished in a clas-
sical parametric statistical framework. In the methods
discussed in Chapters 8 and 9 of this book, the data
are assumed to be normally distributed, with a mean
parameterized by a general linear model. This flexible
framework encompasses t-tests, F -tests, paired t-tests,
analysis of variance (ANOVA), correlation, linear regres-
sion, multiple regression, and analysis of covariance
(ANCOVA), among others. The estimated parameters
of this model are contrasted to produce a test statistic at
each voxel, which has a Student’s t-distribution under
the null hypothesis. The resulting t-statistic image is then
assessed for statistical significance, using distributional
results for continuous random fields to identify voxels
or regions where there is significant evidence against the
null hypothesis (Friston et al., 1994, 1996; Worsley et al.,
1995; Worsley, 1995; Poline et al., 1997).

Holmes et al. (1996) introduced a non-parametric alter-
native based on permutation test theory. This method
is conceptually simple, relies only on minimal assump-
tions, deals with the multiple testing issue, and can
be applied when the assumptions of a parametric
approach are untenable. Furthermore, in some circum-
stances, the permutation method outperforms parametric
approaches. Arndt et al., (1996), working independently,

also discussed the advantages of similar approaches.
Subsequently, Grabrowski et al. (1996) demonstrated
empirically the potential power of the approach in com-
parison with other methods. Halber et al. (1997), discussed
further by Holmes et al. (1998), also favour the permuta-
tion approach. Methods to improve the computational effi-
ciency of the method have been proposed by Heckel et al.
(1998) and Belmonte and Yurgelun-Todd (2001).

Nichols and Holmes (2001) review the non-parametric
theory and demonstrate how multisubject functional
magnetic resonance images (fMRI) can be analysed.
One use of permutations is to evaluate methods with
more assumptions. Nichols and Hayasaka (2003; 2004)
compare voxels-wise parametric to non-parametric per-
formance on several multisubject datsets, as well as
cluster-wise performance under stationarity and non-
stationarity.

Applications of permutation testing methods to single
subject fMRI require models of the temporal autocorre-
lation in the fMRI time series. Bullmore et al. (1996) have
developed permutation based procedures for periodic
fMRI activation designs using a simple autoregression
moving average (ARMA) model for temporal autocor-
relations, though they eschew the problem of multiple
testing; later they generalized their method to multiple
subjects (Brammer et al., 1997). In later work, Bullmore
and colleagues used a wavelet transformation to account
for more general forms of fMRI correlation (Bullmore
et al., 2001; Fadili and Bullmore, 2001), though Friman
and Westin (2005) have criticized this approach. Locascio
et al. (1997) describe an application to fMRI combining
the general linear model (Friston et al., 1995), ARMA
modelling (Bullmore et al., 1996), and a multiple testing
permutation procedure (Holmes et al., 1996). In a ran-
domized experiment, Raz et al. (2003) proposed permut-
ing the experimental labels instead of the data. Bullmore
et al. (1999) apply non-parametric methods to compare
groups of structural MR images.
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The aim of this chapter is to present the theory of
multiple testing using non-parametric permutation for
independent data (e.g. positron emission tomography
(PET) or intersubject fMRI), including detailed exam-
ples. While the traditional approach to multiple testing
controls the family-wise error rate, the chance of any
false positives, another perspective has been introduced
recently, the false discovery rate. Chapter 20 covers this
new false positive metric, though we note that a per-
mutation approach to FDR has been proposed (Yeku-
tieli and Benjamini, 1999) and evaluated (Logan and
Rowe, 2004).

We begin with an introduction to non-parametric per-
mutation testing, reviewing experimental design and
hypothesis testing issues, and illustrating the theory by
considering testing a functional neuroimaging dataset
at a single voxel. The problem of searching the brain
volume for significant activations is then considered,
and the extension of the permutation methods to the
multiple testing problem of simultaneously testing at
all voxels is described. With appropriate methodology
in place, we conclude with three annotated examples
illustrating the approach. Software implementing the
approach, called statistical non-parametric mapping, is
available as an extension of the MATLAB based SPM
package.

PERMUTATION TESTS

Permutation tests are one type of non-parametric test.
They were proposed in the early twentieth century, but
have only recently become popular with the availabil-
ity of inexpensive, powerful computers to perform the
computations involved.

The essential concept of a permutation test is relatively
intuitive. Consider a simple single-subject PET activa-
tion experiment, where a subject is scanned repeatedly
under ‘rest’ and ‘activation’ conditions. Considering the
data at a particular voxel, if there is really no difference
between the two conditions, then we would be fairly
surprised if most of the ‘activation’ observations were
larger than the ‘rest’ observations, and would be inclined
to conclude that there was evidence of some activation
at that voxel. Permutation tests simply provide a for-
mal mechanism for quantifying this ‘surprise’ in terms
of probability, thereby leading to significance tests and
p-values.

If there is no experimental effect, then the labelling of
observations by the corresponding experimental condi-
tion is arbitrary, since the same data would have arisen
whatever the condition. These labels can be any rele-
vant attribute: condition ‘tags’, such as ‘rest’ or ‘active’;

a covariate, such as task difficulty or response time; or
a label, indicating group membership. Given the null
hypothesis that the labellings are arbitrary, the signifi-
cance of a statistic expressing the experimental effect can
then be assessed by comparison with the distribution of
values obtained when the labels are permuted.

The justification for exchanging the labels comes from
either weak distributional assumptions, or by appeal to
the randomization scheme used in designing the experi-
ment. Tests justified by the initial randomization of con-
ditions to experimental units (e.g. subjects or scans),
are sometimes referred to as randomization tests, or re-
randomization tests. Whatever the theoretical justification,
the mechanics of the tests are the same. Many authors
refer to both generically as permutation tests, a policy we
shall adopt unless a distinction is necessary.

In this section, we describe the theoretical underpin-
ning for randomization and permutation tests. Beginning
with simple univariate tests at a single voxel, we first
present randomization tests, describing the key concepts
at length, before turning to permutation tests. These two
approaches lead to exactly the same test, which we illus-
trate with a simple worked example, before describing
how the theory can be applied to assess an entire statistic
image. For simplicity of exposition, the methodology is
developed using the example of a simple single-subject
PET activation experiment. However, the approach is not
limited to PET nor single-subject datasets.

Randomization test

We first consider randomization tests, using a single-
subject activation experiment to illustrate the thinking:
suppose we are to conduct a simple single-subject PET
activation experiment, with the regional cerebral blood
flow (rCBF) in ‘active’ (A) condition scans to be com-
pared with that in scans acquired under an appropriate
‘baseline’ (B) condition. The fundamental concepts are of
experimental randomization, the null hypothesis, exchange-
ability, and the randomization distribution.

Randomization

To avoid unexpected confounding effects, suppose we
randomize the allocation of conditions to scans prior
to conducting the experiment. Using an appropriate
scheme, we label the scans as A or B according to the
conditions under which they will be acquired, and hence
specify the condition presentation order. This allocation of
condition labels to scans is chosen randomly according
to the randomization scheme, and any other possible
labelling of this scheme is equally likely to have been
chosen.
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Null hypothesis

In the randomization test, the null hypothesis is explicitly
about the acquired data. For example: �0: ‘Each scan
would have been the same whatever the condition, A or
B’. The hypothesis is that the experimental conditions did
not affect the data differentially, such that had we run the
experiment with a different condition presentation order,
we would have observed exactly the same data. In this
sense we regard the data as fixed, and the experimental
design as random. (In contrast to regarding the design as
fixed, and the data as a realization of a random process.)
Under this null hypothesis, the labelling of the scans as
A or B is arbitrary; since these labellings arose from the
initial random allocation of conditions to scans, and any
initial allocation would have given the same data. Thus,
we may re-randomize the labels on the data, effectively
permuting the labels, subject to the restriction that each
permutation could have arisen from the initial random-
ization scheme. The observed data are equally likely to
have arisen from any of these permuted labellings.

Exchangeability

This leads to the notion of exchangeability. Consider the
situation before the data are collected, but after the con-
dition labels have been assigned to scans. Formally, a set
of labels on the data (still to be collected) are exchangeable
if the distribution of the statistic (still to be evaluated)
is the same whatever the labelling (Good, 1994). For our
activation example, we would use a statistic expressing
the difference between the ‘active’ and ‘baseline’ scans.
Thus, under the null hypothesis of no difference between
the A and B conditions, the labels are exchangeable, pro-
vided the permuted labelling could have arisen from the
initial randomization scheme. The initial randomization
scheme gives us the probabilistic justification for permut-
ing the labels; the null hypothesis asserts that the data
would have been the same.

Randomization distribution

Consider now some statistic expressing the experimen-
tal effect of interest at a particular voxel. For the current
example of a PET single-subject activation, this could
be the mean difference between the A and the B con-
dition scans, a two-sample t-statistic, a t-statistic from
an ANCOVA, or any appropriate statistic. We are not
restricted to the common statistics of classical paramet-
ric hypothesis whose null distributions are known under
specific assumptions, because the appropriate distribu-
tion will be derived from the data.

The computation of the statistic depends on the
labelling of the data. For example, with a two-sample t-
statistic, the labels A and B specify the groupings. Thus,

permuting the labels leads to an alternative value of
the statistic.

Given exchangeability under the null hypothesis, the
observed data are equally likely to have arisen from any
of the possible labellings. Hence, the statistics associated
with each of the possible labellings are also equally likely.
Thus, we have the permutation (or randomization) dis-
tribution of our statistic: the permutation distribution is the
sampling distribution of the statistic under the null hypoth-
esis, given the data observed. Under the null hypothesis,
the observed statistic is randomly chosen from the set of
statistics corresponding to all possible relabellings. This
gives us a way to formalize our ‘surprise’ at an outcome:
the probability of an outcome as or more extreme than
the one observed, the p-value, is the proportion of statis-
tic values in the permutation distribution greater or equal
to that observed. The actual labelling used in the experi-
ment is one of the possible labellings, so if the observed
statistic is the largest of the permutation distribution,
the p-value is 1/N , where N is the number of possible
labellings of the initial randomization scheme. Since we
are considering a test at a single voxel, these would be
uncorrected p-values in the language of multiple testing
(see below).

Randomization test: summary

To summarize, the null hypothesis asserts that the scans
would have been the same whatever the experimen-
tal condition, A or B. Under this null hypothesis, the
initial randomization scheme can be regarded as arbi-
trarily labelling scans as A or B, under which the experi-
ment would have given the same data, and the labels are
exchangeable. The statistic corresponding to any labelling
from the initial randomization scheme is as likely as
any other, since the permuted labelling could equally
well have arisen in the initial randomization. The sam-
pling distribution of the statistic (given the data) is the
set of statistic values corresponding to all the possible
labellings of the initial randomization scheme, each value
being equally likely.

Randomization test: mechanics

Let N denote the number of possible relabellings, ti the
statistic corresponding to relabelling i. (After having per-
formed the experiment, we refer to relabellings for the
data, identical to the labellings of the randomization
scheme.) The set of ti for all possible relabellings consti-
tutes the permutation distribution. Let T denote the value
of the statistic for the actual labelling of the experiment.
As usual in statistics, we use a capital letter for a ran-
dom variable. T is random, since under �0 it is chosen
from the permutation distribution according to the initial
randomization.
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Under �0, all of the ti are equally likely, so we
determine the significance of our observed statistic T by
counting the proportion of the permutation distribution
as or more extreme than T , giving us our p-value. We
reject the null hypothesis at significance level � if the
p-value is less than �. Equivalently, T must be greater
than or equal to the 100�1 −�� percentile of the permu-
tation distribution. Thus, the critical value is the �c +1�th
largest member of the permutation distribution, where
c = ��N�� �N rounded down. If T exceeds this critical
value then the test is significant at level �.

Permutation test

In many situations, it is impractical randomly to allocate
experimental conditions, or perhaps we are presented
with data from an experiment that was not random-
ized. For instance, we cannot randomly assign subjects
to be patients or normal controls. Or, for example, con-
sider a multisubject fMRI second-level analysis where
a covariate is measured for each subject, and we seek
brain regions whose activation appears to be related to
the covariate value.

In the absence of an explicit randomization of con-
ditions to scans, we must make weak distributional
assumptions to justify permuting the labels on the data.
Typically, all that is required is that distributions have
the same shape, or are symmetric. The actual permu-
tations that are performed again depend on the degree
of exchangeability which, in turn, depend on the actual
assumptions made. With the randomization test, the
experimenter designs the initial randomization scheme
carefully to avoid confounds. The randomization scheme
reflects an implicitly assumed degree of exchangeability.
With the permutation test, the degree of exchangeability
must be assumed post hoc. Usually, the reasoning that
would have led to a particular randomization scheme can
be applied post hoc to an experiment, leading to a per-
mutation test with the same degree of exchangeability.
Given exchangeability, computation proceeds as for the
randomization test.

Permutation test: summary

Weak distributional assumptions are made, which
embody the degree of exchangeability. The exact form of
these assumptions depends on the experiment at hand,
as illustrated in the following section and in the examples
section.

For a simple single-subject activation experiment, we
might typically assume the following: for a particular
voxel, ‘active’ and ‘baseline’ scans within a given block
have a distribution with the same shape, though possi-
bly different means. The null hypothesis asserts that the

distributions for the ‘baseline’ and ‘active’ scans have
the same mean, and hence are the same. Then the labels
are arbitrary within the chosen blocks, which are thus
the exchangeability blocks. Any permutation of the labels
within the exchangeability blocks leads to an equally
likely statistic. (Note, if this were a multisubject dataset,
the exchangeability block would be the entire dataset, as
subjects are regarded as independent.)

The mechanics are then the same as with the random-
ization test: for each of the possible relabellings, compute
the statistic of interest; for relabelling i, call this statistic
ti. Under the null hypothesis each of the ti are equally
likely, so the p-value is the proportion of the tis greater
than or equal to the statistic T corresponding to the cor-
rectly labelled data.

Single voxel example

To make these concepts concrete, consider assessing the
evidence of an activation effect at a single voxel of a
single-subject PET activation experiment consisting of six
scans, three in each of the ‘active’ (A) and ‘baseline’ (B)
conditions. Suppose that the conditions were presented
alternately, starting with rest, and that the observed data
at this voxel are {90.48, 103.00, 87.83, 99.93, 96.06, 99.76}
to 2 decimal places. (These data are from a voxel in the
primary visual cortex of the second subject in the PET
visual activation experiment presented in the examples
section.)

As mentioned before, any statistic can be used, so for
simplicity of illustration we use the ‘mean difference’, i.e.
T = 1

3

∑3
j=1�Aj − Bj� where Bj and Aj indicate the value

of the jth scan at the particular voxel of interest, under
the baseline and active conditions respectively. Thus, we
observe statistic T = 9�45.

Randomization test

Suppose that the condition presentation order was ran-
domized, the actual ordering of BABABA having been
selected randomly from all allocations of three As and
three Bs to the six available scans, a simple balanced ran-
domization within a single randomization block of size
six. By combinatorics, or some counting, we find that
this randomization scheme has twenty �6C3 = 20� possible
outcomes.

Then we can justify permuting the labels on the basis
of this initial randomization. Under the null hypothe-
sis �0: ‘The scans would have been the same what-
ever the experimental condition, A or B’, the labels are
exchangeable, and the statistics corresponding to the
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twenty possible labellings are equally likely. The twenty
possible labellings are:

1: aaabbb 6: ababab 11: baaabb 16: babbaa

2: aababb 7: ababba 12: baabab 17: bbaaab

3: aabbab 8: abbaab 13: baabba 18: bbaaba

4: aabbba 9: abbaba 14: babaab 19: bbabaa

5: abaabb 10: abbbaa 15: bababa 20: bbbaaa

Permutation test

Suppose there was no initial randomization of condi-
tions to scans, and that the condition presentation order
ABABAB was chosen. With no randomization, we must
make weak distributional assumptions to justify per-
muting the labels, effectively prescribing the degree of
exchangeability.

For this example, consider permuting the labels freely
among the six scans. This corresponds to full exchangeabil-
ity, a single exchangeability block of size six. For this to be
tenable, we must either assume the absence of any tem-
poral or similar confounds, or model their effect such that
they do not affect the statistic under permutations of the
labels. Consider the former. This gives twenty possible
permutations of the labels, precisely those enumerated
for the randomization justification above. Formally, we
are assuming that the voxel values for the ‘baseline’ and
‘active’ scans come from distributions that are the same
except for a possible difference in location, or mean. Our
null hypothesis is that these distributions have the same
mean, and therefore are the same.

Clearly, the mean difference statistic under consider-
ation in the current example is confounded with time
for labellings such as AAABBB (#1) and BBBAAA (#20),
where a time effect will result in a large mean differ-
ence between the A and the B labelled scans. The test is
still valid, but possibly conservative. The actual condi-
tion presentation order of BABABA is relatively uncon-
founded with time, but the contribution of confounds to
the statistics for alternative labellings such as #1 and #20
will potentially increase the number of statistics greater
than the observed statistic.

Computation

Let ti be the mean difference for labelling i, as enumerated
above. Computing for each of the twenty relabellings:

t1 = +4�82 t6 = +9�45 t11 = −1�48 t16 = −6�86
t2 = −3�25 t7 = +6�97 t12 = +1�10 t17 = +3�15
t3 = −0�67 t8 = +1�38 t13 = −1�38 t18 = +0�67
t4 = −3�15 t9 = −1�10 t14 = −6�97 t19 = +3�25
t5 = +6�86 t10 = +1�48 t15 = −9�45 t20 = −4�82

This is our permutation distribution for this analysis,
summarized as a histogram in Figure 21.1. Each of the

FIGURE 21.1 Histogram of permutation distribution for the
single voxel example, using a mean difference statistic. Note the
symmetry of the histogram about the y-axis. This occurs because,
for each possible labelling, the opposite labelling is also possible,
and yields the same mean difference but in the opposite direction.
This trick can be used in many cases to halve the computational
burden.

possible labellings was equally likely. Under the null
hypothesis the statistics corresponding to these labellings
are equally likely. The p-value is the proportion of the
permutation distribution greater than or equal to T . Here
the actual labelling #6 with t6 = +9�4 gives the largest
mean difference of all the possible labellings, so the p-
value is 1/20 = 0�05. For a test at given � level, we reject
the null hypothesis if the p-value is less than �, so we
conclude that there is significant evidence against the null
hypothesis of no activation at this voxel at level � = 0�05.

Permutation tests accounting for the multiple
testing problem

Thus far we have considered using a permutation test at
a single voxel: for each voxel we can produce a p-value,
pk, for the null hypothesis � k

0 , where the superscript
k indexes the voxel. If we have an a priori anatom-
ical hypothesis concerning the experimentally induced
effect at a single voxel, then we can simply test at that
voxel using an appropriate � level test. If we do not
have such precise anatomical hypotheses, evidence for an
experimental effect must be assessed at each and every
voxel. We must take account of the multiplicity of test-
ing. Clearly 5 per cent of voxels are expected to have
p-values less than � = 0�05. This is the essence of the
multiple testing problem. In the language of multiple test-
ing, these p-values are uncorrected p-values. Type I errors
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must be controlled overall, such that the probability of
falsely declaring any region as significant is less than
the nominal test level �. This is known as controlling
the family-wise error rate, the family being the collection
of tests performed over the entire brain. Formally, we
require a test procedure maintaining strong control over
family-wise type I error, giving adjusted p-values, p-values
corrected for the multiplicity of tests examined.

The construction of suitable multiple testing pro-
cedures for the problem of assessing statistic images
from functional mapping experiments within paramet-
ric frameworks has occupied many authors e.g. Friston
et al., 1991, 1994, 1996; Worsley et al., 1992, 1995; Poline
and Mazoyer, 1993; Roland et al. 1993; Worsley, 1994;
Forman et al. 1995; Poline et al. 1997; Cao, 1999). In con-
trast to these parametric and simulation based methods, a
non-parametric resampling based approach provides an
intuitive and easily implemented solution (Westfall and
Young, 1993). The key realization is that the reasoning
presented above for permutation tests at a single voxel
relies on relabelling entire images, so the arguments can
be extended to image-level inference by considering an
appropriate maximal statistic. If, under the omnibus null
hypothesis, the labels are exchangeable with respect to
the voxel statistic under consideration, then the labels are
exchangeable with respect to any statistic summarizing
the voxel statistics, such as their maxima.

We consider two popular types of test, single threshold
and suprathreshold cluster size tests, but note again the
ability of these methods to use any statistic.

Single threshold test

With a single threshold test, the statistic image is thresh-
olded at a given critical threshold, and voxels with statistic
values exceeding this threshold have their null hypothe-
ses rejected. Rejection of the omnibus hypothesis (that all
the voxel hypotheses are true) occurs if any voxel value
exceeds the threshold, a situation clearly determined by
the value of the maximum value of the statistic image.
Thus, consideration of the maximum voxel statistic deals
with the multiple testing problem. For a valid omnibus
test, the critical threshold is such that the probability that
it is exceeded by the maximal statistic is less than �; there-
fore, we require the distribution of the maxima of the
null statistic image. Approximate parametric derivations
based on the theory of strictly stationary continuous ran-
dom fields are given by Friston et al. (1991) and Worsley
et al. (1992, 1995); Worsley, 1994.

The permutation approach can furnish the distribu-
tion of the maximal statistic in a straightforward manner:
Rather than compute the permutation distribution of the
statistic at a particular voxel, we compute the permuta-
tion distribution of the maximal voxel statistic over the

volume of interest. We reject the omnibus hypothesis at
level � if the maximal statistic for the actual labelling of
the experiment is in the top 100� per cent of the permu-
tation distribution for the maximal statistic. The critical
value is the �c +1�th largest member of the permutation
distribution, where c = ��N�� �N rounded down. Fur-
thermore, we can reject the null hypothesis at any voxel
with a statistic value exceeding this threshold: the critical
value for the maximal statistic is the critical threshold for
a single threshold test over the same volume of inter-
est. This test can be shown to have strong control over
experiment-wise type I error. A formal proof is given by
Holmes et al. (1996).

The mechanics of the test are as follows: for each pos-
sible relabelling i = 1� � � � �N , note the maximal statistic
tmax
i , the maximum of the voxel statistics for relabelling i �

tmax
i = max	ti


N
i=1. This gives the permutation distribution

for T max, the maximal statistic. The critical threshold is
the c+1 largest member of the permutation distribution
for T max, where c = ��N�� �N rounded down. Voxels
with statistics exceeding this threshold exhibit evidence
against the corresponding voxel hypotheses at level �.
The corresponding corrected p-value for each voxel is the
proportion of the permutation distribution for the max-
imal statistic that is greater than or equal to the voxel
statistic.

Suprathreshold cluster tests

Suprathreshold cluster tests start by thresholding the
statistic image at a predetermined primary threshold, and
then assess the resulting pattern of suprathreshold activ-
ity. Suprathreshold cluster size tests assess the size of con-
nected suprathreshold regions for significance, declaring
regions greater than a critical size as activated. Thus, the
distribution of the maximal suprathreshold cluster size
(for the given primary threshold) is required. Simulation
approaches have been presented by Poline and Mazoyer
(1993) and Roland et al. (1993) for PET, Forman et al.
(1995) for fMRI. Friston et al. (1994) give a theoretical
parametric derivation for Gaussian statistic images based
on the theory of continuous Gaussian random fields; Cao
(1999) gives results for �2� t and F fields.

Again, as noted by Holmes et al. (1996), a non-
parametric permutation approach is simple to derive.
Simply construct the permutation distribution of the
maximal suprathreshold cluster size. For the statistic
image corresponding to each possible relabelling, note
the size of the largest suprathreshold cluster above the
primary threshold. The critical suprathreshold cluster
size for this primary threshold is the ���N�+1�th largest
member of this permutation distribution. Corrected p-
values for each suprathreshold cluster in the observed
statistic image are obtained by comparing their size to
the permutation distribution.
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In general, such suprathreshold cluster tests are more
powerful for functional neuroimaging data than the sin-
gle threshold approach (see Chapter 19 and Friston et al.,
1995 for a fuller discussion). However, it must be remem-
bered that this additional power comes at the price of
reduced localizing power: the null hypotheses for vox-
els within a significant cluster are not tested, so indi-
vidual voxels cannot be declared significant. Only the
omnibus null hypothesis for the cluster can be rejected.
Further, the choice of primary threshold dictates the
power of the test in detecting different types of deviation
from the omnibus null hypothesis. With a low thresh-
old, large suprathreshold clusters are to be expected, so
intense focal ‘signals’ will be missed. At higher thresh-
olds these focal activations will be detected, but lower
intensity diffuse ‘signals’ may go undetected below the
primary threshold.

Poline et al. (1997) addressed these issues within a
parametric framework by considering the suprathreshold
cluster size and height jointly. A non-parametric varia-
tion could be to consider the exceedance mass, the excess
mass of the suprathreshold cluster, defined as the integral
of the statistic image above the primary threshold within
the suprathreshold cluster (Holmes, 1994; Bullmore et al.,
1999). Calculation of the permutation distribution and
p-values proceeds exactly as before.

Considerations

Before turning to example applications of the
non-parametric permutation tests described above, we
note some relevant theoretical issues. The statistical
literature (referenced below) should be consulted for
additional theoretical discussion. For issues related to
the current application to functional neuroimaging, see
also Holmes (1994), Holmes et al. (1996), and Arndt
et al. (1996).

Non-parametric statistics

First, it should be noted that these methods are neither
new nor contentious: originally expounded by Fisher
(1935), Pitman (1937a,b,c), and later Edgington (1964,
1969a,b), these approaches are enjoying a renaissance as
computing technology makes the requisite computations
feasible for practical applications. Had R.A. Fisher and
his peers had access to similar resources, it is possible
that large areas of parametric statistics would have gone
undeveloped! Modern texts on the subject include Good’s
Permutation Tests (1994), Edgington’s Randomization Tests
(1995), and Manly’s Randomization, Bootstrap and Monte-
Carlo Methods in Biology (1997). Recent interest in more
general resampling methods, such as the bootstrap, has

further contributed to the field. For a treatise on resam-
pling based multiple testing procedures, see Westfall and
Young (1993).

Many standard statistical tests are essentially permuta-
tion tests: The ‘classic’ non-parametric tests, such as the
Wilcoxon and Mann-Whitney tests, are permutation tests
with the data replaced by appropriate ranks, such that
the critical values are only a function of sample size and
can therefore be tabulated. Fisher’s exact test (1990), and
tests of Spearman and Kendall correlations (Kendall and
Gibbons 1990), are all permutation/randomization based.

Assumptions

The only assumptions required for a valid permutation
test are those to justify permuting the labels. Clearly, the
experimental design, model, statistic and permutations
must also be appropriate for the question of interest. For
a randomization test, the probabilistic justification fol-
lows directly from the initial randomization of condition
labels to scans. In the absence of an initial randomiza-
tion, permutation of the labels can be justified via weak
distributional assumptions. Thus, only minimal assump-
tions are required for a valid test. (The notable case when
exchangeability under the null hypothesis is not tenable
is fMRI time-series, due to temporal autocorrelation.)

In contrast to parametric approaches where the statis-
tic must have a known null distributional form, the
permutation approach is free to consider any statistic
summarizing evidence for the effect of interest at each
voxel. The consideration of the maximal statistic over the
volume of interest then deals with the multiple testing
problem.

However, there are additional considerations when
using the non-parametric approach with a maximal
statistic to account for multiple testing. In order for the
single threshold test to be equally sensitive at all vox-
els, the (null) sampling distribution of the chosen statistic
should be similar across voxels. For instance, the simple
mean difference statistic used in the single voxel example
could be considered as a voxel statistic, but areas where
the mean difference is highly variable will dominate the
permutation distribution for the maximal statistic. The
test will still be valid, but will be less sensitive at those
voxels with lower variability. So, although for an indi-
vidual voxel, a permutation test on group mean differ-
ences is equivalent to one using a two-sample t-statistic
(Edgington, 1995), this is not true in the multiple testing
setting using a maximal statistic.

One approach to this problem is to consider multistep
tests, which iteratively identify activated areas, cut them
out, and continue assessing the remaining volume. These
are described below, but are additionally computation-
ally intensive. A preferable solution is to use a voxel
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statistic with approximately homogeneous null permuta-
tion distribution across the volume of interest, such as an
appropriate t-statistic. A t-statistic is essentially a mean
difference normalized by a variance estimate, effectively
measuring the reliability of an effect. Thus, we consider
the same voxel statistics for a non-parametric approach
as we would for a comparable parametric approach.

Pseudo t-statistics

Nonetheless, we can still do a little better than a straight
t-statistic, particularly at low degrees of freedom. A t-
statistic is a change divided by the square root of the
estimated variance of that change. When there are few
degrees of freedom available for variance estimation, say,
less than 20, this variance is estimated poorly. Errors in
estimation of the variance from voxel to voxel appear
as high (spatial) frequency noise in images of the esti-
mated variance or near-zero variance estimates, which
in either case cause noisy t-statistic images. Given that
PET and fMRI measure (or reflect) blood flow, physio-
logical considerations would suggest that the variance
be roughly constant over small localities. This suggests
pooling the variance estimate at a voxel with those of its
neighbours to give a locally pooled variance estimate as
a better estimate of the actual variance. Since the model
is of the same form at all voxels, the voxel variance esti-
mates have the same degrees of freedom, and the locally
pooled variance estimate is simply the average of the
variance estimates in the neighbourhood of the voxel in
question. More generally, weighted locally pooled voxel
variance estimates can be obtained by smoothing the
raw variance image. The filter kernel then specifies the
weights and neighbourhood for the local pooling. The
pseudo t-statistic images formed with smoothed variance
estimators are smooth. In essence the noise (from the
variance image) has been smoothed, but not the signal.
A derivation of the parametric distribution of the pseudo
t requires knowledge of the variance-covariances of the
voxel-level variances, and has so far proved elusive. This
precludes parametric analyses using a pseudo t-statistic,
but poses no problems for a non-parametric approach.

Number of relabellings and test size

A constraint on the permutation test is the number of pos-
sible relabellings. Since the observed labelling is always
one of the N possible labellings, the smallest p-value
attainable is 1/N . Thus, for a level � = 0�05 test poten-
tially to reject the null hypothesis, there must be at least
twenty possible relabellings.

More generally, the permutation distribution is discrete,
consisting of a finite set of possibilities corresponding
to the N possible relabellings. Hence, any p-values pro-
duced will be multiples of 1/N . Further, the 100�1−��th

percentile of the permutation distribution, the critical
threshold for a level � test, may lie between two values.
Equivalently, � may not be a multiple of 1/N , such that
a p-value of exactly � cannot be attained. In these cases,
an exact test with size exactly � is not possible. It is for
this reason that the critical threshold is computed as the
�c+1�th largest member of the permutation distribution,
where c = ��N�� �N rounded down. The test can be
described as almost exact, since the size is at most 1/N
less than �.

Monte Carlo tests

A large number of possible relabellings is also prob-
lematic, due to the computations involved. In situations
where it is not feasible to compute the statistic images for
all the relabellings, a random subsample of relabellings
can be used (Dwass, 1957) (see also Edgington, 1969a for
a less mathematical description). The set of N possible
relabellings is reduced to a more manageable N ′ con-
sisting of the true labelling and N ′ −1 randomly chosen
from the set of N −1 possible relabellings. The test then
proceeds as before.

Such a test is sometimes known as an approximate or
Monte Carlo permutation test, since the permutation distri-
bution is approximated by a random selection of all possi-
ble values. The p-values found are random, and will vary
between Monte Carlo realizations. Despite the name, the
resulting test is still exact. However, as might be expected
from the previous section, using an approximate
permutation distribution results in a test that is less pow-
erful than one using the full permutation distribution.

Fortunately, as few as 1000 permutations can yield
an effective approximate permutation test (Edgington,
1969a). However, for a Monte Carlo test with minimal
loss of power in comparison to the full test (i.e. with
high efficiency), one should consider rather more (Jöckel,
1986). A margin of error can characterize the degree to
which the p-values vary. When N is large and N ′ � N the
approximate 95 per cent margin of error is 2

√
p�1−p�/N ′

where p is the true p-value found with all N permuta-
tions. This result shows that, if one is to limit the margin
of error at 10 per cent of a nominal 0.05 p-value, an N ′ of
approximately 7500 is required.

Power

Generally, non-parametric approaches are less power-
ful than equivalent parametric approaches when the
assumptions of the latter are true. The assumptions
provide the parametric approach with additional infor-
mation, which the non-parametric approach must ‘dis-
cover’. The more relabellings, the better the power of
the non-parametric approach relative to the parametric
approach. In a sense, the method has more information
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from more relabellings, and ‘discovers’ the null distribu-
tion assumed in the parametric approach. However, if the
assumptions required for a parametric analysis are not
credible, a non-parametric approach provides the only
valid method of analysis.

In the current context of assessing statistic images
from functional neuroimaging experiments, the preva-
lent statistical parametric mapping techniques require a
number of assumptions and involve some approxima-
tions. Experience suggests that the permutation meth-
ods described here do at least as well as the parametric
methods, at least on real (PET) data (Arndt et al., 1996).
For noisy statistic images, such as t-statistic images with
low degrees of freedom, the ability to consider pseudo
t-statistics constructed with locally pooled (smoothed)
variance estimates affords the permutation approach
additional power (Holmes, 1994; Holmes et al., 1996, and
examples below).

Multistep tests

The potential for confounds to affect the permutation dis-
tribution via the consideration of unsuitable relabellings
has already been considered. Recall also the above com-
ments regarding the potential for the maximum-based
permutation test to be differentially sensitive across
the volume of interest if the null permutation distri-
bution varies dramatically from voxel to voxel. There
is also the prospect that departures from the null
hypothesis influence the permutation distribution. Thus
far, our non-parametric multiple testing permutation
testing technique has consisted of a single-step: the null
sampling distribution (given the data), is the permuta-
tion distribution of the maximal statistic computed over
all voxels in the volume of interest, potentially includ-
ing voxels where the null hypothesis is not true. A large
departure from the null hypothesis will give a large statis-
tic, not only in the actual labelling of the experiment, but
also in other relabellings, similar to the true labelling.
This does not affect the overall validity of the test, but
may make it more conservative for voxels other than that
with the maximum observed statistic.

One possibility is to consider step-down tests, where
significant regions are iteratively identified and cut out,
and the remaining volume is reassessed. The resulting
procedure still maintains strong control over family-wise
type I error, our criteria for a test with localizing power,
but will be more powerful (at voxels other than that with
the maximal statistic). However, the iterative nature of
the procedure multiplies the computational burden of an
already intensive procedure. Holmes et al. (1996), give a
discussion and efficient algorithms, developed further in
Holmes (1998), but find that the additional power gained
was negligible for the cases studied.

Recall also the motivations for using a normalized
voxel statistic, such as the t-statistic: an inappropriately
normalized voxel statistic will yield a test that is differ-
entially sensitive across the image. In these situations the
step-down procedures may be more beneficial.

Generalizability

Questions often arise about the scope of inference,
or generalizability of non-parametric procedures. For
parametric tests, when a collection of subjects have been
randomly selected from a population of interest and
intersubject variability is considered, the inference is on
the sampled population and not just the sampled sub-
jects. The randomization test, in contrast, only makes
inference on the data at hand: a randomization test
regards the data as fixed and uses the randomness of the
experimental design to justify exchangeability. A permu-
tation test, while operationally identical to the random-
ization test, can make inference on a sampled population:
a permutation test also regards the data as fixed but it
additionally assumes the presence of a population distri-
bution to justify exchangeability, and hence can be used
for population inference. The randomization test is truly
assumption free, but has a limited scope of inference.

In practice, since subjects rarely constitute a ran-
dom sample of the population of interest, we find
the issue of little practical concern. Scientists routinely
generalize results, integrating prior experience, other
findings, existing theories, and common sense in a way
that a simple hypothesis test does not admit.

WORKED EXAMPLES

The following sections illustrate the application of the
techniques described above to three common experimen-
tal designs: single-subject PET ‘parametric’, multisubject
PET activation, and multisubject fMRI activation. In each
example we will illustrate the key steps in performing a
permutation analysis:

1 Null hypothesis
Specify the null hypothesis

2 Exchangeability
Specify exchangeability of observations under the null
hypothesis

3 Statistic
Specify the statistic of interest, usually broken down
into specifying a voxel-level statistic and a summary
statistic

4 Relabellings
Determine all possible relabellings given the exchange-
ability scheme under the null hypothesis
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5 Permutation distribution
Calculate the value of the statistic for each relabelling,
building the permutation distribution

6 Significance
Use the permutation distribution to determine signif-
icance of correct labelling and threshold for statis-
tic image.

The first three items follow from the experimental
design and must be specified by the user; the last three are
computed by the software, though we will still address
them here. When comparable parametric analyses are
available (within SPM), we will compare the permutation
results to the parametric results.

Single-subject PET: parametric design

The first study will illustrate how covariate analyses are
implemented and how the suprathreshold cluster size
statistic is used. This example also shows how random-
ization in the experimental design dictates the exchange-
ability of the observations.

Study description

The data come from a study of Silbersweig et al. (1994).
The aim of the study was to validate a novel PET method-
ology for imaging transient, randomly occurring events,
specifically events that were shorter than the duration
of a PET scan. This work was the foundation for later
work imaging hallucinations in schizophrenics (Silber-
sweig et al., 1995). We consider one subject from the
study, who was scanned 12 times. During each scan the
subject was presented with brief auditory stimuli. The
proportion of each scan over which stimuli were deliv-
ered was chosen randomly, within three randomization
blocks of size four. A score was computed for each scan,
indicating the proportion of activity infused into the brain
during stimulation. This scan activity score is our covari-
ate of interest, which we shall refer to as Duration. This is
a type of parametric design, though in this context para-
metric refers not to a set of distributional assumptions,
but rather an experimental design where an experimental
parameter is varied continuously. This is in contradistinc-
tion to a factorial design where the experimental probe
is varied over a small number of discrete levels.

We also have to consider the global cerebral blood
flow (gCBF), which we account for here by including
it as a nuisance covariate in our model. This gives a
multiple regression, with the slope of the Duration effect
being of interest. Note that regressing out gCBF like this
requires an assumption that there is no linear dependence
between the score and global activity; examination of a
scatter plot and a correlation coefficient of 0.09 confirmed

this as a tenable assumption (see Chapter 8 for further
discussion of global effects in PET).

Null hypothesis

Since this is a randomized experiment, the test will be
a randomization test, and the null hypothesis pertains
directly to the data, and no assumptions are required:

�0 � The data would be the same whatever the Duration�

Exchangeability

Since this experiment was randomized, our choice of EB
(i.e. exchangeability block) matches the randomization
blocks of the experimental design, which was chosen
with temporal effects in mind. The values of Duration
were grouped into three blocks of four, such that each
block had the same mean and similar variability, and
then randomized within block. Thus we have three EBs
of size four.

Statistic

We decompose our statistic of interest into two statistics:
one voxel-level statistic that generates a statistic image,
and a maximal statistic that summarizes that statistic
image in a single number. An important consideration
will be the degrees of freedom. We have one parameter
for the grand mean, one parameter for the slope with
Duration, and one parameter for confounding covariate
gCBF. Hence 12 observations less three parameters leaves
just nine degrees of freedom to estimate the error vari-
ance at each voxel.

Voxel-level statistic With only nine degrees of free-
dom, this study shows the characteristic noisy variance
image (Figure 21.2). The high frequency noise from poor
variance estimates propagates into the t-statistic image,
when one would expect an image of evidence against
�0 to be smooth (as is the case for studies with greater
degrees of freedom) since the raw images are smooth.

We address this situation by smoothing the variance
images (see pseudo t-statistics), replacing the variance
estimate at each voxel with a weighted average of its
neighbours. We use weights from an 8 mm spherical
Gaussian smoothing kernel. The statistic image consist-
ing of the ratio of the slope and the square root of the
smoothed variance estimate is smoother than that com-
puted with the raw variance. At the voxel level, the
resulting statistic does not have a Student’s t-distribution
under the null hypothesis, so we refer to it as a pseudo
t-statistic.

Figure 21.3 shows the effect of variance smoothing.
The smoothed variance image creates a smoother statis-
tic image, the pseudo t-statistic image. The key here
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FIGURE 21.2 Mesh plots of parametric analysis, z = 0 mm. Upper left: slope estimate. Lower left: standard deviation of slope estimate.
Right: t image for Duration. Note how the standard deviation image is much less smooth than the slope image, and how the t image is
correspondingly less smooth than the slope image.
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FIGURE 21.3 Mesh plots of permutation analysis, z = 0 mm. Upper left: slope estimate. Lower left: square root of smoothed variance of
slope estimate. Right: pseudo t image for Duration. Note that the smoothness of the pseudo t image is similar to that of the slope image (cf.
Figure 21.2).

is that the parametric t-statistic introduces high spa-
tial frequency noise via the poorly estimated standard
deviation – by smoothing the variance image we are mak-
ing the statistic image more like the ‘signal’.

Summary statistic We summarize evidence against �0

for each relabelling with the maximum statistic and,
in this example, consider the maximum suprathreshold
cluster size (max STCS).
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Clusters are defined by connected suprathreshold vox-
els. Under �0, the statistic image should be random with
no features or structure, hence large clusters are unusual
and indicate the presence of an activation. A primary
threshold is used to define the clusters. The selection of
the primary threshold is crucial. If set too high there will
be no clusters of any size; if set too low the clusters will
be too large to be useful.

Relabelling enumeration

Each of the three previous sections corresponds to a
choice that a user of the permutation test has to make.
Those choices and the data are sufficient for an algorithm
to complete the permutation test. This and the next two
sections describe the ensuing computational steps.

To create the labelling used in the experiment, the
labels were divided into three blocks of four, and ran-
domly ordered within blocks. There are 4! = 4 × 3 × 2 ×
1 = 24 ways to permute 4 labels, and since each block
is independently randomized, there are a total of 4!3 =
13 824 permutations of the labels.

Computations for 13 824 permutations would be bur-
densome, so we use a Monte Carlo test. We randomly
select 999 relabellings to compute the statistic, giving
1000 relabellings including the actual labelling used in
the experiment. Recall that while the p-values are random
approximations, the test is still exact.

Permutation distribution

For each of the 1000 relabellings, the statistic image
is computed and thresholded, and the maximal
suprathreshold cluster size is recorded. For each rela-
belling this involves model fitting at each voxel, smooth-
ing the variance image, and creating the pseudo t-statistic
image. This is the most computationally intensive part of
the analysis, but is not onerous on modern computing
hardware. (See below for computing times.)

Selection of the primary threshold is a quandary. For
the results to be valid we need to pick the thresh-
old before the analysis is performed. With a parametric
voxel-level statistic we could use its null distribution to
specify a threshold from the uncorrected p-value (e.g. by
using a t table). Here we cannot take this approach since
we are using a non-parametric voxel-level statistic whose
null distribution is not known a priori. Picking several
thresholds is not valid, as this introduces a new multi-
ple testing problem. We suggest gaining experience with
similar datasets from post hoc analyses: apply different
thresholds to get a feel for an appropriate range and then
apply such a threshold to the data on hand. Using data
from other subjects in this study we found 3.0 to be a
reasonable primary threshold.

Significance threshold

The distribution of max STCS is used to assess the over-
all significance of the experiment and the significance of
individual clusters: The significance is the proportion of
relabellings that had max STCS greater than or equal to
the maximum STCS of the correct labelling. Put another
way, if max STCS of the correct labelling is at or above
the 95th percentile of the max STCS permutation distri-
bution, the experiment is significant at � = 0�05. Also, any
cluster in the observed image with size greater than the
95th percentile is significant at � = 0�05. Since we have
1000 relabellings, 1000 × 0�95 = 950, so the 950th largest
max STCS will be our significance threshold.

Results

The permutation distribution of max STCS under �0 is
shown in Figure 21.4(a). Most relabellings have max STCS
less than 250 voxels. The vertical dotted line indicates the
95th percentile: the top 5 per cent are spread from about
500 to 3000 voxels.

For the correctly labelled data the max STCS was 3101
voxels. This is unusually large in comparison to the per-
mutation distribution. Only five relabellings yield max
STCS equal to or larger than 3101, so the p-value for the
experiment is 5/1000 = 0�005. The 95th percentile is 462,
so any suprathreshold clusters with size greater than 462
voxels can be declared significant at level 0.05, account-
ing for the multiple testing implicit in searching over
the brain.

Figure 21.4(b), is a maximum intensity projection (MIP)
of the significant suprathreshold clusters. Only these
two clusters are significant, i.e. there are no other
suprathreshold clusters larger than 462 voxels. These two
clusters cover the bilateral auditory (primary and associa-
tive) and language cortices. They are 3101 and 1716 vox-
els in size, with p-values of 0.005 and 0.015 respectively.
Since the test concerns suprathreshold clusters, it has no
localizing power: significantly large suprathreshold clus-
ters contain voxels with a significant experimental effect,
but the test does not identify them.

Discussion

The non-parametric analysis presented here uses max-
imum STCS on a pseudo t-statistic image. Since the
distribution of the pseudo t-statistic is not known, the
corresponding primary threshold for a parametric anal-
ysis using a standard t-statistic cannot be computed.
This precludes a straightforward comparison of this non-
parametric analysis with a corresponding parametric
analysis such as that of Friston et al. (1994).

While the necessity to choose the primary threshold
for suprathreshold cluster identification is a problem, the
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FIGURE 21.4 (a) Distribution of maximum suprathreshold cluster size with a primary threshold of 3. Dotted line shows 95th percentile.
The count axis is truncated at 100 to show low-count tail; first two bars have counts 579 and 221. (b) Maximum intensity projection image of
significantly large clusters.

same is true for parametric approaches. The only addi-
tional difficulty occurs with pseudo t-statistic images,
when specification of primary thresholds in terms of
upper tail probabilities from a Students’ t-distribution
is impossible. Further, parametric suprathreshold cluster
size methods (Friston et al., 1994; Poline et al., 1997) utilize
asymptotic distributional results, and therefore require
high primary thresholds. The non-parametric technique
is free of this constraint, giving exact p-values for any pri-
mary threshold (although very low thresholds are unde-
sirable due to the large suprathreshold clusters expected
and consequent poor localization of an effect).

Although only suprathreshold cluster size has been
considered, any statistic summarizing a suprathreshold
cluster could be considered. In particular, an exceedance
mass statistic could be employed.

Multisubject PET: activation

For the second example, we consider a multisubject, two
condition activation experiment. Here we will use a stan-
dard t-statistic with a single threshold test, enabling a
direct comparison with the standard parametric random
field approach.

Study description

Watson et al. (1993) localized the region of visual cor-
tex sensitive to motion, area MT/V5, using high reso-
lution 3D PET imaging of twelve subjects. These data
were analysed by Holmes et al. (1996), using proportional
scaling global flow normalization and a repeated mea-
sures pseudo t-statistic. Here, we consider the same data,
but use a standard repeated measures t-statistic, allow-

ing direct comparison of parametric and non-parametric
approaches.

The visual stimulus consisted of randomly placed
squares. During the baseline condition the pattern was
stationary, whereas during the active condition the
squares smoothly moved in independent directions. Prior
to the experiment, the twelve subjects were randomly
allocated to one of two scan condition presentation orders
in a balanced randomization. Thus six subjects had scan
conditions ABABABABABAB, the remaining six having
BABABABABABA, which we will refer to as AB and BA
orders respectively.

Null hypothesis

In this example, the labels of the scans as A and B are
allocated by the initial randomization, so we have a ran-
domization test, and the null hypothesis concerns the
data directly:

�o: For each subject, the experiment would have
yielded the same data were the conditions reversed.

Exchangeability

Given the null hypothesis, exchangeability follows
directly from the initial randomization scheme: the exper-
iment was randomized at the subject level, with six AB
and six BA labels randomly assigned to the twelve sub-
jects. Correspondingly, the labels are exchangeable sub-
ject to the constraint that they could have arisen from the
initial randomization scheme. Thus we consider all per-
mutations of the labels that result in six subjects having
scans labelled AB, and the remaining six BA. The initial
randomization could have resulted in any six subjects
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having the AB condition presentation order (the remain-
der being BA), and under the null hypothesis the data
would have been the same, hence exchangeability.

Statistic

We are interested in the activation magnitude relative
to the intersubject variability in activation, hence we
use the statistic associated with a random-effects model
which incorporates a random subject by condition inter-
action term.

Voxel-level statistic A random-effects analysis is eas-
ily effected by collapsing the data within subject and
computing the statistic across subjects (Worsley et al.,
1991; Holmes and Friston, 1999). In this case, the result is
a repeated measures t-statistic, after proportional scaling
for global normalization: each scan is proportionally
scaled to a common global mean of 50; each subject’s
data are collapsed into two average images, one for each
condition; a paired t-statistic is computed across the sub-
jects’ ‘rest’-‘active’ pairs of average images. By comput-
ing this paired t-statistic on the collapsed data, both
the inter-subject and intra-subject (error) components of
variance are accounted for appropriately. Since there are
twelve subjects, there are twelve pairs of average condi-
tion images, and the t-statistic has 11 degrees of freedom.
With just 11 degrees of freedom we anticipate the same
problems with noisy variance images as in the previous
examples, but in order to make direct comparisons with
a parametric approach, we will not consider variance
smoothing and pseudo t-statistics for this example.

Summary statistic To consider a single threshold test
over the entire brain, the appropriate summary statistic
is the maximum t-statistic.

Relabelling enumeration

This example is different from the previous one in that
we permute across subjects instead of across replica-
tions of conditions. Here our EB is not in units of scans,
but subjects. The EB size here is twelve subjects, since
the six AB and six BA labels can be permuted freely
among the twelve subjects. There are

(
12
6

)
= 12!

6!�12−6�! =
924 ways of choosing six of the twelve subjects to have
the AB labelling. This is a sufficiently small number of
permutations to consider a complete enumeration.

One may consider permuting labels within subjects,
particularly in the permutation setting when there is no
initial randomization dictating the exchangeability. How-
ever, the bulk of the permutation distribution is specified
by these between-subject permutations, and any within-
subject permutations just flesh out this framework, yield-
ing little practical improvement in the test.

Permutation distribution

For each of 924 relabellings, we calculate the maximum
repeated measures t-statistic, resulting in the permuta-
tion distribution shown in Figure 21.5(a). Note that for
each possible relabelling and t-statistic image, the oppo-
site relabelling is also possible, and gives the negative of
the t-statistic image. Thus, it is only necessary to compute
t-statistic images for half of the relabellings, and retain
their maxima and minima. The permutation distribution
is then that of the maxima for half the relabellings con-
catenated with the negative of the corresponding minima.

Significance threshold

As before, the 95th percentile of the maximum t distribu-
tion provides both a threshold for omnibus experimental

FIGURE 21.5 (a) Permutation distribution of maximum repeated measures t-statistic. Dotted line indicates the 5 per cent level corrected
threshold. (b) Maximum intensity projection of t-statistic image, thresholded at critical threshold for a 5 per cent level permutation test
analysis of 8.401.
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significance and a voxel-level significance threshold
appropriate for the multiple testing problem. With 924
permutations, the 95th percentile is at 924 × 0�05 = 46�2,
so the critical threshold is the 47th largest member of
the permutation distribution. Any voxel with intensity
greater than this threshold can be declared significant at
the 0.05 level.

Results

Figure 21.5(a) shows the permutation distribution of the
maximum repeated measures t-statistic. Most maxima lie
between about 4 and 9, though the distribution is skewed
in the positive direction.

The outlier at 29.30 corresponds to the observed t-
statistic, computed with correctly labelled data. Since
no other relabellings are higher, the p-value is 1/924 =
0�0011. The 47th largest member of the permutation dis-
tribution is 8.40, the critical threshold (marked with a
dotted vertical line on the permutation distribution). The
t-statistic image thresholded at this critical value is shown
in Figure 21.5(b). There is a primary region of 1424 signif-
icant voxels covering the V1/V2 region, flanked by two
secondary regions of 23 and 25 voxels corresponding to
area V5, plus six other regions of 1 or 2 voxels.

For a t-statistic image of 43 724 voxels of size 2 ×
2 × 4 mm, with an estimated smoothness of 7�8 × 8�7 ×
8�7 mm FWHM, the parametric theory gives a 5 per
cent level critical threshold of 11.07, substantially higher
than the corresponding 4.61 of the non-parametric result.
The thresholded image is shown in Figure 21.6(b);
the image is very similar to the non-parametric image
(Figure 21.5(b)), with the primary region having 617 vox-
els, with two secondary regions of 7 and 2 voxels.
Another parametric result is the well-known, but conser-
vative Bonferroni correction; here it specifies a 5 per cent
threshold of 8.92 which yields a primary region of 1212

voxels and five secondary regions with a total of 48 vox-
els. In Figure 21.6(a) we compare these three approaches
by plotting the significance level versus the threshold.
The critical threshold based on the expected Euler char-
acteristic (Worsley et al., 1995) for a t-statistic image is
shown as a dashed line and the critical values for the
permutation test is shown as a solid line. For a given
test level (a horizontal line), the test with the smaller
threshold has the greater power. At all thresholds in
this plot the non-parametric threshold is below the ran-
dom field threshold, though it closely tracks the Bonfer-
roni threshold below the 0.05 level. Thus random field
theory (see Chapters 17, 18 and 19) appears to be quite
conservative here.

Discussion

This example again demonstrates the role of the permu-
tation test as a reference for evaluating other procedures,
here the parametric analysis of Friston et al. (1995). The
t field results are conservative for low degrees of free-
dom and low smoothness; the striking difference between
the non-parametric and random field thresholds makes
this clear.

Figure 21.6(a) provides an informative comparison
between the two methods. For all typical test sizes
�� ≤ 0�05�, the non-parametric method specifies a lower
threshold than the parametric method: for these data, this
is exposing the conservativeness of the t field results. For
lower thresholds the difference between the methods is
even greater, though this is anticipated since the paramet-
ric results are based on high threshold approximations.

A randomization test applied to a random-effects
statistic presents an interesting contradiction. While we
use a statistic corresponding to a model with a random
subject by condition interaction, we are performing a

FIGURE 21.6 (a) Test significance ��� levels plotted against critical thresholds, for non-parametric and parametric analyses. (b) Maximum
intensity projection of t image, thresholded at parametric 5 per cent level critical threshold of 11.07.
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randomization test that technically excludes inference on
a population. However, if we assume that the subjects of
this study constitute a random sample of the population
of interest, we can ignore the experimental randomiza-
tion and perform a permutation test, as we do in the next
example.

Multisubject fMRI: activation

For this third and final example, consider a multisub-
ject fMRI activation experiment. Here we will perform
a permutation test so that we can make inference on a
population. We will use a smoothed variance t-statistic
with a single threshold test and will make qualita-
tive and quantitative comparisons with the parametric
results.

Before discussing the details of this example, we note
that fMRI data present a special challenge for non-
parametric methods. Since fMRI data exhibit temporal
autocorrelation (Smith et al., 1999), an assumption of
exchangeability of scans within subjects is not tenable.
However, to analyse a group of subjects for population
inference, we need only assume exchangeability of sub-
jects. Hence, while intrasubject fMRI analyses are not
straightforward with the permutation test, multisubject
analyses are.

Study description

Marshuetz et al. (2000) studied order effects in working
memory using fMRI. The data were analysed using a
random-effects procedure (Holmes and Friston, 1999), as
in the last example. For fMRI, this procedure amounts to
a generalization of the repeated measures t-statistic.

There were 12 subjects, each participating in eight
fMRI acquisitions. There were two possible presenta-
tion orders for each block, and there was randomization
across blocks and subjects. The TR was two seconds, a
total of 528 scans collected per condition. Of the study’s
three conditions we consider only two, item recognition
and control. For item recognition, the subject was pre-
sented with five letters and, after a two second interval,
presented with a probe letter. They were to respond ‘yes’
if the probe letter was among the five letters and ‘no’ if
it was not. In the control condition, they were presented
with five Xs and, two seconds later, presented with either
a ‘y’ or an ‘n’; they were to press ‘yes’ for y and ‘no’
for n.

Each subject’s data were analysed, creating a differ-
ence image between the item recognition and control
effects. These images were analysed with a one-sample
t-test, yielding a random-effects analysis that accounts
for intersubject differences.

Null hypothesis

While this study used randomization within and across
subject and hence permits the use of a randomization
test, we will use a permutation approach to generalize
the results to a population (see above).

Again using a random-effects statistic, we only analyse
each subject’s item versus control difference image. We
make the weak distributional assumption that the values
of a subject’s difference images at any given voxel (across
subjects) are drawn from a symmetric distribution. (The
distribution may be different at different voxels, so long
as it is symmetric.) The null hypothesis is that these dis-
tributions are centred on zero:

�o: The symmetric distributions of the (voxel values
of the) subjects’ difference images have zero mean.

Exchangeability

The conventional assumption of independent subjects
implies exchangeability, and hence a single EB consisting
of all subjects.

Exchanging the item and control labels has exactly
the effect of flipping the sign of the difference image.
So we consider subject labels of ‘+1’ and ‘−1’, indicat-
ing an unflipped or flipped sign of the data. Under the
null hypothesis, we have data symmetric about zero, and
hence can randomly flip the signs of a subject’s difference
images.

Statistic

In this example we focus on statistic magnitude.

Voxel-level statistic As noted above, this analysis
amounts to a one-sample t-test on the first level difference
images, testing for a zero-mean effect across subjects.
We use a pseudo t-test, with a variance smoothing of
4 mm FWHM, comparable to the original within-subject
smoothing. In our experience, the use of any variance
smoothing is more important than the particular magni-
tude (FWHM) of the smoothing.

Summary statistic Again we are interested in search-
ing over the whole brain for significant changes, hence
we use the maximum pseudo t.

Relabelling enumeration

Based on our exchangeability under the null hypothesis,
we can flip the sign on some or all of our subjects’ data.
There are 212 = 4096 possible ways of assigning either ‘+1’
or ‘−1’ to each subject. We consider all 4096 relabellings.
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Permutation distribution

For each relabelling we found the maximum pseudo
t-statistic, yielding the distribution in Figure 21.7(a). As
in the last example, we have a symmetry in these labels;
we need only compute 2048 statistic images and save
both the maxima and minima.

Significance threshold

With 4096 permutations, the 95th percentile is 4096 ×
0�05 = 452�3, and hence the 453rd largest maxima defines
the 0.05 level corrected significance threshold.

Results

The permutation distribution of the maximum pseudo
t-statistic under �0 is shown in Figure 21.7(a). It is cen-

tred around 4.5 and is slightly positively skewed; all
maxima found were between about 3 and 8.

The correctly labelled data yielded the largest maxi-
mum, 8.471. Hence the overall significance of the exper-
iment is 1/4096 = 0�0002. The dotted line indicates the
0.05 corrected threshold, 5.763. Figure 21.7(b) shows the
thresholded maximum intensity projection (MIP) of sig-
nificant voxels. There are 312 voxels in eight distinct
regions; in particular there are bilateral posterior parietal
regions, a left thalamic region and an anterior cingu-
late region; these are typical of working memory studies
(Marshuetz et al., 2000).

It is informative to compare this result to the traditional
t-statistic, using both a non-parametric and parametric
approach to obtain corrected thresholds. We reran this
non-parametric analysis using no variance smoothing.
The resulting thresholded data is shown in Figure 21.7(c);

FIGURE 21.7 (a) Permutation distribution of maximum repeated-measures t-statistic. Dotted line indicates the 5 per cent level corrected
threshold. (b) Maximum intensity projection of pseudo t-statistic image threshold at 5 per cent level, as determined by permutation distribution.
(c) Maximum intensity projection of t-statistic image threshold at 5 per cent level as determined by permutation distribution. (d) Maximum
intensity projection of t-statistic image threshold at 5 per cent level as determined by random field theory.
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TABLE 21-1 Comparison of four inference methods for the item recognition fMRI data. The minimum corrected p-value and
number of significant voxels give an overall measure of sensitivity; corrected thresholds can only be compared within statistic type.
For these data, the Bonferroni and random field results are very similar, and the non-parametric methods are more powerful; the
non-parametric t method detects 10 times as many voxels as the parametric method, and the non-parametric pseudo t detects 60

times as many

Statistic
Inference
method

Corrected threshold Minimum
corrected

Number of
significant

t Pseudo t p-value voxels

t Random field 9�870 0�0062 5
t Bonferroni 9�802 0�0025 5
t Permutation 7�667 0�0002 58
Pseudo t Permutation 5�763 0�0002 312

there are only 58 voxels in three regions that exceeded
the corrected threshold of 7.667. Using standard para-
metric random field methods produced the result in
Figure 21.7(d). For 110 776 voxels of size 2 × 2 × 2 mm,
with an estimated smoothness of 5�1 × 5�8 × 6�9 mm
FWHM, the parametric theory finds a threshold of 9.870;
there are only five voxels in three regions above this
threshold. Note that only the pseudo t-statistic detects
the bilateral parietal regions. Table 21-1 summarizes the
three analyses along with the Bonferroni result.

Discussion

In this example, we have demonstrated the utility of the
non-parametric method for intersubject fMRI analyses.
Based only on independence of the subjects and sym-
metric distribution of difference images under the null
hypothesis, we can create a permutation test that yields
inferences on a population.

Multiple subject fMRI studies often have few subjects,
many fewer than 20 subjects. By using the smoothed vari-
ance t-statistic we have gained sensitivity, relative to the
standard t-statistic. Even with the standard t-statistic, the
non-parametric test proved more powerful, detecting five
times as many voxels as active. Although the smoothed
variance t is statistically valid, it does not overcome any
limitations of face validity of an analysis based on only
12 subjects.

We note that this relative ranking of sensitivity (non-
parametric pseudo t, non-parametric t, parametric t) is
consistent with the other second-level data sets we have
analysed. We believe this is due to a conservativeness of
the random t-field results under low degrees of freedom.

Discussion of examples

These examples have demonstrated the non-parametric
permutation test for PET and fMRI with a variety of
experimental designs and analyses. We have addressed

each of the steps in sufficient detail to follow the algo-
rithmic steps that the SPM software performs. We have
shown that the ability to utilize smoothed variances via
a pseudo t-statistic can offer increased power over a cor-
responding standard t-statistic image. Using standard t-
statistics, we have seen how the permutation test can be
used as a reference against which parametric results can
be validated.

However, note that the comparison between paramet-
ric and non-parametric results must be made very care-
fully. Comparable models and statistics must be used,
and multiple testing procedures with the same degree
of control over image-wise type I error used. Further,
since the permutation distributions are derived from the
data, critical thresholds are specific to the data set under
consideration. Although the examples presented above
are compelling, it should be remembered that these are
only a few specific examples. However, the points noted
for these specific examples are indicative of our general
experience with these methods.

Finally, while we have noted that the non-parametric
method has greater computational demands than para-
metric methods, they are reasonable on modern hard-
ware. The PET examples presented here would take
about 5 minutes on a typical desktop PC, while the fMRI
example could take longer, as much as 20 minutes due to
more permutations (2048 versus. 500) and larger images.

CONCLUSIONS

In this chapter, the theory and practicalities of non-
parametric randomization and permutation tests for
functional neuroimaging experiments have been pre-
sented and illustrated with worked examples.

As has been demonstrated, the permutation approach
offers various advantages. The methodology is intuitive
and accessible. With suitable maximal summary statis-
tics, the multiple testing problem can be accounted for
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easily; only minimal assumptions are required for valid
inference, and the resulting tests are almost exact, with
size at most 1/N less than the nominal test level �, where
N is the number of relabellings.

The non-parametric permutation approaches described
give results similar to those obtained from a com-
parable statistical parametric mapping approach using
a general linear model with multiple testing correc-
tions derived from random field theory. In this respect,
these non-parametric techniques can be used to verify
the validity of less computationally expensive paramet-
ric approaches. When the assumptions required for a
parametric approach are not met, the non-parametric
approach described provides a viable alternative.

In addition, the approach is flexible. Choice of voxel
and summary statistic are not limited to those whose null
distributions can be derived from parametric assump-
tions. This is particularly advantageous at low degrees
of freedom, when noisy variance images lead to noisy
statistic images and multiple testing procedures based
on the theory of continuous random fields are conserva-
tive. By assuming a smooth variance structure, and using
a pseudo t-statistic computed with smoothed variances,
the permutation approach gains considerable power.

Therefore, the non-parametric permutation approach
should be considered for experimental designs with
low degrees of freedom. These include small-sample
size problems, such as single-subject PET/SPECT (sin-
gle photon emission computed tomography), but also
PET/SPECT and fMRI multisubject and between-group
analyses involving small numbers of subjects, where
analysis must be conducted at the subject level to account
for intersubject variability. It is our hope that this chapter,
and the accompanying software, will encourage appro-
priate application of these non-parametric techniques.
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Empirical Bayes and hierarchical models
K. Friston and W. Penny

INTRODUCTION

Bayesian inference plays a central role in many imaging
neuroscience applications. Empirical Bayes is the estima-
tion and inference framework associated with a Bayesian
treatment of hierarchical models. Empirical Bayes and the
inversion of hierarchical models can almost be regarded
as the same thing. Empirical Bayes is important because
nearly all the models we use in neuroimaging have some
explicit or implicit hierarchical structure. Bayesian infer-
ence will play an increasing role in subsequent chapters
and rests on the equality:

p���y� = p�y���p��� 22.1

The first term specifies a generative model and an asso-
ciated energy function, which we usually try to optimize
with respect to the parameters of the model �, given some
data y. The model is specified in terms of the second two
terms; the likelihood p�y��� and prior p(�). However, in
hierarchical models there are conditional independences
among the model parameters that mean the probabilities
on the right factorize:

p���y� = p�y���1��p���1����2��� � � � � p���n�� 22.2

There are many examples of these models, ranging from
Markov models of hidden states that evolve over time
to complicated graphical models, in which the parame-
ters at one level control the distribution of parameters
at lower levels, sometimes in a non-linear and possibly
time-varying fashion. In this chapter, we will be looking
at relatively simple hierarchical linear models. Irrespec-
tive of the exact form of hierarchical models, they all
have intermediate terms p���i����i+1��. These are empirical
priors. They have an ambiguous role that is intermedi-
ate between the likelihood and priors (i.e. the first and
last terms). On the one hand, like a full prior, they pro-
vide constraints on ��i�, on the other, they specify the

likelihood of ��i�, given ��i+1�. This means the empirical
priors depend on ��i+1�, which has to be inferred from the
data, hence empirical Bayes. Empirical Bayes is critical
to model specification and inversion because empirical
priors embody formal constraints on the generation of
observed data and these constraints can be used in a
powerful way. The chapters in this section try to illus-
trate this point, starting with simple hierarchies of lin-
ear models and ending with complicated and informed
spatio-temporal models of functional magnetic resonance
imaging (fMRI) time-series.

This chapter revisits hierarchical observation models
(see Chapter 11) used in functional neuroimaging. It
emphasizes the common ground shared by classical and
Bayesian methods to show that conventional analyses
of neuroimaging data can be usefully extended within
an empirical Bayesian framework. In particular, we for-
mulate the procedures used in conventional data analy-
sis in terms of hierarchical linear models and establish
a connection between classical inference and paramet-
ric empirical Bayes (PEB) through covariance component
estimation. This estimation is based on expectation max-
imization or EM (see Appendix 3). Hierarchical models
not only provide for inference at the highest level, but
allow one to revisit lower levels, to make Bayesian infer-
ences. Bayesian inferences eschew many of the difficul-
ties encountered with classical inference and characterize
brain responses in a way that is more directly related to
what one is interested in.

We start with a theoretical summary and then deal
with applications of the theory to a range of issues in
neuroimaging. These include: estimating non-sphericity
or variance components in fMRI time-series that can arise
from serial correlations within subject, or are induced
by multisubject (i.e. hierarchical) studies; Bayesian mod-
els for imaging data, in which effects at one voxel are
constrained by responses in others (see Chapters 23 and
25); and Bayesian estimation of dynamic models of brain
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responses (see Chapter 34). Although diverse, all these
estimation and inference problems are accommodated by
the framework described next.

Classical and Bayesian inference

Since its inception, statistical parametric mapping (SPM)
has proved useful for characterizing neuroimaging data
sequences. However, SPM is limited because it is based
on classical inference procedures. In this chapter, we
introduce a more general framework, which places SPM
in a broader context and points to alternative ways of
characterizing and making inferences about regionally
specific effects in neuroimaging. In particular, we formu-
late the procedures used in conventional data analysis in
terms of hierarchical linear models and establish the con-
nection between classical inference and empirical Bayesian
inference through covariance component estimation. This
estimation is based on the expectation maximization (or
EM) algorithm.

Statistical parametric mapping entails the use of the
general linear model and classical statistics, under para-
metric assumptions, to create a statistic (usually the
t-statistic) at each voxel. Inferences about regionally spe-
cific effects are based on the ensuing image of t-statistics,
the SPM�t�. The requisite distributional approximations
for the peak height, or spatial extent, of voxel clus-
ters, surviving a specified threshold, are derived using
Gaussian random field theory (see Part 3). Random field
theory enables the use of classical inference procedures,
and the latitude afforded by the general linear model,
to give a powerful and flexible approach to continuous,
spatially extended data. It does so by protecting against
family-wise false positives over all the voxels that consti-
tute a search volume, i.e. it provides a way of adjusting
the p-values, in the same way that a Bonferroni correc-
tion does for discrete data (Worsley, 1994; Friston et al.,
1995).

Despite its success, statistical parametric mapping has
a number of limitations: the p-value, ascribed to a topo-
logical feature of the SPM, does not reflect the likelihood
that the effect is present but simply the probability of
getting the feature in the effect’s absence. There are sev-
eral shortcomings to this classical approach. First, one
can never reject the alternate hypothesis (i.e. say that an
activation has not occurred) because the probability that
an effect is exactly zero is itself zero. This is problem-
atic, for example, in trying to establish double dissocia-
tions or indeed functional segregation; one can never say
one area responds to colour but not motion and another
responds to motion but not colour. Secondly, because the
probability of an effect being zero is vanishingly small,
given enough scans or subjects one can always demon-

strate a significant effect at every voxel. This fallacy of
classical inference is relevant practically, with the thou-
sands of scans that enter some fixed-effect analyses of
fMRI data. The issue here is that trivially small activa-
tions can be declared significant if there are sufficient
degrees of freedom to render their estimated variability
small enough. A third problem, which is specific to SPM,
is the correction or adjustment applied to the p-values
to resolve the multiple comparison problem. This has
the somewhat nonsensical effect of changing the infer-
ence about one part of the brain in a way that depends
on whether another part is examined. Put simply, the
threshold increases with search volume, rendering infer-
ence very sensitive to what it encompasses. Clearly, the
probability that any voxel has activated does not change
with the search volume and yet the p-value does.

All these problems would be eschewed by using the
probability that a voxel had activated, or indeed its acti-
vation was greater than some threshold. This sort of infer-
ence is precluded by classical approaches, which simply
give the likelihood of getting the data, given no effect. What
one would like is the probability of the effect given the
data. This is the posterior probability used in Bayesian
inference. The Bayesian approach to significance testing
in functional neuroimaging was introduced by Andrew
Holmes and Ian Ford (Holmes and Ford, 1993) four years
after SPM was invented. The Bayesian approach requires
both the likelihood, afforded by assumptions about the
distribution of errors, and the prior probability of acti-
vation. These priors can enter as known values or can
be estimated from the data, provided we have observed
multiple instances of the effect we are interested in. The
latter is referred to as empirical Bayes and rests upon a
hierarchical observation model. In many situations we do
assess the same effect over different subjects, or indeed
different voxels, and are in a position to adopt empiri-
cal Bayes. This chapter describes one such approach. In
contrast to other proposals, this approach is not a novel
way of analysing neuroimaging data. The use of Bayes
for fMRI data has been usefully explored elsewhere (e.g.
spatio-temporal Markov field models, Descombes et al.,
1998; and mixture models, Everitt and Bullmore, 1999).
See also Hartvig and Jensen (2000) who combine both
these approaches and Højen-Sørensen et al. (2000) who
focus on temporal aspects with hidden Markov models.
Generally, these approaches assume that voxels are either
active or not and use the data to infer their status. Because
of this underlying assumption, there is little connection
with conventional models that allow for continuous or
parametric responses. Our aim here is to highlight the
fact that conventional models we use routinely conform
to hierarchical observation models that can be treated in
a Bayesian fashion. The importance of this rests on the
connection between classical and Bayesian inference and
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the use of Bayesian procedures that are overlooked from
a classical perspective. For example, random-effect anal-
yses of fMRI data (Holmes and Friston, 1998, and see
Chapter 12) adopt two-level hierarchical models. In this
context, people generally focus on classical inference at
the second level, unaware that the same model can sup-
port Bayesian inference at the first. Revisiting the first
level, within a Bayesian framework, provides a much
better characterization of single-subject responses, both
in terms of the estimated effects and the nature of the
inference. We will see an example of this later.

Overview

The aim of the first section below is to describe hier-
archical observation models and establish the relation-
ship between classical maximum likelihood (ML) and
empirical Bayes estimators. Parametric empirical Bayes
can be formulated in terms of covariance component
estimation (e.g. within-subject versus between-subject
contributions to error). The covariance component for-
mulation is important because it is ubiquitous in fMRI
and electroencephalography (EEG). Different sources of
variability in the data induce non-sphericity that has to
be estimated before any inferences about an effect can
be made. Important sources of non-sphericity include
serial or temporal correlations among errors in single-
subject studies, or in multisubject studies, the differences
between within- and between-subject variability. These
issues are used in the second section to emphasize both
the covariance component estimation and Bayesian per-
spectives, in terms of the difference between response
estimates based on classical maximum likelihood estima-
tors and the conditional expectations or modes, using a
Bayesian approach.

In the next chapter, we use the same theory to elaborate
hierarchical models that allow the construction of pos-
terior probability maps. Again, this employs two-level
models but focuses on Bayesian inference at the first
level. It complements the preceding fMRI application by
showing how global shrinkage priors can be estimated
using observations over voxels at the second level. This
is a special case of more sophisticated hierarchical mod-
els of fMRI data presented in Chapter 25, which use
local shrinkage priors to enforce spatial constraints on
the inversion.

THEORETICAL BACKGROUND

In this section, we focus on theory and procedures. The
key points are reprised in subsequent sections where

they are illustrated using real and simulated data. This
section describes how the parameters and hyperparame-
ters of a hierarchical model can be estimated given data.
The distinction between a parameter and a hyperparam-
eter depends on the context established by the infer-
ence. Here, parameters are quantities that determine the
expected response, which is observed. Hyperparameters
pertain to the probabilistic behaviour of the parameters.
Perhaps the simplest example is provided by a single-
sample t-test. The parameter of interest is the true effect
causing the observations to differ from zero. The hyper-
parameter corresponds to the variance of the observa-
tion error (usually denoted by 	2). Note that one can
estimate the parameter, with the sample mean, without
knowing the hyperparameter. However, if one wanted
to make an inference about the estimate, it is necessary to
know (or estimate using the residual sum of squares) the
hyperparameter. In this chapter, all the hyperparameters
are simply variances of different quantities that cause
the measured response (e.g. within-subject variance and
between-subject variance).

The aim of this section is to show the close relationship
between Bayesian and maximum likelihood estimation
implicit in conventional analyses of imaging data, using
the general linear model. Furthermore, we want to place
classical and Bayesian inference within the same frame-
work. In this way, we show that conventional analyses
are special cases of a more general parametric empirical
Bayes (PEB) approach. First, we reprise hierarchical lin-
ear observation models that form the cornerstone of the
ensuing estimation procedures. These models are then
reviewed from the classical perspective of estimating the
model parameters using maximum likelihood (ML) and
statistical inference using the t-statistic. The same model
is then considered in a Bayesian light to make an impor-
tant point: the estimated error variances, at any level,
play the role of priors on the variability of the parame-
ters in the level below. At the highest level, the ML and
Bayes estimators are the same.

Both classical and Bayesian approaches rest upon
covariance component estimation using EM. This is
described briefly and presented in detail in Appendix 3.
The EM algorithm is related to that described in
Dempster et al. (1981), but extended to cover hierarchical
models with any number of levels. For an introduction
to EM in generalized linear models, see Fahrmeir and
Tutz (1994). This text provides an exposition of EM and
PEB in linear models, usefully relating EM to classical
methods (e.g. restricted maximum likelihood (ReML)).
For an introduction to Bayesian statistics see Lee (1997).
This text adopts a more explicit Bayesian perspective
and again usefully connects empirical Bayes with classi-
cal approaches, e.g. the Stein ‘shrinkage’ estimator and
empirical Bayes estimators used below (Lee, 1997). In
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many standard texts the hierarchical models considered
here are referred to as random-effects models.

Hierarchical linear models

We will deal with hierarchical linear observation models
of the form:

y = X�1���1� +
�1�

��1� = X�2���2� +
�2�

���

��n−1� = X�n���n� +
�n�

22.3

under Gaussian assumptions about the errors 
�i� ∼
N�0�C�i�


 �. The response variable, y, is usually observed
both within units over time and over several units (e.g.
subject or voxels). X�i� are specified [design] matrices
containing explanatory variables or constraints on the
parameters ��i−1� of the level below. If the hierarchical
model has only one level, it reduces to the familiar gen-
eral linear model employed in conventional data anal-
ysis (see Chapter 8). Two-level models will be familiar
to readers who use mixed- or random-effects analyses.
In this instance, the first-level design matrix models the
activation effects, over scans within subjects, in a subject-
separable fashion (i.e. in partitions constituting the blocks
of a block diagonal matrix). The second-level design
matrix models the subject-specific effects over subjects.
Usually, but not necessarily, the design matrices are block
diagonal matrices where each block models the observa-
tions in each unit at that level (e.g. session, subject or
group).

X�i� =

⎡
⎢⎢⎢⎢⎣

X�i�
1 0 · · · 0
0 X�i�

2
���

� � �

0 X
�i�
J

⎤
⎥⎥⎥⎥⎦ 22.4

Some examples are shown in Figure 22.1 (these examples
are used in the next section). The design matrix at any
level has as many rows as the number of columns in
the design matrix of the level below. One can envisage
three-level models, which embody activation effects in
scans modelled for each session, effects expressed in each
session modelled for each subject and, finally, effects over
subjects.

The Gaussian or parametric assumptions, implicit in
these models, imply that all the random sources of
variability, in the observed response, have a Gaussian
distribution. This is appropriate for most models in neu-
roimaging and makes the relationship between classical

Hierarchical form

1st level y X  
(1)

2nd level θ 
(1) θ 

(2)

θ 
(1) 

ε  
(2)

ε 
(1)

= X   

(2) +

y = +       ε 
(1)

θ(2)

ε(2)

Non-hierarchical form

],[ )2()1()1( XXX

+=

FIGURE 22.1 Schematic showing the form of the design matri-
ces in a two-level model and how the hierarchical form (upper
panel) can be reduced to a non-hierarchical form (lower panel).
The design matrices are shown in image format with an arbitrary
colour scale. The response variable, parameters and error terms are
depicted as plots. In this example there are four subjects or units
observed at the first level. Each subject’s response is modelled with
the same three effects, one of these being a constant term. These
design matrices are part of those used in Friston et al. (2002b) to
generate simulated fMRI data and are based on the design matrices
used in the subsequent empirical event-related fMRI analyses.

approaches and Bayesian treatments (that can be general-
ized to non-Gaussian densities) much more transparent.

Technically, models that conform to Eqn. 22.3 fall
into the class of conditionally independent hierarchi-
cal models when the response variables and parame-
ters are independent across units, conditionally on the
hyperparameters controlling the error terms (Kass and
Steffey, 1989). These models are also called parametric
empirical Bayes (PEB) models because the obvious inter-
pretation of the higher-level densities as priors led to
the development of PEB methodology (Efron and Mor-
ris, 1973). Although the procedures considered in this
chapter accommodate general models that are not condi-
tionally independent, we refer to the Bayesian procedures
below as PEB because the motivation is identical and
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most of the examples assume conditional independence.
Having posited a model with a hierarchical form, the aim
is to estimate its parameters and make some inferences
about these estimates using their estimated variability
or, more generally, find the posterior or conditional den-
sity of its parameters. In classical inference, one is usu-
ally only interested in inference about the parameters at
the highest level to which the model is specified. In a
Bayesian context, the highest level is regarded as provid-
ing constraints or empirical priors that enable posterior
inferences about the parameters in lower levels. Identi-
fying the system of equations in Eqn. 22.3 can proceed
under two perspectives that are formally identical: a clas-
sical statistical perspective and a Bayesian one.

After recursive substitution, to eliminate all but the
final level parameters, Eqn. 22.3 can be written as:

y = 
�1� +X�1�
�2� +· · ·+X�1�� � � X�n−1�
�n� +X�1�� � � X�n���n�

22.5

In this non-hierarchical form the components of the
response comprise linearly separable contributions from
all levels. Those components are referred to as random
effects C̃
 where the last-level parameters enter as fixed
effects. The covariance partitioning implied by Eqn. 22.5
is:

E�yyT � = C̃
 +X�1�� � � X�n���n���n�T X�n�T � � � X�1�T

C̃
 =C�1�

 +· · ·+X�1�� � � X�n−1�C�i�


 X�n−1�T � � � X�1�T
22.6

where C�i�

 is the covariance of ��i�. If only one level is spec-

ified, the random effects vanish and a fixed-effect analysis
ensues. If n is greater than one, the analysis corresponds
to a random-effect analysis (or more exactly a mixed-effect
analysis that includes random terms). Eqn. 22.5 can be
interpreted in two ways that form respectively the basis
for a classical:

y = X̃��n� + 
̃

X̃ =X�1�X�2�� � � X�n� 22.7


̃ =
�1� +X�1�
�2� +· · ·+X�1�X�2�� � � X�n−1�
�n�

and Bayesian estimation:

y =X� +
�1�

X = [X�1�� � � � �X�1�X�2�� � � X�n−1��X�1�X�2�� � � X�n�
]

22.8

� =

⎡
⎢⎢⎢⎣


�2�

���

�n�

��n�

⎤
⎥⎥⎥⎦

In the first formulation, the random effects are lumped
together and treated as a compound error, rendering

the last-level parameters the only parameters to appear
explicitly. Inferences about n-th level parameters are
obtained by simply specifying the model to the order
required. In contradistinction, the second formulation
treats the error terms as parameters, so that � comprises
the errors at all levels and the final-level parameters. Here
we have effectively collapsed the hierarchical model into
a single level by treating the error terms as parameters
(see Figure 22.1 for a graphical depiction).

A classical perspective

From a classical perceptive, Eqn. 22.7 represents an obser-
vation model with response variable y, design matrix
X̃ and parameters ��n�. Classically, estimation proceeds
using the maximum likelihood (ML) estimator of the
final-level parameters. Under our model assumptions,
this is the Gauss-Markov estimator:

ML = My

M = �X̃T C−1

̃ X̃�−1X̃T C−1


̃

22.9

where M is a matrix that projects the data onto the esti-
mate. Inferences about this estimate are based upon its
covariance, against which any contrast (i.e. linear mix-
ture specified by the contrast weight vector c) can be
compared using the t-statistic:

t = cT ML√
cT Cov�ML�c

Cov�ML� = MC̃
M
T = �X̃T C̃−1


 X̃�−1

22.10

The covariance of the ML estimator represents a mixture
of covariances of lower-level errors projected to the high-
est level. To implement this classical procedure we need
the random effects C̃
 = Cov�
̃� projected down the hier-
archy onto the response or observation space. In other
words, we need the error covariance components of the
model, C�i�


 from Eqn. 22.6. To estimate these one has
to turn to the second formulation, Eqn. 22.8, and some
iterative procedure (i.e. EM). This covariance component
estimation reflects the underlying equivalence between
classical and empirical Bayes methods. There are spe-
cial cases where one does not need to resort to iterative
covariance component estimation, e.g. single-level mod-
els. With balanced designs, where X�i�

1 = X�i�
j for all i and

j, one can replace the response variable with the ML esti-
mates at the penultimate level and proceed as if one had
a single-level model. This is used in summary-statistic
implementation of random-effect analyses (Holmes and
Friston, 1998, see Chapter 12).

In summary, parameter estimation and inference, in
hierarchical models, can proceed given estimates of the
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hierarchical covariance components. The reason for intro-
ducing inference based on ML is to establish the cen-
tral role of covariance component estimation. In the next
section, we take a Bayesian approach to the same issue.

A Bayesian perspective

Bayesian inference is based on the conditional probabil-
ity of the parameters given the data p���i��y�. Under the
assumptions above, this conditional density is Gaussian
and the problem reduces to finding its first two moments,
the conditional mean �i�

��y and covariance C�i�
��y . These den-

sities are determined for all levels, enabling inference at
any level, using the same hierarchical model. Given the
posterior density we can work out the maximum a poste-
riori (MAP) estimate of the parameters (a point estimator
equivalent to �i�

��y for the linear systems considered here)
or the probability that the parameters exceed some spec-
ified value. Consider Eqn. 22.3 from a Bayesian point
of view. Here, level i can be thought of as providing
prior constraints on the expectation and covariances of
the parameters below:

E���i−1�� = �i−1�
� = X�i���i�

Cov���i−1�� = C�i−1�
� = C�i�




22.11

In other words, the parameters at any level play the role
of hyperparameters for the subordinate level that con-
trol the prior expectation under the constraints specified
by X�i�. Similarly, the prior covariances are specified by
the error covariances of the level above. For example,
given several subjects, we can use information about the
distribution of activations, over subjects, to inform an
estimate pertaining to any single subject. In this case, the
between-subject variability, from the second level, enters
as a prior on the parameters of the first level. In many
instances, we measure the same effect repeatedly in dif-
ferent contexts. The fact that we have some handle on
this effect’s inherent variability means that the estimate
for a single instance can be constrained by knowledge
about others. At the final level we can treat the parame-
ters as unknown, in which case their priors are flat1 (cf.
fixed effects) giving an empirical Bayesian approach, or
known. In the latter case, the connection with the classi-
cal formulation is lost because there is nothing to make
an inference about at the final level.

The objective is to estimate the conditional means and
covariances of lower-level parameters in a way that is
consistent with information from higher levels. All the

1 Flat or uniform priors denote a probability distribution that is
the same everywhere, reflecting a lack of any predilection for
specific value. In the limit of very high variance, a Gaussian
distribution becomes flat.

information we require is contained in the conditional
mean and covariance of � from Eqn. 22.8. From Bayes’
rule, the posterior probability is proportional to the like-
lihood of obtaining the data, conditional on �, times the
prior probability of �:

p���y� ∝ p�y���p��� 22.12

where the Gaussian priors p��� are specified in terms of
their expectation and covariance:

� = E��� =

⎡
⎢⎢⎢⎣

0
���
0

�n�
�

⎤
⎥⎥⎥⎦ C� = Cov��� =

⎡
⎢⎢⎢⎢⎣

C�2�

 · · · 0 0
���

� � �
���

���

0 · · · C�n�

 0

0 · · · 0 C�n�
�

⎤
⎥⎥⎥⎥⎦

22.13

Under Gaussian assumptions the likelihood and priors
are given by:

p �y��� ∝ exp�−1
2

�X� −y�T C�1�−1

 �X� −y�� 22.14

p��� ∝ exp�−1
2

�� −��
T C−1

� �� −���

Substituting Eqn. 22.14 into Eqn. 22.12 gives a posterior
density with a Gaussian form:

p ���y� ∝ exp�−1
2

�� −��y�
T C−1

��y�� −��y�� 22.15

C��y = �XT C�1�−1

 X +C−1

� �−1

��y = C��y�X
T C�1�−1


 y +C−1
� ��

Note that when we adopt an empirical Bayesian scheme
C�n�

� = � and C−1
� � = 0. This means we never have to

specify the prior expectation at the last level because it
never appears explicitly in Eqn. 22.15.

The solution Eqn. 22.15 is ubiquitous in the estimation
literature and is presented under various guises in differ-
ent contexts. If the priors are flat, i.e. C−1

� = 0, the expres-
sion for the conditional mean reduces to the minimum
variance linear estimator, referred to as the Gauss-Markov
estimator. The Gauss-Markov estimator is identical to
the ordinary least square (OLS) estimator that obtains
after pre-whitening. If the errors are assumed to be inde-
pendently and identically distributed, i.e. C�1�


 = I , then
Eqn. 22.15 reduces to the ordinary least square estimator.
With non-flat priors, the form of Eqn. 22.15 is identical
to that employed by ridge regression and [weighted] min-
imum norm solutions (e.g. Tikhonov and Arsenin, 1977)
commonly found in the inverse solution literature. The
Bayesian perspective is useful for minimum norm for-
mulations because it motivates plausible forms for the
constraints that can be interpreted in terms of priors.
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Equation 22.15 can be expressed in an equivalent but
more compact (Gauss-Markov) form by augmenting the
design matrix with an identity matrix and augmenting
the data matrix with the prior expectations such that:

C��y = �X
T
C−1


 X�−1

��y =C��y�X
T
C−1


 y�

y =
[

y
�

]
X =

[
X
I

]
C
 =

[
C�1�


 0
0 C�

] 22.16

Figure 22.2 shows a schematic illustration of the linear
model implied by this augmentation. If the last-level pri-
ors are flat, the last-level prior expectation can be set
to zero. This augmented form is computationally more
efficient to deal with and simplifies the exposition of
the EM algorithm. Furthermore, it highlights the fact
that a Bayesian scheme of this sort can be reformulated

Augmented form

Non-hierarchical form

ε(2)

ε(2)

θ(2)

ε(1)

θ(2) –ε(2)

–θ(2)

+

ε(1)

10

01 =

0

0

y

+, ,y =

X 
(1)X 

(1) X 
(2)

X 
(1) X 

(1) X 
(2)

FIGURE 22.2 As for Figure 22.1, but here showing how the
non-hierarchical form is augmented so that the parameter estimates
(that include the error terms from all levels and the final level
parameters) now appear in the model’s residuals. A Gauss-Markov
estimator will minimize these residuals in proportion to their prior
precision.

as a simple weighted least square or ML problem. The
problem now reduces to estimating the error covariances
C
 that determine the weighting. This is exactly where
we ended up in the classical approach, namely reduction
to a covariance component estimation problem.

Covariance component estimation

The classical approach was portrayed above as using the
error covariances to construct an appropriate statistic.
The PEB approach was described as using the error
covariances as priors to estimate the conditional means
and covariances; note from Eqn. 22.13 that C�i−1�

� = C�i�

 .

Both approaches rest on estimating the covariance com-
ponents. This estimation depends upon some parame-
terization of these components; in this chapter, we use
C�i�


 =∑
��i�

j Q�i�
j where ��i�

j are hyperparameters and Q�i�
j

represent components of the covariance matrices. The
components can be construed as constraints on the prior
covariance structures in the same way as the design
matrices X�i� specify constraints on the prior expectations.
Q�i�

j embodies the form of the j-th covariance component
at the i-th level and can model different variances for
different levels and different forms of correlations within
levels. The components Qj are chosen to model the sort
of non-sphericity anticipated. For example, they could
specify serial correlations within-subject or correlations
among the errors induced hierarchically, by repeated
measures over subjects (Figure 22.3 illustrates both these
examples). We will illustrate a number of forms for Qj in
the subsequent sections.

One way of thinking about these covariance com-
ponents is in terms of the Taylor expansion of any
function of hyperparameters that produced the covari-
ance structure:

C����i�

 =∑

��i�
j

�C�i�



���i�
j

+· · · 22.17

where the components correspond to the partial deriva-
tives of the covariances with respect to the hyperparam-
eters. In variance component estimation, the high-order
terms are generally zero. In this context, a linear decom-
position of C�i�


 is a natural parameterization because the
different sources of conditionally independent variance
add linearly and the constraints can be specified directly
in terms of these components. There are other situations
where a different parameterization may be employed.
For example, if the constraints were implementing sev-
eral independent priors in a non-hierarchical model, a
more natural expansion might be in terms of the precision
C−1

� =∑
�jQj . The precision is simply the inverse of the

covariance matrix. Here Qj correspond to precisions spec-
ifying the form of independent prior densities. However,
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Covariance constraints

 = Cε + λ 2
   Q 2

          + λ 3
  Q 3

     +

 =  = 

0

0

∞

=θC =

(1) (1) (1) (1) (1) (1)

(1) (2)

λ 1 
 Q 1

     

+ λ 2
   Q 2

          + λ 3
  Q 3

     (2) (2) (2) (2) (2) (2)
λ 1 

 Q 1
     CεCθ

(1)

FIGURE 22.3 Schematic illustrating the form of the covariance
components. These can be thought of as ‘design matrices’ for the
second-order behaviour of the response variable and form a basis
set for estimating the error covariance and implicitly the empirical
prior covariances. The hyperparameters scale the contribution to the
covariances of each component. These components correspond to
the model in Figure 22.1. The top row depicts the constraints on the
errors. For each subject there are two components, one modelling
white (i.e. independent) errors and another serial correlation with
an AR(1) form. The second level components simply reflect the fact
that each of the three parameters estimated on the basis of repeated
measures at the first level has its own variance. The estimated priors
at each level are assembled with the prior for the last level (here a
flat prior) to specify completely the model’s empirical priors (lower
panel). Components of this form are used in Friston et al. (2002b)
during the simulation of serially correlated fMRI data-sequences
and covariance component estimation using real data.

in this chapter, we deal with linearly mixed variance com-
ponents that are induced by the hierarchical model. See
Harville (1977) for comments on the usefulness of mak-
ing the covariances linear in the hyperparameters and
Appendix 4 for the usefulness of making the precisions
linear in the hyperparameters.

The augmented form of the covariance components
obtains by placing them in the appropriate partition in
relation to the augmented error covariance matrix:

C
 = Q� +∑�kQk

Q� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 � � � 0 0

���
� � �

���
���

0 · · · 0 0

0 · · · 0 C
�n�
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Qk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 � � � 0 0
� � �

��� Q�i�
j

���
���

� � �

0 · · · 0 0
0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where the subscript k runs over both levels and compo-
nents within each level. Having framed the covariance
estimation in terms of estimating hyperparameters, we
can now use EM for their estimation.

Expectation maximization

Expectation maximization is a generic, iterative parame-
ter re-estimation procedure that encompasses many iter-
ative schemes devised to estimate the parameters and
hyperparameters of a model (Dempster et al., 1977, 1981).
It was originally introduced as an iterative method to
obtain maximum likelihood estimators in incomplete
data situations (Hartley, 1958) and was generalized by
Dempster et al. (1977). More recently, it has been formu-
lated (e.g. Neal and Hinton, 1998) in a way that highlights
its connection to statistical mechanics (see Appendix 4).
This formulation considers EM as a coordinate descent
on the free energy of a system. The descent comprises
an E-step, which finds the conditional Expectation of the
parameters, holding the hyperparameters fixed and an
M-step, which updates the Maximum likelihood estimate
of the hyperparameters, keeping the parameters fixed.

In brief, EM provides a way to estimate both the
parameters and hyperparameters from the data. For lin-
ear models under Gaussian assumptions, EM returns the
posterior density of the parameters, in terms of their
expectation and covariance and restricted ML estimates
of the hyperparameters. The EM algorithm described in
Appendix 3 is depicted schematically in Figure 22.4. In
the context of the linear observation models discussed
in this chapter, this EM scheme is the same as using
restricted maximum likelihood (ReML) estimates of the
hyperparameters. ReML properly accounts for the loss
of degrees of freedom incurred by parameter estima-
tion. The formal equivalence between ReML and EM has
been established for many years (see Fahrmeir and Tutz,
1994, p. 226). However, it is useful to understand the
equivalence because EM is usually employed to estimate
the conditional densities of model parameters when the
hyperparameters of the likelihood and prior densities
are not known. In contradistinction, ReML is generally
used to estimate unknown variance components without
explicit reference to the parameters. In the hierarchical
linear observation model considered here, the unknown
hyperparameters are variance components, which can be
estimated using ReML. It should be noted that EM is
not restricted to linear observation models or Gaussian
priors, and has found diverse applications. On the other
hand, ReML was developed explicitly for linear observa-
tion models, under Gaussian assumptions.

In Appendices 3 and 4, we have made an effort to
reconcile the free-energy formulation based on statistical
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FIGURE 22.4 Pseudo-code schematic showing the recursive
structure of the EM algorithm (described in Appendix 3) as applied
in the context of conditionally independent hierarchical models. See
main text for a full explanation. This formulation follows Harville
(1977).

mechanics with classical ReML (Harville, 1977). This
helps understand ReML in the context of extensions
within the free-energy formulation, afforded by the use
of hyperpriors (priors on the hyperparameters). One key
insight into EM is that the M-step returns, not sim-
ply the ML estimate of the hyperparameters, but the
restricted ML that is properly restricted from a classical
perspective.

Having computed the conditional mean and covari-
ances of the parameters using EM, one can make infer-
ences about the effects at any level using their posterior
density.

The conditional density

Given an estimate of the error covariance of the aug-
mented form C
 and implicitly the priors it entails, one
can compute the conditional mean and covariance at each
level where the conditional means for each level obtain
recursively from:

��y =E���y� =

⎡
⎢⎢⎢⎢⎢⎣

�2�

�y
���

�n�

�y

�n�
��y

⎤
⎥⎥⎥⎥⎥⎦

�i−1�
��y =E���i−1��y� = X�i��i�

��y +�i�

�y
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These conditional expectations represent a better charac-
terization of the model parameters than the equivalent
ML estimates because they are constrained by higher lev-
els (see summary). However, the conditional mean and
ML estimators are the same at the last level. This conver-
gence of classical and Bayesian inference rests on adopt-
ing an empirical Bayesian approach and establishes a
close connection between classical random effect analyses
and hierarchical Bayesian models. The two approaches
diverge if we consider that the real power of Bayesian
inference lies in coping with incomplete data or unbal-
anced designs and inferring on the parameters of lower
levels. These are the issues considered in the next section.

Summary

This section has introduced three key components that
play a role in the estimation of the linear models:
Bayesian estimation; hierarchical models; and EM. The
summary points below attempt to clarify the relation-
ships among these components. It is worth while keeping
in mind there are essentially three sorts of estimation:
fully Bayesian, when the priors are known; empirical
Bayes, when the priors are unknown but they can be
parameterized in terms of some hyperparameters esti-
mated from the data; and maximum likelihood estima-
tion, when the priors are assumed to be flat. In the final
instance, the ML estimators correspond to weighted least
square or minimum norm solutions. All these procedures
can be implemented with EM (Figure 22.5).

• Model estimation and inference are enhanced by being
able to make probabilistic statements about model
parameters given the data, as opposed to proba-
bilistic statements about the data under some arbi-
trary assumptions about the parameters (e.g. the null
hypothesis), as in classical statistics. The former is pred-
icated on the posterior or conditional distribution of
the parameters that is derived using Bayes’ rule.
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FIGURE 22.5 Schematic showing the relationship among estimation schemes for linear observation models under parametric assump-
tions. This figure highlights the universal role of EM, showing that all conventional estimators can be cast in terms of, or implemented with,
the EM algorithm in Figure 22.4.

• Bayesian estimation and inference require priors. If the
priors are known, then a fully Bayesian estimation can
proceed. In the absence of known priors, there may be
constraints on the form of the model that can be har-
nessed using empirical Bayes estimates of the associated
hyperparameters.

• A model with a hierarchical form embodies implicit
constraints on the form of the prior distributions.
Hyperparameters that, in conjunction with these con-
straints, specify empirical priors can then be estimated,
using EM to invert the model. The inversion of linear

models under Gaussian assumptions corresponds to
parametric empirical Bayes (PEB). In short, a hierarchi-
cal form for the observation model enables an empirical
Bayesian approach.

• If the observation model does not have a hierarchical
structure then one knows nothing about the form of the
priors, and they are assumed to be flat. Bayesian esti-
mation with flat priors reduces to maximum likelihood
estimation.

• In the context of empirical Bayes, the priors at the last
level are generally unknown and enter as flat priors.
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This is equivalent to treating the parameters at the last
level as fixed effects (i.e. effects with no intrinsic or
random variability). One consequence of this is that
the conditional mean and the ML estimate, at the last
level, are identical.

• At the last level, PEB and classical approaches are for-
mally identical. At subordinate levels PEB can use the
posterior densities for Bayesian inference about the
effects of interest. This is precluded in classical treat-
ments because there are no empirical priors.

• EM provides a generic framework in which full Bayes,
PEB or ML estimation can proceed. Its critical utility in
this context is the estimation of covariance components,
given some data, through the ReML estimation of
hyperparameters mixing these covariance components.
EM can be applied to hierarchical models by augment-
ing the design matrix and data (see Figures 22.2 and
22.4) to convert a hierarchical inverse problem into a
non-hierarchical form. We will see later (Appendix 4)
that EM is a special case of variational Bayes and that
ReML is a special case of EM.

• In the absence of priors, or hierarchical constraints,
EM can be used in an ML setting to estimate
the error covariance for Gauss-Markov estimates
(see Figure 22.5). These estimators are the optimum
weighted least square estimates in the sense they have
the minimum variance of all unbiased linear estima-
tors. In the limiting case that the covariance constraints
reduce to a single basis (synonymous with known cor-
relations or a single hyperparameter), the EM scheme
converges in a single iteration and emulates a classical
sum of square estimation of error variance. When this
single basis is the identity matrix, EM simply imple-
ments ordinary least squares.

In this section, we have reviewed hierarchical obser-
vation models of the sort commonly encountered in
neuroimaging. Their hierarchical nature induces different
sources of variability in the observations at different lev-
els (i.e. variance components) that can be estimated using
EM. The use of EM, for variance component estimation,
is not limited to hierarchical models, but finds a use-
ful application whenever non-sphericity of the errors is
specified with more than one hyperparameter (e.g. serial
correlations in fMRI). This application will be illustrated
next. The critical thing about hierarchical models is that
they enable empirical Bayes, where variance estimates
at higher levels can be used as constraints on the esti-
mation of effects at lower levels. This perspective rests
upon exactly the same mathematics that pertains to vari-
ance component estimation in non-hierarchical models,
but allows one to frame the estimators in conditional or
Bayesian terms. An intuitive understanding of the con-
ditional estimators, at a given level, is that they ‘shrink’

towards their average, in proportion to the error variance
at that level, relative to their intrinsic variability (error
variance at the supraordinate level). See Lee (1997: 232)
for a discussion of PEB and Stein ‘shrinkage’ estimators.

In what sense are these Bayes predictors a better char-
acterization of the model parameters than the equiva-
lent ML estimates? In other words, what is gained in
using a shrinkage estimator? This is a topic that has been
debated at great length in the statistics literature and
even in the popular press (see the Scientific American arti-
cle ‘Stein’s paradox in statistics’, Efron and Morris, 1977).
The answer depends on one’s definition of ‘better’, or in
technical terms, the loss function. If the aim is to find the
best predictor for a specific subject, then one can do no
better than the ML estimator for that subject. Here the
loss function is simply the squared difference between
the estimated and real effects for the subject in question.
Conversely, if the loss function is averaged over sub-
jects then the shrinkage estimator is best. This has been
neatly summarized in a discussion chapter read before
the Royal Statistical Society entitled ‘Regression, predic-
tion and shrinkage’ by Copas (1983). The vote of thanks
was given by Dunsmore, who said:

Suppose I go to the doctor with some complaint and
ask him to predict the time, y, to remission. He will
take some explanatory measurements x and provide
some prediction for y. What I am interested in is a
prediction for my x, not for any other x that I might
have had – but did not. Nor am I really interested in
his necessarily using a predictor which is ‘best’ over
all possible xs. Perhaps rather selfishly, but I believe
justifiably, I want the best predictor for my x. Does
it necessarily follow that the best predictor for my
x should take the same form as for some other x?
Of course, this can cause problems for the esteem of
the doctor or his friendly statistician. Because we are
concerned with actual observations, the goodness or
otherwise of the prediction will eventually become
apparent. In this case, the statistician will not be able
to hide behind the screen provided by averaging over
all possible future xs.

Copas then replied:

Dr Dunsmore raises two general points that repay
careful thought. First, he questions the assumption
made at the very start of the chapter that predictions
are to be judged in the context of a population of
future xs and not just at some specific x. To pursue the
analogy of the doctor and the patient, all I can say is
that the chapter is written from the doctor’s point of
view and not from the patient’s! No doubt the doctor
will feel he is doing a better job if he cures 95 per cent
of patients rather than only 90 per cent, even though
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a particular patient (Dr Dunsmore) might do better in
the latter situation than the former. As explained in
the chapter, pre-shrunk predictors do better than least
squares for most xs at the expense of doing worse at
a minority of xs. Perhaps if we think our symptoms
are unusual we should seek a consultant who is pre-
pared to view our complaint as an individual research
problem rather than rely on the blunt instrument of
conventional wisdom.

The implication for Bayesian estimators, in the context
of neuroimaging, is that they are the best for each subject
[or voxel] on average over subjects [or voxels]. In this sense,
Bayesian or conditional estimates of individual effects are
only better, on average, over the individual effects esti-
mated. The issues, framed by Keith Worsley above, speak
to the important consideration that Bayesian estimates,
of the sort discussed in this chapter, are only ‘better’ in
a collective sense. One example of this collective context
is presented in the next chapter, where between-voxel
effects are used to ‘shrink’ within-voxel estimates that
are then reported together in a posterior probability map
(PPM).

The estimators and inference from a PEB approach
do not inherently increase the sensitivity or specificity
of the analysis. The most appropriate way to do this
would be simply to increase sample size. PEB method-
ology can be better regarded as providing a set of esti-
mates or predictors that are internally consistent within
and over hierarchies of the observation model. Further-
more, they enable Bayesian inference (comments about
the likelihood of an effect given the data) that com-
plements classical inference (comments about the likeli-
hood of the data). Bayesian inference does not necessarily
decide whether activation is present or not, it simply esti-
mates the probability of activation, specified in terms of
the size of the effect. Conversely, classical inference is
predicated on a decision (is the null hypothesis true or is
the size of the effect different from zero?). The product
of classical inference is a decision or declaration, which
induces a sensitivity and specificity of the inference. One
motivation, behind Bayesian treatments, is to circumvent
the difficult compromise between sensitivity and speci-
ficity engendered by classical inference in neuroimaging.

EM AND COVARIANCE COMPONENT
ESTIMATION

In this section we present a series of models that exem-
plify the diverse issues that can be addressed with EM. In
hierarchical linear observation models, both classical and
empirical Bayesian approaches can be framed in terms

of covariance component estimation (e.g. variance partition-
ing). To illustrate the use of EM in covariance component
estimation, we focus on two important problems in fMRI:
non-sphericity induced by serial or temporal correlations
among errors and variance components caused by the
hierarchical nature of multisubject studies. In hierarchical
observation models, variance components at higher lev-
els can be used as constraints on the parameter estimates
of lower levels. This enables the use of PEB estimators,
as distinct from classical ML estimates. We develop this
distinction to address the difference between response
estimates based on ML and conditional estimators.

As established in the previous section, empirical Bayes
enables the estimation of a model’s parameters (e.g. acti-
vations) and hyperparameters that specify the model’s
variance components (e.g. within- and between-subject-
variability). The estimation procedures conform to EM,
which, considering just the hyperparameters in linear
models, is formally identical to ReML. If there is only
one variance component, these iterative schemes simplify
to conventional, non-iterative sum of squares variance
estimates. However, there are many situations when sev-
eral hyperparameters have to be estimated: for example,
when the correlations among errors are unknown but can
be parameterized with a small number of hyperparame-
ters (cf. serial correlations in fMRI time-series). Another
important example, in fMRI, is the multisubject design, in
which the hierarchical nature of the observation induces
different variance components at each level. The aim of
this section is to illustrate how variance component esti-
mation can proceed in both single-level and hierarchi-
cal models. In particular, the examples emphasize that,
although the mechanisms inducing non-sphericity can be
very different, the variance component estimation prob-
lems they represent, and the analytic approaches called
for, are identical.

We will use two fMRI examples. In the first, we deal
with the issue of variance component estimation using
serial correlations in single-subject fMRI studies. Because
there is no hierarchical structure to this problem there is
no Bayesian aspect. However, in the second example, we
add a second level to the observation model for the first
to address inter-subject variability. Endowing the model
with a second level invokes empirical Bayes. This enables
a quantitative comparison of classical and conditional
single-subject response estimates.

Variance component estimation in a
single-level model

In this section, we review serial correlations in fMRI
and use simulated data to compare ReML estimates to
estimates of correlations based simply on the model
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residuals. The importance of modelling temporal corre-
lations for classical inference based on the t-statistic is
discussed in terms of correcting for non-sphericity in
fMRI time-series. This section concludes with a quantita-
tive assessment of serial correlations within and between
subjects.

Serial correlations in fMRI

In this section, we restrict ourselves to a single-level
model and focus on the covariance component estima-
tion afforded by EM. We have elected to use a simple
but important covariance estimation problem to illus-
trate one of the potential uses of the scheme described in
the previous section. Namely, serial correlations in fMRI
embodied in the error covariance matrix for the first (and
only) level of this model C�1�


 . Serial correlations have a
long history in the analysis of fMRI time-series. fMRI
time-series can be viewed as a linear admixture of sig-
nal and noise. Noise has many contributions that render
it rather complicated in relation to other neurophysio-
logical measurements. These include neuronal and non-
neuronal sources. Neuronal noise refers to neurogenic
signal not modelled by the explanatory variables and has
the same frequency structure as the signal itself. Non-
neuronal components have both white (e.g. RF noise)
and coloured components (e.g. pulsatile motion of the
brain caused by cardiac cycles and local modulation of
the static magnetic field B0 by respiratory movement).
These effects are typically low frequency or wide-band
and induce long-range correlations in the errors over
time. These serial correlations can be used to provide ML
estimates of the parameters (see previous section), whiten
the data (Bullmore et al., 1996; Purdon and Weisskoff,
1998) or enter the non-sphericity corrections described
in Worsley and Friston (1995). These approaches depend
upon an accurate estimation of the serial correlations. To
estimate correlations C���
, in terms of some hyperpa-
rameters, �, one needs both the residuals of the model, r,
and the conditional covariance of the parameter estimates
that produced those residuals. These combine to give the
required error covariance (cf. Eqn.A3.5 in Appendix 3).

C���
 = rrT +XC��yX
T 22.20

The term XC��yXT represents the conditional covariance
of the parameter estimates C��y ‘projected’ onto the mea-
surement space, by the design matrix X. The problem
is that the covariance of the parameter estimates is itself
a function of the error covariance. This circular problem is
solved by the recursive parameter re-estimation implicit
in EM. It is worth noting that estimators of serial corre-
lations based solely on the residuals (produced by any
estimator) will be biased. This bias results from ignoring
the second term in Eqn. 22.20, which accounts for the

component of error covariance due to uncertainty about
the parameter estimates themselves. It is likely that any
valid recursive scheme for estimating serial correlations
in fMRI time-series conforms to EM (or ReML), even if the
connection is not made explicit. See Worsley et al. (2002)
for a non-iterative approach to autoregressive models.

In summary, the covariance estimation afforded by EM
can be used to estimate serial correlations in fMRI time-
series that coincidentally provide the most efficient (i.e.
Gauss-Markov) estimators of the effect one is interested
in. In this section, we apply EM as described in Friston
et al. (2002a) to simulated fMRI data sequences and take
the opportunity to establish the connections among some
commonly employed inference procedures based upon
the t-statistic. This example concludes with an applica-
tion to empirical data to demonstrate quantitatively the
relative variability in serial correlations over voxels and
subjects.

Estimating serial correlations

For each fMRI session, we have a single-level observation
model that is specified by the design matrix X�1� and
constraints on the observation’s covariance structure Q�1�

i ,
in this case serial correlations among the errors.

y = X�1���1� +
�1�

Q�1�
1 = I 22.21

Q�1�
2 = KKT � kij =

{
ej−i i > j

0 i ≤ j

The measured response y has errors 
�1� ∼ N�0�C�1�

 �. I is

the identity matrix. Here Q�1�
1 and Q�1�

2 represent covari-
ance components of C�1�


 that model a white noise and
an autoregressive AR(1) process with an AR coefficient
of 1/e = 0�3679. Notice that this is a very simple model
of autocorrelations; by fixing the AR coefficient there
are just two hyperparameters that allow for different
mixtures of an AR(1) process and white-noise (cf. the
3 hyperparameters needed for a full AR(1) plus white
noise model). The AR(1) component is modelled as an
exponential decay of correlations over non-zero lag.

These components were chosen given the popularity
of AR plus white-noise models in fMRI (Purdon and
Weisskoff, 1998). Clearly, this basis set can be extended
in any fashion using Taylor expansions to model devia-
tions of the AR coefficient from 1/e or, indeed, model any
other form of serial correlations. Non-stationary autocor-
relations can be modelled by using non-Toeplitz forms
for the bases that allow the elements in the diagonals
of Q�1�

i to vary over observations. This might be useful,
for example, in the analysis of event-related potentials,
where the structure of errors may change with peristim-
ulus time.
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FIGURE 22.6 Top panel: true response (activation plus ran-
dom low frequency components) and that based on the OLS and
ML estimators for a simulated fMRI experiment. The insert shows
the similarity between the OLS and ML predictions. Lower panel:
true (dashed) and estimated (solid) autocorrelation functions. The
sample autocorrelation function of the residuals (dotted line) and
the best fit in terms of the covariance components (dot-dashed) are
also shown. The insert shows the true covariance hyperparameters
(black), those obtained using just the residuals (grey) and those esti-
mated by EM (white). Note, in relation to the EM estimates, those
based directly on the residuals severely underestimate the actual
correlations. The simulated data comprised 128 observations with
an inter-scan interval of 2 s. The activations were modelled with a
boxcar (duty cycle 64 s) convolved with a canonical haemodynamic
response function and scaled to a peak height of two. The con-
stant terms and low frequency components were simulated with
a linear combination of the first sixteen components of a discrete
cosine set, each scaled by a random unit Gaussian variate. Serially
correlated noise was formed by filtering unit Gaussian noise with
a convolution kernel based on covariance hyperparameters of 1.0
[uncorrelated or white component] and 0.5 [AR(1) component].

In the examples below, the covariance constraints were
scaled to a maximum of one. This means that the sec-
ond hyperparameter can be interpreted as the correlation
between one scan and the next. The components enter,
along with the data, into the EM algorithm in Figure 22.4
to provide ML estimates of the parameters ��1� and ReML
estimates of the hyperparameters ��1�. An example, based
on simulated data, is shown in Figure 22.6. In this exam-

ple, the design matrix comprised a boxcar regressor and
the first sixteen components of a discrete cosine set.
The simulated data corresponded to a compound of this
design matrix (see figure legend) plus noise, coloured
using hyperparameters of one and a half for the white
and AR(1) components respectively. The top panel shows
the data (dots), the true and fitted effects (broken and
solid lines). For comparison, fitted responses based on
both ML and OLS (ordinary least squares) are provided.
The insert in the upper panel shows these estimators are
similar but not identical. The lower panel shows the true
(dashed) and estimated (solid) autocorrelation function
based on C

�1�

 = ��1�

1 Q�1�
1 +��1�

2 Q�1�
2 . They are nearly identi-

cal. For comparison the sample autocorrelation function
(dotted line) and an estimate based directly on the resid-
uals, i.e. ignoring the second term of Eqn. 22.20 (dot-
dash line) are provided. The underestimation that ensues
using the residuals is evident in the insert that shows the
true hyperparameters (black), those estimated properly
using ReML (white) and those based on the residuals
alone (grey). By failing to account for the uncertainty
about the parameters, the hyperparameters based only
on the residuals are severe underestimates. The sample
autocorrelation function even shows negative correla-
tions. This is a result of fitting the low frequency com-
ponents of the design matrix. One way of understanding
this is to note that the autocorrelations among the resid-
uals are not unbiased estimators of C

�1�

 but of RC�1�


 RT ,
where R is the residual-forming matrix. In other words,
the residuals are not the true errors but what is left after
projecting them onto the null space of the design matrix.
The full details of this simulated single-session, boxcar
design fMRI study are provided in the figure legend.

Inference in the context of non-sphericity2

This subsection reprises why covariance component esti-
mation is so important for inference. In short, although
the parameter estimates may not depend on spheric-
ity, the standard error, and ensuing inference, does. The
impact of serial correlations on inference was noted early
in the fMRI analysis literature (Friston et al., 1994) and led
to the generalized least squares (GLS) scheme described
in Worsley and Friston (1995). In this scheme one starts
with any observation model that is pre-multiplied by
some weighting or convolution matrix S to give:

Sy = SX�1���1� +S
�1� 22.22

2 An IID process is identically and independently distributed
and has a probability distribution whose iso-contours conform
to a sphere. Any departure from this is referred to as non-
sphericity.
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The GLS parameter estimates and their covariance are:

LS = Ly

Cov�LS� = LC�1�

 LT 22.23

L = �SX�1��+Sy

These estimators minimize the generalized least square
index �y − X�1�LS�

T SST �y − X�1�LS�. This family of esti-
mators is unbiased but they are not necessarily ML esti-
mates. The Gauss-Markov estimator is the minimum
variance and ML estimator that obtains as a special case
when �SST �−1 = C�1�


 . The t-statistic corresponding to the
GLS estimator is distributed with v degrees of freedom
where (Worsley and Friston, 1995):

t = cT LS√
cT Cov�LS�c

v = tr�RSC�1�

 S�2

tr�RSC�1�

 SRSC�1�


 S�
22.24

R = 1−X�1�L

The effective degrees of freedom are based on an
approximation due to Satterthwaite (1941). This formula-
tion is formally identical to the non-sphericity correction
elaborated by Box (1954), which is commonly known as
the Geisser-Greenhouse correction in classical analysis of
variance, ANOVA (Geisser and Greenhouse, 1958).

The point here is that EM can be employed to give
ReML estimates of correlations among the errors that
enter into Eqn. 22.24 to enable classical inference, prop-
erly adjusted for non-sphericity, about any GLS estima-
tor. EM finds a special role in enabling inferences about
GLS estimators in statistical parametric mapping; when
the relative amounts of different covariance components
can be assumed to be the same over a subset of voxels,
ReML estimates can be obtained using the sample covari-
ance of the data over these voxels, in a single EM (see
Appendix 4). After re-normalization, the ensuing esti-
mate specifies non-sphericity with a single component.
Voxel-specific hyperparameters can now be estimated
non-iteratively, in the usual way, because there is only
one hyperparameter to estimate.

An application to empirical data

In this subsection, we address the variability of serial
correlations over voxels within subject and over sub-
jects within the same voxel. Here we are concerned only
with the form of the correlations. The next subsection
addresses between-subject error variance per se. Using the
model specification in Eqn. 22.21, serial correlations were
estimated using EM in twelve randomly selected voxels
from the same slice, from a single subject. The results

FIGURE 22.7 Estimates of serial correlations expressed as
autocorrelation functions based on empirical data. Left panel: esti-
mates from twelve randomly selected voxels from a single subject.
Right panel: estimates from the same voxel over twelve different
subjects. The voxel was in the cingulate gyrus. The empirical data
are described in Henson et al. (2000). They comprised 300 volumes,
acquired with EPI at two tesla and a TR of 3 s. The experimen-
tal design was stochastic and event-related looking for differential
response evoked by new relative to old (studied prior to the scanning
session) words. Either a new or old word was presented visually
with a mean stimulus onset asynchrony (SOA) of 4 s (SOA varied
randomly between 2.5 and 5.5 s). Subjects were required to make
an old versus new judgement for each word. The design matrix
for these data comprised two regressors (early and late) for each
of the four trial types (old versus new and correct versus incorrect)
and the first sixteen components of a discrete cosine set (as in the
simulations).

are shown in Figure 22.7 (left panel) and show that the
correlations from one scan to the next can vary between
about 0.1 and 0.4. The data sequences and experimental
paradigm are described in the figure legend. Briefly, these
data came from an event-related study of visual word
processing in which new and old words (i.e. encoded dur-
ing a pre-scanning session) were presented in a random
order with a stimulus onset asynchrony (SOA) of about
4 s. Although the serial correlations within subject vary
somewhat there is an even greater variability from sub-
ject to subject at the same voxel. The right-hand panel
of Figure 22.7 shows the autocorrelation functions esti-
mated separately for twelve subjects at a single voxel. In
this instance, the correlations between one scan and the
next range from about −0�1 to 0.3 with a greater disper-
sion relative to the within-subject autocorrelations.

Summary

We have chosen to focus on a covariance estima-
tion example that requires an iterative parameter re-
estimation procedure in which the hyperparameters
controlling the covariances depend on the variance of
the parameter estimates and vice versa. There are other
important applications of covariance component estima-
tion we could have considered (although not all require
an iterative scheme). One example is the estimation of
condition-specific error variances in PET and fMRI. In
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conventional SPM analyses, one generally assumes that
the error variance expressed in one condition is the same
as that in another. This represents a sphericity assump-
tion over conditions and allows one to pool several con-
ditions when estimating the error variance. Assumptions
of this sort, and related sphericity assumptions in mul-
tisubject studies, can be easily addressed in unbalanced
designs, or even in the context of missing data, using EM.

Variance component estimation in fMRI in
two-level models

In this subsection, we augment the model above with a
second level. This engenders a number of issues, includ-
ing the distinction between fixed- and random-effect
models of subject responses and the opportunity to make
Bayesian inferences about single-subject responses. As
above, we start with model specification, proceed to
simulated data and conclude with an empirical exam-
ple. In this example, the second level represents obser-
vations over subjects. Analyses of simulated data are
used to illustrate the distinction between fixed- and
random-effect inferences by looking at how their respec-
tive t-values depend on the variance components and
design factors. The fMRI data are the same as used above
and comprise event-related time-series from twelve sub-
jects. We chose a dataset that would be difficult to analyse
rigorously using routine software. These data not only
evidence serial correlations but also the number of trial-
specific events varied from subject to subject, giving an
unbalanced design.

Model specification

The observation model here comprises two levels with
the opportunity for subject-specific differences in error
variance and serial correlations at the first level and
parameter-specific variance at the second. The estimation
model here is simply an extension of that used in the pre-
vious subsection to estimate serial correlations. Here it
embodies a second level that accommodates observations
over subjects.
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for s subjects each scanned on t occasions and p parame-
ters. The Kronecker tensor product A⊗B simply replaces
the element of A with AijB. An example of these design
matrices and covariance constraints are shown, respec-
tively, in Figures 22.1 and 22.3. Note that there are 2 × s
error covariance constraints, one set for the white noise
components and one for AR(1) components. Similarly,
there are as many prior covariance constraints as there
are parameters at the second level.

Simulations

In the simulations we used 128 scans for each of twelve
subjects. The design matrix comprised three effects, mod-
elling an event-related haemodynamic response to fre-
quent but sporadic trials (in fact the instances of correctly
identified ‘old’ words from the empirical example below)
and a constant term. Activations were modelled with two
regressors, constructed by convolving a series of delta
functions with a canonical haemodynamic response func-
tion (HRF)3 and the same function delayed by three sec-
onds. The delta functions indexed the occurrence of each
event. These regressors model event-related responses
with two temporal components, which we will refer to
as ‘early’ and ‘late’ (cf. Henson et al., 2000). Each subject-
specific design matrix therefore comprised three columns
giving a total of thirty-six parameters at the first level
and three at the second (the third being a constant term).
The HRF basis functions were scaled so that a parameter
estimate of one corresponds to a peak response of unity.
After division by the grand mean, and multiplication by
100, the units of the response variable and parameter
estimates were rendered adimensional and correspond to
per cent whole brain mean over all scans. The simulated
data were generated using Eqn. 22.25 with unit Gaussian

3 The canonical HRF was the same as that employed by SPM. It
comprises a mixture of two gamma variates modelling peak and
undershoot components and is based on a principal component
analysis of empirically determined haemodynamic responses,
over voxels, as described in Friston et al. (1998)
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noise coloured using a temporal, convolution matrix with
first-level hyperparameters 0.5 and −0�1 for each subject’s
white and AR(1) error covariance components respec-
tively. The second-level parameters and hyperparameters
were ��2� = �0�5� 0� 0�T ���2� = �0�02� 0�006� 0�T . These val-
ues model substantial early responses, with an expected
value of 0.5 per cent and a standard deviation over sub-
jects of 0.14 per cent (i.e. square root of 0.02). The late
component was trivial with zero expectation and a stan-
dard deviation of 0.077 per cent. The third or constant
terms were discounted with zero mean and variance.
These values were chosen because they are typical of real
data (see below).

Figures 22.8 and 22.9 show the results after subject-
ing the simulated data to EM to estimate the conditional

FIGURE 22.8 The results of an analysis of simulated event-
related responses in a single voxel. Parameter and hyperparameter
estimates based on a simulated fMRI study are shown in relation to
their true values. The simulated data comprised 128 scans for each
of twelve subjects with a mean peak response over subjects of 0.5
per cent. The construction of these data is described in the main
text. Stimulus presentation conformed to the presentation of ‘old’
words in the empirical analysis described in the main text. Serial
correlations were modelled as in the main text. Upper left: first-
level hyperparameters. The estimated subject-specific values (black)
are shown alongside the true values (white). The first twelve corre-
spond to the ‘white’ term or variance. The second twelve control the
degree of autocorrelation and can be interpreted as the correlation
between one scan and the next. Upper right: hyperparameters for
the early and late components of the evoked response. Lower-left:
the estimated subject-specific parameters pertaining to the early-
and late-response components are plotted against their true values.
Lower right: the estimated and true parameters at the second level,
representing the conditional mean of the distribution from which
the subject-specific effects are drawn.

FIGURE 22.9 Response estimates and inferences about the
estimates presented in Figure 22.8. Upper panel: true (dotted) and
ML (solid) estimates of event-related responses to a stimulus over
12 subjects. The units of activation are adimensional and corre-
spond to per cent of whole-brain mean. The insert shows the cor-
responding subject-specific t-values for contrasts testing for early
and late responses. Lower panel: the equivalent estimates based on
the conditional means. It can be seen that the conditional estimates
are much ‘tighter’ and reflect better the inter-subject variability in
responses. The insert shows the posterior probability that the acti-
vation was greater than 0.1 per cent. Because the responses were
modelled with early and late components (basis functions corre-
sponding to canonical haemodynamic response functions, separated
by 3 s) separate posterior probabilities could be computed for each.
The simulated data comprised only early responses as reflected in
the posterior probabilities.

mean and covariances of the subject-specific evoked
responses. Figure 22.8 shows the estimated hyperpa-
rameters and parameters (black) alongside the true val-
ues (white). The first-level hyperparameters controlling
within-subject error (i.e. scan to scan variability) are
estimated in a reasonably reliable fashion, but note
that these estimates show a degree of variation about
the veridical values (see Conclusion). In this example,
the second-level hyperparameters are over-estimated but
remarkably good, given only twelve subjects. The param-
eter estimates at the first and second levels are again very
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FIGURE 22.10 Estimation of differential event-related
responses using real data. The format of this figure is identical
to that of Figure 22.8. The only differences are that these results
are based on real data and the response is due to the difference
between studied or familiar (old) words and novel (new) words.
In this example we used the first 128 scans from twelve subjects.
Clearly, in this figure, we cannot include true effects.

reasonable, correctly attributing the majority of the exper-
imental variance to an early effect. Figure 22.8 should be
compared with Figure 22.10, which shows the equivalent
estimates for real data.

The top panel in Figure 22.9 shows the ML estimates
that would have been obtained if we had used a single-
level model. These correspond to response estimates from
a conventional fixed-effects analysis. The insert shows
the classical fixed-effect t-values, for each subject, for
contrasts testing early and late response components.
Although these t-values properly reflect the prominence
of early effects, their variability precludes any threshold
that could render the early components significant and
yet exclude false positives pertaining to the late compo-
nent. The lower panel highlights the potential of revisit-
ing the first level in the context of a hierarchical model.
It shows the equivalent responses based on the condi-
tional mean and the posterior inference (insert) based
on the conditional covariance. This allows us to reiter-
ate some points made in the previous section. First, the
parameter estimates and ensuing response estimates are
informed by information abstracted from higher levels.
Second, these empirical priors enable Bayesian inference
about the probability of an activation that is specified in
neurobiological terms.

In Figure 22.9 the estimated responses are shown (solid
lines) with the actual responses (broken lines). Note how
the conditional estimates show a regression or ‘shrinkage’
to the conditional mean. In other words, their variance
shrinks to reflect, more accurately, the variability in real
responses. In particular, the spurious variability in the
apparent latency of the peak response in the ML estimates
disappears when using the conditional estimates. This is
because the contribution of the late component, which
causes latency differences, is suppressed in the condi-
tional estimates. This, in turn, reflects the fact that the
variability in its expression over subjects is small relative
to that induced by the observation error. Simulations like
these suggest that characterizations of inter-subject vari-
ability using ML approaches can severely overestimate
the true variability. This is because the ML estimates are
unconstrained and simply minimize observation error
without considering how likely the ensuing inter-subject
variability is.

The posterior probabilities (insert) are a function of
the conditional mean 

�1�
��y and covariance C�1�

��y and a size
threshold � = 0�1 that specifies what we consider a bio-
logically meaningful effect.

1−�

⎛
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The contrast weight vectors were c = �1� 0� 0�T for the
early effect and c = �0� 1� 0�T for a late effect. As expected,
the probability of the early response being greater than
� = 0�1 was uniformly high for all subjects, whereas the
equivalent probability for the late component was neg-
ligible. Note that, in contrast to the classical inference,
there is now a clear indication that each subject expressed
an early response but no late response.

An empirical analysis

Here the analysis is repeated using real data and the
results are compared to those obtained using simulated
data. The empirical data are described in Henson et al.
(2000). Briefly, they comprised 128+ scans in twelve sub-
jects. Only the first 128 scans were used below. The exper-
imental design was stochastic and event-related, looking
for differential responses evoked by new relative to old
(studied prior to the scanning session) words. Either a
new or old word was presented every 4 seconds or so
(SOA varied between 2.5 and 5.5 s). In this design one
is interested only in the differences between responses
evoked by the two stimulus types. This is because the
efficiency of the design to detect the effect of stimuli
per se is negligible with such a short SOA. Subjects were
required to make an old versus new judgement for each
word. Drift (the first 8 components of a discrete cosine
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set) and the effects of incorrect trials were treated as
confounds and removed using linear regression.4 The
first-level subject-specific design matrix partitions com-
prised four regressors with early and late effects for both
old and new words.

The analysis proceeded in exactly the same way as
above. The only difference was that the contrast tested
for differences between the two word types, i.e. c =
�1� 0�−1� 0�T for an old minus new early effect. The
hyperparameter and parameter estimates, for a voxel
in the cingulate gyrus (BA 31; −3�−33, 39 mm), are
shown in Figure 22.10, adopting the same format as in
Figure 22.8. Here we see that the within-subject error
varies much more in the empirical data, with the last
subject showing almost twice the error variance of the
first. As above, serial correlations vary considerably from
subject to subject and are not consistently positive or
negative. The second-level hyperparameters showed the
early component of the differential response to be more
reliable over subjects than the late component (0.007 and
0.19, respectively). All but two subjects had a greater
early response, relative to late, which on average was
about 0.28 per cent. In other words, activation differen-
tials, in the order of 0.3 per cent, occurred in the context
of an observation error with a standard deviation of 0.5
per cent (see Figure 22.10). The inter-subject variability
was about 30 per cent of the mean response amplitude.
A component of the variability in within-subject error is
due to uncertainty in the ReML estimates of the hyperpa-
rameters (see below), but this degree of inhomogeneity is
substantially more than in the simulated data (where sub-
jects had equal error variances). It is interesting to note
that, despite the fact that the regressors for the early and
late components had exactly the same form, the between-
subject error for one was less than half that of the other.
Results of this sort speak of the prevalence of non-
sphericity (in this instance heteroscedasticity or unequal
variances) and a role for the analyses illustrated here.

The response estimation and inference are shown in
Figure 22.11. Again we see the characteristic ‘shrinkage’
when comparing the ML to the conditional estimates. It
can be seen that all subjects, apart from the first and third,
had over a 95 per cent chance of expressing an early
differential of 0.1 per cent or more. The late differential
response was much less consistent, although one subject
expressed a difference with about 84 per cent confidence.

4 Strictly speaking the projection matrix implementing this
adjustment should also be applied to the covariance constraints
but this would render the components singular and ruin their
sparsity structure. We therefore omitted this and ensured, in
simulations, that the adjustment had a negligible effect on the
hyperparameter estimates.

FIGURE 22.11 The format of this figure is identical to that of
Figure 22.9. The only differences are that these results are based
on real data and the response is due to the difference between
studied or familiar (old) words and novel (new) words. The same
regression of conditional responses to the conditional mean is seen
on comparing the ML and conditional estimates. In relation to the
simulated data, there is more evidence for a late component but no
late activation could be inferred for any subject with any degree of
confidence. The voxel from which these data were taken was in the
cingulate gyrus (BA 31) at −3�−33, 39 mm.

Summary

The examples presented above allow us to reprise a num-
ber of important points made in the previous section (see
also Friston et al., 2002a). In conclusion, the main points
are:

• There are many instances when an iterative parame-
ter re-estimation scheme is required (e.g. dealing with
serial correlations or missing data). These schemes are
generally variants of EM.

• Even before considering the central role of covari-
ance component estimation in hierarchical models or
empirical Bayes, it is an important aspect of model esti-
mation in its own right, particularly in estimating non-
sphericity. Parameter estimates can either be obtained
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directly from an EM algorithm, in which case they cor-
respond to the ML or Gauss-Markov estimates, or the
hyperparameters can be used to determine the error
correlations which re-enter a generalized least-square
scheme, as a non-sphericity correction.

• Hierarchical models enable a collective improvement
in response estimates by using conditional, as opposed
to maximum-likelihood, estimators. This improvement
ensues from the constraints derived from higher levels
that enter as empirical priors on lower levels.

In the next chapter, we revisit two-level models
but consider hierarchical observations over voxels as
opposed to subjects.
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Posterior probability maps
K. Friston and W. Penny

INTRODUCTION

This chapter describes the construction of posterior prob-
ability maps that enable conditional or Bayesian infer-
ences about regionally specific effects in neuroimaging.
Posterior probability maps are images of the proba-
bility or confidence that an activation exceeds some
specified threshold, given the data. Posterior probabil-
ity maps (PPMs) represent a complementary alternative
to statistical parametric maps (SPMs) that are used to
make classical inferences. However, a key problem in
Bayesian inference is the specification of appropriate pri-
ors. This problem can be finessed using empirical Bayes
in which prior variances are estimated from the data,
under some simple assumptions about their form. Empir-
ical Bayes requires a hierarchical observation model, in
which higher levels can be regarded as providing prior
constraints on lower levels. In neuroimaging, observa-
tions of the same effect over voxels provide a natural,
two-level hierarchy that enables an empirical Bayesian
approach. In this section, we present the motivation and
the operational details of a simple empirical Bayesian
method for computing posterior probability maps. We
then compare Bayesian and classical inference through
the equivalent PPMs and SPMs testing for the same effect
in the same data. The approach adopted here is a natu-
ral extension of parametric empirical Bayes described in
the previous chapter. The resulting model entails global
shrinkage priors to inform the estimation of effects at
each voxel or bin in the image. These global priors can
be regarded as a special case of spatial priors in the more
general spatiotemporal models for functional magnetic
resonance imaging (fMRI) introduced in Chapter 25.

To date, inference in neuroimaging has been restricted
largely to classical inferences based upon statistical para-
metric maps (SPMs). The alternative approach is to
use Bayesian or conditional inference based upon the
posterior distribution of the activation given the data

(Holmes and Ford, 1993). This necessitates the spec-
ification of priors (i.e. the probability distribution of
the activation). Bayesian inference requires the posterior
distribution and therefore rests upon a posterior den-
sity analysis. A useful way to summarize this posterior
density is to compute the probability that the activa-
tion exceeds some threshold. This computation repre-
sents a Bayesian inference about the effect, in relation to
the specified threshold. We now describe an approach
to computing posterior probability maps for activation
effects or, more generally, treatment effects in imaging
data sequences. This approach represents the simplest
and most computationally expedient way of constructing
PPMs.

As established in the previous chapter, the motivation
for using conditional or Bayesian inference is that it has
high face-validity. This is because the inference is about
an effect, or activation, being greater than some specified
size that has some meaning in relation to underlying neu-
rophysiology. This contrasts with classical inference, in
which the inference is about the effect being significantly
different from zero. The problem for classical inference
is that trivial departures from the null hypothesis can be
declared significant, with sufficient data or sensitivity.
Furthermore, from the point of view of neuroimaging,
posterior inference is especially useful because it eschews
the multiple-comparison problem. Posterior inference
does not have to contend with the multiple-comparison
problem because there are no false-positives. The prob-
ability that activation has occurred, given the data, at
any particular voxel is the same, irrespective of whether
one has analysed that voxel or the entire brain. For this
reason, posterior inference using PPMs may represent a
relatively more powerful approach than classical infer-
ence in neuroimaging. The reason that there is no need
to adjust the p-values is that we assume independent
prior distributions for the activations over voxels. In this
simple Bayesian model, the Bayesian perspective is sim-
ilar to that of the frequentist who makes inferences on a
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per-comparison basis (see Berry and Hochberg, 1999 for
a detailed discussion).

Priors and Bayesian inference

PPMs require the posterior distribution or conditional
distribution of the activation (a contrast of conditional
parameter estimates) given the data. This posterior den-
sity can be computed, under Gaussian assumptions,
using Bayes’ rule. Bayes’ rule requires the specification
of a likelihood function and the prior density of the
model’s parameters. The models used to form PPMs, and
the likelihood functions, are exactly the same as in clas-
sical SPM analyses. The only extra bit of information
that is required is the prior probability distribution of
the parameters of the general linear model employed.
Although it would be possible to specify these in terms
of their means and variances using independent data, or
some plausible physiological constraints, there is an alter-
native to this fully Bayesian approach. The alternative is
empirical Bayes, in which the variances of the prior dis-
tributions are estimated directly from the data. Empirical
Bayes requires a hierarchical observation model, where
the parameters and hyperparameters at any particular
level can be treated as priors on the level below. There are
numerous examples of hierarchical observation models.
For example, the distinction between fixed- and mixed-
effects analyses of multisubject studies relies upon a
two-level hierarchical model. However, in neuroimag-
ing, there is a natural hierarchical observation model that
is common to all brain mapping experiments. This is
the hierarchy induced by looking for the same effects at
every voxel within the brain (or grey matter). The first
level of the hierarchy corresponds to the experimental
effects at any particular voxel and the second level of the
hierarchy comprises the effects over voxels. Put simply,
the variation in a particular contrast, over voxels, can be
used as the prior variance of that contrast at any particu-
lar voxel. A caricature of the approach presented in this
chapter appears as a numerical example in Chapter 11
on hierarchical models.

The model used here is one in which the spatial rela-
tionship among voxels is discounted. The advantage of
treating an image like a ‘gas’ of unconnected voxels is
that the estimation of between-voxel variance in activa-
tion can be finessed to a considerable degree (see below
and Appendix 4). This renders the estimation of posterior
densities tractable because the between-voxel variance
can then be used as a prior variance at each voxel. We
therefore focus on this simple and special case and on the
‘pooling’ of voxels to give precise [ReML] estimates of
the variance components required for Bayesian inference.
The main focus of this chapter is the pooling procedure

that affords a computational saving necessary to produce
PPMs of the whole brain. In what follows, we describe
how this approach is implemented and provide some
examples of its application.

THEORY

Conditional estimators and the posterior
density

Here we describe how the posterior distribution of the
parameters of any general linear model can be estimated
at each voxel from imaging data sequences. Under Gaus-
sian assumptions about the errors � ∼ N�0�C�� of a gen-
eral linear model with design matrix X, the responses are
modelled as:

y = X� +� 23.1

The conditional or posterior covariances and mean of
the parameters � are given by (Friston et al., 2002a):

C��y =�XT C−1
� X +C−1

� �−1

	��y =C��yX
T C−1

� y
23.2

where C� is the prior covariance (assuming a prior expec-
tation of zero). Once these moments are known, the pos-
terior probability that a particular effect or contrast speci-
fied by a contrast weight vector c exceeds some threshold

 is computed easily:

p = 1−�

⎛
⎜⎝
 − cT 	��y√

cT C��yc

⎞
⎟⎠ 23.3

��·� is the cumulative density function of the unit normal
distribution. An image of these posterior probabilities
constitutes a PPM.

Estimating the error covariance

Clearly, to compute the conditional moments above one
needs to know the error and prior covariances C� and C�.
In the next section, we will describe how the prior covari-
ance C� can be estimated. In this section, we describe
how the error covariance can be estimated in terms of a
hyperparameter �� where C� = ��V , and V is the corre-
lation or non-sphericity matrix of the errors (see below).
This hyperparameter is estimated simply using restricted
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maximum likelihood (ReML) or EM as described in the
previous chapter.1

Until convergence �E-step

C� = ��V
C��y = �XT C−1

� X +C−1
� �−1

M-step

P = C−1
� −C−1

� XC��yXT C−1
�

g = 1
2

tr�PT VPyyT �− 1
2

tr�PV�

H = 1
2

tr�PVPV�

�� ← �� +H−1g

� 23.4

In brief, P represents the residual forming matrix, pre-
multiplied by the error precision. It is this projector
matrix that ‘restricts’ the estimation of variance compo-
nents to the null space of the design matrix. g and H
are the first- and expected second-order derivatives (i.e.
gradients and expected negative curvature) of the ReML
objective function (a special case of the variational free
energy). The M-step can be regarded as a Fisher-Scoring
scheme that maximizes the ReML objective function.
Given that there is only one hyperparameter to estimate,
this scheme converges very quickly (2 to 3 iterations for
a tolerance of 10−6).

Estimating the prior density

Simply computing the conditional moments using
Eqn. 23.4 corresponds to a fully Bayesian analysis at
each and every voxel. However, there is an outstand-
ing problem in the sense that we do not know the prior
covariances of the parameters. It is at this point that we
introduce the hierarchical perspective that enables empir-
ical Bayes. If we consider Eqn. 23.1 as the first level of a
two-level hierarchy, where the second level corresponds
to observations over voxels, we have a hierarchical obser-
vation model for all voxels that treats some parameters
as random effects and others as fixed. The random effects
�1 are those that we are interested in and the fixed effects
�0 are nuisance variables or confounds (e.g. drifts or the
constant term) modelled by the regressors in X0 where
X = X1�X0� and

y =X1�X0�

[
�1

�0

]
+��1�

�1 =0+��2�

23.5

1 Note that the augmentation step shown in Figure 22.4 of
Chapter 22 is unnecessary because the prior covariance enters
explicitly into the conditional covariance.

This model posits that there is a voxel-wide prior dis-
tribution for the parameters �1 with zero mean and
unknown covariance E���2���2�T � = ∑

i
�iQ

�2�
i . The compo-

nents Q�2�
i specify the prior covariance structure of the

interesting effects and would usually comprise a com-
ponent for each parameter whose i-th leading diagonal
element was one and zero elsewhere. This implies that,
if we selected a voxel at random from the search volume,
the i-th parameter at that voxel would conform to a sam-
ple from a Gaussian distribution of zero expectation and
variance �i. The reason this distribution can be assumed
to have zero mean is that parameters of interest reflect
region-specific effects that, by definition sum to zero over
the search volume. By concatenating the data from all
voxels and using Kronecker tensor products of the design
matrices and covariance components, it is possible to cre-
ate a very large hierarchical observation model that could
be subject to EM (see, for example, Friston et al., 2002b:
Section 3.2). However, given the enormous number of
voxels in neuroimaging, this is computationally pro-
hibitive. A mathematically equivalent but more tractable
approach is to consider the estimation of the prior hyper-
parameters as a variance component estimation problem
after collapsing Eqn. 23.5 to a single-level model:

y =X0�0 +�

� =X1�
�2� +��1�

23.6

This is simply a rearrangement of Eqn. 23.5 to give
a linear model with a compound error covariance
that includes the observation error covariance and m
components for each parameter in �1. These components
are induced by variation of the parameters over voxels:

C� =E���T � =∑
�iQ

�1�
i

Q�1� =X1Q
�2�
1 XT

1 � � � � �X1Q
�2�
m XT

1 �V 23.7

� =�1� � � � ��m����
T

This equation says that the covariance of the compound
error can be linearly decomposed into m components
(usually one for each parameter) and the error variance.
The form of the observed covariances, due to variation in
the parameters, is determined by the design matrix X and
Q�2�

i that model variance components in parameter space.
Equation 23.7 furnishes a computationally expedient

way to estimate the prior covariances for the parame-
ters that then enter into Eqn. 23.4 to provide for voxel-
specific error hyperparameter estimates and conditional
moments. In brief, the hyperparameters are estimated by
pooling the data from all voxels to provide ReML estimates
of the variance components of C� according to Eqn. 23.7.
The nice thing about this pooling is that the hyper-
parameters of the parameter covariances are, of course,
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the same for all voxels. This is not the case for the error
covariance that may change from voxel to voxel. The
pooled estimate of �� can be treated as an estimate of the
average �� over voxels. These global hyperparameters are
estimated by iterating:

Until convergence � E-step

C� =∑
�iQ

�1�
i

C�0�y = �XT
0 C−1

� X0�
−1

M-step

P = C−1
� −C−1

� X0C�0�yXT
0 C−1

�

gi = 1
2

tr�PT QiP
1
n
YY T �− 1

2
tr�PQi�

Hij = 1
2

tr�PQiPQj�

� ← �+H−1g

� 23.8

It can be seen that this has exactly the form as Eqn. 23.4
used for the analysis at each voxel. The differences are
yyT has been replaced by its sample mean over vox-
els 1

n
YY T and there are no priors because the param-

eters controlling the expression of confounding effects
or nuisance variables are treated as fixed effects. This
is equivalent to setting their prior variance to infinity
(i.e. flat priors) so that C−1

�0
→ 0. Finally, the regressors

in X1 have disappeared from the design matrix because
they are embodied in the covariance components of the
compound error. As above, the inclusion of confounds
restricts the hyperparameter estimation to the null space
of X0, hence restricted maximum likelihood (ReML). In
the absence of confounds, the hyperparameters would
simply be maximum likelihood (ML) estimates that min-
imize the difference between the estimated and observed
covariance of the data, averaged over voxels. The ensuing
ReML estimates are very high precision estimators. Their
precision increases linearly with the number of voxels n
and is in fact equal to nH . These hyperparameters now
enter as priors into the voxel-specific estimation along
with the flat priors for the nuisance variables:

C� =

⎡
⎢⎢⎢⎢⎢⎣

∑
�iQ

�2�
i · · · 0

��� �
� � �

0 �

⎤
⎥⎥⎥⎥⎥⎦

23.9

We now have a very precise estimate of the prior covari-
ance that can be used to re-visit each voxel to compute the
conditional or posterior density. Finally, the conditional
moments enter Eqn. 23.3 to give the posterior probability
for each voxel. Figure 23.1 is a schematic illustration of
this scheme.

Summary

A natural hierarchy characterizes all neuroimaging
experiments, where the second level is provided by vari-
ation over voxels. Although it would be possible to form
a very large two-level observation model and estimate
the conditional means and covariances of the parame-
ters at the first level, this would involve dealing with
matrices of size �ns� × �ns� (number of voxels n times
the number of scans s). The same conditional estimators
can be computed using the two-step approach described
above. First, the data covariance components induced by
parameter variation over voxels and observation error are
computed using ReML estimates of the associated covari-
ance hyperparameters. Second, each voxel is revisited to
compute voxel-specific error variance hyperparameters
and the conditional moments of the parameters, using
the empirical priors from the first step (see Figure 23.1).
Both these steps deal only with matrices of size n × n.
The voxel-specific estimation sacrifices the simplicity of
a single large iterative scheme for lots of quicker itera-
tive schemes at each voxel. This exploits the fact that the
same first-level design matrix is employed for all voxels.
We have presented this two-stage scheme in some detail
because it is used in subsequent chapters on the inver-
sion of source models for electroencephalography (EEG).
The general idea is to compute hyperparameters in mea-
surement space and then use them to construct empirical
priors for inference at higher levels (see Appendix 4 for
a summary of this two-stage procedure and its different
incarnations).

EMPIRICAL DEMONSTRATIONS

In this section, we compare and contrast Bayesian and
classical inference using PPMs and SPMs based on real
data. The first dataset is the positron emission tomog-
raphy (PET) verbal fluency data that has been used to
illustrate methodological advances in SPM over the years.
In brief, these data were required from five subjects each
scanned twelve times during the performance of one
of two word generation tasks. The subjects were asked
either to repeat a heard letter or to respond with a word
that began with the heard letter. These tasks were per-
formed in alternation over the twelve scans and the order
randomized over subjects. The second dataset comprised
data from a study of attention to visual motion (Büchel
and Friston, 1997). The data used in this note came from
the first subject studied. This subject was scanned at
2T to give a time series of 360 images comprising ten
block epochs of different visual motion conditions. These
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Time series

Q 

(1) = X1Q1    X1
T T, X1Qm   X1,V,(2) (2)

∞
Cθ =

X = [X1, X0]

γ − cTηθ|y 

cTCθ|y 
c

p = 1 − Φ

n YYT1cov(Y ) =

Covariance
components

y(t )

Empirical prior

PPM

Covariance over 
voxels

Cθ0|y =(X0
TC 

−1X0)−1

Cξ = λiQi
(1)

tr (PQiPQj)Hij = 2
1

tr (PQi)tr (PTQiPYYT) −gi = 2
1

2n
1

λ ←λ + H −1g

Step 1 {voxel-wide EM}

tr (PVPV )H =

tr (PV )tr (PTVPyyT) −g =

P = C 
−1 − C 

−1XCθ|yX
TC 

−1

Cθ|y = (X
TC 

−1X + C 
−1)−1

ηθ|y =Cθ|yX
TC 

−1y 

Cε = λεV

2
1

2
1

2
1

Step 2 {voxel-wise EM}

Design matrix

ξ

ε

ε

ε ε ε

θ

P = C 
−1

 − C 
−1X0Cθ0|y

X0C 
−1T

ξ ξ ξ

λiQi
(2)

λε ← λε + H 
−1g

FIGURE 23.1 Schematic summarizing the two-step procedure for (1) ReML estimation of the empirical prior covariance based on the
sample covariance of the data, pooled over voxels and (2) a voxel-by-voxel estimation of the conditional expectation and covariance of the
parameters, required for inference. See the main text for a detailed explanation of the equations.

conditions included a fixation condition, visual presen-
tation of static dots, and visual presentation of radially
moving dots under attention and no-attention condi-
tions. In the attention condition, subjects were asked to
attend to changes in speed (which did not actually occur).
These data were re-analysed using a conventional SPM
procedure and using the empirical Bayesian approach
described in the previous section. The ensuing SPMs and
PPMs are presented below for the PET and fMRI data
respectively. The contrast for the PET data compared
the word generation with the word shadowing condition
and the contrast for the fMRI data tested for the effect

of visual motion above and beyond that due to photic
stimulation with stationary dots.

Inference for the PET data

The right panel of Figure 23.2 shows the PPM for a deac-
tivating effect of verbal fluency. There are two thresholds
for the PPM. The first and more important is 
 in Eqn. 23.3.
This defines what we mean by ‘activation’ and, by default,
is set at one standard deviation of the prior variance of the
contrast, in this instance 2.2. This corresponds to a change
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Height threshold p = 0.95, effect size = 2.2
Extent threshold K = 0 voxels

Design matrix

Contrast

PPM

(a)

Height threshold T = 5.50
Extent threshold K = 0 voxels

SPM(t1)

(b)

FIGURE 23.2 Bayesian and classical and inference for a PET study of word generation. (a) PPM for a contrast reflecting the difference
between word-shadowing and word-generation, using an activation threshold of 2.2 and a confidence of 95 per cent. The design matrix and
contrast for this model are shown (right) in image format. We have modelled each scan as a specific effect that has been replicated over
subjects. (b) Classical SPM of the t-statistic for the same contrast. This SPM has been thresholded at p = 0�05, corrected using a random-field
adjustment.

in regional cerebral blood flow (rCBF) of 2.2 adimensional
units (equivalent to ml/dl/min). The second threshold is
more trivial and simply enables the use of maximum
intensity projections. This is the probability the voxel has
to exceed in order to be displayed. In the PPM shown,
this was set at 95 per cent. This means that all voxels
shown have greater than 95 per cent probability of being
deactivated by 2.2 or more. The PPM can be regarded
as a way of summarizing one’s confidence that an effect
is present (cf. the use of confidence intervals where the
lower bound on the interval is set at 
). It should be
noted that posterior inference would normally require
the reporting of the conditional probability whether it
exceeded some arbitrary threshold or not. However, for
the visual display of posterior probability maps, it is use-
ful to remove voxels that fall below some threshold.

Figure 23.3 provides a quantitative representation of
Bayesian inference afforded by PPMs. In the left-hand
panel, the posterior expectation for the twelve condition-
specific effects are shown, encompassed by the 95 per
cent confidence intervals (bars) based on the posterior
covariance. It can be seen that in the fifth condition (the
third word-shadowing condition) one could be almost
certain the activation is greater than zero. The prior and
posterior densities for this activation are shown in the
right-hand panel. These are the probability distributions
before and after observing the data. Note that the poste-
rior variance is always smaller than the prior variance,
depending on how noisy the data are.

The corresponding SPM is shown in the right-hand
panel (see Figure 23.2). The SPM has been thresh-
olded at 0.05 adjusted for the search volume using a
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FIGURE 23.3 Illustrative results for a single voxel – the maximum in the left temporal region of the PPM in Figure 23.3 (−54�−4�−2 mm).
Right panel: these are the conditional or posterior expectations and 95 per cent confidence intervals for the activation effect associated with
each of the 12 conditions. Note that the odd conditions (word shadowing) are generally higher. In condition 5, one would be more than 95
per cent certain the activation exceeded 2.2. Left panel: the prior and posterior densities for the parameter estimate for condition 5.



Elsevier UK Chapter: Ch23-P372560 30-9-2006 5:20p.m. Page:301 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

EMPIRICAL DEMONSTRATIONS 301

random-field correction. There is a remarkable corre-
spondence between the activation profiles inferred by the
PPM and the SPM. The similarity between the PPM and
the SPM for these data should not be taken as charac-
teristic. The key difference between Bayesian inference,
based on the confidence we have about activation, and
classical inference, based on rejecting the null hypothe-
sis, is that the latter depends on the search volume. The
classical approach, when applied in a mass-univariate
setting (i.e. over a family of voxels) induces a multiple
comparison problem that calls for a procedure to control
for family-wise false positives. In the context of imaging
data, this procedure is a random-field adjustment to the
threshold. This adjustment depends on the search vol-
ume. This means that, if we increased the search volume,
the threshold would rise and some of the voxels seen
in the SPM would disappear. Because the PPM does not
label any voxel as ‘activated’, there is no multiple com-
parison problem and the 95 per cent confidence threshold
is the same irrespective of search volume. This difference
between PPMs and SPMs is highlighted in the analysis
of the fMRI data. Here, the search volume is effectively
increased by reducing the smoothness of the data. We do
this by switching from PET to fMRI. Smoothness controls
the ‘statistical’ search volume, which is generally much
greater for fMRI than for PET.

Inference for the fMRI data

The difference between the PPM and SPM for the
fMRI analysis is immediately apparent on inspection of
Figures 23.4 and 23.5. Here the default threshold for the
PPM was 0.7 per cent (equivalent to percentage whole-
brain mean signal). Again, only voxels that exceed 95
per cent confidence are shown. These are restricted to
visual and extra-striate cortex involved in motion pro-
cessing. The thing to note here is that the corresponding
SPM identifies a smaller number of voxels than the PPM.
Indeed, the SPM appears to have missed a critical and
bilaterally represented part of the V5 complex (circled
cluster on the PPM in the lower panel of Figure 23.4).
The SPM is more conservative because the correction for
multiple comparisons in these data is very severe, ren-
dering classical inference relatively insensitive. It is inter-
esting to note that dynamic motion in the visual field has
such widespread (if small) effects at a haemodynamic
level.

PPMs and false discovery rate

There is an interesting connection between false discov-
ery rate (FDR – see Chapter 20) control and thresh-
olded PPMs. Subjecting PPMs to a 95 per cent threshold

Height threshold p = 0.95, effect size 0.7%
Extent threshold K = 0 voxels

Z = 3 mm

Design matrix

Contrast

PPM

FIGURE 23.4 PPM for the fMRI study of attention to visual
motion. The display format in the lower panel uses an axial slice
through extra-striate regions but the thresholds are the same as
employed in maximum intensity projections (upper panels). The
activation threshold for the PPM was 0.7. As can be imputed from
the design matrix, the statistical model of evoked responses com-
prised boxcar regressors convolved with a canonical haemodynamic
response function.

means that surviving voxels have, at most, a 5 per cent
probability of not exceeding the default threshold 
. In
other words, if we declared these voxels as ‘activated’,
5 per cent of the voxels could be false activations. This
is exactly the same as FDR in the sense that the FDR is
the proportion of voxels that are declared significant but
are not. It should be noted that many voxels will have a
posterior probability that is more than 95 per cent. There-
fore, the 5 per cent is an upper bound on the FDR. This
interpretation rests explicitly on thresholding the PPM
and labelling the excursion set as ‘activated’. It is reit-
erated that this declaration is unnecessary and only has
any meaning in relation to classical inference. However,
thresholded PPMs do have this interesting connection to
SPMs in which false discovery rate has been controlled.
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Height threshold T = 4.86
Extent threshold K = 0 voxels

Design matrix

SPM(t )

Contrast

Z = 3 mm

FIGURE 23.5 As for Figure 23.4, but this time showing the
corresponding SPM using a corrected threshold of p = 0�05.

Conclusion

In this section, we looked at a simple way to construct
posterior probability maps using empirical Bayes. Empir-
ical Bayes can be used because of the natural hierarchy
in neuroimaging engendered by looking for the same
thing over multiple voxels. The approach provides sim-
ple shrinkage priors based on between-voxel variation
in parameters controlling effects of interest. A computa-
tionally expedient way of computing these priors using
ReML was presented that pools over voxels. This pool-
ing device offers an enormous computational saving
through simplifying the matrix algebra and enabling the
construction of whole-brain PPMs. The same device has

found an interesting application in the ReML estimation
of prior variance components in space, by pooling over
time bins, in the EEG source reconstruction problem (see
Chapters 29 and 30).

A key consideration in the use of empirical Bayes in
this setting is ‘which voxels to include in the hierar-
chy?’ There is no right or wrong answer here (cf. the
search volume in classical inference with SPMs). The
most important thing to bear in mind is that the con-
ditional estimators of an activation or effect are those
which minimize some cost function. This cost function
can be regarded as the ability to predict the observed
response with minimum error, on average, over the vox-
els included in the hierarchical model. In other words,
the voxels over which the priors are computed define
the space one wants, on average, the best estimates for.
In this work we have simply used potentially responsive
voxels within the brain as defined by thresholding the
original images (to exclude extra-cranial regions).

In the next chapter, we turn to variational techniques
for Bayesian inversion, of which EM and ReML can be
regarded as special cases. These variational approaches
can accommodate a wide range of biophysically
informed generative models, as we will see.
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Variational Bayes
W. Penny, S. Kiebel and K. Friston

INTRODUCTION

Bayesian inference can be implemented for arbitrary
probabilistic models using Markov chain Monte Carlo
(MCMC) (Gelman et al., 1995). But MCMC is compu-
tationally intensive and so not practical for most brain
imaging applications. This chapter describes an alterna-
tive framework called ‘variational Bayes (VB)’ which is
computationally efficient and can be applied to a large
class of probabilistic models (Winn and Bishop, 2005).

The VB approach, also known as ‘ensemble learning’,
takes its name from Feynmann’s variational free energy
method developed in statistical physics. VB is a devel-
opment from the machine learning community (Peterson
and Anderson, 1987; Hinton and van Camp, 1993) and has
been applied in a variety of statistical and signal processing
domains (Bishop et al., 1998; Jaakola et al., 1998; Ghahra-
maniandBeal,2001;WinnandBishop, 2005). It is now also
widely used in the analysis of neuroimaging data (Penny
et al., 2003; Sahani and Nagarajan, 2004; Sato et al., 2004;
Woolrich, 2004; Penny et al., 2006; Friston et al., 2006).

This chapter is structured as follows. We describe the
fundamental relationship between model evidence, free
energy and Kullback-Liebler (KL) divergence that lies at
theheartofVB.Before this,wereviewthesalientproperties
of the KL-divergence. We then describe how VB learning
delivers a factorized, minimum KL-divergence approxi-
mation to the true posterior density in which learning is
driven by an explicit minimization of the free energy. The
theoretical section is completed by relating VB to Laplace
approximations and describing how the free energy can
also be used as a surrogate for the model evidence, allow-
ing for Bayesian model comparison. Numerical examples
are then given showing how VB differs from Laplace and
providing simulation studies using models of functional
magnetic resonance imaging (fMRI) data (Penny et al.,
2003). These are based on a general linear model with
autoregressive errors, or GLM-AR model.

THEORY

In what follows we use upper-case letters to denote matri-
ces and lower-case to denote vectors. N�m��� denotes
a uni/multivariate Gaussian with mean m and vari-
ance/covariance �. XT denotes the matrix transpose and
log x denotes the natural logarithm.

Kullback-Liebler divergence

For densities q��� and p��� the relative entropy or
Kullback-Liebler (KL) divergence from q to p is (Cover
and Thomas, 1991):

KL�q�p� =
∫

q��� log
q���

p���
d� 24.1

The KL-divergence satisfies the Gibb’s inequality
(Mackay, 2003):

KL�q�p� ≥ 0 24.2

with equality only if q = p. In general KL�q�p� �= KL�p�q�,
so KL is not a distance measure. Formulae for computing
KL, for both Gaussian and gamma densities, are given in
Appendix, 24.1.

Model evidence and free energy

Given a probabilistic model of some data, the log of the
‘evidence’ or ‘marginal likelihood’ can be written as:

log p�Y� =
∫

q��� log p�Y�d�

=
∫

q��� log
p�Y���

p���Y�
d�

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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=
∫

q��� log
[

p�Y���q���

q���p���Y�

]
d�

= F +KL�q����p���Y�� 24.3

where q��� is considered, for the moment, as an arbitrary
density. We have:

F =
∫

q��� log
p�Y���

q���
d� 24.4

which, in statistical physics is known as the negative
free energy. The second term in Eqn. 24.3 is the KL-
divergence between the density q��� and the true poste-
rior p���Y�. Eqn. 24.3 is the fundamental equation of the
VB-framework and is shown graphically in Figure 24.1.

Because KL is always positive, due to the Gibbs
inequality, F provides a lower bound on the model evi-
dence. Moreover, because KL is zero when two densities
are the same, F will become equal to the model evidence
when q��� is equal to the true posterior. For this reason
q��� can be viewed as an approximate posterior.

The aim of VB-learning is to maximize F and so make
the approximate posterior as close as possible to the true
posterior. This approximate posterior will be the one that
best approximates the true posterior in the sense of min-
imizing KL-divergence. We should point out that this
divergence cannot be minimized explicitly because p���y�
is only known up to a constant. Instead, it is minimized
implicitly by maximizing F and by virtue of Eqn. 24.3.
Of course, maximizing F , the negative free energy, is the
same as minimizing −F , the free energy.

Factorized approximations

To obtain a practical learning algorithm we must also
ensure that the integrals in F are tractable. One generic
procedure for attaining this goal is to assume that the

log p(Y )

KL

F

FIGURE 24.1 The negative free energy, F , provides a lower
bound on the log-evidence of the model with equality when the
approximate posterior equals the true posterior.

approximating density factorizes over groups of param-
eters. In physics, this is known as the mean field approx-
imation. Thus, we consider:

q��� =∏
i

q��i� 24.5

where �i is the ith group of parameters. We can also write
this as:

q��� = q��i�q��\i� 24.6

where �\i denotes all parameters not in the ith group. The
distributions q��i� which maximize F can then be derived
as follows:

F =
∫

q��� log
[

p�Y���

q���

]
d� 24.7

=
∫ ∫

q��i�q��\i� log
[

p�Y���

q��i�q��\i�

]
d�\id�i

=
∫

q��i�
[∫

q��\i� log p�Y���d�\i

]
d�i

−
∫

q��i� log q��i�d�i +C

=
∫

q��i�I��i�d�i −
∫

q��i� log q��i�d�i +C

where the constant C contains terms not dependent on
q��i� and:

I��i� =
∫

q��\i� log p�Y���d�\i 24.8

Writing I��i� = log exp I��i� gives:

F =
∫

q��i� log
[

exp�I��i��

q��i�

]
d�i +C 24.9

= KL�q��i��exp�I��i���+C

This is minimized when:

q��i� = exp�I��i��

Z
24.10

where Z is the normalization factor needed to make q��i�
a valid probability distribution. Importantly, this means
we are often able to determine the optimal analytic form of
the component posteriors. This results in what is known
as a ‘free-form’ approximation.

For example, Mackay (1995) considers the case of linear
regression models with gamma priors over error preci-
sions, 	, and Gaussian priors over regression coefficients

, with a factorized approximation q�
�	� = q�
�q�	�.
Application of Eqn. 24.10 then leads to an expression in
which I�	� has terms in 	 and log 	 only. From this we
can surmise that the optimal form for q�	� is a gamma
density (see Appendix 24.1).
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More generally, free-form approximations can be
derived for models from the ‘conjugate-exponential’ fam-
ily (Attias, 1999; Ghahramani and Beal, 2001; Winn and
Bishop, 2005). Exponential family distributions include
Gaussians and discrete multinomials and conjugacy
requires the posterior (over a factor) to have the same
functional form as the prior.

This allows free-form VB to be applied to arbitrary
directed acyclic graphs comprising discrete multinomial
variables with arbitrary subgraphs of univariate and mul-
tivariate Gaussian variables. Special cases include hid-
den Markov models, linear dynamical systems, principal
component analysers, as well as mixtures and hier-
archical mixtures of these. Moreover, by introducing
additional variational parameters, free-form VB can be
applied to models containing non-conjugate distribu-
tions. This includes independent component analysis
(Attias, 1999) and logistic regression (Jaakola and Jordan,
1997).

Application of Eqn. 24.10 also leads to a set of update
equations for the parameters of the component posteriors.
This is implemented for the linear regression example
by equating the coefficients of 	 and log 	 with the rele-
vant terms in the gamma density (see Appendix 24.1). In
the general case, these update equations are coupled as
the solution for each q��i� depends on expectations with
respect to the other factors q��\i�. Optimization proceeds
by initializing each factor and then cycling through each
factor in turn and replacing the current distribution with
the estimate from Eqn. 24.10. Examples of these update
equations are provided in the following chapter, which
applies VB to spatio-temporal models of fMRI data.

Laplace approximations

Laplace’s method approximates the integral of a function∫
f���d� by fitting a Gaussian at the maximum �̂ of f���,

and computing the volume of the Gaussian. The covari-
ance of the Gaussian is determined by the Hessian matrix
of log f��� at the maximum point �̂ (Mackay, 1998).

The term ‘Laplace approximation’ is used for the
method of approximating a posterior distribution with
a Gaussian centred at the maximum a posteriori (MAP)
estimate. This is the application of Laplace’s method with
f��� = p�Y ���p���. This can be justified by the fact that
under certain regularity conditions, the posterior distri-
bution approaches a Gaussian as the number of sam-
ples grows (Gelman et al., 1995). This approximation is
derived in detail in Chapter 35.

Despite using a full distribution to approximate the
posterior, instead of a point estimate, the Laplace approx-
imation still suffers from most of the problems of MAP
estimation. Estimating the variances at the end of iter-

ated learning does not help if the procedure has already
led to an area of low probability mass. This point will be
illustrated in the results section.

This motivates a different approach where, for non-
linear models, the Laplace approximation is used at
each step of an iterative approximation process. This is
described in Chapters 22 and 35. In fact, this method is an
expectation maximization (EM) algorithm, which is
known to be a special case of VB (Beal, 2003). This is clear
from the fact that, at each step of the approximation, we
have an ensemble instead of a point estimate.

The relations between VB, EM, iterative Laplace
approximations, and an algorithm from classical statistics
called restricted maximum likelihood (ReML) are dis-
cussed in Appendix 4 and Friston et al. (2006). This algo-
rithm uses a ‘fixed-form’ for the approximating ensemble,
in this case being a full-covariance Gaussian. This is to be
contrasted with the ‘free-form’ VB algorithms described
in the previous section, where the optimal form for q���
is derived from p�Y��� and the assumed factorization.

Model inference

As we have seen earlier, the negative free energy, F , is
a lower bound on the model evidence. If this bound is
tight then F can be used as a surrogate for the model
evidence and so allow for Bayesian model selection and
averaging.1 This provides a mechanism for fine-tuning
models. In neuroimaging, F has been used to optimize
the choice of haemodynamic basis set (Penny et al., 2006),
the order of autoregressive models (Penny et al., 2003)
(see also Chapter 40), and the spatial diffusivity of EEG
sources (see Chapter 26).

Earlier, the negative free energy was written:

F =
∫

q��� log
p�Y���

q���
d� 24.11

By using p�Y��� = p�Y ���p��� we can express it as the sum
of two terms:

F��� =
∫

q��� log p�Y ���d� −KL�q����p���� 24.12

where the first term is the average likelihood of the data
and the second term is the KL between the approximat-
ing posterior and the prior. This is not to be confused with
the KL in Eqn. 24.3 which was between the approximate
posterior and the true posterior. In Eqn. 24.12, the KL

1 Throughout this chapter our notation has, for brevity, omitted
explicit dependence on the choice of model, m. But strictly,
e.g. p�Y�, F , p���Y� and q��� should be written as p�Y �m�, F�m�,
p���Y�m� and q���m�.
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term grows with the number of model parameters and so
penalizes more complex models. Thus, F contains both
accuracy and complexity terms, reflecting the two con-
flicting requirements of a good model, that it fit the data
yet be as simple as possible. Model selection principles
are also discussed in Chapter 35.

In the very general context of probabilistic graphical
models, Beal and Ghahramani (2003) have shown that
the above VB approximation of model evidence is con-
siderably more accurate than the Bayesian information
criterion (BIC), while incurring little extra computational
cost. Chapter 35 discusses the utility of the BIC in the
context of fixed priors. Moreover, it is of comparable
accuracy to a much more computationally demanding
method based on annealed importance sampling (AIS)
(Beal and Ghahramani, 2003).

EXAMPLES

This section first provides an idealized example which
illustrates the difference between Laplace and VB approx-
imations. We then present some simulation results show-
ing VB applied to a model of fMRI data. In what follows
‘Laplace approximation’ refers to a Gaussian centred at
the MAP estimate and VB uses either a fixed-form approx-
imation (see ‘univariate densities’ below) or a free-form
approximation (see ‘factorized approximation’ below).

Univariate densities

Figure 24.2 and Plate 22 (see colour plate section) pro-
vide an example showing what it means to minimize
KL for univariate densities. The solid lines in Figure 24.2
show a posterior distribution p which is a Gaussian mix-
ture density comprising two modes. The first contains
the maximimum a posteriori (MAP) value and the second
contains the majority of the probability mass.

The Laplace approximation to p is therefore given by
a Gaussian centred around the first, MAP mode. This
is shown in Figure 24.2(a). This approximation does not
have high probability mass, so the model evidence will
be underestimated.

Figure 24.2(b) shows a Laplace approximation to the
second mode, which could arise if MAP estimation
found a local, rather than a global, maximum. Finally,
Figure 24.2(c) shows the minimum KL-divergence approx-
imation, assuming that q is a Gaussian. This is a fixed-form
VBapproximation,aswehavefixedtheformof theapprox-
imating density (i.e. q is a Gaussian). This VB solution cor-
responds to a density q which is moment-matched to p.

FIGURE 24.2 Probability densities p��� (solid lines) and q���
(dashed lines) for a Gaussian mixture p��� = 0�2×N�m1��2

1 �+0�8×
N�m2��2

2 � with m1 = 3�m2 = 5, �1 = 0�3��2 = 1�3, and a single
Gaussian q��� = N���2� with (a)  = 1�� = �1 which fits the
first mode, (b)  = 2�� = �2 which fits the second mode and (c)
 = 4�6�� = 1�4 which is moment-matched to p���.

Plate 22 plots KL�q�p� as a function of the mean and
standard deviation of q, showing a minimum around
the moment-matched values. These KL values were
computed by discretizing p and q and approximating
Eqn. 24.1 by a discrete sum. The MAP mode, maximum
mass mode and moment-matched solutions have KL�q�p�
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values of 11.7, 0.93 and 0.71 respectively. This shows that
low KL is achieved when q captures most of the proba-
bility mass of p and, minimum KL when q is moment-
matched to p. Plate 22 also shows that, for reasonable
values of the mean and standard deviation, there are no
local minima. This is to be contrasted with the posterior
distribution itself which has two maxima, one local and
one global.

Capturing probability mass is particularly important
if one is interested in non-linear functions of parameter
values, such as model predictions. This is the case for
the dynamic causal models described in later chapters.
Figures 24.3 and 24.4 show histograms of model predic-
tions for squared and logistic-map functions indicating
that VB predictions are qualitatively better than those
from the Laplace approximation.

FIGURE 24.3 Histograms of 10 000 samples drawn from g���
where the distribution over � is from the Laplace approximation
(top), VB approximation (middle) and true distribution, p (bottom)
for g��� = �2.

FIGURE 24.4 Histograms of 10 000 samples drawn from g���
where the distribution over � is from the Laplace approximation
(top), VB approximation (middle) and true distribution, p (bottom)
for g��� = �∗ �10−��. This is akin to a logistic map function encoun-
tered in dynamical systems (Mullin, 1993).

Often in Bayesian inference, one quotes posterior
exceedance probabilities. Examples of this are the pos-
terior probability maps described in Chapter 23 and
dynamic causal models in Chapter 41. For the squared
function, Laplace says 5 per cent of samples are above g =
12�2. But in the true density, 71 per cent of samples are.
For the logisitic function 62 per cent are above Laplace’s
5 per cent point. The percentage of samples above VB’s 5
per cent points are 5.1 per cent for the squared function
and 4.2 per cent for the logistic-map function. So, for this
example, Laplace can tell you the posterior exceedance
probability is 5 per cent when, in reality, it is an order of
magnitude greater. This is not the case for VB.

As we shall see later on, the VB solution depends cru-
cially on our assumptions about q, either in terms of
the factorization assumed (this is of course, irrelevant
for univariate densities) or the family of approximating
densities assumed for q. For example, if q were a mix-
ture density, as in Bishop et al. (1998), then VB would
provide an exact approximation of p. It is also impor-
tant to note that the differences between VB and Laplace
depend on the nature of p. For unimodal p, these differ-
ences are likely to be less significant than those in the
above example.

Factorized approximation

We now present results of a simulation study using a
general linear model with autoregressive errors, or GLM-
AR model. The GLM-AR model can describe both the
signal and noise characteristics of fMRI data. This model
is used in the rest of the results section. For simplicity,
we describe application to data at a single voxel. But the
next chapter augments the model with a spatial prior and
shows it can be applied to whole slices of data.

We first illustrate VB’s factorized approximation to
the posterior and compare the marginal distributions
obtained with VB to those from exact evalution. We gen-
erated data from a known GLM-AR model:

yt = xtw+ et 24.13

et = aet−1 +zt 24.14

where xt = 1 for all t, w = 2�7, a = 0�3 and 1/	 = Var�z� =
�2 = 4. We generated N = 128 samples. Given any par-
ticular values of parameters � = �w�a�	� it is possible to
compute the exact posterior distribution up to a normal-
ization factor, as:

p�w�a�	�Y� ∝ p�Y �w�a�	�p�w���p�a�
�p�	� 24.15

where � is the prior precision of regression coefficients
and 
 is the prior precision of AR coefficients (see
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next chapter for more details). If we evaluate the above
quantity over a grid of values w, a, 	, we can then nor-
malize it so it sums to one and so make plots of the exact
posterior density. We then assumed an approximate pos-
terior q�w�a�	� = q�w�q�a�q�	� and used VB to fit it to
the data. Update equations are available in Penny et al.
(2003).

Figure 24.5 compares the exact and approximate pos-
terior joint densities for w, a. In the true posterior, it
is clear that there is a dependence between w and a
but VB’s approximate posterior ignores this dependence.
Figure 24.6 compares the exact and approximate poste-
rior marginal densities for w, a and �2. In this example,
VB has accurately estimated the marginal distributions.

Model inference

We generated data from a larger GLM-AR model hav-
ing two regression coefficients and three autoregressive
coefficients:

yt = xtw+ et 24.16

(a)

(b)

FIGURE 24.5 The figures show contour lines of constant prob-
ability density from (a) the exact posterior p�a�w�Y� and (b) the
approximate posterior used in VB, q�a�w� for the GLM-AR model.
This clearly shows the effect of the factorization, q�a�w� = q�a�q�w�.

et =
m∑

j=1

ajet−j +zt 24.17

where xt is a two-element row vector, the first element
flipping between a ‘−1’ and ‘1’ with a period of 40 scans
(i.e. 20 − 1 s followed by 20 1s) and the second element
being ‘1’ for all t. The two corresponding entries in w
reflect the size of the activation, w1 = 2, and the mean
signal level, w2 = 3. We used an AR(3) model for the
errors with parameters a1 = 0�8, a2 = −0�6 and a3 = 0�4.
The noise precision was set to 1/	 = Var�z� = �2 = 1 and

(a)

(b)

(c)

FIGURE 24.6 The figures compare the exact (solid lines) and
approximate (dashed lines) marginal posteriors (a) p�w�Y� and q�w�,
(b) p�a�Y� and q�a�, (c) p��2�Y� and q��2� (where �2 = 1/	).
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(a)

(b)

F(m)

m

FIGURE 24.7 The figures show (a) an example time-series
from a GLM-AR model with AR model order m = 3 and (b) a plot
of the average negative free energy F�m�, with error bars, versus m.
This shows that F�m� picks out the correct model order.

we initially generated N = 400 samples. This is a larger
model than in the previous example as we have more
AR and regression coefficients. An example time series
produced by this process is shown in Figure 24.7(a).

We then generated 10 such time-series and fitted GLM-
AR(p) models to each using the VB algorithm. In each
case, the putative model order was varied between m = 0
and m = 5 and we estimated the model evidence for
each. Formulae for the model evidence approximation
are available in Penny et al. (2003). Figure 24.7(b) shows
a plot of the average value of the negative free energy,
F�m� as a function of m, indicating that the maximum
occurs at the true model order.

Gibbs sampling

While it is possible, in principle, to plot the exact poste-
riors using the method described previously, this would
require a prohibitive amount of computer time for this

larger model. We therefore validated VB by comparing it
withGibbssampling(Gelmanetal., 1995;Pennyetal., 2003).

We generated a number of datasets containing either
N = 40, N = 160 or N = 400 scans. At each dataset size
we compared Gibbs and VB posteriors for each of the
regression coefficients. For the purpose of these compar-
isons the model order was kept fixed at m = 3. Figure 24.8
shows representative results indicating a better agree-
ment with increasing number of scans. We also note that
VB requires more iterations for fewer scans (typically 4
iterations for N = 400, 5 iterations for N = 160 and 7
iterations for N = 40). This is because the algorithm was
initialized with an ordinary least squares (OLS) solution
which is closer to the VB estimate if there is a large num-
ber of scans.

Estimation of effect size

Finally, we generated a number of data sets of various
sizes to compare VB and OLS estimates of activation size
with the true value of w1 = 2. This comparison was made
using a paired t-test on the absolute estimation error. For
N > 100, the VB estimation error was significantly smaller
for VB than for OLS �p < 0�05�. For N = 160, for example,
the VB estimation error was 15 per cent smaller than the
OLS error �p < 0�02�.

DISCUSSION

Variational Bayes delivers a factorized, minimum KL-
divergence approximation to the true posterior density
and model evidence. This provides a computationally
efficient implementation of Bayesian inference for a large
class of probabilistic models (Winn and Bishop, 2005).
It allows for parameter inference, based on the approx-
imating density q���m� and model inference based on a
free energy approximation, F�m� to the model evidence,
p�y�m�.

The quality of inference provided by VB depends on
the nature of the approximating distribution. There are
two distinct approaches here. Fixed-form approximations
fix the form of q to be, for example, a diagonal (Hin-
ton and van Camp, 1993) or full-covariance Gaussian
ensemble (Friston et al., 2006). Free-form approximations
choose a factorization that depends on p�Y���. These
range from fully factorized approximations, where there
are no dependencies in q, to structured approximations.
These identify substructures in p�Y���, such as trees or
mixtures of trees, in which exact inference is possible.
Variational methods are then used to handle interactions
between them (Ghahramani, 2002).
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(a) (b)

(c) (d)

(e) (f)

FIGURE 24.8 The figures show the posterior distributions from Gibbs sampling (solid lines) and variational Bayes (dashed lines) for
data sets containing 40 scans (top row), 160 scans (middle row) and 400 scans (bottom row). The distributions in the left column are for the
first regression coefficient (size of activation) and in the right column for the second regression coefficient (offset). The fidelity of the VB
approximation increases with number of scans.

VB also delivers an approximation to the model
evidence, allowing for Bayesian model comparison.
However, it turns out that model selections based on VB
are systematically biased towards simpler models (Beal
and Ghahramani, 2003). Nevertheless, they have been
shown empirically to be more accurate than BIC approx-
imations and faster than sampling approximations (Beal
and Ghahramani, 2003). Bayesian model selection is dis-
cussed further in Chapter 35.

Chapter 22 described a parametric empirical Bayes
(PEB) algorithm for inference in hierarchical linear

Gaussian models. This algorithm may be viewed as a spe-
cial case of VB with a fixed-form full-covariance Gaussian
ensemble (Friston et al., 2006). More generally, however,
VB can be applied to models with discrete as well as
continuous variables.

A classic example here is the Gaussian mixture model.
This has been applied to an analysis of intersubject vari-
ability in fMRI data. Model comparisons based on VB
identified two overlapping degenerate neuronal systems
in subjects performing a cross-modal priming task (Nop-
peney et al., 2006).
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In the dynamic realm, VB has been used to fit
and select hidden Markov Models (HMMs) for the
analysis of electroencephalographic (EEG) data (Cas-
sidy and Brown, 2002). These HMMs use discrete
variables to enumerate the hidden states and contin-
uous variables to parameterize the activity in each.
Here, VB identifies the number of stationary dynamic
regimes, when they occur, and describes activity in each
with a multivariate autoregressive (MAR) model. The
application of VB to MAR models is described further in
Chapter 40.

The following chapter uses a spatio-temporal model
for the analysis of fMRI. This includes spatial regulariza-
tion of the autoregressive processes which characterize
fMRI noise. This regularization requires a prior over error
terms which is precluded in Chapter 22’s PEB framework
but is readily accommodated using free-form VB.

APPENDIX 24.1

For univariate normal densities q�x� = N�q��2
q � and

p�x� = N�p��2
p � the KL-divergence is:

KLN1
�q��q�p��p�

= 0�5 log
�2

p

�2
q

+ 2
q +2

p +�2
q −2qp

2�2
p

−0�5 24.18

The multivariate normal density is given by:

N���� = �2��−d/2���−1/2 exp
(

−1
2

�x−�T �−1�x−�

)

24.19

The KL divergence for normal densities q�x� =
N�q��q� and p�x� = N�p��p� is:

KLN �q��q�p��p� = 0�5 log
��p�
��q�

+0�5Tr��−1
p �q� 24.20

+0�5�q −p�
T �−1

p �q −p�− d

2

where ��p� denotes the determinant of the matrix �p.
The gamma density is defined as:

Ga�b� c� = 1
��c�

xc−1

bc
exp

(−x

b

)
24.21

The log of the gamma density:

log Ga�b� c� = − log ��c�− c log b+ �c−1� log x− x

b
24.22

In Mackay (1995), application of Eqn. 24.10 for the
approximate posterior over the error precision q�	� leads
to an expression containing terms in 	 and log 	 only.
This identifies q�	� as a gamma density. The coefficients
of these terms are then equated with those in the above
equation to identify the parameters of q�	�.

For gamma densities q�x� = Ga�x� bq� cq� and p�x� =
Ga�x� bp� cp� the KL-divergence is:

KLGa�bq� cq� bp� cp� = �cq −1���cq�− log bq − cq − log ��cq�

+ log ��cp�+ cp log bp − �cp −1����cq�+ log bq�+ bqcq

bp

24.23

where ��� is the gamma function and ��� the digamma
function (Press et al., 1992). Similar equations for multi-
nomial and Wishart densities are given in Penny (2001).
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Spatio-temporal models for fMRI
W. Penny, G. Flandin and N. Trujillo-Barreto

INTRODUCTION

Functional magnetic resonance imaging (fMRI) using
blood oxygen-level-dependent (BOLD) contrast is an
established method for making inferences about region-
ally specific activations in the human brain (Frackowiak
et al., 2003). From measurements of changes in blood oxy-
genation one can use various statistical models, such as
the general linear model (GLM) (Friston et al., 1995), to
make inferences about task-specific changes in underly-
ing neuronal activity.

This chapter reviews previous work (Penny et al., 2003,
2005, 2006; Penny and Flandin, 2005a) on the devel-
opment of spatially regularized general linear models
(SRGLMs) for the analysis of fMRI data. These models
allow for the characterization of subject and regionally
specific effects using spatially regularized posterior prob-
ability maps (PPMs). This spatial regularization has been
shown (Penny et al., 2005) to increase the sensitivity of
inferences one can make.

The chapter is structured as follows. The theoreti-
cal section describes the generative model for SRGLM.
This is split into descriptions of the prior and likeli-
hood. We show how the variational Bayes (VB) algo-
rithm, described in the previous chapter, can be used for
approximate inference. We describe how these inferences
are implemented for uni- and multivariate contrasts,
and discuss the rationale for thresholding the resulting
PPMs. We also discuss the spatio-temporal nature of the
model and compare it with standard approaches. The
results section looks at null fMRI data, synthetic data
and fMRI from functional activation studies of audi-
tory and face processing. The chapter finishes with a
discussion.

Notation

Lower case variable names denote vectors and scalars.
Whether the variable is a vector or scalar should be clear
from the context. Upper case names denote matrices
or dimensions of matrices. In what follows N�x�����
denotes a multivariate normal density over x, having
mean � and covariance �. The precision of a Gaussian
variate is the inverse (co)variance. A gamma density
over the scalar random variable x is written as Ga�x�a� b�.
Normal and gamma densities are defined in Chapter 24.
We also use ��x��2 = xT x, denote the trace operator as
Tr�X�, X+ for the pseudo-inverse, and use diag�x� to
denote a diagonal matrix with diagonal entries given by
the vector x.

THEORY

We denote an fMRI data set consisting of T time points at
N voxels as the T ×N matrix Y . In mass-univariate mod-
els (Friston et al., 1995), these data are explained in terms
of a T × K design matrix X, containing the values of K
regressors at T time points, and a K×N matrix of regres-
sion coefficients W , containing K regression coefficients
at each of the N voxels. The model is written:

Y = XW +E 25.1

where E is a T×N error matrix.
It is well known that fMRI data are contaminated with

artefacts. These stem primarily from low-frequency drifts
due to hardware instabilities, aliased cardiac pulsation
and respiratory sources, unmodelled neuronal activity
and residual motion artefacts not accounted for by rigid
body registration methods (Woolrich et al., 2001). This

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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results in the residuals of an fMRI analysis being tempo-
rally autocorrelated.

In previous work, we have shown that, after removal
of low-frequency drifts using discrete cosine transform
(DCT) basis sets, low-order voxel-wise autoregressive
(AR) models are sufficient for modelling this autocor-
relation (Penny et al., 2003). It is important to model
these noise processes because parameter estimation then
becomes less biased (Gautama and Van Hulle, 2004) and
more accurate (Penny et al., 2003).

Model likelihood

We now describe the approach taken in our previous
work. For a Pth-order AR model, the likelihood of the
data is given by:

p�Y �W�A��� =
T∏

t=P+1

N∏
n=1

N�ytn −xtwn� �dtn −Xtwn�T an��−1
n � 25.2

where n indexes the nth voxel, an is a P×1 vector of
autoregressive coefficients, wn is a K×1 vector of regres-
sion coefficients and �n is the observation noise precision.
The vector xt is the tth row of the design matrix and Xt is a
P×K matrix containing the previous P rows of X prior to
time point t. The scalar ytn is the fMRI scan at the tth time
point and nth voxel and dtn = 	yt−1�n� yt−2�n� 
 
 
 � yt−P�n�T .
Because dtn depends on data P time steps before, the
likelihood is evaluated starting at time point P + 1, thus
ignoring the GLM fit at the first P time points.

Eqn. 25.2 shows that higher model likelihoods are
obtained when the prediction error ytn − xtwn is closer
to what is expected from the AR estimate of prediction
error.

The voxel-wise parameters wn and an are contained in
the nth columns of matrices W and A, and the voxel-
wise precision �n is the nth entry in �. The next section
describes the prior distributions over these parameters.
Together, the likelihood and prior define the generative
model, which is shown in Figure 25.1.

Priors

The graph in Figure 25.1 shows that the joint probability
of parameters and data can be written:

p�Y�W�A������ = p�Y �W�A���p�W ��� 25.3

p�A��p���u1�u2�

p���q1� q2�p��r1� r2�

FIGURE 25.1 The figure shows the probabilistic dependen-
cies underlying the SRGLM generative model for fMRI data. The
quantities in squares are constants and those in circles are ran-
dom variables. The spatial regularization coefficients � constrain the
regression coefficients W . The parameters � and A define the autore-
gressive error processes which contribute to the measurements. The
spatial regularization coefficients  constrain the AR coefficients A.

where the first term is the likelihood and the other terms
are the priors. The likelihood is given in Eqn. 25.2 and
the priors are described below.

Regression coefficients

For the regressions coefficients we have:

p�W ��� =
K∏

k=1

p�wT
k ��k� 25.4

p�wT
k ��k� = N�wT

k � 0��−1
k D−1

w �

where Dw is a spatial precision matrix. This can be set
to correspond to, for example, a low resolution tomogra-
phy (LORETA) prior, a Gaussian Markov random field
(GMRF) prior or a minimum norm prior (Dw = I) (Fris-
ton and Penny, 2003) as described in earlier work (Penny
et al., 2005). These priors implement the spatial regular-
ization and are specified separately for each slice of data.
Specification of 3-dimensional spatial priors (i.e. over
multiple slices) is desirable from a modelling perspec-
tive, but is computationally too demanding for current
computer technology.

We can also write wv = vec�W�, wr = vec�W T �, wv =
Hwwr where Hw is a permutation matrix. This leads to:

p�W ��� = p�wv��� 25.5

= N�wv� 0�B−1�

where B is an augmented spatial precision matrix
given by:

B = Hw�diag���⊗Dw�HT
w 25.6
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where ⊗ is the Kronecker product. This form of the prior
is useful as our specification of approximate posteriors is
based on similar quantities. It can be seen that � encodes
the spatial precision of the regression coefficients.

The above Gaussian priors underly GMRFs and
LORETA and have been used previously in fMRI
(Woolrich et al., 2004) and electroencephalography (EEG)
(Pascal Marqui et al., 1994). They are by no means, how-
ever, the optimal choice for imaging data. In EEG, for
example, much interest has focused on the use of Lp-
norm priors (Auranen et al. 2005) instead of the L2-norm
implicit in the Gaussian assumption. Additionally, we
are currently investigating the use of wavelet priors. This
is an active area of research and will be the topic of future
publications.

AR coefficients

We also define a spatial prior for the AR coefficients so
that they too can be spatially regularized. We have:

p�A�� =
P∏

p=1

p�ap�p� 25.7

p�ap�p� = N�ap� 0�−1
p D−1

a �

Again, Da is a user-defined spatial precision matrix, av =
vec�A�, ar = vec�AT � and av = Haar , where Ha is a permu-
tation matrix. This prior is used to implement the spatial
regularization of the AR coefficients. We can write:

p�A�� = p�av�� 25.8

= N�av� 0� J−1�

where J is an augmented spatial precision matrix:

J = Ha �diag��⊗Da�HT
a 25.9

This form of the prior is useful as our specification of
approximate posteriors is based on similar quantities.
The parameter  plays a similar role to � and controls
the spatial regularization of the temporal autoregression
coefficients.

We have also investigated ‘tissue-type’ priors which
constrain AR estimates to be similar for voxels in the
same tissue-type, e.g. grey matter, white matter or cere-
brospinal fluid. Bayesian model selection (Penny et al.,
2006), however, favours the smoothly varying priors
defined in Eqn. 25.7.

Precisions

We use gamma priors on the precisions �,  and �:

p���u1�u2� =
N∏

n=1

Ga��n�u1�u2� 25.10

p���q1� q2� =
K∏

k=1

Ga��k� q1� q2�

p��r1� r2� =
P∏

p=1

Ga�p� r1� r2�

where the gamma density is defined in Chapter 24.
Gamma priors were chosen as they are the conjugate pri-
ors for Gaussian error models. The parameters are set to
q1 = r1 = u1 = 10 and q2 = r2 = u2 = 0�1. These parame-
ters produce gamma densities with a mean of 1 and a
variance of 10. The robustness of, for example, model
selection to the choice of these parameters is discussed
in Penny et al. (2003).

Approximate posteriors

Inference for SRGLMs has been implemented using the
variational Bayes (VB) approach described in the previ-
ous chapter. In this section, we describe the algorithm
developed in previous work (Penny et al., 2005) where we
assumed that the approximate posterior factorizes over
voxels and subsets of parameters.

Because of the spatial priors, the regression coefficients
in the true posterior p�W �Y� will clearly be correlated.
Our perspective, however, is that this is too computation-
ally burdensome for current personal computers to take
account of. Moreover, as we shall see later, updates for
the approximate factorized densities q�wn� do encourage
the approximate posterior means to be similar at nearby
voxels, thereby achieving the desired effect of the prior.

Our approximate posterior is given by:

q�W�A������ =∏
n

q�wn�q�an�q��n� 25.11

∏
k

q��k�
∏
p

q�p�

and each component of the approximate posterior
is described below. These update equations are self-
contained except for a number of quantities that are
marked out using the ‘tilde’ notation. These are Ãn� b̃n�
C̃n� d̃n and G̃n, which are all defined in Appendix 25.1.

Regression coefficients

We have:

q�wn� = N�wn� ŵn� �̂n� 25.12

�̂n =
(
�̄nÃn + B̄nn

)−1

ŵn = �̂n

(
�̄nb̃T

n + rn

)

rn = −
N∑

i=1�i �=n

B̄niŵi
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where ŵn is the estimated posterior mean and �̂n is
the estimated posterior covariance. The quantity B̄ is
defined as in Eqn. 25.6 but uses �̄ instead of �. The
quantities Ãn and b̃n are expectations related to autore-
gressive processes and are defined in Appendix 25.1. In
the absence of temporal autocorrelation we have Ãn =
XT X and b̃T

n = XT yn.

AR coefficients

We have:

q�an� = N�an�mn�Vn�

where

Vn =
(
�̄nC̃n + J̄nn

)−1
25.13

mn = Vn��̄nd̃n + jn�

jn = −
N∑

i=1�i �=n

J̄nimi

and mn is the estimated posterior mean and Vn is the
estimated posterior covariance. The quantity J̄ is defined
as in Eqn. 25.9 but ̄ is used instead of . The subscripts
in J̄ni denote that part of J̄ relevant to the nth and ith
voxels. The quantities C̃n and d̃n are expectations that are
defined in Appendix 25.1.

Precisions

The approximate posteriors over the precision variables
are gamma densities. For the precisions on the observa-
tion noise we have:

q��n� = Ga��n� bn� cn� 25.14

1
bn

= G̃n

2
+ 1

u1

cn = T

2
+u2

�̄n = bc

where G̃n is the expected prediction error defined in
Appendix 25.1. For the precisions of the regression coef-
ficients we have:

q��k� = Ga��k�gk�hk� 25.15

1
gk

= 1
2

(
Tr��̂kDw�+ ŵT

k Dwŵk

)
+ 1

q1

hk = N

2
+ q2

�̄k = gkhk

For the precisions of the AR coefficients we have:

q�p� = Ga�p� r1p� r2p� 25.16

1
r1p

= 1
2

(
Tr�VpDa�+mT

p Damp

)
+ 1

r1

r2p = N

2
+ r2

̄p = r1pr2p

Practicalities

Our empirical applications use spatial precision matrices
Da and Dw, defined above, which produce GMRF priors.
Also, we use AR models of order P = 3. Model selection
using VB showed that this model order was sufficient for
all voxels in a previous analysis of fMRI (Penny et al.,
2003).

The VB algorithm is initialized using ordinary least
square (OLS) estimates for regression and autoregressive
parameters as described in Penny et al. (2003). Quantities
are then updated using Eqns. 25.12, 25.13, 25.14, 25.15,
25.16.

As described in the previous chapter, the aim of VB
is to match an approximate posterior to the true poste-
rior density in the sense of minimizing Kullback-Liebler
(KL) divergence. This is implemented implicitly by max-
imizing the quantity F , known in statistical physics as
the negative free energy. In the implemention of VB for
SRGLMs, F is monitored during optimization. Conver-
gence is then defined as less than a 1 per cent increase
in F .

Expressions for computing F are given in Penny et al.
(2006). This is an important quantity as it can also be
used for model comparison. This is described at length in
Penny et al. (2006) and reviewed in Chapters 24 and 35.

The algorithm we have described is implemented in
SPM version 5 and can be downloaded from SPM Soft-
ware (2006). Computation of a number of quantites (e.g.
C̃n, d̃n and G̃n) is now much more efficient than in previ-
ous versions (Penny et al., 2005). These improvements are
described in a separate document (Penny and Flandin,
2005b). To analyse a single session of data (e.g. the face
fMRI data) takes about 30 minutes on a typical personal
computer.

Spatio-temporal deconvolution

The central quantity of interest in fMRI analysis is
our estimate of effect sizes, embodied in contrasts of
regression coefficients. A key update equation in our
VB scheme is, therefore, the approximate posterior for
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the regression coefficients. This is given by Eqn. 25.12.
For the special case of temporally uncorrelated data we
have:

�̂n = (
�̄nXT X + B̄nn

)−1
25.17

ŵn = �̂n

(
�̄nXT yn + rn

)

where B̄ is a spatial precision matrix and rn is the
weighted sum of neighbouring regression coefficient esti-
mates.

This update indicates that the estimate at a given voxel
regresses towards those at nearby voxels. This is the
desired effect of the spatial prior and is preserved despite
the factorization over voxels in the approximate poste-
rior (see Eqn. 25.11). Eqn. 25.17 can be thought of as the
combination of a temporal prediction XT yn and a spatial
prediction from rn. Each prediction is weighted by its
relative precision to produce the optimal estimate ŵn. In
this sense, VB provides a spatio-temporal deconvolution
of fMRI data. Moreover, the parameters controlling the
relative precisions, �̄n and �̄, are estimated from the data.
The effect size estimates therefore derive from an auto-
matically regularized spatio-temporal deconvolution.

Contrasts

After having estimated a model, we will be interested in
characterizing a particular effect, c, which can usually be
expressed as a linear function or ‘contrast’ of parameters,
w. This is described at length in Chapter 9. That is,

cn = CT wn 25.18

where C is a contrast vector or matrix. For example,
the contrast vector CT = 	1�−1� computes the difference
between two experimental conditions.

Our statistical inferences are based on the approximate
distribution q�W�, which implies a distribution on c, q�c�.
Because q�W� factorizes over voxels we can write:

q�c� =
N∏

n=1

q�cn� 25.19

where cn is the effect size at voxel n. Given a contrast
matrix C we have:

q�cn� = N�cn��n�Sn� 25.20

with mean and covariance:

�n = CT ŵn 25.21

Sn = CT �̂nC

Bayesian inference based on this posterior can then take
place using confidence intervals (Box and Tiao, 1992). For
univariate contrasts we have suggested the use of poste-
rior probability maps (PPMs), as described in Chapter 23.

If cn is a vector, then we have a multivariate contrast.
Inference can then proceed as follows. The probability �
that the zero vector lies on the 1 − � confidence region
of the posterior distribution at each voxel must then be
computed. We first note that this probability is the same
as the probability that the vector �n lies on the edge of the
1 −� confidence region for the distribution N��n� 0� Sn�.
This latter probability can be computed by forming the
test statistic:

dn = �T
n S−1

n �n 25.22

which will be the sum of rn = rank�Sn� independent,
squared Gaussian variables. As such, it has a �2 distribu-
tion:

p�dn� = �2�rn� 25.23

This procedure is identical to that used for making infer-
ences in Bayesian multivariate autoregressive models
(Harrison et al., 2003). We can also use this procedure
to test for two-sided effects, i.e., activations or deactiva-
tions. Though, strictly, these contrasts are univariate we
will use the term ‘multivariate contrasts’ to cover these
two-sided effects.

Thresholding

In previous work (Friston and Penny, 2003), we have
suggested deriving PPMs by applying two thresholds to
the posterior distributions: (i) an effect size threshold,
�; and (ii) a probability threshold pT . Voxel n is then
included in the PPM if q�cn > �� > pT . This approach was
described in Chapter 23.

If voxel n is to be included, then the posterior
exceedance probability q�cn > �� is plotted. It is also
possible to plot the effect size itself, cn. The following
exploratory procedure can be used for exploring the pos-
terior distribution of effect sizes. First, plot a map of effect
sizes using the thresholds � = 0 and pT = 1−1/N where
N is the number of voxels. We refer to these values as
the ‘default thresholds’. Then, after visual inspection of
the resulting map use a non-zero �, the value of which
reflects effect sizes in areas of interest. It will then be
possible to reduce pT to a value such as 0.95. Of course,
if previous imaging analyses have indicated what effect
sizes are physiologically relevant then this exploratory
procedure is unnecessary.
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False positive rates

If we partition effect-size values into two hypothesis
spaces H0 � c ≤ � and H1 � c > �, then we can character-
ize the sensitivity and specificity of our algorithm. This
is different to classical inference which uses H0 � c = 0.
A false positive (FP) occurs if we accept H1 when H0 is
true.

If we use the default threshold, and the approximate
posterior were exact, then the distribution of FPs is
binomial with rate 1/N . The expected number of false
positives in each PPM is therefore N ×1/N = 1. The vari-
ance is N ×1/N × �1−1/N� which is approximately 1. We
would therefore expect 0, 1 or 2 false positives per PPM.

Of course, the above result only holds if the approxi-
mate posterior is equal to the true posterior. But, given
that all of our computational effort is aimed at this goal,
it would not be surprising if the above analysis were
indicative of actual FP rates. This issue will be investi-
gated using null fMRI data in the next section.

RESULTS

Null data

This section describes the analysis of a null dataset to find
out how many false positives are obtained using PPMs
with default thresholds.

Images were acquired from a 1.5T Sonata (Siemens,
Erlangen, Germany) which produced T2∗-weighted
transverse echo-planar images (EPIs) with BOLD con-
trast, while a subject was lying in the scanner, asked to
rest and was not provided with any experimental stimu-
lus. These data are thus collected under the null hypoth-
esis, H0, that experimental effects are zero. This should
hold whatever the design matrix and contrast we con-
ceive. Any observed activations will be false positives.

Whole brain EPIs consisting of 48 transverse slices were
acquired every TR = 4�32 s resulting in a total of T = 98
scans. The voxel size is 3 × 3 × 3 mm. All images were
realigned to the first image using a six-parameter rigid-
body transformation to account for subject movement.
These data were not spatially smoothed. While spatial
smoothing is necessary for the standard application of
classical inference (see e.g. Chapter 2), it is not necessary
for the spatio-temporal models described in this chapter.
Indeed, the whole point of SRGLM is that the optimal
smoothness can be inferred from the data.

We then implemented a standard whole volume anal-
ysis on images comprising N = 59 945 voxels. We used
the design matrix shown in the left panel of Figure 25.2.
Use of the default thresholds resulted in no spurious
activations in the PPM.

We then repeated the above analysis but with a number
of different design matrices. First, we created a number
of epoch designs. These were based on the design in
Figure 25.2, but epoch onsets were jittered by a number
between plus or minus 9 scans. This number was drawn
from a uniform distribution, and the epoch durations
were drawn from a uniform distribution between 4 and
10 scans. Five such design matrices were created and
VB models fitted with each to the null data. For every
analysis, the number of false positives was 0.

Secondly, we created a number of event-related
designs by sampling event onsets with inter-stimulus
intervals drawn from a poisson distribution with rate five
scans. These event streams were then convolved with a
canonical HRF (Henson, 2003). Again, five such design
matrices were created and VB models fitted with each to
the null data. Over the five analyses, the average number
of false positives was 9.4. The higher false positive rate for
event-related designs is thought to occur because event-
related regressors are more similar than epoch regressors
to fMRI noise.

Synthetic data

We then added three synthetic activations to a slice of
null data �z = −13 mm�. These were created using the
design matrix and regression coefficient image shown
in Figure 25.2 (the two regression coefficient images, i.e.
for the activation and the mean, were identical). These
images were formed by placing delta functions at three
locations and then smoothing with Gaussian kernels hav-
ing full width at half maxima (FWHMs) of 2, 3 and 4
pixels (going clockwise from the top-left blob). Images
were then rescaled to make the peaks unity.

In principle, smoothing with a Gaussian kernel renders
the true effect size greater than zero everywhere because
a Gaussian has infinite spatial support. In practice, how-
ever, when implemented on a digital computer with
finite numerical precision, most voxels will be numer-
ically zero. Indeed, our simulated data contained 299
‘activated’ voxels, i.e. voxels with effect sizes numerically
greater than zero.

This slice of data was then analysed using VB. The con-
trast CT = 	1� 0� was then used to look at the estimated
activation effect, which is shown in the left panel of
Figure 25.3. For comparison, we also show the effect as
estimated using OLS. Clearly, OLS estimates are much
noisier than VB estimates.

Figure 25.4 shows plots of the exceedance probabilities
for two different effect-size thresholds, � = 0 and � = 0�3.
Figure 25.5 shows thresholded versions of these images.
These are PPMs. Neither of these PPMs contains any
false positives. That is, the true effect size is greater than



Elsevier UK Chapter: Ch25-P372560 30-9-2006 5:22p.m. Page:319 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

RESULTS 319

FIGURE 25.2 Left: design matrix for null fMRI data.
The first column models a boxcar activation and the sec-
ond column models the mean. There are n = 1��98 rows
corresponding to the 98 scans. Right: image of regression
coefficients corresponding to a synthetic activation. This
image is added to the null data. In this image, and others
that follow, black is 0 and white is 1.

zero wherever a white voxel occurs. This shows,
informally, that use of the default thresholds provides
good specificity while retaining reasonable sensitivity.
Also, a combination of non-zero effect-size thresholds
and more liberal probability thresholds can do the same.

Auditory data

This section describes the use of multivariate con-
trasts for an auditory fMRI data set comprising whole
brain BOLD/EPI images acquired on a modified 2T
Siemens Vision system. Each acquisition consisted of 64
contiguous slices (64×64×64, 3 mm×3 mm×3 mm vox-
els) and a time-series of 84 images was acquired with
TR = 7 s from a single subject.

This was an epoch fMRI experiment in which the con-
dition for successive epochs alternated between rest and
auditory stimulation, starting with rest. Auditory stim-
ulation was bi-syllabic words presented binaurally at a
rate of 60 per minute.

These data were analysed using VB with the design
matrix shown in Figure 25.6. To look for voxels that
increase activity in response to auditory stimulation, we
used the univariate contrast CT = 	1� 0�. Plate 23 (see
colour plate section) shows a PPM that maps effect-sizes
of above-threshold voxels.

To look for either increases or decreases in activity, we
use the multivariate contrast CT = 	1� 0�. This inference
uses the �2 approach described earlier. Plate 24 shows
the PPM obtained using default thresholds.

Face data

This is an event-related fMRI data set acquired by Henson
et al. (2002) during an experiment concerned with the pro-
cessing of faces. Greyscale images of faces were presented
for 500 ms, replacing a baseline of an oval chequerboard
which was present throughout the interstimulus interval.
Some faces were of famous people, and were therefore
familiar to the subject, and others were not. Each face

FIGURE 25.3 Left: estimated effect using VB (the true effect
is shown in the right section in Figure 25.2). Right: estimated effect
using OLS.

FIGURE 25.4 Plots of exceedance probabilities for two �
thresholds. Left: a plot of p�cn > 0�. Right: a plot of p�cn > 0�3�.

FIGURE 25.5 PPMs for two thresholds. Left: the default
thresholds (� = 0, pT = 1−1/N ) Right: the thresholds � = 0�3, pT =
0�95.
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FIGURE 25.6 Design matrix for analysis of the auditory data.
The first column models epochs of auditory stimulation and the
second models the mean response.

in the database was presented twice. This paradigm is a
two-by-two factorial design where the factors are famil-
iarity and repetition. The four experimental conditions
are ‘U1’, ‘U2’, ‘F1’ and ‘F2’, which are the first or second
(1/2) presentations of images of familiar ‘F’ or unfamiliar
‘U’ faces.

Images were acquired from a 2T VISION system
(Siemens, Erlangen, Germany) which produced T2∗-
weighted transverse echo-planar images (EPIs) with
BOLD contrast. Whole brain EPIs consisting of 24 trans-
verse slices were acquired every two seconds result-
ing in a total of T = 351 scans. All functional images
were realigned to the first functional image using a six-
parameter rigid-body transformation. To correct for the
fact that different slices were acquired at different times,
time-series were interpolated to the acquisition time of
a reference slice. Images were then spatially normalized
to a standard EPI template using a non-linear warping
method (Ashburner and Friston, 2003). Each time-series
was then highpass filtered using a set of discrete cosine
basis functions with a filter cut-off of 128 seconds.

The data were then analysed using the design matrix
shown in Figure 25.7. The first eight columns contain
stimulus related regressors. These correspond to the
four experimental conditions, where each stimulus train
has been convolved with two different haemodynamic
bases: (i) the canonical haemodynamic response function
(HRF); and (ii) the time derivative of the canonical (Hen-
son, 2003). The next six regressors in the design matrix
describe movement of the subject in the scanner and the
final column models the mean response.

Figure 25.8 plots a map of the first autoregressive com-
ponent as estimated using VB. This shows a good deal of
heterogeneity and justifies our assumption that that AR
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Design matrix
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Contrast(s)

FIGURE 25.7 Lower part: design matrix for analysis of face
data. Upper part: multivariate contrast used to test for any effect of
faces.

FIGURE 25.8 Image of the first autoregressive coefficient esti-
mated from the face fMRI data (in all, there were P = 3 AR coef-
ficients per voxel). Black denotes 0 and white 1. Large values can
be seen around the circle of Willis and middle cerebral artery. This
makes sense as cardiac-induced pulsatile motion is likely to be
stronger in these regions.

coefficients are spatially varying. The estimated spatial
variation is smooth, however, due to the spatial prior.
Plate 25 shows a PPM for ‘any effect of faces’ which was
obtained using the multivariate contrast matrix shown in
Figure 25.7.
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DISCUSSION

We have reviewed a framework for the analysis of fMRI
data based on spatially regularized GLMs. This model
embodies prior knowledge that evoked responses are
spatially homogeneous and locally contiguous.

As compared to standard approaches based on
spatially smoothing the imaging data itself, the spatial
regularization procedure has been shown to result in
inferences with higher sensitivity (Penny et al., 2005). The
approach may be viewed as an automatically regularized
spatio-temporal deconvolution scheme.

Use of PPMs with default thresholds resulted in low
false positive rates for null fMRI data, and physiologically
plausible activations for auditory and face fMRI data
sets. We have recently developed a similar approach for
source localization of EEG/MEG, which is described in
the following chapter.

APPENDIX 25.1

This appendix provides a number of formulae required
for updating the approximate posteriors. These have been
derived in Penny et al. (2003). First, auxiliary quantities
for updating q�wn� are:

Ãn =∑
t

xT
t xt +XT

t �mT
n mn +Vn�Xt

−xT
t mnXt −XT

t mT
n xt 25.24

b̃n =∑
t

ytnxt −mndtnxt −ytnmnXt

+dT
tn�mT

n mn +Vn�Xt 25.25

For the special case in which the errors are uncorrelated,
i.e. P = 0, we have Ãn = XT X and b̃n = XT yn. If we also
have no spatial prior on the regression coefficients, i.e.
� = 0, we then recover the least squares update:

ŵn = �XT X�−1XT yn 25.26

Secondly, auxiliary quantities for updating q�an� are:

C̃n =∑
t

dtndT
tn +Xt�ŵnŵT

n + �̂n�XT
t 25.27

−dtnŵT
n XT

t −XtŵndT
tn

d̃n =∑
t

ytndT
tn −xtŵndT

tn −ytnŵT
n X̃T +xt�ŵnŵT

n + �̂n�XT
t

Thirdly, the auxiliary quantity for updating q��n� is:

G̃n = G̃n1 + G̃n2 + G̃n3 25.28

where

G̃n1 =∑
t

y2
tn +dT

tn�mT
n mn +Vn�dtn −2ytndT

tnmn 25.29

G̃n2 =∑
t

xt�ŵnŵT
n + �̂�xT

t +Tr�XT
t �mT

n mn +Vn�Xt�̂n�

+ŵT
n XT

t �mT
n mn +Vn�Xtŵn −2xt�ŵnŵT

n + �̂n�Xtm
T
n

G̃n3 =∑
t

−2ytnxtŵn +2mndtnxtŵn

+2ytnmnXtŵn −2dT
tn�mT

n mn +Vn�Xtŵn

Many terms in the above equations do not depend on
model parameters and so can be pre-computed for effi-
cient implementation. See Penny and Flandin (2005b) for
more details.
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Spatio-temporal models for EEG
W. Penny, N. Trujillo-Barreto and E. Aubert

INTRODUCTION

Imaging neuroscientists have at their disposal a vari-
ety of imaging techniques for investigating human brain
function (Frackowiak et al., 2003). Among these, the
electroencephalogram (EEG) records electrical voltages
from electrodes placed on the scalp, the magnetoen-
cephalogram (MEG) records the magnetic field from sen-
sors placed just above the head and functional magnetic
resonance imaging (fMRI) records magnetization changes
due to variations in blood oxygenation.

However, as the goal of brain imaging is to obtain
information about the neuronal networks that support
human brain function, one must first transform mea-
surements from imaging devices into estimates of intra-
cerebral electrical activity. Brain imaging methodologists
are therefore faced with an inverse problem, ‘How can
one make inferences about intracerebral neuronal pro-
cesses given extracerebral or vascular measurements?’

We argue that this problem is best formulated as
a model-based spatio-temporal deconvolution problem.
For EEG and MEG, the required deconvolution is pri-
marily spatial, and for fMRI it is primarily temporal.
Although one can make minimal assumptions about the
source signals by applying ‘blind’ deconvolution meth-
ods (McKeown et al., 1998; Makeig et al., 2002), knowledge
of the underlying physical processes can be used to great
effect. This information can be implemented in a forward
model that is inverted during deconvolution. In M/EEG,
forward models make use of Maxwell’s equations gov-
erning propagation of electromagnetic fields (Baillet et al.,
2001) and in fMRI haemodynamic models link neural
activity to ‘balloon’ models of vascular dynamics (Friston
et al., 2000).

To implement a fully spatio-temporal deconvolution,
time-domain fMRI models must be augmented with a
spatial component and spatial-domain M/EEG models

with a temporal component. The previous chapter
showed how this could be implemented for fMRI. This
chapter describes a model-based spatio-temporal decon-
volution method for M/EEG.

The underlying forward or ‘generative’ model incor-
porates two mappings. The first specifies a time-domain
general linear model (GLM) at each point in source space.
This relates effects of interest at each voxel to source
activity at that voxel. This is identical to the ‘mass-
univariate’ approach that is widely used in the analysis
of fMRI (Frackowiak et al., 2003). The second mapping
relates source activity to sensor activity at each time
point using the usual spatial-domain lead-field matrix
(see Chapter 28).

Our model therefore differs from the standard genera-
tive model implicit in source reconstruction by having an
additional level that embodies temporal priors. There are
two potential benefits of this approach. First, the use of
temporal priors can result in more sensitive source recon-
structions. This may allow signals to be detected that
cannot be detected otherwise. Second, it provides an anal-
ysis framework for M/EEG that is very similar to that
used in fMRI. The experimental design can be coded in
a design matrix, the model fitted to data, and various
effects of interest can be characterized using ‘contrasts’
(Frackowiak et al., 2003). These effects can then be tested
for statistically using posterior probability maps (PPMs),
as described in previous chapters. Importantly, the model
does not need to be refitted to test for multiple experi-
mental effects that are potentially present in any single
data set. Sources are estimated once only using a spatio-
temporal deconvolution rather than separately for each
temporal component of interest.

The chapter is organized as follows. In the theory
section, we describe the model and relate it to exist-
ing distributed solutions. The success of the approach
rests on our ability to characterize neuronal responses,
and task-related differences in them, using GLMs.
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We describe how this can be implemented for the analy-
sis of event-related potentials (ERPs) and show how
the model can be inverted to produce source estimates
using variational Bayes (VB). The framework is applied
to simulated data and data from an EEG study of face
processing.

THEORY

Notation

Lower case variable names denote vectors and scalars.
Whether the variable is a vector or scalar should be
clear from the context. Upper case names denote matri-
ces or dimensions of matrices. In what follows N�x�����
denotes a multivariate normal density over x, having
mean � and covariance �. The precision of a Gaussian
variate is the inverse (co)variance. A gamma density over
the scalar random variable x is written as Ga�x�a� b�. Nor-
mal and gamma densities are defined in Chapter 26. We
also use �x�2 = xT x, denote the trace operator as Tr�X�, X+

for the pseudo-inverse, and use diag�x� to denote a diag-
onal matrix with diagonal entries given by the vector x.

Generative model

The aim of source reconstruction is to estimate primary
current density (PCD) J from M/EEG measurements Y .
If we have m = 1��M sensors, g = 1��G sources and t = 1��T
time points then J is of dimension G × T and Y is of
dimension M ×T . The applications in this chapter use a
cortical source space in which dipole orientations are con-
strained to be perpendicular to the cortical surface. Each
entry in J therefore corresponds to the scalar current den-
sity at particular locations and time points. Sensor mea-
surements are related to current sources via Maxwell’s
equations governing electromagnetic fields (Baillet et al.,
2001) (see Chapter 28).

Most established distributed source reconstruction or
‘imaging’ methods (Darvas et al., 2004) implicitly rely on
the following two-level generative model:

p�Y �J�	� =
T∏

t=1

N�yt�Kjt�	� 26.1

p�J �
� =
T∏

t=1

N�jt� 0�
−1D−1�

where jt and yt are the source and sensor vectors at time
t, K is the �M × G� lead-field matrix and 	 is the sen-
sor noise covariance. The matrix D reflects the choice of
spatial prior and 
 is a spatial precision variable. This

FIGURE 26.1 Generative model for source reconstruction.
This is a graphical representation of the probabilistic model implicit
in many distributed source solutions.

generative model is shown schematically in Figure 26.1
and can be written as a hierarchical model:

Y = KJ +E 26.2

J = Z

in which random fluctuations E correspond to sensor
noise and the source activity is generated by random
innovations Z. Critically, these assumptions provide
empirical priors on the spatial deployment of source
activity (see Chapter 29).

Because the number of putative sources is much
greater than the number of sensors, G >> M , the source
reconstruction problem is ill-posed. Distributed solutions
therefore depend on the specification of a spatial prior for
estimation to proceed. A common choice is the Laplacian
prior used, e.g. in low resolution electromagnetic tomog-
raphy (LORETA) (Pascual Marqui et al., 1994). This can
be implemented in the above generative model by set-
ting D to compute local differences as measured by an
L2-norm, which embodies a belief that sources are dif-
fuse and highly distributed. Other spatial priors, such as
those based on L1-norms (Fuchs et al., 1999), Lp-norms
(Auranen et al., 2005), or variable resolution electromag-
netic tomography (VARETA) (Valdes-Sosa et al., 2000)
can provide more focal source estimates. These are all
examples of schemes that use a single spatial prior and
are special cases of a more general model (Mattout et al.,
2006) that covers multiple priors. In this model, the sen-
sor noise and spatial prior covariances are modelled as
mixtures of components 	i and Qi respectively:

p�Y �J�	� =
T∏

t=1

N�yt�Kjt�1	1 +2	2 + � � � � 26.3

p�J �
� =
T∏

t=1

N�jt� 0��1Q1 +�2Q2 + � � � �

The advantage of this model is that multiple priors
can be specified and are mixed adaptively by adjust-
ing the covariance parameters i and �i, as described in
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Chapter 29. One can also use Bayesian model selection
to compare different combinations of priors, as described
in Chapter 35. For simplicity, we will deal with a single
spatial prior component because we want to focus on
temporal priors. However, it would be relatively simple
to extend the approach to cover multiple prior covariance
(or precision) components.

Also, in Chapter 35 we will describe a prior over a
model class that, when used with Bayesian model aver-
aging (BMA), can automatically provide either focal or
distributed solutions depending on the reconstruction
at hand. The applications in this chapter use Laplacian
priors.

Whatever the choice of spatial prior, the majority of
source reconstruction applications follow a single-pass
serial processing strategy. Either (i) spatial processing
first proceeds to create source estimates at each time point
and then (ii) temporal models are applied at these ‘virtual
depth electrodes’ (Brookes et al., 2004; Darvas et al., 2004;
Kiebel and Friston, 2004). Or (ii) time series methods
are applied in sensor space to identify components of
interest using, e.g. time windowing (Rugg and Coles,
1995) or time-frequency estimation and then (iii) source
reconstructions are based on these components.

In this chapter, we review a multiple-pass strategy
in which temporal and spatial parameter estimates are
improved iteratively to provide an optimized and mutu-
ally constrained solution. It is based on the following
three-level generative model:

p�Y �J�	� =
T∏

t=1

N�yt�Kjt�	� 26.4

p�J �W��� =
T∏

t=1

N�jT
t � xtW��−1IG� 26.5

p�W �
� =
K∏

k=1

N�wk� 0�
−1D−1� 26.6

The first level, Eqn. 26.4, is identical to the standard
model. In the second level, however, source activity at
each voxel is constrained using a �T ×K� matrix of tem-
poral basis functions, X. The tth row of X is xt. The
generative model is shown schematically in Figure 26.2.

The precision of the source noise is given by �. In this
chapter, � is a scalar; and we will apply the framework to
analyse event-related potentials (ERPs) (Rugg and Coles,
1995). Event-related source activity is described by the
time domain GLM and remaining source activity will
correspond to spontaneous activity. The quantity �−1 can
therefore be thought of as the variance of spontaneous
activity in source space.

The regression coefficients W determine the weighting
of the temporal basis functions. The third level of the
model is a spatial prior that reflects our prior uncertainty

FIGURE 26.2 Generative model for source reconstruction
with temporal priors. This is a hierarchical model with regression
coefficients at the ‘top’ and M/EEG data at the ‘bottom’.

about W . Each regression coefficient map, wk (row of W ),
is constrained by setting D to correspond to the usual
L2-norm spatial prior. The spatial prior that is usually on
the sources now, therefore, appears at a superordinate
level.

Different choices of D result in different weights and
different neighbourhood relations. The applications in
this paper use D = LT L, where L is the surface Laplacian
defined as:

Lij =

⎧⎪⎪⎨
⎪⎪⎩

1� if i = j

− 1
Nij

� if i and j are geodesic neighbours

0� otherwise�

where Nij is the geometric mean of the number of neigh-
bors of i and j. This prior has been used before in the
context of fMRI with Euclidean neighbours (Woolrich
et al., 2001; Penny and Flandin, 2005).

The first level of the model assumes that there is
Gaussian sensor noise, et, with zero mean and covariance
	. This covariance can be estimated from pre-stimulus
or baseline periods when such data are available (Sahani
and Nagarajan, 2004). Alternatively, we assume that 	 =
diag��−1� where the mth element of �−1 is the noise
variance on the mth sensor. We provide a scheme for
estimating �m, should this be necessary.

We also place gamma priors on the precision variables
� , � and 
:

p��� =
M∏

m=1

Ga��m�b�prior
� c�prior

� 26.7

p��� = Ga��� b�prior
� c�prior

�

p�
� =
K∏

k=1

Ga�
k� b
prior
� c
prior

�
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This allows the inclusion of further prior information
into the source localization. For example, instead of using
baseline periods to estimate a full covariance matrix 	,
we could use these data to estimate the noise variance
at each sensor. This information could then be used to
set b�prior

and c�prior
, allowing noise estimates during peri-

ods of interest to be constrained softly by those from
baseline periods. Similarly, we may wish to enforce
stronger or weaker spatial regularization on wk by set-
ting b
prior

and c
prior
appropriately. The applications in this

chapter, however, use uninformative gamma priors. This
means that � , � and 
 will be estimated solely from the
data Y .

In summary, the addition of the supraordinate level
to our generative model induces a partitioning of source
activity into signal and noise. We can see this clearly by
reformulating the probabilistic model as before:

Y = KJ +E 26.8

JT = XW +Z

W = P

Here we have random innovations Z which are ‘temporal
errors’, i.e. lack of fit of the temporal model, and P which
are ‘spatial errors’, i.e. lack of fit of a spatial model. Here
the spatial model is simply a zero mean Gaussian with
covariance 
−1D−1. We can regard XW as an empirical
prior on the expectation of source activity. This empirical
Bayes perspective means that the conditional estimates
of source activity J are subject to bottom-up constraints,
provided by the data, and top-down predictions from the
third level of our model. We will use this heuristic later to
understand the update equations used to estimate source
activity.

Temporal priors

The usefulness of the spatio-temporal approach rests
on our ability to characterize neuronal responses using
GLMs. Fortunately, there is a large literature that
suggests this is possible. The type of temporal model
necessary will depend on the M/EEG response one is
interested in. These components could be (i) single trials,
(ii) evoked components (steady-state or ERPs (Rugg and
Coles, 1995)) or (iii) induced components (Tallon Baudry
et al., 1996).

In this chapter, we focus on ERPs. We briefly review
three different approaches for selecting an appropri-
ate ERP basis set. These basis functions will form
columns in the GLM design matrix, X (see Eqn. 26.5 and
Figure 26.2).

Damped sinusoids

An ERP basis set can be derived from the fitting of
damped sinusoidal (DS) components (Demiralp et al.,
1998). These are given by:

j =
K∑

k=1

wkxk 26.9

xk = exp�i�k� exp�
k + i2�fk��t

where i = √−1, �t is the sampling interval and wk, �k, 
k

and fk are the amplitude, phase, damping and frequency
of the kth component. The �T ×1� vector xk will form the
kth column in the design matrix. Figure 26.3 shows how
damped sinusoids can generate an ERP.

Fitting DS models to ERPs from different condi-
tions allows one to make inferences about task related
changes in constituent rhythmic components. For exam-
ple, in Demiralp et al. (1998), responses to rare auditory
events elicited higher amplitude, slower delta and slower
damped theta components than did responses to frequent
events. Fitting damped sinusoids, however, requires a
non-linear estimation procedure. But approximate solu-
tions can also be found using the Prony and related meth-
ods (Osborne and Smyth, 1991) which require two stages
of linear estimation.

Once a DS model has been fitted, e.g. to the princi-
pal component of the sensor data, the components xk

provide a minimal basis set. Including extra regressors
from a first-order Taylor expansion about phase, damp-
ing and frequency ( �xk

��k
� �xk

�
k
� �xk

�fk
) provides additional flex-

ibility. Use of this expanded basis in our model would
allow these attributes to vary with source location. Such

FIGURE 26.3 The figure shows how damped sinusoids can
model ERPs. In this example, damped delta, theta and alpha sinu-
soids, of particular phase, amplitude and damping, add together to
form an ERP with an early negative component and a late positive
component.
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Taylor series expansions have been particularly useful
in GLM characterizations of haemodynamic responses in
fMRI (Frackowiak et al., 2003).

Wavelets

ERPs can also be modelled using wavelets:

j =
K∑

k=1

wkxk 26.10

where xk are wavelet basis functions and wk are wavelet
coefficients. Wavelets provide a tiling of time-frequency
space that gives a balance between time and frequency
resolution. The Q-factor of a filter or basis function is
defined as the central frequency to bandwidth ratio.

Wavelet bases are chosen to provide constant Q (Unser
and Aldroubi, 1996). This makes them good models of
non-stationary signals, such as ERPs and induced EEG
components (Tallon Baudry et al., 1996). Wavelet basis
sets are derived by translating and dilating a mother
wavelet. Figure 26.4 shows wavelets from two differ-
ent basis sets, one based on Daubechies wavelets and
one based on Battle-Lemarie (BL) wavelets. These basis
sets are orthogonal. Indeed the BL wavelets have been
designed from an orthogonalization of cubic B-splines
(Unser and Aldroubi, 1996).

If K = T , then the mapping j → w is referred to
as a wavelet transform, and for K > T we have an
overcomplete basis set. More typically, we have K ≤ T . In
the ERP literature, the particular subset of basis functions
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FIGURE 26.4 The graphs show wavelets from a Daubechies set of order 4 (left) and a Battle-Lemarie basis set of order 3 (right). The
wavelets in the lower panels are higher frequency translations of the wavelets in the top panels. Each full basis set comprises multiple
frequencies and translations covering the entire time domain.
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used is chosen according to the type of ERP component
one wishes to model. Popular choices are wavelets based
on B-splines (Unser and Aldroubi, 1996).

In statistics, however, it is well known that an appro-
priate subset of basis functions can be automatically
selected using a procedure known as ‘wavelet shrinkage’
or ‘wavelet denoising’. This relies on the property that
natural signals, such as images, speech or neuronal activ-
ity, can be represented using a sparse code comprising
just a few large wavelets coefficients. Gaussian noise sig-
nals, however, produce Gaussian noise in wavelet space.
This comprises a full set of wavelet coefficients whose
size depends on the noise variance. By ‘shrinking’ these
noise coefficients to zero using a thresholding proce-
dure (Donoho and Johnstone, 1994; Clyde et al., 1998),
and transforming back into signal space, one can denoise
data. This amounts to defining a temporal model. We
will use this approach for the empirical work reported
later on.

PCA

A suitable basis can also be derived from principal com-
ponents analysis (PCA). Trejo and Shensa (1999), for
example, applied PCA and varimax rotation to the clas-
sification of ERPs in a signal detection task. They found,
however, that better classification was more accurate
with a Daubechies wavelet basis.

PCA decompositions are also used in the multiple sig-
nal classification (MUSIC) approach (Mosher and Leahy,
1998). The dimension of the basis set is chosen to sepa-
rate the signal and noise subspaces. Source reconstruction
is then based on the signal, with information about the
noise used to derive statistical maps based on pseudo-
z scores. In Friston et al. (2006), a temporal basis set is
defined using the principal eigenvectors of a full-rank
prior temporal covariance matrix. This approach makes
the link between signal subspace and prior assumptions
transparent.

Dimensionality

Whatever the choice of basis, it is crucial that the dimen-
sion of the signal subspace is less than the dimension
of the original time series. That is, K < T . This is neces-
sary for the temporal priors to be effective, from both a
statistical and computational perspective.

Theoretically, one might expect the dimensionality of
ERP generators to be quite small. This is because of the
low-dimensional synchronization manifolds that arise
when non-linear dynamical systems are coupled into an
ensemble (Breakspear and Terry, 2002).

In practice, the optimal reduced dimensionality can
be found automatically using a number of methods. For

wavelets this can be achieved using shrinkage methods
(Donoho and Johnstone 1994; Clyde et al., 1998) and, for
PCA, using various model order selection criteria (Minka,
2000); for damped sinusoids, Prony-based methods can
use AR model order criteria (Roberts and Penny, 2002).
Moreover, it is also possible to compute the model evi-
dence of the source reconstruction model we have pro-
posed, as shown in the following section. This can then
be used to optimize the basis set.

Bayesian inference

To make inferences about the sources underling M/EEG,
we need to invert our probabilistic model to produce the
posterior density p�J �Y�. This is straightforward in princi-
ple and can be achieved using standard Bayesian methods
(Gelman et al., 1995). For example, one could use Markov
chain Monte Carlo (MCMC) to produce samples from
the posterior. This has been implemented efficiently for
dipole-like inverse solutions (Schmidt et al., 1999) in which
sources are parameterized as spheres of unknown num-
ber, extent and location. It is, however, computationally
demanding for distributed source solutions, taking several
hours for source spaces comprising G>1000 voxels (Aura-
nen et al., 2005). In this work, we adopt the computationally
efficient approximate inference framework called varia-
tional Bayes (VB), which was reviewed in Chapter 24.

Approximate posteriors

For our source reconstruction model we assume the fol-
lowing factorization of the approximate posterior:

q�J�W�
����� = q�J�q�W�q�
�q���q��� 26.11

We also assume that the approximate posterior for the
regression coefficients factorizes over voxels:

q�W� =
G∏

g=1

q�wg� 26.12

This approximation was used in the spatio-temporal
model for fMRI described in the previous chapter.

Because of the spatial prior (Eqn. 26.6), the regression
coefficients in the true posterior p�W �Y� will clearly be
correlated. Our perspective, however, is that this is too
computationally burdensome for current personal com-
puters to take account of. Moreover, as we shall see
below, updates for our approximate factorized densities
q�wg� do encourage the approximate posterior means to
be similar at nearby voxels, thereby achieving the desired
effect of the prior.
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Now that we have defined the probabilistic model and
our factorization of the approximate posterior, we can use
the procedure described in Chapter 24 to derive expres-
sions for each component of the approximate posterior.
We do not present details of these derivations in this
chapter. Similar derivations have been published else-
where (Penny et al., 2005). The following sections describe
each distribution and the updates of its sufficient statis-
tics required to maximize the lower bound on the model
evidence, F .

Sources

Updates for the sources are given by:

q�J� =
T∏

t=1

q�jt� 26.13

q�jt� = N�jt� ĵt� �̂jt
� 26.14

�̂jt
=
(
KT 	̂K + �̂IG

)−1
26.15

ĵt = �̂jt

(
KT 	̂yt + �̂Ŵ T xT

t

)
26.16

where ĵt is the tth column of Ĵ and 	̂, �̂ and Ŵ are
estimated parameters defined in the following sections.
Eqn. 26.16 shows that our source estimates are the result
of a spatio-temporal deconvolution. The spatial contribu-
tion to the estimate is KT yt and the temporal contribution
is Ŵ T xT

t . From the perspective of the hierarchical model,
shown in Figure 26.5, these are the ‘bottom-up’ and
‘top-down’ predictions. Importantly, each prediction is
weighted by its relative precision. Moreover, the param-
eters controlling the relative precisions, �̂ and 	̂, are

FIGURE 26.5 Probabilistic inversion of the generative model
leads to a source reconstruction based on a spatio-temporal decon-
volution in which bottom-up and top-down predictions, from sensor
data and temporal priors, are optimally combined using Bayesian
inference.

estimated from the data. This means that our source esti-
mates derive from an automatically regularized spatio-
temporal deconvolution. This property is shared by the
spatio-temporal model for fMRI, described in the previ-
ous chapter.

An alternative perspective on this computation is given
by ignoring the regularization term in Eqn. 26.16. We then
see that �̂jt

KT 	̂ = �KT 	̂K�+KT 	̂ = BT
w, which is equiv-

alent to a beamformer (Darvas et al., 2004). Eqn. 26.16
then shows that our source estimates use beamformer
predictions BT

wyt that are modified using a temporal
model. Beamformers cannot localize temporally corre-
lated sources. But, as we shall see later, the spatio-
temporal model can.

We end this section by noting that statistical infer-
ences about current sources are more robust than point
predictions. This property has been used to great effect
with pseudo-z beamformer statistics (Robinson and Vrba,
1999), sLORETA (Pascual Marqui, 2002) and VARETA
(Valdes-Sosa et al., 2000) source reconstructions, which
divide current source estimates by their standard devia-
tions. This approach can be adopted in the current frame-
workasthestandarddeviationsarereadilycomputedfrom
the diagonal elements of �̂jt

using Eqn. 26.23. Moreover,
we can threshold these statistic images to create posterior
probability maps (PPMs), as introduced in Chapter 25.

Regression coefficients

Updates for the regression coefficients are given by:

q�wg� = N�wg� ŵg� �̂wg
� 26.17

�̂wg
=
(
�̂XT X +dggdiag�
̂�

)−1

ŵg = �̂wg

(
�̂XT ĵT

g +diag�
̂�rg

)

where 
̂ is defined in Eqn. 26.21, dij is the i� jth element
of D and rg is given by:

rg =
G∑

g′=1�g′ �=g

dgg′ŵg′ 26.18

As shown in the previous chapter, rg is the weighted sum
of neighbouring regression coefficient estimators.

The update for ŵg in Eqn. 26.17 therefore indicates
that the regression coefficient estimates at a given voxel
regress towards those at nearby voxels. This is the desired
effect of the spatial prior and it is preserved despite the
factorization in the approximate posterior. This equation
can again be thought of in terms of the hierarchical model
where the regression coefficient estimate is a combination
of a bottom-up prediction from the level below, XT ĵT

g ,
and a top-down prediction from the prior, rg. Again, each
contribution is weighted by its relative precision.
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The update for the covariance in Eqn 26.17 shows that
the only off-diagonal contributions are due to the design
matrix. If the temporal basis functions are therefore cho-
sen to be orthogonal then this posterior covariance will be
diagonal, thus making a potentially large saving of com-
puter memory. One benefit of the proposed framework,
however, is that non-orthogonal bases can be accommo-
dated. This may allow for a more natural and compact
description of the data.

Precision of temporal models

Updates for the precision of the temporal model are
given by:

q��� = Ga��� b�post
� c�post

� 26.19

1
b�post

= 1
b�prior

+ 1
2

∑
t

(
�ĵt − Ŵ T xT

t �2 +Tr
(
�̂jt

)

+
G∑

g=1

xt�̂wg
xT

t

)

c�post
= c�prior

+ GT

2

�̂ = b�post
c�post

In the context of ERP analysis, these expressions amount
to an estimate of the variance of spontaneous activity in
source space, �̂−1, given by the squared error between
the ERP estimate, Ŵ T xT

t , and source estimate, ĵt, aver-
aged over time and space and the other approximate
posteriors.

Precision of forward model

Updates for the precision of the sensor noise are given by:

q��� = =
M∏

m=1

q��m� 26.20

q��m� = Ga��m�b�post
� c�post

�

1
bm

= 1
b�prior

+ 1
2

∑
t

(
ymt −kT

mĵt

)2 + 1
2

kT
m�̂jt

km

cm = c�prior
+ T

2
�̂m = bmcm

	̂−1 = diag��̂�

These expressions amount to an estimate of observation
noise at the mth sensor, �̂m

−1, given by the squared error
between the forward model and sensor data, averaged
over time and the other approximate posteriors.

Precision of spatial prior

Updates for the precision of the spatial prior are given by:

q�
� =
K∏

k=1

q�
k� 26.21

q�
k� = Ga�
k� b
post
� c
post

�

1
b
post

= 1
b
prior

+�DŵT
k �2 +

G∑
g=1

dgsgk

c
post
= c
prior

+ G

2

̂k = b
post

c
post

where sgk is the kth diagonal element of �̂wg
. These

expressions amount to an estimate of the ‘spatial noise
variance’, 
̂−1

k , given by the discrepancy between neigh-
bouring regression coefficients, averaged over space and
the other approximate posteriors.

Implementation details

A practical difficulty with the update equations for the
sources is that the covariance matrix �̂jt

is of dimen-
sion G×G where G is the number of sources. Even low
resolution source grids typically contain G > 1000 ele-
ments. This therefore presents a problem. A solution is
found, however, with use of a singular value decomposi-
tion (SVD). First, we define a modified lead field matrix
K̄ = 	̂1/2K and compute its SVD:

K̄ = USV T 26.22

= UV̄

where V̄ is an M×G matrix, the same dimension as the
lead field, K. It can then be shown using the matrix inver-
sion lemma (Golub and Van Loan, 1996) that:

�̂jt
= �̂−1 �IG −RG� 26.23

RG = V̄ T ��̂IM +SST �−1V̄

which is simple to implement computationally, as it only
requires inversion of an M×M matrix.

Source estimates can be computed as shown in
Eqn. 26.16. In principle, this means the estimated sources
over all time points and source locations are given by:

Ĵ = �̂jt
KT 	̂Y + �̂�̂jt

Ŵ T XT

In practice, however, it is inefficient to work with such
a large matrix during estimation. We therefore do not
implement Eqns 26.15 and 26.16 but, instead, work in the
reduced space ĴX = ĴX which are the sources projected
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onto the design matrix. These projected source estimates
are given by:

ĴX = ĴX 26.24

= �̂jt
KT 	̂YX + �̂�̂jt

Ŵ T XT X

= AK	YX + �̂AW XT X

where YX and XT X can be pre-computed and the
intermediate quantities are given by:

AK	 = �̂jt
KT 	̂ 26.25

= �̂−1
(
KT −RGKT

)
AW = �̂jt

Ŵ T

= �̂−1
(
Ŵ T −RGŴ T

)

Because these matrices are only of dimension G×M and
G×K respectively, ĴX can be efficiently computed. The
term XT ĵT

g in Eqn. 26.17 is then given by the gth row of ĴX .
The intermediate quantities can also be used to com-

pute model predictions as:

Ŷ = KĴ 26.26

= KAK	Y + �̂KAW XT

The m�tth entry in Ŷ then corresponds to the kT
mĵt term in

Eqn. 26.20. Other computational savings are as follows.
For Eqn. 26.20 we use the result:

kT
m�̂jt

km = 1
�̂m

M∑
m′=1

s2
m′m′u2

mm′

s2
m′m′ + �̂

26.27

where sij and uij are the i� jth entries in S and U respec-
tively. For Eqn. 26.19 we use the result:

Tr��̂jt
� =

M∑
i=1

1

s2
ii + �̂

+ G−M

�̂
26.28

To summarize, our source reconstruction model is fit-
ted to data by iteratively applying the update equa-
tions until the change in the negative free energy (see
Chapter 24), F , is less than some user-specified toler-
ance. This procedure is summarized in the pseudo-code
in Figure 26.6. This amounts to a process in which sen-
sor data are spatially deconvolved, time-series models
are fitted in source space, and then the precisions (accu-
racy) of the temporal and spatial models are estimated.
This process is then iterated and results in a spatio-
temporal deconvolution in which all aspects of the model
are optimized to maximize a lower bound on the model
evidence.

FIGURE 26.6 Pseudo-code for spatio-temporal deconvolution
of M/EEG. The parameters of the model � = �J�W�	���
� are
estimated by updating the approximate posteriors until the negative
free energy is maximized to within a certain tolerance (left panel).
At this point, because the log evidence L = log p�Y� is fixed, the
approximate posteriors will best approximate the true posteriors in
the sense of KL-divergence (right panel), as described in Chapter 24.
The equations for updating the approximate posteriors are given in
the theory section.

RESULTS

This section presents some preliminary qualitative
results. In what follows we refer to the spatio-temporal
approach as ‘VB-GLM’.

Comparison with LORETA

We generated data from our model as follows. First, we
created two regressors consisting of a 10 Hz and 20 Hz
sinewave with amplitudes of 10 and 8 respectively. These
formed the two columns of a design matrix shown in
Figure 26.7. We generated 600 ms of activity with a sam-
ple period of 5 ms, giving 120 time points.

FIGURE 26.7 Simulations that compare VB-GLM with
LORETA use the above design matrix, X. The columns in this matrix
comprise a 10 Hz and a 20 Hz sinewave.



Elsevier UK Chapter: Ch26-P372560 30-9-2006 5:23p.m. Page:332 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

332 26. SPATIO-TEMPORAL MODELS FOR EEG

FIGURE 26.8 Electrode positions for the 32-sensor BESA sys-
tem (left) and 128-sensor BioSemi system (right).

The sensor space was defined using M = 32 electrodes
from the brain electrical source activity (BESA) system
(Scherg and von Cramon, 1986) shown in Figure 26.8. We
used the three concentric sphere model to calculate the
electric lead field (Rush and Driscoll, 1969). The centre
and radius of the spheres were fitted to the scalp, skull
and cerebral tissue of a ‘typical’ brain from the Mon-
treal Neurological Institute (MNI) data base (Evans et al.,
1993). The source space consisted of a mesh of points
corresponding to the vertices of the triangles obtained
by tessellation of the cortical surface of the same brain.
A medium resolution spatial grid was used containing
G = 10 242 points.

We define the signal-to-noise ratio (SNR) as the ratio
of the signal standard deviation to noise standard devi-
ation and used sensor and source SNRs of 10 and 40
respectively. The spatial distributions of the two regres-
sion coefficients were identical, each of them consisting
of two Gaussian blobs with a maximum amplitude of 10,
and a full width at half maximum (FWHM) of 20 mm.

Plate 26 (see colour plate section) shows the true and
estimated sources at time point t = 20 ms. The LORETA
solution was found from an instantaneous reconstruc-
tion of the sensor data at that time point, using an
L2-norm and a spatial regularization parameter 
̂ (see
Eqn. 26.1) estimated using generalized cross-validation.
The VB-GLM solution was found by applying the VB
update equations described in the Theory section. As
expected, VB provides a better solution both in terms of
localization accuracy and scaling.

ERP simulation

We then used our generative model to simulate ERP-like
activity by using the regressors shown in Plate 27. The
first regressor mimics an early component and the second
a later component. These regressors were derived from
a neural-mass model describing activity in a distributed
network of cortical areas (David and Friston, 2003), which
lends these simulations a degree of biological plausibil-

ity. These neural-mass models are described at length in
Chapter 32.

We then specified two source activations with the same
amplitude and FWHM as in the previous example. The
source space, sensor space and forward model were also
identical to the previous example. Ten trials of sensor
data were then generated using the same SNR as in the
previous set of simulations. Signal epochs of 512 ms were
produced with a sampling period of 4 ms giving a total
of 5120 ms of EEG. The data were then averaged over
trials to calculate the sample ERP shown in Figure 26.9.

We then estimated the sources underlying the sam-
ple ERP with (i) a correctly specified model using the
same two regressors used for generating the data and
(ii) an over-specified model that also incorporated two
additional spurious regressors shown in Plate 28. The
design matrices for each of these models are shown in
Figure 26.10. In the over-specified model, regressors 2
and 3 are highly correlated (r = 0�86). This can be seen
most clearly in Figure 26.10.

FIGURE 26.9 A butterfly plot of simulated ERPs at 32 sensors.

FIGURE 26.10 Design matrices, X, used for localization of
biophysical components. Model 1 (left) contains the regressors used
to generate the data and Model 2 (right) contains two additional
spurious regressors. These regressors have been plotted as time-
series in Plates 27 and 28.
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The models were then fitted to the data using the
VB update rules. As shown in Plates 29 and 30, the
true effects (regression coefficients) are accurately recov-
ered even for the over-specified model. The spurious
regression coefficients are shrunk towards zero. This is a
consequence of the spatial prior and the iterative spatio-
temporal deconvolution. This also shows that source
reconstruction with temporal priors is robust to model
mis-specification.

We then performed a second simulation with the set of
regressors shown in Plate 28, and identical specifications
of source space, sensor space, forward model and SNR.
But in this example we generated data from the regres-
sion coefficients shown in Plate 31, regression coefficients
1 and 4 being set to zero. These data therefore comprise
three distributed sources: (i) a right-lateralized source
having time-series given by a scaled, noise-corrupted
regressor 2; (ii) a frontal source given by a scaled, noise-
corrupted regressor 3; and (iii) a left-lateralized source
comprising a noisy, scaled mixture of regressors 2 and 3.
These sources are therefore highly correlated.

The VB-GLM model, using a full design matrix com-
prising all four regressors, was then fitted to these
data. The estimated regression coefficients are shown in
Plate 32. Regressors 1 and 4 have been correctly estimated
to be close to zero, whereas regressors 2 and 3 bear a close

resemblance to the true values. This shows that VB-GLM,
in contrast to, for example beamforming approaches, is
capable of localizing temporally correlated sources.

Face ERPs

This section presents an analysis of a face processing
EEG data set from Henson et al. (2003). The experiment
involved presentation of images of faces and scrambled
faces, as described in Figure 26.11.

The EEG data were acquired on a 128-channel BioSemi
ActiveTwo system, sampled at 1024 Hz. The data were
referenced to the average of left and right earlobe elec-
trodes and epoched from −200 ms to +600 ms. These
epochs were then examined for artefacts, defined as time-
points that exceeded an absolute threshold of 120 micro-
volts. A total of 29 of the 172 trials were rejected. The
epochs were then averaged to produce condition specific
ERPs at each electrode.

The first clear difference between faces and scram-
bled faces is maximal around 160 ms, appearing as an
enhancement of a negative component (peak ‘N160’)
at occipito-temporal channels (e.g. channel ‘B8’), or
enhancement of a positive peak at Cz (e.g. channel ‘A1’).

Phase 1

500 ms

Time

O

O

+

+

High
Symmetry

Sb

Sa

Ub

Fa

Low
Symmetry

Low
Asymmetry

High
Asymmetry

600 ms

700 ms

2456 ms

FIGURE 26.11 Face paradigm. The experiment involved randomized presentation of images of 86 faces and 86 scrambled faces. Half
of the faces belong to famous people, half are novel, creating three conditions in total. In this chapter, we consider just two conditions: (i)
faces (famous or not); and (ii) scrambled faces. The scrambled faces were created by 2D Fourier transformation, random phase permutation,
inverse transformation and outline-masking. Thus faces and scrambled faces are closely matched for low-level visual properties such as spatial
frequency. The subject judged the left-right symmetry of each image around an imaginary vertical line through the centre of the image. Faces
were presented for 600 ms, every 3600 ms.
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These effects are shown as a differential topography in
Plate 33 and as time-series in Plate 34.

A temporal model was then fitted using wavelet
shrinkage (Donoho and Johnstone, 1994). Before applying
the model, the data were first downsampled and the 128
samples following stimulus onset were extracted. These
steps were taken as we used WaveLab1 to generate the
wavelet bases. This uses a pyramid algorithm to compute
coefficients, so requiring the number of samples to be a
power of two.

We then extracted the first eigenvector of the sensor
data using a singular value decomposition (SVD) and
fitted wavelet models to this time-series. A number of
wavelet bases were examined, two samples of which
are shown in Figure 26.4. These are the Daubechies-4
and Battle-Lemarie-3 wavelets. Plate 35 shows the corre-
sponding time-series estimates. These employed K = 28
and K = 23 basis functions respectively, as determined by
application of the wavelet shrinkage algorithm (Donoho
and Johnstone, 1994). We used the smaller Battle-Lemarie
basis set in the source reconstruction that follows.

ERPs for faces and scrambled faces were then con-
catenated to form a vector of 256 elements at each elec-
trode. The overall sensor matrix Y was then of dimension
256×128. The design matrix, of dimension 256×46, was
created by having identical block diagonal elements each
comprising the Battle-Lemarie basis. This is shown in
Figure 26.12. The source space was then defined using a
medium resolution cortical grid defined using the typical
MNI brain, as in the previous sections. Current source

FIGURE 26.12 Design matrix for source reconstruction of
ERPs from face data. Each block contains a 23-element Batte-Lemarie
basis set. The first components, forming diagonals in the picture, are
low frequency wavelets. The high frequency wavelets are concen-
trated around the N160, where the signal is changing most quickly.

1 WaveLab is available from http://www-stat.stanford.edu/wavelab.

orientations were assumed perpendicular to the cortical
surface. Constraining current sources based on a different
individual anatomy is clearly suboptimal, but neverthe-
less allows us to report some qualitative results.

We then applied the source reconstruction algorithm
and obtained a solution after 20 minutes of processing.
Plate 36 shows differences in the source estimates for
faces minus scrambled faces at time t = 160 ms. The
images show differences in absolute current at each
voxel. They have been thresholded at 50 per cent of
the maximum difference at this time point. The max-
imum difference is plotted in red and 50 per cent of
the maximum difference in blue. At this threshold four
main clusters of activation appear at (i) right fusiform,
(ii) right anterior temporal, (iii) frontal and (iv) superior
centroparietal.

These activations are consistent with previous fMRI
(Henson et al., 2003) and MEG analyses of faces minus
scrambled faces in that face processing is lateralized
to the right hemisphere and, in particular, to fusiform
cortex. Additionally, the activations in temporal and
frontal regions, although not significant in group ran-
dom effects analyses, are nonetheless compatible with
observed between-subject variability on this task.

DISCUSSION

This chapter has described a model-based spatio-
temporal deconvolution approach to source reconstruc-
tion. Sources are reconstructed by inverting a forward
model comprising a temporal process as well as a spatial
process. This approach relies on the fact that EEG and
MEG signals are extended in time as well as in space.

It rests on the notion that MEG and EEG reflect the
neuronal activity of a spatially distributed dynamical sys-
tem. Depending on the nature of the experimental task,
this activity can be highly localized or highly distributed
and the dynamics can be more, or less, complex. At one
extreme, listening, for example to simple auditory stim-
uli produces brain activations that are highly localized
in time and space. This activity is well described by a
single dipole located in brainstem and reflecting a sin-
gle burst of neuronal activity at, for example t = 20 ms
post-stimulus. More complicated tasks, such as odd-
ball paradigms, elicit spatially distributed responses and
more complicated dynamics that can appear in the ERP
as damped sinusoidal responses. In this chapter, we have
taken the view that, by explictly modelling these dynam-
ics, one can obtain better source reconstructions.

This view is not unique within the source reconstruc-
tion community. Indeed, there have been a number of
approaches that also make use of temporal priors. Baillet
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and Garnero (1997), in addition to considering edge-
preserving spatial priors, have proposed temporal priors
that penalize quadratic differences between neighbour-
ing time points. Schmidt et al. (2000) have extended their
dipole-like modelling approach using a temporal cor-
relation prior which encourages activity at neighbour-
ing latencies to be correlated. Galka et al. (2004) have
proposed a spatio-temporal Kalman filtering approach
which is implemented using linear autoregressive mod-
els with neighbourhood relations. This work has been
extended by Yamashita et al. (2004), who have developed
a ‘Dynamic LORETA’ algorithm in which the Kalman
filtering step is approximated using a recursive penal-
ized least squares solution. The algorithm is, however,
computationally costly, taking several hours to estimate
sources in even low-resolution source spaces.

Compared to these approaches, our algorithm perhaps
embodies stronger dynamic constraints. But the compu-
tational simplicity of fitting GLMs, allied to the efficiency
of variational inference, results in a relatively fast algo-
rithm. Also, the GLM can accommodate damped sinu-
soidal and wavelet approaches that are ideal for mod-
elling transient and non-stationary responses.

The dynamic constraints implicit in our model help
to regularize the solution. Indeed, with M sensors,
G sources, T time points and K temporal regressors used
to model an ERP, if K < MT/G, the inverse problem is
no longer underdetermined. In practice, however, spatial
regularization will still be required to improve estimation
accuracy.

This chapter has described a spatio-temporal source
reconstruction method embodying well known phe-
nomenological descriptions of ERPs. A similar method
has recently been proposed in Friston et al. (2006) (see
also Chapter 30), but the approaches are different in a
number of respects. First, in Friston et al. (2006) scalp data
Y are (effectively) projected onto a temporal basis set
X and source reconstructions are made in this reduced
space. This results in a computationally efficient proce-
dure based on restricted maximum likelihood (ReML),
but one in which the fit of the temporal model is not
taken into account. This will result in inferences about W
and J which are overconfident. If one is simply interested
in population inferences based on summary statistics (i.e.
Ŵ ) from a group of subjects, then this does not matter. If,
however, one wishes to make within-subject inferences
then the procedure described in this chapter is the pre-
ferred approach. Secondly, in Friston et al. (2006), the
model has been augmented to account for trial-specific
responses. This treats each trial as a ‘random effect’ and
provides a method for making inferences about induced
responses. The algorithm described in this chapter, how-
ever, is restricted to treating trials as fixed effects. This
mirrors standard first-level analyses of fMRI in which

multiple trials are treated by forming concatenated data
and design matrices.

A further exciting recent development in source recon-
struction is the application of dynamic causal models
(DCMs) to M/EEG. DCMs can also be viewed as pro-
viding spatio-temporal reconstructions, but ones where
the temporal priors are imposed by biologically informed
neural-mass models. This offers the possibility of mak-
ing inferences about task-specific changes in the synaptic
efficacy of long range connections in cortical hierar-
chies, directly from imaging data. These developments
are described in Chapter 43.
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Forward models for fMRI
K. Friston and D. Glaser

INTRODUCTION

Part 6 is concerned with biophysical models of neu-
ronal responses and the inversion of these models to
make inferences about their parameters. In relation to
the previous chapters, there is a greater focus on how
signals observed with neuroimaging are generated and
the underlying physical and physiological mechanisms.
In this chapter, we look at haemodynamics. In the next
chapter, we turn to electrical and magnetic sources that
generate electroencephalography (EEG) and magnetoen-
cephalography (MEG) signals. These chapters start with
conventional electromagnetic forward models. In the
subsequent chapters, we consider physiology in more
depth, through mean-field models of neuronal popula-
tions or ensembles and how these provide a motivation
for neural-mass models of event-related potentials. In the
final chapters, we consider some general issues encoun-
tered during model inversion and selection.

There is a growing appreciation of the importance of
non-linearities in evoked responses in functional mag-
netic resonance imaging (fMRI), particularly with the
advent of event-related fMRI. These non-linearities are
commonly expressed as interactions among stimuli that
can lead to the suppression and increased latency of
responses to stimuli that are incurred by a preceding
stimulus. We presented previously a model-free char-
acterization of these effects using generic techniques
from non-linear system identification, namely a Volterra
series formulation. At the same time, Buxton et al. (1998)
described a plausible and compelling dynamical model
of haemodynamic signal transduction in fMRI. Subse-
quent work by Mandeville et al. (1999) provided impor-
tant theoretical and empirical constraints on the form of
the dynamic relationship between blood flow and vol-
ume that underpins the evolution of the fMRI signal.
In this chapter, we combine these system identification
and model-based approaches and ask whether the Bal-

loon model is sufficient to account for the non-linear
behaviours observed in real time-series. We conclude that
it can and, furthermore, the model parameters that ensue
are biologically plausible. This conclusion is based on the
observation that the Balloon model can produce Volterra
kernels that emulate empirical kernels.

To enable this evaluation we have had to embed the
Balloon model in a haemodynamic input-state-output
model that included the dynamics of perfusion changes
that are contingent on underlying synaptic activation.
This chapter presents the haemodynamic model, its asso-
ciated Volterra kernels and addresses the model’s valid-
ity in relation to empirical characterizations of evoked
responses in fMRI and other neurophysiological con-
straints.

Background

This chapter is about modelling the relationship between
neural activity and the BOLD (blood oxygenation-level-
dependent) fMRI signal. The link between blood supply
and brain activity has been established for over a hun-
dred years. In their seminal paper, Roy and Sherring-
ton (1890) concluded that functional activity increased
blood flow and inferred that there was a coupling that
increased blood flow in response to increased metabolic
demand. Interestingly, their observation of the conse-
quences of metabolic demand came before the demon-
stration of the increase in demand itself. It was more
than seventy years later that the regional measurement
of metabolic changes was convincingly achieved using
autoradiographic techniques. These used a substitute for
glucose, called deoxyglucose (2DG) radioactively labelled
with C14. 2DG enters the cells by the same route as glu-
cose but is not metabolized and thus accumulates inside
the cells at a rate that depends on their metabolic activity.
By examining the density of labelled 2DG in brain slices,
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Sokoloff and colleagues (Kennedy et al., 1976) obtained
functional maps of the activity during the period in which
2DG was injected. This activity period was generally
around 45 minutes, which limited the time-resolution of
the technique. In addition, only one measurement per
subject could be made since the technique involved the
sacrifice of the animal (further developments allowed the
injection of two tracers, but this was still very restrictive).
However, the spatial resolution could be microscopic,
since the label is contained in the cells themselves, rather
than being limited to the blood vessels surrounding
them. Through modelling of the enzyme kinetics for the
uptake of 2DG and practical experiments, the relation-
ships between neural function and glucose metabolism
have been established and underpin the development of
‘metabolic encephalography’.

Positron emission tomography (PET) measures an
intermediate stage in the chain linking neural activity,
via metabolism, to the BOLD signal. By using a tracer
such as O15-labelled water, one can measure changes in
regional cerebral blood flow (rCBF), which accompany
changes in neural activity. This was originally thought of
as an autoradiographic technique, but has many advan-
tages over 2DG and is clearly much less invasive, mak-
ing it suitable for human studies. Also, substantially
shorter times are required for measurements, typically
well below a minute. As suggested above, the elucida-
tion of the mechanisms underlying the coupling of neural
activity and blood flow lags behind its exploitation. There
are several candidate signals, including rapidly diffusible
second messengers such as nitric oxide. This remains an
active area of research irrespective of its consequences
for models of functional brain imaging.

Below, we follow Miller et al. (2000), among others, and
assume that blood flow and neural activity are related
linearly over normal ranges. However, there are ongoing
arguments about the nature of the linkage between neu-
ral activity, the rate of metabolism of oxygen and cerebral
blood flow. Some PET studies have suggested that, while
an increase in neural activity produces a proportion-
ate increase in glucose metabolism and cerebral blood
flow, oxygen consumption does not increase proportion-
ately (Fox and Raichle, 1986). This decoupling between
blood flow and oxidative metabolism is known as the
‘anaerobic brain’ hypothesis by analogy with muscle
physiology. Arguing against this position, other groups
have adopted an even more radical interpretation. They
suggest that immediately following neural stimulation
there is a transient decoupling between neural activity
and blood flow (Vanzetta and Grinvald, 1999). By this
argument, there is an immediate increase in oxidative
metabolism which produces a transient localized increase
in deoxyhaemoglobin. Only later do the mechanisms reg-
ulating blood flow kick in, causing the observed increase

in rCBF and hence blood volume. Evidence for this posi-
tion comes from optical imaging studies and depends on
modelling the absorption and light-scattering properties
of cortical tissue and the relevant chromophores, prin-
cipally (de)oxyhaemoglobin. Other groups have ques-
tioned these aspects of the work, and the issue remains
controversial (Lindauer et al., 2001). One possible conse-
quence of this position is that better spatial resolution
would be obtained by focusing on the early phase of the
haemodynamic response.

As this chapter will demonstrate, the situation is even
more complicated with regard to fMRI using a BOLD
contrast. As its name suggests, the technique uses the
amount of oxygen in the blood as a marker for neural
activity, exploiting the fact that deoxyhaemoglobin is less
diamagnetic than oxyhaemoglobin. Blood oxygenation
level refers to the proportion of oxygenated blood, but the
signal depends on the total amount of deoxyhaemoglobin
and so the total volume of blood is also a factor. Another
factor is the change in the amount of oxygen leaving the
blood to enter the tissue and meet changes in metabolic
demand. Since the blood which flows into the capil-
lary bed is fully oxygenated, changes in blood flow also
change the blood oxygenation level. Finally, the elasticity
of the veins and venules means that an increase in blood
flow causes an increase in blood volume. All these factors
are modelled and discussed in this chapter. Of course,
even more factors can be considered; for example, May-
hew and colleagues (Zheng et al., 2002) have extended
the treatment described here to include (among others)
the dynamics of oxygen buffering in the tissue.

Notwithstanding these complications, it is a standard
assumption that ‘the fMRI signal is approximately pro-
portional to a measure of local neural activity’ (reviewed
in Heeger and Ress, 2002), and this linear model is still
used in many studies, particularly where inter-stimulus
intervals are more than a second or two. Empirical evi-
dence against this hypothesis is outlined below, but note
that there are now theoretical objections too. In particu-
lar, the models which have been developed to account
for observed non-linearities point to quite specific ranges
in simulation parameters outside which the linearity
assumption fails.

The last link in the chain concerns the relation between
a complete description of the relevant aspects of blood
supply and the physics underlying the BOLD signal.
While this is not the principal focus of this chapter, a
couple of points are worth emphasizing. First, different
sized blood vessels will give different changes in BOLD
signal for the same changes in blood flow, volume and
oxygenation. This is because of differences in the inho-
mogeneity of the magnetic fields in their vicinity. Second,
and for related reasons, heuristic equations, as employed
in this and other models, depend on the strength of the
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magnet. In particular, the equations used here may be
relevant only for 1.5 T scanners, although other versions
for different field strength have been developed.

Finally, a word about ‘neural activity’. So far, we have
deliberately not specified what type of neural activity we
are considering. First, it is worth remembering that dif-
ferent electrophysiological measures can emphasize dif-
ferent aspects of neural activity. In particular, recording
of multiple single units, with an intracortical microelec-
trode, can tend to sample action potentials from large
pyramidal output neurons. Such studies are frequently
referred to when characterizing the response proper-
ties of a primate cortical area. However, the metabolic
demands of various cellular processes suggest that spik-
ing is not the major drain on the resources of a cell but
rather synaptic transmission, restoration of postsynaptic
potentials and cytoskeletal turnover dominate (Attwell
and Laughlin, 2001). The processes are just as important
as spiking, whether in interneurons and whether excita-
tory or inhibitory. An example that shows the importance
of this distinction is feed-forward (spike-dependent) ver-
sus feed-back (modulatory) activity in low-level visual
cortex. BOLD fMRI experiments in humans have shown a
good agreement with studies of spiking in V1 in response
to modulating the contrast of a visual stimulus, however,
attentional (top-down) modulation effects in V1 have
proved elusive in monkey electrophysiology but robust
with BOLD studies in humans. Aside from their neuro-
biological significance, these issues should be borne in
mind when considering the neural activity disclosed by
BOLD.

A further subtlety relates to the modelled time course
of neural activity; a typical set of spike- or block-functions
used to model neural activity will fail to capture adapta-
tion and response transients which are well known from
the neurophysiological literature. Note that the adapta-
tion paradigm deliberately exploits these effects (Grill-
Spector and Malach, 2001). Studies using simultaneous
fMRI and intracortical electrical recording in monkeys
have empirically validated many of the theoretical points
considered above (Logothetis et al., 2001). In particular,
the closeness of the BOLD signal to local field potentials
(LFP) and multiunit activity (MUA) rather than spik-
ing activity was emphasized. These studies also demon-
strated that the linear assumption can predict up to 90 per
cent of the variance in BOLD responses in some cortical
regions. However, there was considerable variability in
the accuracy of prediction. In Chapter 32, we will revisit
some of these themes in a more abstract way using a
simple dimensional analysis of the energetics entailed by
neuronal dynamics and the implications for electrical and
haemodynamic responses.

Having surveyed the general issues surrounding the
coupling of neural activity and the BOLD signal, we will

now consider a specific and detailed model. This could
be considered as an instantiation of current knowledge
and further extensions of this model have already been
proposed, which incorporate new data. What follows is
largely a reprise of Friston et al. (2000), and contains some
mathematical material.

NON-LINEAR EVOKED RESPONSES

In this section, we focus on the non-linear aspects
of evoked responses in functional neuroimaging and
present a dynamical approach to modelling and charac-
terizing event-related signals in fMRI. We will show that
the Balloon-Windkessel model (Buxton and Frank, 1997;
Buxton et al., 1998; Mandeville et al., 1999) can account for
non-linearities in event-related responses that are seen
empirically and describe a non-linear dynamical model
that couples changes in synaptic activity to fMRI signals.
This haemodynamic model obtains by combining the
Balloon-Windkessel model (henceforth Balloon model)
with a model of how synaptic activity causes changes in
regional flow.

In Friston et al. (1994), we presented a linear model of
haemodynamic responses in fMRI time-series, wherein
underlying neuronal activity (inferred on the basis of
changing stimulus or task conditions) is convolved, or
smoothed with a haemodynamic response function. In
Friston et al. (1998) we extended this model to cover
non-linear responses using a Volterra series expansion.
At the same time, Buxton and colleagues developed a
mechanistic model of how evoked changes in blood flow
were transformed into a BOLD signal (Buxton et al.,
1998). A component of the Balloon model, namely the
relationship between blood flow and volume, was then
elaborated in the context of standard Windkessel theory
by Mandeville et al. (1999). The Volterra approach, in
contradistinction to other non-linear characterization of
haemodynamic responses (cf. Vazquez and Noll, 1996),
is model-independent, in the sense that Volterra series
can model the behaviour of any non-linear time-invariant
dynamical system.1 The principal aim of the work pre-
sented below was to see if the Balloon model would be

1 In principle Volterra series can represent any dynamical input-
state-output system and in this sense a characterization in terms
of Volterra kernels is model-independent. However, by using
basis functions to constrain the solution space, constraints are
imposed on the form of the kernels and, implicitly, the under-
lying dynamical system (i.e. state-space representation). The
characterization is therefore only assumption free to the extent
the basis set is sufficiently comprehensive.
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sufficient to explain the non-linearities embodied in a
purely empirical Volterra characterization.

Volterra series

Volterra series express the output of a system, in this
case the BOLD signal from a particular voxel, as a func-
tion of some input, here the assumed synaptic activity
that is changed experimentally. This series is a func-
tion of the input over its recent history and is expressed
in terms of generalized convolution kernels. Volterra
series are often referred to as non-linear convolutions or
polynomial expansions with memory. They are simply
Taylor expansions extended to cover dynamical input-
state-output systems by considering the effect of the
input now and in the recent past. The zeroth order kernel
is simply a constant about which the response varies. The
first-order kernel represents the weighting applied to a
sum of inputs over the recent past (cf. the haemodynamic
response function) and can be thought of as the change
in output for a change in the input at each time point.
Similarly, the second-order coefficients represent interac-
tions that are simply the effect of the input at one point
in time on its contribution at another. The second-order
kernel comprises coefficients that are applied to interac-
tions among (i.e. products of) inputs, at different times
in the past, to predict the response. (See Appendix 2 for
more mathematical details.)

In short, the output can be considered a non-linear con-
volution of the input where non-linear behaviours are
captured by high-order kernels. For example, the pres-
ence of a stimulus can be shown to attenuate the magni-
tude of, and induce a longer latency in, the response to
a second stimulus that occurs within a second or so. The
example shown in Figure 27.1 comes from our previous
analysis (Friston et al., 1998) and shows how a preced-
ing stimulus can modify the response to a subsequent
stimulus. This sort of effect led to the notion of haemo-
dynamic refractoriness and is an important example of
non-linearity in fMRI time-series.

The important thing about Volterra series is that they
do not refer to hidden state variables that mediate
between the input and output (e.g. blood flow, venous
volume, oxygenation, the dynamics of endothelium
derived relaxing factor, kinetics of cerebral metabolism
etc.). This renders them powerful because they provide
for a complete specification of the dynamical behaviour
of a system without ever having to measure the state vari-
ables or make any assumptions about how these variables
interact to produce a response. On the other hand, the
Volterra formulation is impoverished because it yields
no mechanistic insight into how the response is medi-
ated. The alternative is to posit some model of interacting
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FIGURE 27.1 Top panel: simulated responses to a pair of
words (bars) one second apart, presented together (solid line) and
separately (broken lines) based on the kernels shown in Figure 27.5.
Lower panel: the response to the second word when presented alone
(broken line as above) and when preceded by the first (solid line).
The latter obtains by subtracting the response to the first word from
the response to both. The difference reflects the effect of the first
word on the response to the second.

state variables and establish the validity of that model
in relation to observed input-output behaviours and the
dynamics of the states themselves. This involves speci-
fying a series of differential equations that express the
change in one state variable as a function of the others
and the input. Once these equations are specified, the
equivalent Volterra representation can be derived ana-
lytically (see Appendix 2 for details). The Balloon model
is an example of such a model.

The Balloon model

The Balloon model (Buxton and Frank, 1997; Buxton et al.,
1998) is an input-state-output model with two state vari-
ables: volume, v and deoxyhaemoglobin content, q. The
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input to the system is blood flow, fand the output is the
BOLD signal, y. The BOLD signal is partitioned into an
extra- and intravascular component, weighted by their
respective volumes. These signal components depend on
the deoxyhaemoglobin content and render the signal a
non-linear function of v and q. The effect of flow on
v and q (see below) determines the output and it is
these effects that are the essence of the Balloon model:
increases in flow effectively inflate a venous ‘balloon’
such that deoxygenated blood is diluted and expelled
at a greater rate. The clearance of deoxyhaemoglobin
reduces intra-voxel dephasing and engenders an increase
in signal. Before the balloon has inflated sufficiently the
expulsion and dilution may be insufficient to counter-
act the increased delivery of deoxygenated blood to the
venous compartment and an ‘early dip’ in signal may be
expressed. After the flow has peaked, and the balloon has
relaxed again, reduced clearance and dilution contribute
to the post-stimulus undershoot commonly observed.
This is a simple and plausible model that is predicated
on a minimal set of assumptions and relates closely to
the Windkessel formulation of Mandeville et al. (1999).
Furthermore, the predictions of the Balloon model concur
with the steady-state models of Hoge and colleagues, and
their elegant studies of the relationship between blood
flow and oxygen consumption in human visual cortex
(e.g. Hoge et al., 1999).

The Balloon model is inherently non-linear and may
account for the sorts of non-linear interactions revealed
by the Volterra formulation. One simple test of this
hypothesis is to see if the Volterra kernels associated with
the Balloon model compare with those derived empir-
ically. The Volterra kernels estimated in Friston et al.
(1998) clearly did not use flow as input because flow
is not measurable with BOLD fMRI. The input com-
prised a stimulus function as an index of synaptic activ-
ity. In order to evaluate the Balloon model in terms of
Volterra kernels, it has to be extended to accommodate
the dynamics of how flow is coupled to synaptic activity
encoded in the stimulus function. This chapter presents
one such extension.

In summary, the Balloon model deals with the link
between flow and BOLD signal. By extending the model
to cover the coupling of synaptic activity and flow, a com-
plete model, relating experimentally induced changes in
neuronal activity to BOLD signal, obtains. The input-
output behaviour of this model can be compared to the
real brain in terms of their respective Volterra kernels.

The remainder of this chapter is divided into three
sections. In the next section, we present a haemody-
namic model of the coupling between synaptic activity
and BOLD response that builds upon the Balloon model.
The second section presents an empirical evaluation of
this model by comparing its Volterra kernels with those

obtained using real fMRI data. This is not a trivial exer-
cise because there is no guarantee that the Balloon model
could produce the complicated forms of the kernels seen
empirically and, even if it could, the parameters needed
to do so may be biologically implausible. This section pro-
vides estimates of these parameters, which allow some
comment on the face validity of the model, in relation to
known physiology. The final section presents a discus-
sion of the results in relation to known biophysics and
neurophysiology. This chapter is concerned with the val-
idation and evaluation of the Balloon model in relation
to the Volterra characterizations, and the haemodynamic
model presented below in relation to real haemodynam-
ics. In Chapter 34, we will use the haemodynamic model
to illustrate Bayesian inversion of dynamic models and
subsequent chapters will use the model as part of larger
dynamic causal models for fMRI (see Chapter 41).

THE HAEMODYNAMIC MODEL

In this section, we describe a haemodynamic model that
mediates between synaptic activity and measured BOLD
responses. This model essentially combines the Balloon
model and a simple linear dynamical model of changes
in regional cerebral blood flow (rCBF) caused by neu-
ronal activity. The model architecture is summarized in
Figure 27.2. To motivate the model components more
clearly we will start at the output and work towards the
input.

The Balloon component

This component links rCBF and the BOLD signal as
described in Buxton et al. (1998). All variables are
expressed in normalized form, relative to resting values.
The BOLD signal is taken to be a static non-linear func-
tion of normalized venous volume v, normalized total
deoxyhaemoglobin voxel content q and resting net oxy-
gen extraction fraction by the capillary bed E0:

y = g�v� q� = V0�k1�1− q�+k2�1− q/v�+k3�1−v��

k1 = 7E0

k1 = 2

k1 = 2E0 −0�2

27.1

where V0 is resting blood volume fraction. This signal
comprises a volume-weighted sum of extra- and intravas-
cular signals that are functions of volume and deoxy-
haemoglobin content. The latter are the state variables
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FIGURE 27.2 Schematic illustrating the organization of the haemodynamic model. This is a fully non-linear single-input-single-output
state model with four state variables. The form and motivation for the changes in each state variable, as functions of the others, are described
in the main text.

whose dynamics need specifying. The rate of change of
volume is simply:

�0v̇ = f −fout�v� 27.2

(See Mandeville et al. (1999) for an excellent discus-
sion of this equation in relation to Windkessel theory.)
Eqn. 27.2 says that volume changes reflect the difference
between inflow and outflow from the venous compart-
ment with a time constant �0. This constant represents
the mean transit time (i.e. the average time it takes to
traverse the venous compartment or for that compart-
ment to be replenished) and is V0

/
f0 where f0 is resting

flow. The physiology of the relationship between flow
and volume is determined by the evolution of the tran-
sit time. Mandeville et al. (1999) reformulated the tem-
poral evolution of transit time into a description of the
dynamics of resistance and capacitance of the balloon
using Windkessel theory; ‘Windkessel’ means leather
bag. This enabled them to posit a form for the temporal
evolution of a downstream elastic response to arterio-
lar vasomotor changes and estimate mean transit times
using measurements of volume and flow in rats, using
fMRI and laser-Doppler flowmetry. We will compare
these estimates to our empirical estimates in the next
section.

Note that outflow is a function of volume. This function
models the balloon-like capacity of the venous compart-
ment to expel blood at a greater rate when distended.
We model it with a single parameter � based on the
Windkessel model:

fout�v� = v
1
� 27.3

where 1
/

� = �+	 (cf. Eqn. 27.6 in Mandeville et al., 1999).
� = 2 represents laminar flow. 	 > 1 models diminished
volume reserve at high pressures and can be thought of as
the ratio of the balloon’s capacitance to its compliance. At
steady state, empirical results from PET suggest � ≈ 0�38
(Grubb et al., 1974). However, when flow and volume are

changing dynamically, this value is smaller. Mandeville
et al. (1999) were the first to measure the dynamic flow-
volume relationship and estimated � ≈ 0�18, after 6 s of
stimulation, with a projected asymptotic [steady-state]
value of 0.36.

The change in deoxyhaemoglobin reflects the deliv-
ery of deoxyhaemoglobin into the venous compartment
minus that expelled (outflow times concentration):

�0q̇ = f
E�f�

E0
− fout�v�q

v
27.4

where E�f� is the fraction of oxygen extracted from the
inflowing blood. This is assumed to depend on oxygen
delivery and is consequently flow-dependent. A reason-
able approximation for a wide range of transport condi-
tions is (Buxton et al., 1998):

E�f� = 1− �1−E0�
1/f 27.5

The second term in Eqn. 27.4 represents an important non-
linearity: the effect of flow on signal is largely determined
by the inflation of the balloon, resulting in an increase of
outflow and clearance of deoxyhaemoglobin. This effect
depends upon the concentration of deoxyhaemoglobin
such that the clearance attained by the outflow will be
severely attenuated when the concentration is low (e.g.
during the peak response to a prior stimulus). The impli-
cations of this will be illustrated in the next section.

This concludes the Balloon model component, where
there are only three unknown parameters that determine
the dynamics, namely resting oxygen extraction frac-
tion, mean transit time and Grubb’s exponent E0� �0��.
The only thing required, to specify the BOLD response,
is flow.

rCBF component

It is generally accepted that, over normal ranges, blood
flow and synaptic activity are linearly related. A recent
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empirical verification of this assumption can be found
in Miller et al. (2000), who used MRI perfusion imaging
to address this issue in visual and motor cortices. After
modelling neuronal adaptation they were able to con-
clude: ‘Both rCBF responses are consistent with a linear
transformation of a simple non-linear neural response
model’. Furthermore, our own work using PET and fMRI
replications of the same experiments suggested that the
observed non-linearities enter into the translation of rCBF
into a BOLD response (as opposed to a non-linear rela-
tionship between synaptic activity and rCBF) in the audi-
tory cortices (see Friston et al., 1998). Under the constraint
that the dynamical system linking synaptic activity and
rCBF is linear we will use the most parsimonious model:

ḟ = s 27.6

where s is some flow inducing signal. Although it may
seem more natural to express the effect of this signal
directly on vascular resistance (r), e.g. ṙ = −s, Eqn. 27.6
has the more plausible form. This is because the effect
of signal is much smaller when r is small (when the
arterioles are fully dilated, signals such as endothelium-
derived relaxing factor or nitric oxide will cause relatively
small decrements in resistance). This can be seen by not-
ing Eqn. 27.6 is equivalent to ṙ = −r2s, where f = 1/r .

The signal is assumed to subsume many neurogenic
and diffusive signal sub-components and is generated by
neuronal activity u(t):

ṡ = 
u− s
/

�s − �f −1�
/

�f 27.7

The unknown parameters here represent the efficacy with
which neuronal activity causes an increase in signal 
,
the time-constant for signal decay or elimination �s and
the time-constant for autoregulatory feedback �f from
blood flow. The existence of this feedback term can be
inferred from post-stimulus undershoots in rCBF (e.g.
Irikura et al., 1994) and the well-characterized vasomo-
tor signal in optical imaging (Mayhew et al., 1998). The
critical aspect of the latter oscillatory �∼ 0�1 Hz� compo-
nent of intrinsic signals is that it shows variable phase
relationships from region to region, supporting strongly
the notion of local closed-loop feedback mechanisms as
modelled in Eqn. 27.6 and Eqn. 27.7.

There are three unknown parameters for each of the
two components of the haemodynamic model above (see
also Figure 27.2 for a schematic summary). Figure 27.3
illustrates the behaviour of the haemodynamic model
for typical values of the six parameters; 
 = 0�5� �s = 0�8�
�f = 0�4� �0 = 1�� = 0�2�E0 = 0�8 and assuming V0 = 0�02
here and throughout. We have used a very high value
for oxygen extraction to accentuate the early dip (see
discussion).

FIGURE 27.3 Dynamics of the haemodynamic model. Upper
left panel: the time-dependent changes in the neuronally induced
perfusion signal that causes an increase in blood flow. Lower left
panel: the resulting changes in normalized blood flow f . Upper
right panel: the concomitant changes in normalized venous volume
v (solid line) and normalized deoxyhaemoglobin content q (broken
line). Lower right panel: the per cent change in BOLD signal that is
contingent on v and q. The broken line is inflow normalized to the
same maximum as the BOLD signal. This highlights the fact that
BOLD signal lags the rCBF signal by about a second.

Following a short-lived neuronal transient, signal
is generated and starts to decay immediately. This
signal induces an increase in flow that itself aug-
ments signal decay, to the extent the signal is sup-
pressed below resting levels (see the upper left panel
in Figure 27.3). This behaviour corresponds to a damp-
ened oscillator. Increases in flow (lower-left panel) dilate
the venous balloon, which responds by ejecting deoxy-
haemoglobin. In the first few hundred milliseconds the
net deoxyhaemoglobin q increases with an accelerating
flow-dependent delivery. It is then cleared by volume-
dependent outflow expressing a negative peak a second
or so after the positive volume v peak (the broken and
solid lines in the upper right panel correspond to q and
v respectively). This results in an early dip in the BOLD
signal followed by a pronounced positive peak at about
4 s (lower right panel) that reflects the combined effects
of reduced net deoxyhaemoglobin, increased venous vol-
ume and consequent dilution of deoxyhaemoglobin. Note
that the rise and peak in volume (solid line in the upper
right panel) lags flow by about a second. This is very
similar to the predictions of the Windkessel formulation
and the empirical results presented in Mandeville et al.
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(1999) (see their Figure 2). After about 8 s, flow experi-
ences a rebound due to its suppression of the perfusion
signal. The reduced venous volume and ensuing outflow
permit a re-accumulation of deoxyhaemoglobin and a
consequent undershoot in the BOLD signal.

The rCBF component of the haemodynamic model
is a linear dynamical system and, as such, has only
zeroth and first-order kernels. This means it cannot
account for the haemodynamic refractoriness and non-
linearities observed in BOLD responses. Although the
rCBF component may facilitate the Balloon component’s
capacity to model non-linearities (by providing appro-
priate input), the rCBF component alone cannot gener-
ate second-order kernels. The question addressed in this
chapter is whether the Balloon component can produce
second-order kernels that are realistic and do so with
physiologically plausible parameters.

KERNEL ESTIMATION

In what follows, we describe the data used to estimate
Volterra kernels. The six free parameters of the haemody-
namic model that best reproduce these empirical kernels
are then identified by minimizing the difference between
the model kernels and the empirical kernels. The critical
questions this section addresses are: ‘can the haemody-
namic model account for the form of empirical kernels
up to second-order?’; and ‘are the model parameters
required to do this physiologically plausible?’

Empirical analyses

The data and Volterra kernel estimation are described
in detail in Friston et al. (1998). In brief, we obtained
fMRI time-series from a single subject at 2-tesla using
a Magnetom VISION (Siemens, Erlangen) whole body
MRI system, equipped with a head volume coil. Contigu-
ous multislice T2∗-weighted fMRI images were obtained
with a gradient echo-planar sequence using an axial slice
orientation �TE = 40 ms� TR = 1�7 s� 64 × 64 × 16 voxels).
After discarding initial scans (to allow for magnetic sat-
uration effects) each time-series comprised 1200 volume
images with 3 mm isotropic voxels. The subject listened
to monosyllabic or bi-syllabic concrete nouns (i.e. ‘dog’,
‘radio’, ‘mountain’, ‘gate’) presented at five different rates
(10, 15, 30, 60 and 90 words per minute) for epochs of 34 s,
intercalated with periods of rest. The presentation rates
were successively repeated according to a Latin Square
design.

Volterra kernels were estimated by expanding the ker-
nels in terms of temporal basis functions and estimating

the kernel coefficients up to second-order using maxi-
mum likelihood estimates with a general linear model
(Worsley and Friston, 1995). The basis set comprised
three gamma varieties of increasing dispersion and their
temporal derivatives (as described in Friston et al. 1998).
The stimulus function u�t�, the supposed neuronal activ-
ity, was simply the word presentation rate at which the
scan was acquired. We selected voxels that showed a
robust response to stimulation from two superior tempo-
ral regions in both hemispheres (Figure 27.4). These were
the 128 voxels showing the most significant response
when testing for the null hypothesis that the first- and
second-order kernels were zero. Selecting these voxels
ensured that the kernel estimates had minimal variance.

The haemodynamic parameters

For each voxel we identified the six parameters of the
haemodynamic model of the previous section whose ker-
nels corresponded, in a least squares sense, to the empir-
ical kernels for that voxel. The model’s kernels were
computed, for a given parameter vector, as described
in Appendix 2 and entered, with the corresponding

FIGURE 27.4 Voxels used to estimate the parameters of the
haemodynamic model shown in Figure 27.2. This is an SPM�F�
testing for the significance of the first- and second-order kernel
coefficients in the empirical analysis and represents a maximum
intensity projection of a statistical process of the F -ratio, following a
multiple regression analysis at each voxel. This regression analysis
estimated the kernel coefficients after expanding them in terms of
a small number of temporal basis functions (see Friston et al., 1998
for details). The format is standard and provides three orthogonal
projections in the standard space conforming to that described in
Talairach and Tournoux (1988). The grey scale is arbitrary and the
SPM has been thresholded to show the 128 most significant voxels.
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empirical estimates, into the objective function that
was minimized.

RESULTS AND DISCUSSION

The model-based and empirical kernels for the first voxel
are shown in Figure 27.5. It can be seen that there is a
remarkable agreement in terms of the first- and second-
order kernels. This is important because it suggests that
the non-linearities inherent in the Balloon component
of the haemodynamic model are sufficient to account
for the non-linear responses observed in real time-series.
The first-order kernel corresponds to the conventional
haemodynamic response function and shows the char-
acteristic peak at about 4 s and the post-stimulus under-
shoot. The empirical undershoot appears more protracted
than the model’s prediction, suggesting that the model

FIGURE 27.5 The first- and second-order Volterra kernels
based on parameter estimates from a voxel in the left superior tem-
poral gyrus at −56, −28, 12 mm. These kernels can be thought of
as a second-order haemodynamic response function. The first-order
kernels (upper panels) represent the (first-order) component usu-
ally presented in linear analyses. The second-order kernels (lower
panels) are presented in image format. The colour scale is arbitrary;
white is positive and black is negative. The left-hand panels are
kernels based on parameter estimates from the analysis described
in Figure 27.4. The right-hand panels are the kernels associated
with the haemodynamic model using parameter estimates that best
match the empirical kernels.

is not perfect in every respect. The second-order kernel
has a pronounced negativity on the upper left, flanked
by two smaller positivities. This negativity accounts for
the refractoriness seen when two stimuli are temporally
proximate; from the perspective of the Balloon model, the
second stimulus is compromised in terms of elaborating
a BOLD signal, because of the venous pooling, and conse-
quent dilution of deoxyhaemoglobin incurred by the first
stimulus. This means that less deoxyhaemoglobin can be
cleared for a given increase in flow. More interesting are
the positive regions, which suggest stimuli separated by
about 8 s should show super-additive effects. This can be
attributed to the fact that, during the flow undershoot
following the first stimulus, deoxyhaemoglobin concen-
tration is greater than normal (see the upper right panel
in Figure 27.3), thereby facilitating clearance of deoxy-
haemoglobin following the second stimulus.

Figure 27.6 shows the various functions implied by
the haemodynamic model parameters averaged over all

FIGURE 27.6 Functions implied by the (mean) haemody-
namic model parameters over the voxels shown in Figure 27.4.
Upper left panel: outflow as a function of venous volume fout�v�.
Upper right panel: oxygen extraction as a function of inflow. The
solid line is extraction per se E�f � and the broken line is the net
normalized delivery of deoxyhaemoglobin to the venous compart-
ment f E�f �/E0. Lower panel: this is a plot of the non-linear func-
tion of volume and deoxyhaemoglobin that represents BOLD signal
y�t� = g�v� q�.
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voxels. These include outflow as a function of venous
volume fout�v� and oxygen extraction fraction as a func-
tion of inflow. The solid line in the upper right panel
is extraction E�f � and the broken line is the net nor-
malized delivery of deoxyhaemoglobin to the venous
compartment fE�f �

/
E0. Note that, although the fraction

of oxygen extracted decreases with flow, the net deliv-
ery of deoxygenated haemoglobin increases with flow.
In other words, flow increases per se actually reduce sig-
nal. It is only the secondary effects of flow on dilution
and volume-dependent outflow that cause an increase
in BOLD signal. The lower panel depicts the non-linear
function of volume and deoxyhaemoglobin that repre-
sents BOLD signal y�t� = g�v� q�. Here one observes that
positive BOLD signals are expressed only when deoxy-
haemoglobin is low. The effect of volume is much less
marked and tends to affect signal predominantly through
dilution.

The distributions of the parameters over voxels are
shown in Figure 27.7 with their mean in brackets at the
top of each panel. It should be noted that the data from
which these estimates came were not independent. How-
ever, given they came from four different brain regions
they are remarkably consistent. In the next section we
will discuss each of these parameters and the effect it
exerts on the BOLD response.

DISCUSSION

The main point is that the Balloon model, suitably
extended to incorporate the dynamics of rCBF induc-
tion by synaptic activity, can reproduce the same form of
Volterra kernels that are seen empirically. As such, the
Balloon model is sufficient to account for the more impor-
tant non-linearities observed in evoked fMRI responses.
The remainder of this section deals with the validity of
the haemodynamic model in terms of the plausibility
of the parameter estimates from the previous section.
The role of each parameter in shaping the haemody-
namic response is illustrated in the associated panel in
Figure 27.8 and is discussed in the following subsections.

Neuronal efficacy

This represents the increase in signal elicited by neuronal
activity, expressed in terms of event density (i.e. num-
ber of evoked transients per second). From a biophysical
perspective it is not very interesting because it reflects
both the potency of the stimulus in eliciting a neuronal
response and the efficacy of the ensuing synaptic activity
to induce the signal. It is interesting to note, however, that

FIGURE 27.7 Histograms of the distribution of the six free
parameters of the haemodynamic model estimated over the voxels
shown in Figure 27.4. The number in brackets at the top of each his-
togram is the mean value for the parameters in question: neuronal
efficacy is 
, signal decay is �s , autoregulation is �f , transit time is
�0, stiffness is � and oxygen extraction is E0.

one word per second invokes an increase in normalized
rCBF of unity (i.e. in the absence of regulatory effects,
a doubling of blood flow over a second). As might be
expected, changes in this parameter simply modulate the
evoked haemodynamic responses (see the first panel in
Figure 27.8).

Signal decay

This parameter reflects signal decay or elimination.
Transduction of neuronal activity into perfusion changes,
over a few 100 , has a substantial neurogenic component
(that may be augmented by electrical conduction along
the vascular endothelium). However, at spatial scales of
several millimetres it is likely that rapidly diffusing spa-
tial signals mediate increases in rCBF through relaxation
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FIGURE 27.8 The effects of changing the model parameters
on the evoked BOLD response. The number in brackets at the top of
each graph is the factor applied to the parameter in question. Solid
lines correspond to the response after changing the parameter and
the broken line is the response for the original parameter values
(the mean values given in Figure 27.7): neuronal efficacy is 
, signal
decay is �s , autoregulation is �f , transit time is �0, stiffness is � and
oxygen extraction is E0.

of arteriolar smooth muscle. There are a number of
candidates for this signal, nitric oxide (NO) being the
primary one. It has been shown that the rate of elimina-
tion is critical in determining the effective time-constants
of haemodynamic transduction (Friston, 1995). Our decay
parameter had a mean of about 1.54 s giving a half-
life of 1067 ms. The half-life of NO is between 100 and
1000 ms (Paulson and Newman, 1987), whereas that of
potassium ions is about 5 s. Our results are therefore
consistent with spatial signalling with NO. It should
be remembered that the model signal subsumes all the
actual signalling mechanisms employed by the real brain.
Increases in this parameter dampen the rCBF response
to any input and will also suppress the undershoot (see
next subsection) because the feedback mechanisms, that
are largely responsible for the undershoot, are selectively

suppressed (relative to just reducing neuronal efficacy
during signal induction).

Autoregulation

This parameter is the time-constant of the feedback
autoregulatory mechanisms, whose physiological nature
remain unspecified (but see Irikura et al., 1994). The cou-
pled differential equations Eqn. 27.6 and Eqn. 27.7 rep-
resent a damped oscillator with a resonance frequency
of 1

/
�2�

√
�f = 0�101 per second. This is exactly the fre-

quency of the vasomotor signal that typically has a period
of about 10 s. This is a pleasing result that emerges
spontaneously from the parameter estimation. The nature
of these oscillations can be revealed by increasing the
signal decay time-constant (i.e. reducing the dampen-
ing) and presenting the model with low-level random
neuronal input (uncorrelated Gaussian noise with a stan-
dard deviation of 1/64) as shown in Figure 27.9. The
characteristic oscillatory dynamics are readily expressed.
The effect of increasing the feedback time-constant is to
decrease the resonance frequency and render the BOLD
(and rCBF) response more enduring with a reduction
or elimination of the undershoot. The third panel in
Figure 27.8 shows the effect of doubling it.

FIGURE 27.9 Simulated response to a noisy neuronal input
(standard deviation 1/64 and mean of zero) for a model with
decreased signal decay (i.e. less dampening). The model parameters
were the same as in Figure 27.3 with the exception of �s which was
increased by a factor of four. The characteristic 0.1 Hz oscillations
are very similar to the oscillatory vasomotor signal seen in opti-
cal imaging experiments and low-frequency fluctuations studied in
fMRI (e.g. Stanberry et al., 2006).
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Transit time

This is an important parameter that determines the
dynamics of the signal. It is effectively resting venous
volume divided by resting flow and, in our data, is esti-
mated at about 1 s (0.98 s). The transit time through the rat
brain is roughly 1.4 s at rest and, according to the asymp-
totic projections for rCBF and volume, falls to 0.73 s dur-
ing stimulation (Mandeville et al., 1999). In other words, it
takesaboutasecondfor a blood cell to traverse the venous
compartment. The effect of increasing mean transit time
is to slow down the dynamics of the BOLD signal with
respect to the flow changes. The shape of the response
remains the same but it is expressed more slowly. In the
fourth panel of Figure 27.8 a doubling of the mean transit
time is seen to retard the peak BOLD response by about
a second and the undershoot by about 2 s.

Stiffness parameter

Under steady state conditions this would be about 0.38.
The mean over voxels considered above was about
0.33. This discrepancy, in relation to steady state lev-
els, is anticipated by the Windkessel formulation and is
attributable to the fact that volume and flow are in a state
of continuous flux during the evoked responses. Recall
from Eqn. 27.3 that 1/� = �+	 = 3�03, in our data. Under
the assumption of laminar flow, � = 2 ⇒ 	 ≈ 1, which
is less than Mandeville et al. (1999) found for rats dur-
ing forepaw stimulation, but is certainly in a plausible
range. Increasing this parameter increases the degree of
non-linearity in the flow-volume behaviour of the venous
balloon that underpins the non-linear behaviour we are
trying to account for. However, its direct effect on evoked
responses to single stimuli is not very marked. The fifth
panel of Figure 27.8 shows the effects when it is decreased
by 50 per cent.

Resting oxygen extraction

This is about 34 per cent and the range observed in
our data fits exactly with known values for resting oxy-
gen extraction fraction (between 20 and 55 per cent).
Oxygen extraction fraction is a potentially important fac-
tor in determining the nature of evoked fMRI responses
because it may be sensitive to the nature of the baseline
that defines the resting state. Increases in this parame-
ter can have quite profound effects on the shape of the
response that bias it towards an early dip. In the example
shown (last panel in Figure 27.8) the resting extraction
has been increased to 78 per cent. This is a potentially
important observation that may explain why the initial
dip has been difficult to observe in all studies. According
to the results presented in Figure 27.8, the initial dip is
very sensitive to resting oxygen extraction fraction, which

should be high before the dip is expressed. Extraction
fraction will be high in regions with very low blood flow,
or in tissue with endogenously high extraction. It may be
that cytochrome oxidase rich cortex, like the visual cor-
tices, has a higher fraction and is more likely to evidence
early dips.

In summary, the parameters of the haemodynamic
model that best reproduce empirically derived Volterra
kernels are all biologically plausible and lend the model
a construct validity (in relation to the Volterra formu-
lation) and face validity (in relation to other physio-
logical characterizations of the cerebral haemodynamics
reviewed here). In this extended haemodynamic model,
non-linearities, inherent in the Balloon model, and output
non-linearity have been related directly to non-linearities
in responses. Their role in mediating the post-stimulus
undershoot is emphasized less here because the rCBF
component cannot model undershoots.

CONCLUSION

In conclusion, we have described an input-state-output
model of the haemodynamic response to changes in
synaptic activity that combines the Balloon model of
flow to BOLD signal coupling and a dynamical model
of the transduction of neuronal activity into perfusion
changes. This model has been characterized in terms of
its Volterra kernels and easily reproduces empirical ker-
nels with parameters that are biologically plausible. This
means that the non-linearities inherent in the Balloon
model are sufficient to account for haemodynamic refrac-
toriness and other non-linear aspects of evoked responses
in fMRI.

In the next chapter, we consider the mapping from
neuronal activity to measurements made with EEG and
MEG. Here the dynamics are less important, but the spa-
tial aspect of the forward model becomes much more
complicated.
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Forward models for EEG
C. Phillips, J. Mattout and K. Friston

INTRODUCTION

In this chapter, we turn to forward models for electrical
and magnetic measurements v of neuronal activity j. The
form of such models is very simple,

v = Lj 28.1

where L is called a lead field. We will refer to the
lead field repeatedly in subsequent chapters, where it
is treated as a simple linear mapping. However, as we
will see below, it entails a substantial amount of theory
and forward modelling: electroencephalography (EEG)
and magnetoencephalography (MEG) involves record-
ing the electric potential (or magnetic field) produced by
neuronal activity, at the surface of the scalp. The advan-
tage of M/EEG lies in its excellent temporal resolution,
as activity is seen in ‘real time’. However, non-invasive
measurements of the electromagnetic field can only be
obtained from a limited number of sensors placed on, or
around, the scalp.

In EEG (and MEG), the forward problem entails comput-
ing the electromagnetic field at the scalp given a source
configuration and volume conductor. The inverse problem
describes the opposite problem: given the volume con-
ductor and the electromagnetic field at the scalp, what
is the location and time course of the sources? The solu-
tion of the forward problem, even if approximate, is
required to solve the inverse problem. The forward prob-
lem itself is a ‘simple electromagnetic problem’ that can
be expressed and solved with Maxwell’s equations. The
difficult aspect lies in modelling the volume conductor, a
human head, and the sources, the neuronal activity of the
brain. To do this, it is necessary to understand cerebral
anatomy and the nature of neuronal activity.

To be detected, neural activity must sum coherently.
Because of their very short time course, synchronous fir-
ing of action potentials, APs, is unlikely but the longer

time course of postsynaptic potentials (PSPs) allows
them to superpose temporally. Moreover the electromag-
netic field generated by a dipolar source (like a PSP)
decreases with distance – approximately as 1/r2, more
slowly than the 1/r3-dependent field of a quadrupolar
source (like an AP). Therefore, even though APs are much
larger in amplitude than PSPs, it is generally accepted
that postsynaptic potentials are the generators of scalp
fields usually recorded in EEG and MEG (Nunez, 1981;
Hämäläinen et al., 1993). If the dendrites supporting PSPs
are oriented randomly or radially on a complete spherical
surface (or small closed surface), no net electromagnetic
field can be detected outside the immediate vicinity of
the active neurons; this is called a ‘closed field’ config-
uration. Because of the uniform spatial organization of
their dendrites (perpendicular to the cortical surface), the
pyramidal cells are the only neurons that can generate a
net macroscopic current dipole over the cortical surface,
whose field is detectable on the scalp. This is named an
‘open field’ configuration. The brain’s electrical activity is
thus generally modelled as small current dipoles, located
in the grey matter.

The overall structure of the head is rather complicated.
The brain, skull, scalp and other parts of the head (eyes,
vessels, nerves, cerebrospinal fluid, etc.) comprise vari-
ous tissues and cavities of different electrical conductiv-
ity. Moreover, the electrical conductivity of brain tissue is
highly anisotropic: in the white matter, conduction is 10
times greater along an axon fibre than in the transverse
direction. These complications are generally ignored; at
the present time, it is impossible to measure accurately in
vivo the detailed conductivity of all tissues and to account
for them in the solution of the forward problem (Marin
et al., 1998; Huiskamp et al., 1999). Therefore, the head
is usually modelled as a set of concentric homogeneous
volume conductors: the brain (comprising the white and
grey matter), the skull and the scalp. Once the relation-
ship between brain electrical activity and electromagnetic
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scalp fields has been established, the inverse problem can
be addressed. Non-invasive measurements of the elec-
tromagnetic field can only be obtained from the scalp
surface, and the spatial configuration of neuronal activity
cannot be determined uniquely if based on EEG and/or
MEG recordings alone (von Helmholtz, 1853; Nunez,
1981).

In summary, estimates of electromagnetic activity
depend on cortical anatomy: cellular-level structures
determine how neuronal electrical activity produces
macroscopic current sources detectable outside the head,
the local electrical conductivity influences the solution of
the forward problem, and the anatomy of the brain at the
sulcal level can be used to constrain the inverse solution.

ANALYTICAL FORMULATION

Maxwell’s equations

For the forward problem, the electromagnetic properties
of the head (or at least its simplified model) and the loca-
tion of the electric current generators in the brain are
assumed to be known. Maxwell’s equations can then be
used to calculate the electric (and magnetic) field on the
surface of the scalp or inside the head volume if neces-
sary. In differential equation form, Maxwell’s equations
can be expressed as (Ramo et al., 1984):

�� �E = �

�
28.2a

�� �B = 0 28.2b

�� × �E = −��B
�t

28.2c

�� × �B = ��j +��
��E
�t

28.2d

where �E is the electric field, �B is the magnetic field, �j is the
current density, � is the charge density, � is the electric
permittivity, and � is the magnetic permeability.

These are the basic set of equations of classical electro-
magnetism. Together with two auxiliary relations, Ohm’s
law �j = � �E and the continuity equation ���j = ��/�t, they
describe all electromagnetic phenomena. In the case of
bioelectric phenomena such as electro- and magnetoen-
cephalography (M/EEG), we are only interested in the
electric (and magnetic) field �E (and �B). The treatment of
Maxwell’s equations can be simplified significantly by
noting that the media comprising the head have no sig-
nificant capacitance: they are either purely resistive or the
frequency of activity is sufficiently low that the capac-
itance can be neglected. This means there are no elec-

tromagnetic wave propagation phenomena (Hämäläinen
et al., 1993; He, 1998).

This allows us to adopt a quasistatic approximation
of Maxwell’s equations, which means that, in the calcu-
lation of �E (and �B), ��E/�t and ��B/�t can be ignored as
source terms. Physically, these assumptions mean that
the instantaneous current density depends only on the
instantaneous current sources and conforms to the super-
position theorem. Eqn. 28.2c then becomes �� × �E = 0 and
the electric field �E can be expressed as the negative gra-
dient of a scalar field, the electric potential V :

�E = −��V 28.3

‘Current sources’ are, by definition, a distribution of
forced current density �jf . The current sources �jf can be
seen as the summed coherent electric activity of activated
cell membranes, i.e. the current density produced directly
by neural activity, with arbitrarily close sink and source
currents. The total current density �jtot flowing through
the media is equal to the sum of the imposed sources
�jf and the return current �jr . The latter is the result of
the macroscopic electric field on charge carriers in the
conducting medium, as expressed by Ohm’s law. With
Ohm’s law and 28.3, we have:

�jtot = �jr +�jf = � �E +�jf = −� ��V +�jf 28.4

By neglecting the capacitance of head tissues, charge
does not accumulate in the volume or on tissue interfaces,
i.e. the charges are redistributed in negligible time. This
translates mathematically into zero divergence of the cur-
rent density ���jtot = 0. And, by taking the divergence of
28.4, we obtain the simplified Maxwell’s equation:

���� ��V	 = ���jf 28.5

This equation is at the heart of the forward problem in
EEG: it links explicitly the current sources �jf and the
electric potential V .

Equation 28.5 can be solved for V in various ways,
depending on the geometry of the model, the form of
the conductivity � and the location of the sources �jf .
An analytical solution is possible only for particular
cases: a highly symmetrical geometry (e.g. concentric
spheres or cubes) and homogeneous isotropic conduc-
tivity. For other more general cases, numerical methods
are required. Common methods include the ‘finite ele-
ment method’ (FEM) (Chari and Silvester, 1980; van den
Broek et al., 1996; Awada et al., 1997; Buchner et al.,
1997; Klepfer et al., 1997), the ‘finite difference method’
(FDM) (Rosenfeld et al., 1996; Saleheen and Ng, 1997,
1998) and the ‘boundary element method’ (BEM) (Becker,
1992; Ferguson and Stroink, 1997; Mosher et al., 1999).
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The FEM and FDM make no assumptions about the
shape of the volume conductivity and allow the estima-
tion of V at any location in the volume. The volume is tes-
sellated into small volume elements in which Maxwell’s
equations are solved locally. As each volume element is
characterized by its own conductivity (isotropic or not),
any configuration of conductive volume can be modelled.
With the FEM, the volume elements are of arbitrary shape
(usually tetrahedron or regular polyhedron), while the
volume elements are cubic with the FDM. In contrast,
the BEM is based on the hypothesis that the volume is
divided into subvolumes of homogeneous and isotropic
conductivity, and the potential V is estimated only on
the surfaces separating these subvolumes.

The FEM and FDM offer a more general solution of
the forward problem but the complexity of the numer-
ical problem and the computing time needed to solve
it are increased greatly, compared with the BEM. More-
over, the conductivity throughout the volume, necessary
to make full use of the FEM and FDM, cannot be esti-
mated for individual subjects. Therefore, a simple ‘three
sphere shell’ model with an analytical solution is still
used generally for M/EEG source localization. A more
anatomically realistic but still tractable approach uses the
BEM to solve the forward problem. We will focus on the
BEM from now on.

The BEM approach for EEG

One way of solving Eqn. 28.5 is the boundary element
method, which relies on one major assumption: the vol-
ume is divided into subvolumes of homogeneous and
isotropic conductivity. The solution of the forward prob-
lem then can be obtained with the help of some boundary
conditions and Green’s theorem.

Boundary conditions

Consider Sl the surface separating two volumes, vol−

and vol+, of conductivity �− and �+. Let’s define dSl

an infinitesimal element of this surface and let �n be the
unit vector normal to the surface oriented from the inside
towards the outside or, by convention, from vol− to vol+,
as shown in Figure 28.1.

There are no sources located on the surfaces between
homogeneous volumes and the current normal to the
surfaces is continuous, so on surface Sl, we have �jtot =
−� ��V and

�− ��V − →
dSl = �+ ��V + →

dSl 28.6

FIGURE 28.1 The surface Sl separates the two homogeneous
volumes vol− and vol+ of isotropic conductivity �− and �+. dSl is
an infinitesimal element of the surface Sl and �n is the unit vector
normal to Sl, oriented from vol− to vol+.

where �dsl = �ndSl is the oriented infinitesimal element of
this surface. Moreover, the potential V must also be con-
tinuous on Sl:

V −�Sl	 = V +�Sl	 28.7

The Eqns 28.6 and 28.7 provide the two boundary condi-
tions necessary to solve the quasistatic form of Maxwell’s
equations as expressed in Eqn. 28.5.

Green’s theorem

Let dvk be an element of the homogeneous regional vol-
ume volk (where k = 1
 � � � 
Nv and Nv is the number of
homogeneous volumes) and let �dSl be an oriented ele-
ment, �dsl = �ndSl, of the surface Sl separating two regions
of homogeneous conductivity (where l = 1
 � � � 
NS and
NS is the number of such surfaces). Take two well-
behaved functions � and  in each region volk; then
Green’s theorem states (Smythe, 1950):

NS∑
l

∫
Sl

[
�−

l ��− ��− −− ���−	− ��+
l ��+ ��+ −+ ���+	

] →
dSl

28.8

=
Nv∑
k

∫
volk

[
� ����k

��	−����k
���	

]
dvk

where the sums run over the Nv volumes and the NS

surfaces, and the symbols − and + refer to the volumes
inside and outside surface Sl.

The forward problem entails evaluating the electric
potential V from the current sources distribution �jf with
the quasistatic form of Maxwell’s equation, Eqn. 28.5 and
the boundary conditions Eqn. 28.6 and Eqn. 28.7, using
Green’s theorem, Eqn. 28.8.

Analytical BEM equation

In Eqn. 28.8, if we take � = 1/r , where r is the dis-
tance between an arbitrary point �r and the origin �o, then,
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for smooth surfaces, Eqn. 28.8 becomes, as shown by
Geselowitz (1967):

NS∑
l

∫
Sl

[
��−

l
��− −�+

l
��+	

1
r

− ��−
l − −�+

l +	��
(

1
r

)]
�dSl

28.9

= 4��+
Nv∑
k

∫
volk

1
r

��
(
�k

��
)

dvk

where, � and  in the first term of the right hand side, are
evaluated at the origin �o, i.e. for r = 0. Consider  = V and
suppose that �jf is distributed in only one homogeneous
volume, the brain volume volbr ; then, thanks to the sim-
plified Maxwell’s equation, Eqn. 28.5 and the boundary
conditions, Eqn. 28.6 and Eqn. 28.7, Eqn. 28.9 becomes:

−
NS∑
l

��−
l −�+

l 	
∫

Sl

V ��
(

1
r

)
�dSl = 4��V +

∫
volbr

1
r

���jf dvbr

28.10

By the divergence theorem and the definition of

the divergence operator �� , we have:
∫

vol
��
(

�jf
r

)
dv =

∫
S

�jf
r
�dS = ∫

vol

[�jf �� ( 1
r

)+ 1
r
���jf
]

dv. And, as there are no

sources �jf on any surface Sl
�jf �Sl	 = 0, then
∫

vol
1
r
���jf dv =

− ∫
vol

�jf �� ( 1
r

)
dv. Therefore, Eqn. 28.10 becomes:

4��V =
∫

volbr

�jf ��
(

1
r

)
dvbr −

NS∑
l

��−
l −�+

l 	
∫

Sl

V ��
(

1
r

)
�dSl

28.11

On the left hand side of Eqn. 28.11, V is still evaluated
at the origin �o of space (an arbitrary point) and r is the
distance from that origin to a point on the surface Sl

(in the surface integrals) or in the volume volbr (in the
volume integral).

Let us consider �x the point where V is evaluated, �s′

a point on the surface Sl and �r ′ a point in the volume
volbr . The distance r between the point �x where V is
evaluated and any point �s′ on the surface S′

l (or �r ′ in the
volume volbr ) will be expressed by ��x −�s′� (or ��x − �r ′�).
Thus Eqn. 28.11 is rewritten (Sarvas, 1987) like this:

4����x	V��x	 =
∫

Volbr

�jf ��r ′	�� ′
(

1
��x−�r ′�

)
dvbr

−
NS∑
l

��−
l −�+

l 	
∫

S′
l

V��s′	�� ′
(

1
��x−�s′�

)
�dS′

l

28.12

where �� ′ means that the gradient is with respect to �r ′ or
�s′. The potential V should be evaluated on the surfaces
Sl but, if �x approaches the point �s on a surface Sk, the kth

surface integral becomes singular in Eqn. 28.12.

Consider now Fk��x	 the integral on the smooth surface
Sk in Eqn. 28.12, Fk��x	 = ∫

S′
k
V��s′	���1/��x −�s′�	�dS′

k; then it
follows from Vladimirov (1971):

lim
�x→�s

Fk��x	 = −2�V��s	+Fk��s	 28.13

where �x approaches the point �s on the surface Sk from
the inside, so in the volume of conductivity �−

k . With
Eqn. 28.13, the point �x can be placed on any surface Sk

and, with �x → �s, Eqn. 28.12 becomes:

4��−
k V��s	 =

∫
Volbr

�jf ��r ′	�� ′
(

1
��s −�r ′�

)
dvbr

−
NS∑
l

��−
l −�+

l 	
∫

S′
l

V��s′	�� ′
(

1
��s −�s′�

)
�dS′

l

+2���−
k −�+

k 	V��s	 28.14

and eventually:

V��s	 = V���s	− 1
2�

NS∑
l

�−
l −�+

l

�−
k +�+

k

∫
S′

l

V��s′	�� ′
(

1
��s −�s′�

)
�n��s′	 dS′

l

28.15

where V���s	 is the potential due to �jf in a conductor
of infinite extent and homogeneous conductivity ��−

k +
�+

k 	/2:

V���s	 = 1
2���−

k +�+
k 	

∫
v

�jf ��r ′	�� ′
(

1
��s −�r ′�

)
dv 28.16

and

• the sum
∑NS

l runs over all the surfaces separating vol-
umes of homogeneous isotropic conductivity.

• �−
l and �+

l are the conductivity inside and outside the
surface Sl.• �s and �s′ are points on the surfaces Sk and Sl respectively.

• �n��s′	 is a unit vector normal to the surface Sl at the point
�s′ and oriented from the inside towards the outside
of Sl.

This is an explicit relationship between the current
sources �jf and the surface potential V . As V is present on
both sides of this integral equation, V can only be eval-
uated in closed form for particular geometries, such as
concentric spheres. For more general cases, i.e. realistic
head models, numerical methods are required to solve
this integral equation.

The BEM approach for MEG

Magnetoencephalographic (MEG) signals are not very
different from EEG data because they represent comple-
mentary effects generated by neuronal activity. Both EEG
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and MEG are related to the imposed current sources �jf
by Maxwell’s equations, through �E and V for EEG and �B
for MEG.

As with the derivations above for V (Eqn. 28.15), an
integral form of Maxwell’s equation can be derived for
the magnetic field �B (Hämäläinen et al., 1993):

�B��r	 = �B���r	+ �0

4�

NS∑
l

��−
l −�+

l 	
∫

S′
l

V��s′	
�r −�s′

��r −�s′�3 × �n��s′	 dS′
l

28.17

where

�B���r	 = �0

4�

∫
volbr

�jf ��r ′	× �r −�r ′

��r −�r ′�3 dv 28.18

Importantly, the potential distribution V over the sur-
faces is assumed to be known. As with EEG, an analytical
solution exists only for highly symmetric models; other-
wise, numerical methods are used to solve this equation.

NUMERICAL SOLUTION OF THE BEM
EQUATION

The main task now, in solving the BEM forward problem,
is to evaluate accurately the integrals on the right hand
side of Eqn. 28.15.

Approximation of the BEM analytical
equation

The volume integral over the continuous sources dis-
tribution �jf can be calculated easily by approximating
�jf with a superposition of independent point sources
of known location and orientation. On the other hand,
the surface integrals are more difficult to calculate: they
run on different and irregular surfaces and, moreover,
they involve the potential V��s	 that we want to solve for.
Therefore, it is necessary to express the surface integrals
in terms of the value of the unknown function V at some
discrete set of points on the surfaces, and to tessellate the
surfaces into sets of regular patches. The most obvious
approximation for the surfaces is to model each of them
by a set of plane triangles. With this surface tessellation,
the surface integrals of Eqn. 28.15 can be expressed as a
sum of integrals over triangles:

V��s	 = V���s	− 1
2�

NS∑
l=1

�−
l −�+

l

�−
k +�+

k

N
�l	
tr∑

m=1

∫
��l	

m

V��s′	�� ′
(

1
��s −�s′�

)
�n��s′	 dS′ 28.19

where the surface Sl has been modelled by a set of N �l	
tr

triangles ��l	
m . The function V is rendered discrete by

choosing on which nodal points V is evaluated and how
the function V behaves on each individual plane triangle.
This would allow an explicit calculation of the integrals
over the triangles and Eqn. 28.19 could eventually be sim-
plified to a sum of known or, at least, easily evaluated
functions.

Three different approximations of V over a triangle
are usually considered. First, one could evaluate V at the
centre of gravity of each triangle and consider this value
constant over the triangle: one value is thus obtained
for each triangle. This approximation is referred as the
‘centre of gravity’ (or CoG) method (Hämäläinen and
Sarvas, 1989; Meijs et al., 1989). The function V could
also be evaluated on the vertices of the triangles; this is
generally called a ‘vertex’ approximation (one value per
vertex). If the potential over the triangle is supposed to
be constant and equal to the mean of the potential at its
vertices, this approximation will be called the ‘constant
potential at vertices’ (or CPV) method (Schlitt et al., 1995).
A better approximation would be to consider that the
potential varies linearly over the triangle. We will call
this approximation the ‘linear potential at vertices’ (or
LPV) method (Schlitt et al., 1995). In what follows, we
will consider only the CoG and LPV approximations.

The CoG and LPV approaches differ mainly in the
choice of the nodal points where the unknown potential
function V is calculated. It is important to note that for a
closed tessellated surface there are about twice as many
triangles as vertices. The number and arrangement of the
triangles determine how well the true surface is approx-
imated spatially. The choice of the potential approxima-
tion method determines the number of equations to be
solved (one per triangle or vertex) and how well the
true potential is modelled over each triangle (constant or
linear approximation).

Current source model

In Eqn. 28.16, the source function �jf ��r	 is a continuous
function throughout the volume. The source function
�jf ��r	 can be approximated by a distribution of Nj inde-
pendent dipole sources of known location �ri:

�jf ��r	 =
Nj∑
i=1

�jf ��ri	���r −�ri	 28.20

where �jf ��ri	 = ∫
vi

�jf ��r ′	 dvi is the summed activity, in the
small volume vi around the location �ri, modelled as a
punctate current source, and ���r	 is the discrete Dirac
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delta function. Now, with this source model, Eqn. 28.16
becomes:

V���s	 = 1
2���−

k +�+
k 	

∫
v

�s −�r ′

��s −�r ′�3
Nj∑
i=1

�jf ��ri	���r ′ − �ri	 dv

= 1
2���−

k +�+
k 	

Nj∑
i=1

�jf ��ri	
∫

v

�s −�r ′

��s −�r ′�3 ���r ′ − �ri	 dv

= 1
2���−

k +�+
k 	

Nj∑
i=1

�s −�ri

��s −�ri�3
�jf ��ri	 28.21

Potential function model

The centre of gravity approximation With this
approximation, the unknown function V is calculated on
nodal points located at the centre of gravity of each tri-
angle. The potential over the triangle is assumed to be
constant and equal to the potential at the centre of gravity
V = V��scog	, as shown in Figure 28.2. With this approxi-
mation, the integral over each triangle in Eqn. 28.19 can
be simplified:

∫
��l	

m

V��s′	�� ′
(

1
��s −�s′�

)
�n��s′	 dS′ = −V��s′

cog	��l
m	��s	 28.22

where ��l
m	��s	 is the solid angle at �s subtended by the
triangle ��l	

m :

��l
m	��s	 = −
∫
��l	

m

�� ′
(

1
��s −�s′�

)
�n��s′	 dS′ =

∫
��l	

m

�s′ −�s
��s′ −�s�3 �n��s′	 dS′

28.23
This integral depends only on the three vector differences
between �s (the ‘point of view’) and the three vertices �s′

1, �s′
2

and �s′
3 (the ‘points of support’) determining the triangle

��l	
m . There exists an explicit analytic formula to calculate

��l
m	��s	.

FIGURE 28.2 The centre of gravity (CoG) potential approxi-
mation: the potential V over the triangle is assumed to be constant
and equal to the potential at the centre of gravity �scog of the triangle,
V = V��scog	.

The BEM Eqn. 28.19 eventually becomes a ‘simple sum
of known analytical functions’:

V��scog
p	 = V���scog
p	

+ 1
2�

NS∑
l=1

�−
l −�+

l

�−
k +�+

k

N
�l	
tr∑

m=1

V��scog
m	��l
m	��scog
p	

28.24

where �scog
m (resp. �scog
p) is the ‘centre of gravity’ of the
mth (resp. pth) triangle ��l	

m (resp. ��k	
p ) of the lth (resp. kth)

surface Sl (resp. Sk). The BEM problem now has the form
of a set of linear equations.

The linear potential at vertices approximation Here
the potential is evaluated on the vertices of the triangles
but a better approximation of the potential over the tri-
angles is used: the potential is assumed to vary linearly
over each triangle, as shown in Figure 28.3. As only three
values are needed to specify a linear function on a plane
surface, the value of the potential V at the three vertices
of the triangle can be used. Moreover, this ensures that
the potential varies continuously from one triangle to the
next which was not the case with the CoG approximation.

The integral over each triangle in Eqn. 28.19 can be
simplified to give a weighted sum of the potential at the
vertices:

∫
��l	

m

V��s′	�� ′
(

1
��s −�s′�

)
�n��s′	dS′ 28.25

= −
(
V��s′

1	�
�l
m	
1 ��s	+V��s′

2	�
�l
m	
2 ��s	+V��s′

3	�
�l
m	
3 ��s	

)

FIGURE 28.3 The linear potential at vertices (LPV) potential
approximation: the potential V over the triangle is assumed to be
varying linearly between the potential calculated at each vertex �s1,
�s2 and �s3 of the triangle.
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The three ��l
m	
• ��s	 are also purely geometric quantities

depending on the vector differences between the ‘point
of view’ �s and the vertices �s′

• of the triangle. An analytic
formula to calculate the ��l
m	

• ��s	 from �s and �s′
• exists. With

this approximation the BEM Eqn. 28.19 simplifies to:

V��s•	 = V���s•	+ 1
2�

NS∑
l=1

�−
l −�+

l

�−
k +�+

k

28.26

N
�l	
tr∑

m=1

(
V��s′

1
m	��l
m	
1 ��s•	+V��s′

2
m	��l
m	
2 ��s•	+V��s′

3
m	��l
m	
3 ��s•	

)

where �s• is one of the three vertices of a triangle of the kth

surface Sk and �s′
i
m is the ith vertex of the mth triangle ��l	

m

of the lth surface Sl. Again, the BEM problem is reduced
to a set of linear equations.

Solid angles and potential approximation

As shown in the previous section, to solve the BEM equa-
tions, it is necessary to calculate solid angles, i.e. purely
geometrical quantities.

Solid angle calculation

For the CoG approximation, the solid angle ��l
m	��s	 sub-
tended by a plane triangle ��l	

m at some point �s has to
be calculated. Without loss of generality, the observation
point �s can be placed at the origin �o∗. The three vertices
�s1, �s2 and �s3 of the plane triangle are then specified by the
vectors �v1 = �s1 −�o∗, �v2 = �s2 −�o∗ and �v3 = �s3 −�o∗ relative to
this origin �o∗, as shown in Figure 28.4. The solid angle �
can be expressed analytically as a function of �v1, �v2 and

FIGURE 28.4 Solid angle supported by a plane triangle: the
solid angle � supported at the point �o∗ by the plane triangle (grey
shade) depends only on the three vectors �v1, �v2 and �v3 and can be
easily calculated by Eqn. 28.27.

�v3 by the formula taken from van Oosterom and Strackee
(1983):

tan
(

1
2

�

)
= �v1��v2 × �v3	

��v1� ��v2� ��v3�+ ��v1�v2	��v3�+ ��v1�v3	��v2�+ ��v2�v3	��v1�
28.27

For the LPV approximation, three geometric quanti-
ties �i�i = 1
 2
 3	 have to be calculated for each triangle,
under the assumption that the potential V varies linearly
over this triangle. There also exists an analytic formula
for �i (de Munck, 1992; Schlitt et al., 1995):

�i = 1
2A

(
�zi�n�+���vj − �vk	 ��

)
28.28

where

• A is the surface of the plane triangle
• �zi = �vj × �vk with �i
 j
 k	 a cyclic permutation of �1
 2
 3	
• �n is a unit vector normal to the triangle
• � is the solid angle subtended by the plane triangle at

the origin as expressed in Eqn. 28.27
• � = �n�vi is equal to the perpendicular distance from the

origin to the triangle

• �� is a vector defined by �� = 3∑
i=1

��j − �i	�vj with

�i = 1
��vj−�vi� ln

( ��vj−�vi� ��vj �+��vj−�vi	�vj

��vj−�vi� ��vi�+��vj−�vi	�vi

)
.

The �i also satisfy the equality: �1 +�2 +�3 = �.

Solid angle properties

An important property of solid angles concerns their
integral over a single closed surface. We know from
Eqn. 28.23 that the infinitesimal solid angle d�′ sub-
tended by the infinitesimal surface dS′ around the point
�s′ at the point of view �s is expressed by: d�′��s
�s′	 =
�n��s′	 �s′−�s

��s′−�s�3 dS′. Then the integral of d�′��s
�s′	 over a smooth
closed surface is:

�S��s	 =
∫

S
d�′��s
�s′	 =

⎡
⎣ 0

2�
4�

⎤
⎦ 
 for �s

⎡
⎣outside

on
inside

⎤
⎦ the surface�

28.29

The BEM Eqn. 28.15 contains an integral of the form:∫
S
d�′��s
�s′	V��s′	 which is converted into a discrete sum,

of the form:
∑M

m=1 �nm Vm. It is therefore important that
the �nm satisfy Eqn. 28.29, i.e.

�n
S =
M∑

m=1

�nm =
⎡
⎣ 0

2�
4�

⎤
⎦ 
 for �s

⎡
⎣outside

on
inside

⎤
⎦ the surface�

28.30

When �s is outside or inside the surface, these equalities
are satisfied: all the �nm can be calculated unambiguously
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with Eqn. 28.27 or Eqn. 28.28. But when �s is on the surface
itself we meet the ‘auto-solid angle’ (ASA) problem: the
solid angle subtended by a triangle which contains the
point of view is zero and the second equality of Eqn. 28.30
may not be satisfied automatically.

The ASA problem for the CoG approximation

In the CoG approximation, as the potential is evaluated
at the ‘centre of gravity’ of each triangle, there will be
only one null solid angle: �mm = 0, as can be seen in
Figure 28.5. Since the rest of the solid angle subtended
by the closed surface is already 2�, there is no missing
angle and the second equality of Eqn. 28.30 is satisfied.

Nevertheless, in reality the surface modelled by the
triangle is not plane, and it should thus support some
non-zero solid angle. There is no obvious way to improve
the solution, but to use a finer meshing of the surface.

The ASA problem for the LPV approximation

With the LPV approximation, all the adjacent triangles
(grey triangles in Figure 28.6) containing the ‘point of
view’ are supporting an estimated null solid angle. The
solid angle subtended by the rest of the surface will not
be equal to 2� because the adjacent triangles do not rep-
resent a flat surface.

�miss = 2� −
M∑

m=1

�nm 	= 0 28.31

There are two main problems here: (1) how do we
divide up the missing solid angle �miss between the adja-
cent triangles, and (2) within each of them, how do we
share between its vertices the missing part, as illustrated

FIGURE 28.5 The auto-solid angle problem for the CoG
approximation: the solid angle subtended by the grey triangle from
its centre of gravity (the black dot) is zero and the total solid angle
subtended by the rest of the surface (white triangles) is equal to 2�.

FIGURE 28.6 The auto-solid angle problem for the LPV
approximation: the estimated solid angle supported by the ‘central’
point and the adjacent grey triangles is zero but the total solid angle
supported by the remaining white triangles is less than 2�.

in Figure 28.7. An analytic solution exists (Heller, 1990)
but it requires each triangle around the point of view �s0

be approximated by a portion of sphere of centre �rc and
radius R. If the surface is regular and smooth compared
to the density of the mesh, this local spherical approxi-
mation will hold as R will be much larger than the length
of the edges of the triangles.

Since three points do not determine a sphere, a fourth
point must be chosen. A suitable point would be the next
adjacent vertex, e.g. the sphere that passes through the
triplet [�s0�s1�s2] could be required to pass through �s3 as well.
A better and anatomically more tenable approximation
can be obtained, if, at the tessellation stage, the centre of
gravity �scog of each triangle is projected perpendicular to
the triangular plane onto the actual surface of the volume
�s⊥

cog. A sphere can now be fitted easily to four points:
the three vertices defining the triangle and its projected
centre of gravity, as shown in Figure 28.8.

Once the spheres have been fitted for �s0 and its adja-
cent vertices �s1, �s2, � � � , �sNadj

, an approximate value
for the solid angle subtended by each triplet [�s0�s1�s2],
[�s0�s2�s3], � � � , [�s0�sNadj

�s1] at �s0 can be calculated. Using
spherical coordinates for the vertices, as shown in

FIGURE 28.7 The surface defined by �s1, �s2, � � � , �s5 around �s0
supports a non-zero solid angle. Each triangle, defined by a triplet of
vertices ([�s0�s1�s2], [�s0�s2�s3], � � � , [�s0�s5�s1]), supports a part of the missing
solid angle, which in turn must be shared between its vertices. Each
triangle can be locally approximated by a portion of sphere.
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FIGURE 28.8 Spherical approximation of an adjacent plane
triangle: the triplet of vertices [�s0�s1�s2] and the projection �s⊥

cog of the
centre of gravity �scog of the triangle onto the actual surface determine
a sphere, with centre �rc and radius R, that approximates the actual
surface.

Figure 28.9, the solid angle ���s0�s1�s2� subtended at �s0

by the spherical region bounded by �s0, �s1 and �s2, is
approximated by: ���s0�s1�s2� = �1+�2

4 12 where �1 and �2

are easily obtained and sin 12
2 = ��sb−�s2�

2R sin �2
with �sb = �rc +

1
sin �1

[
sin��1 −�2	��s0 −�rc	+ sin �2��s1 −�rc	

]
.

FIGURE 28.9 Auto-solid angle approximation: the triangle
defined by the triplet [�s0�s1�s2] is approximated by a portion of a
sphere. The solid angle subtended at �s0 by the curved surface (bold
line) can be calculated using the spherical coordinates of �s1 and �s2:
�1, �2 and 12.

The fraction f�•� of missing solid angle �miss to be
assigned to each triangle �•�, e.g., ��s0�s1�s2�, is obtained by:

f��s0�s1�s2� = ���s0�s1�s2�

���s0�s1�s2� +���s0�s2�s3� +· · ·+���s0�sNadj
�s1�

28.32

Note that, even though these equations entail approxima-
tions, since they only involve ratios, the total solid angle
subtended by the region around �s0 will sum to �miss, and
the total solid angle subtended by the entire surface at �s0

will be exactly 2�. Now, it is necessary to share further
this portion of missing solid angle between the vertices
of the adjacent triangles.

Assuming that �1, �2 and 12 are small and that the
potential V varies linearly with distance on the sphere,
Heller (1990) showed that it is possible to share the solid
angle f��s0�s1�s2��miss between the three vertices �s0, �s1 and
�s2 such that ��s0
��s0�s1�s2� +��s1
��s0�s1�s2� +��s2
��s0�s1�s2� = f��s0�s1�s2��miss,
where:

��s0
��s0�s1�s2� = 1
12��1 +�2	

(
7�1 +7�2 − �2

1

�2
− �2

2

�1

)
f��s0�s1�s2��miss

28.33a

��s1
��s0�s1�s2� = 1
12��1 +�2	

(
3�1 +2�2 + �2

2

�1

)
f��s0�s1�s2��miss

28.33b

��s2
��s0�s1�s2� = 1
12��1 +�2	

(
2�1 +3�2 + �2

1

�2

)
f��s0�s1�s2��miss

28.33c

Matrix form of the BEM equation

A simple realistic head model can be obtained by consid-
ering three concentric volumes of homogeneous conduc-
tivity: the brain, skull and scalp volumes, of conductivity
�br , �sk and �sc respectively, as depicted in Figure 28.10.
The three interfaces: ‘brain-skull’, ‘skull-scalp’ and ‘scalp-
air’ separating the three volumes are numbered 1, 2 and 3.
With this convention, the conductivity inside and outside
each surface is defined by:

�−
1 = �br

�+
1 = �−

2 = �sk

�+
2 = �−

3 = �sc

�+
3 = 0

28.34

With the discrete approximation of the source term
(Eqn. 28.21) and the approximation of the boundary ele-
ment equation: CoG approximation (Eqn. 28.24) or LPV
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FIGURE 28.10 Simple realistic head model: three concentric
volumes of homogeneous conductivity, brain (�br ), skull (�sk) and
scalp (�sc), separated by the three surfaces S1, S2 and S3, comprise
the head model.

approximation (Eqn. 28.27), the BEM problem can be
expressed in matrix form:

⎡
⎣v1

v2

v3

⎤
⎦=

⎡
⎣B11 B12 B13

B21 B22 B23

B31 B32 B33

⎤
⎦
⎡
⎣v1

v2

v3

⎤
⎦+

⎡
⎣G1

G2

G3

⎤
⎦ �j� ⇔ v = B v+G j

28.35
where:

• vk, an Nvk
× 1 vector, contains the potential at the Nvk

nodal points of surface Sk: centre of gravity of each
triangle for the CoG approximation or vertices of the
triangles for the LPV approximation. v is Nv ×1 vector
with Nv = Nv1

+Nv2
+Nv3

.
• Bkl, an Nvk

×Nvl
matrix, represents the influence of the

potential of surface Sl on the potential of surface Sk.
Its elements depend on the conductivity inside and
outside the surfaces Sk and Sl, and on the solid angles
used in the BEM Eqn. 28.24. B is an Nv ×Nv matrix.

• j = ��jt
1

�jt
2 � � � �jNj

t�t, a 3Nj × 1 vector, is the source dis-

tribution vector, where each �jn = �jn
x jn
y jn
z �t is an
orientation-free source vector.

• Gk, an Nvk
× 3Nj matrix, is the free space potential

matrix depending on the location �rn of the sources �jn,
the nodal points on surface Sk and the conductivity
inside and outside surface Sk (�−

k and �+
k ). G is an

Nv ×3Nj matrix.

Constructing the matrices B and G

The matrices B and G can be constructed directly as
follows.

Matrix B with the CoG approximation The element
�p
 q	 of the matrix Bkl is:

B�p
q	
kl = 1

2�

(
�−

l −�+
l

�−
k +�+

k

)
�pq 28.36

where p (resp. q) is the index of the nodal point on the
surface Sk (resp. Sl), and �pq is the solid angle at the

centre of gravity of the pth triangle of Sk subtended by
the qth triangle of Sl.

Matrix B with the LPV approximation The element
�p
 q	 of the matrix Bkl is:

B�p
q	
kl = 1

2�

(
�−

l −�+
l

�−
k +�+

k

) Nq∑
n

�q
pn 28.37

where p (resp. q) is the index of the nodal point on the
surface Sk (resp. Sl), Nq is the number of triangles com-
prising the qth vertex, and �

q
pn is the portion of solid angle

attributed to the qth vertex and subtended by the nth tri-
angle (containing the qth vertex) of Sl at the pth vertex of
the surface Sk.

Free potential matrix G The elements �p
 3q − 2	,
�p
 3q −1	 and �p
 3q	 of the matrix Gk is:

[
G�p
3q−2	

k G�p
3q−1	
k G�p
3q	

k

]
= ��sp −�rq	

t

2���−
k +�+

k 	��sp −�rq�3
28.38

where �sp is the pth nodal point of the surface Sk, and �rq is
the location of the qth current source �jq .

Solving the numerical BEM equation

The solution of the forward problem now rests on estab-
lishing a linear relationship between the source distribu-
tion j and the potential on the surfaces v (or at least on
the scalp v3) of the form:

v = L j 28.39

An obvious solution of Eqn. 28.35 would be simply to
solve the system of equations:

�INv
−B	v = G j 28.40

by inverting the matrix �INv
− B	. However, we are

dealing here with a problem of electric potential and a
potential function can only be measured relative to some
reference point, i.e. calculated to within a constant. The
systems of Eqn. 28.40 therefore rank deficient and the
matrix �INv

− B	 cannot be inverted.1 The only way to

1 As va = v and vb = v + c 1Nv
(with c 	= 0) must both satisfy

Eqn. 28.35 and Eqn. 28.40, it follows:

v = B v +G j
�v + c1Nv

	 = B�v + c1Nv
	+G j
 c 	= 0

}
⇒ c1Nv

= B c 1Nv

 c 	= 0

⇒ B 1Nv
= 1Nv

⇒ �INv
−B	1Nv

= 0

The matrix �INv
− B	 has a null eigenvalue associated with the

eigenvector 1Nv
, i.e. B has a unit eigenvalue associated with the

eigenvector 1Nv
.
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solve Eqn. 28.40 is to use a ‘deflation technique’ (Lynn
and Timlake, 1968a, b; Chan, 1984).

Deflation technique

By assuming that the unit eigenvalue of B is simple, it can
easily be shown that any other solution will only differ
by an additive constant, i.e., a scalar multiple of 1Nv

. Let
p be any vector such that 1t

Nv
p = 1 and suppose that we

seek the solution of Eqn. 28.35 such that pt v = 0. Then
looking for this particular solution, Eqn. 28.35 becomes:

v = �B−1Nv
pt	v +G j 28.41

Under the assumption that pt v = 0, the matrix C = �B−
1Nv

pt	 is a deflation of B and has no unit eigenvalue, so
that �INv

−C	−1 = �INv
−B−1Nv

pt	−1 exists. Eqn. 28.35 can
be rewritten as:

⎡
⎣v1

v2

v3

⎤
⎦=

⎡
⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦
⎡
⎣v1

v2

v3

⎤
⎦+

⎡
⎣G1

G2

G3

⎤
⎦ �j� 28.42

and this system of equations can be solved by calculating:

v = �INv
−C	−1G j = �INv

−B−1Nv
pt	−1G j 28.43

where v satisfies pt v = 0.
Each vector v• is of size Nv• ×1, so if, for example, p is

defined by:

p = �0 0 � � � 0︸ ︷︷ ︸
Nv1

0 0 � � � 0︸ ︷︷ ︸
Nv2

p p � � � p︸ ︷︷ ︸
Nv3

�t 28.44

with p = 1/Nv3
, then pt v = 0 simply means that the mean

of v3 is zero. Therefore Eqn. 28.43 provides us with the
solution that is mean corrected over the scalp surface.

Partial solution for the scalp

The number of equations �Nv	 to solve in Eqn. 28.42 is
rather large, but only the direct relationship between the
source distribution j and the potential on the scalp v3,
i.e. the lead field between the sources and the scalp L,
is of interest in the EEG problem. After some algebraic
manipulations, Eqn. 28.42 can be rewritten as:

�1v3 = �2j 28.45

where

�1 = −
(
�C33 − INv3

	+�5C13 +�6C23

)
28.46a

�2 = G3 +�5G1 +�6G2 28.46b

and

�6 = �4�2 −�3 28.47a

�5 = �3�1 −�4 28.47b

�4 = C31

(
−�2C21 + �C11 − INv1

	
)−1

28.47c

�3 = C32

(
−�1C12 + �C22 − INv2

	
)−1

28.47d

�2 = C12

(
C22 − INv2

)−1
28.47e

�1 = C21

(
C11 − INv1

)−1
28.47f

By proceeding carefully, one has only to solve four sys-
tems of equations (28.47f, 28.47e, 28.47d and 28.47c) to
obtain �1 and �2. The matrices to invert are only of size
Nv1

and Nv2
, thus the calculation of �1 and �2 require

much less computational effort than inverting C, directly,
which is of size Nv = Nv1

+Nv2
+Nv3

. The lead field for all
nodal points on the scalp surface can then be obtained
from Eqn. 28.45 by calculating:

v3 = �−1
1 �2j = L j 28.48

where �1 is only of size Nv3
. It would of course be possible

to obtain a relation such as Eqn. 28.45 for the other two
surfaces.

It is important to note that �1 depends only on the
matrix C, i.e. on the geometry and the conductivity of
the volumes, but not on the source distribution j. By
pre-calculating and saving �−1

1 , �5 and �6, the lead field
matrix L can be calculated very easily for any source
distribution, using Eqns 28.46b and 28.48.

Partial solution for the electrode sites

In general, it is not necessary to calculate the potential V
over the entire scalp surface as the EEG is recorded from
a limited number of electrodes. Therefore, only the lead
field for the electrode sites, Lel is required:

v3
el = Lelj 28.49

In a realistic head model, the location of the electrodes
is defined relative to the triangular mesh of the scalp.
As the electrodes typically have a diameter of a few mil-
limetres, their location of can be approximated with the
nodal point directly underneath.
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A partial solution of Eqn. 28.45 for a few nodal points
is possible thanks to the Frobenius-Schur formula that
allows the partial calculation of the inverse of a matrix:

[
M N
P Q

]−1

=
[

M−1 +M−1N F−1P M−1 −M−1N F−1

−F−1P M−1 F−1

]
28.50

where M and Q must be square, and M and F = Q −
P M−1N must be invertible.

Considering that the Nel interesting (respectively, Not

other) nodal points are the last Nel (respectively, first Not)
elements of v3 � v3 = �vt

3
otv
t
3
el�

t, then Eqn. 28.45 can be
rewritten as:

[
M �N��
P �Q

]

︸ ︷︷ ︸
r1

[
v3
ot

v3
et

]

︸ ︷︷ ︸
v3

=
[

R

S

]

︸ ︷︷ ︸
r2

[
j

]
28.51

This partitioning of the vertices is not natural (as the
electrodes are spread over the scalp surface), but such
ordering may be obtained easily by permuting the rows
and columns in �1 and �2. The lead field for the electrode
sites can be obtained from the sub-matrices of �1 and �2

by:

Lel = [−F−1P M−1 F−1
]
�2 28.52

and only the two matrices F and M have to be inverted.
By using the simplified Eqn. 28.46b for �2, Eqn. 28.52

becomes:

Lel = [−F−1P M−1 F−1
]
��5G1 +�6G2 +G3	 28.53a

= �1G1 +�2G2 +�3G3 28.53b

where

�1 = [−F−1P M−1 F−1
]
�5 28.54a

�2 = [−F−1P M−1 F−1
]
�6 28.54b

�3 = [−F−1P M−1 F−1
]

28.54c

The three matrices �1, �2 and �3 depend only on the
geometry and conductivity of the head model. If they
are pre-calculated (and saved), the lead field Lel can be
calculated rapidly for any source distribution j using
Eqn. 28.53 (as only the matrices G have to be computed
before calculating Lel). This is of particular interest if the
location of the dipoles has to be modified; e.g. if a denser
mesh of dipoles is required in a linear distributed solu-
tion, or if an iterative procedure is used to optimize the
location of the ‘equivalent current dipoles’ (ECDs) in an
ECD-based solution of the inverse problem.

ANALYTIC SOLUTION OF THE BEM
EQUATION

The three sphere shell model in EEG

The analytic solution of the BEM form of Maxwell’s
Eqn. 28.12 is possible for particular volume models. One
such model, commonly used for EEG source localization,
is the ‘three sphere shell model’ (Figure 28.11). It com-
prises three concentric spheres of radius r1, r2 and r3, with
r1 < r2 < r3. The innermost spherical volume represents
the brain volume. The volume between the spheres of
radius r1 and r2 models the skull layer. The outer layer
volume, between radii r2 and r3, corresponds to the scalp.

We will assume that the brain and scalp volumes have
the same conductivity � , and that the skull volume has a
conductivity �sk  � . A current source dipole �m, located
at a height z on axis �ez, generates a potential distribu-
tion V��s	 on the surface of the outer sphere. In spherical
coordinates, i.e. �s = �s��
�	 as shown in Figure 28.12, this
potential is calculated by the following, from Ary et al.
(1981):

V��s��
�		 = 1
4��

�∑
n=1

2n+1
n

bn−1

[
��2n+1	2

dn�n+1	

]
28.55

[
nmzPn�cos �	+ �mx cos �+my sin �	P1

n�cos �	
]

where

• b = z/r3 is the eccentricity of the dipole
• mx, my and mz are the components of the dipole �m =

�mxmymz�
t along the main axes

• � = �sk/� is the relative conductivity of the skull vol-
ume to the conductivity of the brain and scalp volumes

• Pn�cos �	 and P1
n�cos �	 are Legendre and associated

Legendre polynomials

FIGURE 28.11 The ‘three sphere shell’ model is defined for
the ‘brain’, ‘skull’ and ‘scalp’ volumes by the radii r1, r2 and r3, and
conductivity �1, �2, and �3 respectively.
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FIGURE 28.12 Current source dipole in a three sphere shell
model: the dipole �m = �mxmymz�

t , located at a height z on axis
�ez, generates a potential distribution V��s	, with �s = �s��
�	, on the
surface of the outer sphere.

• dn is defined by:

dn = ��n+1	� +n�

[
n�

n+1
+1

]

+ �1−�	��n+1	� +n��f 2n+1
1 −f 2n+1

2 	 28.56

−n�1−�	2

(
f1

f2

)2n+1

with f1 = r1/r3 and f2 = r2/r3.

Any source location can be reduced to this configuration,
i.e. current dipole located on the z axis, by a couple of
rotations Even though the potential V��s	 is expressed as
an infinite sum of terms, it is only necessary to calculate a
few tens of them, as the terms converge rapidly to zero.2

The analytic expression of the potential for more
complicated models can be found in the literature:
four spheres with different conductivity (Arthur and
Geselowitz, 1970; Cuffin and Cohen, 1979), cylindrical
volume (Lambin and Troquet, 1983; Kleinermann et al.,
2000) or cubic volume (Ferguson and Stroink, 1994).

Spherical model in MEG

The signal measured in MEG is generally the radial field
component Br because of the position and geometry of
the sensors. If the head model is spherically symmetric,
like the three sphere shell model, there is no contribution

2 There also exists a closed-form approximation that requires
less computational effort (at the cost of some minor error) as
shown by Sun (1997).

of the return (or volume) current �jr to the radial field
component Br . Therefore, the radial field Br outside the
head model can be obtained analytically by:

Br��r	 = �0

4�

∫
volbr

�jf ��r ′	× �r −�r ′

��r −�r ′�3 ��erdv′ 28.57

where volbr is the brain volume containing the imposed
current sources �jf ��r ′	 and �er is the unit vector in the radial
direction.

If the current sources are modelled by discrete dipoles
as in Eqn. 28.20, then the magnetic lead field becomes:

Br��r	 = − �0

4�

Nj∑
i=1

�jf ��r ′
i 	×�r ′

i ��er

��r −�r ′
i �3

28.58

where the origin �o of space is placed at the centre of the
sphere.

This expression highlights three important features of
the MEG lead field calculated for a spherical model:
(1) a source at the centre of the sphere will produce no
magnetic field outside; (2) MEG will only be sensitive
to the tangential component of the current sources; and
(3) the lead field is not affected by the layers surrounding
the brain volume, especially the poorly conducting skull.

DISCUSSION

Limitations of the BEM numerical solution

The lead field obtained with the BEM approach is affected
by numerical errors due to the approximations employed.
The main sources of errors are the limited number of
nodal points, where the potential is actually estimated,
and the way the potential is interpolated between those
points. The CoG and LPV approximations can be inter-
preted as zeroth and first-order approximations respec-
tively.

For sources far away from any surface, i.e. relatively
deep sources, the constant or linear approximation will
be sufficient to model the potential distribution over the
tessellated surfaces. Errors appear when these approx-
imations do not hold anymore, i.e. when the distance
between the source and the surface becomes small com-
pared to the (mean) distance between nodal points (Meijs
et al., 1989; Schlitt et al., 1995; Ferguson and Stroink,
1997; Fuchs et al., 1998). Figure 28.13 shows the difference
(mean relative difference measure, RDM) between the
lead field estimated analytically, va, and with the BEM
approach, vBEM as a function of the eccentricity of the
dipoles in a three sphere shell model:

RDM =
√∑N

i=1�va
i −vBEM
i	2∑N
i=1 va
i

2
28.59
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FIGURE 28.13 In a three sphere shell model, both analytical
and BEM solutions are calculated for sources placed at different
eccentricities. The lead fields obtained are compared using a relative
difference measure (RDM). The mean RDM is plotted as a function
of the sources eccentricity.

The difference between the exact analytic solution and
the approximated BEM solution increases abruptly when
the source is placed close to the inner skull surface. Note
that this problem is also the same with other numerical
approaches such as the FEM (Marin et al., 1998).

Accuracy could be improved by higher order approx-
imation of the potential on the tessellated surface, at
the cost of increased computational load and complex-
ity. Other improvements have been suggested, such as
the ‘linear Galerkin’ approximation (Mosher et al., 1999),
or the ‘isolated skull approach’ (Hämäläinen and Sarvas,
1989). Still, whatever the complexity of the mesh ele-
ments, there will always be errors caused by replacing a
smooth surface with a polyhedron.

Anatomically constrained spherical head
model

The three sphere shell model can be used directly to
model a subject’s head. If images of the subject’s head
and/or the electrode locations are not available, then a
standard spherical model can be used. The electrode loca-
tions are fixed according to the system used, for example
the classic 10-20 system. If anatomical information and
the electrode locations are available, then the spherical
model can be adjusted to the subject’s head. The spherical
model can be either fitted to the overall head shape (or to
all the electrodes simultaneously), or fitted locally to the
area with the largest EEG activity. The former ensures
a global fit of the model to the subject’s anatomy, while
the latter offers a better fit just for the area of interest.

Whatever the approach adopted, the human head
is clearly not spherical and the brain volume, i.e. the

source space, will not fit in some areas. For example (see
Plate 37, colour plate section), when globally fitting the
three sphere shell model to the scalp surface, the frontal
and occipital lobes protrude beyond the sphere model,
and the temporal lobes are too deep within. To over-
come these modelling errors, an anatomically constrained
spherical head model was proposed by Spinelli et al.
(2000). In order to retain the simplicity of the three sphere
shell model, the anatomy of the head is itself transformed
to a best fitting sphere. The spherical transformation and
the lead field of the sources are obtained as follows:

1 From an anatomical image, the scalp surface (it could
also be the inner skull surface or both) is extracted and
tessellated with a regular mesh.

2 The best fitting sphere is estimated with this scalp
mesh. The spherical model is defined by its centre �csphere

and radius Rsphere.
3 The source locations inside the brain volume can be

expressed in spherical coordinates �Rsb
 �
�	 around
the best fitting sphere centre. The radius of each
source depends on its longitude and latitude, i.e. Rsb =
Rsb��
�	. Similarly, the radius of the scalp surface in
the direction ��
�	 of any source is given by Rscalp =
Rscalp��
�	.

4 Then the brain volume, i.e. source space, can be ren-
dered spherical by scaling the radius of all the source
locations (Plate 38) like this:

Rsb
sphere��
�	 = Rsb��
�	
Rsphere

Rscalp��
�	
28.60

5 The lead field for the re-located sources �Rsb
sphere
 �
�	,
can then be estimated in the spherical model in the
usual way.

This process clearly modifies the solution space, intro-
ducing discrepancies between the anatomy of the subject
and the model. However, compared to the simple best
fitting sphere model and the BEM numerical approach,
the anatomically constrained spherical head model offers
two main advantages. First, even though the solution
space is warped, the relative depth of sources is pre-
served: superficial (resp. deep) sources remain close to
(resp. far from) the scalp surface and the electrodes. This
is crucial, as the strength of the lead field depends on the
distance between the source and the electrodes. Second,
the analytic solution of the forward problem can be used
to calculate the lead field. This provides a fast and accu-
rate estimation, free from numerical errors that attend
the BEM equations. The anatomically constrained spher-
ical head model may be a good compromise between
anatomical accuracy and computational efficiency.

This concludes our treatment of the forward model for
M/EEG. In the next chapter, we look at the inversion of
this model to estimate distributed sources in the brain.
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Bayesian inversion of EEG models
J. Mattout, C. Phillips, J. Daunizeau and K. Friston

INTRODUCTION

In this chapter, we consider a generative model for
evoked neuronal responses as observed with elec-
troencephalography (EEG) and magnetoencephalogra-
phy (MEG). Because of its linear and hierarchical nature,
this model can be estimated efficiently using empirical
Bayes. Importantly, multiple constraints on the source
distribution can be incorporated in terms of variance
components that are estimated from the data. A dual
estimation is obtained via an expectation maximization
(EM) scheme to give the restricted maximum likelihood
(ReML) estimate of the prior covariance components (in
terms of hyperparameters) and the maximum a posteri-
ori (MAP) estimate of the sources. The Bayesian formal-
ism yields a generic approach to source reconstruction
under multiple constraints, which is extended to cover
spatio-temporal models for induced responses in the next
chapter.

Background

The problem of recovering volume current sources from
superficial electromagnetic measurement is intrinsically
ill-posed. This means the spatial configuration of neu-
ronal activity cannot be determined uniquely, based
on EEG and/or MEG recordings alone (Nunez, 1981).
To resolve the non-uniqueness of this inverse prob-
lem, assumptions about the solution are necessary for a
unique solution. There are two approaches to this:

• Equivalent current dipole (ECD) approaches, where
the M/EEG signals are assumed to be generated by a
relatively small number of focal sources (Miltner et al.,

1994; Scherg and Ebersole, 1994; Scherg et al., 1999;
Aine et al., 2000).

• Distributed linear (DL) approaches, where all pos-
sible source locations are considered simultaneously
(Backus and Gilbert, 1970; Sarvas, 1987; Hamalainen
and Ilmoniemi, 1994; Grave de Peralta Menendez and
Gonzalez Andino, 1999; Pascual-Marqui, 1999; Uutela
et al., 1999).

In the context of distributed models, constraints or
priors can be introduced probabilistically using Bayes.
The major problem here is the handling of multiple con-
straints and their appropriate weighting, in relation to
each other and observation noise (Gonzalez Andino et al.,
2001). In Phillips et al. (2002a), we introduced a simple
restricted maximum likelihood (ReML) procedure to esti-
mate a single hyperparameter, i.e. the balance between
fitting the data and conforming to the priors. Here,
we reformulate the implicit weighted minimum norm
(WMN) solution in terms of a hierarchical linear model.
With this approach, any number of constraints (or priors)
on the source or noise covariance matrices can be intro-
duced. An expectation maximization (EM) algorithm is
used to obtain an ReML estimate of the hyperparameters
associated with each constraint. This enables the MAP
solution for the sources to be calculated uniquely and
efficiently.

This chapter is divided into five sections. In the first
three sections, the theoretical background and opera-
tional details of the approach are described. The first
section introduces the WMN solution in a Bayesian
framework, while the second and third sections intro-
duce the hierarchical parametric empirical Bayes (PEB)
framework and ReML approach, respectively. The two
last sections give some examples of the application of
ReML in comparison with classical approaches, using
EEG and MEG data.
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THE BAYESIAN FORMULATION OF
CLASSICAL REGULARIZATION

The instantaneous source localization problem in EEG
can be summarized as:

v = F�r� j�+� 29.1

where v, a vector of size Ne ×1, is the potential at Ne elec-
trodes; r and j are the 3×1 vectors of source location and
moment; � is the additive noise. F is a function linking
the source �r� j� and the potential v. The function F is the
solution of the forward problem (i.e. the forward model)
and depends only on the head model (conductivities and
spatial configuration).

For Nd sources defined by ri and ji�I = 1�K�Nd�, the
source localization problem Eqn. 29.1 can be rewritten,
by appeal to the superposition theorem, as:

v =
Nd∑
i=1

F�ri� ji�+� 29.2

In this chapter, sources of the M/EEG signal are mod-
elled using current dipoles, either on a three-dimensional
grid throughout the brain (see fourth section) or on a
discrete three-dimensional manifold that corresponds to
the cortical surface (see fifth section). This represents a
distributed linear approach where Nd is much smaller
than Ne. Because the location ri of each current source i
is now fixed, Eqn. 29.1 becomes an underdetermined but
linear problem:

v = Lj +� 29.3

where j now indicates a vector of current dipoles at
Nd locations and L is the lead field matrix linking the
source amplitudes j to the electrical potential v. If the
source orientation is free, then j = �j1� j2� � � � � jNd

�T , where
ji = �jx�i� jy�i� jz�i�

T encodes both orientation and ampli-
tude of the i-th dipole. Otherwise, for oriented sources,
j = �j1� j2� � � � � jNd

�t, where each ji specifies only the ampli-
tude. For discrete data, with Nt time bins, Eqn. 29.3 can
be expressed as a multivariate linear model:

V = LJ +� 29.4

with V = �v1�v2� � � � � vNt
�, J = �j1� j2� � � � � jNt

� and � =
��1��2� � � � � �Nt

� where vi, ji and �i are the potential,
source parameters and additive noise at the ith time
sample.

Weighted minimum norm and Bayesian
solutions

As mentioned above, the source localization problem is
intrinsically ill posed. With the DL approach, we face
the linear but under-determined problem expressed in
Eqn. 29.4. One common approach to this problem is the
weighted minimum norm (WMN) solution or Tikhonov
regularization method (Tikhonov and Arsenin, 1977),
in which the a priori regularization constraints have a
Bayesian interpretation.

The WMN solution constrains the reconstructed source
distribution by minimizing a linear mixture of some
weighted norm �Hj� of the source amplitudes j and
the residuals of the fit. Assuming noise is Gaussian � ∼
N�0�C�� with a known covariance matrix C�, the regular-
ized problem is expressed as:

ĵ = min
j

(∥∥C−1/2
� �Lj −v�

∥∥2 +	�Hj�2
)

= min
j

(
�Lj −v�T C−1

� �Lj −v�+	jT HT Hj
) 29.5

where the hyperparameter 	 expresses the balance
between fitting the model

∥∥C−1/2
� �Lj −v�

∥∥ and minimiz-
ing the a priori constraint �Hj�. The solution of Eqn. 29.5
for a given 	 is:

ĵ = Tv 29.6

where, using the matrix inversion Lemma:

T = �LT C−1
� L+	HT H�−1LT C−1

�

= �HT H�−1LT �L�HT H�−1LT +	C��
−1

29.7

The important connection with Bayesian estimates
rests on Gaussian assumptions, under which the condi-
tional expectation of the source amplitudes j is:

ĵ = �LT C−1
� L+C−1

j �−1LT C−1
� v

= CjL
T �LCjL

T +C��
−1v

29.8

where Cj is the prior covariance of the sources. Compar-
ing Eqn. 29.8 with Eqn. 29.7 provides the motivation for
choosing forms of H , where:

	HT H = C−1
j 29.9

In other words, H specifies the form of the precision or
our prior belief on where sources are expressed (precision
is the inverse of the variance).

In summary, the WMN solution depends on the hyper-
parameter 	 that balances the relative contribution of
fitting the model (or likelihood of the data) and the con-
straint on the solution (or prior). As 	 varies, the regular-
ized solution ĵ	 also changes. Therefore, the choice of 	 is
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crucial. A heuristic way to understand the properties of
ĵ	 is to plot the weighted norm of the regularized solution∥∥∥Hĵ	

∥∥∥, against the norm of the residuals
∥∥∥C−1/2

� �Lĵ	 −v�
∥∥∥

for different values of 	. The ensuing curve has an L
shape (in ordinary or double logarithmic scale), hence
its name L-curve (see Appendix 29.1). A satisfactory 	
would lie close to the inflection of the L-curve (Hansen,
1992). A major disadvantage of the L-curve approach is
that solutions must be calculated for a large number of
values of 	 to find an appropriate level of regularization.
Moreover, the L-curve approach cannot be extended to
estimate multiple hyperparameters. This would require
an extensive search in hyperparameter space to deter-
mine the inflection in a hyperplane (Brooks et al., 1999).

In Phillips et al. (2002a) we introduced an iterative
restricted ML (ReML) procedure to estimate 	 while cal-
culating ĵ for the simple case of one hyperparameter. In
the following section, we extend the approach to solve
the generalized WMN problem with multiple hyperpa-
rameters, thereby determining the relative contribution
of different priors to the solution.

A HIERARCHICAL OR PARAMETRIC
EMPIRICAL BAYES APPROACH

The source localization problem can be expressed in the
context of a two-level hierarchical parametric empirical
Bayes (PEB) model:

v = Lj +��1�

j = 0+��2�
29.10

where both random terms have a Gaussian distribution
with zero mean:

��1� ∼ N�0�C��

��2� ∼ N�0�Cj�
29.11

Within this framework, the covariance matrices C
 and
Cj , which are equivalent to those in Eqn. 29.5, can be
modelled as a linear combination of covariance compo-
nents:

C� = 	�1�
1 Q�1�

1 +	�1�
2 Q�1�

2 + � � �

Cj = 	�2�
1 Q�2�

1 1 +	�2�
2 Q�2�

2 + � � �
29.12

where the [restricted] maximum likelihood estimates of
	 = 	�1�

1 �	�1�
2 � � � � �	�2�

1 �	�3�
2 can be identified using expec-

tation maximization (EM) (see Appendix 3 for the oper-
ational details). This allows one to compute C�	�� and

C�	�j , and the conditional expectation of the sources
ĵ using Eqn. 29.8.

In this hierarchical model, the unknown parameters j
are assumed to be Gaussian variables with zero mean
(i.e. have shrinkage priors). Regional variance can be
increased to render sources at some locations more likely.
A source with a larger prior variance is less constrained
and is more likely to be different from zero. Eqn. 29.12
furnishes a better approximation of the sources’ covari-
ance Cj when its exact form is not known a priori.
A variety of components can be used simultaneously, but
the relative weight of each constraint is not fixed. This is
particularly important when, for instance, spatial coher-
ence and explicit location priors are used together. For
example, some sources can be specified as a priori more
active: this can be based on prior knowledge or derived
from functional magnetic resonance imaging (fMRI) mea-
sures of brain activity. Introducing priors from fMRI in
terms of covariance components is natural because fMRI
provides only spatial information at the temporal scale of
M/EEG. Note that specifying priors in terms of covari-
ance components means that sources can be expressed
preferentially in different parts of the brain. This should
be contrasted with a prior specification in terms of pre-
cision components, where sources are precluded from
being expressed in areas of high precision. The former
is more appropriate because it enables permissive pri-
ors as opposed to restrictive priors. For example, each
fMRI activation blob could be used as a prior covariance
component, which means sources can be expressed in
each blob.

Similarly, the noise covariance matrix C� can be mod-
elled more accurately with a mixture of components. For
example, an independent and uniform noise component
over electrodes can be introduced by defining Q�1�

1 as
the identity matrix. Covariances among electrodes can be
introduced in Q�1�

2 , which is generally estimated from the
data (e.g. within the prestimulus interval of the event-
related potential (ERP)). If a subset of electrodes picks
up more noise than the others, this can also be modelled
in Q�1�

2 .
By selecting the EEG episode carefully, during which

the hyperparameters are stationary, the EM algorithm
favours the relevant priors by increasing their hyperpa-
rameters and suppresses the others by rendering their
hyperparameters very small.

RESTRICTED MAXIMUM LIKELIHOOD

In practice, the hierarchical model is inverted by
minimizing the ReML objective function with respect
to the hyperparameters (see Appendix 3). The critical
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aspect of this inversion is that it can proceed in channel
space. This means the size of the matrices are relatively
small and the inversion is extremely quick. The two-level
model in Eqn. 29.10 can be collapsed into a single equa-
tion:

v = L��2� +��1� 29.13

This means the covariance Cv of the channel data1 has
the following components:

Cv = LCjL
T +C�

= 	�1�
1 Q�1�

1 +	�1�
2 Q�1�

2 +· · ·+	�2�
1 LQ�2�

1 LT +	�2�
2 LQ�2�

2 LT +· · ·
29.14

where only the hyperparameters are unknown and can
be estimated using restricted maximum likelihood, as
described in Appendix 4. This gives the same [restricted]
maximum likelihood estimate as the M-step of the EM
algorithm, but does so in a computationally expedient
way, by variance partitioning in sensor-space. To get very
precise estimates of the hyperparameters one can use
multiple observations to calculate the covariance matrix
Cv ≈ vvT . This sample covariance can be based on succes-
sive time bins, assuming that the noise and prior covari-
ances are locally stationary. Although not pursued here,
it is also possible to use instantaneous estimates of Cv

sampled from the same time bin of multiple trials.

APPLICATION TO SYNTHETIC
MEG DATA

In this section, we illustrate the ReML scheme using
simulated MEG data. Further details about these
simulations and results can be found in Mattout et al.
(2006) and Chapter 35.

The simulated data

To simulate MEG data, a 3D high resolution (voxel
size: 0�9375 mm×0�9375 mm×1�5 mm) MRI volume from
a healthy volunteer was segmented. The boundary
between white and grey matter was approximated with
small triangles whose vertices provided about 7000
dipole locations spread uniformly over the cortex. We

1 We refer to Cv as a covariance matrix but, strictly speaking, it is
just a second order matrix. Covariance matrices are second order
matrices of mean corrected variables, whereas our variables are
usually baseline corrected.

computed the forward operator L for this dipole mesh,
using a single-shell spherical head model (Sarvas, 1987).

MEG data were simulated over 130 sensors, by acti-
vating two extended sources. Each source was a clus-
ter comprising one randomly chosen dipole and its four
nearest neighbours. The extent of each simulated source
was about 5 mm in radius. The activation was mod-
elled with a half-period sine function (over 15 time bins).
A delay of two time bins was applied to waveforms of
the two sources. After projection onto sensor space, white
Gaussian noise was added �SNR = 20 dB�.2 Five hundred
data sets were simulated to compare the ReML approach
with the classical WMN estimation based on the L-curve
approach and to study the performance of the ReML
scheme under various combinations of priors.

The priors

At the sensor level, we consider a single measurement
noise component defined by Q�1�

1 = INe
, i.e. independent

measurement noise on each sensor with identical vari-
ance. INe

is the Ne ×Ne identity matrix. At the source level,
three types of priors are considered, either individually
or together.

Smoothness constraint

This is defined by the covariance component:

Q�1�
S �i� j� = exp�−d2

ij

/
2s2� 29.15

where dij is the distance3 between dipoles i and j.
The spatial smoothness parameter was s = 8 mm. Like
LORETA (Pascual-Marqui et al., 1994), this prior enforces
correlation among neighbouring sources.

Intrinsic functional constraint

Multivariate source prelocalization (MSP) provides, from
the normalized MEG data itself, an estimate �i of the
likelihood of activation at each source location (Mattout
et al., 2005). These estimates can be incorporated as quan-
titative priors. They can also provide a substantial reduc-
tion of the inverse solution space by only considering the
dipoles that are most likely to be active. For each simu-
lated source configuration we restrict the solution space

2 SNR stands for signal-to-noise ratio and is here expressed in
decibels, i.e. SNR = log10�As/An�, where As (resp. An) refers to
the maximum absolute signal (resp. noise) value. An SNR of
20 dB thus corresponds to a 10 per cent noise level.
3 The Euclidian distance was used for these simulations. How-
ever, the smoothness constraint as implemented in SPM5 uses
the geodesic distance over the cortical surface.
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to the 1500 dipoles with the highest likelihood of acti-
vation. Within this subset, the intrinsic prior covariance
component is the leading diagonal matrix:

Q�2�
i �i� i� = �i 29.16

Extrinsic functional constraints

The third constraint we consider is based on data from
other imaging modalities, typically fMRI, and enters sim-
ply as a binary mask. This mask distinguishes quali-
tatively between a priori active and non-active cortical
areas. The corresponding prior source variance compo-
nent is defined by the leading diagonal matrix:

Q�2�
e �i� i� = 1 29.17

when the source is part of an active area, and zero oth-
erwise. We modelled two sorts of extrinsic priors – valid
Q�2�

e and invalid Q̃�2�
e (Figure 29.1) – because we were

interested in the impact of invalid priors, particularly in
the context of multiple priors. In this instance, there is an
opportunity to discount invalid priors in favour of valid
priors.

Results

Since the L-curve approach can only accommodate a sin-
gle constraint, the classical WMN provides only four
solutions for each data set, one per source prior, whereas
ReML provides nineteen, corresponding to all possible
mixtures of priors. Here we use the receiver operating
characteristic (ROC) to evaluate and compare the various
source estimates. The ROC characterizes inverse meth-
ods in terms of correctly classifying each dipole, as either
active or not. For each estimate of the source distribution,
a ROC curve represents the true positive rate (sensitiv-
ity) versus the false positive rate (1−specificity). The area
under the curve (AUC) quantifies the overall power. The
AUC ranges between 0 and 1, indicating the probability
of correct separation of an active source from a non-active
one. Comparing the AUC of different inverse models
allows one to assess the relative performance of methods
and sets of priors.

Table 29-1 shows the averaged AUC value over our sim-
ulations. We analysed the AUC using analysis of vari-
ance (ANOVA). The main effect of method (ReML versus

FIGURE 29.1 Synthetic EEG data: data without noise (top left). Same data with added noise, at different SNRs: 4 (top right), 12 (bottom
left), 100 (bottom right).
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TABLE 29-1 Mean values of the AUC for the WMN and
ReML approaches and different priors

AUC Prior models ReML WMN

1 constraint Q
�2�
s 0�7833 0�777

Q
�2�
i 0�7944 0�7746

Q
�2�
e 0�8560 0�8560

Q̃
�2�
e 0�4994 0�4994

2 constraints Q
�2�
s 0�7999

Q
�2�
i

Q
�2�
s 0�8211

Q
�2�
e

Q
�2�
s 0�7931

Q̃
�2�
e

Q
�2�
i 0�8211

Q
�2�
e

Q
�2�
i 0�7962

Q̃
�2�
e

Q
�2�
i 0�8536

Q̃
�2�
e

3 constraints Q
�2�
s 0�8211

Q
�2�
i

Q
�2�
e

Q
�2�
s 0�7972

Q
�2�
i

Q̃
�2�
e

Q
�2�
s 0�8211

Q
�2�
e

Q̃
�2�
e

Q
�2�
i 0�8211

Q
�2�
e

Q̃
�2�
e

4 constraints Q
�2�
s 0�8206

Q
�2�
i

Q
�2�
e

Q̃
�2�
e

WMN) proves highly significant (F�1� 499� = 1�01; p <
0�001), implying a much better source detection profile
with ReML. Since the ReML and WMN approaches dif-
fer only in the way they estimate the hyperparameters,
these results suggest that the ReML estimates of the bal-
ance between the priors and data fit are significantly better
than obtained with the traditional L-curve approach.

When using ReML, the effect of the valid extrinsic prior
can be assessed by a two-by-seven ANOVA, whose factors
are the inclusion or not of the valid extrinsic prior and the
seven possible prior models. The main effect on the valid
extrinsic prior was highly significant (F�1� 499� = 2565�272;
p < 0�001). This shows that relevant priors are properly
assigned a high weight, even in the context of invalid
or irrelevant priors. Conversely, any deterioration in the
reconstruction,duetotheinclusionoftheinvalidprior,was

insignificant (F�1� 499� = 0�140p < 0�708). Again, this is
important because it shows that irrelevant priors are prop-
erly discounted by the inversion.

APPLICATION TO SYNTHETIC
EEG DATA

The simulated data

We used a simplified head model that comprises 1716
dipoles distributed uniformly on a horizontal grid (with
a maximum of 24 sources along a radius), within a three-
sphere shell model. Twenty-seven electrodes were placed
on the upper hemisphere according to a pseudo 10–20
electrode setup. The orientation of each source was fixed
and the lead-field for all sources was calculated ana-
lytically (Ary et al., 1981). Two hundred locations were
selected randomly to assess the efficiency of the ReML
approach. At each of these locations an instantaneous dis-
tributed source set j0 was generated as a set of connected
dipoles within a 1.5 grid-size radius of a ‘central’ dipole.
On average, each source comprised about nine dipoles.
Each source vector j0 was modulated over time to gen-
erate a time series J0. Data with different SNRs were
obtained by adding scaled white noise ��1� to the noise-
free data V = LJ0 +�. Three levels of noise were used by
adopting an SNR of 4, 12 and 100. The electrical potential
at electrodes, over time, with these three SNRs are shown
in Figure 29.1.

The priors

We considered three kinds of priors on the sources.

Spatial coherence

This component was constructed using anatomically
informed basis functions (IBFs) based on grey matter
density and a spatial smoothness kernel (Phillips et al.,
2002b, 2005). It comprised a leading diagonal matrix of
eigenvalues of the principal IBFs that was rotated into
source space (and then projected onto channel space).
This prior implies that the basis functions in source space,
with the highest eigenvalues, are more likely to represent
the source activity, ensuring a smooth solution.

Depth constraint

To ensure that sources contribute to the solution equally,
irrespective of their depth (Ioannanides et al., 1990;
Gorodnitsky et al., 1995; Grave de Peralta Menendez
and Gonzales Andino, 1998), deeper sources are given a
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larger prior variance than superficial sources. The depth
is indexed by the norm of the gain vector for each source.
This covariance component is defined by the leading
diagonal matrix diag�LT L�−1.

Location priors

These were introduced as leading diagonal matrices
whose elements encode the prior probability of whether
the source is active or not. As above, these extrinsic func-
tional priors take values of zero (the prior variance is not
affected), or one (the prior variance increases with the cor-
respondinghyperparameter).Threedifferent typesof loca-
tion priors are considered, either separately or together:

1 accurate priors, centred on the active source set
2 close inaccurate priors, located between 6 and 16 grid-

size from the truly active source
3 distant inaccurate priors, located between 24 and 48

grid-size from the truly active source.

Each simulation condition (SNR, priors) was assessed
for the 200 different source configurations.

Results

Figure 29.2 and Plate 39 (see colour plate section) show
the reconstructions obtained with the various constraints

FIGURE 29.2 Example of a source configuration used in the
simulations (top left) and the corresponding priors; accurate location
priors (top right), and inaccurate location priors (close, bottom left,
and distant, bottom right).

TABLE 29-2 Localization error (mm) for the three SNRs
and the four location priors (none, accurate, inaccurate and

both accurate and inaccurate)

Localization error Low Medium High

No priors 6 4 10
Accurate priors 4 4 4
Close inaccurate

priors
12 15 13

Distant inaccurate
priors

34 32 32

Accurate and close
inaccurate priors

4 4 4

Accurate and distant
inaccurate priors

4 4 4

described above. To evaluate the performance of the
inversion we used a lower bound on the localization
error such that 80 per cent of the sources are recov-
ered within this bound (Table 29-2). Table 29-3 provides
the mean and standard deviation of the hyperparame-
ter of the noise component. This estimate is relatively
stable over simulations. It reflects accurately the actual
variance of noise, i.e. 2.3 (low SNR), 0.26 (medium
SNR) and 0.0037 (high SNR). Although the estimated
noise variance is accurate, the standard deviation of its
estimate is much smaller when accurate location pri-
ors are used. The inclusion of accurate location priors
seems to help the partitioning of signal variance into
its components, namely, source activity and additive
noise. For some sources, the noise variance was greatly
over-estimated.

Finally, Table 29-4 gives the mean and standard devi-
ation of the hyperparameters pertaining to the source
variance components. Note that some hyperparameters
are negative. This simply means that the corresponding
covariance component is used to reduce the (co)variance
of the sources. The combination of all the covariance
components should always lead to a positive definite
(co)variance matrix estimate. In general, the hyperparam-
eters decrease as the SNR increases, except when inac-
curate location priors are used in isolation. The use of
accurate location priors has a large influence on the other
priors. Indeed, the hyperparameter corresponding to the
accurate location priors is several orders larger than any
other hyperparameter (i.e. the spatial coherence, depth
or inaccurate location priors). Apart from the hyperpa-
rameter corresponding to the accurate location priors, the
hyperparameters vary over a relatively large range and
can have positive or negative values depending on the
source, the noise and the priors. Generally, the standard
deviation of the hyperparameters estimates decreases as
the SNR increases.
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TABLE 29-3 Mean and standard deviation of the hyperparameters of the noise component∗

Hyperparameters Low SNR Medium SNR High SNR

Without accurate location priors 2�3 ± 0�15 0�26 ± 0�038 0�0082±0�047
With accurate location priors 2�3 ± 0�04 0�26±0�0065 0�0037 ±0�00012

∗The precision of this estimate depends mainly on the presence or absence of accurate location priors. Therefore, the
simulations without any location priors and with inaccurate location priors are pooled in the category ‘Without accurate
location priors’. Similarly, results obtained ‘With accurate location priors’ cover simulations with accurate location priors,
with and without inaccurate location priors.

TABLE 29-4 Mean and standard deviation of the hyperparameters pertaining to the sources’ prior variance components

Hyperparameters SNR Spatial coherence Depth constraint Accurate location Inaccurate location

No location priors Low −0�5±1�9 6�8±14�0 – –
Medium −0�35±1�7 5�6±12�0 – –
High −0�058±1�3 3�1±8�8 – –

Accurate location priors Low 0�016±0�043 −0�2±0�32 16±4�1 –
Medium 0�0073±0�0097 −0�72±0�076 9�1±1�9 –
High 0�00016±0�00032 −0�0016±0�0026 6�9±1�6 –

Inaccurate location priors Low −0�39±1�7 5�6±1�3 – 4�7 ±1�9
Medium −0�41±1�5 5�5±11 – 18±72
High −0�092±1�2 2�9±7�9 – 70±300

Accurate and inaccurate Low 0�021±0�064 −0�23±0�49 16±4�4 −0�15±0�36
location priors Medium 0�088±0�014 −0�082±0�11 9�4±2�1 −0�076±0�14

High 0�00017 ±0�00034 −0�0016±00�0029 6�9±1�6 −0�0021±0�013

CONCLUSION

The hierarchical PEB-ReML approach presented here
provides efficient and optimal estimators of M/EEG
evoked responses. Our analyses of synthetic EEG and
MEG data show that: the noise variance estimate is accu-
rate and consistent; localization and detection error is
greatly reduced by the introduction of valid location
priors; and the further introduction of invalid priors had
no effect on the reconstruction.

Combining data obtained from different modalities
within the same framework can overcome the intrinsic
limitations (on temporal or spatial resolution) of any one
modality. In this chapter, we have outlined a way in
which structural and functional MRI data can be used as
priors in the estimation of M/EEG sources. Crucially, we
have illustrated the role of ReML hyperparameter esti-
mates in modelling the relative contributions of M/EEG
residuals and fMRI-based priors to the estimation.

Classical approaches to noise regularization of
distributed linear solutions are usually empirical and
proceed on a trial-and-error basis: the level of regular-
ization is adapted manually such that the ensuing solu-
tion and assumed noise component seem reasonable. In
contrast, the ReML procedure successfully controls the
noise regularization by a hyperparameter in a principled

and unique way. Even at constant SNR, the values of
the hyperparameters vary over a wide range. The value
of the hyperparameters depends on the source config-
uration and the distribution of potentials it generates
over the scalp. Therefore, any fixed value of the hyper-
parameters can lead to suboptimal solutions. This is an
important point and a fundamental motivation for the
adaptative ReML estimates proposed here. For example,
some sources may arise in cortical regions where priors
can be specified very precisely leading to large hyperpa-
rameters. In other regions, priors may be less informative
rendering a smaller value of the hyperparameter more
appropriate. The flexibility afforded by parameterizing
the priors in terms of hyperparameters lies in being able
to specify the components of the noise and prior source
covariances without fixing their relative contributions.
These contributions are scaled by the hyperparameters
that we estimated using ReML. The advantage of this
approach is that the relative importance of the likeli-
hood of, and priors on, the solution can be determined
empirically. In other words, they can shape themselves
in relation to observation error and each other.

In this chapter, we have focused on the face validity
of Bayesian inversion (i.e. showing that the scheme does
what it is supposed to do). It is also fairly easy to estab-
lish the construct validity in terms of neurobiological
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plausibility. The example in Plate 40 shows that the ReML
scheme localizes face-selective responses to the appropri-
ate part of the fusiform gyrus. In this instance, intrinsic
functional priors produced the best results. Clearly, one
cannot assess the intrinsic quality of the priors based
on the solution. However, the ReML objective function
(which is also the variational free energy – see Chapter 24)
can be used for model comparison and selection, i.e.
to evaluate different reconstructions obtained from dif-
ferent sets of priors (Mattout et al., 2006). This will
be the subject of Chapter 35. In the next chapter, we
extend the instantaneous model described above to cover
peristimulus time and generalize the inversion to pro-
vide conditional estimates of both evoked and induced
responses.

APPENDIX 29.1
THE L-CURVE APPROACH

The L-curve heuristic involves estimating the WMN
solution for various values of hyperparameter 	 (see
Eqn. 29.5 and Eqn. 29.7). A plot of the norm of the prior
term against the norm of the data fit leads to an L-shape
curve whose inflection point indicates an optimal hyper-
parameter. This amounts to maximizing the following:

−1
2

�v−Lĵ	�T C−1
� �v−Lĵ	�− 1

2
ĵT
	 C−1

j j	 29.A1

A precise estimation entails an exhaustive scanning
of hyperparameter space. This is one drawback of the
approach, namely, the need for a large number of esti-
mations to find an appropriate level of regularization.
We use L-curve analysis as a reference for the estimation
of single hyperparameters in the WMN simulations.
Practically, we use:
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29.A2

with thirty values of �. This ensures an L-curve with a
relatively fine sampling in the vicinity of its inflection.
Note that the L-curve minimization criterion is a poor
approximation to the ReML (EM) objective function (see
Appendix 3):
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which accounts properly for uncertainty in the source
estimates.
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C H A P T E R

3

Modelling brain responses
K. Friston and K. Stephan

INTRODUCTION

In the previous chapter, we focused on the practical
issues encountered in the analysis of neuroimaging data.
In this chapter, we look at modelling in a more principled
way; placing statistical parametric mapping in the larger
context of modelling distributed brain responses. Infer-
ences about the functional organization of the brain rest
on models of how measurements of evoked responses
are caused. These models can be quite diverse, ranging
from conceptual models of functional anatomy to math-
ematical models of neuronal and haemodynamics. The
aim of this chapter is to introduce the key models used
in imaging neuroscience and how they relate to each
other. We start with anatomical models of functional
brain architectures, which motivate some of the funda-
ments of neuroimaging. We then reprise basic statistical
models (e.g. the general linear model) used for making
classical and Bayesian inferences about where neuronal
responses are expressed. By incorporating biophysical
constraints, these basic models can be finessed and, in a
dynamic setting, rendered causal. This allows us to infer
how interactions among brain regions are mediated. The
chapter serves to introduce the themes covered in the
final three parts of this book.

We will review models of brain responses starting
with the general linear model of functional magnetic
resonance imaging (fMRI) data discussed in the pre-
vious chapter. This model is successively refined until
we arrive at neuronal mass models of electroencephalo-
graphic (EEG) responses. The latter models afford mecha-
nistic inferences about how evoked responses are caused,
at the level of neuronal subpopulations and the coupling
among them.

Overview

Neuroscience depends on conceptual, anatomical,
statistical and causal models that link ideas about how
the brain works to observed neuronal responses. Here
we highlight the relationships among the sorts of models
that are employed in imaging. We will show how simple
statistical models, used to identify where evoked brain
responses are expressed (cf. neo-phrenology) can be elab-
orated to provide models of how neuronal responses are
caused (e.g. dynamic causal modelling). We will review
a series of models that cover conceptual models, motivat-
ing experimental design, to detailed biophysical models
of coupled neuronal ensembles that enable questions to
be asked at a physiological and computational level.

Anatomical models of functional brain architectures
motivate the fundaments of neuroimaging. In the first
section, we review the distinction between functional
specialization and integration and how these principles
serve as the basis for most models of neuroimaging
data. The next section turns to simple statistical models
(e.g. the general linear model) used for making classi-
cal and Bayesian inferences about functional specializa-
tion in terms of where neuronal responses are expressed.
By incorporating biological constraints, simple obser-
vation models can be made more realistic and, in a
dynamic framework, causal. This section concludes by
considering the biophysical modelling of haemodynamic
responses. All the models considered in this section
pertain to regional responses. In the final section, we
focus on models of distributed responses, where the
interactions among cortical areas or neuronal subpopu-
lations are modelled explicitly. This section covers the
distinction between functional and effective connectivity
and reviews dynamic causal modelling of functional
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integration, using fMRI and EEG. We conclude with
an example from ERP (event-related potential) research
and show how the mismatch negativity (MMN) can
be explained by changes in coupling among neuronal
sources that may underlie perceptual learning.

ANATOMICAL MODELS

Functional specialization and integration

From a historical perspective, the distinction between
functional specialization and functional integration
relates to the dialectic between localizationism and connec-
tionism that dominated thinking about brain function in
the nineteenth century. Since the formulation of phrenol-
ogy by Gall, who postulated fixed one-to-one relations
between particular parts of the brain and specific mental
attributes, the identification of a particular brain region
with a specific function has become a central theme in
neuroscience. Somewhat ironically, the notion that dis-
tinct brain functions could, at least to some degree, be
localized in the brain was strengthened by early scien-
tific attempts to refute the phrenologists’ claims. In 1808,
a scientific committee of the Athénée at Paris, chaired
by Cuvier, declared that phrenology was an unscientific
and invalid theory (Staum, 1995). This conclusion, which
was not based on experimental results, may have been
enforced by Napoleon Bonaparte (who, allegedly, was
not amused after Gall’s phrenological examination of his
own skull did not give the flattering results he expected).
During the following decades, lesion and electrical stim-
ulation paradigms were developed to test whether func-
tions could indeed be localized in animal models. Initial
lesion experiments on pigeons by Flourens gave results
that were incompatible with phrenologist predictions,
but later experiments, including stimulation experiments
in dogs and monkeys by Fritsch, Hitzig and Ferrier, sup-
ported the idea that there was a relation between distinct
brain regions and certain cognitive or motor functions.
Additionally, clinicians like Broca and Wernicke showed
that patients with focal brain lesions in particular loca-
tions showed specific impairments. However, it was real-
ized early on that, in spite of these experimental findings,
it was generally difficult to attribute a specific function
to a cortical area, given the dependence of cerebral activ-
ity on the anatomical connections between distant brain
regions; for example, a meeting that took place on August
4th 1881 addressed the difficulties of attributing function
to a cortical area, given the dependence of cerebral activ-
ity on underlying connections (Phillips et al., 1984). This
meeting was entitled ‘Localisation of function in the cor-
tex cerebri’. Goltz (1881), although accepting the results

of electrical stimulation in dog and monkey cortex, con-
sidered that the excitation method was inconclusive, in
that the movements elicited might have originated in
related pathways, or current could have spread to distant
centres. In short, the excitation method could not be used
to infer functional localization because localizationism
discounted interactions, or functional integration among
different brain areas. It was proposed that lesion stud-
ies could supplement excitation experiments. Ironically,
it was observations on patients with brain lesions some
years later (see Absher and Benson, 1993) that led to the
concept of disconnection syndromes and the refutation of
localizationism as a complete or sufficient explanation of
cortical organization. Functional localization implies that
a function can be localized in a cortical area, whereas
specialization suggests that a cortical area is specialized
for some aspects of perceptual or motor processing, and
that this specialization is anatomically segregated within
the cortex. The cortical infrastructure supporting a sin-
gle function may then involve many specialized areas
whose union is mediated by the functional integration
among them. In this view, functional specialization is
only meaningful in the context of functional integration
and vice versa.

Functional specialization and segregation

The functional role of any component (e.g. cortical area,
sub-area or neuronal population) of the brain is defined
largely by its connections. Certain patterns of cortical pro-
jections are so common that they could amount to rules
of cortical connectivity. ‘These rules revolve around one,
apparently, overriding strategy that the cerebral cortex
uses – that of functional segregation’ (Zeki, 1990). Func-
tional segregation demands that cells with common func-
tional properties be grouped together. This architectural
constraint necessitates both convergence and divergence
of cortical connections. Extrinsic connections among cor-
tical regions are not continuous but occur in patches
or clusters. This patchiness has, in some instances, a
clear relationship to functional segregation. For exam-
ple, V2 has a distinctive cytochrome oxidase architecture,
consisting of thick stripes, thin stripes and inter-stripes.
When recordings are made in V2, directionally selective
(but not wavelength or colour selective) cells are found
exclusively in the thick stripes. Retrograde (i.e. back-
ward) labelling of cells in V5 is limited to these thick
stripes. All the available physiological evidence suggests
that V5 is a functionally homogeneous area that is special-
ized for visual motion. Evidence of this nature supports
the notion that patchy connectivity is the anatomical
infrastructure that mediates functional segregation and
specialization. If it is the case that neurons in a given
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cortical area share a common responsiveness, by virtue
of their extrinsic connectivity, to some sensorimotor or
cognitive attribute, then this functional segregation is also
an anatomical one.

In summary, functional specialization suggests that
challenging a subject with the appropriate sensorimo-
tor attribute or cognitive process should lead to activity
changes in, and only in, the specialized areas. This is
the anatomical and physiological model upon which the
search for regionally specific effects is based. We will
deal first with models of regionally specific responses
and return to models of functional integration later.

STATISTICAL MODELS

Statistical parametric mapping

Functional mapping studies are usually analysed with
some form of statistical parametric mapping. As
described in the previous chapter, statistical parametric
mapping entails the construction of continuous statisti-
cal processes to test hypotheses about regionally specific
effects (Friston et al., 1991). Statistical parametric map-
ping uses the general linear model (GLM) and random
field theory (RFT) to analyse and make classical infer-
ences. Parameters of the GLM are estimated in exactly
the same way as in conventional analysis of discrete data.
RFT is used to resolve the multiple-comparisons prob-
lem induced by making inferences over a volume of the
brain. RFT provides a method for adjusting p-values for
the search volume of a statistical parametric map (SPM)
to control false positive rates. It plays the same role for
continuous data (i.e. images or time-series) as the Bonfer-
roni correction for a family of discontinuous or discrete
statistical tests.

We now consider the Bayesian alternative to classi-
cal inference with SPMs. This rests on conditional infer-
ences about an effect, given the data, as opposed to
classical inferences about the data, given the effect is
zero. Bayesian inferences about effects that are contin-
uous in space use posterior probability maps (PPMs).
Although less established than SPMs, PPMs are poten-
tially very useful, not least because they do not have to
contend with the multiple-comparisons problem induced
by classical inference (see Berry and Hochberg, 1999).
In contradistinction to SPM, this means that inferences
about a given regional response do not depend on
inferences about responses elsewhere. Before looking at
the models underlying Bayesian inference, we briefly
review estimation and classical inference in the context
of the GLM.

The general linear model

Recall from Chapter 2 that the general linear model:

y = X�+� 3.1

expresses an observed response y in terms of a linear
combination of explanatory variables in the design matrix
X plus a well-behaved error term. The general linear
model is variously known as analysis of variance or
multiple regression and subsumes simpler variants, like
the t-test for a difference in means, to more elaborate
linear convolution models. Each column of the design
matrix models a cause of the data. These are referred to
as explanatory variables, covariates or regressors. Some-
times the design matrix contains covariates or indicator
variables that take values of zero or one to indicate the
presence of a particular level of an experimental factor (cf.
analysis of variance – ANOVA). The relative contribution
of each of these columns to the response is controlled by
the parameters �. Inferences about the parameter esti-
mates are made using t or F -statistics, as described in the
previous chapter.

Having computed the statistic, RFT is used to assign
adjusted p-values to topological features of the SPM, such
as the height of peaks or the spatial extent of blobs. This
p-value is a function of the search volume and smooth-
ness. The intuition behind RFT is that it controls the false
positive rate of peaks corresponding to regional effects.
A Bonferroni correction would control the false positive
rate of voxels, which is inexact and unnecessarily severe.
The p-value is the probability of getting a peak in the
SPM, or higher, by chance over the search volume. If suf-
ficiently small (usually less than 0.05) the regional effect
is declared significant.

Classical and Bayesian inference

Inference in neuroimaging is restricted largely to clas-
sical inferences based upon statistical parametric maps.
The statistics that comprise these SPMs are essentially
functions of the data. The probability distribution of the
chosen statistic, under the null hypothesis (i.e. the null
distribution) is used to compute a p-value. This p-value
is the probability of obtaining the statistic, or the data,
given that the null hypothesis is true. If sufficiently small,
the null hypothesis is rejected and an inference is made.
The alternative approach is to use Bayesian or condi-
tional inference based upon the posterior distribution
of the activation given the data. This necessitates the
specification of priors (i.e. the probability distribution
of the activation). Bayesian inference requires the pos-
terior distribution and therefore rests upon a posterior
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density analysis. A useful way to summarize this poste-
rior density is to compute the probability that the activa-
tion exceeds some threshold. This represents a Bayesian
inference about the effect, in relation to the specified
threshold. By computing posterior probability for each
voxel, we can construct PPMs that are a useful comple-
ment to classical SPMs.

The motivation for using conditional or Bayesian infer-
ence is that it has high face validity. This is because the
inference is about an effect, or activation, being greater
than some specified size that has some meaning in rela-
tion to underlying neurophysiology. This contrasts with
classical inference, in which the inference is about the
effect being significantly different from zero. The prob-
lem for classical inference is that trivial departures from
the null hypothesis can be declared significant, with suf-
ficient data or sensitivity. From the point of view of
neuroimaging, posterior inference is especially useful
because it eschews the multiple-comparisons problem. In
classical inference, one tries to ensure that the probability
of rejecting the null hypothesis incorrectly is maintained
at a small rate, despite making inferences over large vol-
umes of the brain. This induces a multiple-comparisons
problem that, for spatially continuous data, requires an
adjustment or correction to the p-value using RFT as
mentioned above. This correction means that classical
inference becomes less sensitive or powerful with large
search volumes. In contradistinction, posterior inference
does not have to contend with the multiple-comparisons
problem because there are no false positives. The prob-
ability that activation has occurred, given the data, at
any particular voxel is the same, irrespective of whether
one has analysed that voxel or the entire brain. For this
reason, posterior inference using PPMs represents a rel-
atively more powerful approach than classical inference
in neuroimaging.

Hierarchical models and empirical Bayes

PPMs require the posterior distribution or conditional
distribution of the activation (a contrast of conditional
parameter estimates) given the data. This posterior den-
sity can be computed, under Gaussian assumptions,
using Bayes’ rule. Bayes’ rule requires the specifica-
tion of a likelihood function and the prior density of
the model parameters. The models used to form PPMs
and the likelihood functions are exactly the same as
in classical SPM analyses, namely the GLM. The only
extra information that is required is the prior probabil-
ity distribution of the parameters. Although it would
be possible to specify those using independent data
or some plausible physiological constraints, there is an
alternative to this fully Bayesian approach. The alterna-
tive is empirical Bayes in which the prior distributions

are estimated from the data. Empirical Bayes requires
a hierarchical observation model where the parameters
and hyperparameters at any particular level can be
treated as priors on the level below. There are numerous
examples of hierarchical observation models in neu-
roimaging. For example, the distinction between fixed-
and mixed-effects analyses of multisubject studies relies
upon a two-level hierarchical model. However, in neu-
roimaging, there is a natural hierarchical observation
model that is common to all brain mapping experiments.
This is the hierarchy induced by looking for the same
effects at every voxel within the brain (or grey mat-
ter). The first level of the hierarchy corresponds to the
experimental effects at any particular voxel and the sec-
ond level comprises the effects over voxels. Put sim-
ply, the variation in a contrast, over voxels, can be used
as the prior variance of that contrast at any particu-
lar voxel. Hierarchical linear models have the following
form:

y = X�1���1� +��1�

��1� = X�2���2� +��2�

��2� = � � �

3.2

This is exactly the same as Eqn. 3.1, but now the param-
eters of the first level are generated by a supraordi-
nate linear model and so on to any hierarchical depth
required. These hierarchical observation models are an
important extension of the GLM and are usually esti-
mated using expectation maximization (EM) (Dempster
et al., 1977). In the present context, the response vari-
ables comprise the responses at all voxels and ��1� are the
treatment effects we want to make an inference about.
Because we have invoked a second level, the first-level
parameters embody random effects and are generated
by a second-level linear model. At the second level, ��2�

is the average effect over voxels and ��2� its voxel-to-
voxel variation. By estimating the variance of ��2� one is
implicitly estimating an empirical prior on the first-level
parameters at each voxel. This prior can then be used
to estimate the posterior probability of ��1� being greater
than some threshold at each voxel. An example of the
ensuing PPM is provided in Figure 3.1 along with the
classical SPM.

In summary, we have seen how the GLM can be
used to test hypotheses about brain responses and how,
in a hierarchical form, it enables empirical Bayesian or
conditional inference. Next, we deal with dynamic sys-
tems and how they can be formulated as GLMs. These
dynamic models take us closer to how brain responses
are actually caused by experimental manipulations and
represent the next step towards causal models of brain
responses.
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Design matrix
1 2 3 4

100

200

300

contrast

z = 3 mm z = 3 mm 

PPMSPM

FIGURE 3.1 SPM and PPM for an fMRI study of attention to visual motion. The display format in the lower panel uses an axial slice
through extrastriate regions but the thresholds are the same as employed in the maximum intensity projections (upper panels). Upper right:
the activation threshold for the PPM was 0.7 a.u., meaning that all voxels shown had a 90 per cent chance of an activation of 0.7 per cent
or more. Upper left: the corresponding SPM using an adjusted threshold at p = 0�05. Note the bilateral foci of motion-related responses
in the PPM that are not seen in the SPM (grey arrows). As can be imputed from the design matrix (upper middle panel), the statistical
model of evoked responses comprised boxcar regressors convolved with a canonical haemodynamic response function. The middle column
corresponds to the presentation of moving dots and was the stimulus attribute tested by the contrast.

Dynamic models

Convolution models and temporal basis functions

In Friston et al. (1994) the form of the haemodynamic
impulse response function (HRF) was estimated using a
least squares de-convolution and a linear time invariant
model, where evoked neuronal responses are convolved or
smoothed with an HRF to give the measured haemody-
namic response (see also Boynton et al., 1996). This simple
linear convolution model is the cornerstone for making
statistical inferences about activations in fMRI with the
GLM. An impulse response function is the response to
a single impulse, measured at a series of times after the
input. It characterizes the input-output behaviour of the
system (i.e. voxel) and places important constraints on
the sorts of inputs that will excite a response.

Knowing the form of the HRF is important for several
reasons, not least because it furnishes better statistical
models of the data. The HRF may vary from voxel to
voxel and this has to be accommodated in the GLM. To
allow for different HRFs in different brain regions, tem-
poral basis functions were introduced (Friston et al., 1995)
to model evoked responses in fMRI and applied to event-
related responses in Josephs et al. (1997) (see also Lange
and Zeger, 1997). The basic idea behind temporal basis

functions is that the haemodynamic response, induced
by any given trial type, can be expressed as the linear
combination of (basis) functions of peristimulus time. The
convolution model for fMRI responses takes a stimulus
function encoding the neuronal responses and convolves
it with an HRF to give a regressor that enters the design
matrix. When using basis functions, the stimulus function
is convolved with each basis function to give a series of
regressors. Mathematically, we can express this model as:

y�t� = X�+� y�t� = u�t�⊗h�t�
⇔

Xi = Ti�t�⊗u�t� h�t� = �1T1�t�+�2T2�t�+ � � �
3.3

where ⊗ means convolution. This equivalence shows
how any convolution model (right) can be converted
into a GLM (left), using temporal basis functions. The
parameter estimates �i are the coefficients or weights that
determine the mixture of basis functions of time Ti�t� that
models h�t�, the HRF for the trial type and voxel in ques-
tion. We find the most useful basis set to be a canonical
HRF and its derivatives with respect to the key parame-
ters that determine its form (see below). Temporal basis
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functions are important because they provide a graceful
transition between conventional multilinear regression
models with one stimulus function per condition and
finite impulse response (FIR) models with a parameter
for each time point following the onset of a condition or
trial type. Plate 3 (see colour plate section) illustrates this
graphically (see plate caption). In short, temporal basis
functions offer useful constraints on the form of the esti-
mated response that retain the flexibility of FIR models
and the efficiency of single regressor models.

Biophysical models

Input-state-output systems

By adopting a convolution model for brain responses
in fMRI, we are implicitly positing a dynamic system
that converts neuronal responses into observed haemo-
dynamic responses. Our understanding of the biophys-
ical and physiological mechanisms that underpin the
HRF has grown considerably in the past few years
(e.g. Buxton and Frank 1997; Mandeville et al., 1999).
Figure 3.2 shows some simulations based on the haemo-
dynamic model described in Friston et al. (2000). Here,
neuronal activity induces some autoregulated vasoactive
signal that causes transient increases in regional cerebral
blood flow (rCBF). The resulting flow increases dilate
a venous balloon, increasing its volume and diluting

venous blood to decrease deoxyhaemoglobin content.
The blood oxygenation-level-dependent (BOLD) signal
is roughly proportional to the concentration of deoxy-
haemoglobin and follows the rCBF response with about
a one second delay. The model is framed in terms of dif-
ferential equations, examples of which are provided in
the left panel.

Notice that we have introduced variables, like volume
and deoxyhaemoglobin concentrations, that are not actu-
ally observed. These are referred to as the hidden states
of input-state-output models. The state and output equa-
tions of any analytic dynamical system are:

ẋ�t� = f�x�u�	�

y�t� = g�x�u�	�+�
3.4

The first line is an ordinary differential equation and
expresses the rate of change of the states as a parame-
terized function of the states and inputs. Typically, the
inputs u(t) correspond to designed experimental effects
(e.g. the stimulus function in fMRI). There is a fundamen-
tal and causal relationship (Fliess et al., 1983) between
the outputs and the history of the inputs in Eqn. 3.4.
This relationship conforms to a Volterra series, which
expresses the output as a generalized convolution of the
input, critically without reference to the hidden states
x(t). This series is simply a functional Taylor expansion
of the outputs with respect to the inputs (Bendat, 1990).
The reason it is a functional expansion is that the inputs
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FIGURE 3.2 Right: haemodynamics elicited by an impulse of neuronal activity as predicted by a dynamical biophysical model (left).
A burst of neuronal activity causes an increase in flow-inducing signal that decays with first order kinetics and is downregulated by local
flow. This signal increases rCBF, which dilates the venous capillaries, increasing volume v. Concurrently, venous blood is expelled from
the venous pool decreasing deoxyhaemoglobin content q. The resulting fall in deoxyhaemoglobin concentration leads to a transient increase
in BOLD (blood oxygenation-level-dependent) signal and a subsequent undershoot. Left: haemodynamic model on which these simulations
were based (see Friston et al., 2000 and Chapter 27 for details).
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are a function of time. (For simplicity, here and in and
Eqn. 3.7, we deal with only one experimental input.)

y�t� =∑
i

t∫
0

� � �

t∫
0


i��1� � � � ��i�

×u�t −�1�� � � � �u�t −�i�d�1� � � � � d�i


i��1� � � � ��i� = �iy�t�

�u�t −�1�� � � � � �u�t −�i�
3.5

where 
i��1� K��i) is the i-th order kernel. In Eqn. 3.5
the integrals are restricted to the past. This renders the
system causal. The key thing here is that Eqn. 3.5 is sim-
ply a convolution and can be expressed as a GLM, as
in Eqn. 3.3. This means that we can take a neurophysio-
logically realistic model of haemodynamic responses and
use it as an observation model to estimate parameters
using observed data. Here the model is parameterized
in terms of kernels that have a direct analytic relation to
the original parameters 	 of the biophysical system. The
first-order kernel is simply the conventional HRF. High-
order kernels correspond to high-order HRFs and can be
estimated using basis functions as described above. In
fact, by choosing basis functions according to:

A���i = �
���1

�	i

3.6

one can estimate the biophysical parameters because, to
a first-order approximation, �i = 	i. The critical step we
have taken here is to start with a dynamic causal model
of how responses are generated and construct a general
linear observation model that allows us to estimate and
infer things about the parameters of that model. This is in
contrast to the conventional use of the GLM with design
matrices that are not informed by a forward model of
how data are caused. This approach to modelling brain
responses has a much more direct connection with under-
lying physiology and rests upon an understanding of the
underlying system.

Non-linear system identification

Once a suitable causal model has been established (e.g.
Figure 3.2), we can estimate second-order kernels. These
kernels represent a non-linear characterization of the
HRF that can model interactions among stimuli in caus-
ing responses. One important manifestation of the non-
linear effects, captured by the second-order kernels, is
a modulation of stimulus-specific responses by preced-
ing stimuli that are proximate in time. This means that
responses at high stimulus presentation rates saturate
and, in some instances, show an inverted U behaviour.
This behaviour appears to be specific to BOLD effects
(as distinct from evoked changes in cerebral blood flow)

and may represent a haemodynamic refractoriness. This
effect has important implications for event-related fMRI,
where one may want to present trials in quick succession.
(See Figure 2.8 in the previous chapter for an example of
second-order kernels and the implications for haemody-
namic responses.)

In summary, we started with models of regionally spe-
cific responses, framed in terms of the general linear
model, in which responses were modelled as linear mix-
tures of designed changes in explanatory variables. Hier-
archical extensions to linear observation models enable
random-effects analyses and, in particular, empirical
Bayes. The mechanistic utility of these models is real-
ized though the use of forward models that embody
causal dynamics. Simple variants of these are the linear
convolution models used to construct explanatory vari-
ables in conventional analyses of fMRI data. These are a
special case of generalized convolution models that are
mathematically equivalent to input-state-output systems
comprising hidden states. Estimation and inference with
these dynamic models tells us something about how the
response was caused, but only at the level of a single
voxel. The next section retains the same perspective on
models, but in the context of distributed responses and
functional integration.

MODELS OF FUNCTIONAL
INTEGRATION

Functional and effective connectivity

Imaging neuroscience has firmly established functional
specialization as a principle of brain organization in
humans. The integration of specialized areas has proven
more difficult to assess. Functional integration is usu-
ally inferred on the basis of correlations among mea-
surements of neuronal activity. Functional connectivity is
defined as statistical dependencies or correlations among
remote neurophysiological events. However, correlations can
arise in a variety of ways: for example in multiunit elec-
trode recordings, they can result from stimulus-locked
transients evoked by a common input or reflect stimulus-
induced oscillations mediated by synaptic connections
(Gerstein and Perkel, 1969). Integration within a dis-
tributed system is usually better understood in terms of
effective connectivity; effective connectivity refers explic-
itly to the influence that one neural system exerts over another,
either at a synaptic (i.e. synaptic efficacy) or population
level. It has been proposed that ‘the [electrophysiological]
notion of effective connectivity should be understood as
the experiment- and time-dependent, simplest possible
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circuit diagram that would replicate the observed tim-
ing relationships between the recorded neurons’ (Aert-
sen and Preißl, 1991). This speaks of two important
points: effective connectivity is dynamic, i.e. activity-
dependent and it depends upon a model of the interac-
tions. The estimation procedures employed in functional
neuroimaging can be divided into linear non-dynamic
models (e.g. McIntosh and Gonzalez-Lima, 1994) or non-
linear dynamic models.

There is a necessary link between functional integra-
tion and multivariate analyses because the latter are
necessary to model interactions among brain regions.
Multivariate approaches can be divided into those
that are inferential in nature and those that are data-
led or exploratory. We will first consider multivariate
approaches that look at functional connectivity or covari-
ance patterns (and are generally exploratory) and then
turn to models of effective connectivity (that allow for
inference about their parameters).

Eigenimage analysis and related approaches

In Friston et al. (1993), we introduced voxel-based
principal component analysis (PCA) of neuroimaging
time-series to characterize distributed brain systems
implicated in sensorimotor, perceptual or cognitive pro-
cesses. These distributed systems are identified with
principal components or eigenimages that correspond to
spatial modes of coherent brain activity. This approach
represents one of the simplest multivariate characteri-
zations of functional neuroimaging time-series and falls
into the class of exploratory analyses. Principal compo-
nent or eigenimage analysis generally uses singular value
decomposition (SVD) to identify a set of orthogonal spa-
tial modes that capture the greatest amount of variance
expressed over time. As such, the ensuing modes embody
the most prominent aspects of the variance-covariance
structure of a given time-series. Noting that covariance
among brain regions is equivalent to functional connec-
tivity renders eigenimage analysis particularly interest-
ing because it was among the first ways of addressing
functional integration (i.e. connectivity) with neuroimag-
ing data. Subsequently, eigenimage analysis has been
elaborated in a number of ways. Notable among these is
canonical variate analysis (CVA) and multidimensional
scaling (Friston et al., 1996a, b). Canonical variate analy-
sis was introduced in the context of MANCOVA (mul-
tiple analysis of covariance) and uses the generalized
eigenvector solution to maximize the variance that can
be explained by some explanatory variables relative to
error. CVA can be thought of as an extension of eigen-
image analysis that refers explicitly to some explanatory
variables and allows for statistical inference.

In fMRI, eigenimage analysis (e.g. Sychra et al., 1994)
is generally used as an exploratory device to characterize
coherent brain activity. These variance components may,
or may not, be related to experimental design. For exam-
ple, endogenous coherent dynamics have been observed
in the motor system at very low frequencies (Biswal et al.,
1995). Despite its exploratory power, eigenimage analy-
sis is limited for two reasons. First, it offers only a linear
decomposition of any set of neurophysiological measure-
ments and second, the particular set of eigenimages or
spatial modes obtained is determined by constraints that
are biologically implausible. These aspects of PCA confer
inherent limitations on the interpretability and useful-
ness of eigenimage analysis of biological time-series and
have motivated the exploration of non-linear PCA and
neural network approaches.

Two other important approaches deserve mention
here. The first is independent component analysis (ICA).
ICA uses entropy maximization to find, using itera-
tive schemes, spatial modes or their dynamics that are
approximately independent. This is a stronger require-
ment than orthogonality in PCA and involves removing
high-order correlations among the modes (or dynam-
ics). It was initially introduced as spatial ICA (McKeown
et al., 1998) in which the independence constraint was
applied to the modes (with no constraints on their tem-
poral expression). More recent approaches use, by anal-
ogy with magneto- and electrophysiological time-series
analysis, temporal ICA where the dynamics are enforced
to be independent. This requires an initial dimension
reduction (usually using conventional eigenimage anal-
ysis). Finally, there has been an interest in cluster anal-
ysis (Baumgartner et al., 1997). Conceptually, this can be
related to eigenimage analysis through multidimensional
scaling and principal coordinate analysis.

All these approaches are interesting, but they are not
used very much. This is largely because they tell you
nothing about how the brain works nor allow one to
ask specific questions. Simply demonstrating statistical
dependencies among regional brain responses or endoge-
nous activity (i.e. demonstrating functional connectivity)
does not address how these responses were caused. To
address this one needs explicit models of integration or
more precisely, effective connectivity.

Dynamic causal modelling with
bilinear models

This section is about modelling interactions among neu-
ronal populations, at a cortical level, using neuroimaging
time-series and dynamic causal models that are informed
by the biophysics of the system studied. The aim of
dynamic causal modelling is to estimate, and make infer-
ences about, the coupling among brain areas and how
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that coupling is influenced by experimental changes (e.g.
time or cognitive set). The basic idea is to construct a
reasonably realistic neuronal model of interacting corti-
cal regions or nodes. This model is then supplemented
with a forward model of how neuronal or synaptic activ-
ity translates into a measured response (see previous
section). This enables the parameters of the neuronal
model (i.e. effective connectivity) to be estimated from
observed data.

Intuitively, this approach regards an experiment as
a designed perturbation of neuronal dynamics that
are promulgated and distributed throughout a system
of coupled anatomical nodes to change region-specific
neuronal activity. These changes engender, through a
measurement-specific forward model, responses that are
used to identify the architecture and time constants of
the system at a neuronal level. This represents a depar-
ture from conventional approaches (e.g. structural equa-
tion modelling and autoregression models; McIntosh
and Gonzalez-Lima, 1994; Büchel and Friston, 1997), in
which one assumes the observed responses are driven
by endogenous or intrinsic noise (i.e. innovations). In
contrast, dynamic causal models assume the responses
are driven by designed changes in inputs. An impor-
tant conceptual aspect of dynamic causal models per-
tains to how the experimental inputs enter the model and
cause neuronal responses. Experimental variables can
elicit responses in one of two ways. First, they can elicit
responses through direct influences on specific anatom-
ical nodes. This would be appropriate, for example, in
modelling sensory evoked responses in early visual cor-
tices. The second class of input exerts its effect vicar-
iously, through a modulation of the coupling among
nodes. These sorts of experimental variables would nor-
mally be more enduring; for example attention to a par-
ticular attribute or the maintenance of some perceptual
set. These distinctions are seen most clearly in relation
to particular forms of causal models used for estimation,
e.g. the bilinear approximation:

ẋ = f�x�u�

= Ax+uBx+Cu

y = g�x�+�

A = �f

�x
B = �2f

�x�u
C = �f

�u

3.7

where ẋ = �x/�t. This is an approximation to any model
of how changes in neuronal activity in one region xi are
caused by activity in the other regions. Here the output
function g�x� embodies a haemodynamic convolution,
linking neuronal activity to BOLD, for each region (e.g.
that in Figure 3.2). The matrix A represents the coupling
among the regions in the absence of input u�t�. This can

be thought of as the latent coupling in the absence of
experimental perturbations. The matrix B is effectively
the change in latent coupling induced by the input. It
encodes the input-sensitive changes in A or, equivalently,
the modulation of coupling by experimental manipula-
tions. Because B is a second-order derivative it is referred
to as bilinear. Finally, the matrix C embodies the extrinsic
influences of inputs on neuronal activity. The parameters
	 = A�B�C are the connectivity or coupling matrices that
we wish to identify and define the functional architecture
and interactions among brain regions at a neuronal level.

Because Eqn. 3.7 has exactly the same form as Eqn. 3.4,
we can express it as a GLM and estimate the parame-
ters using EM in the usual way (see Friston et al., 2003).
Generally, estimation in the context of highly parameter-
ized models like DCMs requires constraints in the form
of priors. These priors enable conditional inference about
the connectivity estimates. The sorts of questions that can
be addressed with DCMs are now illustrated by looking
at how attentional modulation is mediated in sensory
processing hierarchies in the brain.

DCM and attentional modulation

It has been established that the superior posterior parietal
cortex (SPC) exerts a modulatory role on V5 responses
using Volterra-based regression models (Friston and
Büchel, 2000) and that the inferior frontal gyrus (IFG)
exerts a similar influence on SPC using structural equa-
tion modelling (Büchel and Friston, 1997). The example
here shows that DCM leads to the same conclusions but
starting from a completely different construct. The exper-
imental paradigm and data acquisition are described in
Figure 3.3. This figure also shows the location of the
regions that entered the DCM. These regions were based
on maxima from conventional SPMs testing for the effects
of photic stimulation, motion and attention. Regional
time courses were taken as the first eigenvariate of 8 mm
spherical volumes of interest centred on the maxima
shown in the figure. The inputs, in this example, comprise
one sensory perturbation and two contextual inputs. The
sensory input was simply the presence of photic stimula-
tion and the first contextual one was presence of motion
in the visual field. The second contextual input, encoding
attentional set, was one during attention to speed changes
and zero otherwise. The outputs corresponded to the
four regional eigenvariates in (Figure 3.3, left panel). The
intrinsic connections were constrained to conform to a
hierarchical pattern in which each area was reciprocally
connected to its supraordinate area. Photic stimulation
entered at, and only at, V1. The effect of motion in the
visual field was modelled as a bilinear modulation of
the V1 to V5 connectivity and attention was allowed to
modulate the backward connections from IFG and SPC.
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FIGURE 3.3 Results of a DCM analysis of attention to visual motion with fMRI. Right panel: functional architecture based upon the
conditional estimates shown alongside their connections, with the per cent confidence that they exceeded threshold in brackets. The most
interesting aspects of this architecture involve the role of motion and attention in exerting bilinear effects. Critically, the influence of motion
is to enable connections from V1 to the motion-sensitive area V5. The influence of attention is to enable backward connections from the
inferior frontal gyrus (IFG) to the superior parietal cortex (SPC). Furthermore, attention increases the influence of SPC on V5. Dotted arrows
connecting regions represent significant bilinear effects in the absence of a significant intrinsic coupling. Left panel: fitted responses based
upon the conditional estimates and the adjusted data are shown for each region in the DCM. The insert (upper left) shows the location of the
regions.

Subjects were studied with fMRI under identical stimulus conditions (visual motion subtended by radially moving dots) while manipulating
the attentional component of the task (detection of velocity changes). The data were acquired from a normal subject at 2 Tesla. Each subject
had four consecutive 100-scan sessions comprising a series of 10-scan blocks under five different conditions, D F A F N F A F N S. The first
condition (D) was a dummy condition to allow for magnetic saturation effects. F (Fixation) corresponds to a low-level baseline where the
subjects viewed a fixation point at the centre of a screen. In condition A (Attention), subjects viewed 250 dots moving radially from the centre
at 4.7 degrees per second and were asked to detect changes in radial velocity. In condition N (No attention), the subjects were asked simply
to view the moving dots. In condition S (Stationary), subjects viewed stationary dots. The order of A and N was swapped for the last two
sessions. In all conditions subjects fixated the centre of the screen. During scanning there were no speed changes. No overt response was
required in any condition.

The results of the DCM are shown in Figure 3.3 (right
panel). Of primary interest here is the modulatory effect
of attention that is expressed in terms of the bilinear
coupling parameters for this input. As expected, we can
be highly confident that attention modulates the back-
ward connections from IFG to SPC and from SPC to V5.
Indeed, the influences of IFG on SPC are negligible in
the absence of attention (dotted connection). It is impor-
tant to note that the only way that attentional manipu-
lation can affect brain responses is through this bilinear
effect. Attention-related responses are seen throughout
the system (attention epochs are marked with arrows in
the plot of IFG responses in the left panel). This atten-
tional modulation is accounted for, sufficiently, by chang-
ing just two connections. This change is, presumably,
instantiated by instructional set at the beginning of each
epoch.

The second thing this analysis illustrates is how func-
tional segregation is modelled in DCM. Here one can
regard V1 as ‘segregating’ motion from other visual infor-
mation and distributing it to the motion-sensitive area,
V5. This segregation is modelled as a bilinear ‘enabling’
of V1 to V5 connections when, and only when, motion

is present. Note that, in the absence of motion, the latent
V1 to V5 connection was trivially small (in fact the esti-
mate was −0�04). The key advantage of entering motion
through a bilinear effect, as opposed to a direct effect on
V5, is that we can finesse the inference that V5 shows
motion-selective responses with the assertion that these
responses are mediated by afferents from V1. The two
bilinear effects above represent two important aspects of
functional integration that DCM is able to characterize.

Structural equation modelling as a special case of DCM

The central idea behind dynamic causal modelling is
to treat the brain as a deterministic non-linear dynamic
system that is subject to inputs and produces outputs.
Effective connectivity is parameterized in terms of cou-
pling among unobserved brain states (e.g. neuronal activ-
ity in different regions). The objective is to estimate
these parameters by perturbing the system and measur-
ing the response. This is in contradistinction to estab-
lished methods for estimating effective connectivity from
neurophysiological time-series, which include structural
equation modelling and models based on multivariate
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autoregressive processes. In these models, there is no
designed perturbation and the inputs are treated as
unknown and stochastic. Furthermore, the inputs are
often assumed to express themselves instantaneously
such that, at the point of observation the change in states
is zero. From Eqn. 3.7, in the absence of bilinear effects
we have:

ẋ = 0

= Ax+Cu

x = −A−1Cu

3.8

This is the regression equation used in structural equa-
tion modelling (SEM) where A = D− I and D contains the
off-diagonal connections among regions. The key point
here is that A is estimated by assuming u�t� is some
random innovation with known covariance. This is not
really tenable for designed experiments when u�t� repre-
sent carefully structured experimental inputs. Although
SEM and related autoregressive techniques are useful for
establishing dependence among regional responses, they
are not surrogates for informed causal models based on
the underlying dynamics of these responses.

In this section, we have covered multivariate tech-
niques ranging from eigenimage analysis that does not
have an explicit forward or causal model to DCM
that does. The bilinear approximation to any DCM has
been illustrated through its use with fMRI to study
attentional modulation. The parameters of the bilinear
approximation include first-order effective connectivity
A and its experimentally-induced changes B. Although
the bilinear approximation is useful, it is possible to
model coupling among neuronal subpopulations explic-
itly. We conclude with a DCM that embraces a num-
ber of neurobiological facts and takes us much closer
to a mechanistic understanding of how brain responses
are generated. This example uses responses measured
with EEG.

Dynamic causal modelling with
neural-mass models

Event-related potentials (ERPs) have been used for
decades as electrophysiological correlates of perceptual
and cognitive operations. However, the exact neuro-
biological mechanisms underlying their generation are
largely unknown. In this section, we use neuronally plau-
sible models to understand event-related responses. Our
example shows that changes in connectivity are suffi-
cient to explain certain ERP components. Specifically, we
will look at the MMN, a component associated with rare
or unexpected events. If the unexpected nature of rare

stimuli depends on learning which stimuli are frequent,
then the MMN must be due to plastic changes in con-
nectivity that mediate perceptual learning. We conclude
by showing that advances in the modelling of evoked
responses now afford measures of connectivity among
cortical sources that can be used to quantify the effects
of perceptual learning.

Neural-mass models

The minimal model we have developed (David et al.,
2006) uses the connectivity rules described in Felleman
and Van Essen (1992) to assemble a network of coupled
sources. These rules are based on a partitioning of the
cortical sheet into supra-, infra-granular layers and gran-
ular layer (layer 4). Bottom-up or forward connections
originate in agranular layers and terminate in layer 4.
Top-down or backward connections target agranular lay-
ers. Lateral connections originate in agranular layers and
target all layers. These long-range or extrinsic cortico-
cortical connections are excitatory and arise from pyra-
midal cells.

Each region or source is modelled using a neural mass
model described in David and Friston (2003), based on
the model of Jansen and Rit (1995). This model emu-
lates the activity of a cortical area using three neuronal
subpopulations, assigned to granular and agranular lay-
ers. A population of excitatory pyramidal (output) cells
receives inputs from inhibitory and excitatory popula-
tions of interneurons, via intrinsic connections (intrinsic
connections are confined to the cortical sheet). Within
this model, excitatory interneurons can be regarded as
spiny stellate cells found predominantly in layer 4 and
in receipt of forward connections. Excitatory pyrami-
dal cells and inhibitory interneurons are considered to
occupy agranular layers and receive backward and lat-
eral inputs (Figure 3.4).

To model event-related responses, the network
receives inputs via input connections. These connections
are exactly the same as forward connections and deliver
inputs to the spiny stellate cells in layer 4. In the present
context, inputs u�t� model sub-cortical auditory inputs.
The vector C controls the influence of the input on each
source. The lower, upper and leading diagonal matrices
AF �AB�AL encode forward, backward and lateral con-
nections respectively. The DCM here is specified in terms
of the state equations shown in Figure 3.4 and a linear
output equation:

ẋ = f�x�u�

y = Lx0 +�
3.9
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FIGURE 3.4 Schematic of the DCM used to model electrical responses. This schematic shows the state equations describing the dynamics
of sources or regions. Each source is modelled with three subpopulations (pyramidal, spiny stellate and inhibitory interneurons) as described
in Jansen and Rit (1995) and David and Friston (2003). These have been assigned to granular and agranular cortical layers which receive
forward and backward connections respectively.

where x0 represents the transmembrane potential of pyra-
midal cells and L is a lead field matrix coupling electrical
sources to the EEG channels. This should be compared
to the DCM above for haemodynamics; here the equa-
tions governing the evolution of neuronal states are much
more complicated and realistic, as opposed to the bilin-
ear approximation in Eqn. 3.7. Conversely, the output
equation is a simple linearity, as opposed to the non-
linear observer used for fMRI. As an example, the state
equation for the inhibitory subpopulation is:

ẋ7 = x8

ẋ8 = He

e

��AB +AL +�3I�S�x0��− 2x8

e

− x7

2
e

3.10

Propagation delays on the extrinsic connections have
been omitted for clarity here and in Figure 3.4.

Within each subpopulation, the evolution of neuronal
states rests on two operators. The first transforms the
average density of presynaptic inputs into the average
postsynaptic membrane potential. This is modelled by a
linear transformation with excitatory and inhibitory ker-
nels parameterized by He�i and e�i� He�i control the max-
imum postsynaptic potential and e�i represent a lumped
rate-constant. The second operator S transforms the aver-
age potential of each subpopulation into an average firing
rate. This is assumed to be instantaneous and is a sigmoid
function. Interactions among the subpopulations depend

on constants �1�2�3�4, which control the strength of intrin-
sic connections and reflect the total number of synapses
expressed by each subpopulation. In Eqn. 3.10, the top
line expresses the rate of change of voltage as a function
of current. The second line specifies how current changes
as a function of voltage, current and presynaptic input
from extrinsic and intrinsic sources. Having specified the
DCM in terms of these equations, one can estimate the
coupling parameters from empirical data using EM as
described above.

Perceptual learning and the MMN

The example shown in Figure 3.5 is an attempt to model
the MMN in terms of changes in backward and lateral
connections among cortical sources. In this example, two
[averaged] channels of EEG data were modelled with
three cortical sources. Using this generative or forward
model, we estimated differences in the strength of these
connections for rare and frequent stimuli. As expected,
we could account for detailed differences in the ERPs
(the MMN) by changes in connectivity (see Figure 3.5 for
details). Interestingly, these differences were expressed
selectively in the lateral connections. If this model is a suf-
ficient approximation to the real sources, these changes
are a non-invasive measure of plasticity, mediating per-
ceptual learning, in the human brain.
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FIGURE 3.5 Summary of a DCM analysis of event-related
potentials (ERPs) elicited during an auditory oddball paradigm,
employing rare and frequent pure tones. Upper panel: schematic
showing the architecture of the neuronal model used to explain the
empirical data. Sources were coupled with extrinsic cortico-cortical
connections following the rules of Felleman and van Essen (1992).
The free parameters of this model included intrinsic and extrinsic
connection strengths that were adjusted best to explain the data.
In this example, the lead field was also estimated, with no spatial
constraints. The parameters were estimated for ERPs recorded dur-
ing the presentation of rare and frequent tones and are reported
beside their corresponding connection (frequent/rare). The most
notable finding was that the mismatch response could be explained
by a selective increase in lateral connection strength from 0.1 to
3.68 Hz (highlighted in bold). Lower panel: the channel positions
(left) and ERPs (right) averaged over two subsets of channels (cir-
cled on the left). Note the correspondence between the measured
ERPs and those generated by the model (see David et al., 2006 for
details).

Auditory stimuli, 1000 or 2000 Hz tones with 5 ms rise and fall
times and 80 ms duration, were presented binaurally. The tones
were presented for 15 minutes, every 2 s in a pseudo-random
sequence with 2000 Hz tones occurring 20 per cent of the time and
1000 Hz tones occurring 80 per cent of the time. The subject was
instructed to keep a mental record of the number of 2000 Hz tones
(non-frequent target tones). Data were acquired using 128 EEG elec-
trodes with 1000 Hz sample frequency. Before averaging, data were
referenced to mean earlobe activity and band-pass filtered between
1 and 30 Hz. Trials showing ocular artefacts and bad channels were
removed from further analysis.

CONCLUSION

In this chapter, we have reviewed some key models that
underpin image analysis and have touched briefly on
ways of assessing specialization and integration in the
brain. These models can be regarded as a succession of
modelling endeavours that draw more and more on our
understanding of how brain-imaging signals are gener-
ated, both in terms of biophysics and the underlying neu-
ronal interactions. We have seen how hierarchical linear
observation models encode the treatment effects elicited
by experimental design. General linear models based on
convolution models imply an underlying dynamic input-
state-output system. The form of these systems can be
used to constrain convolution models and explore some
of their simpler non-linear properties. By creating obser-
vation models based on explicit forward models of neu-
ronal interactions, one can model and assess interactions
among distributed cortical areas and make inferences
about coupling at the neuronal level. The next years will
probably see an increasing realism in the dynamic causal
models introduced above. These endeavours are likely to
encompass fMRI signals enabling the conjoint modelling,
or fusion, of different modalities and the marriage of
computational neuroscience with the modelling of brain
responses.
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Bayesian inversion for induced responses
J. Mattout, C. Phillips, J. Daunizeau and K. Friston

INTRODUCTION

Electroencephalography (EEG) and magnetoencephalog-
raphy (MEG) provide a non-invasive and instantaneous
measure of the whole brain activity. These measures
reflect synchronous postsynaptic potentials of cortical
populations of neurons (Nunez and Silberstein, 2000).
Unfortunately, localizing these electromagnetic sources
represents an ill-posed inverse problem that, in the
absence of constraints, does not admit a unique solution.
Consequently, deriving a realistic and unique solution
rests on prior knowledge, in addition to the observed
measurements.

Any source reconstruction approach comprises three
components. The first relates to the definition of the solu-
tion space and a parametric representation of the sources.
The second embodies information about the physical and
geometrical properties of the head; this models the propa-
gation of brain electromagnetic fields through the various
tissues (i.e. a forward model). Together, these two com-
ponents constitute a generative model of the EEG/MEG
data. By nature, a generative model can be used for both
simulating synthetic datasets and estimating the param-
eters of local neuronal activity from experimental data.
Finally, the generative model is inverted to provide con-
ditional estimates of the sources (Baillet and Garnero,
1997; Schmidt et al., 1999; Phillips et al., 2002; Amblard
et al., 2004; Daunizeau et al., 2006).

Two types of inverse methods can be distinguished
by their respective source model: the equivalent current
dipole (ECD) and distributed modelling (DM). Although
other source models have been used, such as multipoles
(Jerbi et al., 2004) or continuous current densities (Riera
et al., 1998), both approaches usually rely upon a dipolar
representation of cortical sources, which are parameter-
ized in terms of location, orientation and intensity. An
ECD models the activity of a large cortical area. MEG and

EEG data are then explained by few ECDs (usually less
than five). Distributed models consider a large number
(a few thousands) of dipoles deployed at fixed locations
over the cortical surface. Although the underlying para-
metric models are the same, the parameterization of the
solution space is very different, calling for different for-
ward calculations as well as different inverse operators
and solutions. In this chapter, we focus on distributed
models.

In contradistinction to most ECD approaches, DM uses
the subject’s anatomy, usually derived from high res-
olution anatomical magnetic resonance imaging (MRI)
(Dale and Sereno, 1993). The solution space and asso-
ciated forward models can then be made as realistic as
allowed by computational constraints and the precision
of head tissue conductivity measures. Moreover, due to
the use of fixed dipole locations, the forward computa-
tion only need be computed once, prior to any inverse
operation. DM yields a highly under-determined but lin-
ear system which is formally similar to those encoun-
tered in signal and image processing. These problems can
be treated in a Bayesian way, using priors to furnish a
unique solution. Prior constraints are needed due to the
under-determinacy of the system.

In the context of DM, priors based on mathemati-
cal, anatomical, physiological and functional heuristics
have been considered (Hamalainen and Ilmoniemi, 1994;
Pascual-Marqui et al., 1994; Gorodnitsky et al., 1995;
Baillet and Garnero, 1997; Dale et al., 2000; Phillips
et al., 2002; Babiloni et al., 2004; Mattout et al., 2005).
Although these approaches involve different constraints
and inverse criteria, they all obtain a unique solution by
optimizing a goodness of fit term and a prior term in a
carefully balanced way. Most can be framed in terms of a
weighted minimum norm (WMN) criterion, which repre-
sents the classical and most popular distributed approach
(Hauk, 2004).
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However, a critical outstanding issue lies in the relative
weighting of the accuracy and regularization criteria
upon which the solution depends. Usually, in the con-
text of Tikhonov regularization or WMN solutions, this
weighting is fixed arbitrarily, or by using the L-curve
heuristic. The latter case, which we will refer to as the
(classical) WMN, is limited because it can only accommo-
date a single constraint on the source parameters. This
means that multiple constraints (e.g. spatial and tempo-
ral) (Baillet and Garnero, 1997) have to be mixed into a
single prior term, using ad hoc criteria.

The inverse approach considered in this chapter is a
generalization of the approach described in the previous
chapter. This inversion uses a hierarchical (general) linear
model that embraces, under the assumption of Gaussian
errors, multiple constraints specified in terms of variance
components. These constraints can be formulated in sen-
sor or source space. The optimal weight associated with
each constraint is estimated from the data using empiri-
cal Bayes and is computed iteratively using expectation–
maximization (EM) (Friston et al., 2002). These weights
are equivalent to restricted maximum likelihood (ReML)
estimates of the prior covariance components.

Using temporal basis functions, the same approach
can be extended to estimate both evoked and induced
responses. This chapter shows how one can estimate
evoked responses which are phase-locked to the stim-
ulus, and induced responses that are not. For a single
trial, the model is exactly the same. However, in the con-
text of multiple trials, the inherent distinction between
evoked and induced responses calls for different treat-
ments of a hierarchical multitrial model. This is because
there is a high correlation between the response evoked
in one trial and that of the next. Conversely, induced
responses have a random phase-relationship over tri-
als and are, a priori, independent. In what follows, we
derive the respective models and show how they can
be estimated efficiently using ReML. This enables the
Bayesian estimation of evoked and induced changes in
power.

This chapter comprises four sections. The first section
describes the ReML identification operators based on
covariances, over time, for a single trial. We then con-
sider an extension of this scheme that accommodates con-
straints on the temporal expression of responses using
temporal basis functions. In the third section, we show
how the same conditional operator can be used to esti-
mate response energy or power. In the fourth section,
we consider extensions to the model that cover mul-
tiple trials and show that evoked responses are based
on the covariance of the average response over trials,
whereas induced responses are based on the average
covariance.

THE BASIC ReML APPROACH TO
DISTRIBUTED SOURCE

RECONSTRUCTION

Hierarchical linear models

Inversion of hierarchical models for M/EEG was covered
in the previous chapter, so we focus here on the structure
of the problem and on the nature of the variables that
enter the ReML scheme. The empirical Bayes approach to
multiple priors, in the context of unknown observation
noise, rests on the hierarchical observation model:

y = Lj +��1�

j = ��2�

Cov�vec���1��� = V �1� ⊗C�1�

Cov�vec���2��� = V �2� ⊗C�2�

C�1� =∑
��1�

i Q�1�
i

C�2� =∑
��2�

i Q�2�
i

30.1

where y represents a c× t data matrix of channels × time
bins. L is a c× s lead-field matrix, linking the channels to
the s sources, and j is an s × t matrix of source activity
over peristimulus time. ��1� and ��2� are random effects,
representing observation error or noise and unknown
source activity respectively. V �1� and V �2� are the tem-
poral correlation matrices of these random effects. Most
approaches, including our previous work, have assumed
them to be the identity matrix. However, they could eas-
ily model serial correlations and, indeed, non-stationary
components. C�1� and C�2� are the spatial covariances for
noise and sources respectively; they are linear mixtures
of covariance components Q�1�

i and Q�2�
i , which embody

spatial constraints on the solution. V �1� ⊗C�1� represents
a parametric noise covariance model (Huizenga et al.,
2002) in which the temporal and spatial components fac-
torize. Here the spatial component can have multiple
components estimated through ��1�

i , whereas the tem-
poral form is fixed. At the second level, V �2� ⊗ C�2� can
be regarded as spatio-temporal priors on the sources
p(j) = N�0�V �2� ⊗C�2��, whose spatial components are
estimated empirically in terms of ��2�

i .
The ReML scheme described here is based on the two

main results for vec operators and Kronecker tensor prod-
ucts:

vec�ABC� = �CT ⊗A�vec�B�

tr�AT B� = vec�A�T vec�B�
30.2

The vec operator stacks the columns of a matrix on top
of each other to produce a long column vector. The trace
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operator tr(A) sums the leading diagonal elements of a
matrix A and the Kronecker tensor product A⊗B replaces
each element Aij of A with AijB to produce a larger
matrix. These equalities enable us to express the forward
model in Eqn. 30.1 as:

vec�y� = �I ⊗L�vec�j�+vec���1��

vec�j� = vec���2��
30.3

and express the conditional mean ĵ and covariance �̂ as:

vec�ĵ� = �̂�V �1�−1 ⊗LT C�1�−1�vec�y�

= �V �2� ⊗C�2�LT ��V �2� ⊗LC�2�LT +V �1� ⊗C�1��−1vec�y�

�̂ = �V �2�−1 ⊗C�2�−1 +V �1�−1 ⊗LT C�1�−1L�−1

30.4

The first and second lines of Eqn. 30.4 are equivalent
by the matrix inversion lemma. The conditional mean
vec�ĵ� or maximum a posteriori (MAP) estimate is the most
likely source, given the data. The conditional covariance
�̂ encodes uncertainty about vec(j) and can be regarded
as the dispersion of a distribution over an ensemble of
solutions centred on the conditional mean.

In principle, Eqn. 30.4 provides a way of computing
conditional means of the sources and their conditional
covariances. However, it entails pre-multiplying a very
long vector with an enormous (st×ct) matrix. Things are
much simpler when the temporal correlations of noise
and signal are the same, i.e. V �1� = V �2� = V . In this special
case, we can compute the conditional mean and covari-
ances using much smaller matrices:

ĵ = My

�̂ = V ⊗ Ĉ

M = C�2�LT C−1

C = LC�2�LT +C�1�

Ĉ = �LT C�1�−1L+C�2�−1�−1

30.5

Here M is an �s × c� matrix that corresponds to a MAP
operator that maps the data to the conditional mean.
This compact form depends on assuming the temporal
correlations V of the observation error and the sources
are the same. This ensures the covariance of the data
cov�vec�y�� = �, and of the sources conditioned on the
data �̂, factorize into separable spatial and temporal com-
ponents:

� = V ⊗C

�̂ = V ⊗ Ĉ
30.6

This is an important point because Eqn. 30.6 is not
generally true if the temporal correlations of the error
and sources are different, i.e. V �1� �= V �2�. Even if, a priori,
there is no interaction between the temporal and spa-
tial responses, a difference in the temporal correlations,
from the two levels, induces conditional spatio-temporal
dependencies. This means that the conditional estimate
of the spatial distribution changes with time. This depen-
dency precludes the factorization implicit in Eqn. 30.5
and enforces a full-vectorized spatio-temporal analysis
(Eqn. 30.4), which is computationally expensive.

For the moment, we will assume the temporal correla-
tions are the same and then generalize the approach in
the next section for some special cases of V �1� �= V �2�.

Estimating the covariances

Under the assumption that V �1� = V �2� = V , the only quan-
tities that need to be estimated are the covariance compo-
nents in Eqn. 30.1. This proceeds using an iterative ReML
scheme in which the covariance parameters maximize the
log-likelihood or log-evidence:

� = max
�

ln p�y���Q�

= REML�vec�y�vec�y�T �V ⊗Q�
30.7

In brief, the � = REML�A�B� operator decomposes a
sample covariance matrix A into a number of speci-
fied components B = B1� � � � so that A ≈∑

i
�iBi (see pre-

vious chapter and Appendix 4). The ensuing covari-
ance parameters � = �i� � � � render the sample covari-
ance the most likely. In our application, the sample
covariance is simply the outer product of the vectorized
data vec�y�vec�y�T and the components are V ⊗Qi. Here,
Q = Q�1�

1 � � � � LQ�2�
1 LT � � � � are the spatial covariance com-

ponents from the first level of the model and the second
level, after projection onto channel space through the
lead-field.

ReML was originally formulated in terms of covari-
ance component analysis, but is now appreciated as a
special case of expectation maximization (EM). The use
of the ReML estimate properly accounts for the degrees
of freedom lost in estimating the model parameters (i.e.
sources), when estimating the covariance components.
The ‘restriction’ means that the covariance component
estimated is restricted to the null space of the model.
This ensures that uncertainty about the source estimates
is accommodated in the covariance estimates. The key
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thing is how the data enter the log-likelihood that is
maximized by ReML:1

ln p�y ���Q� = −1
2

tr ��−1vec�y�vec�y�T �− 1
2

ln ���

= −1
2

tr �C−1yV −1yT �− 1
2

ln �C�rank�V �

30.8

The second line uses the results in Eqn. 30.2 and shows
that the substitutions vec�y�vec�y�T → yV −1yT

/
rank�V�

and V ⊗Q → Q do not change the maximum of the objec-
tive function. This means we can replace the ReML argu-
ments in Eqn. 30.7 with much smaller �c× c� matrices:

� = REML�vec�y�vec�y�T �V ⊗Q�

= REML�yV −1yT /rank�V��Q�
30.9

Assuming the data are zero mean, this second-order
matrix yV −1yT /rank�V� is simply the sample covariance
matrix of the whitened data over the t time bins, where
rank�V� = t. The greater the number of time bins, the more
precise the ReML covariance component estimators.

This reformulation of the ReML scheme requires the
temporal correlations of the observation error and the
sources to be the same. This ensures � = V ⊗ C can be
factorized and affords the computational saving implicit
in Eqn. 30.9. However, there is no reason to assume that
the processes generating the signal and noise have the
same temporal correlations. In the next section, we finesse
this unlikely assumption by restricting the estimation to
a subspace defined by temporal basis functions.

A TEMPORALLY INFORMED SCHEME

In this section, we describe a simple extension to the
basic ReML approach that enables some constraints to
be placed on the form of evoked or induced responses.
This involves relaxing the assumption that V �1� = V �2�.
The basic idea is to project the data onto a subspace (via a
matrix S) in which the temporal correlation of signal and
noise are formally equivalent. This falls short of a full
spatio-temporal model, but retains the efficiency of ReML
scheme above and allows for differences between V �1�

and V �2� subject to the constraint that ST V �2�S = ST V �1�S.
In brief, we have already established a principled and

efficient Bayesian inversion of the inverse problem for
M/EEG using ReML. To extend this approach to mul-
tiple time bins we need to assume that the temporal

1 Ignoring constant terms. The rank of a matrix corresponds to
the number of dimensions it spans. For full-rank matrices, the
rank is the same as the number of columns (or rows).

correlations of channel noise and underlying sources are
the same. In reality, sources are generally smoother than
noise because of the generalized convolution implicit in
synaptic and population dynamics at the neuronal level
(Friston, 2000). However, by projecting the time-series
onto a carefully chosen subspace we can make the tempo-
ral correlations of noise and signal the same. This enables
us to solve a spatio-temporal inverse problem, using the
re-formulation of the previous section. Heuristically, this
projection removes high-frequency noise components so
that the remaining smooth components exhibit the same
correlations as signal. We now go through the maths that
this entails.

Consider the forward model, where, for notational sim-
plicity V �1� = V :

y = LkST +��1�

k = ��2�

Cov�vec���1��� = V ⊗C�1�

Cov�vec���2��� = ST VS ⊗C�2�

30.10

This is the same as Eqn. 30.1 with the substitution j = kST .
The only difference is that the sources are estimated in
terms of the activity k of temporal modes. The orthonor-
mal columns of the temporal basis set S define these
modes, where ST S = Ir . When S has fewer columns than
rows r < t� it defines an r-subspace in which the sources
lie. In other words, the basis set allows us to preclude
temporal response components that are, a priori, unlikely
(e.g. very high frequency responses or responses before
stimulus onset). This restriction enables one to define a
signal that lies in the subspace of the errors.

In short, the subspace S encodes prior beliefs about
when and how signal will be evoked. It specifies tempo-
ral priors on the sources through V �2� = SST V �1�SST . This
ensures that ST V �2�S = ST V �1�S because ST S = Ir and ren-
ders the restricted temporal correlations formally equiva-
lent. We will see later that the temporal priors on sources
are also their posteriors, V �2� = V̂ , because the temporal
correlations are treated as fixed and known.

The restricted model can be transformed into a spatio-
temporally separable form by post-multiplying the first
line of Eqn. 30.10 by S to give:

yS = Lk+��S�

k = ��2�

Cov�vec���S��� = ST VS ⊗C�1�

Cov�vec���2��� = ST VS ⊗C�2�

30.11

In this model, the temporal correlations of signal and
noise are now the same. This restricted model has exactly
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the same form as Eqn. 30.1 and can be used to pro-
vide ReML estimates of the covariance components in
the usual way, using equation Eqn. 30.9:

� = REML�
1
r

yS�ST VS�−1ST yT �Q� 30.12

These are then used to compute the conditional moments
of the sources as a function of time:

ĵ = k̂ST = MySST

�̂ = V̂ ⊗ Ĉ 30.13

V̂ = SST VSST

Note that the temporal correlations V̂ are rank deficient
and non-stationary, because the conditional responses
do not span the null space of S. This scheme does not
represent a full spatio-temporal analysis; it is simply a
device to incorporate constraints on the temporal com-
ponent of the solution. A full analysis would require
covariances that could not be factorized into spatial and
temporal factors. This would preclude the efficient use of
ReML covariance estimation described above. However,
in most applications, a full temporal analysis would pro-
ceed, using the above estimates from different trial types
and subjects (see for example, Kiebel et al., 2004b).

In the later examples, we specify S as the principal
eigenvectors of a temporal prior source covariance matrix
based on a windowed autocorrelation (i.e. Toeplitz)
matrix. In other words, we took a Gaussian autocorrela-
tion matrix and multiplied the rows and columns with a
window-function to embody our a priori assumption that
responses are concentrated early in peristimulus time.
The use of prior constraints in this way is very similar
to the use of anatomically informed basis functions to
restrict the solution space anatomically (see Phillips et al.,
2002). Here, S can be regarded as a temporally informed
basis set that defines a signal subspace.

ESTIMATING RESPONSE ENERGY

In this section, we consider the estimation of evoked and
induced responses in terms of their energy or power. The
energy is simply the squared norm (i.e. squared length)
of the response projected onto some time-frequency sub-
space defined by W . The columns of W correspond to
the columns of a [wavelet] basis set that encompasses
time-frequencies of interest, e.g. a sine-cosine pair of win-
dowed sinusoids of a particular frequency. We deal first
with estimating the energy of a single trial and then turn
to multiple trials. The partitioning of energy into evoked
and induced components pertains only to multiple trials.

For a single trial the energy expressed by the i-th
source is:

ji�•WW T jT
i�• 30.14

ji�• is the i-th row of the source matrix, over all time
bins. The conditional expectation of this energy obtains
by averaging over the conditional density of the sources.
The conditional density for the i-th source, over time, is:

p�ji�• �y��� = N�ĵi�•� ĈiiV̂ �

ĵi�• = Mi�•ySST
30.15

and the conditional expectation of the energy is:

〈
ji�•WW T jT

i�•
〉
p
= tr�WW T

〈
jT
i�•ji�•

〉
p
�

= tr�WW T �ĵT
i�• ĵi�• + ĈiiV̂ ��

= Mi�•yGyT MT
i�• + Ĉiitr�GV�

G = SST WW T SST

30.16

Note that this is a function of yGyT , the corresponding
energy Ey in channel space. The expression in Eqn. 30.16
can be generalized to cover all sources, although this
would be a rather large matrix to interpret:

Ê = 〈
jWW T jT

〉
p
= MEyM

T + Ĉtr�GV �

Ey = yGyT
30.17

The matrix Ê is the conditional expectation of the energy
over sources. The diagonal terms correspond to energy
at the corresponding source (e.g. spectral density if W
comprised sine and cosine functions). The off-diagonal
terms represent cross energy (e.g. cross-spectral density
or coherence).

Eqn. 30.17 means that the conditional energy has two
components, one attributable to the energy in the con-
ditional mean (the first term) and one related to condi-
tional covariance (the second). The second component
may seem a little counterintuitive: it suggests that the
conditional expectation of the energy increases with con-
ditional uncertainty about the sources. In fact, this is
appropriate; when conditional uncertainty is high, the
priors shrink the conditional mean of the sources towards
zero. This results in an underestimate of energy based
solely on the conditional expectations of the sources. By
including the second term, the energy estimator becomes
unbiased. It would be possible to drop the second term if
conditional uncertainty was small. This would be equiv-
alent to approximating the conditional density of the
sources with a point mass over its mean. The advantage
of this is that one does not have to compute the s × s
conditional covariance of the sources. However, we will
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assume the number of sources is sufficiently small to use
Eqn. 30.17.

In this section, we have derived expressions for the
conditional energy of a single trial. In the next section,
we revisit the estimation of response energy over multi-
ple trials. In this context, there is a distinction between
induced and evoked energy.

AVERAGING OVER TRIALS

With multiple trials we have to consider trial-to-trial vari-
ability in responses. Conventionally, the energy associ-
ated with between-trial variations, around the average
or evoked response, is referred to as induced. Induced
responses are normally characterized in terms of the
energy of oscillations within a particular time-frequency
window. Because, by definition, they do not show a sys-
tematic phase-relationship with the stimulus, they are
expressed in the average energy over trials, but not in the
energy of the average. In this chapter, we use the term
global response in reference to the total energy expressed
over trials and partition this into evoked and induced
components. In some formulations, a third component
due to stationary, ongoing activity is considered. Here,
we will subsume this component under induced energy.
This is perfectly sensible, provided induced responses are
compared between trial types, when ongoing or baseline
power cancels.

Multitrial models

Hitherto we have dealt with single trials. When dealing
with multiple trials, the same procedures can be adopted,
but there is a key difference for evoked and induced
responses. The model for n trials is:

Y = Lk�1��In ⊗S�T +��1�

k�1� = �1n ⊗k�2��+��2�

k�2� = ��3�

Cov�vec���1��� = In ⊗V ⊗C�1�

Cov�vec���2��� = In ⊗ST VS ⊗C�2�

Cov�vec���3��� = ST VS ⊗C�3�

30.18

where 1n = 	1� � � � � 1
 is a 1×n vector and Y = 	y1� � � � � yn

represents data concatenated over trials. Note that mul-
tiple trials induce a third level in the hierarchical model.
In this three-level model, sources have two components:

a component that is common to all trials k�2� and a trial-
specific component ��2�. These are related to evoked and
induced response components as follows.

Operationally, we can partition the responses k�1� in
source space into a component that corresponds to the
average response over trials, the evoked response and an
orthogonal component, the induced response:

k�e� = k�1��1−
n ⊗ Ir �

= k�2� +��2��1−
n ⊗ Ir � 30.19

k�i� = k�1���In −1−
n 1n�⊗ Ir �

1−
n = 	 1

n
� � � � � 1

n

T is the generalized inverse of 1n and is

simply an averaging vector. As the number of trials n
increases, the random terms at the second level are aver-
aged away and the evoked response k�e� → k�2� approx-
imates the common component. Similarly, the induced
response k�i� → ��2� becomes the trial specific component.
With the definition of evoked and induced components
in place we can now turn to their estimation.

Evoked responses

The multitrial model can be transformed into a spatio-
temporally separable form by simply averaging the data
Y = Y�1−

n ⊗ It� and projecting onto the signal subspace.
This is exactly the same restriction device used above to
accommodate temporal basis functions but applied here
to the trial-average. This corresponds to post-multiplying
the first level by the trial-averaging and projection oper-
ator 1−

n ⊗S to give:

YS = Lk�e� +��1�

k�e� = ��e�

Cov�vec���1��� = ST VS ⊗C
�1�

Cov�vec���e��� = ST VS ⊗C�e�

30.20

Here, C
�1� = 1

n
C�1� and C�e� = 1

n
C�2� + C�3� is a mixture of

trial-specific and non-specific spatial covariances. This
model has exactly the same form as the single-trial model,
enabling ReML estimation of C

�1�
and C�e� that are needed

to form the conditional estimator M (see Eqn. 30.4):

� = REML�
1
r

YS�ST VS�−1ST Y
T
�Q� 30.21

The conditional expectation of the evoked response
amplitude (e.g. event-related potential, ERP, or event-
related field, ERF) is simply:

ĵ�e� = MYSST

M = C�e�LT �LC�e�LT +C
�1�

�−1 30.22
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C
�1� =∑

��1�
i Q�1�

i

C�e� =∑
��e�

i Q�e�
i

The conditional expectation of evoked power is then:

Ê�e� = ME�e�
y MT + Ĉtr�GV�

E�e�
y = YGY

T

Ĉ = �LT C
�1�−1

L+C�e�−1�−1

30.23

where E�e�
y is the evoked cross-energy in channel space.

In short, this is exactly the same as a single-trial analysis
but using the channel-data averaged over trials. How-
ever, this averaging is not appropriate for the induced
responses considered next.

Induced responses

To isolate and characterize induced responses, we effec-
tively subtract the evoked response from all trials to give
Ỹ = Y��In − 1−

n 1n� ⊗ It�, and project this mean-corrected
data onto the signal subspace. The average covariance of
the ensuing data is then decomposed using ReML. This
entails post-multiplying the first level of the multi-trial
model by �In −1−

n 1n�⊗S to give:

Ỹ �In ⊗S� = Lk�i� + �̃�1�

k�i� = ��i�

Cov�vec��̃�1��� = In ⊗ST VS ⊗ C̃�1�

Cov�vec���i��� = In ⊗ST VS ⊗C�i�

30.24

In this transformation k�i� is a large s × nr matrix that
covers all trials. Again, this model has the same spatio-
temporally separable form as the previous models,
enabling an efficient ReML estimation of the covariance
components of C̃�1� and C�i�:

� = REML�
1
nr

Ỹ �In ⊗S�ST VS�−1ST �Ỹ T �Q� 30.25

The first argument of the ReML function is just the covari-
ance of the whitened, mean-corrected data averaged over
trials. The conditional expectation of induced energy, per
trial, is then:

Ê�i� = 1
n

MỸ �In ⊗G�Ỹ T MT + 1
n

Ĉtr�In ⊗GV�

= ME�i�
y MT + Ĉtr�GV�

E�i�
y = 1

n
Ỹ �In ⊗G�Ỹ T

30.26

where E�i�
y is the induced cross-energy per trial, in channel

space. The spatial conditional projector M and covari-
ance Ĉ are defined as above (Eqn. 30.22 and Eqn. 30.23).

Although it would be possible to estimate the amplitude
of induced responses for each trial, this is seldom
interesting.

Summary

The key thing to take from this section is that the esti-
mation of evoked responses involves averaging over
trials and estimating the covariance components. Con-
versely, the analysis of induced responses involves esti-
mating covariance components and then averaging. In
both cases, the iterative ReML scheme operates on small
c× c matrices.

The various uses of the ReML scheme and conditional
estimators are shown schematically in Figure 30.1. Note
that all applications, be they single-trial or trial-average,
estimates of evoked responses or induced energy, rest
on a two-stage procedure in which ReML covariance
component estimators are used to form conditional esti-
mators of the sources. The second thing to take from
this figure is that the distinction between evoked and
induced responses only has meaning in the context of
multiple trials. This distinction rests on an operational
definition, established in the decomposition of response
energy in channel space. The corresponding decomposi-
tion in source space affords the simple and efficient esti-
mation of evoked and induced power described in this
section. However, it is interesting to note that conditional
estimators of evoked and induced components are not
estimates of the fixed k�2� and random ��2� effects in the
hierarchical model. These estimates would require a full
mixed-effects analysis. Another interesting issue is that
evoked and induced responses in channel space (where
there is no estimation per se) represent a bi-partitioning of
global responses. This is not the case for their conditional
estimates in source space. In other words, the conditional
estimate of global power is not necessarily the sum of the
conditional estimates of evoked and induced power.

SOME EXAMPLES

In this section, we illustrate the above procedures using
toy and real data. The objective of the toy example is
to clarify the nature of the operators and matrices, to
highlight the usefulness of restricting the signal space
and to show, algorithmically, how evoked and induced
responses are recovered. The real data are presented to
establish a degree of face validity, given that face-related
responses have been fully characterized in terms of their
functional anatomy. The toy example deals with the
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FIGURE 30.1 ReML scheme: schematic showing the various applications of the ReML scheme in estimating evoked and induced
responses in multiple trials. See main text for an explanation of the variables.

single-trial case and the real data, looking for face-specific
responses, illustrates the multi-trial case.

Toy example

We generated data according to the model in Eqn. 30.10
using s = 128 sources, c = 16 channels and t = 64 time
bins. The lead field L was a matrix of random Gaussian
variables. The spatial covariance components comprised:

Q�1�
1 = Ic

Q�2�
1 = DDT

Q�2�
2 = DFDT 30.27

where D was a spatial convolution or dispersion opera-
tor, using a Gaussian kernel with a standard deviation

of four voxels. This can be considered a smoothness or
spatial coherence constraint. F represents structural or
functional MRI constraints and was a leading diagonal
matrix encoding the prior probability of a source at each
voxel. This was chosen randomly by smoothing a ran-
dom Gaussian sequence raised to the power four. The
noise was assumed to be identically and independently
distributed, V �1� = V = It. The signal subspace in time
S was specified by the first r = 8 principal eigenvectors
of a Gaussian autocorrelation matrix of standard devia-
tion two, windowed with a function of peristimulus time
t2 exp�−t/8�. This constrains the prior temporal correla-
tion structure of the sources V �2� = SST VSST , which are
smooth and restricted to earlier time bins by the window-
function.

The hyperparameters were chosen to emphasize the
MRI priors � = 	��1�

1 ���2�
1 ���2�

2 
 = 	1� 0� 8
 and provide a
signal to noise of about one, measured as the ratio of the



Elsevier UK Chapter: Ch30-P372560 30-9-2006 5:26p.m. Page:385 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

SOME EXAMPLES 385

standard deviation of signal divided by noise, averaged
over channels. The signal to noise in the example shown
in Figure 30.2 was 88 per cent. The spatial coherence
and MRI priors are shown at the top of Figure 30.2. The
resulting spatial priors are shown below and are simply
��2�

1 Q�2�
1 +��2�

2 Q�2�
2 . The temporal priors SST VSST are shown

on the middle right. Data (middle panel) were generated
in source space using random Gaussian variates and the
spatial and temporal priors above, according to the for-
ward model in Eqn. 30.10. These were passed through
the lead-field matrix and added to observation noise to

simulate channel data. The lower left panels show the
channel data with and without noise.

ReML solution

The simulated channel data were used to estimate
the covariance components and implicitly the spatial
priors using Eqn. 30.12. The resulting estimates of
� = 	��1�

1 ���2�
1 ���2�

2 
 are shown in Figure 30.3 (upper panel).
The small bars represent 90 per cent confidence inter-
vals, about the ReML estimates, based on the curvature
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FIGURE 30.2 Simulated data: the spatial smoothness or coherence and MRI priors are shown in the top panels. These are prior
covariance components, over sources, shown in image format. Note that the smoothness component is stationary (i.e. does not change along
the diagonals), whereas the fMRI prior changes with source location. The resulting spatial priors �
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2 are shown below. The

temporal priors on the sources SST VSST are shown on the middle right. Again, these are depicted as a covariance matrix, over time bins.
Notice how this prior concentrates signal variance in the first forty time bins. Data (middle panel) were generated in source space, using
random Gaussian variates according to the forward model in Eqn. 30.10 and the spatial and temporal priors above. These were passed
through the lead-field matrix to simulate channel data. In this example, the lead-field matrix was simply a matrix of independent Gaussian
variates. The lower left panels show the channel data after (left) and before (right) adding noise, over time bins.
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FIGURE 30.3 ReML solution: the ReML estimates of � =
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2 
 are shown in the upper panel. The small bars rep-

resent 90 per cent confidence intervals about the ReML estimates,
based on the curvature of the log likelihood. The large bars are the
true values. The ReML scheme correctly assigns more weight to
the MRI priors to provide the empirical prior in the lower panel
(left). This ReML estimate is virtually indistinguishable from the
true prior (right).

of the log-likelihood in Eqn. 30.7. The large bars are the
true values. The ReML scheme correctly assigns much
more weight to the MRI priors to provide the empirical
prior in the lower panel (left). This ReML estimate (left)
is virtually indistinguishable from the true prior (right).

Conditional estimates of responses

The conditional expectations of sources, over time, are
shown in Figure 30.4 using the expression in Eqn. 30.13.
The upper left panel shows the true and estimated spa-
tial profile at the time bin expressing the largest activ-
ity (maximal deflection). The equivalent source estimate,
over time, is shown on the right. One can see the charac-
teristic shrinkage of the conditional estimators, in relation
to the true values. The full spatio-temporal profiles are
shown in the lower panels.

Conditional estimates of response energy

To illustrate the estimation of energy, we defined a
time-frequency window W = 	w�t� sin��t��w�t� cos��t�

for one frequency, �, over a Gaussian time window, w�t�.
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FIGURE 30.4 Conditional estimates of responses: the upper
panel shows the true and estimated spatial profile at the time bin
expressing the largest activity (upper left). The equivalent profile,
over time, is shown on the upper right for the source expressing
the greatest response. These graphs correspond to sections (dotted
lines) though the full spatio-temporal profiles shown in image for-
mat (lower panels). Note the characteristic shrinkage of the MAP
estimates, relative to the true values, that follows from the use of
shrinkage priors (that shrink the conditional expectations to the
prior mean of zero).

This time-frequency subspace is shown in the upper pan-
els of Figure 30.5. The corresponding energy was esti-
mated using Eqn. 30.17 and is shown, with the true val-
ues, in the lower panels. The agreement is evident.

Analysis of real data

We used MEG data from a single subject while they
made symmetry judgements on faces and scrambled
faces (for a detailed description of the paradigm see
Henson et al., 2003). MEG data were sampled at 625 Hz
from a 151-channel CTF Omega system at the Wellcome
Trust Laboratory for MEG Studies, Aston University,
UK. The epochs (80 face trials, collapsing across famil-
iar and unfamiliar faces, and 84 scrambled trials) were
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FIGURE 30.5 Conditional estimates of response energy: a
time-frequency subspace W is shown in the upper panels as func-
tions of time (left) and in image format (right). This subspace defines
the time-frequency response of interest. In this example, we are test-
ing for frequency-specific responses between 10 and 20 time bins.
The corresponding energy estimates are shown over sources, with
the true values, in the middle panel. Note the remarkable corre-
spondence. The lower panels show the cross-energy over sources,
with estimates on the left and true values on the right. The energies
in the middle panel are the leading diagonals of the cross-energy
matrices, shown as images below. Again, note the formal similarity
between the true and estimated cross-energies.

baseline-corrected from −100 ms to 0 ms. The 500 ms,
after stimulus onset, of each trial entered the analysis.
A T1-weighted MRI was also obtained with a resolu-
tion 1×1×1 mm3. Head-shape was digitized with a 3-D
Polhemus Isotrak and used to co-register the MRI and
MEG data. A segmented cortical mesh was created using
Anatomist (Mangin et al., 2004), with approximately 4000
dipoles oriented normal to the grey matter. Finally, a
single-shell spherical head model was constructed using

BrainStorm (Baillet et al., 2004) to compute the forward
operator L.

The spatial covariance components comprised:

Q
�1�
1 = Ic

Q�2�
1 = DDT

30.28

where spatial smoothness operator D was defined on
the cortical mesh, using a Gaussian kernel with a stan-
dard deviation of 8 mm. Note we used only one, rather
smooth, spatial component in this analysis. This was for
simplicity. A more thorough analysis would use multiple
components and Bayesian model selection to choose the
optimum number of components (Mattout et al., 2006).
As with the simulated data analysis, the noise correla-
tions were assumed to be identical and independently
distributed, V �1� = It, and the signal subspace in time S
was specified by the first r = 50 principal eigenvectors of
the windowed autocorrelation matrix used above.

We focused our analysis on the earliest reliable differ-
ence between faces and scrambled faces, as characterized
by the M170 component in the ERF (Plate 41(c) – see
colour plate section). A frequency band of 10–15 Hz was
chosen on the basis of reliable differences (p < 001; cor-
rected) in a statistical parametric map (time-frequency
SPM) of the global energy differences (Plate 41(b)) around
the M170 latency (Henson et al., 2005a). The ensuing time-
frequency subspace was centred at 170 ms (Plate 41(c)).

Results

Plate 41(d) shows evoked and induced power in chan-
nel space as defined in Eqn. 30.23 and Eqn. 30.26
respectively. Power maps were normalized to the same
maximum for display. In both conditions, maximum
power is located over the right temporal regions. How-
ever, the range of power values is much wider for the
evoked response. Moreover, whereas scalp topographies
of induced responses are similar between conditions,
the evoked energy is clearly higher for faces, relative to
scrambled faces. This suggests that the M170 is mediated
by differences in phase-locked activity.

This is confirmed by the power analysis in source space
(Plate 42), using Eqn. 30.23 and Eqn. 30.26. Evoked and
induced responses are generated by the same set of corti-
cal regions. However, the differences between faces and
scrambled faces, in terms of induced power, are weak
compared to the equivalent differences in evoked power
(see the scale bars in Plate 42). Furthermore, the varia-
tion in induced energy over channels and conditions is
small, relative to evoked power. This non-specific profile
suggests that ongoing activity may contribute substan-
tially to the induced component. As mentioned above,
the interesting aspect of induced power usually resides in
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trial-specific differences. A full analysis of induced differ-
ences will be presented elsewhere. Here we focus on the
functional anatomy implied by evoked differentials. The
functional anatomy of evoked responses, in this context,
is sufficiently well known to establish the face validity of
our conditional estimators:

The upper panel of Plate 43 shows the cortical projec-
tion of the difference between the conditional expecta-
tions of evoked energy, for faces versus scrambled faces.
The largest changes were expressed in the right infe-
rior occipital gyrus (IOG), the right orbitofrontal cortex
(OFC) and the horizontal posterior segment of the right
superior temporal sulcus (STS). Plate 44 shows the co-
registration of these energy changes with the subject’s
structural MRI. Happily, the ‘activation’ of these regions
is consistent with the equivalent comparison of fMRI
responses (Henson et al., 2003).

The activation of the ventral and lateral occipitotempo-
ral regions is also consistent with recent localizations of
the evoked M170 (Henson et al., 2005b; Tanskanen et al.,
2005). This is to be expected, given that most of the energy
change appears to be phase-locked (Henson et al., 2005a).
Indeed, the conditional estimates of evoked responses
at the location of the maximum of energy change in
the right IOG and right posterior STS show a deflection
around 170 ms that is greater for faces than scrambled
faces (Plate 43, lower panel).

Note we have not made any inferences about these
effects. SPMs of energy differences would normally
be constructed using conditional estimates of power
changes over subjects (see Plate 40).

DISCUSSION

We have described an empirical Bayes approach to
M/EEG source reconstruction that covers both evoked
and induced responses. The estimation scheme is based
on classical covariance component estimation using
restricted maximum likelihood (ReML). We used tempo-
ral basis functions to place constraints on the temporal
form of the responses and showed how one can esti-
mate evoked responses, which are phase-locked to the
stimulus, and induced responses that are not. This inher-
ent distinction calls for different transformations of a
hierarchical model of multiple trial responses to provide
Bayesian estimates of power.

Oscillatory activity is well known to be related to
neural coding and information processing in the brain
(Hari et al., 1997; Tallon-Baudry et al., 1999; Fries et al.,
2001). Oscillatory activity refers to signals generated in
a particular frequency band time-locked but not neces-
sary phase-locked to the stimulus. Classical data aver-

aging approaches may not capture this activity, which
calls for trial-to-trial analyses. However, localizing the
sources of oscillatory activity on a trial-by-trial basis
is computationally demanding and requires data with
low SNR. This is why early approaches were limited to
channel space (e.g. Tallon-Baudry et al., 1997). Recently,
several inverse algorithms have been proposed to esti-
mate the sources of induced oscillations. Most are dis-
tributed (or imaging) methods, since equivalent current
dipole models are not suitable for explaining a few hun-
dreds of milliseconds of non-averaged activity. Among
distributed approaches, two main types can be distin-
guished: the beam-former (Gross et al., 2001; Sekihara
et al., 2001; Cheyne et al., 2003) and minimum-norm-based
techniques (David et al., 2002; Jensen and Vanni, 2002),
although both can be formulated as (weighted) minimum
norm estimators (Hauk, 2004). A strict minimum norm
solution obtains when no weighting matrix is involved
(Hamalainen et al., 1993), but constraints such as fMRI-
derived priors have been shown to condition the inverse
solution (Lin et al., 2004). Beam-former approaches imple-
ment a constrained inverse using a set of spatial fil-
ters (see Huang et al., 2004 for an overview). The basic
principle employed by beam-formers is to estimate the
activity at each putative source location while suppress-
ing the contribution of other sources. This means that
beam-formers look explicitly for uncorrelated sources.
Although some robustness has been reported in the con-
text of partially correlated sources (Van Veen et al., 1997),
this aspect of beam-forming can be annoying when trying
to characterize coherent or synchronized cortical sources
(Gross et al., 2001).

In this chapter, we have looked at a generalization
of the weighted minimum norm approach based on
hierarchical linear models and empirical Bayes, which
can accommodate multiple priors in an optimal fash-
ion (Phillips et al., 2005). The approach involves a par-
titioning of the data covariance matrix into noise and
prior source variance components, whose relative con-
tributions are estimated using ReML. Each model (i.e.
set of partitions or components) can be evaluated using
Bayesian model selection (Mattout et al., 2006). Moreover,
the ReML scheme is computationally efficient, requir-
ing only the inversion of small matrices. With tempo-
ral constraints, the scheme offers a general Bayesian
framework that can incorporate all kind of spatial pri-
ors such as beam-former-like spatial filters and/or fMRI-
derived constraints (Friston et al., 2006). Furthermore,
basis functions enable both the use of computationally
efficient ReML-based variance component estimation and
the definition of priors on the temporal form of the
response. This implies a separation of the temporal and
spatial dependencies, at both the sensor and source lev-
els, using a Kronecker formulation (Huizenga et al., 2002).
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Thanks to this spatio-temporal approximation, the esti-
mation of induced responses, from multi-trial data, does
not require a computationally demanding trial-by-trial
approach (Jensen et al., 2002) or drastic dimension reduc-
tion of the solution space (David et al., 2002).

The approach described in this chapter allows for
spatio-temporal modelling of evoked and induced
responses under the assumption that there is a subspace
S, in which temporal correlations among the data and
signal have the same form. Clearly, this subspace should
encompass as much of the signal as possible. In this work,
we used the principal eigenvariates of a prior covariance
based on smooth signals, concentrated early in peristim-
ulus time. This subspace is therefore informed by prior
assumptions about how and when signal is expressed. A
key issue here is what would happen if the prior subspace
did not coincide with the true signal subspace. In this
instance, there may be a loss of efficiency as experimen-
tal variance is lost to the null space of S. However, there
will be no bias in the [projected] response estimates. Sim-
ilarly, the estimate of the error covariance components
will be unbiased but lose efficiency as high frequency
noise components are lost in the restriction. Put simply,
this means the variability in the covariance parameter
estimates will increase, leading to a slight overconfidence
in conditional inference. The overconfidence problem is
not an issue here because we are only interested in the
conditional expectations, which would normally be taken
to a further (between-subject) level for inference.

Importantly, statistical parametric mapping of the esti-
mated power changes in a particular time-frequency win-
dow, over conditions and/or over subjects, can now be
achieved at the cortical level (Brookes et al., 2004; Kiebel
et al., 2004a). Finally, with the appropriate wavelet trans-
formation, instantaneous power and phase could also be
estimated in order to study cortical synchrony.

In the previous three chapters, we considered the
inversion of electromagnetic models to estimate current
sources. In the next three chapters, we turn to models
of how neuronal dynamics generate the activity in these
sources. The neuronal and electromagnetic models of this
section are combined later (Chapter 42) in the dynamic
causal modelling of measured M/EEG responses.
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Neuronal models of ensemble dynamics
L. Harrison, O. David and K. Friston

INTRODUCTION

In this chapter, we introduce some of the basis princi-
ples behind modelling ensemble or population dynam-
ics. In particular, we focus on mean-field approximations
that allow one to model the evolution of states aver-
aged over large numbers of neurons that are assumed to
respond similarly to external influences. This is the basis
of the neural mass models used in subsequent chapters
to model interactions among subpopulations that consti-
tute sources of measured brain signals. These models are
important because they are parameterized in biological
terms. This means their inversion allows one to ask ques-
tions that are framed in terms of biological processes,
rather than at a purely phenomenological level.

Neuronal responses are the product of coupling among
neuronal populations. Sensory information is encoded
and distributed among neuronal ensembles in a way that
depends on biophysical parameters that control this cou-
pling. Because coupling can be modulated by experimen-
tal factors, estimates of coupling parameters provide a
systematic way to parameterize experimentally induced
responses. This chapter is about biologically informed
models that embed this coupling.

The electrical properties of nervous tissue derive
from the electrochemical activity of coupled neu-
rons that generate current sources within the cortex,
which can be estimated from multiple scalp electrode
electroencephalography (EEG) recordings. These electri-
cal traces express large-scale coordinated patterns of elec-
trical activity. There are two commonly used methods
to characterize event-related changes in these signals:
averaging over many traces to form event-related poten-
tials (ERP) and calculating the spectral profile of ongoing
oscillatory activity (cf. evoked and induced responses).
The assumption implicit in the averaging procedure is
that the evoked signal has a fixed temporal relationship
to the stimulus, whereas the latter procedure relaxes this

assumption (Pfurtscheller and Lopes da Silva, 1999). We
will return to this distinction, using neural-mass models,
in Chapter 33.

Particular characteristics of ERPs are associated with
cognitive states, e.g. the mismatch negativity in auditory
oddball paradigms (Winkler et al., 2001). The changes in
ERP evoked by an ‘event’ are assumed to reflect event-
dependent changes in cortical processing. In a similar
way, spectral peaks of ongoing oscillations are generally
thought to reflect the degree of synchronization among
oscillating neuronal populations, with specific changes
in the spectral profile being associated with various
cognitive states. These changes have been called event-
related desynchronization (ERD) and event-related syn-
chronization (ERS). ERD is associated with an increase
in processing information, e.g. voluntary hand move-
ment (Pfurtscheller, 2001), whereas ERS is associated
with reduced processing, e.g. during little or no motor
behaviour. These observations led to the thesis that ERD
represents increased cortical excitability and conversely
that ERS reflects deactivation. We will look at this from
the point of view neuronal energetics and relationship to
metabolic activation in the next chapter.

The conventional approach to interpreting the EEG
in terms of computational processes (Churchland and
Sejnowski, 1994), is to correlate task-dependent changes
in the ERP or time-frequency profiles of ongoing activ-
ity with cognitive or pathological states. A comple-
mentary strategy is to invert a generative model of
how data are caused and estimate its parameters. This
approach goes beyond associating particular activities
with cognitive states to model the self-organization of
neuronal systems during functional processing. Candi-
date models, developed in theoretical neuroscience, can
be divided into mathematical and computational (Dayan,
1994). Mathematical models entail the biophysical mech-
anisms behind neuronal activity, such as the Hodgkin-
Huxley model neuron of action potential generation
(Dayan and Abbott, 2001). Computational models are

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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concerned with how a computational device could imple-
ment a particular task, e.g. representing saliency in
a hazardous environment. Both approaches have pro-
duced compelling models, which speaks to the use of
biologically and computationally informed forward or
generative models in neuroimaging. We focus here on
mathematical models.

The two broad classes of generative models are neural-
mass models (NMM) (Jansen and Rit, 1995; Valdes et al.,
1999; David and Friston, 2003) and population den-
sity models (Knight, 2000; Gerstner and Kistler, 2002).
NMMs were developed as parsimonious models of the
mean activity (firing rate or membrane potential) of neu-
ronal populations and have been used to generate a
wide range of oscillatory behaviours associated with the
ERP/EEG. The model equations for a population are a
set of non-linear differential equations forming a closed
loop between the influence neuronal firing has on mean
membrane potential and how this potential changes the
consequent firing rate of a population. Usually, two oper-
ators are required – linking membrane responses to input
from afferent neurons (pulse-to-wave) and the depen-
dence of action potential density on membrane potential
(wave-to-pulse) (see Jirsa, 2004 for a review). They are
divided into lumped models, where populations of neu-
rons are modelled as discrete nodes that interact through
cortico-cortical connections, or as continuous neuronal
fields (Jirsa and Haken, 1996; Rennie et al., 2002), where
the cortical sheet is modelled as a continuum on which
the cortical dynamics unfold. Frank (2005) has extended
the continuum model to include stochastic effects with
an application to magnetoencephalography (MEG) data.
David et al. (2006) have recently extended an NMM pro-
posed by Jansen and Rit (1995) and implemented it as
a forward model to analyse ERP data. In doing this,
they were able to infer changes in effective connectiv-
ity, defined as the influence one region exerts on another
(Friston et al., 2003). We will deal with this NMM model
in the next chapter and its inversion in Chapter 41.

Analyses of effective connectivity in the neuroimag-
ing community were first used with positron emission
tomography (PET) and later with functional magnetic
resonance imaging (fMRI) data. The latter applications
led to the development of dynamic causal modelling
(DCM). DCM for neuroimaging data (see Chapter 41)
embodies organizational principles of cortical hierarchies
and neurophysiological knowledge (e.g. time constants
of biophysical processes) to constrain a parameterized
non-linear dynamic model of observed responses. A
principled way of incorporating these constraints is in
the context of Bayesian estimation (Friston et al., 2002).
Furthermore, established Bayesian model comparison
and selection techniques can be used to disambiguate
different models and their implicit assumptions. The

development of this methodology by David et al. (2006)
for NMMs of ERP/EEG was an obvious extension. In
this chapter, we apply the same treatment to population
density models of interacting neuronal subpopulations.

An alternative to NMMs are population density mod-
els. These model the effect of stochastic influences (e.g.
variability of presynaptic spike-time arrivals) by con-
sidering how the probability density of neuronal states
evolves over time. In contradistinction, NMMs con-
sider only the evolution of the density’s mode or mass.
Stochastic effects are important for many phenomena,
e.g. stochastic resonance (Wiesenfeld and Moss, 1995).
The probability density is over trajectories through state-
space. The ensuing densities can be used to generate
measurements, such as the mean firing rate or membrane
potential of an average neuron within a population. A
key tool for modelling population densities is the Fokker-
Planck equation (FPE) (Risken, 1996). This equation has
a long history in the physics of transport processes and
has been applied to a wide range of physical phenom-
ena, e.g. Brownian motion, chemical oscillations, laser
physics and biological self-organization (Kuramoto, 1984;
Haken, 1996). The beauty of the FPE is that, given con-
straints on the smoothness of stochastic forces (Kloeden
and Platen, 1999), stochastic effects are equivalent to a
diffusive process. This can be modelled by a deterministic
equation in the form of a partial differential equation. The
Fokker-Planck formalism uses notions from mean-field
theory, but is dynamic and can model transitions from
non-equilibrium to equilibrium states. The key point here
is that all the random fluctuations and forces that shape
neuronal dynamics at a microscopic level can be sum-
marized in terms of a deterministic (i.e. non-random)
evolution of probability densities using the FPE.

Local field potentials (LFPs) and ERPs represent the
average response over millions of neurons, which means
it is sufficient to model their population density to gen-
erate responses. This means the FPE is a good candidate
for a forward or generative model of LFPs and ERPs.
Because the population dynamics entailed by the FPE are
deterministic, established Bayesian techniques for invert-
ing deterministic dynamical systems (Chapter 34) can be
applied directly.

Overview

In the first section, we review the theory of integrate-
and-fire neurons with synaptic dynamics and its for-
mulation as an FPE of interacting populations mediated
through mean-field quantities (see Risken, 1996; Dayan
and Abbott, 2001 for further details). The model encom-
passes four basic characteristics of neuronal activity and
organization – neurons are: dynamic, driven by stochastic
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forces, organized into populations with similar biophys-
ical properties, and have multiple populations that inter-
act to form functional networks. In the second section, we
discuss features of the model and demonstrate its face-
validity using simulated data. This involves inverting a
population density model to estimate model parameters
given synthetic data. The discussion focuses on outstand-
ing issues with this approach in the context of generative
models for LFP/ERP data.

THEORY

A deterministic model neuron

The response of a model neuron to input, s�t�, has a
generic form, which can be represented by the differential
equation:

ẋ = f�x�t�� s�t�� �� 31.1

where ẋ = dx/dt. The state vector, x, (e.g. including vari-
ables representing membrane potential and proportion
of open ionic channels) defines a space within which its
dynamics unfold. The number of elements in x defines
the dimension of this space and specific values identify a
coordinate within it. The temporal derivative of x quanti-
fies the motion of a point in state-space and the solution
of the differential equation is its trajectory. The right-
hand term is a function of the states, x�t�, and input, s�t�,
where input can be exogenous or internal, i.e. mediated

by coupling with other neurons. The model parameters,
namely, the characteristic time-constants of the system,
are represented by �. As states are not generally observed
directly, an observation equation is needed to link them
to measurements, y:

y = g�x���+� 31.2

where � is observation noise (usually modelled as a Gaus-
sian random variable). An example of an observation
equation is an operator that returns the mean firing rate
or membrane potential of a neuron. These equations form
the basis of a forward or generative model to estimate
the conditional density p���y� given real data.

Neurons are electrical units. A simple expression for
the rate of change of membrane potential, V�t�, in terms
of membrane currents, Ii�t�, and capacitance is:

CV̇ �t� =∑
i

Ii�t� 31.3

Figure 31.1 shows a schematic of a model neuron
and its resistance-capacitance circuit equivalent. Mod-
els of action potential generation (e.g. the Hodgkin-
Huxley neuron) are based on specifying the currents in
Eqn. 31.3 as functions of voltage or other quantities; typ-
ically, currents are categorized as voltage-, calcium- or
neurotransmitter-dependent. The dynamic repertoire of
a specific model depends on the nature of the different
currents. This repertoire can include fixed-point attrac-
tors, limit cycles and chaotic dynamics.

A caricature of a spiking neuron is the simple integrate-
and-fire (SIF) model. It is one-dimensional as all voltage

Input

Open xs

Closed

Channel configuration
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i
CV = ∑Ii

gS gV gL C VT

ELEVES

S V
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FIGURE 31.1 Schematic of a single-compartment model neuron including synaptic dynamics and its RC circuit analogue. Synaptic
channels and voltage-dependent ion channels are shown as a circle containing S or V respectively. There may be several species of channels,
indicated by the dots. Equilibrium potentials, conductance and current due to neurotransmitter (synaptic), voltage-dependent and passive
(i.e. leaky) channels are ES , EV , EL, gS , gV , gL, IS , IV and IL respectively. Depolarization occurs when membrane potential exceeds threshold,
VT . Input increases the opening rate of synaptic channels. Note that if synaptic channels are dropped from a model (e.g. as in a simple
integrate-and-fire neuron) then input is directly into the circuit.
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and synaptic channels are ignored. Instead, current is
modelled as a constant passive leak of charge, thereby
reducing the right-hand side of Eqn. 31.3 to ‘leakage’ and
input currents:

CV̇ = gL�EL −V�+ s�t� 31.4

where gL and EL are the conductance and equilibrium
potential of the leaky channel respectively. This model
does not incorporate the biophysics needed to gener-
ate action potentials. Instead, spiking is modelled as a
threshold process, i.e. once membrane potential exceeds
a threshold value, VT , a spike is generated and mem-
brane potential is reset to VR, where VR ≤ EL < VT . No
spike is actually emitted; only subthreshold dynamics are
modelled.

Modelling suprathreshold dynamics

First, we will augment a simple integrate-and-fire model
with an additional variable T , inter-spike time (IST). Typ-
ically, as described above, the threshold potential is mod-
elled as an absorbing boundary condition with re-entry
at the reset voltage. However, we will model the IST as a
state variable for a number of reasons. First, it constrains
the neuronal trajectory to a finite region of state-space,
which only requires natural boundary conditions, i.e. the
probability mass decays to zero as state-space extends to
infinity. This makes our later treatment generic, because
we do not have to consider model-specific boundary
conditions when, for example, formulating the FPE or
deriving its eigensystem. Another advantage is that the
time between spikes can be calculated directly from the
density on IST. Finally, having an explicit representa-
tion of the time since the last spike allows us to model
time-dependent changes in the system’s parameters (e.g.
relative refractoriness), which would be much more dif-
ficult in conventional formulations. The resulting model
is two-dimensional and automates renewal to reset volt-
age once threshold has been exceeded. We will refer to
this as a temporally augmented (TIF) model. With this
additional state-variable, we have:

V̇ = 1
C

�gL�EL −V�+ s�t��+��VR −V��

Ṫ = 1−�TH�V�

� = exp�−T 2/2	2�

H�V� =
{

1 V ≥ VT

0 V < VT

31.5

A characteristic feature of this deterministic model is that
the input has to reach a threshold before spikes are gen-
erated, after which firing rate increases monotonically.

This is in contrast to a stochastic model that has non-zero
probability of firing, even with low input. We will see an
example of this later. Given a suprathreshold input to the
TIF neuron, membrane voltage is reset to VR using the
Heaviside function (last term in Eqn. 31.5). This ensures
that once V > VT the rate of change of T with respect to
time is large and negative �� = 104�, reversing the pro-
gression of inter-spike time and returning it to zero, after
which it increases constantly for VR < V < VT . Membrane
potential is coupled to T , via an expression involving
�, which is a Gaussian function, centred at T = 0 with
a small dispersion �	 = 1 ms�. During the first few mil-
liseconds following a spike, this term provides a brief
impulse to clamp membrane potential near to VR (cf. the
refractory period).

Modelling spike-rate adaptation and synaptic
dynamics

The TIF model can be extended to include ion-channel
dynamics, i.e. to model spike-rate adaptation and synap-
tic transmission. We will call this channel model a CIF
model.

V̇ = 1
C

�gL�EL −V�+g1x1�E1 −V�

+g2x2�E2 −V�+g3x3�E3 −V�

+g4x4�E4 −V�/�1+exp�−�V −a�/b��+��VR −V��

Ṫ =1−�TH�V� 31.6


1ẋ1 =�1−x1�4�−x1


2ẋ2 =�1−x2��p2 + s�t��−x2


3ẋ3 =�1−x3�p3 −x3


4ẋ4 =�1−x4�p4 −x4

(Table 31-1 gives a list of variables used throughout
this chapter.) These equations model spike-rate adapta-
tion and synaptic dynamics (fast excitatory AMPA, slow
excitatory NMDA and inhibitory GABA channels) by
a generic synaptic channel mechanism, which is illus-
trated in Figure 31.1. The proportion of open channels
is modelled by x1� � � � � x4; these correspond to K (slow
potassium), AMPA, GABA or NMDA channels, where
0 ≤ xi ≤ 1. Given no input, the proportion of open chan-
nels relaxes to an equilibrium state, e.g. pi/�1+pi� for
GABA and NMDA channels. The rate at which channels
close is proportional to xi. Conversely, the rate of open-
ing is proportional to 1−xi. External input now enters by
increasing the opening rate of AMPA channels (see the
RC circuit of Figure 31.1).
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TABLE 31-1 Variables and symbols

Description Symbol

Membrane potential V
Inter-spike time T
Proportion of open channels: K, AMPA,

GABA and NMDA
x1� � � � � x4

State vector x = �x1� � � � � x4�V� TT

Probability density �
Probability mode coefficients �
Dynamic operator Q
Right eigenvector matrix R
Left eigenvector matrix L
Eigenvalue matrix D
Observations y
Observation operator M

Stochastic dynamics

The response of a deterministic system to input is known
from its dynamics and initial conditions as it follows
a well-defined trajectory in state-space. The addition
of system noise, i.e. random input, to the determinis-
tic equation turns it into a stochastic differential equa-
tion. If the random input is Langevin, it is referred
to as a Langevin equation (Frank, 2005). In contrast
to deterministic systems, the Langevin equation has an
ensemble of solutions. The effect of stochastic terms,
e.g. variable spike-time arrival, is to disperse trajectories
through state-space. A simple example of this is shown
in Figure 31.2. Three trajectories are shown, each with the
same initial condition. The influence of stochastic input
is to disperse the trajectories.

Under smoothness constraints on the random input,
the ensemble of solutions are described exactly by
the Fokker-Planck equation (Risken, 1996; Kloeden and
Platen, 1999). The FPE frames the evolution of the ensem-
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FIGURE 31.2 Dispersive effect of stochastic input on trajecto-
ries. Three trajectories of the CIF model (Eqn. 31.6) are shown, one
in bold to emphasize the dispersion of trajectories despite the same
initial position. Once threshold is exceeded V is reset to VR.

ble of solutions as a deterministic process, which models
the dispersive effect of stochastic input as a diffusive pro-
cess. This leads to a parsimonious description in terms
of a probability density over state space, represented by
��x� t�. This is important, as stochastic effects can have a
substantial influence on dynamic behaviour, as we will
see in the next section.

Population density methods have received much atten-
tion over the past few decades as a means of mod-
elling efficiently the activity of thousands of similar neu-
rons. Knight and Sirovich (Sirovich, 2003) describe an
eigenfunction approach to solving these equations and
extend the method to a time-dependent perturbation
solution. Comparative studies by (Omurtag et al., 2000;
Haskell et al., 2001) have demonstrated the efficiency and
accuracy of population density methods using Monte
Carlo simulations of neuronal populations. The effects of
synaptic dynamics have been explored and applied to
orientation tuning (Nykamp and Tranchina, 2000, 2001).
Furthermore, Casti et al. (2002) have modelled bursting
activity in the lateral geniculate nucleus. Below, we intro-
duce the FPE and its eigensolution. We have adopted
some terminology of Knight and others for consistency.
We start with an intuitive derivation of the FPE for ran-
dom inputs that are Poisson in nature. This is a good
model for input that comprises random spike trains.

The Fokker-Planck formalism

To simplify the description, we will deal with a simple
integrate-and-fire model with one excitatory input. Con-
sider a one-dimensional system with equations of motion
described by Eqn. 31.1, but now with s�t� as a random
variable encoding the stochastic arrival of spikes:

ẋ = f�x�+ s�t�

s�t� = h
∑
n

��t − tn�
31.7

where h represents a discrete change in postsynaptic
membrane potential due to each spike and tn represents
the time of the nth spike. If we consider the input over a
short time interval the mean spike-rate and the associated
input are:

r�t� = 1
T

T∫
0

∑
n

��
 − tn�d


s�t� = hr�t�

31.8

The input is now a Poisson process whose expectation
and variance scales with firing rate. How does this vari-
ability affect the evolution of the density? The master
equation (Risken, 1996), detailing the rate of change of
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FIGURE 31.3 The master equation of a
simple integrate-and-fire model with excitatory
input (no synaptic dynamics). Three values of the
state x (x and x ± h) and transition rates (f�x�,
f�x +h� and r�t�) are shown. The rate of change
of ��x� t� with time is attained by considering the
rates in and out of x (formulas at the top left and
right respectively).

ρ(x)in = ρ(x + h)f(x + h) + ρ(x − h)r (t ) ρ(x)out = –ρ(x)r (t) − ρ(x)f (x ) 

f(x + h)

r (t)

r (t)

f (x )

[f (x)ρ(x)] + r (t)(ρ(x − h)−ρ(x))
∂x
∂= −

x

x + h

x − h

Master equation

ρ(x) = ρ(x)in − ρ(x)out

��x� t� with time, can be intuited from the ladder diagram
of Figure 31.3:

�̇�x� = − �

�x
�f�x���x�+ r�t����x−h�−��x�� 31.9

The first term is due to leakage current and generates
a steady flow towards EL. The second expression is due
to input and is composed of two terms, which can be
considered as replenishing and depleting terms respec-
tively. Given an impulse of input the probability mass
between x−h and x will flow to x, whereas the probabil-
ity mass at x flows away from it. The replenishing term
in Eqn. 33.9 can be approximated using the second-order
Taylor expansion:

��x−h� ≈ ��x�−h
��

�x
+ h2

2
�2�

�x2
31.10

Substituting into Eqn. 31.9 and using Eqn. 31.8 we get:

�̇ = − �

�x
��f + s��+ w2

2
�2�

�x2

w2 = rh2

31.11

where w2 is the strength or variance of the stochastic fluc-
tuations. This is also known as the diffusion coefficient
c = w2/2. This equation can be written more simply by:

�̇ = Q�x� s�� 31.12

where Q�x� s� contains all the dynamic information
entailed by the differential equations of the model. This
is the Fokker-Planck or dynamic operator (Knight, 2000).
The first term of Eqn. 31.11, known as the advection term,
describes movement of the probability density due to the
systems’ deterministic dynamics. The second describes

dispersion of density brought about by stochastic varia-
tions in the input. Inherent in this approximation is the
assumption that h is small, i.e. the accuracy of the Taylor
series increases as h → 0. Comparisons between the diffu-
sion approximation and direct simulations have demon-
strated its accuracy in the context of neuronal models.
The FPE above generalizes easily to cover models with
multiple states, such as the TIF and CIF models of the
previous section. We can see this with an alternative
derivation of Eqn. 31.11 in terms of scalar and vector
fields.

Derivation in terms of vector fields

For an alternative perspective on Eqn. 31.11, we can think
of the density dynamics in terms of scalar and vector
fields. The probability density, ��x� t�, is a scalar function
which specifies the probability mass at x, corresponding
to the number of neurons with state x. This quantity will
change if the states are acted on by a force whose influ-
ence is quantified by a vector field J�x�. This field rep-
resents the flow of probability mass within state-space.
The net flux at any point is given by the divergence of
the vector field � · J (where � is the divergence opera-
tor). The net flux is a scalar field and contains all the
information needed to determine the rate of change of
probability with time:

�̇ = −� · J 31.13

is the continuity equation. The negative sign ensures that
probability mass flows from high to low densities. The
two forces in our simplified model are the leakage current
and excitatory input. The former moves a neuron towards
its equilibrium potential, EL, while excitatory input drives
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voltage towards VT . Each force generates its flux, which
are in opposite directions. The overall flux is:

J�x� = f��x�+ r�t�

x∫
x−h

��x′� t�dx′

x∫
x−h

��x′� t�dx′ ≈ h�1− h

2
� �� ⇒

�̇ = −� · J

= −� · ��f + s�− w2

2
� ��

31.14

which is the same as Eqn. 31.11, but has been formulated
for a vector of states as opposed to a single state.

A general formulation

In the derivations so far, we have dealt with excitatory
input that is Poisson in nature, where the expectation and
variance of the process scale with each other. A more gen-
eral formulation of the FPE considers deterministic input
s�t� and stochastic input w��t� as separate quantities. This
gives the Langevin and non-linear Fokker-Planck equa-
tions (ensemble dynamics):

ẋ = f�x� s�+w�x� s���t�

�̇ = � · �−f�x� s�+ w2

2
���

= −
n∑

i=1

�

�xi

�f + s��+ 1
2

n∑
i�k=1

�2

�xi�xk

w2
ik�x� s��

31.15

Zero mean, Langevin fluctuation, ��t� (cf. a Weiner
process) of unit variance, is scaled by w�x� s�. The last
expression in Eqn. 31.15 has been written in a way that
separates the two parts of the advection-diffusion equa-
tion. The deterministic input contributes to flow, which
confers structure on the density. An example of f�x� s�
is Eqn. 31.6, where x = �x1� � � � � x4�V� TT and n = 6. The
advection or flow changes the local density in propor-
tion to its gradient; clearly, if the density is flat, flow will
have no effect. The second term is a diffusion term that
tends to smooth the density; in other words, the density
will decrease when it is peaked and has a high negative
curvature (the curvature is the second partial derivative).
This dispersion or diffusion reflects the stochastic fluctu-
ations that dispel states from areas of high density. In the
example above, w�x� s� = √

hs; however, if w�x� s� is fixed
and diagonal the dispersion or diffusion of each state is
isotropic. In what follows, we will use input in reference
to deterministic inputs that shape density dynamics in
the context of random fluctuations where w�x� s� is diag-
onal and constant (see Table 31-2 for values).

TABLE 31-2 Parameter values used in simulations

Parameter description Symbol Value/units

Firing threshold VT −53 mV
Reset voltage VR −90 mV
Equilibrium potential EL −73 mV
Equilibrium potential:

K, AMPA, GABA
and NMDA

E1� � � � � E4 −90, 0, −70 and 0 mV

Passive conductance gL 25 nS
Active conductance: K,

AMPA, GABA and
NMDA

g1� � � � � g4 128, 24, 64 and 8 nS

Membrane capacitance C 0.375 nF
Time constant: K,

AMPA, GABA and
NMDA


1� � � � � 
4 80, 2.4, 7 and 100 ms

Background opening
coefficient: AMPA,
GABA and NMDA

p1� � � � � p3 0.875, 0.0625 and
0.0625 a.u.

Diffusion coefficient:
V�T�K, AMPA,
GABA and NMDA

w2
1� � � � �w2

6 4, 0, 0.125, 0.125,
0.125 and 0�125 ms−1

Solving the Fokker-Planck equation

Generally, the FPE is difficult to solve using analytic tech-
niques. Exact solutions exist for only a limited number
of models (Risken, 1996). However, approximate analytic
and numerical techniques offer ways of solving a general
equation. We have chosen a solution based on projec-
tion onto a bi-orthogonal set. This results in a system of
uncoupled equations that approximate the original sys-
tem and enables an important dimension reduction of
the original set of equations.

The dynamic operator, Q�s�, is generally input-
dependent and non-symmetric. By diagonalizing Q�s�,
we implicitly reformulate the density dynamics in terms
of probability modes. Two sets of eigenvectors (right and
left) are associated with the dynamic operator, forming a
bi-orthogonal set. This set encodes modes or patterns of
probability over state-space. The right eigenvectors are
column vectors of the matrix R, where QR = RD and left
eigenvectors are row vectors of matrix L, where LQ = DL.
Both sets of eigenvectors share the same eigenvalues in
the diagonal matrix D, which are sorted so that �0 > �1 >
�2� � � . The left-eigenvector matrix is simply the general-
ized inverse of the right-eigenvector matrix. The number
of eigenvectors and values, n, is equal to the dimension-
ality of Q. After normalization Q can be diagonalized:

LQR = D 31.16

Assume for the moment that input is constant, i.e. s = 0.
Projecting the probability density ��x� t� onto the space
L generates an equivalent representation, but within a
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TABLE 31-3 State variable ranges and number of bins
used to grid state-space

State variable Number of bins Range of values

V 16 �−92�−48 mV
T 8 [0,0.1] s
x1 4 [0,1] a.u.
x2 2 [0,1] a.u.
x3 2 [0,1] a.u.
x4 2 [0,1] a.u.

different coordinate system. Conversely, R projects back
to the original coordinate system:

� = L�� � = R� 31.17

Substituting Q = RDL and the right expression of
Eqn. 31.17 into Eqn. 31.12 gives a diagonalized system,
�̇ = D�, which has the solution:

��t� = exp�Dt���0� 31.18

where ��0� is a vector of initial conditions. This solu-
tion can be framed in terms of independent modes, i.e.
columns of R, each of which contributes linearly to the
evolution of the density. The expression of each mode
is encoded by the elements of �. The modes are inde-
pendent in the sense that the changes in one mode do
not affect the changes in another. This is because we
have uncoupled the differential equations when project-
ing onto the bi-orthogonal set.

The rate of exponential decay of the i-th mode is char-
acterized by its eigenvalue according to 
i = −1

/
�i, where


i is its characteristic time-constant. The key thing here
is that, in many situations, most modes decay rapidly to
zero, i.e. they have large negative eigenvalues. Heuris-
tically, these modes dissipate very quickly because dis-
persion smoothes them away. The contribution of these
unstable modes, to the dynamics at longer time-scales, is
negligible. This is the rationale for reducing the dimen-
sion of the solution by ignoring them. Another advantage
is that the equilibrium solution, i.e. the probability den-
sity that the system relaxes to (given constant input), is
given by the principal mode, whose eigenvalue is zero.
An approximate solution can then be written as:

��x� t� = Rm exp�Dmt�Lm��x� 0� 31.19

where ��x� 0� is the initial density profile, Rm and Lm

are the principal m modes and Dm contains the first m
eigenvalues, where m ≤ n. The benefit of an approximate
solution is that computational demand is greatly reduced
when modelling the population dynamics. From now on,
we will drop the subscript m and assume the eigensystem
has been reduced.

Time-dependent solutions

The dynamic operator, Q�s�, is input-dependent and ide-
ally needs calculating for each new input vector. This
is time consuming and can be circumvented by using
a perturbation expansion around a solution we already
know, i.e. for s = 0. Approximating Q�s� with a Taylor
expansion about s = 0:

Q�s� ≈ Q�0�+∑
i

si

�Q

�si

31.20

where Q�0� is evaluated at zero input and �Q
/

�si is a
measure of its dependency on si. Substituting this into
the above equations and using D�0� = LQ�0�R gives the
dynamic equation for the coefficients �, in terms of the
bi-orthogonal set of Q�0�:

�̇ =
(

D�0�+∑
i

siL
�Q

�si

R

)
� = D̂�s�� 31.21

We are assuming here that the inputs can be treated as
constant during the small time interval over which the
system is integrated. Eqn. 31.21 provides a simple set of
locally linear equations that can be integrated to emulate
the density dynamics of any ensemble.

So far, density dynamics have been presented as
describing a statistical ensemble of solutions of a single
neuron’s response to input. An alternative interpretation
is that ��x� t� represents an ensemble of trajectories
describing a population of neurons. The shift from a sin-
gle neuron to an ensemble interpretation entails addi-
tional constraints on the population dynamics. An ensem-
ble or mean-field type population equation assumes that
neurons within an ensemble are indistinguishable. This
means that each neuron ‘feels’ the same influence from
internal interactions and external input. We will assume
that this approximation holds for a subpopulation of neu-
rons. However, for this to be a useful assumption, we
need some mechanism for coupling different subpopula-
tions that are acted upon by different inputs.

Multiple populations and their coupling

Interactions within a network of ensembles are mod-
elled by coupling activities among populations with
mean-field terms, such as average activity or spike
rate. Coupled populations have been considered by
Nykamp and Tranchina (2000) in modelling orientation
tuning in the visual cortex. Coupling among popula-
tions, each described by standard Fokker-Planck dynam-
ics, via mean-field quantities, induces non-linearities and
thereby extends the networks’ dynamic repertoire. This
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can result in a powerful set of equations that have been
used to model physical, biological and social phenomena.

To model influences among populations, we simply
treat an average state of an ensemble s�i� = M��i� as an
input. The linear operator M acts on the density of the i-
th population to provide an expected state (or some other
moment) such as mean firing rate. A simple example
is self-feedback, where the mean of an ensemble cou-
ples to its own dynamics as an input. The mean-field
now depends on the population’s own activity and has
been described as a dynamic mean-field. This notion of
mean-field coupling can be extended to cover multiple
populations. A schematic of two interacting populations
of the CIF model (Eqn. 31.6) is shown in Figure 31.4.

Generally, coupling is modelled as a modulation of
the parameters of the target population i, by inputs from
the source k. The effect of a small perturbation of these
parameters is used to approximate the time-dependent
operator, which leads to a further term in Eqn. 31.21. To
a first-order approximation, for the i-th ensemble with j
external inputs:

�̇�i� = D̂�i���i�

D̂�i��s���1����2�� � � � �� = D�i��0�+∑
j

sjL
�Q�i�

�sj

R

+∑
k�l

��k�
l L

�Q�i�

���k�
l

R 31.22

The effect of the l-th mode of the k-th ensemble ��k�
l on

the i-th ensemble follows from the chain rule:

�Q�i�

���k�
l

= −� ·
(

��̇�i�

���i�

���i�

�s�k�

�s�k�

���k�
l

)
31.23

where ���i�
/

�s�k� specifies the mechanism whereby the
input from the k-th ensemble affects the i-th by changing

its parameters. The derivative �s�k�
/

���k�
l encodes how

the input changes with the l-th mode of the source. For
example, evolution of the probability modes in the source
region causes a change in its average firing rate, which
modulates synaptic AMPA channel opening dynamics in
the target region, parameterized by ��i� = p�i�

2 in Eqn. 31.6.
This leads to a change in the flux of the target region �̇�i�

and a change in its density.
Once Eqn. 31.22 has been integrated, the measured

output of the i-th region can be calculated in the same
way that mean-field effects are calculated:

y�i� = MR�i���i� 31.24

Estimation and inference of mean field models

The formulation above furnishes a relatively sim-
ple dynamic model for measured electrophysiological
responses reflecting population dynamics. This model
can be summarized using Eqn. 31.22 and Eqn. 31.24:

�̇�i� = D̂�i���i�

y�i� = MR�i���i� +��i�
31.25

This is a deterministic input-state-output system with
hidden states ��i� controlling the expression of probabil-
ity density modes of the i-th population. Notice that the
states no longer refer to biophysical or neuronal states
(e.g. depolarization) but to the densities over states. The
inputs are known deterministic perturbations s�t� and
the outputs are y�i�. The architecture and mechanisms of
this system are encoded in its parameters. In Chapter 34,
we will see how this class of model can be inverted to
provide conditional estimates of the parameters. In the
remainder of this chapter, we focus on the sorts of sys-
tems that can be modelled and how inversion of these
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FIGURE 31.4 Schematic of interacting subpopulations.
The rate of change of density over time, �̇�2�, depends on ��1�

due to coupling. The density in population 1 leads to a firing
rate s�1� which modulates the synaptic channel opening rate of
population 2, parameterized by ��2�, which in turn modulates
�̇�2�. The coupling is calculated using the chain rule.
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400 31. NEURONAL MODELS OF ENSEMBLE DYNAMICS

models can be used to address questions about coupling
among neuronal ensembles.

ILLUSTRATIVE APPLICATIONS

In this section, we illustrate the nature of the generative
model of the previous sections and its use in making
inferences about the functional architecture of neuronal
networks. We focus first on a single population and
the approximations entailed by dimension reduction. We
then consider the coupling between two populations that
comprise a simple network.

Dynamics of a single population

Figure 31.5 shows the response of a population of TIF
neurons (Eqn. 31.5) to an external input. The top figure

shows the mean firing rate over time. The black bar indi-
cates the duration of sustained input. The rate oscillates
briefly before being damped, after which it remains con-
stant at a new equilibrium firing rate that is determined
by the magnitude of the input. Once the input is removed,
the rate decays to its background level. Below are two 3-
D plots of the evolution of marginal distributions over V
and T with time. The results were obtained by integrat-
ing Eqn. 31.21 for a single population and single (boxcar)
input, using a dynamic operator based on Eqn. 31.5. See
Appendix 31.1 for numerical details.

Just prior to input there is very little probability mass
at inter-spike times below 0.1 ms. This is seen as the large
peak in ��T� t� at t = 0 at the far right corner of the
lower right figure. The inverse of the expected inter-spike
interval corresponds to baseline-firing rate. After input,
both distributions change dramatically. Density over the
shorter inter-spike times increases, as the population is
driven to fire more frequently. This is also seen in ��V� t�
(lower left), where density accumulates close to VT and
VR, indicating a higher firing rate. These distributions
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FIGURE 31.5 Response of a single population of neurons (FPE based on the TIF model) to a step rise in input, i.e. a boxcar input. The
top figure shows the mean firing rate per neuron within the ensemble. The horizontal bar indicates the duration of input. The population
responds with an increase in firing that oscillates briefly before settling to a new equilibrium and returns to its original firing rate after the
input is removed. Below are two 3-D images of the marginal distributions over V and T (left and right respectively). Before input, the majority
of probability over ��T� 0� is peaked close to 0.1 ms. However, input causes a shift in density towards shorter time intervals and an increase
in mean firing rate. This is also seen in the left figure, where input forces the density towards the firing threshold and reset potential. After
input is removed, both densities return to their prior distributions.
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return to their original disposition after the input returns
to baseline.

Dimension reduction

The question now is how many probability modes are
required to retain the salient aspects of these dynam-
ics? An indication comes from the characteristic time-
constants of each mode. These are shown for all modes,
excluding the principal mode, which is stationary, in
Figure 31.6. The time-constants decrease rapidly with
mode number. A comparison of approximations in terms
of response to different levels of input is shown in
Figure 31.7. We considered approximations truncated at
16, 64 and 128 (D̂16�s�, D̂64�s� and D̂128�s� respectively) and
the response curve for the deterministic model.

First, the stochastic models (full and approximate solu-
tions) exhibit a key difference in relation to the deter-
ministic model, i.e. firing rate does not have an abrupt
start at an input threshold. Instead, there is a finite prob-
ability of firing below threshold and the response curve
tapers off with lower input. Second, the solution using
all probability modes of the approximation compares
well with D�s� computed explicitly at each input value.
The approximation is less accurate as input increases,
however, it remains close to and retains the character of
the true response curve. Third, the truncated approxima-
tion using 64 modes is almost indistinguishable from the
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FIGURE 31.6 Decay time-constants versus mode number. The
model used in Figure 31.5 was approximated using a system of
128 coupled ordinary differential equations (see text). This can be
transformed into 128 uncoupled equations, where each equation
describes the dynamics of a probability mode. The characteristic
time to decay (i.e. negative inverse eigenvalue) for each mode is
shown. Right-most modes, i.e. short time-constants, decay very
rapidly and do not contribute significantly to dynamics over a rel-
atively longer time period. This is the rationale for approximating
a solution by excluding these unstable modes.
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FIGURE 31.7 Comparison of approximation of equilibrium
response rates of a stochastic and deterministic model-neuron
(Eqn. 31.5). All rates from diffusion equations taper off gradually
as input falls below threshold, sT , in contrast to the deterministic
model. The curve labelled D�s� is from an explicit re-calculation
of the dynamic operator at each input, whereas D̂128, D̂64 and D̂16
are first-order approximations using 128, 64 or 16 modes (out of
128). D̂128 is in good agreement with D, losing some accuracy as
input increases. D̂64 is almost indistinguishable from D̂128. D̂16 is less
accurate; however, at low inputs, is still in reasonable agreement
with D̂128 and maintains the characteristic profile of the response
curve.

full approximation. The solution using only 16 modes,
despite losing accuracy with larger inputs, still maintains
some of the character of the response curve and, at low
input levels, is a reasonable approximation. Given that
this approximation represents an eightfold decrease in
the number of modes, this degree of approximation is
worth considering when optimizing the balance between
computational efficiency and accuracy.

Coupling among populations

We next simulated a small network of populations. A
schematic of the network is shown in Figure 31.8. The
model consisted of two identical regions, each contain-
ing sub-populations of excitatory and inhibitory neurons.
The excitatory sub-population exerted its effect through
AMPA synaptic channels, while GABA channels medi-
ated inhibition of excitatory neurons. The regions were
reciprocally connected, with the second region driven
by inputs from the first that targeted fast excitatory
AMPA channels. Conversely, the first region was mod-
ulated by feedback from the second that was medi-
ated by slow excitatory NMDA channels. Only the first
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FIGURE 31.8 Schematic of the simulated network. Two
regions were coupled via excitatory synaptic channels and Region
1 was driven by an external input. Each region was identical and
composed of an excitatory and inhibitory population coupled via
AMPA and GABA synaptic channels. Region 2 was driven by 1 via
fast excitatory AMPA channels, while Region 1 received excitatory
feedback from 2 mediated by slow NMDA channels. Local field
potentials were modelled as mean membrane potential from the
excitatory populations of both regions. Results from the simulation
were used in an estimation scheme to identify the three coupling
parameters indicated by question marks.

region received external input. This conforms to a simple
cortical hierarchy with the second region being supra-
ordinate. These receptor-specific effects were specified by
making ���i�

/
�s�k� non-zero for the rate of the appropri-

ate receptor-specific channel opening (see Eqn. 31.6 and
Figure 31.8) and using the mean spike rate as the output
s�k� from the source population.

Event-related signals (y�i� = MR�i���i�, mean depolariza-
tion of excitatory populations), generated by the network
in response to an impulse of exogenous input are shown
in Figure 31.9. These responses have early and late com-
ponents around 150 and 350 ms respectively, which are
characteristic of real evoked response potentials.

Inverting the model to recover coupling parameters

Gaussian observation noise (∼10 per cent) was added
to the mean potentials from both regions to simulate
data. The model was then inverted to estimate the
known parameters, using EM as described in Chapter 34.
The predicted response (solid line) of the generative
model is compared to the synthetic data (broken line)
in Figure 31.9. Three coupling parameters ���i�

/
�s�k�

FIGURE 31.9 Comparison of simulated data (plus observation noise) and predicted responses after estimation (superimposed) of
coupling parameters (see Figure 31.10) from the network simulation. Mean membrane potential from the excitatory populations of each
region, in response to a brief input, is shown.
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FIGURE 31.10 The conditional expectations of the three cou-
pling parameters between input to Region 1, Region 1 to 2 and
backward coupling from 2 to 1 (parameter indices 1–3 respectively)
are shown next to the known parameters of the simulation.

mediating exogenous input and the extrinsic connections
between regions (bold connections with question marks
in Figures 31.8 and 31.9) were given uninformative priors.
These represent unknown parameters that the estimation
scheme was trying to identify. Their conditional expec-
tations are shown with the true values in Figure 31.10.
They show good agreement and speak to the possibility
of inverting mean-field models using real data.

CONCLUSION

The aim of this chapter was to demonstrate the feasibility
of using the FPE in a generative model for LFP/ERPs. The
ensuing model embodies salient features of real neuronal
systems: neurons are dynamic units, driven by stochas-
tic forces and organized into populations with similar
response characteristics; and multiple populations inter-
act to form functional networks. Despite the stochastic
nature of neuronal dynamics, the FPE formulates the
solution in terms of a deterministic process, where the
dispersive effect of noise is modelled as a diffusive pro-
cess. The motivation for using such a model is that its
associated parameters have a clear biological meaning,
enabling unambiguous and mechanistic interpretations.

We have reviewed well-known material on integrate-
and-fire model neurons with synaptic dynamics, which
included fast excitatory AMPA, slow excitatory NMDA
and inhibitory GABA mediated currents. The FPE was

used to model the effect of stochastic input, or system
noise, on population dynamics. Its time-dependent solu-
tion was approximated using a perturbation expansion
about zero input. Decomposition into a bi-orthogonal set
enabled a dimension reduction of the system of coupled
equations, due to the rapid dissipation of unstable proba-
bility modes. Interactions among populations were mod-
elled as a change in the parameters of a target population
that depended on the average state of source populations.

To show that the model produces realistic responses
and, furthermore, it could be used as an estimation or
forward model, separate ensembles were coupled to form
a small network of two regions. The coupled model was
used to simulate ERP data, i.e. mean potentials from
excitatory subpopulations in each region. Signals were
corrupted by Gaussian noise and subject to expectation
maximization (EM). Three parameters were estimated –
input, forward and backward connection strengths – and
were shown to compare well to the known values. It is
pleasing to note that the stochastic model produces sig-
nals that exhibit salient features of real ERP data and the
estimation scheme was able to recover its parameters.

The key aspect of the approach presented here is
the use of population density dynamics as a forward
model of observed data. These models have been used
to explore the cortical dynamics underlying orientation
tuning in the visual cortex. These models may also find
a place in LFP/ERP data analysis. In these models, ran-
dom effects are absorbed into the FPE and the pop-
ulation dynamics become deterministic. This is a crit-
ical point because it means system identification has
only to deal with observation noise. Heuristically, the
deterministic noise induced by stochastic effects is effec-
tively ‘averaged away’ by measures like ERPs. However,
the effect of stochastic influence is still expressed and
modelled, deterministically, at the level of population
dynamics.

There are many issues invoked by this modelling
approach. The dimensionality of solutions for large sys-
tems can become extremely large in probability space.
Given an N-dimensional dynamic system, dividing each
dimension into M bins results in an approximation to the
FPE with a total of MN ordinary differential equations.
The model used to simulate a network of populations
used 4096 equations to approximate the dynamics of
one population. Dimension reduction, by using a trun-
cated bi-orthogonal set, is possible. However, as was
demonstrated in Figure 31.7, there is a trade-off between
accuracy and dimension reduction. Generally, a more
realistic model requires more variables, so there is a bal-
ance between biological realism and what we can expect
from current computational capabilities.

The model neuron used in this chapter is just one of
many candidates. Much can be learnt from comparing
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models. For instance, is modelling the inter-spike time as
a state variable an efficient use of dimensions? This may
eschew the need for detailed boundary conditions; how-
ever, it may well be an extravagant use of dimensions
given computational limitations. The current modelling
approach is not limited to electrophysiological data. Any
measurement which is coupled to electrical activity of a
neuronal population could, in principle, also be included
in the generative model, which could be used to com-
bine measurements of electrical and metabolic origin,
e.g. fMRI.

The use of Bayesian system identification enables the
formal inclusion of additional information when estimat-
ing model parameters from data. We have not given the
topic of priors much consideration in this chapter, but it is
an important issue. Analytic priors derived from stability
or bifurcation analyses could be used to ensure parame-
ter values which engender dynamics characteristic of the
signals measured, i.e. stable fixed point, limit cycle or
chaotic attractors. Empirical priors derived from data also
have great potential in constraining system identification.
A Bayesian framework also facilitates model comparison
through quantifying the ‘evidence’ that a data set has for
a number of different models (Penny et al., 2004).

In the next two chapters, we turn to neural-mass mod-
els of EEG data. Neural-mass models are a special case
of mean-field models in which the ensemble densities
are approximated with a single mode or point mass.
In other words, the density is summarized with a state
vector that encodes the most likely or expected state
of each ensemble. This can be thought of as a dimen-
sion reduction to the smallest number of modes (i.e.
one) or can be regarded as approximating the full den-
sity with a point mass over its expectation. Clearly,
neural-mass models lose the ability properly to model
random fluctuations, however, the computational sav-
ing enables a much greater number of biophysical states
to be modelled with a large repertoire of dynamical
behaviours.

APPENDIX 31.1 NUMERICAL SOLUTION
OF FOKKER-PLANCK EQUATION

The equation we wish to integrate is:

�̇�x� t� = Q� 31.A1

First, vectorize and grid up the n-D state-space xi = ih,
where i = 1� � � � �N and evaluate ẋ = f�x� s� at all grid
points. Calculate the operators −� ·f and �2, where �2 =

� · � is the Laplace operator, required to construct an
approximation to the dynamic operator:

Q = −� · �f + s�+ w2

2
�2 31.A2

Eqn. 31.A1 is a system of coupled differential equations
with the solution:

��x� t +�t� = exp��tQ���x� t� 31.A3

This system is reduced and integrated over small time
steps using the eigenvectors of Q, where for the i-th
ensemble or population:

��i��t +�t� = exp�D�i��t���i��t�

D̂�i� = D�i�
0 +∑

j

sjD
�i�
j +∑

k�l

��k�
l D�i�

kl

y�i��t� = MR�i���i��t�

31.A4

The Jacobian matrices are pre-computed using Q�i� from
31.A2:

D�i�
0 = LQ�i�R D�i�

j = L
�Q�i�

�sj

R D�i�
kl = L

�Q�i�

���k�
l

R 31.A5

After discretizing state-space and approximating Q�i� for
one population, the eigenvectors and values can be cal-
culated using the Matlab function ‘eig.m’ (or ‘eigs.m’
for specific eigenvector/values) and saved. Given these,
a reduced or full model can be used to model a network
of populations by specifying the connectivity among
ensembles. The exponential matrix of the reduced or
full model can be calculated using the Matlab function
‘expm’ (Moler and Van Loan, 2003). This uses a (6,6) Pade
approximation. Explicit and implicit numerical integra-
tion schemes can be reformulated into a Pade approxi-
mation, e.g. (0,1) approximation of order 1 is a forward
Euler scheme, whereas (1,1) approximation of order 2 is a
Crank-Nicolson implicit scheme. As the ‘expm’ function
uses an implicit approximation the scheme is accurate
and unconditionally stable (Smith, 1985).
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32

Neuronal models of energetics
J. Kilner, O. David and K. Friston

INTRODUCTION

In this chapter, we will describe a simple biophysical
model that links neuronal dynamics to functional mag-
netic resonance imaging (fMRI) and electroencephalog-
raphy (EEG) measurements. The previous chapter
described mean-field models and the next chapter will
cover neural-mass approaches to modelling EEG sig-
nals. Here, we look at a simple mean-field model that
was developed with the specific aim of relating neuronal
activity recorded with EEG and the neuronal activity that
leads to a modulation of the blood oxygenation-level-
dependent (BOLD) signal recorded with fMRI.

The chapter is divided into three sections. First, we will
describe the motivation for relating the different measures
of brain activity afforded by EEG and fMRI and review
different approaches that have been adopted for multi-
modal fusion. Second, we will outline the neuronal model,
starting with a dimensional analysis. In brief, this model
suggests that neuronal activity causes an acceleration
of temporal dynamics leading to: increased energy dis-
sipation; decreased effective membrane time-constants;
increased coupling among neuronal ensembles; and a
shift in the EEG spectral profile to higher frequencies.
Finally, we will show that these predictions are consis-
tent with empirical observations of how changes in the
EEG spectrum are expressed haemodynamically.

EEG AND fMRI INTEGRATION

It is now generally accepted that the integration of
fMRI and electromagnetic measures of brain activity
has an important role in characterizing evoked brain
responses. These measures are both related to the
underlying neural activity. However, electromagnetic

measures are direct and capture neuronal activity with
millisecond temporal resolution, while fMRI provides
an indirect measure with poor temporal resolution,
in the order of seconds. Conversely, fMRI has excel-
lent spatial resolution, in the order of millimetres,
compared to EEG-MEG (electroencephalography-
magnetoencephalography). Therefore, the obvious
motivation for integrating these two measures is to
provide a composite recording that has high temporal
and spatial resolution. The possibility of integrating
these two measures in humans is supported by the study
of Logothetis et al. (2001). In this study, the authors
demonstrated that within the macaque monkey visual
cortex, intracortical recordings of the local field potential
(LFP) and the BOLD signal were linearly related.

Approaches to integration can be classified into
three sorts: integration through prediction; integration
through constraints; and integration through fusion.
These are depicted schematically in Figure 32.1. Inte-
gration through prediction (dotted line) uses tempo-
rally resolved EEG signals as a predictor of changes in
concurrently recorded fMRI. The ensuing region-specific
haemodynamic correlates can then be characterized
with high spatial resolution with conventional imaging
methodology (Lovblad et al., 1999; Lemieux et al., 2001;
Czisch et al., 2004). Several studies of this type (Goldman
et al., 2002; Laufs et al., 2003a, b; Martinez-Montes, 2004)
have focused on correlating modulations in ongoing
oscillatory activity measured by EEG with the haemody-
namic signal. They have demonstrated that modulations
in alpha rhythms (oscillations at ∼10Hz) are negatively
correlated with modulations in the BOLD signal, i.e. an
increase in alpha power is associated with a decrease
in BOLD. Studies employing integration through con-
straints (dashed line), have used the spatial resolution of
focal fMRI activations to constrain equivalent dipole or
distributed estimates of EEG-MEG sources (Dale et al.,
2000; Phillips et al., 2002). However, neither of these
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FIGURE 32.1 Schematic showing the approaches to
EEG/fMRI integration. (i) Integration through prediction. (ii)
Integration through constraints. (iii) Integration through fusion
with forward models.

schemes can be considered as true integration of mul-
timodal data in the sense that there is no common for-
ward model that links the underlying neuronal dynamics
of interest to measured haemodynamic and electrical
responses (solid black lines).

The characterization of the relationship between the
electrophysiology of neuronal systems and their slower
haemodynamics is crucial from a number of perspectives:
not only for forward models of electrical and haemo-
dynamic data, but also for the utility of spatial priors,
derived from fMRI, in the inverse EEG/MEG source
reconstruction problem, and for the disambiguation of
induced, relative to evoked, brain responses using both
modalities.

In the next section, we will describe perhaps the sim-
plest of all models which helps to explain some empirical
observations from EEG-fMRI integration, using a dimen-
sional analysis and a biophysical model.

A HEURISTIC FOR EEG-fMRI
INTEGRATION

A dimensional analysis

Given the assumption that haemodynamics reflect the
energetics of underlying neuronal changes (Jueptner and
Weiller, 1995; Shulman and Rothman, 1998; Hoge et al.,
1999; Magistretti et al., 1999; Magistretti and Pellerin,
1999; Shin, 2000), we assume here that the BOLD sig-
nal b, at any point in time, is proportional to the rate
of energy dissipation, induced by transmembrane cur-
rents. It is important to note that we are not assuming
the increase in blood flow, which is the major contributor
to the BOLD signal, is a direct consequence of the rate
of energy dissipation, but rather that these two measures

are proportional (see Hoge et al., 1999). Although recent
work has suggested that the neurovascular coupling is
driven by glutamate release (see Lauritzen, 2001; Attwell
and Iadecola, 2002), glutamate release, BOLD signal and
energy usage are correlated and therefore the assump-
tion here that the BOLD signal is proportional to the
rate of energy dissipation is tenable. This dissipation is
expressed in terms of Joules per second and corresponds
to the product of transmembrane potential (V, joules per
coulomb) and transmembrane current (I , coulombs per
second):

b ∝ 〈
V T I

〉
32.1

where V = �V1� � � � �Vk�
T corresponds to a [large] col-

umn vector of potentials for each neuronal compart-
ment k within a voxel, similarly for the currents. Clearly,
Eqn. 32.1 will not be true instantaneously, because it
may take some time for the energy cost to be expressed
in terms of increased oxygen delivery, extraction and
perfusion. However, over a suitable timescale, of order
seconds, Eqn. 32.1 will be approximately correct. Assum-
ing a single-compartment model, currents are related to
changes in membrane potential though their capacitance
C, which we will assume is constant (see Dayan and
Abbott, 2001: 156). By convention, the membrane current
is defined as positive when positive ions leave the neuron
and negative when positive ions enter the neuron:

I = −CV̇ 32.2

then

b ∝ V
〈
V T V̇

〉
32.3

To relate changes in membrane potential to the BOLD
signal, we need to adopt some model of a neuronal
system and how it activates. A simple integrate-and-
fire model of autonomous neuronal dynamics can be
expressed in the form:

V̇k = −Vk/�k +uk

= fk�V�
32.4

for the k-th compartment or unit (See Eqn. 31.1 of the
previous chapter). We have assumed here that synaptic
currents are caused by some non-linear function of the
depolarization status of all units in the population (cf. a
mean-field effect as described in the previous chapter):
i.e. uk = gk�V�. For a system of this form we can approx-
imate the dynamics of perturbations with the first-order
system:

V̇ �t� = −JV

J = 	f

	v

32.5
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The Jacobian J summarizes the functional or causal
architecture of the neuronal system. The leading diago-
nal elements of J correspond to self-inhibition and play
the role of effective membrane rates or conductances. In
the absence of influences from any other units, the k-th
potential will decay exponentially to the equilibrium or
resting potential �V = 0�:

V̇k = −JkkVk 32.6

It can be seen that Jkk = 1/�k has units of per second and
is the inverse of the effective membrane time constant.
In fact, in most biophysical models of neuronal dynam-
ics, this ‘rate’ is usually considered as the ratio of the
membrane’s conductance to its capacitance. Conductiv-
ity will reflect the configuration of various ion channels
and the ongoing postsynaptic receptor occupancy. In a
similar way, the off-diagonal elements of the Jacobian
characterize the intrinsic coupling among units, where
Jkj = 	fk/	Vj = 	V̇k/	Vj . It is interesting to note that
plausible neuronal models of ensemble dynamics sug-
gest a tight coupling between average spiking rate and
decreases in effective membrane time constants (e.g.
Chawla et al., 2000). However, as we will see below, we
do not need to consider spikes to close the link between
BOLD and frequency profiles of ongoing EEG or MEG
dynamics.

From Eqn. 32.3 and Eqn. 32.5, we have:

b ∝ C < V T JV >

∝ Ctr�J < VV T >� 32.7

∝ Ctr�JCov
V��

This means that the metabolic response is proportional
to the trace of the product of the Jacobian (i.e. cou-
pling matrix) and the temporal covariance of the trans-
membrane potentials.

Modelling activations

At this point, we have to consider how ‘activation’ is
mediated. In other words, how the dynamics over an
extended period of time could change. If we treat the
units within any voxel as an autonomous system then
any extrinsic influence must be mediated by changes in
the Jacobian, e.g. changes in conductance or coupling
among neurons induced by afferent input. The attend-
ing changes in potential are secondary to these changes
in the functional architecture of the system and may, or
may not, change their covariances Cov
V�. According to
Eqn. 32.7, a metabolic cost is induced through changes
in J , even in the absence of changes in the covariance.

To link BOLD and EEG responses we need to model the
underlying changes in the Jacobian that generate them.
This is accomplished in a parsimonious way by intro-
ducing an activation variable, �, that changes J . Here,
� is a parameter that changes the coupling (i.e. synap-
tic efficacies) and, implicitly, the dynamics of neuronal
activity. In this model, different modes of brain activity
are associated with the Jacobian:

J��� = J�0�+�	J/	� 32.8

We will assume that 	J/	� = J�0�. In other words, the
change in intrinsic coupling (including self-inhibition),
induced by activation, is proportional to the coupling in
the ‘resting’ state when � = 0. The motivations for this
assumption include:

• its simplicity
• guaranteed stability, in the sense that if J�0� has no

unstable modes (positive eigenvalues) then neither
will J���. For example, it ensures that activation does
not violate the ‘no-strong-loops hypothesis’ (Crick and
Koch, 1998)

• it ensures the intrinsic balance between inhibitory and
excitatory influences that underpins ‘cortical gain con-
trol’ (Abbott et al., 1998)

• it models the increases in membrane conductance asso-
ciated with short-term increases in synaptic efficacy.

Effect of neuronal activation on BOLD

These considerations suggest that the coupling Jkj among
neurons (positive and negative) will scale in a similar way
and that these changes will be reflected by changes in
effective membrane time constants Jkk. Under this model
for activation, the effect of � is to accelerate the dynam-
ics and increase the system’s energy dissipation. This
acceleration can be seen most easily by considering the
responses to perturbations around v0 under J = J�0� and
J̃ = J��� = �1+��J :

V�t� = e−JtV0

Ṽ �t� = e−J̃ tV0 = V��1+��t�
32.9

In other words, the perturbation under J��� at time t is
exactly the same as that under J�0� at �1+��t. This accel-
eration will only make dynamics faster; it will not change
their form. Consequently, there will be no change in the
covariation of membrane potentials and the impact on the
fMRI responses is mediated by, and only by, changes in J :

b̃

b
∝ tr�J̃Cov
V��

tr�JCov
V��
= �1+�� 32.10

In other words, the activation � is proportional to the
relative increase in metabolic demands. This is intuitive
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from the perspective of fMRI, but what does activation
look like in terms of the EEG?

Effect of neuronal activation on EEG

From the point of view of the fast temporal activity
reflected in the EEG, activation will cause an acceleration
of the dynamics, leading to a ‘rougher’ looking signal
with loss of lower frequencies, relative to higher frequen-
cies. A simple way to measure this effect is in terms of
the roughness r, which is the normalized variance of the
first temporal derivative of the EEG. From the theory of
stationary processes (Cox and Miller, 1965), this is mathe-
matically the same as the negative curvature of the EEGs
autocorrelation function evaluated at zero lag. Thus, for
an EEG signal, e:

r = Var�ė�

Var�e�
= −�0�′′

Assuming e (measured at a single site) is a linear mixture
of potentials, i.e. e = lV , where l is a lead-field row vector,
its autocorrelation at lag h is:

�h� =< V�t�T lT lV�t +h� > 32.11

From Eqn. 32.9 and Eqn. 32.11, we have:

̃�h� = ��1+��h�

̃�h�′′ = �1+��2�h�′′ 32.12

It follows that the change in r is related to neuronal
activation by:

r̃

r
= ̃�0�′′

�0�′′ = �1+��2 32.13

As the spectral density of a random process is the
Fourier transform of its autocorrelation function, g��� =∫

�h�e−iwhdh, the equivalent relationship in the fre-
quency domain that obtains from the ‘roughness’
expressed in terms of spectral density g��� is:

r =
∫

�2g���d�∫
g���d�

From Eqn. 32.12, the equivalent of the activated case, in
terms of the spectral density is:

g̃��� = g��1+����

�1+��
32.14

Here, the effect of activation is to shift the spectral profile
toward higher frequencies with a reduction in amplitude

g(ω)

Activation

~g(ω)

ω

FIGURE 32.2 Schematic showing the effect of activation on
the spectral profile.

(Figure 32.2). The activation can be expressed in terms of
the ‘normalized’ spectral density:

r̃

r
=
∫

�2p̃���d�∫
�2p���d�

= �1+��2

p��� = g���∫
g���d�

32.15

p��� could be treated as an empirical estimate of prob-
ability, rendering roughness equivalent to the expected
or mean square frequency. Gathering the above equali-
ties together, we can express relative values of fMRI and
spectral measures in terms of each other:

[
b̃

b

]2

∝ �1+��2 ∝
∫

�2p̃���d�∫
�2p���d�

32.16

Eqn. 32.16 means that as neuronal activation increases,
there is a concomitant increase in BOLD signal and
a shift in the spectral profile to higher frequencies.
High-frequency dynamics are associated with small effec-
tive membrane time constants and high [leaky] trans-
membrane conductances. The ensuing currents and fast
changes in potential incur an energy cost to which the
BOLD signal is sensitive. Such high-frequency dynam-
ics have also been shown to be dependent upon the
firing patterns of inhibitory interneurons (Traub et al.,
1996; Whittington and Traub, 2003). The conjoint effect
of inhibitory and excitatory synaptic input is to open ion
channels, rendering the postsynaptic membrane leaky
with high rate constants. The effect is captured in the
model by the scaling of the leading diagonal elements of
the Jacobian. This suggests that the changes in the tem-
poral dynamics to which the BOLD signal is sensitive
are mediated by changes in the firing patterns of both
excitatory and inhibitory subpopulations.

Critically, however, the predicted BOLD signal is a
function of the frequency profile as opposed to any
particular frequency. For example, an increase in alpha
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FIGURE 32.3 Schematic showing the effect of deactivation on
mean square frequency.

(low-frequency), without a change in total power, would
reduce the mean square frequency and suggest deactiva-
tion. Conversely, an increase in gamma (high-frequency)
would increase the mean square frequency and speak to
activation (Figure 32.3).

EMPIRICAL EVIDENCE

The model described in this chapter ties together
expected changes in BOLD and EEG measures and makes
a clear prediction about the relationship between the dif-
ferent frequency components of ongoing EEG or MEG
activity and the expected BOLD response. According
to the model, any modulations in the degree of low-
frequency relative to the high-frequency components in
the EEG signal will be inversely correlated with the
BOLD signal. This is largely in agreement with the empir-
ical data available. It is now generally accepted that mod-
ulations in the ongoing alpha rhythm, 8–12 Hz, when the
eyes are shut, are inversely correlated with the BOLD
signal at voxels within the parietal, parieto-occipital and
frontal cortices (Goldman et al., 2002; Laufs et al., 2003a, b;
Moosmann et al., 2003; Martinez-Montes, 2004). Further-
more, during low-frequency visual entrainment, using
a periodic checkerboard stimulus, the BOLD signal is
reduced compared to an aperiodic stimulus (Parkes et al.,

2004). The model presented here also predicts that a shift
in the frequency profile of the EEG to high-frequency
components should be correlated with an increase in the
BOLD signal. Although there is a much smaller liter-
ature on high-frequency EEG-BOLD correlations, what
has been published is broadly in agreement with this
prediction. Laufs et al. (2003b) report predominantly pos-
itive correlations between the BOLD signal and the EEG
power in the 17–23 Hz and the 24–30 Hz bandwidth and
Parkes et al. (2004) demonstrate that an aperiodic checker-
board stimulus induces a greater BOLD signal than a
low-frequency periodic stimulus. However, perhaps the
most convincing empirical data that support the pre-
diction of the model described here come not from a
human study but from a study on anaesthetized adult
cats by Niessing et al. (2005). In this study, Niessing
and colleagues recorded a measure of the electrical activ-
ity, the local field potential (LFP), which is analogous
to the EEG signal, directly from primary visual cortex
using implanted electrodes. They recorded the BOLD
signal simultaneously, using optical imaging, while the
cats were shown moving whole field gratings of differ-
ent orientations. Niessing et al. showed that, in trials in
which the optical signal was strong, the neural response
tended to oscillate at higher frequencies. In other words,
an increase in the BOLD signal was associated with a
shift in the spectral mass of the electrical signal to higher
frequencies, in agreement with the analysis described
here.

However, there are a number of observations that are
not captured by the model. First, the model does not
address very slow changes in potentials, < 0�1 Hz, that
are unlikely to contribute to the event-related response.
As such it does not capture the very slow modulations
in LFP that have been shown previously to be related
to the BOLD response (Leopold et al., 2003). Secondly,
and most notably, it does not explain the positive cor-
relation of the BOLD signal with alpha oscillations in
the thalamus (Goldman et al., 2002; Martinez-Montes,
2004). This discrepancy could reflect the unique neuronal
dynamics of the thalamus. Thalamic neurons are charac-
terized by complex intrinsic firing properties, which may
range from the genesis of high-frequency bursts of action
potentials to tonic firing (Steriade et al., 1993). However,
it could also reflect the fact that the model is based on
several assumptions that are wrong:

• The first assumption is that the dynamics of transmem-
brane potentials conform to an autonomous ordinary
differential equation (ODE). The shortcomings of this
assumption are that there is no opportunity for deter-
ministic noise. However, this is a fairly mild restriction
in relation to the autonomy, which precludes extrinsic
input. This enforces afferent inputs outside the voxel
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or source to exert their influence vicariously through
changes in the systems’ parameters, encoded by the
Jacobian. This can be seen as a limitation, given the
driving nature of [forward] extrinsic connections in
sensory cortex, but does fit comfortably with other per-
spectives on functional integration in the brain (see
below and Chapter 36).

• The use of an autonomous ODE precludes hidden
states that mediate changes in conductance and lim-
its the model to a simple integrate-and-fire-like sum-
mary of neuronal behaviour. A more general form for
Eqn. 32.2 would require:

V̇ = fV �V�x�

ẋ = fx�V�x�
32.17

where, other hidden states x might correspond to
conductances and channel gating terms as in more
detailed biophysical models of neurons (see Dayan and
Abbott, 2001 and Eqn. 31.6 in the previous chapter).
The only argument that can be offered in defence of
Eqn. 32.2 is that it may be sufficient to capture impor-
tant behaviours by appeal to mean field approxima-
tions (see Chapter 31).

• The activation is modelled effectively by a scaling of
the Jacobian. Functionally, this is a severe assumption
because it precludes the selective enabling of particu-
lar connections. The consequence of this assumption
is that any neuronal system can vary its rate or speed
of computation, but can only do one thing. In real-
ity, a better approximation would be bilinear with a
multidimensional activation denoted by the vector � =
��1� � � � �:

J̃ = J +∑�kBk

Bk = 	J

	�k

32.18

However, this model is too unconstrained to make any
generic comments, without assuming a particular form
for the bilinear terms Bk.

Having briefly deconstructed the model, it is worth not-
ing that it highlights some important conceptual issues.
These include:

• First, it reframes the notion of ‘activation’ in dynamic
terms, suggesting that activation is not simply an
excess of spikes, or greater power in any particular
EEG frequency band; activation may correspond to an
acceleration of dynamics, subserving more rapid com-
putations. This sort of activation can manifest with no
overall change in power but a change in the frequencies
at which power is expressed. Because more rapid or

dissipative dynamics are energetically more expensive,
it may be that they are reserved for ‘functionally’ adap-
tive or necessary neuronal processing.

• Secondly, under the generative model of activation, a
speeding up of the dynamics corresponds to a decrease
in the width of the cross-correlation functions between
all pairs of units in the population. At the macroscopic
level of EEG recordings, considered here, the synchro-
nization between pairs of units, as measured by the
cross-correlation function, is captured in the width of
the autocorrelation of the EEG signal, because the EEG
signal is a measure of synchronous neural activity.
This width is a ubiquitous measure of synchroniza-
tion that transcends any frequency-specific changes in
coherence. In short, activation as measured by fMRI
is caused, in this model, by increased synchronization
and, implicitly, a change in the temporal structure of
neuronal dynamics.

• Thirdly, our analysis suggests that the underlying ‘acti-
vation’ status of neuronal systems is not expressed
in any single frequency, but is exhibited across the
spectral profile. This has implications for use of classi-
cal terms like ‘event-related desynchronization’. If one
only considered modulations in spectral density at one
frequency, as in the classical use of the term desyn-
chronization, one would conclude that the effect of
activation was a desynchronization of low-frequency
components. According to the model, however, the
effect of activation is a shift in the entire spectral pro-
file to higher frequencies with a concomitant atten-
uation in amplitude of all frequencies. This general
conclusion does not preclude the selective expression
of certain frequencies during specific cognitive opera-
tions (e.g. increases in theta oscillations during men-
tal arithmetic (Mizuhara et al., 2004)). However, the
model suggests that the context in which these fre-
quencies are expressed is an important determinant
of the BOLD response. In other words, it is not the
absolute power of any frequency but the profile which
determines expected metabolic cost.

• Fourthly, as introduced above, one of the assumptions
treats neuronal systems as autonomous, such that the
evolution of their states is determined in an autonomous
fashion. This translates into the assumption that the
presynaptic influence of intrinsic connections com-
pletely overshadows extrinsic inputs. This may seem an
odd assumption. However, it is the basis of non-linear
coupling in the brain and may represent, quantitatively,
a much more important form of integration than sim-
ple linear coupling. We have addressed this issue both
empirically and theoretically in Friston (2000) and in
Chapter 39; in brief, if extrinsic inputs affect the excitabil-
ity of neurons, as opposed to simply driving a response,
the coupling can be understood in terms of changes
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in the system parameters, namely the Jacobian. This
means the response to input will be non-linear. Quanti-
tative analyses (a simple form of bi-coherence analysis)
of MEG data suggest this form of non-linear coupling
can account for much more variation in power than
linear coupling, i.e. coherence (see Chapter 39).

SUMMARY

The integration of EEG and fMRI data is likely to play
an important role in our understanding of brain func-
tion. Through multimodal fusion it should be possible to
harness the temporal resolution of EEG and the spatial
resolution of fMRI in characterizing neural activity. The
majority of the studies integrating EEG and fMRI to date
have focused on directly correlating the two measures,
after first transforming the data so that they are on the same
temporal scale (usually by convolution of the EEG time-
series with a canonical haemodynamic response function).
This approach has proved successful in demonstrating that
multimodal fusion is feasible and that regionally specific
dependencies between the two measures exist. However,
this approach to characterizing the relationship between
the EEG and the fMRI is limited as it does not character-
ize the integration in terms of the underlying neuronal
causes. Full EEG-fMRI integration rests on understanding
the relationship between the underlying neuronal activity
and the BOLD and EEG signals through their respective
forward models. Although the model discussed in this
chapter falls a long way short of this, it can explain the
nature of some of the previously reported correlations
between EEG and fMRI by considering the integration in
terms of the underlying neuronal dynamics.

We have proposed a simple model that relates BOLD
changes to the relative spectral density of an EEG trace
and the roughness of the EEG time-series. Neuronal acti-
vation affects the relative contribution of high and low
EEG frequencies. This model accommodates the obser-
vations that BOLD signal correlates negatively with the
expression of alpha power and positively with the expres-
sion of higher frequencies. Clearly, many of the assump-
tions are not correct in detail, but the overall picture
afforded may provide a new perspective on some impor-
tant issues in neuroimaging. In the next chapter, we go
beyond the quantitative heuristics entailed by the dimen-
sional analysis of this chapter and look at neural-mass
models with a much more detailed form. These models
embed constraints on synaptic physiology and connec-
tivity and can reproduce many of the phenomena seen in
EEG recordings. In Chapter 39, we will again use detailed
neural-mass models to help understand the mechanistic
basis of non-linear coupling in the brain.
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Neuronal models of EEG and MEG
O. David, L. Harrison and K. Friston

INTRODUCTION

This chapter considers the mechanisms that shape
evoked electroencephalographic (EEG) and magnetoen-
cephalographic (MEG) responses. We introduce neural-
mass models and focus on a particular model of
hierarchically arranged areas, defined with three kinds of
inter-area connections (forward, backward and lateral).
Using this model, we will investigate the role of connec-
tions or coupling on the generation of oscillations and
event-related activity. Neural-mass models can repro-
duce nearly all the characteristics of event-related activity
observed with M/EEG. Critically, they enforce a neuro-
biological perspective on ERPs (even-related potentials).
This chapter uses neural-mass models to emulate com-
mon M/EEG phenomena and, in doing so, addresses
their underlying mechanisms. In Chapter 42, we will
show how the parameters of these models can be esti-
mated from real data. This is the goal of dynamic
causal modelling, where differences in ERP compo-
nents, between conditions, are explained by connectivity
changes within the brain.

Overview

This chapter gathers together the ideas and results pre-
sented in a series of papers (David and Friston, 2003;
David et al., 2004, 2006b) describing the development
of neural-mass models for dynamic causal modelling
(DCM). These neural-mass models are used in statistical
parametric mapping (SPM) as the basis of DCM for
event-related potentials (ERP) and event-related fields
(ERFs) (see Chapter 42). In this chapter, we describe
what a neural-mass model is; we then construct, a pos-
teriori, the model used in later chapters, starting with a
single neuronal population and ending with hierarchi-

cal cortical models. Finally, we illustrate how this model
can be used to understand the basis of key phenomena
observed with EEG and MEG.

NEURAL-MASS MODELS

M/EEG signals result mainly from extracellular current
flow, associated with summed postsynaptic potentials in
synchronously activated and vertically oriented neurons
(i.e. the dendritic activity of macrocolumns of pyramidal
cells in the cortical sheet) (see Chapter 28). Often, signals
measured in MEG and EEG are decomposed into dis-
tinct frequency bands (delta: 1–4 Hz; theta: 4–8 Hz; alpha:
8–12 Hz; beta: 12–30 Hz; gamma: 30–70 Hz) (Nunez and
Srinivasan, 2005). These rhythms exhibit robust correlates
of behavioural states but often with no obvious functional
role. The exact neurophysiological mechanisms, which
constrain synchronization to a given frequency band,
remain obscure, however, the generation of oscillations
appears to depend on interactions between inhibitory
and excitatory populations, whose kinetics determine
their oscillation frequency.

ERPs and ERFs are obtained by averaging EEG and
MEG signals in reference to some change in stimulus
or task (Coles and Rugg, 1995). They show transient
activity that lasts a second or so and which is corre-
lated with changes in the state of the subject. ERPs
and ERFs have been used for decades as putative elec-
trophysiological correlates of perceptual and cognitive
operations. However, like M/EEG oscillations, the exact
neurobiological mechanisms underlying their generation
are largely unknown. Recently, there has been a growing
interest in the distinction between evoked and induced
responses (see Chapter 30). Evoked responses are dis-
closed by conventional averaging procedures (classical
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NEURAL-MASS MODELS 415

ERPs/ERFs), whereas the latter usually call for single-
trial analyses of induced oscillations (Tallon-Baudry and
Bertrand, 1999). Understanding the mechanistic relation-
ship between evoked and induced responses could be
a key for revealing how the electrical activity reacts to
experimental changes. In other words, generative mod-
els of both M/EEG and ERP/ERF could be important
for revealing how information is coded and processed in
neural networks.

What is a neural-mass model?

There are several ways to model neural signals (Whit-
tington et al., 2000): by using either a detailed model, in
which it is difficult to determine the influence of each
model parameter, or a simplified one, in which realism
is sacrificed for a more parsimonious description of key
mechanisms. The complexity of neural networks gen-
erating M/EEG signals (Thomson and Deuchars, 1997;
DeFelipe et al., 2002) is considerable and usually makes
the second approach more viable. Neural-mass mod-
els (Lopes da Silva et al., 1974; Freeman, 1978; Van
Rotterdam et al., 1982; Stam et al., 1999; Valdes et al.,
1999; Wendling et al., 2000; Robinson et al., 2001; David
and Friston, 2003) are examples of simplified models,
which usually model cortical macrocolumns as surro-
gates for cortical areas and, sometimes, thalamic nuclei.
They use only one or two state variables to repre-
sent the mean activity of neuronal populations. These
states summarize the behaviour of millions of inter-
acting neurons. This procedure, sometimes referred to
loosely as a mean-field approximation, is very efficient
for determining the steady-state behaviour of neuronal
systems, but its utility in a dynamic or non-stationary
context is less established (Haskell et al., 2001) (see
Chapter 31 for a detailed discussion). In what follows,
we will assume that the mean-field approximation is suf-
ficient for our purposes. Figure 33.1 shows a schematic
that tries to convey the intuition behind mean-field
approximations.

As we saw in Chapter 31, the mean-field approxi-
mation involves partitioning the neuronal system into
separable ensembles. Each ensemble or population is
then coupled with mean-field quantities like average fir-
ing rate. In neural-mass models, we make the further
approximation that the density of each ensemble can be
described as a point mass. In other words, we ignore
the variability in the states of neurons in an ensem-
ble and assume that their collective behaviour can be
approximated with a single value (i.e. the density‘s mode)
for each state variable (e.g. voltage, current, conduc-
tance etc.).
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FIGURE 33.1 Mean-field approximation (MFA). Left: consider
a neuronal population comprising n neurons. vi, mi and wi denote
the membrane potential, the normalized firing rate and the firing
threshold of the i-th neuron, respectively. The input-output step-
functions show that, in this example, the neurons fire at 1 or do
not fire, depending on the threshold of firing which may vary
between neurons. Right: the MFA of the neural-mass models stipu-
lates that the dynamics of the neuronal ensemble, or neuronal mass,
is described sufficiently by the mean of the state variables (v and m),
using the mean relationship between v and m (the step function is
transformed into a sigmoid function by averaging). Thus the effect
of the MFA is that it reduces a huge system into a small one.

Neural-mass models of M/EEG

M/EEG signals are generated by the massively syn-
chronous dendritic activity of pyramidal cells (Nunez
and Srinivasan, 2005), but modelling M/EEG signals is
seldom tractable using realistic models because of the
complexity of real neural networks. Since the 1970s, the
preferred approach has been neural-mass models, i.e.
models which describe the average activity with a small
number of state variables (see Figure 33.1). Basically,
these models use two conversion operations (Jirsa and
Haken, 1997; Robinson et al., 2001): a wave-to-pulse oper-
ator at the soma of neurons, which is generally a static
sigmoid function; and a linear pulse-to-wave conversion
implemented at a synaptic level. The first operator relates
the mean firing rate to average postsynaptic depolariza-
tion. This is assumed to be instantaneous. The second
operator depends on synaptic kinetics and models the
average postsynaptic response as a linear convolution of
incoming spike rate. The shape of the convolution ker-
nels embodies the synaptic and dendritic kinetics of the
population (Figures 33.2 and 33.3).

The majority of neural-mass models of M/EEG have
been designed to generate alpha rhythms (Lopes da Silva
et al., 1974; Van Rotterdam et al., 1982; Jansen and Rit, 1995;
Stam et al., 1999). Recent studies have shown that it is
possible to reproduce the whole spectrum of M/EEG oscil-
lations, using appropriate model parameters (Robinson
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FIGURE 33.2 In neural-mass models, a neuronal population
is usually described by its mean membrane potential. Each mass
receives input (usually interpreted as the mean firing rate of all
afferent axons). These inputs enter via synapses whose kinetics are
usually modelled with a linear lowpass filter. The output of the
neuronal population is modelled as the mean firing rate of the
neurons. It is generally assumed that the mean firing rate is an
instantaneous non-linear function (often a sigmoid as in Figure 33.1)
of the mean membrane potential.
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FIGURE 33.3 Model of a neuronal population as used in the
Jansen model. This model rests on two operators: the first trans-
forms u, the average density of presynaptic input arriving at the
population, into V , the average postsynaptic membrane potential
(PSP). This is modelled by a linear transformation. The kernel h
models specific properties of synapses. The parameter H tunes the
maximum amplitude of PSPs and � is a lumped representation of
the sum of the rate constants of passive membrane and other spa-
tially distributed delays in the dendritic tree. The second operator
transforms the average membrane potential of the population into
an average rate of action potentials fired by the neurons. This trans-
formation is assumed to be instantaneous and is a sigmoid function
parameterized with e0 and r.

et al., 2001; David and Friston, 2003). In addition,
these models have been used to test specific hypothe-
ses about brain function, e.g. focal attention (Suffczynski
et al., 2001). Pathological activity such as epilepsy can also
be emulated. This means, in principle, generative models
of the sort employed above could be used to characterize
the pathophysiological mechanisms underlying seizure
activity (Robinson et al., 2002; Wendling et al., 2002).

To date, modelling event-related activity using neural-
mass models has received much less attention (Jansen
and Rit, 1995; Suffczynski et al., 2001; Rennie et al., 2002
David et al., 2005). An early attempt, in the context of
visual ERPs, showed that it was possible to emulate ERP-
like damped oscillations (Jansen and Rit, 1995). A more
sophisticated thalamo-cortical model has been used to
simulate event-related synchronization (ERS) and event-
related desynchronization (ERD), commonly found in
the alpha band (Suffczynski et al., 2001). Finally, it has
been shown that model parameters can be adjusted to fit
real ERPs (Rennie et al., 2002). These studies (Suffczynski
et al., 2001; Rennie et al., 2002), emphasize the role of the
thalamo-cortical interactions by modelling the cortex as
a single compartment. Our work has focused on cortico-
cortical interactions. Although the framework below is
very general, for the sake of simplicity, we will concen-
trate on modelling interactions that are restricted to the
cortex. As mentioned in Rennie et al. (2002), neural-mass
models offer a unified view of M/EEG oscillations and
event-related activity. This is an important point, which
we will reiterate throughout this chapter.

MODELLING CORTICAL SOURCES

In this section, we introduce the Jansen model (Jansen
and Rit, 1995) and its generalization to hierarchal net-
works (David and Friston, 2003). Before introducing
the mathematical model of the basic neuronal popula-
tion used in the Jansen model, we describe briefly the
neuronal microcircuitry found in most cortical areas.
Our goal is to motivate the Jansen model for mod-
elling M/EEG activity anywhere in the cortex. However,
strictly speaking, the Jansen model was developed to
model the visual cortex. Again, for simplicity, we will
ignore area-specific differences in laminar organization
at the expense of neurobiological accuracy.

Basic cytoarchitecture of the cortical
macrocolumn

The neocortex is commonly described as a six-
layered structure (DeFelipe et al., 2002). Spiny neurons
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(pyramidal cells and spiny stellate cells) and smooth
neurons comprise the two major groups of cortical
neurons. The majority of cortical neurons are pyrami-
dal cells that are found in layers 2 to 6. Most spiny
stellate cells are interneurons that are located in the
middle cortical layers. Smooth neurons are essentially
GABA (�-aminobutyric acid)-ergic interneurons that are
distributed in all layers. In general, cortical neurons
are thought to be organized into multiple, repeating
microcircuits. In spite of cortical heterogeneity, a basic
microcircuit has emerged: its skeleton is formed by a
pyramidal cell, which receives excitatory inputs from
extrinsic afferents and spiny cells. Inhibitory inputs
originate mostly from GABAergic interneurons. These
microanatomical characteristics have been found in all
cortical areas and species examined so far and can be con-
sidered as fundamental aspects of cortical organization
(DeFelipe et al., 2002).

These canonical microcircuits are commonly referred
to as cortical minicolumns (∼ 50 �m diameter, containing
about 400 principal cells), which are themselves grouped
into cortical macrocolumns (∼ 900 �m diameter) (Jones,
2000). A cortical area (∼ 1–2 cm diameter) is composed of
many cortical macrocolumns. Depending upon the level
of integration one is interested in, each of these struc-
tures (cortical minicolumn, macrocolumn or area) can be
considered as the functional unit, whose behavioural is
approximated by neural-mass models. As we are inter-
ested here in cognitive neuroscience, using macroscopic
measurements, we will consider the highest level of orga-
nization and build a neural-mass model (Generalized
Jansen Model) reflecting the activity of cortical areas.

Modelling a neuronal population

A cortical area, macrocolumn or minicolumn, comprises
several neuronal subpopulations. In this section, we
describe the mathematical model of one area, which spec-
ifies the evolution of the dynamics of each subpopulation.
This evolution rests on two operators (see Figure 33.3):
the first transforms u�t�, the average density of pre-
synaptic input arriving at the population, into V�t�, the
average postsynaptic membrane potential (PSP). This is
modelled by the linear transformation:

V = h⊗u 33.1

where ⊗ denotes the convolution operator in the time
domain and h is the impulse response or first-order kernel:

h�t� =
{

H�t/�� exp�−t/�� t ≥ 0

0 t < 0
33.2

The kernel h is parameterized by H and � that model
specific properties of synapses: the parameter H tunes

the maximum amplitude of PSPs and � is a lumped
representation of the sum of the rate constants of passive
membrane and other spatially distributed delays in the
dendritic tree. Eqn. 33.1 and Eqn. 33.2 are mathematically
equivalent to the following state equations:

ġ = H

�
u− 2

�
g − 1

�2
V

V̇ = g

⇒ V̈ = H

�
u− 2

�
V̇ − 1

�2
V

33.3

Note that this has the same form as Eqn. 32.2 in the
previous chapter; I = −CV̇ , if we assume g = −I/C is
proportional to transmembrane current. When the exter-
nal input to the population u�t� is known, it is possible
to obtain the membrane potential v�t� by integrating
Eqn. 33.3 (see Kloeden and Platen, 1999 for a description
of various numerical solutions of differential equations).
Eqn. 33.3 is effectively a second-order differential equa-
tion governing the evolution of postsynaptic potential in
response to input and is formally similar to the equations
of motion in Chapter 31 (e.g. Eqn. 31.6) for integrate-and-
fire neurons.

The second operator transforms the average membrane
potential of the population into the average rate of action
potentials fired by the neurons. This transformation is
assumed to be instantaneous and is described by the
sigmoid function:

s�V� = 2e0

1+exp�−rV�
− e0 33.4

where e0 and r are parameters that determine its shape
(e.g. voltage sensitivity). It is this function that endows
the model with non-linear behaviours that are critical
for phenomena like phase-resetting of the M/EEG (see
below). Note that the form of s�V� specifies implicitly that
the resting state for the mean membrane potential v and
the mean firing rate u = s�V� is zero. This means that we
are modelling variations of v around its resting value,
which is usually negative (tens of mV) but unknown.
In other words, states are treated as small perturbations
around their resting values, which are set to zero.

Neural-mass versus mean-field models

The sigmoid function in Eqn. 33.4 is quite important for
neural-mass models because it summarizes the effects of
variability, over the population, considered in full mean-
field treatments. In Chapter 31, we coupled populations
with the mean-field quantities s�i� = M��i�, where M was
a linear operator that returned the mean firing rate and
��i� was the population density of the i-th population.
In neural-mass models we only use the mode of this
density, i.e. V �i� = maxV ��i��V�. This means we have to
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replace the linear mapping between the density and fir-
ing rate with a non-linear function of its mode s�i� =
M��i� → s�i� = s�V �i��. The sigmoid form for this function
is based on two premises. The first is that most neurons,
most of the time, have membrane potentials that fluctuate
just below the threshold for firing. In this subthreshold
range, the probability of firing increases exponentially
with depolarization. This property contributes the con-
cave upward lower part of the curve. The second premise
is that population firing rate approaches an upper limit,
determined by the hyperpolarizing after-potentials of
spikes. This property forms the convex upward part of
the curve (Freeman, 1979). See Figures 33.1, 33.2 and 33.3
for schematics of this effect and Figure 31.4 in Chapter 31
for an example of spike rate responses of a population
with increasing depolarization, using a full mean-field
model.

Jansen’s model

The Jansen model (Jansen and Rit, 1995) uses the micro-
circuitry described above to emulate a cortical area. It is
based upon an earlier lumped parameter model (Lopes
da Silva et al., 1974). The basic idea behind these models
is to make excitatory and inhibitory populations inter-
act, such that oscillations emerge. A cortical area, taken
here to be an ensemble of macrocolumns, is modelled
by a population of excitatory pyramidal cells, receiv-
ing inhibitory and excitatory feedback from local (i.e.
intrinsic) interneurons and excitatory input from neigh-
bouring or remote (i.e. extrinsic) areas. It is composed
of three subpopulations: a population of excitatory pyra-
midal (output) cells receives inputs from inhibitory and
excitatory populations of interneurons, via intrinsic con-
nections (intrinsic connections are confined to the cortical
sheet). Within this model, excitatory interneurons can be
regarded as spiny stellate cells found predominantly in
layer 4 and in receipt of forward connections (Miller,
2003). Excitatory pyramidal cells and inhibitory interneu-
rons will be considered to occupy agranular layers and
receive backward and lateral inputs.

Interactions among the different subpopulations
depend on the constants �i, which control the strength
of intrinsic connections and the total number of synapses
expressed by each subpopulation. The relative values of
these constants are fixed, using anatomical information
from the literature, as described in Jansen and Rit (1995):
�2 = 0�8�1	�3 = �4 = 0�25�1. The model is summarized
in Figure 33.4 using a state-space representation (as
opposed to a kernel or convolution representation). We
integrate the differential equations of the state-space
form to simulate dynamics per se. These state equations
cover the dynamics of PSPs and have the same form as

Eqn. 33.3, where we have used the second-order form for
clarity. In this example, we have only allowed exogenous
input to affect the excitatory interneurons.

The M/EEG signal is assumed to reflect V0�t�, the aver-
age depolarization of pyramidal cells (Figure 33.4). For
the sake of simplicity, we ignore the observation equa-
tion, i.e. how V0�t� is measured. This observer would
include the effects of amplifiers (which are an additional
bandpass filter), the lead fields (see Chapter 28 and Bail-
let et al., 2001). The Jansen model can produce a large
variety of M/EEG-like waveforms (broad-band noise,
epileptic-like activity) and alpha rhythms (Jansen and
Rit, 1995; Wendling et al., 2000; David and Friston, 2003)
when extrinsic inputs u are random (Gaussian) processes.
When extrinsic inputs comprise transient inputs, event-
related activity like ERP/ERF can be generated (Jansen
and Rit, 1995; David et al., 2005). This is illustrated in
Figure 33.5.

Coupling cortical areas

Neurophysiological studies have shown that extrinsic
cortico-cortical connections are exclusively excitatory.
Moreover, experimental evidence suggests that M/EEG
activity is generated by strongly coupled but remote cor-
tical areas (Rodriguez et al., 1999; Engel et al., 2001; Varela
et al., 2001; David et al., 2002). Fortunately, modelling
excitatory coupling is straightforward using the Jansen
model and some consequences of excitatory coupling
have been described already (Jansen and Rit, 1995;
Wendling et al., 2000). In this section, we describe how
coupling between two cortical areas, each one modelled
as above, is implemented. In addition, we illustrate the
effects of such coupling, both on M/EEG oscillations and
on ERP/ERF.

Coupling in state equations

Let us first summarize the state equations describing the
activity of one cortical area with

ẋ = f�x	u	
�

x = �V	 V̇ �
33.5

Eqn. 33.5 embeds the differential equations shown in
Figure 33.4 where x = �V	 V̇ � are the states of the area
(remember that the M/EEG signal V0 = V2 −V3 represents
the mean depolarization of pyramidal cells that com-
prise excitatory and inhibitory components), u are the
extrinsic inputs and 
 are the various parameters of the
model. Coupling several cortical areas is implemented
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FIGURE 33.4 State-space representation of Jansen’s model of a cortical area. Three neuronal subpopulations are considered to model a
cortical area. Pyramidal cells interact with both excitatory and inhibitory interneurons with the connectivity constants �2 = 0�8�1	�3 = �4 =
0�25�1. The parameters H and � control the expression of postsynaptic potentials (see previous figure). Subscripts e and i denote excitatory
and inhibitory, respectively. We assume the average depolarization of pyramidal cells V0 is proportional to cortical current densities obtained
with source reconstruction algorithms using M/EEG scalp data. The insert provides the values of parameters used for all the simulations in
this chapter:  refers to propagation delays on extrinsic connections.
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FIGURE 33.5 Effect of the nature of
extrinsic inputs u on the responses of a corti-
cal area (Jansen model). Upper: M/EEG-like
oscillations are obtained when u is stochas-
tic (Gaussian in this simulation). Lower:
ERP/ERF-like waveforms are obtained when
u contains a fast transient (a delta function
in this simulation). This simulation used the
model described in Figure 33.4.

by treating the outputs of one cortical area as the extrin-
sic input to another. The input aijs�V

�j�� to the i-th is the
mean firing of pyramidal cells in the j-th, multiplied by
the strength of the connection or coupling aij .

For several areas with states x�I�, we can express
the dynamics as a set of coupling differential

equations where, ignoring propagation delays for
simplicity:

ẋ�1� = f�x�1�	 a12S�V �2�
0 �+a13S�V �3�

0 �+· · ·+ c1u	
�1��

ẋ�2� = f�x�2�	 a21S�V �1�
0 �+a23S�V �3�

0 �+· · ·+ c2u	
�2��

ẋ�2� = � � � 33.6
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a 21S(V0  (t – δ ))
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x(2)

(1)
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FIGURE 33.6 Graphical representation of the connection
between two cortical areas. Coupling coefficients are assembled into
matrices A and C (see main text).

In matrix form, Eqn. 33.6 is equivalent to:

ẋ = f�x	AS�x0�+Cu	
�

x =
⎡
⎣

x�1�

x�2�

���

⎤
⎦x0 =

⎡
⎢⎣

V �1�
0

V �2�
0
���

⎤
⎥⎦A =

⎡
⎣

0 a12 · · ·
a21 0
���

� � �

⎤
⎦C =

⎡
⎣

c1
c2
���

⎤
⎦ 33.7

In other words, coupling is specified using connectiv-
ity matrices: the matrix A, which specifies the coupling
among cortical areas, and the matrix C which specifies

where exogenous inputs, such as stimuli, enter the model
(Figure 33.6).

Coupling and functional connectivity

Coupling between areas models effective connectivity,
i.e. the influence of one system on another (Friston, 2001).
Using a model composed of two areas, it is easy to look
at the effects of coupling on functional connectivity, i.e.
the correlation between the signals that are generated.
The simulations shown in Figure 33.7 used the same
parameters as in Figure 33.5 for each area. The connec-
tions between areas were asymmetrical (forward from 1
to 2 and backward from 2 to 1). The distinction between
forward and backward connections will be explained in
the next section. Extrinsic inputs u were applied to spiny
stellate cells and a propagation delay of 10 ms between
the areas was assumed.

The upper panels of Figure 33.7 show that synchronous
oscillations appear when neuronal coupling between cor-
tical areas is increased. This suggests that coupling and
the synchrony of the M/EEG (Varela et al., 2001) are
closely related. The lower panels show that coupling can
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FIGURE 33.7 Relationship between coupling and functional connectivity (correlations between observed signals). The model was
composed of two areas, coupled asymmetrically. Extrinsic inputs u were applied to spiny stellate cells only. Top: ongoing activity was
simulated using stochastic inputs that entered each area. One can see that synchronous oscillations appear when increasing neuronal coupling
between cortical areas (despite the fact that the inputs were independent). Bottom: a fast transient (delta function) was the extrinsic input to
area 1. When areas are not coupled (left hand side) the ERP does not propagate to area 2, whereas one can observe a late response in area 2
when coupling is present.
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propagateneuronal transientssuchasERP/ERF.Thistopic
willbediscussed in more depth later. The important point
here is that changes in coupling can explain many aspects
of synchronization and ERP/ERFs and are in a position
to bridge the study of evoked and induced or ongoing
M/EEG activity. We will come back to this issue later.

So far, we have been introducing the different compo-
nents and key ideas behind neural-mass models. In the
next section, we describe the model which we have used
to simulate several aspects of cortical responses and use
as the generative model for DCM in later chapters. The
key feature of this model is its hierarchal architecture that
arises from the distinction between forward, backward
and lateral extrinsic connections.

HIERARCHICAL MODELS OF CORTICAL
NETWORKS

It is well known that the cortex has a hierarchical organi-
zation (Felleman and Van Essen, 1991; Crick and Koch,
1998), comprising bottom-up, top-down and lateral pro-
cesses that can be understood from an anatomical and
cognitive perspective (Engel et al., 2001). We have dis-
cussed previously the importance of hierarchical pro-
cesses, in relation to perceptual inference in the brain,
using the intimate relationship between hierarchical
models and empirical Bayes (Friston, 2002). Using a hier-
archical neural-mass model, the work described in David
et al. (2005) and reprised here, was more physiologically
motivated. We were primarily interested in the effects, on
event-related M/EEG activity, of connections strengths,
and how these effects were expressed at different hier-
archical levels. In addition, we were interested in how
non-linearities in these connections might be expressed
in observed responses. In this section, we describe the
architecture and the state equations of the neural-mass
model which is used in DCM (David et al., 2006a; Kiebel
et al., 2006; and Chapter 42). The subsequent sections in

this chapter explore the emergent properties of the model
and the mechanistic insights provided.

Forward, backward and lateral connections

Although neural-mass models originated in the early
1970s (Wilson and Cowan, 1972; Lopes da Silva et al.,
1974; Freeman, 1978), none has addressed the hierarchical
nature of cortical organization. The minimal model we
propose, which accounts for directed extrinsic connec-
tions, uses the rules described in Felleman and Van Essen
(1991). Extrinsic connections are connections that traverse
white matter and connect cortical regions (and subcorti-
cal structures). These rules, based upon a tri-partitioning
of the cortical sheet (into supra-, infra-granular layers and
granular layer 4), have been derived from experimental
studies of cat visual cortex. We will assume that they can
be generalized to the whole cortex. The ensuing model
is general, and can be used to model various cortical
networks (David et al., 2006a; Kiebel et al., 2006), where
variability among different cytoarchitectonic regions is
modelled by different area-specific parameters, under the
same microcircuitry. Under this simplifying assumption,
the connections can be defined as in Figure 33.8: bottom-
up or forward connections originate in agranular layers
and terminate in layer 4. Top-down or backward
connections only connect agranular layers. Lateral con-
nections originate in agranular layers and target all lay-
ers. All these long-range or extrinsic cortico-cortical con-
nections are excitatory and are mediated through the
axons of pyramidal cells. For schematic reasons, we lump
the superficial and deep pyramidal layers into the infra-
granular layer in our model.

Although the thalamo-cortical connections have been
the focus of several modelling studies, they represent a
minority of extrinsic connections: in contrast, it is thought
that at least 99 per cent of axons in white matter link cor-
tical areas of the same hemisphere (Abeles, 1991). For this
reason, and for simplicity, we do not include the thalamic

Supra-granular

Infra-granular

Layer 4

Bottom-up Top-down Lateral

FIGURE 33.8 Connection rules adopted for the construction of hierarchical models. These rules are a simplified version of those proposed
by Felleman and Van Essen (1991). The cortical sheet is divided into two components: the granular layer (layer 4) and the agranular layers
(supra- and infra-granular layers). Bottom-up connections originate in agranular layers and terminate in layer 4. Top-down connections only
engage agranular layers. Lateral connections originate in agranular layers and target all layers.
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nuclei in our model. However, they can be included if
the role of the thalamus (or other subcortical structure)
is thought important.

State equations

Using the connection rules above, it is straightforward
to construct hierarchical cortico-cortical networks using
Jansen models of cortical areas. The different types of
connections are shown in Figure 33.9, in terms of con-
nections among the three subpopulations. To model
event-related responses, the network receives inputs
via exogenous input connections. These connections are
exactly the same as forward connections delivering fixed
or stochastic inputs u to the spiny stellate cells in layer 4.
In the present context, they can be regarded as connections
from thalamic or geniculate nuclei. Inputs u can model
incoming stimuli and stochastic background activity.

Connections among areas are mediated by long-
range excitatory (glutaminergic) pathways. As discussed
above, we consider three types of extrinsic connec-
tions (Figure 33.9): forward, backward, and lateral. The
strength of each type of connection is controlled by a
coupling parameter a � aF for forward, aB for backward
and aL for lateral. We model propagation delays for these
connections. The state equations for a single area are
shown in Figure 33.10. It can be seen that the distinction
between forward, backward and lateral connections is
modelled in terms of which subpopulation is affected by
input from the pyramidal cells of another area. The insert
shows the values of the intrinsic parameters 
�i� used in
all the simulations of this chapter.

Using these connections, hierarchical cortical models
for M/EEG can be constructed to test various hypothe-
ses, and represent examples of dynamic causal models
(Friston et al., 2003). The causal model here is a multiple-
input multiple-output system that comprises m inputs
and l outputs with one output per region. The m inputs
correspond to designed causes (e.g. stimulus functions
encoding the occurrence of events) or stochastic pro-
cesses modelling background activity. In principle, each
input could have direct access to every region. However,
in practice the effects of inputs are usually restricted to
a single input region, usually the lowest in the hierar-
chy. Each of the l regions produces a measured output
that corresponds to the M/EEG signal. Each region has
five �He	i	 �e	i	 �1� intrinsic parameters that correspond
to the time constants described above. These play a
crucial role in generating regional responses. However,
we will consider them fixed and focus on the extrinsic
coupling parameters or effective connectivity. These are
the matrices C	AF 	AB and AL that contain the coupling
parameters c	 aF 	 aB and aL. The values of these parame-
ters, used in the following simulations, are provided in
the figure legends. These are the parameters that are esti-
mated from the data in DCM using the expectation and
maximization (EM) (Friston et al., 2002).

The neuronal model described above embodies many
neuroanatomical and physiological constraints which
lend it a neuronal plausibility. It has been designed
to explore emergent behaviours that may help under-
stand empirical phenomena and, critically, as the basis of
dynamic observation models. Although the model com-
prises coupled systems, the coupling is highly asymmet-
ric and heterogeneous. This contrasts with homogeneous
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FIGURE 33.9 Hierarchical connections among Jansen units based on simplified Felleman and van Essen rules (Figure 33.8). Long range
connectivity is mediated by pyramidal cells axons. Their targets depend upon the type of connections. Coupling or connectivity parameters
control the strength of each type of connection: aF for forward, aB for backward, and aL for lateral.
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FIGURE 33.10 Schematic of the model
of a single source with its extrinsic connec-
tions. This schematic includes the (simplified)
differential equations describing the dynam-
ics of the source or regions states. Each source
is modelled with three subpopulations (pyra-
midal, spiny-stellate and inhibitory interneu-
rons) as described in Jansen and Rit (1995).
These have been assigned to granular and
agranular cortical layers, which receive for-
ward and backward connection respectively.

and symmetrically coupled map lattices (CML) and
globally coupled maps (GCMs) encountered in more ana-
lytic treatments. Using the concepts of chaotic dynami-
cal systems, GCMs have motivated a view of neuronal
dynamics that is cast in terms of high-dimensional tran-
sitory dynamics among ‘exotic’ attractors (Tsuda, 2001).
Much of this work rests on uniform coupling, which
induces a synchronization manifold, around which the
dynamics play. The ensuing chaotic itinerancy has many
intriguing aspects that can be related to neuronal systems
(Breakspear et al., 2003; Kaneko and Tsuda, 2003). How-
ever, the focus of the work presented below is not chaotic
itinerancy but chaotic transience (the transient dynamics
evoked by perturbations to the systems state), in systems
with asymmetric coupling. This focus precludes much of
the analytic treatment available for GCMs; but see Jirsa
and Kelso (2000) for an analytical description of coherent
pattern formation in a spatially continuous neural system
with a heterogeneous connection topology. However, as
we hope to show, simply integrating the model, to sim-
ulate responses, can be a revealing exercise. This is what
we will pursue in subsequent sections.

MECHANISMS OF ERP GENERATION

In this section, we characterize the input-output
behaviour of a series of canonical networks in terms of
their impulse response functions. This is effectively the
response (mean depolarization of pyramidal subpopu-
lations) to a delta-function-input or impulse. The sim-

ulations of this section can be regarded as modelling
event-related responses to events of short duration, in the
absence of spontaneous activity or stochastic input. In the
next section, we will use more realistic inputs that com-
prise both stimulus-related and stochastic components.

The effects of inputs

Inputs u act directly on the spiny stellate neurons of
layer 4. Their influence is mediated by the forward con-
nections parameterized by the matrix C. When these
connections are sufficiently strong, the output of the
spiny stellate subpopulation saturates, due to the non-
linear sigmoid function in Eqn. 33.4. This non-linearity
has important consequences for event-related responses
and the ensuing dynamics. In brief, the form of the
impulse response function changes qualitatively with
input strength. To illustrate this point, we modelled a
single area, which received an impulse at time zero, and
calculated the corresponding response for different val-
ues of c (Figure 33.11). With weak inputs, the response
is linear, leading to a linear relationship between c and
peak M/EEG responses. However, with large values
of c, neuronal activity leaves the linear domain of the
sigmoid function, the spiking saturates and the shape of
the evoked response changes.

This behaviour is not surprising and simply reflects
the non-linear relationship between firing rates and post-
synaptic depolarization, modelled by the non-linearity.
This non-linearity causes saturation in the responses of
units to intrinsic and extrinsic inputs. For example, when
the input is strong enough to saturate spiny stellate
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FIGURE 33.11 The strength of input modulates the shape of the M/EEG signal. The output of one area has been calculated for different
values of c, the strength of forward connections mediating input u (delta function). When c is small �c = 1	 c = 1000�, the output is not
saturated and the M/EEG amplitude is linearly related to c. For large values of c�c = 106	 c = 109�, spiny stellate cells saturate and the shape
of event-related M/EEG response changes substantially.

spiking, the pyramidal response exhibits a short plateau
(right panel in Figure 33.11). This saturation persists until
the membrane potential of spiny stellate cells returns to
its resting state. The sigmoid function models phenom-
ena at the single unit level, like refractoriness and spike
rate adaptation and aspects of neuronal ensembles at
the population level, like the distribution of thresholds
involved in the generation of action potentials. The ensu-
ing behaviour confers an inherent stability on dynamics
because it is recapitulated in the response to all bottom-
up influences, as shown next.

Bottom-up effects

The targets of forward connections and extrinsic inputs
are identical. Therefore, the effects of c and aF on
event-related responses are exactly the same. Figure 33.12
shows the simplest case of two areas (area 1 drives

area 2). The difference, in relation to the previous
configuration, is that area 1 has a gating effect. This is
basically a lowpass filter, which leads to greater vari-
ation of the response in area 2, relative to responses
elicited by direct input to area 2 (cf. Figure 33.11). For
instance, the small negative response component in area
1, which follows the first positive deflection, is dramat-
ically enhanced in area 2 for strong forward couplings.
Again, this reflects the non-linear behaviour of subpop-
ulations responding to synaptic inputs.

As mentioned above, activity is subject to lowpass fil-
tering, by synaptic processes, each time it encounters a
cortical region. A simple and intuitive consequence of
this is that the form of event-related responses changes
with each successive convolution in the hierarchy. To
illustrate this point, consider a feed-forward configura-
tion composed of five regions (Figure 33.13). We see
in Figure 33.13 that, in addition to the propagation lag

FIGURE 33.12 The M/EEG signal of area 1 (black) and area 2 (grey) is plotted as a function of the forward connectivity aF . Bottom-up
connectivity has the same effect as input connectivity c: high values cause a saturation of spiny stellate cells (input cells), with a dramatic effect
on M/EEG event-related responses. Non-linear effects are particularly strong for the largest value of aF (right panel) as the small negative
component of area 1 (seen best in the left panel) induces a huge negative response in area 2.
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FIGURE 33.13 A feed-forward system composed of five areas. The M/EEG signal of each area elicited by a single pulse to area 1 is
plotted in successive panels from left to right. Event-related activity lasts longer in high-level cortical areas in feed-forward architectures.
At each level in the hierarchy, the event-related response of pyramidal cells experiences successive lowpass filtering, embodied by synaptic
processes that transform the input signals to output.

that delays the waveform at each level, the event-related
response is more enduring and dispersed in higher-level
areas. A useful heuristic here is that late components of
evoked responses may reflect hierarchical processing at
a higher level. This effect is independent of synaptic time
constants and connectivity parameters.

This simple delay and dispersion is not necessarily
seen with more realistic configurations that involve top-
down effects. In this context, late response components in
higher cortical areas can re-enter (Edelman, 1993) lower
levels, engendering complicated and realistic impulse
response functions. In the reminder of this section, we
look at the effects of adding backward and then lat-
eral connections to the forward architecture considered
above.

Loops and late components

Interactions in the brain are mostly reciprocal. This means
that re-entrant or recurrent loops are ubiquitous and play
a major role in brain dynamics. In our model, two types
of re-entrant loop can be imagined: between different
levels of the hierarchy using forward and backward con-
nections; and between two areas at the same level, using
lateral connections.

Top-down effects

Top-down connections mediate influences from high-
to low-level regions. Incoming sensory information is
promulgated through the hierarchy via forward, and
possibly lateral, connections to high-level areas. To
demonstrate the effect of backward connections on
M/EEG, we will consider a minimal configuration com-
posed of two areas (Figure 33.14). Although asymmetric,
the presence of forward and backward connections

creates loops. This induces stability issues as shown
in Figure 33.14; when backward connections are made
stronger, damped oscillations �aB = 1�aB = 10� are trans-
formed into oscillations, which ultimately stabilize �aB =
50� because of the saturation described in the previous sub-
section. Therefore, with aB = 50, the attractor is a limit cycle
and the resting state point attractor loses its dynamic sta-
bility. The dependence of oscillations on layers, loops and
propagation delays has been the subject of much study
in computational models (e.g. Lumer et al., 1997).

From a neurobiological perceptive, the most interesting
behaviours are shown just prior to this phase-transition,1

when damped oscillations are evident. Note that the
peaks of the evoked response, in this domain, occur every
100 milliseconds or so. This emulates the expression of
late components seen empirically, such as the N300 or
P400. The key point here is that late components, in
the EEG/MEG, may reflect re-entrant effects mediated
by backward connections in hierarchical architectures.
This observation fits comfortably with the notion that
late M/EEG components reflect endogenous processing

1 A phase-transition refers to the qualitative change in the sys-
tem’s attractor caused by changes in the system’s parameters,
here the coupling parameters. In the present context, increas-
ing the backward coupling causes the point attractor to lose its
dynamic stability (stability under small perturbations) and the
emergence of a limit-cycle attractor. The nature of the phase-
transition is usually assessed in terms of Lyapunov exponents
(eigenvalues of the system‘s Jacobian �f

/
�x). When the sys-

tem has a point attractor the imaginary part of the principal
or largest exponent is zero. A limit cycle has non-zero imagi-
nary parts and chaotic attractors have at least one real positive
exponent. We do not present a stability analysis or the Lya-
punov exponents in this work, because the phase-transitions are
self-evident in the trajectories of the system.
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FIGURE 33.14 Backward connections have a key influence on the stability of M/EEG event-related activity as demonstrated by this
simple model composed of two areas (area 1 coded in black and area 2 coded in grey). The forward connectivity aF has been fixed at 40 and
backward connectivity aB varies between 1 and 50 from left to right. When top-down effects are small, their re-entry leads to longer lasting
event-related responses characterized by damped oscillations (aB = 1; aB = 10). However, over a critical threshold of aB (which depends upon
aF ), the system undergoes a phase-transition, loses its point attractor and expresses oscillatory dynamics (aB = 25; aB = 50).

and depend explicitly on top-down effects. In short, late
components may depend on backward connections and
reflect a re-entry of dynamics to hierarchically lower pro-
cessing areas. This dependency can be seen clearly by
comparing the two left-hand panels in Figure 33.14 that
show the emergence of late components on increasing
the backward connection from one to ten.

The phase transition from damped late components to
oscillations is critical. Before the transition the system is
controllable. This means that the response can be deter-
mined analytically given the input. As discussed in Fris-
ton (2000a), long impulse responses endow the brain with
a ‘memory’ of past inputs that enables perceptual pro-
cessing of temporally extended events. In Friston (2000b),
this was demonstrated using a Volterra kernel formula-
tion and the simulation of spatiotemporal receptive fields
in the visual system (see also Chapter 39). However,
after the transition, it is no longer possible to determine
when the input occurred given the output. This violates
the principle of maximum information transfer (Linsker,
1990) and precludes this sort of response in the brain. In
short, it is likely that re-entrant dynamics prolong neu-
ronal transients but will stop short of incurring a phase
transition. If this phase transition occurs it is likely to
be short-lived or pathological (e.g. photosensitive seizure
activity).

It should be noted that the oscillations in the right
hand panels of Figure 33.14 do not represent a mech-
anism for induced oscillations. The oscillations here
are deterministic components of the system’s impulse
response function and are time-locked to the stimulus.
Induced oscillations, by definition, are not time-locked to
the stimulus and probably arise from a stimulus-related
change in the system’s control parameters (i.e. short-term
changes in connectivity). We will return to this point later.

Lateral connections

Lateral connections link different regions at the same
level in the hierarchy. They can be unidirectional or bidi-
rectional as shown for the model in Figure 33.15 with
two areas. The main difference between forward and
unidirectional lateral connections is that the latter target
pyramidal cells. This means that the M/EEG signal is not
so constrained by non-linear saturation in layer 4 units.
Therefore, as shown in Figure 33.15(a), the event-related
response does not saturate for strong lateral connectiv-
ity values aL. On the other hand, bilateral connections
are completely symmetric, which enables them to create
a synchronization manifold (Breakspear, 2002; Breaks-
pear and Terry, 2002b). A comparison of Figure 33.15(b)
and Figure 33.14 shows that a special aspect of bilateral
connections is their ability to support dynamics that are
in phase. This sort of zero-lag phase-synchronization is
commonplace in the brain. Its mediation by lateral con-
nections in this model concurs with previous modelling
studies of zero-lag coupling in triplets of cortical areas
that involve at least one set of bilateral or reciprocal con-
nections (Chawla et al., 2001). For very large values of aL,
architectures with bilateral connections are highly non-
linear and eventually undergo a second phase transition
(see Figure 33.15(b)).

In this section, we have provided a deterministic
characterization of simple hierarchical models in terms of
their impulse responses. We have tried to show that the
model exhibits a degree of face validity in relation to real
evoked responses and have related certain mechanistic
aspects to previous modelling work to provide some con-
struct validity. We now turn to another biological issue,
namely the plausibility of non-linear mechanisms that
might explain ERP/ERF components.
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(a)

(b)

FIGURE 33.15 The effects of lateral connections are shown with a simple model composed of two areas (black: area 1, grey: area 2).
The depolarization of pyramidal cells is plotted for several values of lateral connectivity aL. (a) Unilateral connections support transients
that differ from those elicited by forward connections (Figure 33.9). In particular, the saturation of layer 4 is not so important and the signal
exhibits less saturation for large aL. (b) Increasing bi-directional lateral connections has a similar effect to increasing backward connections.
The main difference is the relative phase of evoked oscillations, which are synchronized at zero-lag. For very large values of aL, the model is
highly non-linear and eventually exits the oscillatory domain of parameter space.

PHASE-RESETTING AND THE ERP

It is generally held that an ERP/ERF is the result of aver-
aging a set of discrete stimulus-evoked brain transients
(Coles and Rugg, 1995). However, several groups (Kolev
and Yordanova, 1997; Makeig et al., 2002; Jansen et al.,
2003; Klimesch et al., 2004; Fuentemilla et al., 2005) have
suggested that some ERP/ERF components might be
generated by stimulus-induced changes in ongoing brain
dynamics. This is consistent with views emerging from
several fields suggesting that phase-synchronization of
ongoing rhythms, across different spatiotemporal scales,
mediates the functional integration necessary to perform
higher cognitive tasks (Varela et al., 2001; Penny et al.,
2002). In brief, a key issue is the distinction between pro-
cesses that do and do not rely on phase-resetting of ongo-
ing spontaneous activity. Both can lead to the expression

of ERP/ERF components but their mechanisms are very
different.

EEG and MEG signals are effectively ergodic and can-
cel when averaged over a sufficient number of randomly
chosen epochs. The fact that ERPs/ERFs exhibit system-
atic waveforms, when the epochs are stimulus locked,
suggests either a reproducible stimulus-dependent mod-
ulation of amplitude or phase-locking of ongoing M/EEG
activity (Tass, 2003). The key distinction between these
two explanations is whether the stimulus-related com-
ponent interacts with ongoing or spontaneous activity. If
there is no interaction, the spontaneous component will
be averaged away because it has no consistent phase-
relationship with stimulus onset. Conversely, if there
is an interaction, dominant frequencies of the sponta-
neous activity must experience a phase-change, so that
they acquire a degree of phase-locking to the stimulus.
Note that phase-resetting is a stronger-requirement than
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induced oscillations. It requires any induced dynamics
to be phase-locked in peristimulus time. In short, phase-
resetting is explicitly non-linear and implies an inter-
action between stimulus-related response and ongoing
activity. Put simply, this means that the event-related
response depends on ongoing activity. This dependency
can be assessed with the difference between responses
elicited with and without the stimulus (if we could repro-
duce exactly the same ongoing activity). In the absence
of interactions there will be no difference. Any difference
implies non-linear interactions. Clearly, this cannot be
done empirically but it can be pursued using simulations.

We will show next that phase-resetting is an emergent
phenomenon and a plausible candidate for causing
ERPs/ERFs. Phase-resetting is used in this chapter as
an interesting example of non-linear responses that have
been observed empirically. We use it to show that
non-linear mechanisms can be usefully explored with
neuronal models of the sort developed here. In particu-
lar, static non-linearities, in neuronal mass models, are
sufficient to explain phase-resetting. Phase-resetting rep-
resents non-linear behaviour because, in the absence of
amplitude changes, phase-changes can only be mediated
in a non-linear way. This is why phase-synchronization
plays a central role in detecting non-linear coupling
among sources (Breakspear, 2002; Tass, 2003).

Simulations

In this section, we investigate the effect of ongoing
activity on stimulus-dependent responses to reconcile
apparently contradictory conclusions from studies of
event-related potentials. On one hand, classical studies
have shown that event-related potentials are associated
with amplitude changes in the M/EEG signal that rep-
resent a linear summation of an impulse response and
ongoing activity (Arieli et al., 1996; Shah et al., 2004). In
this scheme, the variability at the single-trial level is due
to, and only to, ongoing activity, which is removed after
averaging to estimate the impulse response. On the other
hand, it has been hypothesized that event-related wave-
forms, obtained after averaging, could be due to a phase-
resetting of ongoing activity with no necessary change in
the amplitude (i.e. power) of any stimulus-locked tran-
sient (Makeig et al., 2002; Jansen et al., 2003). Although
mathematically well defined, the neural mechanisms that
could instantiate phase-resetting of ongoing activity are
unknown.

We will take phase-resetting to imply a non-linear
interaction between ongoing activity and stimulus-
related input that results in phase-locking to stimulus
onset. Although phase-locking can be produced by evok-
ing oscillatory transients (i.e. amplitude modulation),

this mechanism involves no change or resetting of the
ongoing dynamics. To assess the contribution of phase-
resetting in our simulations, we therefore need to look
for interactions between ongoing and stimulus-related
inputs that produced phase-locking in the outputs. We
can address this, in a simple way, by subtracting the
response to ongoing activity alone from the response
to a mixture of ongoing activity and stimulus input. In
the absence of interactions, this difference (the evoked
response) should be the same. On the other hand, if
interactions are prevalent, the difference should change
with each realization of ongoing activity. We performed
these analyses with different levels of input and assessed
the degree of phase-locking in the outputs with the
phase-locking value (PLV) (Tallon-Baudry et al., 1996;
Lachaux et al., 1999): PLV�t� = ∣∣�exp�j��t���trials

∣∣where the
instantaneous phase ��t� was obtained from the Hilbert
transform (Le Van Quyen et al., 2001).

To evaluate the effect of background activity on single-
trial event-related responses, we used the two area hier-
archical model above, with aB = 1 (see Figure 33.14). The
first area was driven by an impulse function (stimu-
lus) and Gaussian random noise (background activity) of
standard deviation of 0.05. The output of this region can
be considered a mixture of evoked response and ongoing
activity. We considered two conditions: one with low lev-
els of mixed input �c = 102� and another with high levels
�c = 2�104�. These values were chosen to emphasize the
system’s nonlinear properties; with the smaller value of
c, neuronal responses remain largely in the linear regime.
The larger value of c was chosen so that excursions of
the states encroached on the non-linear regime, to pro-
duce neuronal saturation in some trials. In both cases, the
stimulus was a delta-function. The simulated responses,
for 100 trials, are shown in Figure 33.16.

When input levels are low (left hand side of
Figure 33.16), event-related activity, at the single-trial
level, shows a relatively reproducible waveform after
stimulus onset (Figure 33.16(b)). This transient is reflected
in the ERP/ERF after averaging (Figure 33.16(c)). To con-
firm the experimental results of Arieli et al. (1996), we
decomposed each event-related response into two com-
ponents. First, the stochastic component (the response
to ongoing activity alone – Figure 33.16(d)) and second,
an extra component elicited by adding the stimulus
(Figure 33.16(e)). This is the difference between the
response elicited by the stochastic component alone
(Figure 33.16(d)) and the response to the mixed input
(Figure 33.16(b)). If the system was linear, these differ-
ences should not exhibit any variability over trials, and
thus define the ‘reproducible response’ (Arieli et al., 1996).
Effectively, the stimulus-dependent component shows no
variability and we can conclude that the response com-
ponents due to stimulus and ongoing activity are linearly
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FIGURE 33.16 Event-related responses in the context of ongoing activity (100 trials). Two hierarchically connected regions are consid-
ered. Input (ongoing and stimulus-related) enters into the system through region 1. Two levels of input are considered: weak on the left
hand side (c = 102�, strong on the right hand side (c = 2�104�. The successive horizontal panels show different types of activity. The time scale
is identical for each panel and shown at the bottom. (a) Inputs, comprising a delta function and Gaussian noise of standard deviation 0.05
(stimulus onset at time zero). (b) Event-related activity at the single-trial level. The time series over trials is shown (area 1 is above area 2).
(c) Averaged event-related response estimated by averaging over epochs shown in (b) (area 1 in black, area 2 in grey). (d) Responses to the
noisy input without the delta function, shown in the same format as in (b). (e). Stimulus-dependent component obtained from subtracting
(d) from (b). (f). Phase-locking value computed from time series in (b), which exhibits a transient phase-synchronization to peristimulus time
(Black: area 1, grey: area 2).

separable. In other words, there are no interactions
that could mediate phase-resetting. Despite this, there
is ample evidence for phase-locking. This is shown in
Figure 33.16(f), using the phase-locking index.

However, the situation is very different when we
repeat the simulations with high input levels (right hand
side of Figure 33.16). In this context, the event-related
responses do not show any obvious increase in ampli-
tude after the stimulus (Figure 33.16(b)). However, the
averaged event-related activity (Figure 33.16(c)) is very
similar to that above (left hand side of Figure 33.16(c)).
The fact that one obtains an ERP by averaging in this
way suggests that the stimulus input induced phase-
resetting of the ongoing oscillations. This is confirmed
by the large variation in stimulus-dependent compo-
nents from trial to trial. This variation reflects non-linear

interactions between the stimulus and ongoing activity
(Figure 33.16(e)). These interactions are associated with
phase-locking as shown in Figure 33.16(f).

In summary, the fact that the difference in evoked
responses with and without background noise (panel (e),
Figure 33.16) shows so much variability, suggests that
background activity interacts with the stimulus: when
ongoing activity is high, cells saturate and the stimulus-
related response is attenuated. Conversely, when ongo-
ing activity is low the evoked-response is expressed fully.
This dependency on ongoing activity is revealed by vari-
ation in the evoked responses with high input levels.
In conclusion, the apparently contradictory results pre-
sented in Arieli et al. (1996), Makeig et al. (2002), Jansen
et al. (2003) and Shah et al. (2004) can be reproduced for
the most part and reconciled within the same framework.
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With high activity levels, the ongoing and stimulus-
dependent components interact, through non-linearities
in the population dynamics, to produce phase-resetting
and a classical ERP on averaging. When activity is lower,
the stimulus and endogenous dynamics do not interact
and the ERP simply reflects the transient evoked by stim-
uli that is linearly separable from ongoing dynamics.

We have shown that non-linear mechanisms due to
the saturation of neuronal outputs can be important in
measured EPR/ERF. In the next section, we take another
perspective on event-related activity (ERPs are a particu-
lar type of event-related activity) and focus on the mod-
ulation of ongoing activity by the experimental context.

ONGOING AND EVENT-RELATED
ACTIVITY

Ongoing activity, i.e. oscillations in the M/EEG signal
that share no phase relationship with the stimulus, refers
to dynamics that are regarded as random fluctuations, or
autonomous dynamics with a high complexity. Ongoing
activity is shaped by the same non-linear convolution
experienced by deterministic inputs. In the context of
stationary inputs, the outputs can be characterized in
terms of their spectral properties, which are determined
by the generalized transfer functions of the Volterra ker-
nels (see Chapter 39) associated with any controllable
analytic system. The impulse response function is the
first-order kernel. As soon as the connectivity parameters
of a hierarchical network change, the principal modes
of this network, defined by the principal frequencies of
oscillations, are modulated (David and Friston, 2003). As
an illustration, consider the simple hierarchical model of

two cortical areas established in the previous sections
with two configurations, which differ in the strength of
backward connections (aB = 1 and aB = 10) (Figure 33.17).
The corresponding frequency spectra, of pyramidal cell
depolarization of the two areas, show that the change
in connectivity induces a profound modulation of their
spectral profile. As one might intuit, strong backward
connections induce a peak at the same frequency of the
damped oscillations in the impulse response function.
This is an important aspect of ongoing activity in the
sense that its spectral behaviour may be very close to that
of evoked transients as shown in (Makeig et al., 2002).

Induced versus evoked responses

This modulation of oscillatory dynamics, by the system’s
coupling parameters, provides a natural model for event-
related changes in rhythmic activity. This phenomenon
is known as event-related synchronization (ERS) in fre-
quency bands showing an evoked increase in power,
or conversely, event-related desynchronization (ERD)
for decreases (Basar, 1980; Pfurtscheller and Lopes da
Silva, 1999). In light of the above connectivity-dependent
changes in power, ERD and ERS may reflect the dynam-
ics induced by evoked changes in short-term plasticity. The
key difference between evoked and induced transients
relates to the presence or absence of changes in the sys-
tem’s control parameters, here coupling or synaptic effi-
cacy. Evoked changes are not necessarily associated with
parameter changes and any complicated response can be
ascribed to transients that arise as the systems trajectory
returns to its attractor. Conversely, induced responses
arise from perturbation of the attractor manifold itself,
by changes in the parameters and ensuing changes in

FIGURE 33.17 The modulation of backward connectivity (aB = 1 or aB = 10) has huge effect on the power spectrum of ongoing M/EEG
dynamics (responses are plotted in black for area 1 and in grey for area 2). When aB increases from 1 to 10, there is loss of power below
3 Hz, and an excess between 3 and 7 Hz. The amplitude spectra in the right panel were obtained by averaging the modulus of the fast Fourier
transform of pyramidal cell depolarization, over 100 epochs of 2.5 s (examples are shown in the two left-hand panels, black: first area, grey:
second area).
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the dynamics. This distinction was discussed in Friston
(1997a) in relation to MEG dynamics and modelled using
asymmetric connections between two areas in Friston
(2000a) and Chapter 39.

Empirically, the ERS/ERD approach is used to look for
M/EEG power changes of rhythmic activity induced by
external events. This phenomenon has been modelled, in
the case of alpha rhythms, by a computational model of
thalamocortical networks (Suffczynski et al., 2001). It has
been shown that a key mechanism is the modulation of
functional interaction between populations of thalamo-
cortical cells and the reticular nucleus. In the last appli-
cation of neural-mass models for ERPs in this chapter,
we consider the differences between induced and evoked
responses in more depth. Our goal is to look at the gen-
erative mechanisms behind induced responses. The next
section is a summary of David et al. (2006b).

INDUCED RESPONSES AND ERPs

Cortical oscillatory activity, as disclosed by local field
potentials (LFPs), EEG and MEG recordings, can be cat-
egorized as ongoing, evoked or induced (Tallon-Baudry
and Bertrand, 1999). Evoked and induced oscillations dif-
fer in their phase-relationships to the stimulus. Evoked
oscillations are phase-locked to the stimulus, whereas
induced oscillations are not. Operationally, these two
phenomena are revealed by the order of trial-averaging
and spectral analysis (see Chapter 30). To estimate
evoked power, the M/EEG signal is first averaged over
trials and then subject to time-frequency analysis to give
an event-related response (ERR). To estimate induced
oscillations, the time-frequency decomposition is applied
to each trial and the ensuing power is averaged across
trials. The power of evoked and background components
is subtracted from this total power to reveal induced
power. In short, evoked responses can be characterized
as the power of the average, while induced responses are
the average power that cannot be explained by the power
of the average.

A common conception is that evoked oscillations
reflect a stimulus-locked event-related response in time-
frequency space and that induced oscillations are gen-
erated by some distinct high-order process. Following
Singer and Gray (1995), this process is often described
in terms of ‘binding’ and/or neuronal synchronization.
The tenet of the binding hypothesis is that coherent fir-
ing patterns can induce large fluctuations in the mem-
brane potential of neighbouring neurons which, in turn,
facilitate synchronous firing and information transfer (as
defined operationally in Varela, 1995). Oscillations are
induced because their self-organized emergence is not

evoked directly by the stimulus, but induced vicariously
through non-linear and possibly autonomous mecha-
nisms.

Our treatment of induced responses is divided into
three parts. In the first, we establish a key distinction
between dynamic mechanisms, normally associated with
classical evoked responses like the ERP and structural
mechanisms, implicit in the genesis of induced responses.
Dynamic effects are simply the effect of inputs on a sys-
tem‘s response. Conversely, structural mechanisms entail
a transient change in the system‘s causal structure, i.e. its
parameters (e.g. synaptic coupling). These changes could
be mediated by non-linear effects of input. We relate
the distinction between dynamic and structural mecha-
nisms to series of dichotomies in dynamical system the-
ory and neurophysiology. These include the distinction
between driving and modulatory effects in the brain. This
part concludes with a review of how neuronal responses
are characterized operationally, in terms of evoked and
induced power, and how these characterizations relate to
dynamic and structural perturbations. In the second part,
we show that structural mechanisms can indeed produce
induced oscillations. In the example provided, responses
are induced by a stimulus-locked modulation of the back-
ward connections from one source to another. However,
we show that this structural effect is also expressed in
evoked oscillations when dynamic and structural effects
interact. In the final part, we show the converse, namely
that dynamic mechanisms can produce induced oscil-
lations, even in the absence of structural effects. This
can occur when trial-to-trial variations in input suppress
high-frequency responses after averaging. Our discussion
focuses on the rather complicated relationship between
the two types of mechanisms that can cause responses
in M/EEG and the ways in which evoked and induced
responses are measured. We introduce adjusted power as
a complement to induced power that resolves some of
these ambiguities.

Dynamic and structural mechanisms

From Eqn. 33.5, it is immediately clear that the states and
implicitly the system’s response, can only be changed by
perturbing u�t� or 
. We will refer to these as dynamic
and structural effects respectively. This distinction arises
in a number of different contexts. From a purely dynam-
ical point of view, transients elicited by dynamic effects
are the system’s response to input changes, e.g. the pre-
sentations of a stimulus in an ERP study. If the sys-
tem is dissipative and has a stable fixed point, then the
response is a generalized convolution of the input with
associated kernels. The duration and form of the result-
ing dynamics effect depends on the dynamical stability of
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the system to perturbations of its states (i.e. how the sys-
tem’s trajectories change with the state). Structural effects
depend on structural stability (i.e. how the system’s trajec-
tories change with the parameters). Systematic changes
in the parameters can produce systematic changes in
the response, even in the absence of input. For systems
that show autonomous (i.e. periodic or chaotic) dynam-
ics, changing the parameters is equivalent to changing
the attractor manifold, which induces a change in the
system’s states. We have discussed this in the context
of non-linear coupling and classical neuromodulation
(Friston, 1997b; Breakspear et al., 2003). For systems with
fixed points and Volterra kernels, changing the param-
eters is equivalent to changing the kernels and trans-
fer functions. This changes the spectral density relation-
ships between the inputs and outputs. As such, structural
effects are clearly important in the genesis of induced
oscillations because they can produce frequency modula-
tion of ongoing activity that does not entail phase-locking
to any event. In summary, dynamic effects are expressed
directly on the states and conform to a convolution of
inputs to form responses. Structural effects are expressed
indirectly, through the Jacobian (see Appendix 2), and are
inherently non-linear, inducing high-order kernels and
associated transfer functions.

Drivers and modulators

The distinction between dynamic and structural inputs
speaks immediately of the difference between ‘drivers’
and ‘modulators’ (Sherman and Guillery, 1998). In sen-
sory systems, a driver ensemble can be identified as the
transmitter of receptive field properties. For instance,
neurons in the lateral geniculate nuclei drive primary
visual area responses in the cortex, so that retinotopic
mapping is conserved. Modulatory effects are expressed
as changes in certain aspects of information transfer,
by the changing responsiveness of neuronal ensembles
in a context-sensitive fashion. A common example is
attentional gain. Other examples involve extra-classical
receptive field effects that are expressed beyond the
classical receptive field. Generally, these are thought to
be mediated by backward and lateral connections. In
terms of synaptic processes, it has been proposed that
the postsynaptic effects of drivers are fast (ionotropic
receptors), whereas those of modulators are slower and
more enduring (e.g. metabotropic receptors). The mech-
anisms of action of drivers refer to classical neuronal
transmission, either biochemical or electrical, and are
well understood. Conversely, modulatory effects can
engage a complex cascade of highly non-linear cellular
mechanisms (Turrigiano and Nelson, 2004). Modulatory
effects can be understood as transient departures from

homeostatic states, lasting hundreds of milliseconds, due
to synaptic changes in the expression and function of
receptors and intracellular messaging systems.

Classical examples of modularity mechanisms involve
voltage-dependent receptors, such as NMDA receptors.
These receptors do not cause depolarization directly (cf.
a dynamic effect) but change the unit’s sensitivity to
depolarization (i.e. a structural effect). It is interesting to
note that backward connections, usually associated with
modulatory influences, target supragranular layers in the
cortex where NMDA receptors are expressed in greater
proportion. Having established the difference between
dynamics and structural effects and their relationship
to driving and modulatory afferents in the brain, we
now turn to the characterization of evoked and induced
responses in terms of time-frequency analyses.

Evoked and induced power

The criterion that differentiates induced and evoked
responses is the degree to which oscillatory activity is
phase-locked to the stimulus over trials. An ERR is the
waveform that is expressed in the EEG signal after every
repetition of the same stimulus. Due to physiological and
measurement noise, the ERR is often only evident after
averaging over trials. More formally, the evoked response
y�t�e to a stimulus is defined as the average of measured
responses in each trial y�t�:

y�t�e = �y�t�� 33.8

where t is peristimulus time. A time-frequency represen-
tation s��	 t� of a response y�t� obtains by successively
filtering y�t� using a kernel or filter-bank parameterized
by frequencies �j = 2�vj , over the frequency range of
interest:

s��	 t� =
⎡
⎢⎣

k��1	 t�⊗y�t�
���

k��J 	 t�⊗y�t�

⎤
⎥⎦ 33.9

k��j	 t� can take several forms (Kiebel et al., 2005). The
total power, averaged over trials and the power of the
average are respectively:

g��	 t�T = �s��	 t�s��	 t�∗�
g��	 t�e = �s��	 t�� �s��	 t�∗�

33.10

where ∗ denotes the complex conjugate. g��	 t�e is evoked
power and is simply the power of y�t�e. Induced power
g��	 t�i is defined as the component of total power that
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cannot be explained by baseline and evoked power.2 This
implicitly partitions total power into three orthogonal
components (induced, baseline and evoked):

g��	 t�T = g��	 t�i +g��	 t�e +g���b 33.11

Baseline power g���b is a frequency-specific constant due
to ongoing activity and experimental noise, both of which
are assumed to be stationary. This component is usu-
ally calculated over a period of time preceding stimulus
presentation.

Mechanisms of generation

In this subsection, we establish how dynamic and struc-
tural mechanisms are expressed in terms of evoked and
induced power. As illustrated in Figure 33.18, the inputs
for the i-th trial u�i� can be decomposed into a determinis-
tic stimulus-related component � and trial-specific back-
ground activity ��i�, which is stochastic and unrelated to
the stimulus:

u�i� = �+��i� 33.12

For simplicity, we will assume that the state-space
defined by Eqn. 33.4 operates largely in its linear regime,

2

1

(2)
u (t )D

u (t )M

(2)
V0

(1)
V0

β(t )(2)

θ(t )

=

(1)
u (t)D α (t ) β (t )(1)= +

FIGURE 33.18 Neuronal model used in the simulations. Two
cortical areas interact with forward and backward connections. Both
areas receive a stochastic input, which simulates ongoing activity
from other brain areas. In addition, area 1 receives a stimulus, mod-
elled as a delta function. A single modulatory effect is considered. It
simulates a stimulus-related slow modulation of extrinsic backward
connectivity. The outputs of the neuronal system are the pyramidal
depolarizations of both areas.

2 A different definition is sometimes used, where induced
responses are based on the difference in amplitude between
single-trials and the ERR: y�t�−y�t�e (Truccolo et al., 2002). The
arguments in this work apply to both formulations. However, it
is simpler for us to use Eqn. 33.11 because it discounts ongoing
activity. This allows us to develop the arguments by considering
just one trial-type (opposed to differences between trial-types)

as suggested by studies which have found only weak
non-linearities in EEG oscillations (Stam et al., 1999;
Breakspear and Terry, 2002a). This allows us to focus
on the first-order kernels and transfer functions. We will
also assume the background activity is stationary. In this
instance, the total power is:

g��	 t�T = 
���	 t�
2g��	 t�u

g��	 t�u = g��	 t�� +g����

33.13

In words, the total power is the power of the input, mod-
ulated by the transfer function 
���	 t�
2 (see Appendix 2).
The power of the input is simply the power of the deter-
ministic component, at time t, plus the power of ongoing
activity. The evoked power is simply the power of the
input, because the noise and background terms are sup-
pressed by averaging:

g��	 t�e = 
���	 t�
2 �s��	 t��� �s��	 t�∗
��

= 
���	 t�
2g��	 t��

33.14

The baseline power at t = t0 is:

g���b = 
���	 t0�
2g���� 33.15

This means that induced power is:

g��	 t�i = �
���	 t�
2 −
���	 t0�
2�g���� 33.16

This is an important result. It means that the only way
induced power can be expressed is if the transfer func-
tion ���	 t	 
� changes at time t. This can only happen
if the parameters of the neuronal system change. In
other words, only structural effects can mediate induced
power. However, this does not mean to say that struc-
tural effects are expressed only in induced power. They
can also be expressed in the evoked power: Eqn. 33.14
shows clearly that evoked power at a particular point in
peristimulus time depends on both g��	 t�� and ���	 t	 
�.
This means that structural effects mediated by changes in
the transfer function can be expressed in evoked power,
provided g��	 t�� > 0. In other words, structural effects
can modulate the expression of stationary components
due to ongoing activity and also deterministic compo-
nents elicited dynamically. To summarize so far:

• Dynamic effects (of driving inputs) conform to a gen-
eralized convolution of inputs to form the system’s
response.

• Structural effects can be formulated as a time-
dependent change in the parameters (that may be
mediated by modulatory inputs). This translates into
time-dependent change in the convolution kernels and
ensuing response.
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• If the ongoing activity is non-zero and stationary, only
structural effects can mediate induced power.

• If stimulus-related input is non-zero, structural effects
can also mediate evoked power, i.e. dynamic and struc-
tural effects can conspire to produce evoked power.

In the next subsection, we demonstrate these theoreti-
cal considerations in a practical setting, using the neural-
mass model of event-related responses. In this section
and in the simulations below, we only consider a sin-
gle trial-type. In practice, one would normally compare
the responses evoked and induced by two trial types.
However, the conclusions are exactly the same in both
contexts. One can regard the simulations below as a com-
parison of one trial-type to a baseline that caused no
response (and had no baseline power).

Modelling induced oscillations

We consider a simple model composed of two sources,
inter-connected with forward and backward connec-
tions (Figure 33.18). The sources receive two types of
inputs. The first u�t�D, models afferent activity that
delivers dynamic perturbations to the system’s states
(by changing postsynaptic currents). This dynamic per-
turbation had stochastic and deterministic components:
background inputs ��i� comprised Gaussian noise that
was delivered to both sources. The deterministic part
modelled a stimulus with an impulse ��t� = �0�, deliv-
ered to the first source at the beginning of each trial. The
second sort of input u�t�M induced a structural change by
modulating extrinsic connections. As one might expect,
the effects of these two input classes differ considerably.
On the one hand, synaptic inputs perturb the system
nearly instantaneously and the deterministic part evokes
responses that are phase-locked to the stimulus. On the
other hand, modulatory inputs modify the manifold that
attracts ongoing activity, without necessarily resetting its
phase. For simplicity, we restrict our modulatory effects
to a modulation of the extrinsic backward connection,
thus encompassing various synaptic mechanisms which
modify the gain of excitatory synapses (Salinas and Thier,
2000). We chose the backward connection because back-
ward connections are associated with modulatory effects,
both in terms of physiology (e.g. the mediation of extra-
classical receptive field effects) (see also Allman et al.,
1985; Murphy et al., 1999) and anatomy (e.g. they termi-
nate in supragranular layers that expressed large number
of voltage-dependent NMDA receptors) (see also Maun-
sell and Van, 1983; Angelucci et al., 2002). There may
be many other modulatory mechanisms that will pro-
duce the same pattern of oscillatory activity and it will
be an interesting endeavour to disambiguate the locus
of structural changes using these sorts of models and
empirical data.

Structural perturbation and induced oscillations

To illustrate the points of the previous section, we will
consider two scenarios in which the modulatory effect
arrives at the same time as the driving input and one
in which it arrives after the dynamic perturbation has
dissipated. Let us assume that the modulatory input has
a slow time-constant � = 150 ms compared to the main
frequency of ongoing oscillations (10 Hz). The modula-
tory effects can be expressed with stimulus onset, or after
some delay. In the first case, evoked oscillations will be
modulated and these effects will be visible in the ERR.
In the second case, phase-locking with the stimulus will
have been lost and no effect will be seen in the ERR.
However, in both cases, structural changes will appear
as induced oscillations.

This is illustrated in Plate 45 (see colour plate section)
using 500 trial-averages. In the upper panel we con-
sider a modulatory input immediately after stimulus
onset. As expected, evoked responses are much more pro-
nounced relative to delayed modulation (lower panel).
The induced power (c) shows that increases in the back-
ward connection induce oscillations in the alpha and
gamma band. The induced power in Plate 45 has been
frequency normalized (by removing the mean and divid-
ing by the standard deviation at t = 0) to show increased
power in the gamma band more clearly. These simula-
tions provide a nice model for induced responses using
a structural perturbation, in this instance a slow modu-
lation of the efficacy of backward connections in a sim-
ple hierarchy of neuronal populations. Critically, these
simulations also show that responses can be evoked
structurally by a modulation of dynamic perturbations.
This dual mechanism depends on driving and modula-
tory effects occurring at the same time, causing evoked
and induced responses in the same time-frequency win-
dow. Having established that evoked responses can also
be mediated by structural mechanisms we now show
that induced responses can be mediated by dynamic
mechanisms.

Induced oscillations and trial-to-trial variability

Above we considered the stimulus as a deterministic
input. Here we consider what would happen if the
stimulus-related input was stochastic. This randomness
is most easily understood in terms of trial-to-trial vari-
ability in the inputs. As suggested in Truccolo et al. (2002),
we consider two types of variability in the input. The
first relates to a trial-to-trial gain, or amplitude varia-
tions. For an identical stimulus, early processing may
introduce variations in the amplitude of driving inputs to
a source. Gain modulation is a ubiquitous phenomenon
in the central nervous system (Salinas and Thier, 2000),
but its causes are not completely understood. Two
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neurophysiological mechanisms that may mediate gain
modulation include fluctuations of extracellular calcium
concentration (Smith et al., 2002) and/or of the overall
level of synaptic input to a neuron (Chance et al., 2002).
These may act as a gain control signal that modulates
responsiveness to excitatory drive. A common example of
gain effects, in a psychophysiological context, is the effect
of attention (McAdams and Maunsell, 1999; Treue and
Martinez Trujillo, 1999). The second commonly observed
source of variability is in the latency of input onset, i.e.
the time between the presentation of the stimulus and
the peak response of early processing. Azouz and Gray
(1999) have investigated the sources of such latency vari-
ations at the neuronal level. Basically, they describe two
major phenomena: coherent fluctuations in cortical activ-
ity preceding the onset of a stimulus have an impact
on the latency of neuronal responses (spikes). This indi-
cates that the time needed to integrate activity to reach
action potential threshold varies between trials. The other
source of latency variability is fluctuations in the action
potential threshold itself.

Both types of trial-to-trial variability, gain modulation
and latency, can be modelled by introducing appropriate
random variables. The theoretical analysis described in
David et al. (2006b) shows that:

• High frequency components are lost in the evoked
responses when latency varies randomly over tri-
als. This means that ERR will be estimated badly at
high frequencies. This variation effectively blurs or
smoothes the average, and suppresses fast oscillations
in the evoked response. However, the total power
remains unchanged, because the power expressed in
each trial does not depend on latency. Therefore, the
high frequencies lost from the evoked responses now
appear in the induced response. In summary, the
induced power has now acquired a stimulus-locked
component. Note that this dynamically induced power
can only be expressed in frequencies that show evoked
responses. This is illustrated in Plate 46 as a transfer
of power from the evoked component to the induced
component.

• Gain variations also allow non-structural mechanisms
to induce power. Here the time-dependent changes in
stimulus-dependent power again contribute to induced
responses. In this instance, the contribution is not fre-
quency specific, as with latency variations, but pro-
portional to the variance in gain. This is illustrated in
Plate 47.

Summary

In summary, we have made a distinction between
dynamic and structural mechanisms that underlie tran-

sient responses to perturbations. We then considered
how responses are measured in time-frequency in terms
of evoked and induced responses. Theoretical predic-
tions (see David et al., 2006b), confirmed by simulations,
show that there is no simple relationship between the
two mechanisms causing responses and the two ways
in which they are characterized. Specifically, evoked
responses can be mediated both structurally and dynami-
cally. Similarly, if there is trial-to-trial variability, induced
responses can be mediated by both mechanisms (see
Figure 33.19 for a schematic summary).

For evoked responses this is not really an issue. The fact
that evoked responses reflect both dynamic and struc-
tural perturbations is sensible, if one allows for the fact
that any input can have dynamic and structural effects. In
other words, the input perturbs the states of the neuronal
system and, at the same time, modulates interactions
among the states. The structural component here can be
viewed as a non-linear (e.g. bilinear) effect that simply
involves interactions between the input and parameters
(e.g. synaptic status). Generally, the structurally medi-
ated component of evoked responses will occur at the
same time and frequency as the dynamically mediated
components. This precludes ambiguity when interpret-
ing evoked responses, if one allows for both dynamic
and structural causes.

The situation is more problematic for induced
responses. In the absence of trial-to-trial variabil-
ity, induced responses must be caused by structural
perturbations. Furthermore, there is no necessary co-
localization of evoked and induced responses in time-
frequency, because induced responses are disclosed by
ongoing activity. However, if trial-to-trial variability is
sufficient, induced responses with no structural com-
ponent will be expressed. This means that induced

Structural causes

Dynamic causes

Evoked
responses

Induced
responses 

Modulation of evoked
responses 

Modulation of ongoing
activity 

Evoked responses lost due
to latency variations 

Evoked responses that
survive averaging 

FIGURE 33.19 Schematic illustrating the many-to-many map-
ping between dynamic versus structural causes and evoked versus
induced responses.



Elsevier UK Chapter: Ch33-P372560 30-9-2006 5:28p.m. Page:436 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

436 33. NEURONAL MODELS OF EEG AND MEG

responses that occur at the same time as evoked
responses have an ambiguity in relation to their cause.
Happily, this can be addressed at two levels. First,
induced responses that do not overlap in peristimulus
time cannot be attributed to dynamic mechanisms and
are therefore structural in nature. Second, one can re-visit
the operational definition of induced responses to derive
a measure that is immune to the effects of trial-to-trial
variability.

Adjusted power

Here we introduce the notion of adjusted power as a
complementary characterization of structurally mediated
responses. Adjusted power derives from a slightly more
explicit formulation of induced responses as that compo-
nent of total power that cannot be explained by evoked
or ongoing activity. The adjusted response is simply
the total power, orthogonalized, at each frequency, with
respect to baseline and evoked power:

g��	 t�a = g��	 t�T −g��	 t��̂

�̂ = g��	 t�+g��	 t�T

g��	 t� =
⎡
⎢⎣

1 g��	 t1�e

���
���

1 g��	 tT �e

⎤
⎥⎦

33.17

+ denotes the pseudoinverse. Eqn. 33.17 is implicitly esti-
mating baseline power and the contribution from evoked
power and removing them from the total power. In other
words, �̂ is a 2-vector estimate of g���b and �1+��. After
these components have been removed the only compo-
nents left must be structural in nature:

g��	 t�a ≈ �
���	 t�
2 −
���	 t0�
2�g���� 33.18

Plate 48 shows that the effect of trial-to-trial variability
on induced responses disappears when using adjusted
power. This means one can unambiguously attribute
adjusted responses to structural mechanisms. The ERP-
adjusted response removes evoked response compo-
nents, including those mediated by structural changes.
However, structurally mediated induced components
will not be affected unless they have the same tempo-
ral expression. The usefulness of adjusted power in an
empirical setting will be addressed in future work.

DISCUSSION

We have divided neuronal mechanisms into dynamic
and structural, which may correspond to driving and

modularity neurotransmitter systems respectively. These
two sorts of effects are related to evoked and induced
responses in M/EEG. By definition, evoked responses
exhibit phase-locking to a stimulus whereas induced
responses do not. Consequently, averaging over trials
discounts both ongoing and induced components and
evoked responses are defined by the response averaged
over trials. Evoked responses may be mediated primar-
ily by driving inputs. In M/EEG, driving inputs affect
the state of measured neuronal assemblies, i.e. the den-
dritic currents in thousands of pyramidal cells. In con-
tradistinction, structural effects, mediated by modulatory
inputs, engage neural mechanisms which affect neuronal
states, irrespective of whether they are phase-locked to
the stimulus or not. These inputs are expressed formally
as time-varying parameters of the state equations mod-
elling the systems. Although the ensuing changes in the
parameters may be slow and enduring, their effects on
ongoing or evoked dynamics may be expressed as fast or
high-frequency dynamics. We have considered a further
cause of induced oscillations, namely trial-to-trial vari-
ability of driving inputs. As suggested in Truccolo et al.
(2002), these can modelled by varying latency and gain.
We have shown that gain variations have no effect on
the ERR but increase induced responses in proportion to
evoked responses. Secondly, we show that jitter in latency
effectively smoothes the evoked responses and transfers
energy from evoked to induced power, preferentially at
higher frequencies.

The conclusions of this work, summarized in
Figure 33.19, provide constraints on the interpretation of
evoked and induced responses in relation to their medi-
ation by dynamic and structural mechanisms. This is
illustrated by the work of Tallon-Baudry and colleagues,
who have looked at non-phase-locked episodes of syn-
chronization in the gamma-band (30–60 Hz). They have
emphasized the role of induced responses in feature-
binding and top-down mechanisms of perceptual syn-
thesis. The top-down aspect is addressed by their early
studies of illusory perception (Tallon-Baudry et al., 1996),
where the authors, ‘tested the stimulus specificity of
high-frequency oscillations in humans using three types
of visual stimuli: two coherent stimuli (a Kanizsa and
a real triangle) and a non-coherent stimulus’. They
found an early phase-locked 40 Hz component, which
did not vary with stimulation type and a second 40 Hz
component, appearing around 28 ms, which was not
phase-locked to stimulus onset. This shows a nice disso-
ciation between early evoked and late induced responses.
The induced component was stronger in response to a
coherent triangle, whether real or illusory and: ‘could
reflect, therefore, a mechanism of feature binding based
on high-frequency synchronization’. Because it was late,
the induced response can only be caused by structural
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mechanisms (see Figure 33.19). This is consistent with the
role of top-down influences and the modulatory mech-
anisms employed by backward connections in visual
synthesis (Maunsell and Van, 1983; Bullier et al., 2001;
Albright and Stoner, 2002).

Classical ERP/ERF research has focused on dynamic
perturbations (Coles and Rugg, 1995). On the other
hand, studies of event-related synchronization (ERS) or
desynchronization (ERD) are more concerned with struc-
tural effects that may be mediated by modulatory sys-
tems (Pfurtscheller and Lopes da Silva, 1999). Practically
speaking, we have shown that it is not always possible
to distinguish between dynamic and structural effects
when inferring the causes of evoked and induced oscil-
lations. However, certain features of induced oscillations
might provide some hints: (i) induced oscillations in high
frequencies concomitant with evoked responses in low
frequencies may indicate a jittering of inputs; (ii) induced
oscillations that are temporally dissociated from evoked
responses are likely to be due to modulatory or struc-
tural effects. Finally, we have introduced the notion of
adjusted power that can be unambiguously associated
with structural effects.

CONCLUSION

Neural-mass models afford a straightforward approach
to modelling the activity of populations of neurons. Their
main assumption is that the state of the population can be
approximated using very few state variables (generally
limited to mean membrane currents, potentials and firing
rates). Given a macroscopic architecture, describing the
overall connectivity between populations of a given corti-
cal area and between different cortical areas, it is possible
to simulate the steady-state dynamics of the system or
even the transient response to a perturbation of extrinsic
input or connectivity. Consequently, neural-mass models
are useful to describe and predict the macroscopic electri-
cal activity of the brain. Since the early 1970s, they have
been used to address several important issues, e.g. alpha
rhythms (Lopes da Silva et al., 1997), olfactory responses
(Freeman, 1987), and focal attention (Suffczynski et al.,
2001). They are now being introduced into neuroimag-
ing to understand the underlying neuronal mechanisms
of fMRI and PET data (Horwitz and Tagamets, 1999;
Almeida and Stetter, 2002; Aubert and Costalat, 2002).

Despite their relative simplicity, neural-mass models
can exhibit complex dynamical behaviour reminiscent
of the real brain. In David and Friston (2003), we have
shown that physiologically plausible synaptic kinetics
lead to the emergence of oscillatory M/EEG-like signals
covering the range of theta to gamma bands. To emulate

more complex oscillatory M/EEG dynamics, we have
proposed a generalization of the Jansen model that incor-
porates several distinct neural populations that resonate
at different frequencies. Changing the composition of
these populations induces a modulation of the spectrum
of simulated M/EEG signals.

We have investigated the consequence of coupling two
remote cortical areas. It appears that the rhythms gener-
ated depend critically upon both the strength of the cou-
pling and the propagation delay. As the coupling directly
modulates the contribution of one area to another, the
spectrum of the driven area, in the case of a unidirec-
tional coupling, is obviously a mixture of the source and
target spectra. More interestingly, a reciprocal coupling
engenders more marked modifications of the M/EEG
spectrum, which can include strong oscillatory activity.
Bi-directional coupling is important because of the high
proportion of reciprocal connections in the brain. The
most robust consequence of coupling is phase synchro-
nization of remote oscillations.

Obviously neural-mass models do not describe exactly
how neural signals interact. These models represent a
summary of underlying neurophysiological processes
that cannot be modelled in complete detail because
of their complexity. In particular, the model we used
does not accommodate subcortical structures such as
the reticular nuclei of the thalamus, which is thought
to be involved in the genesis of delta and alpha
oscillations of the EEG (Steriade, 2001). Despite these
limitations, neural-mass models are useful in helping
to understand some macroscopic properties of M/EEG
signals, such as non-linearities (Stam et al., 1999) and
coupling characteristics (Wendling et al., 2000). They can
also be used to reconstruct a posteriori the scenario of
inhibition/excitation balance during epileptic seizures
(Wendling et al., 2002). Moreover, fitting simple models
to actual M/EEG data, as described above, allows one to
determine empirically likely ranges for some important
physiological parameters (Valdes et al., 1999).

In David et al. (2004), we investigated the sensitivity of
measures of regional interdependencies in M/EEG data,
illustrating an important practical use of neural-mass
models. It is known that some interactions among corti-
cal areas are reflected in M/EEG signals. In the literature,
numerous analytic tools are used to reveal these statistical
dependencies. These methods include cross-correlation,
coherence (Clifford Carter, 1987), mutual information
(Roulston, 1999), non-linear correlation (Pijn et al., 1992),
non-linear interdependencies or generalized synchro-
nization (Arnhold et al., 1999), neural complexity (Tononi
et al., 1994), synchronization likelihood (Stam and van
Dijk, 2002), phase synchronization (Tass et al., 1998;
Lachaux et al., 1999), etc. These interdependencies are
established in a way that allows one to make inferences
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about the nature of the coupling. However, it is not
clear which aspects of neuronal interactions are critical
for causing the frequency-specific linear and non-linear
dependencies observed. Using the model described in
this chapter, we have estimated how synaptic activity
and neuronal interactions are expressed in M/EEG data
and establish the construct validity of various indices of
non-linear coupling. This particular topic has not been
addressed in this chapter because we have focused more
on emergent behaviour and mechanisms.

Another important application of neural-mass mod-
els is the study of event-related dynamics, which has
been the focus of this chapter. We have shown that it
is possible to construct hierarchical models for M/EEG
signals. To that end, we have assumed an architecture
for cortical regions and their connections. In particular,
we have used the Jansen model (Jansen and Rit, 1995)
for each source, and a simplified version of the connec-
tion rules of (Felleman and Van Essen, 1991) to couple
these sources. We have shown that neural-mass models
(Nunez, 1974; Jansen and Rit, 1995; Lopes da Silva et al.,
1997; Stam et al., 1999; Valdes et al., 1999; Robinson et al.,
2001; Suffczynski et al., 2001; Rennie et al., 2002; Wendling
et al., 2002; David and Friston, 2003) can reproduce a
large variety of M/EEG signal characteristics: ongoing
(oscillatory) activity, event-related activity (ERP/ERF,
ERS/ERD). We have tried to highlight the relationships
that exist between ERP/ERF and M/EEG oscillations on
the one hand, evoked and induced responses on the other
hand. One utility of neural-mass models is their abil-
ity to pinpoint specific neuronal mechanisms underlying
normal or pathological activity. Effort is needed to incor-
porate them, more systematically, in M/EEG analyses to
enable enquiry into mechanistic questions about macro-
scopic neuronal processes.

In the next chapter, we look at the inversion of dynamic
models, using relatively simple models for fMRI. Later
we will apply the same inversion to the models described
in this chapter. The resulting approach to M/EEG data
(David et al., 2006a; Kiebel et al., 2006) means we can
frame our questions in a mechanistic and biologically
grounded way, using neural-mass models.
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Bayesian inversion of dynamic models
K. Friston and W. Penny

INTRODUCTION

In this chapter, we look at the inversion of dynamic
models. We use, as an example, the haemodynamic
model presented in Chapter 27. The inversion scheme
is an extension of the Bayesian treatments reviewed
in Part 4. Inverting haemodynamic models of neuronal
responses is clearly central to functional magnetic reso-
nance imaging (fMRI) and forms the basis for dynamic
causal models for fMRI based on neuronal networks (see
Chapter 41). However, the principles of the inversion
described in this chapter can be applied to any analytic,
deterministic dynamic system and we will use exactly
the same scheme for dynamic models of magnetoen-
cephalography/electroencephalography (M/EEG) later.
In this chapter, we focus on the inversion of a single
model to find the conditional density of the model’s
parameters that can then be used for inference, on param-
eter space. In the next chapter, we will focus on inference
about models themselves (i.e. inference on model space),
in terms of Bayesian model comparison, selection and
averaging.

This chapter is about estimating the conditional or
posterior distribution of the parameters of determin-
istic dynamical systems. The scheme conforms to an
EM search for the maximum of the conditional or pos-
terior density. The inclusion of priors in the estima-
tion procedure ensures robust and rapid convergence
and the resulting conditional densities enable Bayesian
inference about the model parameters. The approach
is demonstrated using an input-state-output model of
the haemodynamic coupling between experimentally
designed causes or factors in fMRI studies and the ensu-
ing blood oxygenation-level-dependent (BOLD) response
(see Chapter 27). This example represents a generaliza-
tion of current fMRI analysis models that accommodates
non-linearities and in which the parameters have an
explicit physical interpretation.

We focus on the identification of deterministic
non-linear dynamical models. Deterministic here refers
to models where the dynamics are completely deter-
mined by the state of the system. Random fluctuations
or stochastic effects enter only at the point that the sys-
tem’s outputs or responses are observed.1 By considering
a voxel as an input-state-output system one can model the
effects of an input (i.e. stimulus function) on some state
variables (e.g. flow, volume, deoxyhaemoglobin content
etc.) and the output (i.e. BOLD response) engendered by
the changing state of the voxel. The aim is to identify the
posterior or conditional distribution of the parameters,
given the data. Knowing the posterior distribution allows
one to characterize an observed system in terms of the
parameters that maximize their posterior probability (i.e.
those parameters that are most likely given the data) or,
indeed, make inferences about whether the parameters
are bigger or smaller than some specified value.

By demonstrating the inversion of haemodynamic
models, we establish the key role of biophysical models
of evoked brain responses in making Bayesian inferences
about experimentally induced effects. Including param-
eters that couple experimentally changing stimulus or
task conditions to the system’s states enables this infer-
ence. The posterior or conditional distribution of these
parameters can then be used to make inferences about
the efficacy of experimental inputs in eliciting measured
responses. Because the parameters we want to make an
inference about have an explicit physical interpretation,
in the context of the haemodynamic model used, the face
validity of the ensuing inference is grounded in physi-
ology. Furthermore, because the experimental effects are
parameterized in terms of processes that have natural

1 There is another important class of models where stochastic
processes enter at the level of the state variables themselves
(i.e. deterministic noise). These are referred to as stochastic
dynamical models.
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biological constraints, these constraints can be used as
priors in a Bayesian scheme.

Part 4 focused on empirical Bayesian approaches in
which the priors were derived from the data being anal-
ysed. In this section, we use a fully Bayesian approach,
where the priors are assumed to be known and apply it
to the haemodynamic model described in Friston et al.
(2000). In Friston et al. (2000), we presented a haemo-
dynamic model that embedded the Balloon-Windkessel
model (Buxton et al., 1998; Mandeville et al., 1999) of
flow to BOLD coupling to give a complete dynamical
model of how neuronally mediated signals cause a BOLD
response. This previous work used a single input-single
output (SISO) system by considering only one input.
Here we generalize the approach to multiple input-single
output (MISO) systems. This allows for a response to
be caused by multiple experimental effects and the esti-
mation of causal efficacy for any number of explanatory
variables (i.e. stimulus functions). Later (Chapter 41), we
will generalize to multiple input-multiple output systems
(MIMO) such that interactions among brain regions at a
neuronal level can be addressed.

An important aspect of the model is that it can be
reduced, exactly, to the model used in classical statistical
parametric mapping (SPM)-like analyses, where one uses
stimulus functions, convolved with a canonical haemo-
dynamic response function, as explanatory variables in a
general linear model. This classical analysis is a special
case that obtains when the model parameters of interest
(the efficacy of a stimulus) are treated as fixed effects
with flat priors and the remaining biophysical parame-
ters enter as known canonical values with infinitely small
prior variance (i.e. high precision). In this sense, the cur-
rent approach can be viewed as a Bayesian generaliza-
tion of conventional convolution models of fMRI. The
advantages of this generalization rest upon the use of a
non-linear observation model and its Bayesian inversion.
The fundamental advantage, of a non-linear MISO model
over linear models, is that only the parameters linking the
various inputs to haemodynamics are input-specific. The
remaining parameters, pertaining to the haemodynamics
per se, are the same for each voxel. In conventional analy-
ses the haemodynamic response function, for each input,
is estimated in a linearly separable fashion (usually in
terms of a small set of temporal basis functions), despite
the fact that the form of the impulse response function
in relation to each input is the same. In other words, a
non-linear model properly accommodates the fact that
many of the parameters shaping input-specific haemody-
namic responses are shared by all inputs. For example,
the components of a compound trial (e.g. cue and target
stimuli) might not interact at a neuronal level but may
show subadditive effects in the measured response, due
to non-linear haemodynamic saturation. In contradistinc-

tion to conventional linear analyses, the analysis pro-
posed in this section could, in principle, disambiguate
between interactions at the neuronal and haemodynamic
levels. The second advantage is that Bayesian inferences
about input-specific parameters can be framed in terms
of whether the efficacy for a particular cause exceeded
some specified threshold or, indeed the probability that
it was less than some threshold (i.e. infer that a voxel did
not respond). The latter is precluded in classical inference.
These advantages should be weighed against the difficul-
ties of establishing a valid model and the computational
expense of identification.

Overview

This chapter is divided into four sections. In the first, we
reprise briefly the haemodynamic model and motivate
the four differential equations that it comprises. We will
touch on the Volterra formulation of non-linear systems
to show the output can always be represented as a non-
linear function of the input and the model parameters
(see also Chapter 39). This non-linear function is used
as the basis of the observation model that is subject to
Bayesian identification. This identification requires pri-
ors which, here, come from the distribution, over voxels,
of parameters estimated in Friston et al. (2000). The sec-
ond section describes these priors and how they were
determined. Having specified the form of the non-linear
observation model and the prior densities on the model’s
parameters, the third section describes the estimation
of their posterior densities. The ensuing scheme can be
regarded as a Gauss-Newton search for the maximum
posterior probability (as opposed to the maximum like-
lihood as in conventional applications) that embeds the
EM scheme in Appendix 3. This description concludes
with a note on integration, required to evaluate the local
gradients of the objective function. This effectively gen-
eralizes the EM algorithm for linear systems so that it can
be applied to non-linear models.

Finally, we demonstrate the approach using empirical
data. First, we revisit the same data used to construct the
priors using a single input. We then apply the technique
to the fMRI study of visual attention used in other chap-
ters, to make inferences about the relative efficacy of mul-
tiple experimental effects in eliciting a BOLD response.

A HAEMODYNAMIC MODEL

The haemodynamic model considered here and in
Chapter 27 was presented in detail in Friston et al.
(2000). Although relatively simple, it is predicated on a
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substantial amount of careful theoretical work and empir-
ical validation (e.g. Buxton et al., 1998; Mayhew et al.,
1998; Hoge et al., 1999; Mandeville et al., 1999). The model
is a SISO system with a stimulus function as input (that is
supposed to elicit a neuronally mediated flow-inducing
signal) and BOLD response as output. The model has six
parameters and four state variables each with its corre-
sponding differential equation. The differential or state
equations express how each state variable changes over
time as a function of the others. These state equations
and the output non-linearly (a static non-linear function
of the state variables) specify the form of the forward or
generative model. The parameters determine any specific
realization of the model. In what follows we review the
state equations, the output non-linearity, extension to a
MISO system and the Volterra representation.

The state equations

Assuming that the dynamical system linking synaptic
activity and rCBF is linear (Miller et al., 2000) we start
with:

ḟ = s 34.1

where f�t� is inflow and s�t� is some flow inducing sig-
nal. The signal is assumed to subsume many neurogenic
and diffusive signal subcomponents and is generated
by neuronal responses to the input (the stimulus func-
tion) u�t�:

ṡ = �u�t�−�ss−�f �fin −1� 34.2

�, �s and �f are parameters that represent the efficacy
with which input causes an increase in signal, the rate-
constant for signal decay or elimination and the rate-
constant for autoregulatory feedback from blood flow.
The existence of this feedback term can be inferred
from post-stimulus undershoots in rCBF and the well-
characterized vasomotor signal (V-signal) in optical
imaging (Mayhew et al., 1998). Inflow determines the rate
of change of volume through:

�v̇ = f −f0�v�

f0�v� = v1/�
34.3

This says that normalized venous volume changes reflect
the difference between inflow f�t� and outflow f0�t� from
the venous compartment with a time constant (transit-
time) �. Outflow is a function of volume that models
the balloon-like capacity of the venous compartment to
expel blood at a greater rate when distended (Buxton
et al., 1998). It can be modelled with a single parameter

(Grubb et al., 1974) � based on the Windkessel model
(Mandeville et al., 1999). The change in normalized total
deoxyhaemoglobin voxel content q�t� reflects the deliv-
ery of deoxyhaemoglobin into the venous compartment
minus that expelled (outflow times concentration):

�q̇ = f
E�f�

E0
− f0q

v

E�f� = 1− �1−E0�
1/f

34.4

where E�f� is the fraction of oxygen extracted from
inflowing blood. This is assumed to depend on oxygen
delivery and is consequently flow-dependent. This con-
cludes the state equations, where there are six unknown
parameters, namely efficacy �, signal decay �s, autoregu-
lation �f , transit time �, Grubb’s exponent � and resting
net oxygen extraction by the capillary bed E0.

The output non-linearity

The BOLD signal y�t� = g�v� q� is taken to be a static
non-linear function of volume and deoxyhaemoglobin
content:

y�t� = g�v� q� = V0 �k1�1− q�+k2�1− q/v�+k3�1−v��

k1 = 7E0

k2 = 2

k3 = 2E0 −0	2

34.5

where V0 is resting blood volume fraction. This sig-
nal comprises a volume-weighted sum of extra- and
intravascular signals that are functions of volume and
deoxyhaemoglobin content. A critical term in the out-
put equation is the concentration term k2�1−q/v�, which
accounts for most of the non-linear behaviour of the
haemodynamic model. The architecture of this model is
summarized in Figure 34.1.

Extension to a MISO

The extension to a multiple input system is trivial and
involves extending Eqn. 34.2 to cover n inputs:

ṡ = �1u�t�1 +· · ·+�nu�t�n −�ss−�f �f −1� 34.6

The model now has 5+n parameters: five biophysical
parameters �s, �f , �, � and E0 and n efficacies �1� 
 
 
 �n.
Although all these parameters have to be estimated,
we are only interested in making inferences about the
efficacies. Note that the biophysical parameters are the
same for all inputs.
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ƒ = s
flow induction

s

ƒ

v
τq = ƒE(ƒ)/E0−v1/αq /v

changes in dHb

τv = ƒ−v1/α

changes in volume

ƒ

q

s = εu−κss − κƒ (ƒ −1)
activity-dependent signal

u(t)

y(t ) = g(v,q) = V0(k1(1−q) + k2(1−q /v) + k3(1−v ))

Output: a mixture of intra- and extra-vascular signal

Input: mean synaptic activity

The haemodynamic model
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FIGURE 34.1 Schematic illustrating the architecture of the haemodynamic model. This is a fully non-linear single-input u�t�, single-
output y�t� state model with four state variables s, f , v and q. The form and motivation for the changes in each state variable, as functions of
the others, are described in the main text.

The Volterra formulation

In our haemodynamic model, the state variables are
x = x1� · · · �x4 = s� f�v� q and the parameters are � =
�s��f � ����E0��1� 
 
 
 � �n. The state equations and out-
put non-linearity specify a multiple input-single output
(MISO) model:

ẋ = f�x�u�

y = g�x�

ẋ1 = f1�x�u� = �1u�t�1 +· · ·+�nu�t�n −�sx1 −�f �x2 −1�

ẋ2 = f2�x�u� = x1

ẋ3 = f3�x�u� = 1
�

�x2 −x1/�
3 �

ẋ4 = f4�x�u� = x21− �1−E0�
1/x2

�E0
− x1/�

3 x4

�x3

y�t� = g�x� = V0�k1�1−x4�+k2�1−x4/x3�+k3�1−x3��
34.7

This is the state-space representation. The alternative
Volterra formulation represents the output as a non-
linear convolution of the input, critically without refer-
ence to the state variables (see Bendat, 1990). This series
can be considered a non-linear convolution that obtains
from a functional Taylor expansion of the response or
outputs. The reason this is a functional expansion is that
the inputs are a function of time. This means the coeffi-
cients of the expansion are also functions of time. These
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are the system’s generalized kernels; for a single input
this expansion can be expressed as:

y�t� = h���u�

= �0 +
�∑

i=1

�∫
0


 
 


�∫
0

�i��1� 
 
 
 �i�u�t −�1�
 
 


u�t −�i�d�1
 
 
 d�i 34.8

�i��1� 
 
 
 �i� = iy�t�

u�t −�1�
 
 
 u�t −�i�

where �i��1� 
 
 
 �i� is the i-th generalized convolution
kernel (Fliess et al., 1983). Eqn. 34.8 expresses the out-
put as a function of the input and the parameters whose
posterior distribution we require. In other words, the ker-
nels represent a re-parameterization of the system. The
kernels are a time-invariant characterization of the input-
output behaviour of the system and can be thought of
as generalized high-order convolution kernels that are
applied to a stimulus function to produce the observed
BOLD response. Integrating Eqn. 34.7 and applying the
output non-linearity to the state variables is the same as
convolving the inputs with the kernels as in Eqn. 34.8.
Both give the system’s response in terms of the output.
In what follows, the response is evaluated by integrating
Eqn. 34.7. This means the kernels are not required. How-
ever, the Volterra formulation is introduced for several
reasons. First, it demonstrates that the output is a non-
linear function of the inputs y�t� = h���u�. This is criti-
cal for the generality of the estimation scheme described
here. Secondly, it provides an important connection with
conventional analyses using general linear convolution
models (see below). Finally, we can use the kernels to
characterize evoked responses.

PRIORS

Bayesian inversion requires informative priors on the
parameters. Under Gaussian assumptions, these prior
densities can be specified in terms of their expectation
and covariance. These moments are taken here to be
the sample mean and covariance, over voxels, of the
parameter estimates reported in Friston et al. (2000). Nor-
mally, priors play a critical role in inference; indeed
the traditional criticism levelled at Bayesian inference
reduces to reservations about the validity of the priors
employed. However, in the application considered here,
this criticism can be discounted. This is because the
priors, on those parameters about which inferences are
made, are relatively flat. Only the five biophysical param-
eters have informative priors.

In Friston et al. (2000), the parameters were identi-
fied as those that minimized the sum of squared dif-
ferences between the Volterra kernels implied by the
parameters and those derived directly from the data. This
derivation used ordinary least square estimators, exploit-
ing the fact that Volterra formulation is linear in the
unknowns, namely the kernel coefficients. The kernels
can be thought of as a re-parameterization of the model
that does not refer to the underlying state representation.
In other words, for every set of parameters, there is a
corresponding set of kernels (see Friston et al., 2000 and
below for the derivation of the kernels as a function of
the parameters). The data and Volterra kernel estimation
are described in detail in Friston et al. (1998). In brief,
we obtained long fMRI time-series from a single subject
at 2 tesla and a short TR of 1.7 s. After discarding ini-
tial scans (to allow for magnetic saturation effects) each
time-series comprised 1200 volume images with 3 mm
isotropic voxels. The subject listened to monosyllabic or
bi-syllabic concrete nouns (i.e. ‘dog’, ‘radio’, ‘mountain’,
‘gate’) presented at five different rates (10, 15, 30, 60
and 90 words per minute) for epochs of 34 s, intercalated
with periods of rest. The presentation rates were repeated
according to a Latin Square design.

The distribution of the five biophysical parameters,
over 128 voxels, was computed to give our prior expec-
tation �� and covariance C�. Signal decay �s had a
mean of about 0.65 per second giving a half-life t1/2 =
ln 2/�s ≈ 1 s. Mean feedback rate �f was about 0.4 per
second. Mean transit time � was 0.98 s. Under steady
state conditions Grubb’s parameter � is about 0.38. The
mean over voxels was 0.326. Mean resting oxygen extrac-
tion E0 was about 34 per cent and the range observed
conformed exactly to known values for resting oxy-
gen extraction fraction (between 20 and 55 per cent).
Figure 34.2 shows the covariances among the biophys-
ical parameters along with the correlation matrix (left-
hand insert). The correlations suggest a high correlation
between transit time and the rate constants for signal
elimination and autoregulation.

The priors for the efficacies are taken to be rela-
tively flat with an expectation of zero and a variance
of 16 per second. Here, the efficacies are assumed to
be independent of the biophysical parameters with zero
covariance. A variance of 16, or standard deviation of 4,
corresponds to time constants in the range of 250 ms. In
other words, inputs can elicit flow-inducing signal over
a wide range of time constants from infinitely slowly to
very fast (250 ms) with about the same probability. A
‘strong’ activation usually has an efficacy of about 0.5 per
second. Notice that, from a dynamical perspective, a large
response depends upon the speed of the response not the
percentage change. Equipped with these priors we can
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FIGURE 34.2 Prior covariances for the five biophysical param-
eters of the haemodynamic model in Figure 34.1. Left panel: corre-
lation matrix showing the prior correlations among the biophysical
parameters in image format (white = 1). Right panel: corresponding
covariance matrix. These priors represent the sample covariances
of the parameters estimated by minimizing the difference between
the Volterra kernels implied by the parameters and those estimated
empirically, using ordinary least squares as described in Friston
et al. (2000).

now pursue a fully Bayesian approach to estimating the
parameters given any data and experimental inputs.

SYSTEM IDENTIFICATION

This section describes Bayesian inference procedures for
non-linear observation models, with additive noise, of
the form:

y = h���u�+� 34.9

under Gaussian assumptions about the errors �. These
models can be adopted for any analytic dynamical sys-
tem due to the existence of the equivalent Volterra series
expansion above. Assuming the posterior density of
the parameters is approximately Gaussian, the problem
reduces to finding its first two moments, the conditional
mean ���y and covariance C��y .

The observation model can be made linear by expand-
ing Eqn. 34.9 about a working estimate ���y of the condi-
tional mean:

h���u� ≈ h����y �+ J�� −���y �

J = h����y �

�

34.10

such that y −h����y � ≈ J�� −���y �+�, where � ∼ N�0�C��
is a Gaussian error term. The covariance of the errors is
hyperparameterized in terms of a mixture of covariance
components C� = ∑

�iQi where, usually, there is only
one component that encodes serial correlations among
the errors. This linear model can now be placed in the
EM scheme described in Chapter 22 (Figure 22.4) and
Appendix 3 to give an E-step that updates the conditional
density of the parameters, p�� �y ��� = N����y�C��y� and
an M-step that updates the ML (maximum likelihood)
estimate of the hyperparameters, �.

Until convergence {

E-step

J =h����y �

�

ȳ =
[
y −h����y�
�� −���y

]
� J̄ =

[
J
I

]
� C̄� =

[∑
�iQi 0
0 C�

]

C��y =�J̄ T C̄−1
� J̄ �−1 34.11

���y ←���y +C��yJ̄
T C̄−1

� ȳ

M-step

P =C̄−1
� − C̄−1

� J̄C��yJ̄
T C̄−1

�

F

�i

=− 1
2

tr�PQi�+ 1
2

ȳT PT QiPȳ

〈
2F

�2
ij

〉
=− 1

2
tr�PQiPQj�

� ←�−
〈
2F

�2

〉−1
F

�

}

This EM scheme is effectively a Gauss-Newton search
for the posterior mode or maximum a poseriori (MAP)
estimate of the parameters. The relationship between the
E-step and a conventional Gauss-Newton ascent can be
seen easily in terms of the derivatives of their respective
objective functions. For conventional Gauss-Newton this
function is the log-likelihood:

� = ln p�y���

= −1
2

�y −h����T C−1
� �y −h����+ 
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�

�
= JT C−1

� �y −h��ML��

−2�

�2
= JT C−1

� J

�ML ← �ML + �JT C−1
� J�−1JT C−1

� �y −h��ML�� 34.12

This is a conventional Gauss-Newton scheme. By simply
augmenting the log-likelihood with the log prior we get:

L = ln p�y��� = ln p�y���+ ln p���

= −1
2

�y −h����T C−1
� �y −h����

− 1
2

��� −��T C−1
� ��� −��+ 
 
 
 	

L

�
= JT C−1

� �y −h����y��+C−1
� ��� −���y� 34.13

−2L

�2
= JT C−1

� J +C−1
�

���y ← ���y + �JT C−1
� J +C−1

� �−1�JT C−1
� �y −h����y��

+C−1
� ��� −���y��

This is identical to the update for the conditional expec-
tation in the E-step.

In short, the only difference between the E-step and
a conventional Gauss-Newton ML search is that priors
are included in the objective function converting it from
log-likelihood into L = ln p�y��� = p���y�+p�y�, which is
proportional to the log-posterior. In the special context
of EM, L = ln p���y� is the same as the variational energy
optimized in variational Bayes (see Appendix 4).

The use of EM rests upon the need to find not only
the conditional mean but also the hyperparameters of
unknown variance components. The E-step finds the cur-
rent MAP estimate that provides the next expansion point
for the Gauss-Newton search and the conditional covari-
ance required by the M-step. The M-step then updates
the ReML (restricted maximum likelihood) estimates of
the covariance hyperparameters that are required to com-
pute the conditional moments in the E-step. Technically,
Eqn. 34.11 is a generalized EM (GEM) because the M-step
increases the log-likelihood of the hyperparameter esti-
mates, as opposed to maximizing it.

Relationship to other procedures

The procedure presented above represents a fairly obvi-
ous extension to conventional Gauss-Newton searches
for the parameters of non-linear observation models. The
extension has two components: first, maximization of
the posterior density that embodies priors, as opposed to
the likelihood. This allows for the incorporation of prior

information into the solution and ensures uniqueness
and convergence. Second, it covers the estimation of
unknown covariance components. This is important
because it accommodates unknown and non-spherical
errors. The overall approach furnishes a relatively simple
way of obtaining Bayes estimators for non-linear systems
with unknown additive observation error. Technically,
the algorithm represents a posterior mode analysis for non-
linear observation models using EM. It can be regarded
as approximating the posterior density of the parame-
ters by replacing the conditional mean with the mode
and the conditional precision with the curvature of the
energy (at the current expansion point). This is known as
the Laplace approximation. Covariance hyperparameters
are then estimated, which maximize the expected log-
likelihood of the data under this posterior density. This
quantity is known as the variational free energy in statis-
tical physics and is the quantity optimized in variational
Bayes. This is important from two perspectives. First, the
variational free energy is a lower bound approximation to
the marginal log-likelihood or log-evidence for a model
(e.g. model m; see Figure 34.2). The log-evidence plays a
central role in comparing different models, as we will see
in the next chapter. Second, the EM scheme above can be
considered a special case of variational Bayes, in which
one assumes the conditional density of the hyperparam-
eters is a point mass. This perspective is developed more
fully in Appendix 4.

Posterior mode estimation is an alternative to full pos-
terior density analysis, which avoids numerical integra-
tion (Fahrmeir and Tutz, 1994: 58) and has been discussed
extensively in the context of generalized linear models (e.g.
Santner and Duffy, 1989). The departure from Gaussian
assumptions in generalized linear models comes from
non-Gaussian likelihoods, as opposed to non-linearities
in the observation model considered here, but the issues
are similar. Posterior mode estimation usually assumes
the error covariances and priors are known. If the pri-
ors are unknown constants then empirical Bayes can be
employed to estimate the required hyperparameters.

It is important not to confuse this application of EM
with Kalman filtering. Although Kalman filtering can
be formulated in terms of EM and, indeed, posterior
mode estimation, Kalman filtering is used with com-
pletely different observation models – state-space models.
State-space models comprise a transition equation and
an observation equation (cf. the state equation and out-
put non-linearity above) and cover systems in which the
underlying state is hidden and is treated as a stochastic
variable. This is not the sort of model considered here, in
which the inputs (experimental design) and the ensuing
states are known. This means that the conditional densi-
ties can be computed for the entire time series simultane-
ously (Kalman filtering updates the conditional density
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recursively, by stepping through the time series). If we
treated the inputs as unknown and random, then the
state equation could be re-written as a stochastic differ-
ential equation (SDE) and a transition equation derived
from it, using local linearity assumptions (see Appendix 2
for details). This would form the basis of a state-space
model. This approach may be useful for accommodat-
ing deterministic noise in the haemodynamic model but,
in this treatment, we consider the inputs to be fixed.
This means that the only random effects enter at the
level of the observation or output non-linearity. In other
words, we are assuming that the measurement error in
fMRI is the principal source of random fluctuations in
our measurements and that the haemodynamic response
per se is determined by known inputs. This is the same
assumption used in conventional analyses of fMRI data.

A note on integration

To iterate the EM, the local gradients J = h/� have to
be evaluated. This involves evaluating h���u� around the
current expansion point with the generalized convolu-
tion of the inputs for the current conditional parameter
estimates according to Eqn. 34.8 or, equivalently, the inte-
gration of Eqn. 34.7. The latter can be accomplished effi-
ciently by capitalizing on the fact that stimulus functions
are usually sparse. In other words, inputs arrive as infre-
quent events (e.g. event-related paradigms) or changes in
input occur sporadically (e.g. boxcar designs). We can use
this to evaluate y�t� = h����y�u� at the times the data were
sampled using a bilinear approximation to Eqn. 34.7. The
Taylor expansion of ẋ�t� about x�0� = x0 = �0� 1� 1� 1�T :

ẋ ≈ f�x0� 0�+ f

X
�x−x0�

+∑
i

ui

(
2f

Xui

�x−x0�+ f

ui

)
34.14

has a bilinear form, following a change of variables
(equivalent to adding an extra state variable, which is a
contact term):

Ẋ�t� ≈ AX +∑
i

u�t�iBiX

X =
[

1
x

]

A =
[

0 0(
f�x0� 0�− f

x
x0

)
f

x

]
34.15

Bi =
[

0 0(
f

ui
− 2f

xui
X0

)
2f

xui

]

This bilinear approximation is important because the
Volterra kernels of bilinear systems have closed-form
expressions (see Appendix 2; Eqn. A2.8). This means that
the kernels can be derived analytically, and quickly, to
provide a characterization of the impulse response prop-
erties of the system. The integration of Eqn. 34.15 is pred-
icated on its solution over periods �t = tk+1 − tk within
which the inputs are constant:

X�tk+1� = exp�J�t�X�tk�

y�tk+1� = g�x�tk+1�� 34.16

J = A+∑
i

u�tk�iBi

This quasi-analytical integration scheme can be an order
of magnitude quicker than straightforward numerical
integration, depending on the sparsity of inputs.

Relation to conventional fMRI analyses

Note that, if we treated the five biophysical parameters
as known canonical values and discounted all but the
first order terms in the Volterra expansion, the following
linear model would result:

h�u��� = �0 +
n∑

i=1

t∫
0

�1���u�t −��id� =
n∑

i=1

�1 ∗u�t�i

≈ �0 +
n∑

i=1

�i

�1

�i

∗u�t�i

34.17

where * denotes convolution and the second expression
is a first-order Taylor expansion around the expected val-
ues of the parameters. This is exactly the same as the
general linear model adopted in conventional analysis of
fMRI time series, if we elect to use just one (canonical)
haemodynamic response function (HRF) to convolve our
stimulus functions with. In this context the HRF plays
the role of �1/�i in Eqn. 34.17. This partial derivative is
shown in Figure 34.3 (upper panel) using the prior expec-
tations of the parameters and conforms closely to the sort
of HRF used in practice. Now, by treating the efficacies
as fixed effects (i.e. with flat priors), the MAP and ML
estimators reduce to the same thing and the conditional
expectation reduces to the Gauss-Markov estimator:

�ML = �JT C−1
� J�−1JT C−1

� y 34.18

where J is the design matrix. This is precisely the esti-
mator used in conventional analyses when whitening
strategies are employed.
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∂εi

∂κ1(σ)

∂εi 
∂θj

∂2κ1(σ)

FIGURE 34.3 Partial derivatives of the kernels with respect
to parameters of the model evaluated at their prior expectation.
Upper panel: first-order partial derivative with respect to efficacy.
Lower panels: second-order partial derivatives with respect to effi-
cacy and the biophysical parameters. When expanding around the
prior expectations of the efficacies, the remaining first- and second-
order partial derivatives are zero.

Consider now the second-order Taylor approximation
that obtains when we do not know the exact values of the
biophysical parameters and they are treated as unknown:

h���u� ≈ �0 +
n∑

i=1

(
�i

�1

�i

∗u�t�i +
1
2

5∑
j=1

�i�j

2�1

�i�j

∗u�t�i

)

34.19

This expression is precisely the general linear model
proposed in Friston et al (1998) and implemented in
our software. In this instance, the explanatory variables
comprise the stimulus functions, each convolved with
a small temporal basis set corresponding to the canoni-
cal �1/�i and its partial derivatives with respect to the
biophysical parameters. Examples of these second-order

partial derivatives are provided in the lower panel of
Figure 34.3. The unknowns in this general linear model
are the efficacies �i and the interaction between the effi-
cacies and the biophysical parameters �i�j . Of course, the
problem with this linear approximation is that general-
ized least squares estimates of the unknown coefficients
� = �1� 
 
 
 � �1�1� 
 
 
 � �1�2� 
 
 
 are not constrained to fac-
torize into stimulus-specific efficacies �i and biophysical
parameters �j that are the same for all inputs. Only a
non-linear estimation procedure can do this.

In conventional linear models that use a temporal basis
set to model the response functions (e.g. a canonical
form and various derivatives), one obtains an ML or
generalized least squares estimate of [functions of] the
parameters in some subspace defined by the basis set.
Operationally, this is like specifying priors but of a very
particular form. This form can be thought of as uniform
priors on the space spanned by the basis set and zero
elsewhere. In this sense, basis functions implement hard
constraints that may not be very realistic but provide for
efficient estimation. The soft constraints implied by the
Gaussian priors in the EM approach are more plausible
but are computationally more expensive to implement.

Summary

This section has described a non-linear EM that can
be viewed as a Gauss-Newton search for the condi-
tional mode of the parameters of deterministic dynami-
cal system, with additive Gaussian noise. We have seen
that classical approaches to fMRI data analysis are spe-
cial cases that ensue when considering only first-order
kernels and adopting flat or uninformative priors. Put
another way, the scheme can be regarded as a gener-
alization of existing procedures that is extended in two
important ways. First, it uses a biologically informed gen-
eralized or non-linear convolution model and second, it
moves the estimation from a classical into a Bayesian
frame.

EMPIRICAL ILLUSTRATIONS

A single input model

In this, the first of the two examples, we revisit the origi-
nal data set on which the priors were based. This consti-
tutes a single-input study where the input corresponds
to the aural presentation of single words, at different
rates, over epochs. The data were subject to a conven-
tional event-related analysis, where the stimulus function
comprised trains of spikes indexing the presentation of
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each word. The stimulus function was convolved with
a canonical HRF and its temporal derivative. The data
were highpass filtered by removing low-frequency com-
ponents modelled by a discrete cosine set. The resulting
SPM{t}, testing for activations due to words, is shown
in Figure 34.4 (left-hand panel) thresholded at p = 0	05
(corrected).

A single region in the left superior temporal gyrus was
selected for analysis. The input comprised the same stim-
ulus function used in the conventional analysis and the
output was the first eigenvariate of highpass filtered time
series, of all voxels, within a 4 mm sphere, centred on
the most significant voxel in the SPM{t} (marked by an
arrow in Figure 34.4). The error covariance components
Q comprised an identity matrix modelling white or an
independent and identically distributed (IID) component
and a second with exponentially decaying off-diagonal

elements modelling an AR(1) component (see Friston
et al. (2002) and Chapter 10). This models serial correla-
tions among the errors. The results of the estimation pro-
cedure are shown in the right-hand panel in terms of the
conditional distribution of the parameters and the condi-
tional expectation of the first- and second-order kernels.
The kernels are a function of the parameters and their
derivation using a bilinear approximation is described
in Friston et al. (2000) and Appendix 2. The upper-right
panel shows the first-order kernels for the state variables
(signal, inflow, deoxyhaemoglobin content and volume).
These can be regarded as impulse response functions
detailing the response to a transient input. The first- and
second-order output kernels for the BOLD response are
shown in the lower-right panels. They concur with those
derived empirically in Friston et al. (2000). Note the char-
acteristic undershoot in the first-order kernel and the

fMRI study of single 
word processing at 
different rates

FIGURE 34.4 An SISO example: Left panel: conventional SPM{t} testing for an activating effect of word presentation. The arrow shows
the centre of the region (a sphere of 4 mm radius) whose response entered into the Bayesian inversion. The results for this region are shown in
the right-hand panel in terms of the conditional distribution of the parameters and the conditional expectation of the first- and second-order
kernels. The upper-right panel shows the first-order kernels for the state variables (signal, inflow, deoxyhaemoglobin content and volume).
The first- and second-order output kernels for the BOLD response are shown in the lower-right panels. The left-hand panels show the
conditional or posterior distributions. The conditional density for efficacy is presented in the upper panel and those for the five biophysical
parameters in the lower panel. The shading corresponds to the probability density and the bars to 90 per cent confidence intervals.
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pronounced negativity in the upper left of the second-
order kernel, flanked by two off-diagonal positive regions
at around 8 s. These lend the haemodynamics a degree of
refractoriness when presenting paired stimuli less than
a few seconds apart and a superadditive response with
about 8 s separation. The left-hand panels show the con-
ditional or posterior distributions. The density for the
efficacy is presented in the upper panel and those for
the five biophysical parameters are shown in the lower
panel. The shading corresponds to the probability den-
sity and the bars to 90 per cent confidence intervals. The
values of the biophysical parameters are all within a very
acceptable range. In this example, the signal elimination
and decay appears to be slower than normally encoun-
tered, with the rate constants being significantly larger
than their prior expectations. Grubb’s exponent here is
closer to the steady state value of 0.38 than the prior
expectation of 0.32. Of greater interest is the efficacy. It
can be seen that the efficacy lies between 0.4 and 0.6 and
is clearly greater than zero. This would be expected given
we chose the most significant voxel from the conven-
tional analysis. Notice there is no null hypothesis here
and we do not even need a p-value to make the inference
that words evoke a response in this region. An important
facility, with inferences based on the conditional distri-
bution and precluded in classical analyses, is that one
can infer a cause did not elicit a response. This is demon-
strated next.

A multiple input model

In this example, we turn to a data set used in previous
sections, in which there are three experimental causes or
inputs. This was a study of attention to visual motion.
Subjects were studied with fMRI under identical stimulus
conditions (visual motion subtended by radially moving
dots) while manipulating the attentional component of
the task (detection of velocity changes). The data were
acquired from normal subjects at 2 tesla using a VISION
(Siemens, Erlangen) whole body MRI system, equipped
with a head volume coil. Here we analyse data from
the first subject. Contiguous multislice fMRI images were
obtained with a gradient echo-planar sequence (TE =
40 ms, TR = 3	22 s, matrix size = 64 × 64 × 32, voxel size
3×3×3 mm). Each subject had four consecutive 100-scan
sessions comprising a series of 10-scan blocks under five
different conditions D F A F N F A F N S. The first con-
dition (D) was a dummy condition to allow for magnetic
saturation effects. F (Fixation) corresponds to a low-level
baseline where the subjects viewed a fixation point at the
centre of a screen. In condition A (Attention), subjects
viewed 250 dots moving radially from the centre at 4.7

degrees per second and were asked to detect changes in
radial velocity. In condition N (No-attention), the subjects
were asked simply to view the moving dots. In condition
S (Stationary), subjects viewed stationary dots. The order
of A and N was swapped for the last two sessions. In
all conditions, subjects fixated the centre of the screen.
In a pre-scanning session the subjects were given five
trials with five speed changes (reducing to 1 per cent).
During scanning there were no speed changes. No overt
response was required in any condition.

This design can be reformulated in terms of three
potential causes, photic stimulation, visual motion and
directed attention. The F-epochs have no associated cause
and represent a baseline. The S-epochs have just photic
stimulation. The N-epochs have both photic stimulation
and motion, whereas the A-epochs encompass all three
causes. We performed a conventional analysis using box-
car stimulus functions encoding the presence or absence
of each of the three causes, during each epoch. These
functions were convolved with a canonical HRF and its
temporal derivative to give two repressors for each cause.
The corresponding design matrix is shown in the left
panel of Figure 34.5. We selected a region that showed
a significant attentional effect in the lingual gyrus. The
stimulus functions modelling the three inputs were the
box functions used in the conventional analysis. The out-
put corresponded to the first eigenvariate of highpass
filtered time-series from all voxels in a 4 mm sphere cen-
tred on 0, −66, −3 mm (Talairach and Tournoux, 1988).
The error covariance basis was the identity matrix (i.e.
ignoring serial correlations because of the relatively long
TR). The results are shown in the right-hand panel of
Figure 34.5 using the same format as Figure 34.4. The
critical thing here is that there are three conditional den-
sities, one for each input efficacy. Attention has a clear
activating effect with more than a 90 per cent probabil-
ity of being greater than 0.25 per second. However, in
this region neither photic stimulation nor motion in the
visual field evokes any real response. The efficacies of
both are less than 0.1 and are centred on zero. This means
that the time constants of the visually evoked response
could range from about 10 s to never. Consequently, these
causes can be discounted from a dynamical perspec-
tive. In short, this visually unresponsive area responds
substantially to attentional manipulation showing a true
functional selectivity. This is a crucial statement because
classical inference does not allow one to infer any region
does not respond and therefore precludes inference about
the specificity of regional responses. The only reason one
can say ‘this region responds selectively to attention’ is
because Bayesian inference allows one to say ‘it does
not response to photic stimulation with random dots or
motion’.
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Extension to MISO

fMRI study of attention 
to visual motion

Design matrix

Photic  motion  attention

{ { {

FIGURE 34.5 A MISO example using visual attention to motion. The left panel shows the design matrix used in the conventional
analysis and the right panel shows the results of the Bayesian analysis of a lingual extrastriate region. This panel has the same format as
Figure 34.4.

CONCLUSION

In this chapter, we have looked at an EM implemen-
tation of the Gauss-Newton method for estimating the
conditional or posterior distribution of the parameters
of a deterministic dynamical system. The inclusion of
priors in the estimation procedure ensures robust and
rapid convergence and the resulting conditional densities
enable Bayesian inference about the model’s parame-
ters. We have examined the coupling between experi-
mentally designed causes or factors in fMRI studies and
the ensuing BOLD response. This application represents
a generalization of existing linear models to accommo-
date dynamics and non-linearities in the transduction
of experimental causes to measured output in fMRI.
Because the model is predicated on biophysical processes
the parameters have a physical interpretation. Further-
more, the approach extends classical inference about the
likelihood of the data to more plausible inferences about
the parameters of the model given the data. This infer-
ence provides confidence intervals based on the condi-
tional density.

Perhaps the most important extension of the scheme
described in this chapter is to MIMO systems where we
deal with multiple regions or voxels at the same time. The
importance of this extension is that one can incorporate
interactions among brain regions at the neuronal level.
This furnishes a framework for the dynamic causal mod-
elling of functional integration in the brain (see Chap-
ters 41 and 42). This chapter focused on inference on
the space of parameters. In the next chapter, we look at
inference on the space of models.
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C H A P T E R

35

Bayesian model selection and averaging
W.D. Penny, J. Mattout and N. Trujillo-Barreto

INTRODUCTION

In Chapter 11, we described how Bayesian inference can
be applied to hierarchical models. In this chapter, we
show how the members of a model class, indexed by
m, can also be considered as part of a hierarchy. Model
classes might be general linear models (GLMs) where m
indexes different choices for the design matrix, dynamic
causal models (DCMs) where m indexes connectivity or
input patterns, or source reconstruction models where m
indexes functional or anatomical constraints. Explicitly
including model structure in this way will allow us to
make inferences about that structure.

Figure 35.1 shows the generative model we have in
mind. First, a member of the model class is chosen.
Then model parameters � and finally the data y are gen-
erated. Bayesian inference for hierarchical models can
be implemented using the belief propagation algorithm.
Figure 35.2 shows how this can be applied for model
selection and averaging. It comprises three stages that
we will refer to as: (i) conditional parameter inference;
(ii) model inference; and (iii) model averaging. These
stages can be implemented using the equations shown in
Figure 35.2.

Conditional parameter inference is based on Bayes’
rule whereby, after observing data y, prior beliefs about
model parameters are updated to posterior beliefs. This
update requires the likelihood p�y���m�. It allows one to
compute the density p���y�m�. The term conditional is
used to highlight the fact that these inferences are based
on model m. Of course, being a posterior density, it is
also conditional on the data y.

Model inference is based on Bayes’ rule whereby, after
observing data y, prior beliefs about model structure
are updated to posterior beliefs. This update requires
the evidence p�y�m�. Model selection is then imple-
mented by picking the model that maximizes the pos-

terior probability p�m�y�. If the model priors p�m� are
uniform then this is equivalent to picking the model
with the highest evidence. Pairwise model compar-
isons are based on Bayes factors, which are ratios of
evidences.

Model averaging, as depicted in Figure 35.2, also
allows for inferences to be made about parameters. But
these inferences are based on the distribution p���y�,
rather than p���y�m�, and so are free from assumptions
about model structure.

FIGURE 35.1 Hierarchical generative model in which mem-
bers of a model class, indexed by m, are considered as part
of the hierarchy. Typically, m indexes the structure of the
model. This might be the connectivity pattern in a dynamic
causal model or set of anatomical or functional constraints in
a source reconstruction model. Once a model has been chosen
from the distribution p�m�, its parameters are generated from the
parameter prior p���m� and finally data are generated from the
likelihood p�y���m�.

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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FIGURE 35.2 Figure 11.5 in Chap-
ter 11 describes the belief propaga-
tion algorithm for implementing Bayesian
inference in hierarchical models. This
figure shows a special case of belief propa-
gation for Bayesian model selection (BMS)
and Bayesian model averaging (BMA).
In BMS, the posterior model probability
p�m�y�, is used to select a single ‘best’
model. In BMA, inferences are based on
all models and p�m�y� is used as a weight-
ing factor. Only in BMA, are parameter
inferences based on the correct marginal
density p���y�.

This chapter comprises theoretical and empirical
sections. In the theory sections, we describe (i) condi-
tional parameter inference for linear and non-linear mod-
els, (ii) model inference, including a review of three
different ways to approximate model evidence and pair-
wise model comparisons based on Bayes factors and
(iii) model averaging, with a focus on how to search
the model space using ‘Occam’s window’. The empiri-
cal sections show how these principles can be applied to
DCMs and source reconstruction models. We finish with
a discussion.

Notation

We use upper-case letters to denote matrices
and lower-case to denote vectors. N�m��� denotes
a uni/multivariate Gaussian with mean m and
variance/covariance �. IK denotes the K × K identity
matrix, 1K is a 1 ×K vector of ones, 0K is a 1 ×K vector
of zeroes. If X is a matrix, Xij denotes the i� jth element,
XT denotes the matrix transpose and vec�X� returns a
column vector comprising its columns, diag�x� returns a
diagonal matrix with leading diagonal elements given by
the vector x�⊗ denotes the Kronecker product and log x
denotes the natural logarithm.

CONDITIONAL PARAMETER
INFERENCE

Readers requiring a more basic introduction to Bayesian
modelling are referred to Gelman et al. (1995) and
Chapter 11.

Linear models

For linear models:

y = X� + e 35.1

with data y, parameters �, Gaussian errors e and design
matrix X, the likelihood can be written:

p�y���m� = N�X��Ce� 35.2

where Ce is the error covariance matrix. If our prior
beliefs can be specified using the Gaussian distribution:

p���m� = N��p�Cp� 35.3

where �p is the prior mean and Cp is the prior covariance,
then the posterior distribution is (Lee, 1997):

p���y�m� = N���C� 35.4

where

C−1 = XT C−1
e X +C−1

p 35.5

� = C�XT C−1
e y +C−1

p �p�

As in Chapter 11, it is often useful to refer to precision
matrices, C−1, rather than covariance matrices, C. This
is because the posterior precision, C−1, is equal to the
sum of the prior precision, C−1

p , plus the data precision,
XT C−1

e X. The posterior mean, �, is given by the sum of
the prior mean plus the data mean, but where each is
weighted according to their relative precision. This linear
Gaussian framework is used for the source reconstruction
methods described later in the chapter. Here X is the
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lead-field matrix which transforms measurements from
source space to sensor space (Baillet et al., 2001).

Our model assumptions, m, are typically embodied
in different choices for the design or prior covariance
matrices. These allow for the specification of GLMs with
different regressors or different covariance components.

Variance components

Bayesian estimation, as described in the previous section,
assumed that we knew the prior covariance, Cp, and
error covariance, Ce. This information is, however, rarely
available. In Friston et al. (2002) these covariances are
expressed as:

Cp =∑
i

�iQi 35.6

Ce =∑
j

�jQj

where Qi and Qj are known as ‘covariance components’
and �i��j are hyperparameters. Chapter 24 and Friston
et al. (2002) show how these hyperparameters can be
estimated using parametric empirical Bayes (PEB). It is
also possible to represent precision matrices, rather than
covariance matrices, using a linear expansion as shown
in Appendix 4.

Non-linear models

For non-linear models, we have:

y = h���+ e 35.7

where h��� is a non-linear function of parameter vector �.
We assume Gaussian prior and likelihood distributions:

p���m� = N��p�Cp� 35.8

p�y���m� = N�h����Ce�

where m indexes model structure, �p is the prior mean,
Cp the prior covariance and Ce is the error covariance.

The linear framework described in the previous section
can be applied by locally linearizing the non-linearity,
about a ‘current’ estimate �i, using a first order Taylor
series expansion:

h��� = h��i�+ 	h��i�

	�
�� −�i� 35.9

Substituting this into Eqn. 35.7 and defining r ≡
y −h��i�� J ≡ 	h��i�

	�
and 
� ≡ � −�i gives

r = J
� + e 35.10

which now conforms to a GLM (cf. Eqn. 35.1). The ‘prior’
(based on starting estimate �i), likelihood and posterior
are now given by:

p�
��m� = N��p −�i�Cp� 35.11

p�r�
��m� = N�J
��Ce�

p�
��r�m� = N�
��Ci+1�

The quantities 
� and Ci+1 can be found using the result
for the linear case (substitute r for y and J for X in
Eqn. 35.5). If we define our ‘new’ parameter estimate as
�i+1 = �i +
� then:

C−1
i+1 = JT C−1

e J +C−1
p 35.12

�i+1 = �i +Ci+1�J
T C−1

e r +C−1
p ��p −�i��

This update is applied iteratively, in that the estimate
�i+1 becomes the starting point for a new Taylor series
expansion. It can also be combined with hyperparameter
estimates, to characterize Cp and Ce, as described in
Friston (2002). This then corresponds to the PEB algo-
rithm described in Chapter 22. This algorithm is used,
for example, to estimate parameters of dynamic causal
models. For DCM, the non-linearity h��� corresponds to
the integration of a dynamic system.

As described, in Chapter 24, this PEB algorithm is
a special case of variational Bayes with a fixed-form
full-covariance Gaussian ensemble. When the algorithm
has converged, it provides an estimate of the posterior
density:

p���y�m� = N��PEB�CPEB� 35.13

which can then be used for parameter inference and
model selection.

The above algorithm can also be viewed as the E-
step of an expectation maximization (EM) algorithm,
described in section 3.1 of Friston (2002) and Appendix 3.
The M-step of this algorithm, which we have not
described, updates the hyperparameters. This E-step can
also be viewed as a Gauss-Newton optimization whereby
parameter estimates are updated in the direction of the
gradient of the log-posterior by an amount proportional
to its curvature (see e.g. Press et al., 1992).

MODEL INFERENCE

Given a particular model class, we let the variable m index
members of that class. Model classes might be GLMs where
m indexes design matrices, DCMs where m indexes con-
nectivity or input patterns, or source reconstruction mod-
els where m indexes functional or anatomical constraints.
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Explicitly including model structure in this way will
allow us to make inferences about model structure.

We may, for example, have prior beliefs p�m�. In the
abscence of any genuine prior information here, a uni-
form distribution will suffice. We can then use Bayes’
rule which, in light of observed data y, will update these
model priors into model posteriors:

p�m�y� = p�y�m�p�m�

p�y�
35.14

Model inference can then proceed based on this distri-
bution. This will allow for Bayesian model comparisons
(BMCs). In Bayesian model selection (BMS), a model is
selected which maximizes this probability:

mMP = argmax
m

�p�m�y��

If the prior is uniform, p�m� = 1/M then this is equivalent
to picking the model with the highest evidence:

mME = argmax
m

�p�y�m��

If we have uniform priors then BMC can be implemented
with Bayes factors. Before covering this in more detail,
we emphasize that all of these model inferences require
computation of the model evidence. This is given by:

p�y�m� =
∫

p�y���m�p���m�d� 35.15

The model evidence is simply the normalization term
from parameter inference, as shown in Figure 35.2. This
is the ‘message’ that is passed up the hierachy during
belief propagation, as shown in Figure 35.2. For linear
Gaussian models, the evidence can be expressed analyt-
ically. For non-linear models there are various approxi-
mations which are discussed in later subsections.

Bayes factors

Given models m = i and m = j, the Bayes factor compar-
ing model i to model j is defined as (Kass and Raftery,
1993, 1995):

Bij = p�y�m = i�

p�y�m = j�

where p�y�m = j� is the evidence for model j. When Bij > 1,
the data favour model i over model j, and when Bij < 1,
the data favour model j. If there are more than two mod-
els to compare then we choose one of them as a reference
model and calculate Bayes factors relative to that refer-
ence. When model i is an alternative model and model j a

null model, Bij is the likelihood ratio upon which classical
statistics are based (see Appendix 1).

A classic example here is the analysis of vari-
ance for factorially designed experiments, described in
Chapter 13. To see if there is a main effect of a factor,
one compares two models in which the levels of the fac-
tor are described by (i) a single variable or (ii) separate
variables. Evidence in favour of model (ii) allows one to
infer that there is a main effect.

In this chapter, we will use Bayes factors to compare
dynamic causal models. In these applications, often the
most important inference is on model space. For exam-
ple, whether or not experimental effects are mediated by
changes in feedforward or feedback pathways. This par-
ticular topic is dealt with in greater detail in Chapter 43.

The Bayes factor is a summary of the evidence
provided by the data in favour of one scientific theory,
represented by a statistical model, as opposed to another.
Raftery (1995) presents an interpretation of Bayes factors,
shown in Table 35-1. Jefferys (1935) presents a similar
grading for the comparison of scientific theories. These
partitionings are somewhat arbitrary but do provide
descriptive statements.

Table 35-1 also shows the equivalent posterior proba-
bility of hypothesis i:

p�m = i�y� = p�y�m = i�p�m = i�

p�y�m = i�p�m = i�+p�y�m = j�p�m = j�
35.16

assuming equal model priors p�m = i� = p�m = j� = 05.
If we define the ‘prior odds ratio’ as p�m = i�/p�m = j�

and the ‘posterior odds ratio’ as:

Oij = p�m = i�y�

p�m = j�y�
35.17

then the posterior odds are given by the prior odds mul-
tiplied by the Bayes factor. For prior odds of unity the
posterior odds are therefore equal to the Bayes factor.
Here, a Bayes factor of Bij = 100, for example, corresponds
to odds of 100-to-1. In betting shop parlance this is 100-
to-1 ‘on’. A value of Bij = 001 is 100-to-1 ’against’.

TABLE 35-1 Interpretation of Bayes factors. Bayes factors
can be interpreted as follows. Given candidate hypotheses i and
j, a Bayes factor of 20 corresponds to a belief of 95 per cent in
the statement ‘hypothesis i is true’. This corresponds to strong

evidence in favour of i.

Bij p�m = i�y��%� Evidence in favour of model i

1 to 3 50–75 Weak
3 to 20 75–95 Positive
20 to 150 95–99 Strong
≥ 150 ≥ 99 Very strong
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Bayes factors in Bayesian statistics play a similar role
to p-values in classical statistics. In Raftery (1995), how-
ever, Raftery argues that p-values can give misleading
results, especially in large samples. The background to
this assertion is that Fisher originally suggested the use of
significance levels (the p-values beyond which a result is
deemed significant) � = 005 or 0.01 based on his experi-
ence with small agricultural experiments having between
30 and 200 data points. Subsequent advice, notably from
Neyman and Pearson, was that power and significance
should be balanced when choosing �. This essentially
corresponds to reducing � for large samples (but they did
not say how � should be reduced). Bayes factors provide
a principled way to do this.

The relation between p-values and Bayes factors is well
illustrated by the following example (Raftery, 1995). For
linear regression models, one can use Bayes factors or
p-values to decide whether to include an extra regressor.
For a sample size of Ns = 50, positive evidence in favour
of inclusion (say, B12 = 3) corresponds to a p-value of
0.019. For Ns = 100 and 1000 the corresponding p-values
reduce to 0.01 and 0.003. If one wishes to decide whether
to include multiple extra regressors the corresponding
p-values drop more quickly.

Importantly, unlike p-values, Bayes factors can be used
to compare models that cannot be nested.1 This provides
an optimal inference framework that can, for example, be
applied to determine which haemodynamic basis func-
tions are appropriate for functional magnetic resonance
imaging (fMRI) (Penny et al., 2006). They also allow one
to quantify evidence in favour of a null hypothesis.

Computing the model evidence

This section shows how the model evidence can be com-
puted for non-linear models. The evidence for linear
models is then given as a special case. The prior and
likelihood of the non-linear model can be expanded as:

p���m� = �2��−p/2�Cp�−1/2 exp�−1
2

e���T C−1
p e���� 35.18

p�y���m� = �2��−Ns/2�Ce�−1/2 exp�−1
2

r���T C−1
e r����

where

e��� = � −�p 35.19

r��� = y −h���

are the ‘parameter errors’ and ‘prediction errors’.

1 Model selection using classical inference requires nested
models. Inference is made using step-down procedures and the
‘extra sum of squares’ principle, as described in Chapter 8.

Substituting these expressions into Eqn. 35 and
rearranging allows the evidence to be expressed as:

p�y�m� = �2��−p/2�Cp�−1/2�2��−Ns/2�Ce�−1/2I��� 35.20

where

I��� =
∫

exp�−1
2

r���T C−1
e r���− 1

2
e���T C−1

p e����d� 35.21

For linear models this integral can be expressed analyti-
cally. For non-linear models, it can be estimated using a
Laplace approximation.

Laplace approximation

The Laplace approximation was introduced in
Chapter 24. It makes use of the first order Taylor series
approximation referred to in Eqn. 35.9, but this time
placed around the solution, �L, found by an optimization
algorithm.

Usually, the term ‘Laplace approximation’ refers to
an expansion around the maximum a posteriori (MAP)
solution:

�MAP = argmax
�

�p�y���m�p���m�� 35.22

Thus �L = �MAP .
But, more generally, one can make an expansion

around any solution, for example the one provided by
PEB. In this case �L = �PEB. As we have described in
Chapter 24, PEB is a special case of VB with a fixed-
form Gaussian ensemble, and so does not deliver the
MAP solution. Rather, PEB maximizes the negative free
energy and so implicitly minimizes the Kullback-Liebler
(KL)-divergence between the true posterior and a full-
covariance Gaussian approximation to it. This difference
is discussed in Chapter 24.

Whatever the expansion point, the model non-linearity
is approximated using:

h��� = h��L�+ J�� −�L� 35.23

where J = 	h��L�
	�

. We also make use of the knowledge that
the posterior covariance is given by:

C−1
L = JT C−1

e J +C−1
p 35.24

For CL = CPEB this follows directly from Eqn. 35.12.
By using the substitutions e��� = ��−�L�+ ��L −�p� and

r��� = �y−h��L��+�h��L�−h����, making use of the above
two expressions, and removing terms not dependent on
�, we can write:

I��� =
[∫

exp�−1
2

�� −�L�T C−1
L �� −�L��d�

]
35.25

×
[

exp�−1
2

r��L�T C−1
e r��L�− 1

2
e��L�T C−1

p e��L��

]

35.26
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where the first factor is the normalizing term of the mul-
tivariate Gaussian density. The algebraic steps involved
in the above substitutions are detailed in Stephan et al.
(2005). Hence:

I��� = �2��p/2�CL�1/2 exp
(

−1
2

r��L�T C−1
e r��L � 35.27

− 1
2

e��L�T C−1
p e��L�

)

Substituting this expression into Eqn. 35.20 and taking
logs gives the Laplace approximation to the log-evidence:

log p�y�m�L = −Ns

2
log 2� − 1

2
log �Ce�−

1
2

log �Cp� 35.28

+ 1
2

log �CL�−
1
2

r��L�T C−1
e r��L�

− 1
2

e��L�T C−1
p e��L�

When comparing the evidence for different models, we
can ignore the first term as it will be the same for all
models. Dropping the first term and rearranging gives:

log p�y�m�L = Accuracy�m�−Complexity�m� 35.29

where

Accuracy�m� = −1
2

log �Ce�−
1
2

r��L�T C−1
e r��L� 35.30

Complexity�m� = 1
2

log �Cp�−
1
2

log �CL�+
1
2

e��L�T C−1
p e��L�

Use of base-e or base-2 logarithms leads to the log-
evidence being measured in ‘nats’ or ‘bits’ respectively.
Models with high evidence optimally trade-off two con-
flicting requirements of a good model, that it fit the data
and be as simple as possible.

The complexity term depends on the prior covari-
ance, Cp, which determines the ‘cost’ of parameters. This
dependence is worrisome if the prior covariances are
fixed a priori, as the parameter cost will also be fixed
a priori. This will lead to biases in the resulting model
comparisons. For example, if the prior (co)variances are
set to large values, model comparison will consistently
favour models that are less complex than the true model.

In DCM for fMRI (Friston et al., 2003), prior variances
are set to fixed values so as to enforce dynamic stability,
with high probability. Use of the Laplace approximation in
this context could therefore lead to biases in model com-
parison. A second issue in this context is that, to enforce
dynamic stability, models with different numbers of con-
nections will employ different prior variances. There-
fore the priors change from model to model. This means
that model comparison entails a comparison of the priors.

To overcome these potential problems with DCM for
fMRI, alternative approximations to the model evidence
are used instead. These are the Bayesian information cri-
terion (BIC) and Akaike information criterion (AIC) intro-
duced below. They also use fixed parameter costs, but
they are fixed between models and are different for BIC
than AIC. It is suggested in Penny et al. (2004) that, if
the two measures provide consistent evidence, a model
selection can be made.

Finally, we note that, if prior covariances are estimated
from data, then the parameter cost will also have been
estimated from data, and this source of bias in model
comparison is removed. In this case, the model evi-
dence also includes terms which account for uncertainty
in the variance component estimation, as described in
Chapter 10 of Bishop (1995).

Bayesian information criterion

An alternative approximation to the model evidence is
given by the Bayesian information criterion (Schwarz,
1978). This is a special case of the Laplace approximation
which drops all terms that do not scale with the number
of data points, and can be derived as follows.

Substituting Eqn. 35.27 into Eqn. 35.20 gives:

p�y�m�L = p�y��L�m�p��L�m��2��p/2�CL�1/2 35.31

Taking logs gives:

log p�y�m�L = log p�y��L�m�+ log p��L�m�

+ p

2
log 2� + 1

2
log �CL� 35.32

The dependence of the first three terms on the number
of data points is O�Ns��O�1� and O�1�. For the 4th term,
entries in the posterior covariance scale linearly with N−1

s :

lim
Ns→�

1
2

log �CL� = 1
2

log �CL�0�

Ns

� 35.33

= −p

2
log Ns +

1
2

log �CL�0��

where CL�0� is the posterior covariance based on Ns = 0
data points (i.e. the prior covariance). This last term there-
fore scales as O�1�. Schwarz (1978) notes that in the limit
of large Ns, Eqn. 35.32 therefore reduces to:

BIC = lim
Ns→�

log p�y�m�L 35.34

= log p�y��L�m�− p

2
log Ns

This can be re-written as:

BIC = Accuracy�m�− p

2
log Ns 35.35
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where p is the number of parameters in the model. In
BIC, the cost of a parameter, −05 log Ns bits, therefore
reduces with an increasing number of data points.

Akaike’s information criterion

The second criterion we use is Akaike’s information cri-
terion (AIC)2 (Akaike, 1973). AIC is maximized when the
approximating likelihood of a novel data point is clos-
est to the true likelihood, as measured by the Kullback-
Liebler divergence (this is shown in Ripley (1995)). The
AIC is given by:

AIC = Accuracy�m�−p 35.36

Though not originally motivated from a Bayesian per-
spective, model comparisons based on AIC are asymp-
totically equivalent (i.e. as Ns → �) to those based on
Bayes factors (Akaike, 1983), i.e. AIC approximates the
model evidence.

Empirically, BIC is biased towards simple models and
AIC to complex models (Kass and Raftery, 1993). Indeed,
inspection of Eqns 35.35 and 35.36 shows that for values
appropriate for, e.g. DCM for fMRI, where p ≈ 10 and
Ns ≈ 200, BIC pays a heavier parameter penalty than AIC.

MODEL AVERAGING

The parameter inferences referred to in previous sections
are based on the distribution p���y�m�. That m appears as
a dependent variable, makes it explicit that these infer-
ences are contingent on assumptions about model struc-
ture. More generally, however, if inferences about model
parameters are paramount one would use a Bayesian
model averaging (BMA) approach. Here, inferences are
based on the distribution:

p���y� =∑
m

p���y�m�p�m�y� 35.37

where p�m�y� is the posterior probability of model m.

p�m�y� = p�y�m�p�m�

p�y�
35.38

As shown in Figure 35.2, only when these ‘messages’,
p�m�y�, have been passed back down the hierarchy is
belief propagation complete. Only then do we have the
true marginal density p���y�. Thus, BMA allows for cor-
rect Bayesian inferences, whereas what we have previ-
ously described as ‘parameter inferences’ are conditional

2 Strictly, AIC should be referred to as an information criterion.

on model structure. Of course, if our model space
comprises just one model there is no distribution.

BMA accounts for uncertainty in the model selec-
tion process, something which classical statistical analy-
sis neglects. By averaging over competing models, BMA
incorporates model uncertainty into conclusions about
parameters. BMA has been successfully applied to many
statistical model classes including linear regression, gen-
eralized linear models, and discrete graphical models, in
all cases improving predictive performance (see Hoeting
et al. 1999 for a review).3 In this chapter, we describe
the application of BMA to electroencephalography (EEG)
source reconstruction.

There are, however, several practical difficulties with
Eqn. 35.37 when the number of models and number of
variables in each model are large. In neuroimaging, mod-
els can have tens of thousands of parameters. This issue
has been widely treated in the literature (Draper, 1995),
and the general consensus has been to construct search
strategies to find a set of models that are ‘worth tak-
ing into account’. One of these strategies is to generate
a Markov chain to explore the model space and then
approximate Eqn. 35.37 using samples from the posterior
p�m�y� (Madigan and York, 1992). But this is computa-
tionally very expensive.

In this chapter, we will instead use the Occam’s
window procedure for nested models described in
Madigan and Raftery (1994). First, a model that is N0

times less likely a posteriori than the maximum posterior
model is removed (in this chapter we use N0 = 20). Sec-
ond, complex models with posterior probabilities smaller
than their simpler counterparts are also excluded. The
remaining models fall in Occam’s window. This leads to
the following approximation to the posterior density:

p���y� = ∑
m�C

p���y�m�p�m�y� 35.39

where the set C identifies ‘Occam’s window’. Models
falling in this window can be identified using the search
strategy defined in Madigan and Raftery (1994).

DYNAMIC CAUSAL MODELS

The term ‘causal’ in DCM arises because the brain is
treated as a deterministic dynamical system (see e.g.
section 1.1 in Friston et al. (2003) in which external inputs
cause changes in neuronal activity which, in turn, cause

3 Software is also available from http://www.research.att.
com/volinsky/bma.html.
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changes in the resulting fMRI, MEG or EEG signal. DCMs
for fMRI comprise a bilinear model for the neurodynam-
ics and an extended Balloon model (Buxton, 1998; Friston,
2002) for the haemodynamics. These are described in
detail in Chapter 41.

The effective connectivity in DCM is characterized by
a set of ‘intrinsic connections’ that specify which regions
are connected and whether these connections are unidi-
rectional or bidirectional. We also define a set of input
connections that specify which inputs are connected to
which regions, and a set of modulatory connections that
specify which intrinsic connections can be changed by
which inputs. The overall specification of input, intrinsic
and modulatory connectivity comprise our assumptions
about model structure. This, in turn, represents a sci-
entific hypothesis about the structure of the large-scale
neuronal network mediating the underlying cognitive
function. Examples of DCMs are shown in Figure 35.5.

Attention to visual motion

In previous work we have established that attention
modulates connectivity in a distributed system of cortical
regions that subtend visual motion processing (Buchel
and Friston, 1997; Friston and Buchel, 2000). These
findings were based on data acquired using the follow-
ing experimental paradigm. Subjects viewed a computer
screen which displayed either a fixation point, stationary
dots or dots moving radially outward at a fixed velocity.
For the purpose of our analysis we can consider three
experimental variables. The ‘photic stimulation’ variable
indicates when dots were on the screen, the ‘motion’
variable indicates that the dots were moving and the
‘attention’ variable indicates that the subject was attend-
ing to possible velocity changes. These are the three input
variables that we use in our DCM analyses and are shown
in Figure 35.3.

In this chapter, we model the activity in three regions
V1, V5 and superior parietal cortex (SPC). The original
360-scan time series were extracted from the data set of a
single subject using a local eigendecomposition and are
shown in Figure 35.4.

We initially set up three DCMs, each embodying dif-
ferent assumptions about how attention modulates con-
nections to V5. Model 1 assumes that attention modulates
the forward connection from V1 to V5, model 2 assumes
that attention modulates the backward connection from
SPC to V5 and model 3 assumes attention modulates
both connections. These models are shown in Figure 35.5.
Each model assumes that the effect of motion is to mod-
ulate the connection from V1 to V5 and uses the same
reciprocal hierarchical intrinsic connectivity.

FIGURE 35.3 The ‘photic’, ‘motion’ and ‘attention’ variables
used in the DCM analysis of the attention to visual motion data (see
Figures 35.4 and 35.5).

FIGURE 35.4 Attention data. fMRI time series (rough solid
lines) from regions V1, V5 and SPC and the corresponding estimates
from DCM model 1 (smooth solid lines).

We fitted the models and computed Bayes factors,
shown in Table 35-2. We did not use the Laplace approx-
imation to the model evidence, as DCM for fMRI uses
fixed prior variances which compound model compari-
son. Instead, we computed both AIC and BIC and made
an inference only if the two resulting Bayes factors were
consistent (Penny et al., 2004).

Table 35-2 shows that the data provide consistent evi-
dence in favour of the hypothesis embodied in model 1,
i.e. that attention modulates solely the forward connec-
tion from V1 to V5.

We now look more closely at the comparison of model
1 with model 2. The estimated connection strengths of
the attentional modulation were 0.23 for the forward
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FIGURE 35.5 Attention models. In all models, photic stimu-
lation enters V1 and the motion variable modulates the connection
from V1 to V5. Models 1, 2 and 3 have reciprocal and hierarchi-
cally organized intrinsic connectitivty. They differ in how attention
modulates the connectivity to V5, with model 1 assuming modu-
lation of the forward connection, model 2 assuming modulation of
the backward connection and model 3 assuming both. Solid arrows
indicate input and intrinsic connections and dotted lines indicate
modulatory connections.

TABLE 35-2 Attention data – comparing modulatory
connectivities. Bayes factors provide consistent evidence in

favour of the hypothesis embodied in model 1, that attention
modulates (solely) the bottom-up connection from V1 to V5.
Model 1 is preferred to models 2 and 3. Models 1 and 2 have

the same number of connections so AIC and BIC give
identical values

B12 B13 B32

AIC 356 281 127
BIC 356 1962 018

connection in model 1 and 0.55 for the backward con-
nection in model 2. This shows that attentional modu-
lation of the backward connection is stronger than the
forward connection. However, a breakdown of the Bayes
factor B12 in Table 35-3 shows that the reason model 1
is favoured over model 2 is because it is more accurate.
In particular, it predicts superior parietal cortex (SPC)

TABLE 35-3 Attention data. Breakdown of contributions to
the Bayes factor for model 1 versus model 2. The largest single

contribution to the Bayes factor is the increased model
accuracy in region SPC, where 8.38 fewer bits are required to

code the prediction errors. The overall Bayes factor B12 of
3.56 provides consistent evidence in favour of model 1

Source
Model 1 versus model 2
relative cost (bits)

Bayes factor
B12

V1 accuracy 732 001
V5 accuracy −077 170
SPC accuracy −838 33336

Complexity (AIC) 000 100
Complexity (BIC) 000 100

Overall (AIC) −183 356
Overall (BIC) −183 356

activity much more accurately. Thus, although model 2
does show a significant modulation of the SPC-V5 con-
nection, the required change in its prediction of SPC
activity is sufficient to compromise the overall fit of the
model. If we assume models 1 and 2 are equally likely
a priori then our posterior belief in model 1 is 0.78 (from
3.56/(3.56+1)). Thus, model 1 is the favoured model even
though the effect of attentional modulation is weaker.

This example makes an important point. Two models
can only be compared by computing the evidence for
each model. It is not sufficient to compare values of single
connections. This is because changing a single connection
changes overall network dynamics and each hypothesis
is assessed (in part) by how well it predicts the data,
and the relevant data are the activities in a distributed
network.

We now focus on model 3 that has both modulation of
forward and backward connections. First, we make a sta-
tistical inference to see if, within model 3, modulation of
the forward connection is larger than modulation of the
backward connection. For these data, the posterior distri-
bution of estimated parameters tells us that this is the case
with probability 0.75. This is a different sort of inference
to that made above. Instead of inferring which is more
likely, modulation of a forward or of a backward con-
nection, we are making an inference about which effect
is stronger when both are assumed present.

However, this inference is contingent on the
assumption that model 3 is a good model. It is based on
the density p���y�m = 3�. The Bayes factors in Table 35-
2, however, show that the data provide consistent evi-
dence in favour of the hypothesis embodied in model
1, that attention modulates only the forward connection.
Table 35-4 shows a breakdown of B13. Here the largest
contribution to the Bayes factor (somewhere between 2.72
and 18.97) is the increased parameter cost for model 3.
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TABLE 35-4 Attention data. Breakdown of contributions to
the Bayes factor for model 1 versus model 3. The largest single

contribution to the Bayes factor is the cost of coding the
parameters. The table indicates that both models are similarly
accurate but model 1 is more parsimonious. The overall Bayes

factor B13 provides consistent evidence in favour of the
(solely) bottom-up model

Source
Model 1 versus model 3
relative cost (bits)

Bayes factor
B13

V1 accuracy −001 101
V5 accuracy 002 099
SPC accuracy −005 104

Complexity (AIC) −144 272
Complexity (BIC) −425 1897

Overall (AIC) −149 281
Overall (BIC) −429 1962

The combined use of Bayes factors and DCM provides
us with a formal method for evaluating competing sci-
entific theories about the forms of large-scale neural net-
works and the changes in them that mediate perception
and cognition. These issues are pursued in Chapter 43
in which DCMs are compared so as to make inferences
about inter-hemispheric integration from fMRI data.

SOURCE RECONSTRUCTION

A comprehensive introduction to source reconstruction is
provided in Baillet et al. (2001). For more recent develop-
ments see Michel et al. (2004) and Chapters 28 to 30. The
aim of source reconstruction is to estimate sources, �,
from sensors, y, where:

y = X� + e 35.40

e is an error vector and X defines a lead-field matrix.
Distributed source solutions usually assume a Gaussian
prior for:

p��� = N��p�Cp� 35.41

Parameter inference for source reconstruction can then
be implemented as described in the section above on
linear models. Model inference can be implemented
using the expression in Eqn. 35.29. For the numerical
results in this chapter, we augmented this expression to
account for uncertainty in the estimation of the hyper-
parameters. The full expression for the log-evidence of
hyperparameterized models under the Laplace approx-
imation is described in Trujillo-Barreto et al. (2004) and
Appendix 4.

MULTIPLE CONSTRAINTS

This section considers source reconstruction with mul-
tiple constraints. This topic is covered in greater detail
and from a different perspective in Chapters 29 and 30.
The constraints are implemented using a decomposition
of the prior covariance into distinct components:

Cp =∑
i

�iQi 35.42

The first type of constraint is a smoothness constraint, Qsc,
based on the usual L2-norm. The second is an intrinsic
functional constraint, Qint, based on multivariate source
prelocalization (MSP) (Mattout et al., 2005). This pro-
vides an estimate, based on a multivariate characteriza-
tion of the M/EEG data themselves. Thirdly, we used
extrinsic functional constraints which were considered as
‘valid’, Qv

ext, or ‘invalid’, Qi
ext. These extrinsic constraints

are derived from other imaging modalities such as fMRI.
We used invalid constraints to test the robustness of the
source reconstructions.

To test the approach, we generated simulated sources
from the locations shown in Plate 49(a) (see colour plate
section). Temporal activity followed a half-period sine
function with a period of 30 ms. This activity was pro-
jected onto 130 virtual MEG sensors and Gaussian noise
was then added. Further details on the simulations are
given in Mattout et al. (2006).

We then reconstructed the sources using all combina-
tions of the various constraints. Plate 50 shows a sample
of source reconstructions. Table 35-5 shows the evidence
for each model which we computed using the Laplace

TABLE 35-5 Log-evidence of models with different
combinations of smoothness constraints, Qsc, intrinsic
constraints, Qint, valid, Qv

ext and invalid, Qi
ext, extrinsic

constraints

Log-evidence

1 constraint

Qsc 205.2
Qint 208.4
Qv

ext 215.6
Qi

ext 131.5

2 constraints

Qsc�Qint 207.4
Qsc�Qv

ext 214.1
Qsc�Qi

ext 204.9
Qint�Qv

ext 214.9
Qint�Qi

ext 207.4
Qv

ext�Qi
ext 213.2

3 constraints

Qsc�Qint�Qv
ext 211.5

Qsc�Qint�Qi
ext 207.2

Qsc�Qv
ext�Qi

ext 214.7
Qint�Qv

ext�Qi
ext 212.7

4 constraints Qsc�Qint�Qv
ext�Qi

ext 211.3
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TABLE 35-6 Bayes factors for models with and without
valid location priors, B21, and with and without invalid

location priors, B31. Valid location priors make the models
significantly better, whereas invalid location priors do not

make them significantly worse

Bayes factor

Model 1 Model 2 Model 3 B21 B31

Qsc Qsc�Qv
ext Qsc�Qi

ext 7047 0.8
Qint Qint�Qv

ext Qint�Qi
ext 655 0.4

Qsc�Qint Qsc�Qint�Qv
ext Qsc�Qint�Qi

ext 60 0.8

approximation (which is exact for these linear Gaussian
models). As expected, the model with the single valid
location prior had the highest evidence.

Further, any model which contains the valid location
prior has high evidence. The table also shows that any
model which contains both valid and invalid location
priors does not show a dramatic decrease in evidence,
compared to the same model without the invalid loca-
tion prior. These trends can be assessed more formally
by computing the relevant Bayes factors, as shown in
Table 35-6. This shows significantly enhanced evidence
in favour of models including valid location priors. It also
suggests that the smoothness and intrinsic location priors
can ameliorate the misleading effect of invalid priors.

MODEL AVERAGING

In this section, we consider source localizations with
anatomical constraints. A class of source reconstruction
models is defined where, for each model, activity is
assumed to derive from a particular anatomical ‘com-
partment’ or combination of compartments. Anatomical
compartments are defined by taking 71 brain regions,
obtained from a 3D segmentation of the probabilistic
MRI atlas (PMA) (Evans et al., 1993) shown in Plate 51.
These compartments preserve the hemispheric symme-
try of the brain, and include deep areas like thalamus,
basal ganglia and brainstem. Simple activations may be
localized to single compartments and more complex acti-
vations to combinations of compartments. These combi-
nations define a nested family of source reconstruction
models which can be searched using the Occam’s win-
dow approach described above.

The source space consists of a 3D-grid of points that
represent the possible generators of the EEG/MEG inside
the brain, while the measurement space is defined by
the array of sensors where the EEG/MEG is recorded.
We used a 4.25 mm grid spacing and different arrays of
electrodes/coils are placed in registration with the PMA.

The 3D-grid is further clipped by the grey matter, which
consists of all brain regions segmented and shown in
Plate 51.

Three arrays of sensors were used and are depicted in
Plate 52. For EEG simulations a first set of 19 electrodes
(EEG-19) from the 10/20 system is chosen. A second
configuration of 120 electrodes (EEG-120) is also used
in order to investigate the dependence of the results on
the number of sensors. Here, electrode positions were
determined by extending and refining the 10/20 system.
For MEG simulations, a dense array of 151 sensors were
used (MEG-151). The physical models constructed in this
way, allow us to compute the electric/magnetic lead field
matrices that relate the primary current density (PCD)
inside the head, to the voltage/magnetic field measured
at the sensors.

We now present the results of two simulation studies.
In the first study, two distributed sources were simulated.
One source was located in the right occipital pole, and
the other in the thalamus. This simulation is referred to
as ‘OPR+TH’. The spatial distribution of PCD (i.e. the
true � vector) was generated using two narrow Gaussian
functions of the same amplitude shown in Figure 35.6(a).

The temporal dynamics were specified using a linear
combination of sine functions with frequency compo-
nents evenly spaced in the alpha band (8–12 Hz). The
amplitude of the oscillation as a function of frequencies
is a narrow Gaussian peaked at 10 Hz. That is, activity is
given by:

j�t� =
N∑

i=1

exp�−8�fi −10�2� sin�2�fit� 35.43

where 8 ≤ fi ≤ 12 Hz. Here, fi is the frequency and t
denotes time. These same settings are then used for the
second simulation study, in which only the thalamic
(TH) source was used (see Figure 35.6(b)). This second

FIGURE 35.6 Spatial distributions of the simulated primary
current densities. (a) Simultaneous activation of two sources at
different depths: one in the right occipital pole and the other in
the thalamus (OPR+TH). (b) Simulation of a single source in the
thalamus (TH).
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simulation is referred to as ‘TH’. In both cases the mea-
surements were generated with a signal-to-noise ratio
(SNR) of 10.

The simulated data were then analysed using Bayesian
model averaging (BMA) in order to reconstruct the
sources. We searched through model space using the
Occam’s window approach described above. For com-
parison, we also applied the constrained low resolution
tomography (cLORETA) algorithm. This method con-
strains the solution to grey matter and again uses the
usual L2-norm. The cLORETA model is included in the
model class used for BMA, and corresponds to a model
comprising all 71 anatomical compartments.

The absolute values of the BMA and cLORETA solu-
tions for the OPR+TH example, and for the three arrays
of sensors used, are depicted in Figure 35.7. In all cases,
cLORETA is unable to recover the TH source and the
OPR source estimate is overly dispersed. For BMA,
the spatial localizations of both cortical and subcortical
sources are recovered with reasonable accuracy in all
cases. These results suggest that the EEG/MEG contains
enough information for estimating deep sources, even in
cases where such generators might be hidden by cortical
activations.

The reconstructed sources shown in Figure 35.8 for
the TH case show that cLORETA suffers from a ‘depth
biasing’ problem. That is, deep sources are misattributed
to superficial sources. This biasing is not due to mask-
ing effects, since no cortical source is present in this

FIGURE 35.7 3D reconstructions of the absolute values of
BMA and cLORETA solutions for the OPR+TH source case. The
first column indicates the array of sensors used in each simulated
data set. The maximum of the scale is different for each case. For
cLORETA (from top to bottom): Max = 021, 0.15 and 0.05; for BMA
(from top to bottom): Max = 041, 0.42 and 0.27.

FIGURE 35.8 3D reconstructions of the absolute values of
BMA and cLORETA solutions for the TH source case. The first col-
umn indicates the array of sensors used in each simulated data set.
The maximum of the scale is different for each case. For cLORETA
(from top to bottom): Max = 006, 0.01 and 0.003; for BMA (from
top to bottom): Max = 036, 0.37 and 0.33.

set of simulations. Again, BMA gives significantly better
estimates of the PCD.

Figures 35.7 and 35.8 also show that the reconstructed
sources become more concentrated and clearer, as the
number of sensors increases. Tables 35-7 and 35-8 show
the number of models in Occam’s window for each
simulation study. The number of models reduces with
increasing number of sensors. This is natural since more
precise measurements imply more information available
about the underlying phenomena, and then narrower and
sharper model distributions are obtained. Consequently,
as shown in the tables, the probability and, hence, the
rank of the true model in the Occam’s window increase
for dense arrays of sensors.

Tables 35-7 and 35-8 also show that the model with the
highest probability is not always the true one. This fact
supports the use of BMA instead of using the maximum

TABLE 35-7 BMA results for the ‘OPR+TH’ simulation
study. The second, third and fourth columns show the number

of models, and minimum and maximum probabilities, in
Occam’s window. In the last column, the number in

parentheses indicates the position of the true model when all
models in Occam’s window are ranked by probability

Sensors Number of models Min Max Prob true model

EEG-19 15 002 030 011�3�
EEG-120 2 049 051 049�2�
MEG-151 1 1 1 1
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TABLE 35-8 BMA results for the ‘TH’ simulation study.
The second, third and fourth columns show the number of

models, and minimum and maximum probabilities, in Occam’s
window. In the last column, the number in parentheses

indicates the position of the true model when all models in
Occam’s window are ranked by probability

Sensors Number of models Min Max Prob true model

EEG-19 3 030 037 030 �3�
EEG-120 1 1 1 1
MEG-151 1 1 1 1

posterior or maximum evidence model. In the present
simulations, this is not critical, since the examples anal-
ysed are quite simple. But it becomes a determining fac-
tor when analysing more complex data, as is the case
with some real experimental conditions (Trujillo-Barreto
et al., 2004).

An obvious question then arises. Why is cLORETA
unable to exploit fully the information contained in the
M/EEG? The answer given by Bayesian inference is sim-
ply that cLORETA, which assumes activity is distributed
over all of grey matter, is not a good model. In the model
averaging framework, the cLORETA model was always
rejected due to its low posterior probability, placing it
outside Occam’s window.

DISCUSSION

Chapter 11 showed how Bayesian inference in hierarchi-
cal models can be implemented using the belief propaga-
tion algorithm. This involves passing messages up and
down the hierarchy, the upward messages being likeli-
hoods and evidences and the downward messages being
posterior probabilities.

In this chapter, we have shown how belief propaga-
tion can be used to make inferences about members of a
model class. Three stages were identified in this process:
(i) conditional parameter inference; (ii) model inference;
and (iii) model averaging. Only at the model averag-
ing stage is belief propagation complete. Only then will
parameter inferences be based on the correct marginal
density.

We have described how this process can be imple-
mented for linear and non-linear models and applied to
domains such as dynamic causal modelling and M/EEG
source reconstruction. In DCM, often the most important
inference to be made is a model inference. This can be
implemented using Bayes factors and allows one to make
inferences about the structure of large scale neural net-
works that mediate cognitive and perceptual processing.

This issue is taken further in Chapter 43, which considers
inter-hemispheric integration.

The application of model averaging to M/EEG source
reconstruction results in the solution of an outstanding
problem in the field, i.e. how to detect deep sources.
Simulations show that a standard method (cLORETA) is
simply not a good model and that model averaging can
combine the estimates of better models to make veridical
source estimates.

The use of Bayes factors for model comparison is some-
what analagous to the use of F-tests in the general linear
model. Whereas t-tests are used to assess individual
effects, F-tests allow one to assess the significance of a
set of effects. This is achieved by comparing models with
and without the set of effects of interest. The smaller
model is ‘nested’ within the larger one. Bayes factors play
a similar role but, additionally, allow inferences to be
constrained by prior knowledge. Moreover, it is possible
simultaneously to entertain a number of hypotheses and
compare them using the model evidence. Importantly,
these hypotheses are not constrained to be nested.
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Functional integration
K. Friston

INTRODUCTION

The next chapters are about functional integration in the
brain. This chapter reviews the neurobiology of func-
tional integration, in terms of neuronal information pro-
cessing and frames the sorts of question that can be
addressed with analyses of functional and effective con-
nectivity. In fact, we use empirical Bayes (see Part 4) as
the basis for understanding integration among the lev-
els of hierarchically organized cortical areas. The next
two chapters (Chapters 37 and 38) deal with functional
and effective connectivity. Chapters 39 and 40 deal with
complementary models of functional integration, namely
the Volterra or generalized convolution formulation and
state-space representations. The final chapters in this
section cover dynamic causal modelling. For a more
mathematical treatment of these models and their inter-
relationships, see Appendix 2.

In this chapter, we will review the empirical evidence
for functional specialization and integration, with a spe-
cial focus on extrinsic connections among cortical areas
and how they define cortical hierarchies. We will then
look at these hierarchical architectures, using ideas from
theoretical neurobiology, which clarify the potential role
of forward and backward connections. Finally, we see
how neuroimaging can be used to test hypotheses that
arise from this theoretical treatment. Specifically, we
show that functional neuroimaging can be used to test for
interactions between bottom-up and top-down influences
on an area and to make quantitative inferences about
changes in connectivity. This chapter is quite theoretical
and is used to introduce constraints from neurobiology
and computational neuroscience that provide a context
for the models of functional integration presented in the
subsequent chapters.

Interactions and context-sensitivity

In concert with the growing interest in contextual and
extra-classical receptive field effects in electrophysiology
(i.e. how the receptive fields of sensory neurons change
according to the context a stimulus is presented in), a
similar shift is apparent in imaging. Namely, the appre-
ciation that functional specialization can exhibit similar
extra-classical phenomena, in which a cortical area may
be specialized for one thing in one context but something
else in another (see McIntosh, 2000). These extra-classical
phenomena have implications for theoretical ideas about
how the brain might work. This chapter uses theoretical
models of representational or perceptual inference as a
vehicle to illustrate how imaging can be used to address
important questions about functional brain architectures.

Many models of perceptual learning and inference
require prior assumptions about the distribution of sen-
sory causes. However, as seen in the previous chapters,
empirical Bayes suggests that priors can be learned in a
hierarchical context. The main point made in this chapter
is that backward connections, mediating internal or gen-
erative models of how sensory data are caused, can con-
struct empirical priors and are essential for perception.
Moreover, non-linear generative models require these
connections to be modulatory so that causes in higher
cortical levels can interact to predict responses in lower
levels. This is important in relation to functional asym-
metries in forward and backward connections that have
been demonstrated empirically.

Overview

We start by reviewing the two fundamental principles
of brain organization, namely functional specialization
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and functional integration and how they rest upon the
anatomy and physiology of cortico-cortical connections
in the brain. The second section deals with the nature and
learning of representations from a theoretical or compu-
tational perspective. The key focus of this section is on
the functional architectures implied by the theory. Gen-
erative models based on predictive coding rest on hierar-
chies of backward and lateral projections and, critically,
confer a necessary role on backward connections. The
theme of context-sensitive responses is used in the sub-
sequent section to preview different ways of measuring
connectivity with functional neuroimaging. The focus of
this section is evidence for the interaction of bottom-up
and top-down influences and establishing the presence
of backward connections. The final section reviews some
of the implications for lesion studies and neuropsychol-
ogy. Dynamic diaschisis is introduced, in which aberrant
neuronal responses can be observed following damage
to distal brain areas that provide enabling or modulatory
afferents.

FUNCTIONAL SPECIALIZATION AND
INTEGRATION

The brain appears to adhere to two fundamental
principles of functional organization, functional integra-
tion and functional specialization, where the integra-
tion within and among specialized areas is mediated
by effective connectivity. The distinction relates to that
between ‘localizationism’ and ‘connectionism’ that dom-
inated thinking about cortical function in the nineteenth
century. Since the early anatomic theories of Gall, the
identification of a particular brain region with a specific
function has become a central theme in neuroscience.
However, functional localization per se was not easy to
demonstrate: for example, a meeting that took place on
4 August 1881 addressed the difficulties of attributing
function to a cortical area, given the dependence of cere-
bral activity on underlying connections (Phillips et al.,
1984). This meeting was entitled ‘Localization of func-
tion in the cortex cerebri’. Goltz, although accepting the
results of electrical stimulation in dog and monkey cortex,
considered that the excitation method was inconclusive,
in that the behaviours elicited might have originated in
related pathways, or current could have spread to dis-
tant centres. In short, the excitation method could not
be used to infer functional localization because localiza-
tionism discounted interactions, or functional integration
among different brain areas. It was proposed that lesion
studies could supplement excitation experiments. Ironi-
cally, it was observations on patients with brain lesions
some years later (see Absher and Benson, 1993) that

led to the concept of ‘disconnection syndromes’ and the
refutation of localizationism as a complete or sufficient
explanation of cortical organization. Functional localiza-
tion implies that a function can be localized in a cortical
area, whereas specialization suggests that a cortical area
is specialized for some aspects of perceptual or motor
processing, where this specialization can be anatomically
segregated within the cortex. The cortical infrastructure
supporting a single function may then involve many spe-
cialized areas whose union is mediated by the functional
integration among them. Functional specialization and
integration are not exclusive, they are complementary.
Functional specialization is only meaningful in the con-
text of functional integration and vice versa.

Functional specialization and segregation

The functional role, played by any component (e.g. cor-
tical area, sub-area, neuronal population or neuron) of
the brain, is defined largely by its connections. Certain
patterns of cortical projections are so common that they
amount to rules of cortical connectivity. ‘These rules
revolve around one, apparently, overriding strategy that
the cerebral cortex uses – that of functional segregation’
(Zeki, 1990). Functional segregation demands that cells
with common functional properties be grouped together.
This architectural constraint necessitates both conver-
gence and divergence of cortical connections. Extrinsic
connections, between cortical regions, are not continu-
ous but occur in patches or clusters. This patchiness has
a clear relationship to functional segregation. For exam-
ple, the secondary visual area, V2, has a cytochrome
oxidase architecture, consisting of thick, thin and inter-
stripes. When recordings are made in V2, directionally
selective (but not wavelength or colour selective) cells
are found exclusively in the thick stripes. Retrograde
(i.e. backward) labelling of cells in V5 is limited to these
thick stripes. All the available physiological evidence
suggests that V5 is a functionally homogeneous area
that is specialized for visual motion. Evidence of this
nature supports the notion that patchy connectivity is the
anatomical infrastructure that underpins functional seg-
regation and specialization. If it is the case that neurons in
a given cortical area share a common responsiveness (by
virtue of their extrinsic connectivity) to some sensorimo-
tor or cognitive attribute, then this functional segregation
is also an anatomical one. Challenging a subject with the
appropriate sensorimotor attribute or cognitive process
should lead to activity changes in, and only in, the areas
of interest. This is the model upon which the search for
regionally specific effects with functional neuroimaging
is based.
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The anatomy and physiology of
cortico-cortical connections

If specialization rests upon connectivity then important
organizational principles should be embodied in the
neuroanatomy and physiology of extrinsic connections.
Extrinsic connections couple different cortical areas,
whereas intrinsic connections are confined to the cortical
sheet. There are certain features of cortico-cortical con-
nections that provide strong clues about their functional
role. In brief, there appears to be a hierarchical organiza-
tion that rests upon the distinction between forward and
backward connections. The designation of a connection as
forward or backward depends primarily on its cortical
layers of origin and termination. Some characteristics of
cortico-cortical connections are presented below and are
summarized in Table 36-1. The list is not exhaustive but
serves to introduce some important principles that have
emerged from empirical studies of visual cortex:

• Hierarchical organization – the organization of the visual
cortices can be considered as a hierarchy of cortical lev-
els with reciprocal extrinsic cortico-cortical connections
among the constituent cortical areas (Felleman and Van
Essen, 1991). The notion of a hierarchy depends upon a
distinction between reciprocal forward and backward
extrinsic connections (see Figure 36.1).

• Reciprocal connections – although reciprocal, forward
and backward connections show both a microstruc-
tural and functional asymmetry. The terminations of
both show laminar specificity. Forward connections
(from a low to a high level) have sparse axonal bifurca-
tions and are topographically organized, originating in
supra-granular layers and terminating largely in layer
IV. Backward connections, on the other hand, show
abundant axonal bifurcation and a more diffuse topog-
raphy. Their origins are bilaminar-infragranular and
they terminate predominantly in supra-granular layers
(Rockland and Pandya, 1979; Salin and Bullier, 1995).

Extrinsic connections show an orderly convergence
and divergence of connections from one cortical level
to the next. At a macroscopic level, one point in a
given cortical area will connect to a region 5–8 mm in
diameter in another. An important distinction between
forward and backward connections is that backward
connections are more divergent. For example, the
divergence region of a point in V5 (i.e. the region
receiving backward afferents from V5) may include
thick and inter-stripes in V2, whereas the convergence
region (i.e. the region providing forward afferents to
V5) is limited to the thick stripes (Zeki and Shipp,
1988). Backward connections are more abundant than
forward connections and transcend more levels. For
example, the ratio of forward efferent connections to
backward afferents in the lateral geniculate is about one
to ten. Another important distinction is that backward
connections will traverse a number of hierarchical lev-
els, whereas forward connections are more restricted.
For example, there are backward connections from TE
and TEO to V1 but no monosynaptic connections from
V1 to TE or TEO (Salin and Bullier, 1995).

• Functionally asymmetric forward and backward connec-
tions – functionally, reversible inactivation (e.g. Sandell
and Schiller, 1982; Girard and Bullier, 1989) and neu-
roimaging (e.g. Büchel and Friston, 1997) studies sug-
gest that forward connections are driving and always
elicit a response, whereas backward connections can be
modulatory. In this context, modulatory means back-
ward connections modulate responsiveness to other
inputs. At the single cell level, ‘inputs from drivers can
be differentiated from those of modulators. The driver
can be identified as the transmitter of receptive field
properties; the modulator can be identified as altering
the probability of certain aspects of that transmission’
(Sherman and Guillery, 1998).

The notion that forward connections are concerned
with the segregation of sensory information is consistent

TABLE 36-1 Some key characteristics of extrinsic cortico-cortical connections

• The organization of the visual cortices can be considered as a hierarchy (Felleman and Van Essen, 1991)
• The notion of a hierarchy depends upon a distinction between forward and backward extrinsic connections
• This distinction rests upon laminar specificity (Rockland and Pandya, 1979; Salin and Bullier, 1995)
• Backward connections are more numerous and transcend more levels
• Backward connections are more divergent than forward connections (Zeki and Shipp, 1988)

Forward connections Backward connections

Sparse axonal bifurcations Abundant axonal bifurcation
Topographically organized Diffuse topography
Originate in supra-granular layers Originate in bi-laminar/infra-granular layers
Terminate largely in layer IV Terminate predominantly in supra-granular layers
Postsynaptic effects through fast AMPA (1.3–2.4 ms
decay) and GABAA (6 ms decay) receptors

Modulatory afferents activate slow (50 ms decay) voltage-
sensitive NMDA receptors
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FIGURE 36.1 Schematic illustrating hierarchical structures in the brain and the distinction between forward, backward and lateral
connections. This schematic is inspired by Mesulam’s (1998) notion of sensory-fugal processing over ‘a core synaptic hierarchy, which includes
the primary sensory, upstream unimodal, downstream unimodal, hetero-modal, paralimbic and limbic zones of the cerebral cortex’ (see
Mesulam, 1998 for more details).

with their sparse axonal bifurcation, patchy axonal ter-
minations and topographic projections. In contradistinc-
tion, backward connections are considered to have a role
in mediating contextual effects and in the coordination
of processing channels. This is consistent with their fre-
quent bifurcation, diffuse axonal terminations and more
divergent topography (Salin and Bullier, 1995; Crick and
Koch, 1998). Forward connections mediate their post-
synaptic effects through fast AMPA and GABA recep-
tors. Modulatory effects can be mediated by NMDA

receptors. NMDA receptors are voltage-sensitive, show-
ing non-linear and slow dynamics (∼50 ms decay). They
are found predominantly in supra-granular layers, where
backward connections terminate (Salin and Bullier, 1995).
These slow time-constants again point to a role in mediat-
ing contextual effects that are more enduring than phasic
sensory-evoked responses. The clearest evidence for the
modulatory role of backward connections (mediated by
slow glutamate receptors) comes from cortico-geniculate
connections; in the cat lateral geniculate nucleus, cortical
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feedback is partly mediated by type 1 metabotropic
glutamate receptors, which are located exclusively on
distal segments of the relay-cell dendrites. Rivadulla
et al. (2002) have shown that these backward afferents
enhance the excitatory centre of the thalamic receptive
field. ‘Therefore, cortex, by closing this cortico-fugal loop,
is able to increase the gain of its thalamic input within a
focal spatial window, selecting key features of the incom-
ing signal’ (Rivadulla et al., 2002) (see also Murphy and
Sillito, 1987).

There are many mechanisms that are responsible
for establishing connections in the brain. Connectivity
results from interplay between genetic, epigenetic and
activity- or experience-dependent mechanisms. In utero,
epigenetic mechanisms predominate, such as the interac-
tion between the topography of the developing cortical
sheet, cell-migration, gene-expression and the mediat-
ing role of gene–gene interactions and gene products
such as cell adhesion molecules. Following birth, connec-
tions are progressively refined and remodelled with a
greater emphasis on activity- and use-dependent plastic-
ity. These changes endure into adulthood with ongoing
reorganization and experience-dependent plasticity that
furnish behavioural adaptation and learning throughout
life. In brief, there are two basic determinants of con-
nectivity: cellular plasticity, reflecting cell-migration and
neurogenesis in the developing brain; and synaptic plas-
ticity, activity-dependent modelling of the pattern and
strength of synaptic connections. This plasticity involves
changes in the form, expression and function of synapses
that endure throughout life. Plasticity is an important
functional attribute of connections in the brain and is
thought to underlie perceptual and procedural learning
and memory. A key aspect of this plasticity is that it is
generally associative.

• Associative plasticity – synaptic plasticity may be tran-
sient (e.g. short-term potentiation STP or depression
STD) or enduring (e.g. long-term potentiation LTP or
LTD) with many different time-constants. In contrast
to short-term plasticity, long-term changes rely on pro-
tein synthesis, synaptic remodelling and infrastructural
changes in cell processes (e.g. terminal arbours or den-
dritic spines) that are mediated by calcium-dependent
mechanisms. An important aspect of NMDA recep-
tors, in the induction of LTP, is that they confer an
associative aspect on synaptic changes. This is because
their voltage-sensitivity only allows calcium ions to
enter the cell when there is conjoint presynaptic release
of glutamate and sufficient postsynaptic depolariza-
tion (i.e. the temporal association of pre- and postsy-
naptic events). Calcium entry renders the postsynaptic
specialization eligible for future potentiation by pro-
moting the formation of synaptic ‘tags’ (e.g. Frey and

Morris 1997) and other calcium-dependent intracellu-
lar mechanisms.

In summary, the anatomy and physiology of cortico-
cortical connections suggest that forward connections
are driving and commit cells to a prespecified response,
given the appropriate pattern of inputs. Backward con-
nections, on the other hand, are less topographic and are
in a position to modulate the responses of lower areas
to driving inputs from either higher or lower areas (see
Table 36-1). For example, in the visual cortex Angelucci
et al. (2002a; b) used a combination of anatomical and
physiological recording methods to determine the spatial
scale and retinotopic logic of intra-area V1 horizontal
connections and inter-area feedback connections to V1.
‘Contrary to common beliefs, these [monosynaptic hori-
zontal] connections cannot fully account for the dimen-
sions of the surround field [of macaque V1 neurons].
The spatial scale of feedback circuits from extrastriate
cortex to V1 is, instead, commensurate with the full spa-
tial range of centre-surround interactions. Thus, these
connections could represent an anatomical substrate for
contextual modulation and global-to-local integration of
visual signals.’

Connections are not static but are changing at the
synaptic level all the time. In many instances, this plas-
ticity is associative. Backwards connections are abundant
and are in a position to exert powerful effects on evoked
responses, in lower levels, that define the specialization
of any area or neuronal population. Modulatory effects
imply the postsynaptic response evoked by presynaptic
input is modulated by, or interacts with, another input.
By definition this interaction must depend on non-linear
synaptic or dendritic mechanisms.

Functional integration and effective
connectivity

Electrophysiology and imaging neuroscience have firmly
established functional specialization as a principle of
brain organization in man. The functional integration
of specialized areas has proven more difficult to assess.
Functional integration refers to the interactions among
specialized neuronal populations and how these interac-
tions depend upon the sensorimotor or cognitive context.
Functional integration is usually assessed by examining
the correlations among activity in different brain areas,
or trying to explain the activity in one area in relation to
activities elsewhere. Functional connectivity is defined as
correlations between remote neurophysiological events.1

1 More generally any statistical dependency as measured by the
mutual information
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However, correlations can arise in a variety of ways. For
example, in multiunit electrode recordings they can result
from stimulus-locked transients, evoked by a common
input or reflect stimulus-induced oscillations mediated by
synaptic connections (Gerstein and Perkel, 1969). Inte-
gration within a distributed system is better understood
in terms of effective connectivity. Effective connectivity
refers explicitly to the influence that one neuronal sys-
tem exerts over another, either at a synaptic (i.e. synaptic
efficacy) or population level. It has been proposed that
‘the [electrophysiological] notion of effective connectiv-
ity should be understood as the experiment- and time-
dependent, simplest possible circuit diagram that would
replicate the observed timing relationships between the
recorded neurons’ (Aertsen and Preil, 1991). This means
effective connectivity is dynamic, i.e. activity-dependent,
and depends upon a model of the interactions. Recent
models of effective connectivity accommodate the mod-
ulatory or non-linear effects mentioned above. A more
detailed discussion of these models is provided in subse-
quent chapters. In this chapter, the terms modulatory and
non-linear are used almost synonymously. Modulatory
effects imply the postsynaptic response evoked by one
input is modulated, or interacts with, another. By defini-
tion this interaction must depend on non-linear synaptic
mechanisms.

In summary, the brain can be considered as an ensem-
ble of functionally specialized areas that are coupled in a
non-linear fashion by effective connections. Empirically,
it appears that connections from lower to higher areas are
predominantly driving, whereas backward connections
that mediate top-down influences are more diffuse and
are capable of exerting modulatory influences. In the next
section, we describe a theoretical perspective that high-
lights the functional importance of backward connections
and non-linear interactions.

LEARNING AND INFERENCE IN THE
BRAIN

This section describes the heuristics behind self-
supervised learning based on empirical Bayes. This
approach is considered within the framework of genera-
tive models and follows Dayan and Abbott (2001: 359–397)
to which the reader is referred for background reading.
A more detailed discussion of these issues can be found
in Friston (2005).

First, we will reprise empirical Bayes in the context
of brain function per se. Having established the requisite
architecture for learning and inference, neuronal imple-
mentation is considered in sufficient depth to make pre-
dictions about the structural and functional anatomy that

would be needed to implement empirical Bayes in the
brain. We conclude by relating theoretical predictions
with the four neurobiological principles listed in the pre-
vious section.

Causes, perception and sensation

Causes are simply the states of processes generating sen-
sory data. It is not easy to ascribe meaning to these states
without appealing to the way that we categorize things.
Causes may be categorical in nature, such as the identity
of a face or the semantic category of an object. Others
may be parametric, such as the position of an object. Even
though causes may be difficult to describe, they are easy
to define operationally. Causes are quantities or states
that are necessary to specify the products of a process
generating sensory information. To keep things simple,
let us frame the problem of representing causes in terms
of a deterministic non-linear function:

u = g�v��� 36.1

where v is a vector of causes in the environment (e.g. the
velocity of a particular object, direction of radiant light
etc.), and u represents sensory input. g�v��� is a function
that generates data from the causes. � are the parameters
of the generative model. Unlike the causes, they are fixed
quantities that have to be learned. We shall see later that
the parameters correspond to connection strengths in the
brain’s model of how data are caused. Non-linearities
in Eqn. 36.1 represent interactions among the causes.
These can often be viewed as contextual effects, where
the expression of a particular cause depends on the con-
text established by another. A ubiquitous example, from
early visual processing, is the occlusion of one object by
another; in a linear world the visual sensation, caused
by two objects, would be a transparent overlay or super-
position. Occlusion is a non-linear phenomenon because
the sensory input from one object (occluded) interacts, or
depends on, the other (occluder). This interaction is an
example of non-linear mixing of causes to produce sen-
sory data. At a higher level, the cause associated with the
word ‘hammer’ depends on the semantic context (that
determines whether the word is a verb or a noun).

The problem the brain has to contend with is to find a
function of the data that recognizes the underlying causes.
To do this, the brain must undo the interactions to dis-
close contextually invariant causes. In other words, the
brain must perform a non-linear un-mixing of causes and
context. The key point here is that the non-linear mixing
may not be invertible and recognition may be a funda-
mentally ill-posed problem. For example, no amount of
un-mixing can recover the parts of an object that are
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occluded by another. The corresponding indeterminacy,
in probabilistic learning, rests on the combinatorial explo-
sion of ways in which stochastic generative models can
generate input patterns (Dayan et al., 1995). In what fol-
lows, we consider the implications of this problem. Put
simply, recognition of causes from sensory data is the
inverse of generating data from causes. If the generative
model is not invertible, then recognition can only proceed
if there is an explicit generative model in the brain.

The specific model considered here rests on empirical
Bayes. This model can be regarded as a mathematical for-
mulation of the long-standing notion (Locke, 1690) that:
‘our minds should often change the idea of its sensa-
tion into that of its judgement, and make one serve only
to excite the other’. In a similar vein, Helmholtz (1860)
distinguishes between perception and sensation: ‘It may
often be rather hard to say how much from perceptions
as derived from the sense of sight is due directly to sensa-
tion, and how much of them, on the other hand, is due to
experience and training’ (see Pollen, 1999). In short, there
is a distinction between a percept, which is the product of
recognizing the causes of sensory input, and sensation per
se. Recognition, i.e. inferring causes from sensation, is the
inverse of generating sensory data from their causes. It
follows that recognition rests on models, learned through
experience, of how sensations are caused.

Conceptually, empirical Bayes and generative mod-
els are related to ‘analysis-by–synthesis’ (Neisser, 1967).
This approach to perception, from cognitive psychol-
ogy, involves adapting an internal model of the world
to match sensory input and was suggested by Mum-
ford (1992) as a way of understanding hierarchical neu-
ronal processing. The idea is reminiscent of Mackay’s
epistemological automata (MacKay, 1956) which perceive
by comparing expected and actual sensory input, (Rao,
1999). These models emphasize the role of backward con-
nections in mediating predictions of lower level input,
based on the activity of higher cortical levels.

Generative models and perception

This section introduces a basic framework for under-
standing learning and inference. This framework rests
upon generative and recognition models, which are func-
tions that map causes to sensory input and vice versa.
Generative models afford a generic formulation of repre-
sentational learning and inference in a supervised or self-
supervised context. There are many forms of generative
models that range from conventional statistical models
(e.g. factor and cluster analysis) to those motivated by
Bayesian inference and learning (e.g. Dayan et al., 1995;
Hinton et al., 1995). The goal of generative models is: ‘to
learn representations that are economical to describe but

allow the input to be reconstructed accurately’ (Hinton
et al., 1995). The distinction between reconstructing data
and learning efficient representations relates directly to
the distinction between inference and learning.

Inference vs. learning

Generative models relate unknown causes v and
unknown parameters � to observed sensory data u. The
objective is to make inferences about the causes and learn
the parameters. Inference may be simply estimating the
most likely cause and is based on estimates of the param-
eters from learning. A generative model is specified in
terms of a prior distribution over the causes p�v��� and
the generative distribution or likelihood of the data given
the causes p�u�v���. Together, these define the marginal
distribution of data implied by a generative model:

p�u��� =
∫

p�u�v���p�v���dv 36.2

The conditional density of the causes, given the data, are
given by the recognition model, which is defined in terms
of the recognition or conditional distribution:

p�v�u��� = p�u�v���p�v���

p�u���
36.3

However, as considered above, the generative model may
not be inverted easily and it may not be possible to
parameterize this recognition distribution. This is crucial
because the endpoint of learning is the acquisition of a
useful recognition model that can be applied to sensory
data. One solution is to posit an approximate recogni-
tion or conditional density q�v� that is consistent with the
generative model and that can be parameterized. Esti-
mating the moments (e.g. expectation) of this density
corresponds to inference. Estimating the parameters of
the underlying generative model corresponds to learn-
ing. This distinction maps directly onto the two steps of
expectation–maximization (EM) (Dempster et al., 1977).

Expectation maximization

To keep things simple, assume that we are only inter-
ested in the first moment or expectation of q�v� which
we will denote by �. This is the conditional mean or
expected cause. EM is a coordinate ascent scheme that
comprises an E-step and an M-step. In the present con-
text, the E-step finds the conditional expectation of the
causes (i.e. inference), while the M-step identifies the
maximum likelihood value of the parameters (i.e. learn-
ing). Critically, both adjust the conditional causes and
parameters to maximize the same thing.
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The free energy formulation

EM provides a useful procedure for density estimation
that has direct connections with statistical mechanics.
Both steps of the EM algorithm involve maximizing a
function of the densities above. This function corresponds
to the negative free energy in physics (see Chapter 24
and the Appendices for more details):

F = ln p�u���−KL�q�v�� p�v�u���	 36.4

This objective function has two terms. The first is the
marginal likelihood of the data under the generative
model. The second term is the Kullback-Leibler diver-
gence2 between the approximate and true recognition
densities. Critically, the second term is always positive,
rendering F a lower-bound on the expected log-
likelihood of the data. This means maximizing the objec-
tive function (i.e. minimizing the free energy) is simply
minimizing our surprise about the data. The E-step
increases F with respect to the expected cause, ensur-
ing a good approximation to the recognition distribution
implied by the parameters �. This is inference. The
M-step changes �, enabling the generative model to
match the likelihood of the data and corresponds to
learning:

Inference
 E � = max
�

F

Learning 
 M � = max
�

F
36.5

The remarkable thing is that both inference and learning
are driven in exactly the same way, namely to minimize the
free energy. This is effectively the same as minimizing
surprise about sensory data encountered. The implica-
tion, as we will see below, is that the same principle can
explain phenomena as wide ranging as the mis-match
negativity (MMN) in evoked electrical brain responses to
Hebbian plasticity during perceptual learning.

Predictive coding

We have now established an objective function that is
maximized to enable inference and learning in E- and
M-steps respectively. Here, we consider how that max-
imization might be implemented. In particular, we will
look at predictive coding, which is based on minimiz-
ing prediction error (Rao and Ballard, 1998). Prediction
error is the difference between the data observed and
that predicted by the inferred causes. We will see that

2 A measure of the distance or difference between two probability
densities.

minimizing the free energy is equivalent to minimizing
prediction error. Consider any static non-linear genera-
tive model under Gaussian assumptions:

u = g�v���+��1�

v = �+��2�
36.6

where Cov���1�� = �1� is the covariance of random fluc-
tuations in the sensory data. Priors on the causes are
specified in terms of their expectation � and covari-
ance Cov���2�� = �2�. This form will be useful in the next
section when we generalize to hierarchical models. For
simplicity, we will approximate the recognition density
with a point mass. From Eqn. 36.4:

F = −1
2

��1�T ��1� − 1
2

��2�T ��2� − 1
2

ln ��1��− 1
2

ln ��2��

��1� = �1�−1/2
�u−g������ 36.7

��2� = �2�−1/2
��−��

The first term in Eqn. 37.7 is the prediction error that is
minimized in predictive coding. The second corresponds
to a prior term that constrains or regularizes conditional
estimates of the causes. The need for this term stems from
the ill-posed nature of recognition discussed above and
is a ubiquitous component of inverse solutions.

Predictive coding schemes can be seen in the context of
forward and inverse models adopted in machine vision
(Ballard et al., 1983; Kawato et al., 1993). Forward mod-
els generate data from causes (cf. generative models),
whereas inverse models approximate the reverse trans-
formation of data to causes (cf. recognition models). This
distinction embraces the ill-posed nature of inverse prob-
lems. As with all underdetermined inverse problems, the
role of constraints is central. In the inverse literature, a
priori constraints usually enter in terms of regularized
solutions. For example: ‘Descriptions of physical prop-
erties of visible surfaces, such as their distance and the
presence of edges, must be recovered from the primary
image inputs. Computational vision aims to understand
how such descriptions can be obtained from inherently
ambiguous and noisy inputs. A recent development in
this field sees early vision as a set of ill-posed prob-
lems, which can be solved by the use of regulariza-
tion methods’ (Poggio et al., 1985). The architectures
that emerge from these schemes suggest that: ‘Feed-
forward connections from the lower visual cortical area
to the higher visual cortical area provide an approxi-
mated inverse model of the imaging process (optics)’.
Conversely: ‘while the back-projection connection from
the higher area to the lower area provides a forward
model of the optics’ (Kawato et al., 1993). This perspective
highlights the importance of backward connections and
the role of priors in enabling predictive coding schemes.
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Predictive coding and Bayes

Predictive coding is a strategy that has some compelling
[Bayesian] underpinnings. To finesse the inverse problem
posed by non-invertible generative models, constraints
or priors are required. These resolve the ill-posed prob-
lems that confound recognition based on purely forward
architectures. It has long been assumed that sensory units
adapt to the statistical properties of the signals to which
they are exposed (see Simoncelli and Olshausen, 2001
for review). In fact, the Bayesian framework for percep-
tual inference has its origins in Helmholtz’s notion of
perception as unconscious inference. Helmholtz realized
that retinal images are ambiguous and that prior knowl-
edge was required to account for perception (Kersten
et al., 2004). Kersten et al. (2004) provide an excellent
review of object perception as Bayesian inference and
ask a fundamental question: ‘Where do the priors come
from. Without direct input, how does image-independent
knowledge of the world get put into the visual system?’
In the next section, we answer this question and show
how empirical Bayes allows priors to be learned and
induced online, during inference.

Cortical hierarchies and empirical Bayes

The problem with fully Bayesian inference is that the
brain cannot construct the prior expectation and vari-
ability, � and �2� de novo. They have to be learned
and, furthermore, adapted to the current experiential
context. This calls for empirical Bayes, in which priors
are estimated from data. Empirical Bayes harnesses the
hierarchical structure of a generative model, treating the
estimates at one level as priors on the subordinate level
(Efron and Morris, 1973). Empirical Bayes provides a nat-
ural framework within which to treat cortical hierarchies
in the brain, each level providing constraints on the level
below. This approach models the world as a hierarchy of
systems where supraordinate causes induce, and moder-
ate, changes in subordinate causes. Empirical priors offer
contextual guidance towards the most likely cause of the
data. Note that predictions at higher levels are subject
to the same constraints; only the highest level, if there is
one in the brain, is unconstrained.

Next, we extend the generative model to cover empir-
ical priors. This means that constraints, required by pre-
dictive coding, are absorbed into the learning scheme.
This hierarchical extension induces extra parameters that
encode the variability or precision of the causes. These are
referred to as hyperparameters in the classical covariance
component literature. Hyperparameters are updated in
the M-step and are treated in exactly the same way as
the parameters.

Hierarchical models

Consider any level i in a hierarchy whose causes v�i� are
elicited by causes in the level above v�i+1�. The hierarchical
form of the generative model is:

u =
v�1� = g�v�2�� ��1��+��1�

v�2� = g�v�3�� ��2��+��2�

v�3� = � � �

36.8

Technically, these models fall into the class of condition-
ally independent hierarchical models, when the stochas-
tic terms are independent (Kass and Steffey, 1989). These
models are also called parametric empirical Bayes (PEB)
models because the obvious interpretation of the higher-
level densities as priors led to the development of PEB
methodology (Efron and Morris, 1973). Often, in statis-
tics, these hierarchical models comprise just two levels,
which is a useful way to specify simple shrinkage pri-
ors on the parameters of single-level models. We will
assume the stochastic terms are Gaussian with covariance
�i�. Therefore, the means and covariances determine the
likelihood at each level:

p�v�i��v�i+1�� ��i�� = N�g�i���i�� 36.9

This likelihood also plays the role of an empirical prior on
v�i� at the level below, where it is jointly maximized with
the likelihood p�v�i−1��v�i�� ��i−1��. This is the key to under-
standing the utility of hierarchical models; by inferring
the generative distribution of level i one is implicitly esti-
mating the prior for level i−1. This enables the learning
of prior densities. The hierarchical nature of these models
lends an important context-sensitivity to recognition den-
sities not found in single-level models. Because high-level
causes determine the prior expectation of causes in the sub-
ordinate level, they change the distributions upon which
inference is based, in a data and context-dependent way.

Implementation

The biological plausibility of empirical Bayes in the brain
can be established fairly simply. The objective function
is now:

F = −1
2

��1�T ��1� − 1
2

��2�T ��2� − � � �

− 1
2

ln ��1��− 1
2

ln ��2��− � � �

��i� = ��i� −g���i+1�� ��i��−��i���i�

= �I +��i��−1���i� −g���i+1�� ��i���

�i� = �I +��i��2 36.10
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In neuronal models, the prediction error is encoded by
the activities of units denoted by ��i�. These error units
receive a prediction from units in the level above3 via
backward connections and lateral influences from the rep-
resentational units ��i� being predicted. Horizontal inter-
actions among the error units serve to de-correlate them
(cf. Foldiak 1990), where the symmetric lateral connec-
tion strengths ��i� hyperparameterize the covariances �i�,
which are the prior covariances for level i−1.

The conditional causes and parameters perform a gra-
dient ascent on the objective function:4

E �̇�i� = �F

���i�
= −���i−1�T

���i�
��i−1� − ���i�T

���i�
��i�

��i� = ��i� −g���i+1�� ��i��−��i���i�

M �̇�i� = �F

���i�
= −

〈
���i�T

���i�
��i�

〉
u

36.11

�̇�i� = �F

���i�
= −

〈
���i�T

���i�
��i�

〉
u

− �1+��i��−1

Inferences, mediated by the E-step, rest on changes in
units encoding expected causes ��i� that are mediated by
forward connections from error units in the level below
and lateral interactions with error units in the same level.
Similarly, prediction error is constructed by comparing
the activity of these units with the activity predicted by
backward connections.

This is the simplest version of a very general learning
algorithm. It is general in the sense that it does not require
the parameters of either the generative or prior distribu-
tions. It can learn non-invertible, non-linear generative
models and encompasses complicated hierarchical pro-
cesses. Furthermore, each of the learning components has
a relatively simple neuronal interpretation (see below).

IMPLICATIONS FOR CORTICAL
INFRASTRUCTURE AND PLASTICITY

The scheme implied by Eqn. 36.11 has four clear impli-
cations for the functional architecture required to imple-
ment it. We review these in relation to cortical organiza-
tion in the brain. A schematic summarizing these points
is provided in Figure 36.2. In short, we arrive at exactly

3 Clearly, in the brain, backward connections are not inhibitory
but, after mediation by inhibitory interneurons, their effective
influence could be rendered so.
4 For simplicity, we have ignored conditional uncertainty about
the causes that would otherwise induce further terms in the
M-step.

the same four points presented at the end of the first
section.

• Hierarchical organization – hierarchical models enable
empirical Bayesian estimation of prior densities and
provide a plausible model for sensory data. Models
that do not show conditional independence (e.g. those
used by connectionist and infomax schemes) depend
on prior constraints for inference and do not invoke a
hierarchical cortical organization. The nice thing about
the architecture in Figure 36.2 is that the responses of
units at the i-th level ��i� depend only on the error at
the current level and the immediately preceding level.
Similarly the error units ��i� are only connected to units
in the current level and the level above. This hierar-
chical organization follows from conditional indepen-
dence and is important because it permits a biologically
plausible implementation, where the connections driv-
ing inference run only between neighbouring levels.

• Reciprocal connections – in the hierarchical scheme, the
dynamics of units ��i+1� are subject to two, locally avail-
able, influences: a likelihood or recognition term medi-
ated by forward afferents from the error units in the
level below and an empirical prior conveyed by error
units in the same level. Critically, the influences of the
error units in both levels are mediated by linear con-
nections with strengths that are exactly the same as the
[negative] reciprocal connections from ��i+1� to ��i� and
��i+1�. From Eqn. 36.11:

��̇�i+1�

���i�
= − ���i�

���i+1�

T

��̇�i+1�

���i+1�
= − ���i+1�

���i+1�

T
36.12

Functionally, forward and lateral connections are
reciprocated, where backward connections generate
predictions of lower-level responses. Forward connec-
tions allow prediction error to drive units in supraor-
dinate levels. Lateral connections, within each level,
mediate the influence of error units on the predicting
units and intrinsic connections ��i� among the error
units de-correlate them, allowing competition among
prior expectations with different precisions (precision
is the inverse of variance). In short, lateral, forward
and backward connections are all reciprocal, consistent
with anatomical observations.

• Functionally asymmetric forward and backward connec-
tions – although the connections are reciprocal, the
functional attributes of forward and backward influ-
ences are different. The top-down influences of units
��i+1� on error units in the lower level ��i� = ��i� −
g���i+1�� ��i�� − ��i���i� instantiate the forward model.
These can be non-linear, where each unit in the higher
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FIGURE 36.2 Schematic depicting a hierarchi-
cal predictive coding architecture. Here, hierarchi-
cal arrangements within the model serve to provide
predictions or priors to representations in the level
below. The upper circles represent error units and
the lower circles functional subpopulations encod-
ing the conditional expectation of causes. These
expectations change to minimize both the discrep-
ancy between their predicted value and the mis-
match incurred by their prediction of the level
below. These two constraints correspond to prior
and likelihood terms respectively (see main text).

level may modulate or interact with the influence of others,
according to the non-linearities in g�i�. In contrast, the
bottom-up influences of units in lower levels do not
interact when producing changes at the higher level
because, according to Eqn. 36.11, their effects are lin-
early separable. This is a key observation because the
empirical evidence, reviewed in the first section, sug-
gests that backward connections are in a position to
interact (e.g. through NMDA receptors expressed pre-
dominantly in supra-granular layers that are in receipt
of backward connections). Forward connections are
not. In summary, non-linearities, in the way sensory
data are produced, necessitate non-linear interactions
in the generative model. These are mediated by back-
ward connections but do not require forward connec-
tions to be modulatory.

• Associative plasticity – changes in the parameters corre-
spond to plasticity in the sense that the parameters con-
trol the strength of backward and lateral connections.
The backward connections parameterize the prior
expectations and the lateral connections hyperparame-
terize the prior covariances. Together they parameter-
ize the Gaussian densities that constitute the empirical
priors. The plasticity implied can be seen more clearly
with an explicit model. For example, let g�v�i+1�� ��i�� =
��i�v�i+1�. In this instance:

�̇�i� = �1+��i��−1 〈��i���i+1�T
〉
u

�̇�i� = �1+��i��−1�
〈
��i���i�T

〉
u
− I �

36.13

This is just Hebbian or associative plasticity where
the connection strengths change in proportion to the
product of pre- and postsynaptic activity. An intuition
about Eqn. 36.13 obtains by considering the conditions
under which the expected change in parameters is

zero (i.e. after learning). For the backward connections,
this implies there is no component of prediction error
that can be explained by estimates at the higher level〈
��i���i+1�T

〉
u

= 0. The lateral connections stop chang-
ing when the prediction error is spherical or IID〈
��i���i�T

〉
u
= I .

It is evident that the predictions of the theoretical anal-
ysis coincide almost exactly with the empirical aspects
of functional architectures in visual cortices: hierarchi-
cal organization; reciprocity; functional asymmetry; and
associative plasticity. Although somewhat contrived, it is
pleasing that purely theoretical considerations and neu-
robiological empiricism converge so precisely.

Summary

In summary, perceptual inference and learning lends
itself naturally to a hierarchical treatment, which con-
siders the brain as an empirical Bayesian device. The
dynamics of the units or populations are driven to min-
imize error at all levels of the cortical hierarchy and
implicitly render themselves posterior modes (i.e. most
likely values) of the causes given the data. In contradis-
tinction to supervised learning, hierarchical prediction
does not require any desired output. Unlike information
theoretic approaches, they do not assume independent
causes. In contrast to regularized inverse solutions, they
do not depend on a priori constraints. These emerge spon-
taneously as empirical priors from higher levels.

The overall scheme sits comfortably with the hypoth-
esis (Mumford, 1992):
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on the role of the reciprocal, topographic pathways
between two cortical areas, one often a ‘higher’ area
dealing with more abstract information about the
world, the other ‘lower’, dealing with more concrete
data. The higher area attempts to fit its abstractions
to the data it receives from lower areas by sending
back to them from its deep pyramidal cells a template
reconstruction best fitting the lower level view. The
lower area attempts to reconcile the reconstruction of
its view that it receives from higher areas with what
it knows, sending back from its superficial pyrami-
dal cells the features in its data which are not pre-
dicted by the higher area. The whole calculation is
done with all areas working simultaneously, but with
order imposed by synchronous activity in the various
top-down, bottom-up loops.

We have tried to show that this sort of hierarchical
prediction can be implemented in brain-like architec-
tures using mechanisms that are biologically plausible
(Figure 36.3).

Backward or feedback connections?

There is something slightly counterintuitive about empir-
ical Bayes in the brain. In this view, cortical hierar-
chies are trying to generate sensory data from high-level
causes. This means the causal structure of the world is
embodied in the backward connections. Forward connec-
tions simply provide feedback by conveying prediction
error to higher levels. In short, forward connections are
the feedback connections. This is why we have been careful
not to ascribe a functional label like feedback to backward
connections. Perceptual inference emerges from recurrent
top-down and bottom-up processes that enable sensa-
tion to constrain perception. This self-organizing process
is distributed throughout the hierarchy. Similar perspec-
tives have emerged in cognitive neuroscience on the basis
of psychophysical findings. For example, Reverse Hierar-
chy Theory distinguishes between early explicit perception
and implicit low level vision, where: ‘our initial conscious
percept – vision at a glance – matches a high-level,
generalized, categorical scene interpretation, identifying
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FIGURE 36.3 A more detailed picture of the influences among units. Here, we have associated various cells with different roles in the
scheme described in the main text. The key constraint on this sort of association is that superficial pyramidal cells are the source of forward
connections, which, according to the theory, should encode prediction error.
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‘ “forest before trees” ’ (Hochstein and Ahissar, 2002). On
the other hand, backward connections are responsible for
predicting; lower level responses embed the generative or
forward model. The effect of these predictions on lower-
level responses is the focus of the next section.

ASSESSING FUNCTIONAL
ARCHITECTURES WITH BRAIN

IMAGING

In the previous section, we have seen one approach to
understanding the nature of functional integration in the
brain. We will use this framework to preview the differ-
ent ways in which integration can be measured empir-
ically, with a special focus on the interaction between
forward and backward connections. The examples used
will appear again in later chapters that take us from
simple measure of statistical correlations among different
brain areas though to dynamic causal models of cortical
hierarchies.

Clearly, it would be nice to demonstrate the existence
of top-down influences with neuroimaging. This is a
slightly deeper problem than might be envisaged. This is
because making causal inferences about effective connec-
tivity is not straightforward (see Pearl, 2000). It is not suf-
ficient to show regional activity is partially predicted by
activity in a higher level to confirm the existence of back-
ward connections because statistical dependency does, in
itself, not permit causal inference. Statistical dependen-
cies could easily arise in a purely forward architecture
because the higher-level activity is caused by activity
in the lower level. Although there are causal modelling
techniques (i.e. dynamic causal modelling (DCM)) that
can address this problem, we will start with a simpler
approach and note that interactions between bottom-up
and top-down influences cannot be explained by purely
feed-forward architectures. An interaction, in this con-
text, can be construed as an effect of backward connec-
tions on the driving efficacy of forward connections. In
other words, the response evoked by the same driving
bottom-up influence depends upon the context estab-
lished by top-down influence. This interaction is used
below simply as evidence for the existence of backward
influences. There are instances of predictive coding that
emphasize this phenomenon. For example, the ‘Kalman
filter model demonstrates how certain forms of attention
can be viewed as an emergent property of the interaction
between top-down expectations and bottom-up signals’
(Rao, 1999).

This section focuses on the evidence for these interac-
tions. From the point of view of functionally specialized

responses, these interactions manifest as context-sensitive
or contextual specialization, where modality-, category-
or exemplar-specific responses, driven by bottom-up
input are modulated by top-down influences induced by
perceptual set. The first half of this section adopts this
perceptive. The second part of this section uses measure-
ments of effective connectivity to establish interactions
between bottom-up and top-down influences. All the
examples presented below rely on attempts to establish
interactions by trying to change sensory-evoked neuronal
responses through putative manipulations of top-down
influences. These include inducing independent changes
in perceptual set, cognitive [attentional] set, perceptual
learning and, in the last section, through the study of
patients with brain lesions

Context-sensitive specialization

If functional specialization is context-dependent then one
should be able to find evidence for functionally spe-
cific responses, using neuroimaging, that are expressed
in one context and not in another. The first empirical
example provides such evidence. If the contextual nature
of specialization is mediated by backwards connections
then it should be possible to find cortical regions in which
functionally specific responses, elicited by the same stim-
uli, are modulated by activity in higher areas. The second
example shows that this is, indeed, possible. Both of these
examples depend on factorial experimental designs.

Multifactorial designs

Factorial designs combine two or more factors within a
task or tasks. Factorial designs can be construed as per-
forming subtraction experiments in two or more different
contexts. The differences in activations, attributable to the
effects of context, are simply the interaction. Consider
an implicit object recognition experiment, for example
naming (of the object’s name or the non-object’s colour)
and simply saying ‘yes’ during passive viewing of objects
and non-objects. The factors in this example are implicit
object recognition with two levels (objects versus non-
objects) and phonological retrieval (naming versus say-
ing ‘yes’). The idea here is to look at the interaction
between these factors, or the effect that one factor has
on the responses elicited by changes in the other. In
our experiment, object-specific responses are elicited (by
asking subjects to view objects relative to meaningless
shapes), with and without phonological retrieval. This
‘two-by-two’ design allows one to look at the interaction
between phonological retrieval and object recognition.
This analysis identifies not regionally specific activations
but regionally specific interactions. When we performed
this experiment, these interactions were evident in the left
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posterior, inferior temporal region and can be associated
with the integration of phonology and object recogni-
tion (see Figure 36.4 and Friston et al., 1996 for details).
Alternatively, this region can be thought of as express-
ing recognition-dependent responses that are realized in,
and only in, the context of having to name the object.
These results can be construed as evidence of contextual
specialization for object-recognition that depends upon
modulatory afferents (possibly from temporal and pari-
etal regions) that are implicated in naming a visually
perceived object. There is no empirical evidence in these
results to suggest that the temporal or parietal regions
are the source of this top-down influence but, in the next
example, the source of modulation is addressed explicitly
using psychophysiological interactions.

Psychophysiological interactions

Psychophysiological interactions speak directly to the
interactions between bottom-up and top-down influ-
ences, where one is modelled as an experimental factor
and the other constitutes a measured brain response. In
an analysis of psychophysiological interactions, one is
trying to explain a regionally specific response in terms
of an interaction between the presence of a sensorimotor
or cognitive process and activity in another part of the
brain (Friston et al., 1997). The supposition here is that
the remote region is the source of backward modulatory
afferents that confer functional specificity on the target
region. For example, by combining information about
activity in the posterior parietal cortex, mediating atten-
tional or perceptual set pertaining to a particular stimulus
attribute, can we identify regions that respond to that
stimulus when, and only when, activity in the parietal
source is high? If such an interaction exists, then one

might infer that the parietal area is modulating responses
to the stimulus attribute for which the area is selective.
This has clear ramifications in terms of the top-down
modulation of specialized cortical areas by higher brain
regions.

The statistical model employed in testing for psy-
chophysiological interactions is a simple regression
model of effective connectivity that embodies non-linear
(second-order or modulatory effects). As such, this class
of model speaks directly to functional specialization of
a non-linear and contextual sort. Figure 36.5 illustrates a
specific example (see Dolan et al., 1997 for details). Sub-
jects were asked to view degraded face and non-face con-
trol stimuli. The interaction between activity in the pari-
etal region and the presence of faces was expressed most
significantly in the right infero-temporal region not far
from the homologous left infero-temporal region impli-
cated in the object naming experiment above. Changes
in parietal activity were induced experimentally by pre-
exposure to un-degraded stimuli before some scans but
not others. The data in the right panel of Figure 36.5 sug-
gest that the infero-temporal region shows face-specific
responses, relative to non-face objects, when, and only
when, parietal activity is high. These results can be inter-
preted as a priming-dependent face-specific response, in
infero-temporal regions that are mediated by interactions
with medial parietal cortex. This is a clear example of con-
textual specialization that depends on top-down effects.

Effective connectivity

The previous examples, demonstrating contextual spe-
cialization, are consistent with functional architectures

Object-specific activations

No naming

A
dj
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te

d 
rC

B
F

Naming

FIGURE 36.4 This example of regionally specific interactions comes from an experiment where subjects were asked to view coloured
non-object shapes or coloured objects and say ‘yes’, or to name either the coloured object or the colour of the shape. Left: a regionally specific
interaction in the left infero-temporal cortex. The SPM (statistical parametric map) threshold is p < 0�05 (uncorrected). Right: the corresponding
activities in the maxima of this region are portrayed in terms of object recognition-dependent responses with and without naming. It is seen
that this region shows object recognition responses when, and only when, there is phonological retrieval. The ‘extra’ activation with naming
corresponds to the interaction. These data were acquired from six subjects scanned 12 times using PET.
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FIGURE 36.5 Top: examples of the stimuli presented to subjects. During the measurement of brain responses only degraded stimuli
where shown (e.g. the right-hand picture). In half the scans, the subject was given the underlying cause of these stimuli, by presenting the
original picture (e.g. left-hand picture) before scanning. This priming induced a profound difference in perceptual set for the primed, relative
to non-primed, stimuli. Lower right: activity observed in a right infero-temporal region, as a function of mean-corrected posterior parietal
cortex (PPC) activity. This region showed the most significant interaction between the presence of faces and activity in a reference location
in the posterior medial parietal cortex. This analysis can be thought of as finding those areas that are subject to top-down modulation of
face-specific responses by medial parietal activity. The crosses correspond to activity while viewing non-face stimuli and the circles to faces.
The essence of this effect can be seen by noting that this region differentiates between faces and non-faces when, and only when, medial
parietal activity is high. The lines correspond to the best second-order polynomial fit. These data were acquired from six subjects using PET.
Lower left: schematic depicting the underlying conceptual model in which driving afferents from ventral form areas (here designated as V4)
excite infero-temporal (IT) responses, subject to permissive modulation by PPC projections.

implied by empirical Bayes. However, they do not pro-
vide definitive evidence for an interaction between top-
down and bottom-up influences. In this subsection, we
look for direct evidence of these interactions using mod-
els of effective connectivity. This requires a plausi-
ble model of coupling among brain regions that can
accommodate non-linear effects. We will illustrate the use
of models based on the Volterra expansion and conclude
with an example using DCM for event-related potentials
(ERP). These examples change context using attention
and perceptual learning respectively.

Non-linear coupling among brain areas

Linear models of effective connectivity assume that the
multiple inputs to a brain region are linearly separable.
This assumption precludes activity-dependent connec-
tions that are expressed in one context and not in another.
The resolution of this problem lies in adopting non-linear
models like the Volterra formulation. Non-linearities can
be construed as a context-or activity-dependent modula-
tion of the influence that one region exerts over another

(Büchel and Friston, 1997). In the Volterra model, second-
order kernels model modulatory effects. Within these
models, the influence of one region on another has two
components: the direct or driving influence of input from
the first (e.g. hierarchically lower) region, irrespective of
the activities elsewhere, and a modulatory component that
represents an interaction with input from the remaining
(e.g. hierarchically higher) regions. These are mediated by
first- and second-order kernels respectively. The example
provided in Figure 36.6 addresses the modulation of visual
cortical responses by attentional mechanisms (e.g. Treue
and Maunsell, 1996) and the mediating role of activity-
dependent changes in effective connectivity.

The lower panel in Figure 36.6 shows a characteriza-
tion of this modulatory effect in terms of the increase in
V5 responses, to a simulated V2 input, when posterior
parietal activity is zero (broken line) and when it is high
(solid line). In this study, subjects were studied with fMRI
under identical stimulus conditions (visual motion sub-
tended by radially moving dots) while manipulating the
attentional component of the task (detection of velocity
changes). The brain regions and connections comprising
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FIGURE 36.6 Upper panel: brain regions and connections
comprising a model of distributed responses. Lower panel: char-
acterization of the effects of V2 on V5 and their modulation by
posterior parietal cortex (PPC). The broken line represents estimates
of V5 responses when PPC activity is zero, according to a second
order Volterra model of effective connectivity with input to V5 from
V2, PPC and the pulvinar (PUL). The solid curve represents the
same response when PPC activity is one standard deviation of its
variation over conditions. It is evident that V2 has an activating
effect on V5 and that PPC increases the responsiveness of V5 to these
data. The insert shows all the voxels in V5 that evidenced a modu-
latory effect (p < 0�05 uncorrected). These voxels were identified by
thresholding an SPM (statistical parametric map) of the F -statistic,
testing for the contribution of second-order kernels involving V2
and PPC (treating all other terms as nuisance variables). The data
were obtained with fMRI under identical stimulus conditions (visual
motion subtended by radially moving dots) while manipulating the
attentional component of the task (detection of velocity changes).

the model are shown in the upper panel. The lower panel
shows a characterization of the effects of V2 data on V5
and their modulation by posterior parietal cortex (PPC)
using simulated data at different levels of PPC activ-
ity. It is evident that V2 has an activating effect on V5
and that PPC increases the responsiveness of V5 to these
inputs. The insert shows all the voxels in V5 that evi-
denced a modulatory effect (p < 0�05 uncorrected). These
voxels were identified by thresholding statistical para-
metric maps of the F-statistic testing for second-order
kernels involving V2 and PPC, while treating all other
components as nuisance variables. The estimation of the

Volterra kernels and statistical inference procedure are
described in Friston and Büchel (2000).

These results suggest that top-down parietal influ-
ences may be a sufficient explanation for the attentional
modulation of visually evoked extrastriate responses.
More importantly, they are consistent with the functional
architecture implied by predictive coding, because they
establish the existence of functionally expressed back-
ward connections. In our final example, we use per-
ceptual learning to induce changes in connections and
DCM to measure those changes. Unlike Volterra formu-
lations of effective connectivity, dynamic causal mod-
els parameterize the coupling among brain areas explic-
itly. This means that one can make inference about
directed influences that are causal and quantitative in
nature. We will illustrate this using an example from
electroencephalography.

Perceptual learning, prediction error and
the MMN

The mismatch negativity (MMN) is a negative compo-
nent of the ERP elicited by a change in some repetitive
aspect of auditory stimulation. The MMN can be seen in
the absence of attention and is generally thought to reflect
pre-attentive processing in the temporal and frontal sys-
tem (Näätänen, 2003). The MMN is elicited by stimulus
change at about 100–200 ms after the stimulus, and is
presumed to reflect an automatic comparison of stimuli
to sensory memory representations encoding the repet-
itive aspects of auditory inputs. This prevailing theory
assumes that there are distinct change-specific neurons in
auditory cortex that generate the MMN. The alternative
view is that preceding stimuli adapt feature-specific neu-
rons. In this adaptation hypothesis, the response is delayed
and suppressed on exposure to repeated stimuli, giving
rise to the MMN (Jääskeläinen et al., 2004).

The empirical Bayes scheme would suggest that a
component of the event-related potential (ERP) corre-
sponding to prediction error, is suppressed more effi-
ciently after learning-related plasticity in backward and
lateral connections (and implicitly forward connections
by Eqn. 36.12). This suppression would be specific for the
repeated aspects of the stimuli and would be a selective
suppression of prediction error. Recall that error sup-
pression (i.e. minimization of free energy) is the motiva-
tion for plasticity in the M-step. The ensuing repetition
suppression hypothesis suggests the MMN is simply the
attenuation of evoked prediction error. As noted above,
prediction error may be encoded by superficial pyrami-
dal cells (see Figure 36.3), which are a major contributor
to the ERP.

In summary, both the E-step and M-step try to mini-
mize free energy; the E-step does this during perceptual
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inference, on a time-scale of milliseconds, and the M-step,
during perceptual learning, over seconds or longer. If the
ERP is an index of prediction error (i.e. free energy), the
ERP evoked by the first, in a train of repeated stimuli,
will decrease with each subsequent presentation. This
decrease discloses the MMN evoked by a new (oddball)
stimulus. In this view, the MMN is subtended by a posi-
tivity that increases with the number of standards.

DCM and perceptual learning

We elicited event-related potentials that exhibited a
strong modulation of late components, on comparing
responses to frequent and rare stimuli, using an audi-
tory oddball paradigm. Auditory stimuli, 1000 or 2000 Hz

tones with 5 ms rise and fall times and 80 ms duration,
were presented binaurally. The tones were presented for
15 minutes, every 2 s in a pseudo-random sequence with
2000 Hz tones on 20 per cent of occasions and 1000 Hz
tones for 80 per cent of the time (standards). The subject
was instructed to keep a mental record of the number of
2000 Hz tones (oddballs). Data were acquired using 128
electrodes with 1000 Hz sample-frequency. Before aver-
aging, data were referenced to mean earlobe activity and
bandpass filtered between 1 and 30 Hz. Trials showing
ocular artefacts and bad channels were removed from
further analysis.

Six sources were identified using conventional proce-
dures and used to construct four dynamic causal models
(see Figure 36.7 and Chapter 42). To establish evidence for
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FIGURE 36.7 Left: schematic showing the extrinsic connections of a DCM (dynamic causal model) used to explain ERP data; a bilateral
extrinsic input acts on primary auditory cortices which project reciprocally to orbitofrontal regions. In the right hemisphere, an indirect
pathway was specified via a relay in the superior temporal gyrus. At the highest level, orbitofrontal and left posterior cingulate cortices were
assumed to be laterally and reciprocally connected. Sources were coupled with extrinsic cortico-cortical connections following the rules of
Felleman and van Essen (1991) – upper insert. A1: primary auditory cortex, OFC: orbitofrontal cortex, PCC: posterior cingulate cortex, STG:
superior temporal gyrus (right is on the right and left on the left). The free parameters of this model included extrinsic connection strengths
that were adjusted to explain best the observed ERPs. Critically, these parameters allowed for differences in connections between standard
and oddball trials. Right: the results of a Bayesian model selection are shown in terms of the log-evidence for models allowing changes in
forward �F�, backward �B�, forward and backward �FB� and forward, backward and lateral �FBL� connections. In this example, there is strong
evidence that forward, backward and lateral connections change with perceptual learning.
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changes in backward and lateral connections, above and
beyond changes in forward connections, we employed
Bayesian model selection (see Chapter 35). This entailed
specifying four models that allowed for changes in for-
ward, backward, forward and backward and in all con-
nections. These, and only these, changes in extrinsic
connectivity could explain the differences in the ERP,
elicited by standard relative to oddball stimuli. The mod-
els were compared using the negative free energy as
an approximation to the log-evidence for each model:
if, after inversion, we assume the approximating con-
ditional density is the true conditional density, the free
energy reduces to the log-evidence (see Eqn. 36.4). In
Bayesian model selection, a difference in log-evidence
of three or more can be considered as strong evidence
for the model with the greater evidence, relative to the
one with less. The log evidences for the four models
are shown in Figure 36.7. The model with the highest
evidence (by a margin of 27.9) is the DCM that allows
for learning-related changes in forward, backward and
lateral connections. These results provide clear evidence
that changes in backward and lateral connections are
needed to explain the observed differences in cortical
responses.

In the final section, the implications of hierarchically
organized connections are considered from the point of
view of the lesion-deficit model and neuropsychology.

FUNCTIONAL INTEGRATION AND
NEUROPSYCHOLOGY

If functional specialization depends on interactions
among cortical areas, then one might predict changes
in functional specificity in cortical regions that receive
enabling or modulatory afferents from a damaged area.
A simple consequence is that aberrant responses will
be elicited in regions hierarchically below the lesion if,
and only if, these responses depend upon input from
the lesion site. However, there may be other contexts
in which the region’s responses are perfectly normal
(relying on other, intact, afferents). This leads to the
notion of a context-dependent region-specific abnormal-
ity, caused by, but remote from, a lesion (i.e. an abnormal
response that is elicited by some tasks but not others). We
have referred to this phenomenon as ‘dynamic diaschisis’
(Price et al., 2001).

Dynamic diaschisis

Classical diaschisis, demonstrated by early anatomical
studies and more recently by neuroimaging studies of

resting brain activity, refers to regionally specific reduc-
tions in metabolic activity at sites that are remote from,
but connected to, damaged regions. The clearest exam-
ple is ‘crossed cerebellar diaschisis’ (Lenzi et al., 1982),
in which abnormalities of cerebellar metabolism are
seen following cerebral lesions involving the motor cor-
tex. Dynamic diaschisis describes the task-specific effects
that a lesion can have on the evoked responses of a dis-
tant cortical region. The basic idea is that an other-
wise viable cortical region expresses aberrant neuronal
responses when, and only when, those responses depend
upon interactions with a damaged region. This can arise
because normal responses in any given region depend
upon reciprocal interactions with other regions. The
regions involved will depend on the cognitive and sen-
sorimotor operations engaged at any particular time. If
these regions include one that is damaged, then abnor-
mal responses may ensue. However, there may be sit-
uations when the same region responds normally, for
instance when its dynamics depend only upon integra-
tion with undamaged regions. If the region can respond
normally in some situations then forward driving compo-
nents must be intact. This suggests that dynamic diaschi-
sis will only present itself when the lesion involves a
hierarchically equivalent or higher area.

An example from neuropsychology

We investigated this possibility in a functional imaging
study of four aphasic patients, all with damage to the
left posterior inferior frontal cortex, classically known as
Broca’s area (Figure 36.8; upper panels). These patients
had speech output deficits but relatively preserved com-
prehension. Generally, functional imaging studies can
only make inferences about abnormal neuronal responses
when changes in cognitive strategy can be excluded. We
ensured this by engaging the patients in an explicit task
that they were able to perform normally. This involved
a key-press response when a visually presented letter
string contained a letter with an ascending visual feature
(e.g. h, k, l, or t). While the task remained constant, the
stimuli presented were either words or consonant letter
strings. Activations detected for words, relative to letters,
were attributed to implicit word processing. Each patient
showed normal activation of the left posterior middle
temporal cortex that has been associated with semantic
processing (Price, 1998). However, none of the patients
activated the left posterior inferior frontal cortex (dam-
aged by the stroke), or the left posterior inferior tempo-
ral region (undamaged by the stroke) (see Figure 36.4).
These two regions are crucial for word production (Price,
1998). Examination of individual responses in this area
revealed that all the normal subjects showed increased
activity for words relative to consonant letter strings,
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(a)
Lesion sites in four patients

(b)
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FIGURE 36.8 (a) Top: these renderings illustrate the extent of cerebral infarcts in four patients, as identified by voxel-based morphometry.
Regions of reduced grey matter (relative to neurologically normal controls) are shown in white on the left hemisphere. The SPMs (statistical
parametric maps) were thresholded at p < 0�001 uncorrected. All patients had damage to Broca’s area. The first (upper left) patient’s left
middle cerebral artery infarct was most extensive encompassing temporal and parietal regions as well as frontal and motor cortex. (b) Bottom:
SPMs illustrating the functional imaging results with regions of significant activation shown in black on the left hemisphere. Results are
shown for normal subjects reading words (left); activations common to normal subjects; and patients reading words using a conjunction
analysis (middle-top); areas where normal subjects activate significantly more than patients reading words, using the group times condition
interaction (middle lower); and the first patient activating normally for a semantic task. Context-sensitive failures to activate are implied by
the abnormal activations in the first patient, for the implicit reading task, despite a normal activation during a semantic task.

while all four patients showed the reverse effect. The
abnormal responses in the left posterior inferior tempo-
ral lobe occurred even though this undamaged region
lies adjacent and posterior to a region of the left mid-
dle temporal cortex that activated normally (see middle
column of Figure 36.8(b)). Critically, this area is thought
to mediate an earlier stage of word-processing than the
damaged left inferior frontal cortex (i.e. is hierarchically
lower than the lesion). From these results we can con-
clude that, during the reading task, responses in the left
basal temporal language area rely on afferents from the
left posterior inferior frontal cortex. When the first patient
was scanned again, during an explicit semantic task, the
left posterior inferior temporal lobe responded normally.
The abnormal implicit reading related responses were
therefore task-specific.

These results serve to illustrate the concept of dynamic
diaschisis, namely, the anatomically remote and context-
specific effects of focal brain lesions. Dynamic diaschi-

sis represents a form of functional disconnection where
regional dysfunction can be attributed to the loss of
enabling inputs from hierarchically equivalent or higher
brain regions. Unlike classical or anatomical discon-
nection syndromes, its pathophysiological expression
depends upon the functional state at the time responses
are evoked. Dynamic diaschisis may be characteristic
of many regionally specific brain insults and may have
implications for neuropsychological inference.

CONCLUSION

In conclusion, the function of any neuron, neuronal pop-
ulation or cortical area is context-sensitive. Functional
integration, or interactions among brain systems, that
employ forward (bottom-up) and backward (top-down)
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connections, mediate this adaptive specialization. A criti-
cal consequence is that hierarchically organized neuronal
responses, in any given cortical area, can represent dif-
ferent things at different times. Although most models of
perceptual learning and inference require priors on the
causes of sensation, empirical Bayes suggests that these
assumptions can be relaxed and that priors can be learned
in a hierarchical context. We have tried to show that this
hierarchical prediction can be implemented in brain-like
architectures and in a biologically plausible fashion. The
arguments in this chapter were developed under empir-
ical or hierarchal Bayes models of brain function, where
higher levels provide a prediction of the inputs to lower
levels. Conflict between the two is resolved by changes
in the higher-level representations, which are driven by
the ensuing error in lower regions, until the mismatch is
explained away. From this perspective, the specialization
of any region is determined both by bottom-up inputs
and by top-down predictions. Specialization is therefore
not an intrinsic property of any region, but depends on
both forward and backward connections with other areas.
Because the latter have access to the context in which the
data are generated they are in a position to modulate the
selectivity of lower areas.

The theoretical neurobiology in this chapter has been
used to motivate the importance of measuring effective
connectivity, especially modulatory or non-linear cou-
pling in the brain. These non-linear aspects will be a
recurrent theme in subsequent chapters that discuss func-
tional and effective connectivity from a conceptual and
operational point of view.
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Functional connectivity: eigenimages and
multivariate analyses

K. Friston and C. Büchel

INTRODUCTION

This chapter deals with imaging data from a multivari-
ate perspective. This means that the observations at each
voxel are considered jointly with explicit reference to
the interactions among brain regions. The concept of
functional connectivity is reviewed and is used as the
basis for interpreting eigenimages. Having considered
the nature of eigenimages and variations on their appli-
cations, we then turn to a related approach that, unlike
eigenimage analysis, is predicated on a statistical model.
This approach is called multivariate analysis of vari-
ance (MANCOVA) and uses canonical variate analysis to
create canonical images. The integrated and distributed
nature of neurophysiological responses to sensorimotor
or cognitive challenge makes a multivariate perspective
particularly appropriate, indeed necessary, for functional
integration.

Functional integration and connectivity

A landmark meeting that took place on the morning of
4 August 1881 highlighted the difficulties of attributing
function to a cortical area, given the dependence of cere-
bral activity on underlying connections (Phillips et al.,
1984). Goltz, although accepting the results of electrical
stimulation in dog and monkey cortex, considered the
excitation method inconclusive, in that the movements
elicited might have originated in related pathways, or
current could have spread to distant centres. Despite
advances over the past century, the question remains:
are the physiological changes elicited by sensorimotor
or cognitive challenges explained by functional segrega-
tion, or by integrated and distributed changes mediated
by neuronal connections? The question itself calls for a

framework within which to address these issues. Func-
tional and effective connectivity are concepts that are critical
to this framework.

Origins and definitions

In the analysis of neuroimaging time-series, functional
connectivity is defined as the statistical dependencies among
spatially remote neurophysiologic events. This definition
provides a simple characterization of functional inter-
actions. The alternative is effective connectivity (i.e.
the influence one neuronal system exerts over another).
These concepts originated in the analysis of separable
spike trains obtained from multiunit electrode record-
ings (Gerstein and Perkel, 1969). Functional connectiv-
ity is simply a statement about the observed depen-
dencies or correlations; it does not comment on how
these correlations are mediated. For example, at the
level of multiunit microelectrode recordings, correlations
can result from stimulus-locked transients, evoked by a
common afferent input, or reflect stimulus-induced oscil-
lations, phasic coupling of neuronal assemblies, medi-
ated by synaptic connections. Effective connectivity is
closer to the notion of a connection and can be defined
as the influence one neural system exerts over another,
either at a synaptic (cf. synaptic efficacy) or cortical
level. Although functional and effective connectivity can
be invoked at a conceptual level in both neuroimag-
ing and electrophysiology, they differ fundamentally at
a practical level. This is because the time-scales and
nature of neurophysiological measurements are very
different (seconds versus milliseconds and haemody-
namic versus spike trains). In electrophysiology, it is
often necessary to remove the confounding effects of
stimulus-locked transients (that introduce correlations
not causally mediated by direct neuronal interactions)
to reveal an underlying connectivity. The confounding
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effect of stimulus-evoked transients is less problematic
in neuroimaging because propagation of dynamics from
primary sensory areas onwards is mediated by neu-
ronal connections (usually reciprocal and interconnect-
ing). However, it should be remembered that functional
connectivity is not necessarily due to effective connectiv-
ity (e.g. common neuromodulatory input from ascending
aminergic neurotransmitter systems or thalamo-cortical
afferents) and, where it is, effective influences may be
indirect (e.g. polysynaptic relays through multiple areas).

EIGENIMAGES, MULTIDIMENSIONAL
SCALING AND OTHER DEVICES

In what follows, we introduce a number of techniques
(eigenimage analysis, multidimensional scaling, partial
least squares and generalized eigenimage analysis) using
functional connectivity as a reference. Emphasis is placed
on the relationship among these techniques. For example,
eigenimage analysis is equivalent to principal component
analysis and the variant of multidimensional scaling con-
sidered here is equivalent to principal coordinates anal-
ysis. Principal components and coordinates analyses are
predicated on exactly the same eigenvector solution and,
from a mathematical perspective, are the same thing.

Measuring a pattern of correlated activity

Here we introduce a simple way of measuring the
amount a pattern of activity (representing a connected
brain system) contributes to the functional connectiv-
ity or variance-covariances observed in imaging data.
Functional connectivity is defined in terms of statistical
dependencies among neurophysiological measurement.
If we assume these measurements conform to Gaus-
sian assumptions, then we need only characterize their
correlations or covariance (correlations are normalized
covariances).1 The point-to-point functional connectivity
between one voxel and another is not usually of great
interest. The important aspect of a covariance structure is
the pattern of correlated activity subtended by (an enor-
mous number of) pair-wise covariances. In measuring
such patterns, it is useful to introduce the concept of a
norm. Vector and matrix norms serve the same purpose
as absolute values for scalar quantities. In other words,

1 Clearly neuronal processes are not necessarily Gaussian. How-
ever, we can still characterize the second-order dependen-
cies with the correlations. Higher-order dependencies would
involve computing cumulants as described in Appendix 2.

they furnish a measure of distance. One frequently used
norm is the 2-norm, which is the length of a vector. The
vector 2-norm can be used to measure the degree to
which a particular pattern of brain activity contributes
to a covariance structure. If a pattern is described by a
column vector p, with an element for each voxel, then the
contribution of that pattern to the covariance structure
can be measured by the 2-norm of Mp = �Mp�. M is a
(mean-corrected) matrix of data with one row for each
successive scan and one column for each voxel:

�Mp�2 = pT MT Mp 37.1

T denotes transposition. Put simply, the 2-norm is a num-
ber that reflects the amount of variance-covariance or
functional connectivity that can be accounted for by a
particular distributed pattern. It should be noted that the
2-norm only measures the pattern of interest. There may
be many other important patterns of functional connec-
tivity. This fact begs the question: ‘what are the most
prevalent patterns of coherent activity?’ To answer this
question one turns to eigenimages or spatial modes.

Eigenimages and spatial modes

In this section, the concept of eigenimages or spatial
modes is introduced in terms of patterns of activity
defined above. We show that spatial modes are sim-
ply those patterns that account for the most variance-
covariance (i.e. have the largest 2-norm).

Eigenimages or spatial modes are most commonly
obtained using singular value decomposition (SVD). SVD
is an operation that decomposes an original time-series,
M , into two sets of orthogonal vectors (patterns in space
and patterns in time) V and U where:

�U�S�V� = SVD�M�

M = USV T
37.2

U and V are unitary orthogonal matrices UT U = I , V T V =
I and V T U = 0 (the sum of squares of each column is
unity and all the columns are uncorrelated) and S is
a diagonal matrix (only the leading diagonal has non-
zero values) of decreasing singular values. The singular
value of each eigenimage is simply its 2-norm. Because
SVD maximizes the first singular value, the first eigenim-
age is the pattern that accounts for the greatest amount
of the variance-covariance structure. In summary, SVD
and equivalent devices are powerful ways of decom-
posing an imaging time-series into a series of orthogo-
nal patterns that embody, in a step-down fashion, the
greatest amounts of functional connectivity. Each eigen-
vector (column of V ) defines a distributed brain system
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that can be displayed as an image. The distributed sys-
tems that ensue are called eigenimages or spatial modes
and have been used to characterize the spatiotempo-
ral dynamics of neurophysiological time-series from sev-
eral modalities including, multiunit electrode recordings
(Mayer-Kress et al., 1991), electroencephalography (EEG)
(Friedrich et al., 1991), magnetoencephalography (MEG)
(Fuchs et al., 1992), positron emission tomography (PET)
(Friston et al., 1993a) and functional magnetic resonance
imaging (fMRI) (Friston et al., 1993b). Interestingly, in
fMRI, the application of eigenimages that has attracted
the most interest is in characterizing functional connec-
tions while the brain is at ‘rest’ (see Biswal et al., 1995).

Many readers will notice that the eigenimages asso-
ciated with the functional connectivity or covariance
matrix are simply principal components of the time-
series. In the EEG literature, one sometimes comes across
the Karhunen-Loeve expansion, which is employed to
identify spatial modes. If this expansion is in terms of
eigenvectors of covariances (and it usually is), then the
analysis is formally identical to the one presented above.

One might ask what the column vectors of U in
Eqn. 37.2 correspond to. These vectors are the time-
dependent profiles associated with each eigenimage
known as eigenvariates. They reflect the extent to which
an eigenimage is expressed in each experimental condi-
tion or over time. Figure 37.1 shows a simple schematic

illustrating the decomposition of a time-series into
orthogonal modes. This is sometimes called spectral
decomposition. Eigenvariates play an important role in
the functional attribution of distributed systems defined
by eigenimages. This point and others will be illustrated
in the next section.

Mapping function into anatomical space –
eigenimage analysis

To illustrate the approach, we will use the PET word
generation study used in previous chapters. The data
were obtained from five subjects scanned twelve times
while performing one of two verbal tasks in alternation.
One task involved repeating a letter presented aurally
at one per 2 s (word shadowing). The other was a paced
verbal fluency task, where subjects responded with a
word that began with the heard letter (word genera-
tion). To facilitate inter-subject pooling, the data were
realigned and spatially normalized and smoothed with
an isotropic Gaussian kernel (full width at half maxi-
mum (FWHM) of 16 mm). The data were then subject
to an analysis of covariance (ANCOVA) (with twelve
condition-specific effects, subject-effects and global activ-
ity as a confounding effect). Voxels were selected using
a conventional SPM�F� to identify those significant

FIGURE 37.1 Schematic illustrating a simple spec-
tral decomposition or singular-decomposition of a mul-
tivariate time-series. The original time-series is shown
in the upper panel with time running along the x axis.
The first three eigenvariates and eigenvectors are shown
in the middle panels together with the spectrum [hence
spectral decomposition] of singular values. The eigenval-
ues are the square of the singular values 	 = SST . The
lower panel shows the data reconstructed using only
three principal components, because they capture most
of the variance the reconstructed sequence is very similar
to the original time-series.
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at p < 0
05 (uncorrected). The time-series of condition-
specific effects, from each of these voxels, were entered
into a mean corrected data matrix M with twelve rows
(one for each condition) and one column for each voxel.

M was subject to SVD as described above. The dis-
tribution of eigenvalues (Figure 37.2, lower left) sug-
gests only two eigenimages are required to account for
most of the observed variance-covariance structure. The
first mode accounted for 64 per cent and the second for
16 per cent of the variance. The first eigenimage V1 is
shown in Figure 37.2 (top) along with the correspond-
ing eigenvariate U1 (lower right). The first eigenimage
has positive loadings in the anterior cingulate, the left

dorso-lateral prefrontal cortex (DLPFC), Broca’s area, the
thalamic nuclei and in the cerebellum. Negative load-
ings were seen bi-temporally and in the posterior cin-
gulate. According to U1, this eigenimage is prevalent in
the verbal fluency tasks with negative scores in word
shadowing. The second spatial mode (not shown) had
its highest positive loadings in the anterior cingulate and
bi-temporal regions (notably Wernicke’s area on the left).
This mode appears to correspond to a highly non-linear,
monotonic time effect with greatest prominence in earlier
conditions.

The post hoc functional attribution of these eigenimages
is usually based on their eigenvariates, U . The first mode

Eigenimage analysis:

co
m

po
ne

nt
 s

co
re

observation

0 5 10

–0.2

–0.4

0.2

0

0.4

eigenimage

ei
ge

nv
al

ue

64.4 percent of variance

0
0 5 10

2

4

6

8

Eigenimage 1 {+ve} Eigenimage 1 {–ve}

sagittal

VPC VAC

0

–104 68

VPC VAC

transverse

0

64
R

32

0

0 64

R72
coronal

transverse

0

64
R

VPC VAC

–104 68VPC VAC

sagittal

640

R

32

0

72
coronal

0

FIGURE 37.2 Eigenimage analysis of the PET activation study of word generation. Top: positive and negative components of the first
eigenimage (i.e. first column of V ). The maximum intensity projection display format is standard and provides three views of the brain (from
the back, from the right and from the top). Lower left: eigenvalues (singular values squared) of the functional connectivity matrix reflecting the
relative amounts of variance accounted for by the eleven eigenimages associated with these data. Only two eigenvalues are greater than unity
and, to all intents and purposes, the changes characterizing this time-series can be considered two-dimensional. Lower right: the temporal
eigenvariate reflecting the expression of this eigenimage over conditions (i.e. the first column of U ).
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may represent an intentional system critical for the intrin-
sic generation of words in the sense that the key cognitive
difference between verbal fluency and word shadowing
is the intrinsic generation as opposed to extrinsic speci-
fication of word representations and implicit mnemonic
processing. The second system, which includes the ante-
rior cingulate, seems to be involved in habituation, pos-
sibly of attentional or perceptual set.

There is nothing biologically important about the par-
ticular spatial modes obtained in this fashion, in the sense
that one could rotate the eigenvectors such that they were
still orthogonal and yet gave different eigenimages. The
uniqueness of the particular solution given by SVD is
that the first eigenimage accounts for the largest amount
of variance-covariance and the second for the greatest
amount that remains and so on. The reason that the
eigenimages in the example above lend themselves to
such a simple interpretation is that the variance intro-
duced by experimental design (intentional) was substan-
tially greater than that due to time (attentional) and both
these sources were greater than any other effect. Other
factors that ensure a parsimonious characterization of a
time-series, with small numbers of well-defined modes,
include the smoothness in the data and using only voxels
that showed a non-trivial amount of change during the
scanning session.

Mapping anatomy into functional space –
multidimensional scaling

In the previous section, the functional connectivity matrix
was used to define eigenimages or spatial modes. In this
section, functional connectivity is used in a different way,
namely, to constrain the proximity of two cortical areas in
some functional space (Friston et al., 1996a). The objective
here is to transform anatomical space so that the distance
between cortical areas is directly related to their func-
tional connectivity. This transformation defines a new
space whose topography is purely functional in nature.
This space is constructed using multidimensional scaling
or principal coordinates analysis (Gower, 1966).

Multidimensional scaling (MDS) is a descriptive
method for representing the structure of a system. It is
based on pair-wise measures of similarity or confusability
(Torgerson, 1958; Shepard, 1980). The resulting multidi-
mensional deployment of a system’s elements embodies,
in the proximity relationships, comparative similarities.
The technique was developed primarily for the analysis
of perceptual spaces. The proposal that stimuli be mod-
elled by points in space, so that perceived similarity is
represented by spatial distances, goes back to the days of
Isaac Newton (1794).

Imagine k measures from n voxels plotted as n points
in a k-dimensional space (k-space). If they have been nor-
malized to zero mean and unit sum of squares, these
points will fall on a k−1 dimensional sphere. The closer
any two points are to each other, the greater their corre-
lation or functional connectivity (in fact, the correlation
is the cosine of the angle subtended at the origin). The
distribution of these points is the functional topography.
A view of this distribution that reveals the greatest struc-
ture is obtained by rotating the points to maximize their
apparent dispersion (variance). In other words, one looks
at the subspace with the largest ‘volume’ spanned by the
principal axes of the n points in k-space. These princi-
pal axes are given by the eigenvectors of MMT ; i.e. the
column vectors of U1. From Eqn. 37.2:

MMT = U	UT

	 = SST
37.3

Let Q be the matrix of desired coordinates derived by
simply projecting the original data onto axes defined by
U : where Q = MT U . Voxels that have a correlation of
unity will occupy the same point in MDS space. Vox-
els that have uncorrelated time-series will be �/2 apart.
Voxels that are negatively, but completely, correlated
will be maximally separated on the opposite sides of the
MDS hyperspace. Profound negative correlations denote
a functional association that is modelled in MDS func-
tional space as diametrically opposed locations on the
hypersphere. In other words, two regions with profound
negative correlations will form two ‘poles’ in functional
space.

Following normalization to unit sum of squares, over
each column M (the adjusted data matrix from the word
generation study above), the data matrix was subjected
to singular value decomposition according to Eqn. 37.2
and the coordinates Q of the voxels in MDS functional
space were computed. Recall that only two [normalized]
eigenvalues exceed unity (see Figure 37.2; right), suggest-
ing a functional space that is essentially two-dimensional.
The locations of voxels in this two-dimensional sub-
space are shown in Plate 53(c) and (d) (see colour plate
section) by rendering voxels from different regions in
different colours. The anatomical regions corresponding
to the different colours are shown in Plate 53(a) and
(b). Anatomical regions were selected to include those
parts of the brain that showed the greatest variance dur-
ing the twelve conditions. Anterior regions (Plate 53(b))
included the medio-dorsal thalamus (blue), the DLPFC,
Broca’s area (red) and the anterior cingulate (green). Pos-
terior regions (Plate 53(a)) included the superior tempo-
ral regions (red), the posterior superior temporal regions
(blue) and the posterior cingulate (green). The corre-
sponding functional spaces (Plate 53(c) and (d)) reveal
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a number of things about the functional topography
elicited by this set of activation tasks. First, each anatom-
ical region maps into a relatively localized portion of
functional space. This preservation of local contiguity
reflects the high correlations within anatomical regions,
due in part to smoothness of the original data and to
high degrees of intra-regional functional connectivity.
Second, the anterior regions are almost in juxtaposition,
as are posterior regions. However, the confluence of
anterior and posterior regions forms two diametrically
opposing poles (or one axis). This configuration suggests
an anterior-posterior axis with prefronto-temporal and
cingulo-cingulate components. One might have predicted
this configuration by noting that the anterior regions
had high positive loadings on the first eigenimage (see
Figure 37.2), while the posterior regions had high neg-
ative loadings. Thirdly, within the anterior and poste-
rior sets of regions certain generic features are evident.
The most striking is the particular ordering of functional
interactions. For example, the functional connectivity
between posterior cingulate (green) and superior tempo-
ral regions (red) is high and similarly for the superior
temporal (red) and posterior temporal regions (blue). Yet
the posterior cingulate and posterior temporal regions
show very little functional connectivity (they are �/2
apart or, equivalently, subtend 90 degrees at the origin).

These results are consistent with known anatomical
connections. For example, DLPFC – anterior cingu-
late connections, DLPFC – temporal connections, bi-
temporal commissural connections and medio-dorsal
thalamic – DLPFC projections have all been demon-
strated in non-human primates (Goldman-Rakic, 1988).
The medio-dorsal thalamic region and DLPFC are so cor-
related that one is embedded within the other (purple
area). This is pleasing given the known thalamo-cortical
projections to DLPFC.

Functional connectivity between systems –
partial least squares

Hitherto, we have been dealing with functional con-
nectivity between two voxels. The same notion can be
extended to functional connectivity between two sys-
tems by noting that there is no fundamental difference
between the dynamics of one voxel and the dynamics of
a distributed system or mixture of voxels. The functional
connectivity between two systems is simply the correla-
tion or covariance between their time-dependent activi-
ties. The time-dependent activity of a system or pattern
pi is given by:

vi = Mpi

Cij = vT
i vj = pT

i MT Mpj

37.4

where Cij is the functional connectivity between the sys-
tems described by vectors pi and pj . Consider functional
connectivity between two systems in separate parts of the
brain, for example the right and left hemispheres. Here
the data matrices Mi and Mj derive from different sets of
voxels and Eqn. 37.4 becomes:

Cij = vT
i vj = pT

i MT
i Mjpj 37.5

If one wanted to identify the intra-hemispheric sys-
tems that showed the greatest inter-hemispheric func-
tional connectivity (i.e. covariance), one would need to
identify the pair of vectors pi and pj that maximize Cij

in Eqn. 37.5. SVD finds another powerful application in
doing just this:

�U�S�V� = SVD�MT
i Mj�

MT
i Mj = USV T 37.6

UT MT
i MjV = S

The first columns of U and V represent the singular
images that correspond to the two systems with the
greatest amount of functional connectivity (the singular
values in the diagonal matrix S). In other words, SVD
of the (generally asymmetric) cross-covariance matrix,
based on time-series from two anatomically separate
parts of the brain, yields a series of paired vectors (paired
columns of U and V ) that, in a step-down fashion,
define pairs of brain systems that show the greatest func-
tional connectivity. This particular application of SVD
is also know as partial least squares and has been pro-
posed for analysis of designed activation experiments
where the two data matrices comprise an image time-
series and a set of behavioural or task parameters, i.e.
the design matrix (McIntosh et al., 1996). In this appli-
cation, the paired singular vectors correspond to a sin-
gular image and a set of weights that give the linear
combination of task parameters that show the maxi-
mal covariance with the corresponding singular image.
This is conceptually related to canonical image analysis
(see next section) based on the generalized eigenvalue
solution.

Differences in functional connectivity –
generalized eigenimages

Here, we introduce an extension of eigenimage analysis
using the solution to the generalized eigenvalue problem.
This problem involves finding the eigenvector solution
that involves two covariance matrices and can be used
to find the eigenimage that is maximally expressed in
one time-series relative to another. In other words, it can
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find a pattern of distributed activity that is most preva-
lent in one data set and least expressed in another. The
example used to illustrate this idea is fronto-temporal
functional disconnection in schizophrenia (see Friston
et al., 1996b).

The notion that schizophrenia represents a disintegra-
tion or fractionation of the psyche is as old as its name,
introduced by Bleuler (1913) to convey a ‘splitting’ of
mental faculties. Many of Bleuler’s primary processes,
such as ‘loosening of associations’ emphasize a fragmen-
tation and loss of coherent integration. In what follows,
we assume that this mentalist ‘splitting’ has a physio-
logical basis and, furthermore, that both the mentalist
and physiological disintegration have precise and spe-
cific characteristics that can be understood in terms of
functional connectivity.

The idea is that, although localized pathophysiology
in cortical areas may be a sufficient explanation for some
signs of schizophrenia, it does not suffice as an explana-
tion for the symptoms of schizophrenia. The conjecture
is that symptoms, such as hallucinations and delusions,
are better understood in terms of abnormal interactions
or impaired integration between different cortical areas.
This dysfunctional integration, expressed at a physiolog-
ical level as abnormal functional connectivity, is measur-
able with neuroimaging and observable at a cognitive
level as a failure to integrate perception and action that
manifests as clinical symptoms. The distinction between
a regionally specific pathology and a pathology of inter-
action can be seen in terms of a first-order effect (e.g.
hypofrontality) and a second-order effect that only exists
in the relationship between activity in the prefrontal cor-
tex and some other (e.g. temporal) region. In a similar
way, psychological abnormalities can be regarded as first
order (e.g. a poverty of intrinsically cued behaviour in
psychomotor poverty) or second order (e.g. a failure to
integrate intrinsically cued behaviour and perception in
reality distortion).

The generalized eigenvalue solution

Suppose that we want to find a pattern embodying the
greatest amount of functional connectivity in control
subjects, relative to schizophrenic subjects (e.g. fronto-
temporal covariance). To achieve this, we identify an
eigenimage that reflects the most functional connectiv-
ity in control subjects relative to a schizophrenic group,
d. This eigenimage is obtained by using a generalized
eigenvector solution:

C−1
i Cjd = d	

Cjd = Cid	
37.7

where Ci and Cj are the two functional connectivity matri-
ces. The generalized eigenimage d is essentially a pat-
tern that maximizes the ratio of the 2-norm measures
(see Eqn. 37.1) when applied to Ci and Cj . Generally
speaking, these matrices could represent data from two
[groups of] subjects or from the same subject(s) scanned
under different conditions. In the present example, we
use connectivity matrices from control subjects and peo-
ple with schizophrenia showing pronounced psychomo-
tor poverty.

The data were acquired from two groups of six sub-
jects. Each subject was scanned six times during the per-
formance of three word generation tasks (A B C C B
A). Task A was a verbal fluency task, requiring subjects
to respond with a word that began with a heard letter.
Task B was a semantic categorization task in which sub-
jects responded ‘man-made’ or ‘natural’, depending on a
heard noun. Task C was a word-shadowing task in which
subjects simply repeated what was heard. In the present
context, the detailed nature of the tasks is not important.
They were used to introduce variance and covariance
in activity that could support an analysis of functional
connectivity.

The groups comprised six control subjects and six
schizophrenic patients. The schizophrenic subjects pro-
duced fewer than 24 words on a standard (one minute)
FAS verbal fluency task (generating words beginning
with the letters ‘F’, ‘A’ and ‘S’). The results of a gener-
alized eigenimage analysis are presented in Figure 37.3.
As expected, the pattern that best captures group dif-
ferences involves prefrontal and temporal cortices and
encodes negative correlations between left DLPFC and
bilateral superior temporal regions (Figure 37.3; upper
panels). The amount to which this pattern was expressed
in each subject is shown in the lower panel using the
appropriate 2-norm

∥∥dT Cid
∥∥. It is seen that this eigen-

image, while prevalent in control subjects, is uniformly
reduced in schizophrenic subjects.

Summary

In the preceding section, we have seen how eigenim-
ages can be framed in terms of functional connectivity
and the relationships among eigenimage analysis, mul-
tidimensional scaling, partial least squares and general-
ized eigenimage analysis. In the next section, we use the
generative models perspective, described in the previous
chapter, to take component analysis into the non-linear
domain. In the subsequent section, we return to general-
ized eigenvalue solutions and their role in classification
and canonical image analysis.
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FIGURE 37.3 Generalized eigenimage analysis of schizophrenic and control subjects. Top left and right: positive and negative loadings
of the first eigenimage that is maximally expressed in the control group and minimally expressed in the schizophrenic group. This analysis
used PET activation studies of word generation with six scans per subject and six subjects per group. The activation study involved three
word generation conditions (word shadowing, semantic categorization and verbal fluency), each of which was presented twice. The grey
scale is arbitrary and each image has been normalized to the image maximum. The display format is standard and represents a maximum
intensity projection. This eigenimage is relatively less expressed in the schizophrenic data. This point is made by expressing the amount of
functional connectivity attributable to the eigenimage in (each subject in) both groups, using the appropriate 2-norm (lower panel).

NON-LINEAR PRINCIPAL AND
INDEPENDENT COMPONENT

ANALYSIS (PCA AND ICA)

Generative models

Recall from the previous chapter how generative models
of data could be framed in terms of a prior distribution
over causes p�v��� and a generative distribution or likeli-
hood of the inputs given the causes p�u�v��. For exam-
ple, factor analysis corresponds to the generative model:

p�v�� = N�0� 1�

p�u �v �� = N��v���
37.8

Namely, the underlying causes of inputs are independent
normal variates that are mixed linearly and added to
Gaussian noise to form inputs. In the limiting case of
� → 0, the model becomes deterministic and conforms
to PCA. By simply assuming non-Gaussian priors one
can specify generative models for sparse coding:

p�v�� =∏
p�vi ��

p�u �v�� = N��v���
37.9

where p�vi� �� are chosen to be suitably sparse (i.e.
heavy-tailed), with a cumulative density function that
corresponds to the squashing function below. The
deterministic equivalent of sparse coding is ICA that
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obtains when � → 0. These formulations allow us
to consider simple extensions of PCA by looking at
non-linear versions of the underlying generative model.

Non-linear PCA

Despite its exploratory power, eigenimage analysis is
fundamentally limited because the particular modes
obtained are uniquely determined by constraints that
are biologically implausible. This represents an inher-
ent limitation on the interpretability and usefulness of
eigenimage analysis. The two main limitations of conven-
tional eigenimage analysis are that the decomposition of
any observed time-series is in terms of linearly separable
components. Secondly, the spatial modes are somewhat
arbitrarily constrained to be orthogonal and account, suc-
cessively, for the largest amount of variance. From a bio-
logical perspective, the linearity constraint is a severe one
because it precludes interactions among brain systems.
This is an unnatural restriction on brain activity, where
one expects to see substantial interactions that render the
expression of one mode sensitive to the expression of oth-
ers. Non-linear PCA attempts to circumvent these sorts
of limitations.

The generative model implied by Eqn. 37.8, when � →
0, is linear and deterministic:

p�v�� = N�0� 1�

u = �v
37.10

Here the causes v correspond to the eigenvariates and the
model parameters to scaled eigenvectors � = VS. u is the
observed data or image that comprised each row of M
above. This linear generative model g�v��� = �v can now
be generalized to any static non-linear model by taking
a second-order approximation:

p�v�� = N�0� 1�

u = g�v���

=∑
i

Vivi +
1
2

∑
ij

Vijvivj + � � � 37.11

Vi = �g

�v

Vij = �2g

�vi�vj

This non-linear model has two sorts of modes; first-
order modes Vi that mediate the effect of any orthogonal
cause on the response (i.e. map the causes onto voxels
directly) and second-order modes Vij , which map inter-
actions among causes onto the measured response. These

second-order modes could represent the distributed sys-
tems implicated in the interaction between various exper-
imentally manipulated causes. See the example below.

The identification of the first- and second-order
modes proceeds using expectation maximization (EM) as
described in the previous chapter. In this instance, the
algorithm can be implemented as a simple neural net
with forward connections from the data to the causes
and backward connections from the causes to the pre-
dicted data. The E-step corresponds to recognition of the
causes by the forward connections using the current esti-
mate of the first-order modes and the M-step adjusts
these connections to minimize the prediction error of
the generative model in Eqn. 37.11, using the recognized
causes. These schemes (e.g. Kramer, 1991; Karhunen and
Joutsensalo, 1994; Friston et al., 2000) typically employ a
‘bottleneck’ architecture that forces the inputs through a
small number of nodes (see the insert in Plate 54). The
output from these nodes then diverges to produce the
predicted inputs. After learning, the activity of the bot-
tleneck nodes can be treated as estimates of the causes.
In short, these representations obtain by projection of the
input onto a low-dimensional curvilinear manifold that
is defined by the activity of the bottleneck. Before looking
at an empirical example we will briefly discuss ICA.

Independent component analysis

ICA represents another way of generalizing the linear
model used by PCA. This is achieved, not through non-
linearities, but by assuming non-Gaussian priors. The
non-Gaussian form can be specified by a non-linear trans-
formation of the causes ṽ = ��v� that renders them nor-
mally distributed, such that when � → 0, in Eqn. 37.9
we get:

p�ṽ �� = N�0� 1�

v = �−1�ṽ� 37.12

u = �v

This is not the conventional way to present ICA, but
is used here to connect the models for PCA and ICA.
The form of the non-linear squashing function ṽ = ��v�
embodies our prior assumptions about the marginal dis-
tribution of the causes. These are usually supra-Gaussian.
There exist simple algorithms that implicitly minimize
the objective function F (see previous chapter) using the
covariances of the data. In neuroimaging, this enforces
an ICA of independent spatial modes, because there are
more voxels than scans (McKeown et al., 1998). In EEG,
there are more time bins than channels and the indepen-
dent components are temporal in nature. The distinction
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between spatial and temporal ICA depends on whether
one regards Eqn. 37.12 as generating data over space or
time (see Friston, 1998 for a discussion of their relative
merits). The important thing about ICA, relative to PCA,
is that the prior densities model independent causes not
just uncorrelated causes. This difference is expressed in
terms of statistical dependencies beyond second-order
(see Stone, 2002 for an introduction to these issues).

An example

This example comes from Friston et al. (2000)2 and is
based on an fMRI study of visual processing that was
designed to address the interaction between colour and
motion systems.

We had expected to demonstrate that a ‘colour’ mode
and ‘motion’ mode would interact to produce a second-
order mode reflecting: (i) reciprocal interactions between
extrastriate areas functionally specialized for colour and
motion; (ii) interactions in lower visual areas mediated by
convergent backwards connections; or (iii) interactions in
the pulvinar mediated by cortico-thalamic loops.

Data acquisition and experimental design

A subject was scanned under four different conditions,
in six scan epochs, intercalated with a low-level (visual
fixation) baseline condition. The four conditions were
repeated eight times in a pseudo-random order giving
384 scans in total or 32 stimulation/baseline epoch pairs.
The four experimental conditions comprised the presen-
tation of moving and stationary dots, using luminance
and chromatic contrast, in a two by two-factorial design.
Luminance contrast was established using isochromatic
stimuli (red dots on a red background or green dots on a
green background). Hue contrast was obtained by using
red (or green) dots on a green (or red) background and
establishing iso-luminance with flicker photometry. In
the two movement conditions, the dots moved radially
from the centre of the screen, at eight degrees per sec-
ond to the periphery, where they vanished. This creates
the impression of optical flow. By using these stimuli we
hoped to excite activity in a visual motion system and
one specialized for colour processing. Any interaction
between these systems would be expressed in terms of
motion-sensitive responses that depended on the hue or
luminance contrast subtending that motion.

2 Although an example of non-linear PCA, the generative model
actually used augmented Eqn. 37.11 with a non-linear function
of the second- order terms: u = G�v� = ∑

i
Vivi + 1

2

∑
ij

Vij��vivj�.

This endows the causes with unique scaling.

Non-linear PCA

The data were reduced to an eight-dimensional subspace
using SVD and entered into a non-linear PCA using two
causes. The functional attribution of the resulting sources
was established by looking at the expression of the
corresponding first-order modes over the four conditions
(right lower panels in Plate 54). This expression is simply
the score on the first principal component over all 32
epoch-related responses for each cause. The first mode is
clearly a motion-sensitive mode but one that embodies
some colour preference, in the sense that the motion-
dependent responses of this system are accentuated in the
presence of colour cues. This was not quite what we had
anticipated; the first-order effect contains what would
functionally be called an interaction between motion and
colour processing. The second first-order mode appears
to be concerned exclusively with colour processing. The
corresponding anatomical profiles are shown in Plate 54
(left panels). The first-order mode, which shows both
motion and colour-related responses, shows high load-
ings in bilateral motion sensitive complex V5 (Brodmann
areas 19 and 37 at the occipito-temporal junction) and
areas traditionally associated with colour processing
(V4 – the lingual gyrus). The second first-order mode is
most prominent in the hippocampus, parahippocampal
and related lingual cortices on both sides. In summary,
the two first-order modes comprise: an extrastriate
cortical system including V5 and V4 that responds to
motion, and preferentially so when motion is supported
by colour cues; and a [para]hippocampus-lingual system
that is concerned exclusively with colour processing,
above and beyond that accounted for by the first system.
The critical question is where do these modes interact?

The interaction between the extrastriate and
[para]hippocampus-lingual systems conforms to the
second-order mode in the lower panels. This mode high-
lights the pulvinar of the thalamus and V5 bilaterally.
This is a pleasing result in that it clearly implicates
the thalamus in the integration of extrastriate and
[para]hippocampal systems. This integration is mediated
by recurrent cortico-thalamic connections. It is also
a result that would not have been obtained from a
conventional SPM analysis. Indeed, we looked for an
interaction between motion and colour processing and
did not see any such effect in the pulvinar.

Summary

We have reviewed eigenimage analysis and general-
izations based on non-linear and non-Gaussian gener-
ative models. All the techniques above are essentially
descriptive, in that they do not allow one to make any sta-
tistical inferences about the characterizations that obtain.
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In the second half of this chapter, we turn to multi-
variate techniques that enable statistical inference and
hypothesis testing. We will introduce canonical images that
can be thought of as statistically informed eigenimages,
pertaining to effects introduced by experimental design.
We have seen that patterns can be identified using
the generalized eigenvalue solution that are maximally
expressed in one covariance structure, relative to another.
Consider now using this approach where the first covari-
ance matrix reflected the effects we were interested in,
and the second embodied covariances due to error. This
corresponds to canonical image analysis, and is consid-
ered in the following section.

MANCOVA AND CANONICAL IMAGE
ANALYSES

In this section, we review multivariate approaches to
the analysis of functional imaging studies. The analy-
ses described use standard multivariate techniques to
make statistical inferences about activation effects and to
describe their important features. Specifically, we intro-
duce multivariate analysis of covariance (MANCOVA)
and canonical variates analysis (CVA) to characterize
activation effects. This approach characterizes the brain’s
response in terms of functionally connected and dis-
tributed systems in a similar fashion to eigenimage anal-
ysis. Eigenimages figure in the current analysis in the
following way: a problematic issue in multivariate anal-
ysis of functional imaging data is that the number of
samples (i.e. scans) is usually very small in relation to the
number of components (i.e. voxels) of the observations.
This issue is resolved by analysing the data, not in terms
of voxels, but in terms of eigenimages, because the num-
ber of eigenimages is much smaller than the number of
voxels. The importance of the multivariate analysis that
ensues can be summarized as follows:

• Unlike eigenimage analysis, it provides for statisti-
cal inferences (based on classical p-values) about the
significance of the brain’s response in terms of some
hypothesis.

• The approach implicitly takes account of spatial corre-
lations in the data without making any assumptions.

• The canonical variate analysis produces generalized
eigenimages (canonical images) that capture the acti-
vation effects, while suppressing the effects of noise or
error.

• The theoretical basis is well established and can be
found in most introductory texts on multivariate anal-
ysis (see also Friston et al., 1996c).

Although useful, in a descriptive sense, eigenimage
analysis and related approaches are not generally con-
sidered as ‘statistical’ methods that can be used to make
statistical inferences; they are mathematical devices that
simply identify prominent patterns of correlations or
functional connectivity. In what follows, we observe that
multivariate analysis of covariance (MANCOVA) with
canonical variate analysis combines some features of
statistical parametric mapping and eigenimage analy-
sis. Unlike statistical parametric mapping, MANCOVA
is multivariate. In other words, it considers all voxels in
a single scan as one observation. The importance of this
multivariate approach is that effects, due to activations,
confounding effects and error effects, are assessed both in
terms of effects at each voxel and interactions among voxels.
This means one does not have to assume anything about
spatial correlations (cf. smoothness with random field
models) to assess the significance of an activation effect.
Unlike statistical parametric mapping, these correlations
are explicitly included in the analysis. The price one pays
for adopting a multivariate approach is that inferences
cannot be made about regionally specific changes (cf. sta-
tistical parametric mapping). This is because the inference
pertains to all the components (voxels) of a multivariate
variable (not a particular voxel or set of voxels). Fur-
thermore, because the spatial non-sphericity has to be
estimated, without knowing the observations came from
continuous spatially extended processes, the estimates
are less efficient and inferences are less powerful.

Usually, multivariate analyses are implemented in two
steps. First, the significance of hypothesized effects is
assessed in terms of a p-value and secondly, if justi-
fied, the quantitative nature of the effect is determined.
The analysis here conforms to this two-stage procedure.
When the brain’s response is assessed to be significant
using MANCOVA, the nature of this response remains to
be characterized. Canonical variate analysis is an appro-
priate way to do this. The canonical images obtained
with CVA are similar to eigenimages, but are based on
both the activation and error. CVA is closely related to
de-noising techniques in EEG and MEG time-series anal-
yses that use a generalized eigenvalue solution. Another
way of looking at canonical images is to think of them
as eigenimages that reflect functional connectivity due to
activations, when spurious correlations due to error are
explicitly discounted.

Dimension reduction and eigenimages

The first step in multivariate analysis is to ensure that
the dimensionality (number of components or voxels)
of the data is smaller than the number of observations.
Clearly, this is not the case for images, because there are



Elsevier UK Chapter: Ch37-P372560 30-9-2006 5:31p.m. Page:503 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

MANCOVA AND CANONICAL IMAGE ANALYSES 503

more voxels than scans; therefore the data have to be
transformed. The dimension reduction proposed here is
straightforward and uses the scan-dependent expression,
Y , of eigenimages as a reduced set of components for
each multivariate observation (scan). Where:

�U�S�V� = SVD�M�

Y = US
37.13

As above, M is a large matrix of adjusted voxel-values
with one column for each voxel and one row for
each scan. Here, ‘adjusted’ implies mean correction and
removal of any confounds using linear regression. The
eigenimages constitute the columns of U , another uni-
tary orthonormal matrix, and their expression over scans
corresponds to the columns of the matrix Y . Y has one
column for each eigenimage and one row for each scan.
In our work, we use only the j columns of Y and U
associated with eigenvalues greater than unity (after nor-
malizing each eigenvalue by the average eigenvalue).

The general linear model revisited

Recall the general linear model from previous chapters:

Y = X�+� 37.14

where the errors are assumed to be independent and
identically normally distributed. The design matrix X has
one column for every effect (factor or covariate) in the
model. The design matrix can contain both covariates and
indicator variables reflecting an experimental design. � is
the parameter matrix with one column vector of param-
eters for each mode. Each column of X has an associated
unknown parameter. Some of these parameters will be
of interest, the remaining parameters will not. We will
partition the model accordingly:

Y = X1�1 +X0�0 +� 37.15

where X1 represents a matrix of zeros or ones depend-
ing on the level or presence of some interesting condi-
tion or treatment effect (e.g. the presence of a particular
cognitive component) or the columns of X1 might con-
tain covariates of interest that could explain the observed
variance in Y (e.g. dose of apomorphine or ‘time on tar-
get’). X0 corresponds to a matrix of indicator variables
denoting effects that are not of any interest (e.g. of being
a particular subject or block effect) or covariates of no
interest (i.e. ‘nuisance variables’, such as global activity
or confounding time effects).

Statistical inference

Significance is assessed by testing the null hypothesis
that the effects of interest do not significantly reduce the
error variance when compared to the remaining effects
alone (or alternatively the null hypothesis that �1 is zero).
The null hypothesis is tested in the following way. The
sum of squares and products matrix (SSPM) due to error
is obtained from the difference between actual and esti-
mated values of the response:

SR = �Y −X�̂�T �Y −X�̂� 37.16

where the sums of squares and products due to effects
of interest is given by:

ST = �X1�̂1�
T �X1�̂1� 37.17

The error sum of squares and products under the null
hypothesis, i.e. after discounting the effects of interest are
given by:

S0 = �Y −X0�̂0�
T �Y −X0�̂0� 37.18

The significance can now be tested with:

� = SR

S0
37.19

This is Wilk’s statistic (known as Wilk’s Lambda). A
special case of this test is Hotelling‘s T -square test and
applies when one simply compares one condition with
another, i.e. X1 has only one column (Chatfield and
Collins, 1980). Under the null hypothesis, after transfor-
mation, � has chi-squared distribution with degrees of
freedom jh. The transformation is given by:

−�v− �j −h+1�/2� ln � ∼ �2
jh 37.20

where v are the degrees of freedom associated with error
terms, equal to the number of scans, n, minus the number
of effects modelled, rank�X�. j is the number of eigen-
images in the j-variate response variable and h is the
degrees of freedom associated with the effects of interest,
rank�X1�. Eqn. 37.20 enables one to compute a p-value for
significance testing in the usual way.

Characterizing the effect with CVA

Having established that the effects of interest are sig-
nificant (e.g. differences among two or more activation
conditions), the final step is to characterize these effects
in terms of their spatial topography. This characteriza-
tion employs canonical variates analysis or CVA. The
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objective is to find a linear combination (compound or
contrast) of the components of Y , in this case the eigenim-
ages, which best capture the activation effects, compared
to error. More exactly, we want to find c1 such that the
variance ratio

cT
1 ST c1

cT
1 SRc1

37.21

is maximized. Let z1 = Yc1 where z1 is the first canonical
variate and c1 is a canonical image (defined in the space
of the spatial modes) that maximizes this ratio. c2 is the
second canonical image that maximizes the ratio subject
to the constraints cT

i cj = 0 (and so on). The matrix of
canonical images c = �c1� � � � ch� is given by solution of
the generalized eigenvalue problem:

ST c = SRc	 37.22

where 	 is a diagonal matrix of eigenvalues. Voxel-space
canonical images are obtained by rotating the canonical
image in the columns of c back into voxel-space with
the original eigenimages C = Vc. The columns of C now
contain the voxel-values of the canonical images. The
k-th column of C (the k-th canonical image) has an asso-
ciated canonical value equal to the k-th leading diago-
nal element of 	. Note that the effect is a multivariate
one, with j components or canonical images. Normally,
only a few of these components have large canonical val-
ues and these are the ones reported. The dimensionality
of the response, or the number of significant canonical
images, is determined using the canonical values; under
the null hypothesis the probability that the dimensional-
ity is greater than D can be tested using:

�v− �j −h+1�/2� ln
j∏

j+D+1

�1+	i� ∼ �2
�j−D��h−D� 37.23

It can be seen, by comparing Eqn. 37.23 to Eqn. 37.20
that there is a close relationship between Wilk’s Lambda
and the canonical values (see Appendix 1) and that the
inference that the D > 0 is exactly the same as tests based
on Wilk’s Lambda, where �−1 =∏

�1+	i�.

CVA, linear discrimination and brain-reading

Wilk’s Lambda is actually quite important because it is a
likelihood ratio test and, by the Neyman-Pearson lemma,
the most powerful under parametric (Wishart) assump-
tions. As noted above, when the design matrix encodes a
single effect this statistic reduces to Hotelling’s t-square
test. If the data are univariate, then Wilk’s Lambda
reduces to a simple F -test (see also Kiebel et al., 2003).
If both the data and design are univariate the F -test
becomes the square of the t-test. In short, all parametric

tests can be regarded as special cases of Wilk’s Lambda.
This is important because it is fairly simple to show (see
Chawla et al., 2000 and Appendix 1) that:

− ln��� = I�X�Y� = I�Y�X� 37.24

where I�X�Y� is the mutual information between the
explanatory and response variables in X and Y respec-
tively. This means that classical inference, using paramet-
ric tests, simply tests the null hypothesis I�X�Y� = 0, i.e.
the two quantities X and Y are statistically independent.
The importance of this lies in the symmetry of depen-
dence. In other words, we can switch the explanatory and
response variables around and nothing changes; MAN-
COVA does not care if we are trying to predict responses
given the design matrix or whether we are trying to pre-
dict the design matrix given the responses. In either case,
it is sufficient to infer the two are statistically dependent.
This is one heuristic for the equivalence between CVA
and linear discriminant analysis: Linear discrim inant
analysis (LDA) and the related Fisher’s linear discrim-
inant are used in machine learning to find the linear
combination of features that best separate two or more
classes of objects or events. This linear combination is the
canonical image. The resulting image or vector may be
used as a linear classifier or in feature reduction prior
to later classification. In functional imaging, classifica-
tion has been called brain-reading (see Cox and Savoy,
2003) because one is trying to predict the experimental
condition the subject was exposed to, using the imaging
data. In short, MANCOVA, linear discriminant analysis,
canonical variates analysis, canonical correlation analysis
and kernel methods (e.g. support vector machines) that
are linear in the observations are all based on the same
model (see Appendix 1 for more details).

Relationship to eigenimage analysis

When applied to adjusted data, eigenimages correspond
to the eigenvectors of ST . These have an interesting
relationship to the canonical images: On rearranging
Eqn. 37.22, we note that the canonical images are eigen-
vectors of S−1

R ST . In other words, an eigenimage analy-
sis of an activation study returns the eigenvectors that
express the most variance due to the effects of interest. A
canonical image, on the other hand, expresses the greatest
amount of variance due to the effects of interest relative
to error. In this sense, a CVA can be considered an eigen-
image analysis that is informed by the estimates of error
and their correlations over voxels.

Serial correlations in multivariate models

CVA rests upon independent and identically distributed
(IID) assumptions about the errors over observations.
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Violation of these assumptions in fMRI has motivated
the study of multivariate linear models (MLMs) for neu-
roimaging that allow for temporal non-sphericity (see
Worsley et al., 1997). Although this is an interesting issue,
it should be noted that conventional CVA (with dimen-
sion reduction) can be applied after pre-whitening the
time-series.

An example

We will consider an application of the above proce-
dures to the word generation study in normal subjects,
used above. We assessed the significance of condition-
dependent effects by treating each of the twelve scans
as a different condition. Note that we do not consider
the word generation (or word shadowing) conditions as
replications of the same condition. In other words, the
first time one performs a word generation task is a dif-
ferent condition from the second time and so on. The
(alternative) hypothesis adopted here states that there
is a significant difference among the twelve conditions,
but that this does not constrain the nature of this differ-
ence to a particular form. The most important differences
will emerge from the CVA. Clearly, one might hope that
these differences will be due to word generation, but they
might not be. This hypothesis should be compared with
a more constrained hypothesis that considers the condi-
tions as six replications of word shadowing and word
generation. This latter hypothesis is more directed and
explicitly compares word shadowing with word genera-
tion. This comparison could be tested in a single subject.
The point is that the generality afforded by the cur-
rent framework allows one to test very constrained (i.e.
specific) hypotheses or rather general hypotheses about
some unspecified activation effect.3 We choose the latter
case here because it places more emphasis on canoni-
cal images as descriptions of what has actually occurred
during the experiment. Had we chosen the former, we
would have demonstrated significant mutual information
between the data and the classification of each scan as
either word shadowing or generation (cf. brain-reading
for word generation).

The design matrix partition for effects of interest X1

had twelve columns representing the conditions. We des-
ignated subject effects, time and global activity as unin-
teresting confounds X0. The adjusted data were reduced
to 60 eigenvectors as described above. The first 14 eigen-
vectors had (normalized) eigenvalues greater than unity

3 This is in analogy to the use of the SPM�F�, relative to more con-
strained hypotheses tested with SPM�t�, in conventional mass-
univariate approaches.

and were used in the subsequent analysis. The result-
ing matrix data Y , with 60 rows (one for each scan)
and 14 columns (one for each eigenimage) was subject
to MANCOVA. The significance of the condition effects
was assessed with Wilk’s Lambda. The threshold for
condition or activation effects was set at p = 0
02. In
other words, the probability of there being no differences
among the 12 conditions was 2 per cent.

Canonical variates analysis

The first canonical image and its canonical variate are
shown in Figure 37.4. The upper panels show this sys-
tem to include anterior cingulate and Broca’s area, with
more moderate expression in the left posterior inferotem-
poral regions (right). The positive components of this
canonical image (left) implicate ventro-medial prefrontal
cortex and bi-temporal regions (right greater than left).
One important aspect of these canonical images is their
highly distributed yet structured nature, reflecting the
distributed integration of many brain areas. The canoni-
cal variate expressed in terms of mean condition effects
is seen in the lower panel of Figure 37.4. It is pleasing
to note that the first canonical variate corresponds to the
difference between word shadowing and verbal fluency.

Recall that the eigenimage in Figure 37.2 reflects the
main pattern of correlations evoked by the mean con-
dition effects and should be compared with the first
canonical image in Figure 37.4. The differences between
these characterizations of activation effects are informa-
tive: the eigenimage is totally insensitive to the reliabil-
ity or error attributable to differential activation from
subject to subject, whereas the canonical image reflects
these variations. For example, the absence of the pos-
terior cingulate in the canonical image and its relative
prominence in the eigenimage suggests that this region
is implicated in some subjects but not in others. The sub-
jects that engaged the posterior cingulate must do so
to some considerable degree because the average effects
(represented by the eigenimage) are quite substantial.
Conversely, the medial prefrontal cortical deactivations
are a more pronounced feature of activation effects than
would have been inferred on the basis of the eigenimage
analysis. These observations beg the question: ‘which is
the best characterization of functional anatomy?’ Obvi-
ously, there is no simple answer but the question speaks
of an important point. A canonical image characterizes
a response relative to error, by partitioning the observed
variance into effects of interest and a residual variation
about these effects. Experimental design, a hypothesis,
and the inferences that are sought determine this parti-
tioning. An eigenimage does not entail any concept of
error and is not constrained by any hypothesis.
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FIGURE 37.4 Top: the first canonical image displayed as maximum intensity projections of the positive and negative components. The
display format is standard and provides three views of the brain from the front, the back and the right hand side. The grey scale is arbitrary
and the space conforms to that described in the atlas of Talairach and Tournoux (1988). Bottom: the expression of the first canonical image
(i.e. the canonical variate) averaged over conditions. The odd conditions correspond to word shadowing and the even conditions correspond
to word generation. This canonical variate is clearly sensitive to the differences evoked by these two tasks.

Multivariate versus univariate models

Although multivariate linear models are important, this
book focuses more on univariate models. There is a sim-
ple reason for this: any multivariate model can be refor-
mulated as a univariate model by vectorizing the model.
For example:

Y = X�+�

�y1� � � � � yj� = X��1� � � � ��j�+ ��1� � � � � �j�
37.25

can be rearranged to give a univariate model:

vec�Y� = �I ⊗X�vec���+vec���⎡
⎢⎣

y1




yj

⎤
⎥⎦=

⎡
⎢⎣

X


 


X

⎤
⎥⎦
⎡
⎢⎣

y1




yj

⎤
⎥⎦+

⎡
⎢⎣

�1




�j

⎤
⎥⎦ 37.26

where ⊗ denotes the Kronecker tensor product. Here,
cov�vec���� = � ⊗ V , where � is the covariance among
components and V encodes the serial correlations. In
MLMs � is unconstrained and requires full estimation (in
terms of SR above). Therefore, any MLM and its univari-
ate form are exactly equivalent, if we place constraints
on the non-sphericity of the errors that ensure it has
the form �⊗V . This speaks to an important point: any
multivariate analysis can proceed in a univariate setting
with appropriate constraints on the non-sphericity. In
fact, MLMs are special cases that assume the covariance
factorizes into � ⊗ V and � is unconstrained. In neu-
roimaging there are obvious constraints on the form of �

because this embodies the spatial covariances. Random
field theory harnesses these constraints. MLMs do not
and are therefore less sensitive.
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Summary

This chapter has described multivariate approaches to
the analysis of functional imaging studies. These use
standard multivariate techniques to describe or make
statistical inferences about distributed activation effects
and characterize important features of functional connec-
tivity. The multivariate approach differs fundamentally
from statistical parametric mapping, because the concept
of a separate voxel or region of interest ceases to have
meaning. In this sense, inference is about the whole image
volume, not any component. This feature precludes sta-
tistical inferences about regional effects made without
reference to changes elsewhere in the brain. This funda-
mental difference ensures that mass-univariate and mul-
tivariate approaches are likely to be treated as distinct
and complementary approaches to functional imaging
data (see Kherif et al., 2002).

In this chapter, we have used correlations among
brain measurements to identify systems that respond
in a coherent fashion. This identification proceeds with-
out reference to the mechanisms that may mediate dis-
tributed and integrated responses. In the next chapter,
we turn to models of effective connectivity that ground
the nature of these interactions.

REFERENCES

Biswal B, Yetkin FZ, Haughton VM et al. (1995) Functional connec-
tivity in the motor cortex of resting human brain using echo-
planar MRI. Mag Res Med 34: 537–41

Bleuler E (1913) Dementia Praecox or the group of schizophrenias.
Translated into English in The clinical roots of the schizophrenia con-
cept, Cutting J, Shepherd M, (eds) (1987). Cambridge University
Press, Cambridge

Chatfield C, Collins AJ (1980) Introduction to multivariate analysis.
Chapman and Hall, London, pp 189–210

Chawla D, Lumer ED, Friston KJ (2000) Relating macroscopic mea-
sures of brain activity to fast, dynamic neuronal interactions.
Neural Comput 12: 2805–21

Friedrich R, Fuchs A, Haken H (1991) Modelling of spatio-temporal
EEG patterns. In Mathematical approaches to brain functioning diag-
nostics, Dvorak I, Holden AV (eds). Manchester University Press,
New York

Fuchs A, Kelso JAS, Haken H (1992) Phase transitions in the human
brain: spatial mode dynamics. Int J Bifurcation Chaos 2: 917–39

Friston KJ, Frith CD, Liddle PF et al. (1993a) Functional connectivity:
the principal component analysis of large (PET) data sets. J Cereb
Blood Flow Metab 13: 5–14

Friston KJ, Jezzard P, Frackowiak RSJ et al. (1993b) Characterising
focal and distributed physiological changes with MRI and PET.
In Functional MRI of the brain. Society of Magnetic Resonance in
Medicine, Berkeley, pp 207–16

Friston KJ, Frith CD, Fletcher P et al. (1996a) Functional topogra-
phy: multidimensional scaling and functional connectivity in the
brain. Cereb Cortex 6: 156–64

Friston KJ, Herold S, Fletcher P et al. (1996b) Abnormal fronto-
temporal interactions in schizophrenia. In Biology of schizophre-
nia and affective disease, Watson SJ (ed.). ARNMD Series 73:
421–29

Friston KJ, Poline J-B, Holmes AP et al. (1996c) A multivariate anal-
ysis of PET activation studies. Hum Brain Mapp 4: 140–51

Friston KJ (1998) Modes or models: a critique on independent com-
ponent analysis for fMRI. Trends Cogn Sci 2: 373–74

Friston KJ, Phillips J, Chawla D et al. (2000) Nonlinear PCA: charac-
terising interactions between modes of brain activity. Phil Trans
R Soc Lond B 355: 135–46

Gerstein GL, Perkel DH (1969) Simultaneously recorded trains of
action potentials: analysis and functional interpretation. Science
164: 828–30

Goldman-Rakic PS (1988) Topography of cognition: parallel dis-
tributed networks in primate association cortex. Annv Rev Neu-
rosci 11: 137–56

Gower JC (1966) Some distance properties of latent root and vector
methods used in multivariate analysis. Biometrika 53: 325–28

Karhunen J, Joutsensalo J (1994) Representation and separation of
signals using nonlinear PCA type learning. Neural Networks 7:
113–27

Kherif F, Poline JB, Flandin G et al. (2002) Multivariate model spec-
ification for fMRI data. NeuroImage 16: 1068–83

Kiebel SJ, Glaser DE, Friston KJ (2003) A heuristic for the degrees
of freedom of statistics based on multiple variance parameters.
NeuroImage 20: 591–600

Kramer MA (1991) Nonlinear principal component analysis using
auto-associative neural networks. AIChE J 37: 233–43

Mayer-Kress G, Barczys C, Freeman W (1991) Attractor reconstruc-
tion from event-related multi-electrode EEG data. In Mathemat-
ical approaches to brain functioning diagnostics, Dvorak I, Holden
AV (eds). Manchester University Press, New York

McIntosh AR, Bookstein FL, Haxby JV et al. (1996) Spatial pattern
analysis of functional brain images using partial least squares.
NeuroImage 3: 143–57

McKeown MJ, Makeig S, Brown GG et al. (1998) Analysis of fMRI
data by blind separation into independent spatial components.
Hum Brain Mapp 6: 160–88

Newton I (1794) Opticks. Book 1, part 2, prop. 6. Smith and Walford,
London

Phillips CG, Zeki S, Barlow HB (1984) Localisation of func-
tion in the cerebral cortex. Past, present and future. Brain
107: 327–61

Shepard RN (1980) Multidimensional scaling, tree-fitting and clus-
tering. Science 210: 390–98

Stone JV (2002) Independent component analysis: an introduction.
Trends Cogn Sci 6: 59–64

Talairach P, Tournoux J (1988) A stereotactic coplanar atlas of the human
brain. Thieme, Stuttgart

Torgerson WS (1958) Theory and methods of scaling. Wiley,
New York

Worsley KJ, Poline JB, Friston KJ et al. (1997) Characterizing the
response of PET and fMRI data using multivariate linear models.
NeuroImage 6: 305–19



Elsevier UK Chapter: Ch38-P372560 30-9-2006 5:32p.m. Page:508 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

C H A P T E R

38

Effective Connectivity
L. Harrison, K. Stephan and K. Friston

INTRODUCTION

In the previous chapter, we dealt with functional connec-
tivity and different ways of summarizing patterns of cor-
relations among brain systems. In this chapter, we turn to
effective connectivity and mechanistic models that might
mediate these correlations. This chapter can be regarded
as an introduction to different models of effective con-
nectivity covered in the remaining chapters of this Part.

Brain function depends on interactions among its com-
ponents that range from individual cell compartments
to neuronal populations. As described in Chapter 36,
anatomical and physiological in vivo studies of connectiv-
ity suggest a hierarchy of specialized regions that process
increasingly abstract features, e.g. from simple edges in
V1, through colour and motion in V4 and V5 respec-
tively, to faces in the fusiform gyrus. These specialized
regions are connected, allowing distributed and recur-
rent neuronal information processing. This means their
selective responses, or specialization, are a function of
connectivity. An important theme in this chapter is that
connections can change in a context-sensitive way. We
refer to these changes as plasticity, to describe changes in
the influence different brain systems have on each other.
The formation of distributed networks, through dynamic
interactions, is the basis of functional integration, which
is time- and context-dependent. Changes in connectivity
are important for development, learning, perception and
adaptive response to injury.

Given the importance of changes in connectivity, we
will distinguish between two classes of experimental fac-
tors or input to the brain. The first class evokes responses
directly, whereas the second has a more subtle effect and
induces input-dependent changes in connectivity that
modulate responses to the first. We will refer to the sec-
ond class as ‘contextual’. For example, augmented neu-
ronal responses associated with attending to a stimulus

can be attributed to the changes induced in connectivity
by attention. The distinction between inputs that evoke
responses and those that modulate effective connectivity
is the motivation for developing non-linear models that
accommodate contextual changes in connection strength.
We will focus on the simplest non-linear models, namely
bilinear models.

This chapter is divided into three sections. In the first,
we introduce a system identification approach, where
brain responses are parameterized within the framework
of a mathematical model. A bilinear model is derived to
approximate generic non-linear dynamics. This is used
to highlight the different ways in which experimental
effects can be modelled and how the notion of effective
connectivity emerges as a natural measure. We describe
the different approaches to estimating functional integra-
tion, starting with static models in the second section and
dynamic models in the third. We conclude with remarks
on strategies and the features of models that have proved
useful in modelling connectivity to date.

IDENTIFICATION OF DYNAMIC
SYSTEMS

System identification is the use of observed data to esti-
mate parameters of a model that represents a physical
system. The model may be linear or non-linear, formu-
lated in discrete or continuous time and parameterized
in the time or frequency domain. The aim is to construct
a mathematical description of a system’s response to
input. Models may be divided into two main categories:
those that invoke hidden states and those that quantify
relationships between inputs and outputs without hid-
den states, effectively treating the system as a black box
(see Juang, 2001). Examples of the former include state-
space models (SSM) and hidden Markov models (HMM),

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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whereas the latter include generalized convolution mod-
els (see Chapter 39) and autoregressive models (Chat-
field, 1996 and Chapter 40).

There are two main requirements of biologically plau-
sible models of functional integration: that they are
dynamic and non-linear. They have to be dynamic,
because the brain is a physical system whose state
evolves continuously in time. This means that the cur-
rent state of the brain affects its state in the future (we
will see the issues involved in relaxing this requirement
later). Models have to be non-linear, because biologi-
cal systems depend on non-linear phenomena for much
of their characteristic behaviour (Scott, 1999). Exam-
ples include the neuronal dynamics of action poten-
tials (Dayan and Abbott, 2001), population dynamics
in co-evolutionary systems (Glass and Kaplan, 2000)
and limit cycles in physiological systems (Glass, 2001).
The motivation for non-linear dynamic models is that
their non-additive characteristics enable them to repro-
duce sufficiently complex behaviour, of the sort observed
in biological systems. However, non-linear models are
often mathematically intractable, calling for approxima-
tion techniques.

On the other hand, linear dynamic models can be
analysed in closed form. Consequently, there exists a
large body of theory for handling them: linear models
adhere to the principle of superposition, which means
that the system’s response to input is additive. There
are no interactions between different inputs or between
inputs and the intrinsic states of the system. This means
the response is a linear mixture of inputs. A system
that violates this principle responds in a non-additive
manner, i.e. with more or less than a linear mixture.
Such a system is, by definition, non-linear. However,
there is a price for the ease with which linear models
can be analysed, because their behavioural repertoire is
limited to exponential decay and growth, linear oscilla-
tion or a combination of these. Examples of subadditive
responses are ubiquitous in physiology, e.g. saturation,
where the effect of increasing input reaches a satura-
tion point and further input does not generate an addi-
tional response (e.g. biochemical reactions or synaptic
input).

A useful compromise is to make linear approximations
to a generic non-linear model. These models have the
advantage that they capture some essential non-linear
features, while remaining mathematically tractable. This
strategy has engendered bilinear models (Rao, 1992),
where non-linear terms are limited to interactions that
can be modelled as the product of two variables (inputs
and states). Despite constraints on high-order non-
linearities, bilinear models can easily model plasticity in
effective connections. We will use a bilinear model to

illustrate the concepts of linear and bilinear coupling and
how they are used to model effective connectivity.

Approximating functions

We start with some basic concepts about approximating
non-linear functions: consider a scalar, x, and a suffi-
ciently smooth function f�x�. This function can be approx-
imated in the neighbourhood of an expansion point, x0,
using the Taylor series expansion:

f�x� ≈ f�x0�+ df

dx
�x−x0�+ d2f

dx2

�x−x0�
2

2! + · · ·

+ dnf

dxn

�x−x0�
n

n! 38.1

where the nth order derivatives are evaluated at x0.
These values are coefficients that scale the contribution
of their respective terms. The derivatives are used as
they map a local change in �x − x0�

n onto a change in
f�x�. The degree of non-linearity of f determines the
rate of convergence, weakly non-linear functions con-
verging, rapidly. The series converges to the exact func-
tion as n goes to infinity. A simple example is shown in
Figure 38.1.

Consider now bivariate non-linear functions, where
f�x�u� depends on two quantities x and u, the
corresponding Taylor series including high-order terms
involving products of x and u. The linear and bilinear
approximations are given by fL and fB:

fL�x�u� = ax+ cu

a = �f

�x

c = �f

�u

fB�x�u� = ax+ bxu+ cu

b = �2f

�x�u

38.2

For clarity, the expansion point x0 = 0 and the series
have been centred so that f�x0� = f�u0� = 0. The approx-
imation, fL depends on linear terms in x and u scaled
by coefficients a and c, calculated from the first-order
derivatives. The first-order terms of fB are the same as
fL, however, a third term includes the product of x and
u, which is scaled by b, a second-order derivative with
respect to both variables. This term introduces the non-
linearity. Note, we have not included quadratic terms in
x or u. The resulting approximation has the appealing
property of being both linear in x and u, but allowing for
a modulation of x by u.
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FIGURE 38.1 Approximations to f�x� = ln�x� about x0 = 1
using a Taylor series expansion, where fL�x� = x − 1 and fB�x� =
�x−1�−1/2�x−1�2 are the first- and-second-order approximations.
The improvement for high-order approximations is apparent.

We now extend the above to vectors where x =
�x1� � � � � xn�T and u = �u1� � � � �um�T . The linear and bilin-
ear approximations can be written in matrix form, as:

fL�x�u� = Ax+Cu

fB�x�u� = Ax+Cu+∑
j

ujB
jx

A = �f

�x
B j = �2f

�x�uj

C = �f

�u

38.3

The coefficients are now matrices as opposed to scalars.
They look more complicated, but the same operations are
applied to all the elements of the matrix coefficients, for
example:

A = �f

�x
=

⎡
⎢⎢⎣

�f1
�x1

· · · �f1
�xn

			
	 	 	

			
�fn

�x1
· · · �fn

�xn

⎤
⎥⎥⎦ 38.4

Linear dynamic models

The equations above can be used to model the dynamics
of physical systems. Figure 38.2 shows a simple exam-
ple. A system can be modelled by a number of states
and inputs. The states are contained in x�t�, called the
state vector, and inputs in u�t�, the input vector. The
number of states and inputs in the model are given by
n and m respectively. Each state defines a coordinate in
state-space within which the behaviour of the system is
represented as a trajectory. The temporal evolution of the
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FIGURE 38.2 The function f�x� models a simple one-state lin-
ear dynamical system, i.e. ẋ = f�x�. The state starts at the value x0
where it decreases at the rate ẋ0. After a period of time, the state has
decreased to x1 with a rate of ẋ1. The state continues to decreases
exponentially with time until ẋn = 0.

states is modelled by a state equation, which is the first-
order temporal derivative of the state-vector, written as
ẋ�t� and can therefore be approximated by a Taylor series
as above:

ẋ = fL�x�u� = Ax+Cu 38.5

A linear dynamic system (LDS) is shown in Figure 38.3.
The system consists of two states, x1�t� and x2�t�, and
inputs, u1�t� and u2�t�, coupled through a state equation
parameterized by matrices A and C.

A contains parameters that determine interactions
among states (labelled inter-state in Figure 38.3) and the
influence a state has on itself, while the elements of C
couple inputs to states. The state equation provides a
complete description of the dynamics of the system, oth-
erwise known as the system’s equation of motion. These
models are sometimes called linear time invariant (LTI)
systems, as A and C do not change with time.
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FIGURE 38.3 System with two states, x1 and x2, and inputs,
u1 and u2, whose dynamics are determined by the time invari-
ant matrices A and C in the state equation. The matrices describe
the intrinsic connectivity and how states are connected to external
inputs.

Bilinear dynamic models

Linear models are useful because they are a good first-
order approximation to many phenomena. However,
they furnish rather restricted descriptions of non-linear
systems. The model in Figure 38.4 has been augmented
to illustrate how a bilinear model is formulated. The state
equation adopts the same form as fB, whose essential fea-
ture is the bilinear interaction between inputs and states:

ẋ = fB�x�u�

=
(

A +
m∑

j=1

ujB
j

)
x+Cu 38.6

= Ãx+Cu

The key difference is the addition of Bj . These scale the
interaction among states and inputs when added to A
and model input-dependent changes to the intrinsic con-
nectivity of the network. This is illustrated in Figure 38.4
where the coupling coefficient a12 is modulated by the
product b2

12u2. The modified matrix Ã operates on the
state vector and determines the response of the model.
However, now Ã changes with time because it is a func-
tion of time-varying input. This distinguishes it from the
LTI model above.

These systems are simple to integrate over short peri-
ods of time, during which the input can be regarded as

Input
u1

Input
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a 21

u 2

c 11 c 22
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x1 = a11x1 + (a12 + b12u2(t ))x 2
+ c11u1 
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++=
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FIGURE 38.4 A bilinear model. Input u2 interacts with x2,
rendering the matrix Ã�u� state-dependent. This induces input-
dependent modulation of the coupling parameters, and different
responses to other inputs, i.e. u1. All connections that are not shown
correspond to zero in the coupling matrices.

constant. In this context, the bilinear form reduces to a
local linear form and Eqn. 38.6 can be re-written as:

ż = Jz

J = M +Nu

z =
[

1
x

]
M =

[
0 0
0 A

]
N =

[
0 0
C B

] 38.7

Here x�t� has been augmented with a constant, which
allows the inputs and states to be treated collectively. This
equation can be solved using standard linear techniques
(Boas, 1983), such as the matrix exponential method (see
Appendix 2).

It helps to consider a specific example. If u2 is binary,
the model in Figure 38.4 effectively comprises two LTI
models. The model’s behaviour can be characterized as a
switching between two linear systems. The switch from
one linear mode to the other will be determined by
u2. For instance, if the two linear models were linearly
damped harmonic oscillators, each with different periods
of oscillation, a switch from one state to another would be
accompanied by changes in the oscillation of the states.

In bilinear models, inputs can be divided into two
classes: perturbing and contextual. Perturbing inputs
influence states directly (e.g. u1 in Figure 38.4). The effects
of these inputs are distributed according to the intrinsic
connections of the model. Conversely, contextual inputs
(e.g. u2 in Figure 38.4) reconfigure the response of the



Elsevier UK Chapter: Ch38-P372560 30-9-2006 5:32p.m. Page:512 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

512 38. EFFECTIVE CONNECTIVITY

model to perturbations. These time- and input-dependent
changes in connectivity are the motivation for using bilin-
ear models.

Coupling and bilinear models

Effective connectivity is defined as the influence a neu-
ron (or neuronal population) has on another (Friston and
Price, 2001). It encodes the influences among the states
of a physical system, which is usually responding to
external influences. At the neuronal level this is equiva-
lent to the effect presynaptic activity has on postsynaptic
responses, otherwise known as synaptic efficacy. Models
of effective connectivity are designed to furnish a suitable
measure of influence among interconnected components
(or regions of interest) in the brain. In Figure 38.4 each
state’s equation is given by:

ẋ1 = a11x1 + �a12 + b2
12u2�x2 + c11u1

ẋ2 = a22x2 +a21x1 + c22u2

38.8

Taking derivatives of ẋ with respect to the states quanti-
fies the coupling between the two states (i.e. regions):

�ẋ1

�x2
= Ã12�u� = a12 + b2

12u2

�ẋ2

�x1
= Ã21�u� = a21

38.9

in terms of how one state causes changes in another.
Generally, this coupling may be linear or non-linear.
However, in bilinear models, it is described simply by
the elements of Ã�u� = A + 
ujB

j . In our example, the
coupling from u1 to x2 is linear and is a constant a21.
However, the interaction between u2 and x2 induces non-
linearities in the network, rendering Ã12�u� a function of
u2. The influence x2 has on x1 therefore depends on u2.
This effect may be quantified by taking derivatives with
respect to the contextual input:

�2ẋ1

�x2�u2
= b2

12 38.10

This second-order derivative may be a non-linear func-
tion of the states and input for arbitrary equations of
motion, but it reduces to a constant in the bilinear model.

The first- and second-order derivatives quantify cou-
pling among the states of a network and correspond to
obligatory and modulatory influences in neuronal net-
works (Büchel and Friston, 2000). This distinction high-
lights the difference between perturbing and contextual
inputs. As illustrated in Figure 38.4, input can be catego-
rized by the way it affects the states of a system. Input

V5

PFC

V1

PPC
Stimulus-bound
perturbations-u1
photic stimulation

y

y

y y

Contextual input-u2
motion 

Contextual input–u3
attention 

FIGURE 38.5 A schematic model of functional integration in
the visual and attention systems. Sensory input has direct effect on
the primary visual cortex, while contextual inputs, such as motion
or attention, modulate pathways between nodes in the extended
network. In this way, contextual input (e.g. induced by instructional
set) may enable (or disable) pathways, which changes the response
of the system to stimulus-bound inputs.

can perturb states directly or it can modulate intrinsic
connectivity. These are perturbing and contextual effects
respectively. Both evoke a response; however, contextual
inputs do so vicariously by modulating the dynamics
induced by perturbing inputs. Figure 38.5 is an illustra-
tive model of responses evoked by visual motion that
shows the sorts of architectures bilinear models can be
applied to. This example uses photic stimulation as a per-
turbing input that evokes a response, which depends on
the current connectivity. This connectivity changes with a
contextual input, in this example the presence of motion
in the visual field and attentional set (i.e. attending to
motion). Changes in attention cause a reconfiguration of
connectivity and can modify the response to photic stim-
ulation. This is a dynamic casual model that has been
inverted using real data (see Chapter 41).

Having described the basis for modelling the brain as
a physical system and establishing a distinction between
inputs that change states and those that change parame-
ters (i.e. connections), we turn to some specific examples.
We start with simple static models and generalize them
to recover the dynamic models described in this section.

STATIC MODELS

The objective of an effective connectivity analysis is
to estimate parameters that represent influences among
regions that may change over time and with respect to
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experimental tasks. This rests on the inversion of a causal
model. Identifying a complete and biologically plausible
mathematical model requires a high level of sophistica-
tion. However, some progress can be made by modelling
relationships in the data alone (among voxels or regions),
without invoking hidden states and ignoring the conse-
quent dynamics. This makes the maths much easier but
discounts temporal information and is biologically unre-
alistic. We will call these models ‘static’ as they model
instantaneous interactions among regions and ignore the
influence previous states have on current responses.

Linear models

Linear models assume that each time sample is inde-
pendent of the next. This is tenable for positron emis-
sion tomography (PET) data because the nature of the
measurement is essentially steady state. Usually, PET
data are acquired while holding brain states constant,
using an appropriate task or stimulus and waiting until
steady-state radiotracer kinetics can be assumed. Math-
ematically, this means the rate of change of the states is
zero. However, in functional magnetic resonance imag-
ing (fMRI), this assumption is generally violated (and
certainly for electrophysiological measurements); this is
the motivation for dynamic models of fMRI and elec-
troencephalography (EEG) responses.

In static linear models, the activity of each voxel is
modelled as a linear mixture of activity in all voxels plus
some error. This can be expressed as a multivariate linear
model:

Y = Y�+�

Y =
⎡
⎢⎣

y1
			

yT

⎤
⎥⎦ 38.11

where yt is a row vector containing all regional measure-
ments at time t. The problem with this formulation is
that the trivial solution � = 1 completely accounts for the
data. We will see later how structural equation modelling
deals with this by fixing some connections. Although
unconstrained linear models cannot address connectivity
per se, if we include non-linearities, they can be used to
assess changes in connectivity.

Bilinear models

Bilinear models can be used to estimate changes in
connectivity if the bilinear term includes a measure of
neuronal activity. If the bilinear term represents an inter-
action between activity and an experimental factor, it can

model the effects of contextual input. If the bilinear term
is an interaction between neuronal activities, it can model
modulatory interactions among populations of neurons.
We will focus on the former: the model in Plate 55 (left-
hand panel) (see colour plate section) is a simple bilinear
model. It consists of an input u, which generates an out-
put y. The non-linearity is due to an interaction between
the input and output. This model comprises a linear and
bilinear term parameterized by b1 and b2 respectively.

y = ub1 +uyb2 38.12

If the model contained the first term only, it would be
linear and the relationship between input and output
would be a straight line. The addition of the second
term introduces non-linear behaviour. Plotting u and y
for different values of b2 demonstrates this. The input-
output behaviour depends on b2 and is revealed by the
two curves in Plate 55 (right-hand panel). It can be seen
that the sensitivity of changes in y to changes in u (i.e.
the slope) depends on y. This sort of dependency was
used in Friston et al. (1995) to demonstrate asymmetrical
non-linear interactions between V1 and V2 during visual
stimulation. In this example, the bilinear term comprised
fMRI measures of neuronal activity in V1 and V2, corre-
sponding to y and u respectively.

The bilinear term in Eqn. 38.12 contains the product
of input and activity uy. This is referred to as a psy-
chophysiological interaction (PPI). Although we will focus
on psychophysiological interaction terms, all that follows
can be applied to any bilinear effect. As noted above,
these include the interactions between two physiological
variates.

Psychophysiological interactions

Büchel et al. (1996) discuss a series of increasingly high-
order interaction terms in general linear models. These
are introduced as new explanatory variables enabling
statistical parametric mapping (SPM) to estimate the
magnitude and significance of non-linear effects directly.
A special example of this is a psychophysiological inter-
action (Friston et al., 1997) where the bilinear term
represents an interaction between an input or psycholog-
ical variable and a response or physiological variable yi

measured at the i-th brain region. Any linear model can
be augmented to include a PPI:

Y = �X u×yi��+� 38.13

The design matrix partition X = �u�yi� � � � � normally con-
tains the main effect of experimental input and regional
response. The PPI is the Hadamard product u×yi and is
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obtained by multiplying the input and response vectors
element by element. Both the main effects and interaction
terms are included because the main effects have to be
modelled to assess properly the additional explanatory
power afforded by the bilinear or PPI term. Standard
hypothesis testing can be used to estimate the significance
of the PPI at any point in the brain with an SPM.

Plate 56 illustrates bilinear effects in real data. These
data come from an fMRI study of the modulatory effects
of attention on visual responses to radial motion (see
Büchel and Friston, 1998 for experimental details). The
aim was to quantify the top-down modulatory effect of
attention on V1 to V5 connectivity. The model combines
psychological data (attentional set) with physiological
data (V1 activity) to model the interaction. The right-hand
panel in Plate 56 show a regression analysis of the same
data, divided according to attentional set, to demonstrate
the difference in regression slopes subtending this PPI.

In this example, attention was modelled as a ‘con-
textual’ variable, while visual stimulation perturbed the
system. The latter evoked a response within the con-
text of the former, i.e. visual stimuli evoke different
responses depending on attentional set, modelled as a
change in connectivity. Here, attention reconfigures con-
nection strengths among prefrontal and primary cortical
areas (Mesulam, 1998). This bilinear effect may take any
appropriate form in PPI models, including, for example,
psychological, physiological or pharmacological indices.
These models emphasize the use of factorial experimen-
tal designs (Friston et al., 1997) and allow us to consider
experimental inputs in a different light, distinguishing
contextual input (one factor) from direct perturbation
(another factor). PPI models have provided important
evidence for the interactions among distributed brain
systems and enabled inferences about task-dependent
plasticity using a relatively simple procedure. The model
we consider next was developed explicitly with effec-
tive connectivity or path analysis in mind, but adopts a
different approach to the estimation of model parame-
ters. This approach rests on specifying constraints on the
connectivity.

Structural equation modelling

Structural equation modelling (SEM), or path analysis, is
a multivariate method used to test hypotheses regard-
ing the influences among interacting variables. Its roots
go back to the 1920s, when path analysis was developed
to quantify unidirectional causal flow in genetic data
and developed further by social scientists in the 1960s
(Maruyama, 1998). It was criticized for the limitations
inherent in the least squares method of estimating model
parameters, which motivated a general linear modelling

approach from the 1970s onwards. It is now available in
commercial software packages, including LISREL, EQS
and AMOS. See Maruyama (1998) for an introduction to
the basic ideas. Researchers in functional imaging started
to use it in the early 1990s (McIntosh and Gonzalez-
Lima, 1991, 1992a, b, 1994). It was applied first to ani-
mal autoradiographic data and later to human PET data
where, among other experiments, it was used to iden-
tify task-dependent differential activation of the dorsal
and ventral visual pathways (McIntosh et al., 1994). Many
investigators have used SEM since then. An example of
its use to identify attentional modulation of effective con-
nectivity between prefrontal and premotor cortices can
be found in Rowe et al. (2002).

An SEM is a linear model with a number of modifica-
tions, which are illustrated in Figure 38.6: the coupling
matrix, �, is ‘pruned’ to include only paths of inter-
est. Critically, self-connections are precluded. The data
matrix, Y , contains responses from regions of interest and
possibly experimental or bilinear terms. The underlying
model is a general linear model:

Y = Y�+� 38.14

where the free parameters, �, are constrained, according
to the specified pruning or sparsity structure of connec-
tions. To simplify the model, the residuals � are assumed
to be independent. They are interpreted as driving each
region stochastically from one measurement to another
and are sometimes called innovations.
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FIGURE 38.6 An SEM is used to estimate path coefficients for
a specific network of connections, after ‘pruning’ the connectivity
matrix. The graphic illustrates a particular sparsity structure, which
is usually based on prior anatomical knowledge. yt may contain
physiological or psychological data or bilinear terms (to estimate
the influence of ‘contextual’ input). The innovations � are assumed
to be independent, and can be interpreted as driving inputs to each
node.
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Instead of minimizing the sum of squared errors, the
free parameters are estimated using the sample covari-
ance structure of the data. The rationale for this is that
the covariance reflects the global behaviour of the data,
i.e. capturing relationships among variables, in contrast
to the former, which reflects the goodness of fit from
the point of view of each region. Practically, an objective
function is constructed from the sampled and implied
covariance, which is optimized with respect to the param-
eters. The implied covariance, 
���, is computed easily
by rearranging Eqn. 38.14 and assuming some value for
the covariance of the innovations,

〈
�T �

〉
:

Y�I −�� = �

Y = ��1−��−1


 = 〈
Y T Y

〉
= �1−��−T

〈
�T �

〉
�1−��−1

38.15

The sample covariance is:

S = 1
n−1

Y T Y

where n is the number of observations and the maximum
likelihood objective function is:

FML = ln ��− tr�S
−1�− ln �S� 38.16

This is simply the Kullback-Leibler divergence between
the sample and the covariance implied by the free param-
eters. A gradient descent, such as a Newton-Raphson
scheme, is generally used to estimate the parameters,
which minimize this divergence. The starting values can
be estimated using ordinary least square (OLS) (McIntosh
and Gonzalez-Lima, 1994).

Inferences about changes in the parameters or path
coefficients rest on the notion of nested, or stacked, mod-
els. A nested model consists of a free-model within which
any number of constrained models is ‘nested’. In a free
model, all parameters are free to take values that opti-
mize the objective function, whereas a constrained model
has one, or a number of parameters omitted, constrained
to be zero or equal across models (i.e. attention and
non-attention). By comparing the goodness of fit of each
model against the others, �2 statistics can be derived
(Bollen, 1989). Hypotheses testing proceeds using this
statistic. For example, given a constrained model, which
is defined by the omission of a pathway, evidence for
or against the pathway can be tested by ‘nesting’ it in
the free model. If the difference in goodness of fit is
unlikely to have occurred by chance, the connection can
be declared significant. An example of a nested model

V1 PPC

NAb21

Ab32

Ab32
PPC

PPC

PPC
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Constrained-modelFree-model

V5

V1 V5

V1 V5
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FIGURE 38.7 Inference about changes in connection strengths
proceeds using nested models. Parameters from free and con-
strained models are compared with a �2 statistic. This example
compares path coefficients during attention (A) and non-attention
(NA), testing the null hypothesis that the V1 to V5 connections are
the same under both levels of attention.

that was tested by Büchel and Friston (1997) is shown in
Figure 38.7.

SEM can accommodate bilinear effects by including
them as an extra node. A significant connection from a
bilinear term represents a modulatory effect in exactly
the same way as in a PPI. Büchel and Friston (1997) used
bilinear terms in an SEM of the visual attention data set,
to establish the modulation of connections by prefrontal
cortex. In this example, the bilinear term comprised mea-
surements of activity in two brain regions. An interesting
extension of SEM has been to look at models of connec-
tivity over multiple brains (i.e. subjects). The nice thing
about this is that there are no connections between brains,
which provide sparsity constraints on model inversion
(see Mechelli et al., 2002).

SEM shares the same limitations as the linear model
approach described above, i.e. temporal information is
discounted.1 However, it has enjoyed relative success and
become established over the past decade due, in part, to
its commercial availability as well as its intuitive appeal.
However, it usually requires a number of rather ad hoc
procedures, such as partitioning the data to create nested
models, or pruning the connectivity matrix to render the
solution tractable. These problems are confounded with
an inability to capture non-linear features and tempo-
ral dependencies. By moving to dynamic models, we
acknowledge the effect of an input’s history and embed
a priori knowledge into models at a more plausible and
mechanistic level. These issues will be addressed in the
following section.

1 There are extensions of SEM that model dynamic information
by using temporal embedding. However, these are formally the
same as the multivariate autoregressive models discussed in the
next section.
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DYNAMIC MODELS

The static models described above discount temporal
information. Consequently, permuted data sets produce
the same path coefficients as the original data. Models
that use the order in which data are produced are more
natural candidates for neuronal dynamics. In this section
we will review Kalman filtering, autoregressive and gen-
eralized convolution models (see Chapters 39 and 40).

The Kalman filter

The Kalman filter is used in engineering to model dynam-
ics (Juang, 2001). It is based on a state-space model that
invokes an extra set of [hidden] variables to generate
data. These models are useful because long-range tem-
poral order, within observed data, is modelled through
interactions among hidden states, instead of mapping
input directly onto output (see below). The Kalman filter
is an ‘online’ procedure consisting of two steps: predic-
tion and correction (or update). The hidden states are
estimated (prediction step) using the information up until
the present, which is updated (correction step) on receipt
of each new measurement. These two steps are repeated
recursively as new information arrives. A simple exam-
ple demonstrates intuitively how the filter works. This
example is taken from Ghahramani (2002).

Consider a series of data, which are received sequen-
tially. Say we wanted to calculate a running average with
each new data point. The estimate of the mean (which
we will call the ‘state’) after t values of x is x̂t, where:

x̂t = 1
t

∑
t

xt and x̂t−1 = 1
t −1

∑
t−1

xt−1 ⇒

x̂t = t −1
t

x̂t−1 + 1
t
xt

= x̂t−1 +K �xt − x̂t−1�

38.17

where K is the Kalman Gain = 1/t. This example gives
the basic idea behind Kalman filtering and illustrates its
general form: a prediction and a weighted correction (for
a less heuristic introduction, see Appendix 5). The fil-
ter balances two types of information from a prediction
(based on previous data) and an observation, weighted
by their respective precisions using Bayes’ rule. If the
measured data are not reliable, K goes to zero, weighting
the prediction error less and relying more on the preced-
ing prediction. Conversely, if sequential dependence is
low, then K is large, emphasizing information provided
by the data when constructing an estimate of the current
state. The quantities required in the forward recursion
are the Kalman Gain and the mean and covariance of the

prediction. A backward recursive algorithm called the
Kalman Smoother calculates the mean and covariance of
the states using data from the future, which is a post hoc
procedure to improve estimates.

Kalman filtering and smoothing are generally applied
to state-space models in discrete time (see Appendix 5).
To understand how the filter is applied we start with the
familiar linear observation model:

yt = xt�t +�t

�t ∼ N�0�R�
38.18

Here y and x are univariate and are both known, e.g.
blood oygenation-level-dependent (BOLD) activity from
V1 and V5. However, � is now a variable parame-
ter or state that is observed vicariously through BOLD
responses and changes with time according to the update
equation:

�t = �t−1 +�t

�t ∼ N�0�Q�
38.19

�t is a further innovation. Given this model, the Kalman
filter can be used to estimate the evolution of the hidden
state or variable parameter, �. Note that if �t = 0 then
�t = �t−1. This is the static estimate from an ordinary
regression analysis. In this form of states-space model,
the states play the role of variable parameters. This is
why this application of Kalman filtering is also known
as variable parameter regression.

Büchel and Friston (1998) used Kalman filtering to
measure effective connectivity between V1 and V5: by
modelling the path coefficient as a hidden state, the filter
disclosed fluctuations in the coupling, which changed with
attention (even though attentional status did not enter the
model).Figure38.8 illustrates themodelandplots the time-
dependent estimate, �t, for V1 to V5 connectivity (lower
panel). This reveals fluctuations that match changes in
attentional set; the light grey bars indicate periods of atten-
tion to visual motion and the dark grey bars, periods with-
out attention. The connection is clearly much stronger
during attention, suggesting that attention to motion has
enabled the forward connections from V1 to V5. The
results of this analysis show that there is task-dependent
variation in inter-regional connectivity. Critically, this
variation was estimated from the data. However, in gen-
eral, these changes in connectivity are induced experi-
mentally by known and deterministic causes.

In Chapter 41, we return to hidden-state models and
re-analyse the attentional data set in a way that allows
designed manipulations of attention to affect the hidden
states of a causal model. In dynamic casual modelling, the
states are dynamic variables (e.g. neuronal activity) and
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FIGURE 38.8 State-space model of the path coefficient
between V1 and V5. Connection strengths are modelled as a hidden
state (or variable parameter) that changes with time, according to
the update equation (upper panel). Its evolution is estimated using
the Kalman filter. This empirical example reveals fluctuations that
match changes in attentional set (lower panel). The light grey bars
indicate periods of attention to visual motion and the dark grey bars,
periods without attention. The connection is clearly much stronger
during attention, suggesting that attention to motion has enabled
the forward connections from V1 to V5.

the effective connectivity corresponds to fixed parameters
that can interact with time-varying states and inputs.2

The remainder of this chapter focuses on approaches that
do not refer to hidden states, such as autoregressive and
generalized convolution models.

Multivariate autoregressive models

Sequential measurements often contain temporal infor-
mation that can provide insight into the physical mecha-
nisms generating them. A simple and intuitive model of
temporal order is an autoregressive (AR) model, where

2 This should be contrasted with Kalman filtering, in which the
connectivity itself was presumed to be a time-varying state.

the value of a variable at a particular time depends on
preceding values.

The parameters of AR models comprise regression
coefficients, at successive time lags, that encode sequen-
tial dependencies of the system in a simple and effective
manner. This model can be extended to include sev-
eral variables with dependencies among variables at dif-
ferent lags. These dependencies may be interpreted as
the influence of one variable on another and can, with
some qualification, be regarded as measures of effec-
tive connectivity. Models involving many variables are
called multivariate autoregressive (MAR) models and
have been used to measure dependencies among regional
activities as measured with fMRI (Goebel et al., 2003;
Harrison et al., 2003).

MAR models do not invoke hidden states. Instead,
correlations among measurements at different time lags
are used to quantify coupling. This incorporates history
into the model in a similar way to the Volterra approach
described below. MAR models are linear, but can be
extended to include bilinear interaction terms (Penny
et al., 2005). To understand MAR we will build up a
model from a univariate AR model and show that MAR
models conform to general linear models (GLMs) with
time-lagged explanatory variables.

Consider data at voxel i at time t modelled as a linear
combination of previous values, plus an innovation:

yi
t = �yi

t−1� � � � � yi
t−p�

⎡
⎢⎣

w1
			

wp

⎤
⎥⎦+�t 38.20

w is a p×1 column vector containing the model param-
eters (AR coefficients). Here the explanatory variables
are now preceding values over different time lags. We
can extend the model to d-regions contained in the row
vector:

yt =
p∑

j=1

�y1
t−j� � � � � yd

t−j �

⎡
⎢⎣

w11
j · · · w1d

j

			
	 	 	

wd1
j wdd

j

⎤
⎥⎦+ ��1� � � � � �d�

=
p∑

j=1

yt−jWj +� 38.21

which has d×d parameters Wj at each time lag, describ-
ing interactions among all pairs of variables. This is sim-
ply a GLM whose parameters can be estimated in the
usual way to give W , which is a p × d × d array of AR
coefficients (see Figure 38.9 for a schematic of the model).
There are no inputs to the model, except for the errors,
which play the role of innovations (cf. SEM). This means
that experimentally designed effects have no explicit role
(unless they enter through bilinear terms). However, the
model attempts to identify relations between variables
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y t – p

W p W 2 W 1

y t – 2

ε t – 3 ε t – 2 ε t – 1 ε t 

y t – 1 y t

y t – jWj  + ε t y t  = Σ
j = 1

p

. . . .

FIGURE 38.9 Temporal coupling can be modelled as a multi-
variate autoregressive process. The graphic shows time-lagged data
where the arrows imply statistical dependence. The equation rep-
resenting the model is show below. Wj comprise the autoregression
coefficients and Y contains physiological or psychological data or
interaction terms.

over time, which distinguishes it from static models of
effective connectivity.

The value of p, or order of the model, becomes an
issue when trying to avoid over-fitting. This is a com-
mon problem because a higher-order model will explain
more variance in the data, without necessarily capturing
the dynamics of the system any better than a more par-
simonious model. A procedure for choosing an optimal
value of is therefore necessary. This can be achieved using
Bayesian inversion followed by model selection (Penny
and Roberts, 2002 and Chapter 40).

We have used MAR to model the visual attention data
with three regions. The aim was to test for a modulatory
influence of PPC on V1 to V5 connectivity. To model
this modulatory effect, we used a bilinear term, V1×PPC
as an extra variable in the MAR model and examined
the regression coefficients coupling this term to V5. The
results are shown in Figure 38.10 (see Chapter 40 for more
details). The posterior densities of Wj are represented by
the conditional mean and two standard deviations. The
probability that an individual parameter is different from
zero can be inferred from these conditional densities.
Parameters coupling the PPI term to regional responses
in V5 are circled and show one can be relatively certain
they are not zero.

MAR models have not been used as extensively as
other models of effective connectivity. However, they are
an established method for quantifying temporal depen-
dencies within time series (Chatfield, 1996). They are sim-
ple and intuitive models requiring no a priori knowledge
of connectivity (cf. SEM).

Generalized convolution models

Up to now, we have considered models based on the
general linear model and simple state-space models.
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FIGURE 38.10 Results of a Bayesian inversion of a MAR
model applied to the visual attention data set. Each panel shows
posterior density estimates of Wj over time lags for each connection.
The mean and two standard deviations for each posterior density
are shown. Diagonal elements quantify autoregression and off diag-
onals crossregressions. The variates used were: V1, V5 and PPI; the
PPI term was the Hadamard product V1 × PFC of activity in V1
and the prefrontal cortex (PFC). The circled estimates support cou-
pling between V1 and V5 that depends on PFC activity in the past.
This can be imputed from the fact that the regression coefficients
coupling the V1×PFC term to V5 were non-zero.

The former may be criticized for not embracing tem-
poral information within data, which the Kalman filter
(an example of the latter) resolved by invoking hid-
den states. An alternative approach is to eschew hidden
states and formulate a function that maps the history
of input directly onto output. This can be achieved by
characterizing the response (output) of a physical system
over time to an idealized input (an impulse), called an
impulse response function (IRF) or transfer function (TF).
In the time domain, this function comprises a kernel that
quantifies the idealized response. This is convenient as
it bypasses any hidden states generating the data. How-
ever, it renders the system a ‘black box’, within which we
have no model. This is both the method’s strength and
weakness.

Once the IRF has been characterized from experimen-
tal data, it can be used to model responses to arbi-
trary inputs. For linear systems, adherent to the principle
of superposition, this reduces to convolving the input
with the IRF. The modelled response depends on the
input, without any reference to the interactions that may
have produced it. An example, familiar to neuroimaging,
is the haemodynamic response function (HRF) used to
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model the haemodynamic response of the brain to stim-
ulus functions. However, we would like to cover non-
linear models, which obtain by generalizing the notion
of convolution models to include high-order interac-
tions among inputs, an approach originally developed by
Volterra in 1930 (Rieke et al., 1997).

The generalized non-linear state and observation equa-
tions of any analytic system are, respectively:

ẋ�t� = f�x�t��u�t��

y�t� = g�x�t��u�t��
38.22

These can be reformulated to relate output to input,
y�t� = h�u�t−��� without reference to the states x�t�. This
mapping is a non-linear functional Taylor expansion:

y�t� = h0 +
�∫

−�
h1��1�u�t −�1�d�1

+
�∫

−�

�∫
−�

h2��1� �2�u�t −�1�u�t −�2�d�1d�2 +· · ·

+
�∫

−�
� � �

�∫
−�

hn��1� · · · � �n�u�t −�1� · · ·u�t −�n�d�1 · · ·d�n

38.23

where n is the order of the series and may take any posi-
tive integer to infinity. This is known as a Volterra series.
Under certain conditions, h converges as n increases
(Fliess et al., 1983) and can provide a complete descrip-
tion of a system, given enough terms. To understand
this we need to consider the Taylor series expansion
as a means of approximating a general non-linear func-
tion (see Figure 38.1). Any sufficiently smooth non-linear
function can be approximated, within the neighbourhood
of an expansion point x0, by scaling increasingly high-
order terms, computed from derivatives of the function
about x0 (see Eqn. 38.1). The Volterra series is a Tay-
lor series expansion, where high-order terms are con-
structed from variables modelling interactions and scaled
by time-varying coefficients. The Volterra series is a
power-series expansion where the coefficients are now
functions, known as kernels. The kernels are functions of
time and, as the series involves functions of functions,
they are known as functionals.

An increase in accuracy of the approximation is
achieved by considering higher order terms, as demon-

strated by deriving linear and bilinear models. The same
is true of the linear and bilinear convolution models:

y�t� ≈ h0 +
�∫

0

h1��1�u�t −�1���1

y�t� ≈ h0 +
�∫

0

h1��1�u�t −�1���1

+
�∫

0

�∫
0

h2��1� �2�u�t −�1�u�t −�2���1��2

38.24

Note that the integrals in Eqn. 38.24 are from zero to
infinity. This means the response depends only on past
inputs. This renders the system casual (cf. the acausal
system in Eqn. 38.23). The HRF derives from a linear con-
volution model. The system’s IRF and the occurrences
of experimental trials are therefore h1 and u�t� respec-
tively. The linear model complies with the principle of
superposition: given two, the response is simply the
sum of the two responses. By including the second-order
kernel, non-additive responses can be modelled. Practi-
cally, this means that the timing of inputs is important
in that different pairs of inputs may produce different
responses. The Volterra formulation is a generalization
of the convolution model, which convolves increasingly
high-order interactions with multidimensional kernels to
approximate the non-additive components of a system’s
response.

Kernels scale the effect each input, in the past, has
had on the current response. As such, Volterra series
have been described as ‘power series with memory’.
Sequential terms embody increasingly complex interac-
tions among inputs up to arbitrary order. The series
converges with increasing terms which, for weakly non-
linear systems, is assumed to occur after the second-order
term. A schematic, showing how two inputs can produce
an output in a bilinear convolution model, is shown in
Figure 38.11.

The first and second-order kernels quantify the linear
and bilinear responses; this means they encode first- and
second-order effective connectivity respectively (Friston,
2000). More specifically, the kernels map the input in the
past to the current response:

h1��1� = �y�t�

�u�t −�1�

h2��1� �2� = �2y�t�

�u�t −�1��u�t −�2�
38.25

� � �

Having established the Volterra kernel as a measure
of effective connectivity, we need to estimate them from
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12h2

h1
1

h1
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FIGURE 38.11 Schematic showing how two inputs can pro-
duce an output. Linear contributions from each input are formed by
convolution with their respective first-order kernels h1. In addition,
non-additive responses, due to non-linear interactions between the
two inputs and hidden states, are modelled by convolution with the
second-order kernel, h2. Note that the second-order kernel is two
dimensional.

experimental data. By reformulating the model using
an appropriate basis set, kernels can be reconstructed
from estimated coefficients. The HRF is modelled well by
gamma functions and this is the reason for choosing them
to approximate Volterra kernels. Generally, the Volterra
kernels for an arbitrarily non-linear dynamic system are
difficult to compute unless the underlying generative
process leading to the data is fairly well characterized.

A bilinear convolution model can be reformulated by
convolving the inputs with the basis set bi and using the
set of convolved inputs in a GLM:

y�t� = �0 +
n∑

i=1

�ixi�t�+
n∑

i=1

n∑
j=1

�ijxi�t�xj�t�

xi�t� =
∫

bi��1�u�t −�1���1

38.26

The kernels are then recovered by:

h0 = �0

h1��1� =
n∑

i=1

�ibi��1� 38.27

h2��1� �2� =
n∑

i=1

n∑
j=1

�ijbi��1�bj��2�

This method was applied to the attentional data set used
previously. The model consisted of inputs from three
regions: putamen, V1 complex and posterior parietal cor-
tex (PPC), to V5, as shown in Figure 38.12. BOLD record-
ings from these regions were used as an index of neuronal
activity, representing input to V5. The lower panel illus-
trates responses to simulated inputs, using the empiri-
cally determined kernels. It shows the response of V5 to
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FIGURE 38.12 Top: brain regions and connections compris-
ing a Volterra model of visually evoked responses. Bottom: char-
acterization of the effects of V1 inputs on V5 and their modulation
by posterior parietal cortex (PPC). Broken lines represent estimates
of V5 responses when PPC activity is zero, according to a second-
order Volterra model of effective connectivity with inputs to V5
from V1, PPC and the pulvinar (Pul.). The solid curve represents the
same response when PPC activity is one standard deviation of its
between-condition variation. It is evident that V1 has an activating
effect on V5 and that PPC increases the responsiveness of V5 to these
inputs. The insert shows all the voxels in V5 that evidenced a modu-
latory effect (p < 0	05 uncorrected). These voxels were identified by
thresholding a statistical parametric map of the F -statistic, testing
for the contribution of second-order kernels involving V1 and PPC
(treating all other terms as nuisance variables). The fMRI data were
obtained under identical stimulus conditions (visual motion sub-
tended by radially moving dots) while manipulating the attentional
component of the task (detection of velocity changes).

an impulse from V1 and provides a direct comparison of
V5 responses to the same input from V1, with and with-
out prefrontal cortex (PFC) activity. The influence of PFC
is clear and reflects its enabling of V1 to V5 connectivity.
This is an example of second-order effective connectivity.

The Volterra method has many useful qualities. It
approximates non-linear behaviour within the familiar
framework of a generalized convolution model. Ker-
nels can be estimated using a GLM and inferences
made under parametric assumptions. Furthermore, ker-
nels contain the dynamic information we require to mea-
sure effective connectivity. However, kernels characterize
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an ideal response, generalized to accommodate non-
linear behaviour, which is effectively a summary of
input-output behaviour. It should also be noted that
Volterra series are only local approximations around
an expansion point. Although they may be extremely
good approximations for some systems, they may not be
for others. For instance, Volterra series cannot capture
the behaviour of periodic or chaotic dynamics (i.e. non-
controllable systems). A major weakness of the method
is that we have no notion of the internal mechanisms that
generated the data, and this is one motivation for turning
to dynamic causal models.

CONCLUSION

This chapter has described different methods of mod-
elling inter-regional coupling using neuroimaging data.
The development and application of these methods is
motivated by the importance of changes in effective con-
nectivity in development, cognition and pathology. We
have portrayed the models incrementally, starting with
linear regression models and ending with bilinear convo-
lution models. In the next three chapters we will revisit
bilinear models. Bilinear models cover plasticity induced
by environmental and neurophysiological changes, while
retaining mathematical tractability of linear models.
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Non-linear coupling and kernels
K. Friston

INTRODUCTION

This chapter revisits the Volterra formulation of effective
connectivity from a conceptual and neurobiological point
of view. Recall from the previous chapter that the gener-
alized convolution representation, afforded by Volterra
expansions, is just a way of describing the input-output
behaviour of dynamic systems that have an equivalent
state-space representation. In subsequent chapters, we
will deal with state-space representations in more detail.
Before proceeding to explicit input-state-output models,
we will look at why the Volterra formulation is a useful
summary of input-output relationships in this chapter
and the role of multivariate autoregression models of
output-output relationships in the next chapter.

The brain as a dynamic system

The brain can be regarded as an ensemble of con-
nected dynamical systems and, as such, conforms to
some simple principles relating the inputs and out-
puts of its constituent parts. The implications for the
way we think about and measure neuronal interactions
can be quite profound. These range from implications
for which aspects of neuronal activity are important to
measure and how to characterize coupling among neu-
ronal populations, to implications pertaining to dynamic
instability and complexity that is necessary for adaptive
self-organization.

This chapter focuses on the first issue by looking at
neuronal interactions, coupling and implicit neuronal
codes from a dynamical perspective. In brief, by consid-
ering the brain in this light one can show that a sufficient
description of neuronal activity must comprise activity
at the current time and its recent history. This history

constitutes a neuronal transient. Such transients repre-
sent an essential metric of neuronal interactions and,
implicitly, a code employed in the functional integra-
tion of brain systems. The nature of transients, expressed
coincidently in different neuronal populations, reflects
their underlying coupling. A complete description of
this coupling, or effective connectivity, can be expressed
in terms of generalized convolution [Volterra] kernels
that embody high-order or non-linear interactions. This
coupling may be synchronous, and possibly oscillatory,
or asynchronous. A critical distinction between syn-
chronous and asynchronous coupling is that the for-
mer is essentially linear and the latter is non-linear.
The non-linear nature of asynchronous coupling enables
context-sensitive interactions that characterize real brain
dynamics, suggesting that it plays an important role in
functional integration.

Brain states are inherently labile, with a complexity and
itinerancy that renders their invariant characteristics elu-
sive. The basic idea pursued here is that the dynamics of
neuronal systems can be viewed as a succession of tran-
sient spatiotemporal patterns of activity. These transients
are shaped by the brain’s infrastructure, principally con-
nections, which have been selected to ensure the adap-
tive nature of the resulting dynamics. Although rather
obvious, this formulation embodies a fundamental point,
namely, that any description of brain state should have
an explicit temporal dimension. In other words, mea-
sures of brain activity are only meaningful when speci-
fied over periods of time. This is particularly important
in relation to fast dynamic interactions among neuronal
populations that are characterized by synchrony. Syn-
chronization has become a central theme in neuroscience
(e.g. Gray and Singer, 1989; Eckhorn et al., 1988; Engel
et al., 1991) and yet represents only one possible sort of
interaction.

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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Ensemble dynamics, synchronization and
self-organization

It is important to emphasize that this chapter is only
about describing neuronal interactions; it is not about
modelling them or trying to understand the underly-
ing dynamical principles. Mechanistic or casual models
of brain dynamics usually rest on mean-field assump-
tions and ensemble dynamics. The self-organization of
coupled dynamic systems, through mean-field quan-
tities, provides an established framework for looking
at emergent behaviours and their neuronal correlates
(see Harrison et al., 2005 and Chapter 31). There is
a growing body of work looking at the synchroniza-
tion dynamics of coupled dynamical systems and their
relevance to neuronal self-organization (e.g. Breakspear
et al., 2003). Others have used the discovery of chaotic
itinerancy in high-dimensional dynamical systems (with
and without a noise) to interpret neural activity in
terms of high-dimensional transitory dynamics among
‘exotic’ attractors (see Tsuda, 2001). At a more macro-
scopic level, synergistics provides another framework
to understand pattern-formation and self-organization.
Here, the brain is conceived as a self-organizing sys-
tem operating close to instabilities where its activities are
governed by collective variables, the order parameters,
which enslave the individual parts, i.e. the neurons. In
this approach, the emphasis is on qualitative changes of
behavioural and neuronal activities; using general prop-
erties of order parameters, at the phenomenological level,
bi-stability, hysteresis and oscillations can be modelled
(see Haken, 2006).

Unlike these more mechanistic approaches, this
chapter is only concerned with how to describe and mea-
sure interactions. It is less concerned with how the inter-
actions and dynamics are generated. However, there are
some basic principles that place important constraints on
the descriptions and measurements that could be used.

This chapter is divided into four sections. In the first,
we review the conceptual basis of neuronal transients.
This section uses the equivalence between two mathe-
matical formulations of non-linear systems to show that
descriptions of brain dynamics, in terms of neuronal tran-
sients and the coupling among interacting brain systems,
are complete and sufficient. The second section uses this
equivalence to motivate a taxonomy of neuronal codes
and establish the relationship among neuronal transients,
asynchronous coupling, dynamic correlations and non-
linear interactions. In the third section, we illustrate non-
linear coupling using magnetoencephalography (MEG)
data. The final section discusses some neurobiological
mechanisms that might mediate non-linear coupling.

NEURONAL TRANSIENTS

The assertion that meaningful measures of brain
dynamics have a temporal domain is neither new nor
contentious (e.g. von der Malsburg, 1985; Optican and
Richmond, 1987; Engel et al., 1991; Aertsen et al., 1994;
Freeman and Barrie, 1994; Abeles et al., 1995; deCharms
and Merzenich, 1996). A straightforward analysis demon-
strates its veracity: suppose that one wanted to posit
some quantities x that represented a complete and self-
consistent description of brain activity. In short, every-
thing needed to determine the evolution of the brain’s
state, at a particular place and time, was embodied in
these measurements. Consider a component of the brain
(e.g. a neuron or neuronal population). If such a set
of variables existed for this component system, they
would satisfy some immensely complicated non-linear
state equation:

ẋ = f�x�u� 39.1

where x is a huge vector of state variables, which range
from depolarization at every point in the dendritic tree
to the phosphorylation status of every relevant enzyme,
from the biochemical status of every glial cell compart-
ment to every aspect of gene expression. u�t� repre-
sents external forces or inputs conveyed by afferent from
other regions. Eqn. 39.1 simply says that the evolution
of state variables is a non-linear function of the vari-
ables themselves and some inputs. The vast majority of
these variables are hidden and not measurable directly.
However, there is a small number of derived measure-
ments y that can be made (cf. phase-functions in statistical
physics):

y = g�x�u� 39.2

such as activities of whole cells or populations. These
activities could be measured in many ways, for exam-
ple firing at the initial segment of an axon or local field
potentials. The problem is that a complete and sufficient
description appears unattainable, given that the under-
lying state variables cannot be observed directly. This is
not the case. The resolution of this apparent impasse rests
upon two things: first, a mathematical equivalence relat-
ing the inputs and outputs of a dynamical system and
the fact that measurable outputs constitute the inputs to
other cells or populations. In other words, there exists
a set of quantities that serve a dual role as external
forces or inputs to neuronal systems and a measure of
their response (e.g. mean-field quantities in ensemble
dynamics).
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Input-state-output systems and Volterra series

Neuronal systems are inherently non-linear and lend
themselves to modelling with non-linear dynamical sys-
tems. However, due to the complexity of biological sys-
tems, it is difficult to find analytic equations that describe
them adequately. Even if these equations were known,
the state variables are often not observable. An alter-
native approach to identification is to adopt a very
general model (Wray and Green, 1994) and focus on
the inputs and outputs. The Fliess fundamental for-
mula (Fliess et al., 1983) describes the causal relation-
ship between the outputs and the recent history of the
inputs. This relationship can be expressed as a Volterra
series which expresses the output as a non-linear con-
volution of the inputs, critically without reference to the
states. This series is simply a functional Taylor expansion
of Eqn. 39.2:

y�t� = h�u�t −��� = �∑
i=0

�∫
0

� � �
�∫
0

�i��1� � � � �i�u�t −�1�� � �

u�t −�i�d�1� � � d�i

�i��1� � � � ��i� = �iy�t�

�u�t−�1� � � � �u�t−�i�
39.3

where �i��1� � � � ��i� is the i-th order kernel. Volterra
series have been described as a ‘power series with mem-
ory’ and are generally thought of as a high-order or ‘non-
linear convolution’ of the inputs to provide an output
(see Bendat, 1990 for a fuller discussion).

Convolution and state-space representations

The Volterra expansion means that the output of any
neuronal system is a function of the recent history of its
inputs. The critical thing here is that we never need to
know the hidden variables that describe the details of
each cell’s electrochemical and biochemical status. We
only need to know the history of its inputs which, of
course, are the outputs of other cells. Eqn. 39.3 is, in
principle, a sufficient description of brain dynamics and
requires the inputs u�t − �� at all times preceding the
moment in question. These are simply neuronal tran-
sients. The degree of transience depends on how far back
in time it is necessary to go fully to capture the brain’s
dynamics. For example, if we wanted to determine the
behaviour of a cell in V1 (primary visual cortex) then we
would need to know the activity of all connected cells in
the immediate vicinity over the last millisecond or so to
account for propagation delays down afferent axons. We
would also need to know the activity in distant sources,
like the lateral geniculate nucleus and higher cortical
areas, some ten or more milliseconds ago. In short, we
need the recent history of all inputs.

Transients can be expressed in terms of firing rates
(e.g. chaotic oscillations, Freeman and Barrie, 1994) or
individual spikes (e.g. syn-fire chains, Abeles et al., 1995).
Transients are not just a mathematical abstraction, they
have real implications at a number of levels. For exam-
ple, the emergence of fast oscillatory interactions among
simulated neuronal populations depends upon the time-
delays implicit in axonal transmission and the time-
constants of postsynaptic responses. Another slightly
more subtle aspect of this formulation is that changes
in synaptic efficacy, such as short-term potentiation or
depression, take some time to be mediated by intracellu-
lar mechanisms. This means that the interaction between
inputs at different times that models these activity-
dependent effects, again depends on the relevant history
of activity.

Levels of description

The above arguments lead to a conceptual model of
the brain as a collection of dynamical systems (e.g.
cells or populations of cells), each represented as an
input-state-output model, where the state remains hidden.
However, the inputs and outputs are accessible and are
causally related where the output of one system consti-
tutes the input toanother.Acompletedescriptiontherefore
comprises the nature of these relationships (the Volterra
kernels) and the neuronal transients that mediate them
(the inputs). This constitutes a mesoscopic level of descrip-
tion that ignores the dynamics that are intrinsic to each
system, but entails no loss of information about their
interactions.

The equivalence, in terms of specifying the behaviour
of a neuronal system, between microscopic and meso-
scopic levels of description is critical. In short, the
equivalence means that all the information inherent in
unobservable microscopic variables that determine the
response of a neuronal system is embedded in the his-
tory of its observable inputs and outputs. Although the
microscopic level of description may be more mechanis-
tically informative, neuronal transients are an equivalent
description.1

1 We have focused on the distinction between microscopic
and mesoscopic levels of description. The macroscopic level is
reserved for approaches, exemplified by synergistics (Haken,
1983), that characterize the spatiotemporal evolution of brain
dynamics in terms of a small number of macroscopic order
parameters (see Kelso, 1995 for an engaging exposition). Order
parameters are created and determined by the cooperation of
microscopic quantities and yet, at the same time, govern the
behaviour of the whole system. See Jirsa et al. (1995) for a nice
example.
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Effective connectivity and Volterra kernels

The first conclusion so far is that neuronal transients are
necessary to specify brain dynamics. The second con-
clusion is that a complete model of the influence one
neuronal population exerts over another should take the
form of a Volterra series.2 This implies that a complete
characterization of these influences (i.e. effective connec-
tivity) comprises the Volterra kernels that are applied
to the inputs to yield the outputs. Effective connec-
tivity refers to: ‘the influence that one neural system
exerts over another, either at a synaptic [i.e. synaptic effi-
cacy] or population level’ (Friston, 1995a). It has been
proposed (Aertsen and Preißl, 1991) that: ‘the notion
of effective connectivity should be understood as the
experiment- and time-dependent, simplest possible cir-
cuit diagram that would replicate the observed timing
relationships between the recorded neurons’ (see the
previous chapter).

Volterra kernels and effective connectivity

Volterra kernels are essential in characterizing the
effective connectivity, because they represent the causal
input-output characteristics of the system in question. In
neurobiological terms they are synonymous with effective
connectivity. From Eqn. 39.3:

�1��1� = �y�t�

�u�t −�1�
�2��1��2� = �2y�t�

�u�t −�1��u�t −�2�
� � �

39.4

It is evident that the first-order kernel embodies the
response evoked by a change in input at t −�1. In other
words, it is a time-dependent measure of driving efficacy.
Similarly, the second order kernel reflects the modulatory
influence of the input at t − �1 on the response evoked
by input at t −�2. And so on for higher orders.

If effective connectivity is the influence that one neu-
ral system exerts over another, it should be possible,
given the effective connectivity and the input, to predict
the response of a recipient population. This is precisely
what Volterra kernels do. Any model of effective con-
nectivity can be expressed as a Volterra series and any

2 An important qualification here is that each system is ‘control-
lable’. Systems which are not ‘controlled’ have quasi-periodic
or chaotic behaviours that are maintained by autonomous inter-
actions among the states of the system. Although an important
issue at the microscopic level, it is fairly easy to show that the
mean field approximation to any ensemble of subsystems is con-
trollable. This is because the Fokker-Planck equation governing
ensemble dynamics has a point attractor (see Chapter 31).

measure of effective connectivity can be reduced to a set
of Volterra kernels. An important aspect of effective con-
nectivity is its context-sensitivity. Effective connectivity
is simply the ‘effect’ that input has on the output of a
target system. This effect will be sensitive to other inputs,
its own history and, of course, the microscopic state and
causal architecture intrinsic to the target population. This
intrinsic dynamical structure is embodied in the Volterra
kernels. In short, Volterra kernels are synonymous with
effective connectivity because they characterize the mea-
surable effect that an input has on its target. An example
of using Volterra kernels to characterize context-sensitive
changes in effective connectivity was provided in the
previous chapter (see Figure 38.12). This example used
haemodynamic responses to changes in neuronal activity
as measured with functional magnetic resonance imaging
(fMRI).

NEURONAL CODES

Functional integration refers to the concerted interactions
among neuronal populations that mediate perceptual
binding, sensorimotor integration and cognition. It per-
tains to the mechanisms of, and constraints under which,
the state of one population influences that of another.
It has been suggested by many that functional integra-
tion among neuronal populations uses transient dynam-
ics that represent a temporal code. A compelling proposal
is that population responses, encoding a percept, become
organized in time, through reciprocal interactions, to dis-
charge in synchrony (von der Malsburg, 1985; Singer,
1994). The use of the term ‘encoding’ speaks directly of
the notion of codes. Here, a neuronal code is taken to
be a metric that reveals interactions among neuronal sys-
tems by enabling some prediction of the response in one
population given the same sort of measure in another.3

Clearly, from the previous section, neuronal transients
represent the most generic form of code because, given
the Volterra kernels, the output can, in principle, be pre-
dicted exactly. Neuronal transients have a number of
attributes (e.g. inter-spike interval, duration, mean level
of firing, predominant frequency etc.) and any of these
could be contenders for a more parsimonious code. The
problem of identifying possible codes can be reduced to

3 Although the term code is not being used to denote anything
that ‘codes’ for something in the environment, it could be used
to define some aspect of an evoked transient that has high
mutual information with a stimulus parameter (e.g. Optican and
Richmond, 1987; Tovee et al., 1993).
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identifying the form the Volterra kernels can take. If we
know their form, then we can say which aspects of the
input will cause a response. Conversely, it follows that
the different forms of kernels should specify the various
codes that might be encountered. This is quite an impor-
tant point and leads to a clear formulation of what can
and cannot constitute a code. We will review different
codes in terms of the different sorts of kernels that could
mediate them.

Instantaneous versus temporal codes

The first kernel characteristic that engenders a coding
taxonomy is kernel depth. The limiting case is when the
kernel‘s support shrinks to a point in time. This means
that the only relevant history is the immediate activity of
inputs (all earlier activities are ‘ignored’ by the kernel).
In this case, the activity in any unit is simply a non-linear
function of current activities elsewhere. An example of
this is instantaneous rate coding.

Rate coding considers spike-trains as stochastic processes
whose first order moments (i.e. mean activity) describe
neuronal interactions. These moments may be in terms
of spikes themselves or other compound events (e.g.
the average rate of bursting, Bair et al., 1994). Inter-
actions based on rate coding are usually assessed in terms
of cross-correlations. From the dynamical perspective,
instantaneous rate codes are insufficient. This is because
they predict nothing about a cell, or population, response
unless one knows the microscopic state of that cell or
population.

The distinction between rate and temporal coding (see
Shadlen and Newsome, 1995; de Ruyter van Steveninck
et al., 1997) centres on whether the precise timing of indi-
vidual spikes is sufficient to facilitate meaningful neu-
ronal interactions. In temporal coding, the exact time at
which an individual spike occurs is the important mea-
sure and the spike-train is considered as a point process.
There are clear examples of temporal codes that have pre-
dictive validity, e.g. the primary cortical representation
of sounds by the coordination of action potential timing
(deCharms and Merzenich, 1996). These codes depend on
the relative timing of action potentials and, implicitly, an
extended temporal frame of reference. They therefore fall
into the class of transient codes, where selective responses
to particular inter-spike intervals are modelled by tem-
porally extended second-order kernels. A nice example
is provided by de Ruyter van Steveninck et al. (1997) who
show that the temporal patterning of spike trains, elicited
in fly motion-sensitive neurons by natural stimuli, can
carry twice the amount of information than an equivalent
[Poisson] rate code.

Transient codes: synchronous versus
asynchronous

The second distinction, assuming the kernels have a non-
trivial temporal support, is whether they comprise high-
order terms or not. Expansions with just first-order terms
are only capable of meditating linear or synchronous
interactions. High-order kernels confer non-linearity on
the influence of an input that leads to asynchronous
interactions. Mathematically, if there are only first-order
terms, then the Fourier transform of the Volterra kernel
completely specifies the relationship (the transfer func-
tion) between the spectral density of input and output
in a way that precludes interactions among frequencies,
or indeed inputs. In other words, the expression of any
frequency in a recipient system is predicted exactly by
the expression of the same frequency in the source (after
some scaling by the transfer function).

Synchronous codes

The proposal most pertinent to these forms of code is
that population responses, participating in the encoding
of a percept, become organized in time through recip-
rocal interactions so that they discharge in synchrony
(von der Malsburg, 1985; Singer, 1994) with regular
periodic bursting. It should be noted that synchroniza-
tion does not necessarily imply oscillations. However,
synchronized activity is usually inferred operationally
by oscillations implied by the periodic modulation of
cross-correlograms of separable spike trains (e.g. Eckhorn
et al., 1988; Gray and Singer, 1989) or measures of
coherence in multichannel electrical and neuromagnetic
time-series (e.g. Llinas et al., 1994). The underlying
mechanism of these frequency-specific interactions is
usually attributed to phase-locking among neuronal pop-
ulations (e.g. Sporns et al., 1989; Aertsen and Preißl, 1991).
The key aspect of these measures is that they refer to
the extended temporal structure of synchronized firing
patterns, either in terms of spiking (e.g. syn-fire chains,
Abeles et al., 1995; Lumer et al., 1997) or oscillations in
the ensuing population dynamics (e.g. Singer, 1994).

Many aspects of functional integration and feature-
linking in the brain are thought to be mediated by
synchronized dynamics among neuronal populations
(Singer, 1994). Synchronization reflects the direct, recipro-
cal exchange of signals between two populations, whereby
the activity in one population influences the second,
such that the dynamics become entrained and mutually
reinforcing. In this way, the binding of different fea-
tures of an object may be accomplished, in the temporal
domain, through the transient synchronization of oscil-
latory responses. This ‘dynamical linking’ defines their
short-lived functional association. Physiological evidence
is compatible with this theory (e.g. Engel et al., 1991;
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Fries et al., 1997). Synchronization of oscillatory responses
occurs within as well as among visual areas, e.g. between
homologous areas of the left and right hemispheres and
between areas at different levels of the visuomotor path-
way (e.g. Engel et al., 1991). Synchronization in the visual
cortex appears to depend on stimulus properties, such as
continuity, orientation and motion coherence.

The problem with synchronization is that there is noth-
ing essentially dynamic about synchronous interactions
per se. As argued by Erb and Aertsen (1992): ‘the ques-
tion might not be so much how the brain functions by
virtue of oscillations, as most researchers working on
cortical oscillations seem to assume, but rather how it
manages to do so in spite of them’. In order to estab-
lish dynamic cell assemblies, it is necessary to create
and destroy synchrony (see Breakspear et al., 2003 for
one mechanism). It is precisely these dynamic aspects
that speak of changes in synchrony (e.g. Desmedt and
Tomberg, 1994; Tass, 2005) and the asynchronous tran-
sitions between synchronous states as the more perti-
nent phenomenon. In other words, it is the successive
reformulation of dynamic cell assemblies, through non-
linear or asynchronous interactions, that is at the heart of
dynamical linking (Singer, 1994).

Asynchronous codes

An alternative perspective on neuronal codes is provided
by dynamic correlations (Aertsen et al., 1994) as exempli-
fied in Vaadia et al. (1995). A fundamental phenomenon,
observed by Vaadia et al. (1995), is that, following
behaviourally salient events, the degree of coherent fir-
ing between two neurons can change profoundly and
systematically over the ensuing second or so (cf. induced
responses in the EEG, Tallon-Baudry et al., 1999; Lachaux
et al., 2000). One implication is that a complete model
of neuronal interactions has to accommodate dynamic
changes in correlations, modulated on time-scales of
100–1000 ms. Neuronal transients provide a simple expla-
nation for temporally modulated coherence or dynamic
correlation. Imagine that two neurons respond to an
event with a similar transient. For example, if two neu-
rons respond to an event with decreased firing for 400 ms,
and this decrease was correlated over epochs, then pos-
itive correlations between the two firing rates would be
seen for the first 400 of the epoch, and then fade away,
exhibiting a dynamic modulation of coherence. In other
words, the expression transient covariance can be for-
mulated as covariance in the expression of transients.
The generality of this equivalence can be established
using singular value decomposition (SVD) of the joint-
peristimulus time histogram (J-PSTH) as described in
Friston (1995b). This is simply a mathematical device to
show that dynamic changes in coherence are equivalent

to the coherent expression of neural transients. In itself
it is not important, in the sense that dynamic correla-
tions are just as valid a characterization as neuronal tran-
sients and, indeed, may provide more intuitive insights
into how this phenomenon is mediated (e.g. Riehle et al.,
1997). A more important observation is that J-PSTHs can
be asymmetric about the leading diagonal. This means
that coupled transients in two units can have a different
temporal pattern of activity. This can only be explained
by asynchronous or non-linear coupling.

Summary

In summary, the critical distinction between synchronous
and asynchronous coupling is the difference between
linear and non-linear interactions among units or pop-
ulations.4 This difference reduces to the existence of
high-order Volterra kernels in mediating the input-output
behaviour of coupled cortical regions. There is a close con-
nection between asynchronous-non-linear coupling and
the expression of distinct transients in two brain regions:
both would be expressed as dynamic correlations or,
in the EEG, as event-related changes in synchronization
(e.g. induced oscillations (Friston et al., 1997)). If the tran-
sient model is correct, then important transactions among
cortical areas will be overlooked by techniques that are
predicated on rate coding (e.g. correlations, covariance
patterns, spatial modes etc.) or synchronization models
(e.g. coherence analysis and cross-correlograms). Clearly,
the critical issue is whether there is direct evidence for
non-linear or asynchronous coupling that would render
high-order Volterra kernels necessary.

EVIDENCE FOR NON-LINEAR
COUPLING

Why is asynchronous coupling so important? The reason
is that asynchronous interactions embody all the non-
linear interactions implicit in functional integration and
it is these that mediate the context-sensitive nature of

4 The term ‘generalized synchrony’ has been introduced to
include non-linear inter-dependencies (see Schiff et al., 1996).
Generalized synchrony subsumes synchronous and asyn-
chronous coupling. An elegant method for making inferences
about generalized synchrony is described in Schiff et al. (1996).
This approach is particularly interesting from our point of view
because it calls upon the recent history of the dynamics through
the use of temporal embedding to reconstruct the attractors
analysed.
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neuronal interactions. Non-linear interactions among cor-
tical areas render the effective connectivity among them
inherently dynamic and contextual. Examples of context-
sensitive interactions include the attentional modulation
of evoked responses in functionally specialized sensory
areas (e.g. Treue and Maunsell, 1996) and other con-
textually dependent dynamics (see Phillips and Singer,
1997). Whole classes of empirical phenomena, such as
extra-classical receptive field effects, rely on non-linear
or asynchronous interactions.

Non-linear coupling and asynchronous
interactions

If the temporal structures of recurring transients in two
parts of the brain are distinct, then the expression of
certain frequencies in one cortical area should predict
the expression of different frequencies in another. In
contrast, synchronization posits the expression of the
same frequencies. Correlations among different frequen-
cies therefore provide a basis for discriminating between
synchronous and asynchronous coupling.

Consider time-series from two neuronal populations
or cortical areas. Synchrony requires that the expres-
sion of a particular frequency (e.g. 40 Hz) in one time-
series will be coupled with the expression of the same
frequency in the other. In other words, the modula-
tion of this frequency in one area can be explained or
predicted by its modulation in the second. Conversely,
asynchronous coupling suggests that the power at a ref-
erence frequency, say 40 Hz, can be predicted by the
spectral density in the second time-series at frequencies
other than 40 Hz. These predictions can be tested empiri-
cally using standard time-frequency and regression anal-
yses as described in Friston (2000). Figure 39.1 shows an
example of this sort of analysis, revealing the dynamic
changes in spectral density between 8 and 64 Hz over
16 s. The cross-correlation matrix of the time-dependent
expression of different frequencies in the parietal and
prefrontal regions is shown in the lower left panel. There
is anecdotal evidence for both synchronous and asyn-
chronous coupling. Synchronous coupling, based upon
the co-modulation of the same frequencies, is mani-
fest as hot-spots along, or near, the leading diagonal of
the cross-correlation matrix (e.g. around 20 Hz). More
interesting, are correlations between high frequencies
in one time-series and low frequencies in another. In
particular, note that the frequency modulation at about
34 Hz in the parietal region (second time-series) could
be explained by several frequencies in the prefrontal
region. The most profound correlations are with lower
frequencies in the first time-series (26 Hz). Using a simple
regression framework, statistical inferences can be made

about the coupling within and between different frequen-
cies (see Friston, 2000 for details). A regression analysis
shows that coupling at 34 Hz has significant synchronous
and asynchronous components, whereas the coupling at
48 Hz is purely asynchronous (middle and right peaks in
the graphs), i.e. a coupling between beta dynamics in the
pre-motor region and gamma dynamics in the parietal
region.

THE NEURAL BASIS OF NON-LINEAR
COUPLING

In Friston (1997), it was suggested that, from a neurobio-
logical perspective, the distinction between non-linear
[asynchronous] and linear [synchronous] interactions
could be viewed in the following way. Synchroniza-
tion emerges from the reciprocal exchange of signals
between two populations, where each drives the other,
such that the dynamics become entrained and mutually
reinforcing. In asynchronous coding, the afferents from
one population exert a modulatory influence, not on the
activity of the second, but on the interactions within it
(e.g. a modulation of effective connectivity or synaptic
efficacies within the target population) leading to changes
in the dynamics intrinsic to the second population. In
this model, there is no necessary synchrony between
the intrinsic dynamics that ensue and the temporal pat-
tern of modulatory input. To test this hypothesis one
would need to demonstrate that asynchronous coupling
emerges when extrinsic connections are changed from
driving connections to modulatory connections. Clearly,
this cannot be done in the real brain. However, we can
use computational techniques to create a biologically
realistic model of interacting populations and test this
hypothesis directly.

Interactions between simulated populations

Two populations were simulated using the neural-mass
model described in Friston (2000). This model simu-
lates entire neuronal populations in a deterministic fash-
ion based on known neurophysiological mechanisms
(see also Chapter 31). In particular, we modelled three
sorts of synapse, fast inhibitory (GABA), fast excita-
tory (AMPA) and slower voltage-dependent synapses
(NMDA). Connections intrinsic to each population
used only GABA and AMPA-like synapses. Simulated
glutaminergic extrinsic connections between popula-
tions used either driving AMPA-like synapses or
modulatory NMDA-like synapses. Transmission delays
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FIGURE 39.1 Time-frequency and regression analysis of MEG time-series designed to characterize the relative contribution of syn-
chronous and asynchronous coupling. Neuromagnetic data were acquired from a normal subject using a KENIKRON 37-channel MEG system
at one-millisecond intervals for periods of up to two minutes. During this time the subject made volitional joystick movements to the left,
every two seconds or so. Paired epochs were taken from a left prefrontal and left parietal region. Top panels: the two times series (plots)
and their corresponding time-frequency profiles (images). The first time-series comes from the left prefrontal region. The second comes from
the left superior parietal region. Lower left panel: this is a simple characterization of the coupling among frequencies in the two regions and
represents the (squared) cross-correlations of the time-varying expression of different frequencies from the upper panels. Lower right panels:
these are the results of a linear regression analysis that partitions the variance in the second (parietal) time-series into components that can be
attributed to synchronous (broken lines) and asynchronous (solid lines) contributions from the first (prefrontal) time series. The upper graph
shows the relative contribution in terms of the proportion of variance explained and in terms of the significance using a semi-log plot of the
corresponding p-values (lower graph). The dotted line in the latter corresponds to p = 0	05.

This example was chosen because it illustrates three sorts of coupling (synchronous, asynchronous and mixed). From inspection of the
cross-correlation matrix, it is evident that power in the beta range (20 Hz) in the second time-series is correlated with a similar frequency
modulation in the first, albeit at a slightly lower frequency. The resulting correlations appear just off the leading diagonal (broken line) on the
upper left. The proportion of variance explained by synchronous and asynchronous coupling is roughly the same and, in terms of significance,
synchrony supervenes (see upper graph). In contrast, the high correlations, between 48 Hz in the second time-series and 26 Hz in the first, are
well away from the leading diagonal, with little evidence of correlations within either of these frequencies. The regression analysis confirms
that, at this frequency, asynchronous coupling prevails. The variation at about 34 Hz in the parietal region could be explained by several
frequencies in the prefrontal region. A formal analysis shows that both synchronous and asynchronous coupling coexist at this frequency (i.e.
the middle peak in the graphs).
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for extrinsic connections were fixed at 8 ms. By using
realistic time constants the characteristic oscillatory
dynamics of each population were expressed in the
gamma range.

The results of coupling two populations with uni-
directional AMPA-like connections are shown in the
top of Figure 39.2 in terms of the simulated local field
potentials (LFP). Occasional transients in the driving
population were evoked by injecting a depolarizing
current at random intervals (dotted lines). The tight

synchronized coupling that ensues is evident. This exam-
ple highlights the point that near-linear coupling can
arise even in the context of loosely coupled, highly
non-linear neuronal oscillators of the sort modelled here.
Contrast these entrained dynamics under driving connec-
tions with those that emerge when the connection is mod-
ulatory or NMDA-like (lower panel in Figure 39.2). Here,
there is no synchrony and, as predicted, fast transients of
an oscillatory nature are facilitated by the low-frequency
input from the first population (cf. the MEG analyses
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FIGURE 39.2 Simulated local field potentials (LFP) of two coupled populations using two different sorts of postsynaptic responses
(AMPA and NMDA-like) to inputs from the first to the target population. The dotted line shows the depolarization effected by sporadic
injections of current into the first population. The key thing to note is that, under AMPA-like or driving connections, the second population
is synchronously entrained by the first. When the connections are modulatory or voltage-dependent (NMDA), the effects are much more
subtle and resemble a frequency modulation. These data were simulated using a biologically plausible model of excitatory and inhibitory
subpopulations. The model was deterministic with variables pertaining to the collective, probabilistic, behaviour of the subpopulations (cf. a
mean-field treatment) (see Friston, 2000 for details).



Elsevier UK Chapter: Ch39-P372560 30-9-2006 5:33p.m. Page:531 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

THE NEURAL BASIS OF NON-LINEAR COUPLING 531

1000

2000

3000

4000

5000

6000

7000

8000
−5 0 5

T
im

e 
m

s

Time−series

Frequency Hz

Time−frequency

20 40 60 −5 0 5

Time−series

Frequency Hz

Time−frequency

20 40 60

H
z 

fir
st

Hz second

Cross−correlations

20 40 60

10

20

30

40

50

60

20 40 60
0

0.2

0.4

0.6

0.8

P
ro

po
rt

io
n 

of
 v

ar
ia

nc
e

Synchronous and asynchronous effects

20 40 60
10−15

10−10

10−5

100

Frequency Hz (256 ms window)

P
 v

al
ue

 (
un

co
rr

ec
te

d)

Statistical inference

FIGURE 39.3 As for Figure 39.1, but here using the simulated data employing voltage-dependent NMDA-like connections. The coupling
here includes some profoundly asynchronous [non-linear] components involving frequencies in the gamma range implicated in the analyses
of real (MEG) data shown in Figure 39.1. In particular, note the asymmetrical cross-correlation matrix and the presence of asynchronous and
mixed coupling implicit in the p-value plots on the lower right.

above). This is a nice example of asynchronous coupling
that is underpinned by non-linear modulatory interac-
tions between neuronal populations. The nature of the
coupling can be characterized using the time-frequency
analysis (identical in every detail) applied to the neu-
romagnetic data of the previous section. The results for
the NMDA simulation are presented in Figure 39.3. The
cross-correlation matrix resembles that obtained with the

MEG data in Figure 39.1. Both in terms of the variance,
and inference, asynchronous coupling supervenes at
most frequencies but, as in the real data, mixed cou-
pling is also evident. These results can be taken as a
heuristic confirmation of the notion that modulatory, in
this case voltage-dependent, interactions are sufficiently
non-linear to account for the emergence of asynchronous
coupling.
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Modulatory interactions and non-linear
coupling

In summary, asynchronous coupling is synonymous with
non-linear coupling. Non-linear coupling can be framed
in terms of the modulation of intrinsic interactions,
within a cortical area or neuronal population, by extrinsic
input offered by afferents from other parts of the brain.
This mechanism predicts that the modulation of fast (e.g.
gamma) activity in one cortical area can be predicted by
much slower changes in other areas. This form of cou-
pling is very different from coherence or other measures
of synchronous coupling and concerns the relationship
between the first-order dynamics in one area and the
second-order dynamics (spectral density) expressed in
another. In terms of the above NMDA simulation, tran-
sient depolarization in the modulating population causes
a short-lived increased input to the second. These affer-
ents impinge on voltage-sensitive NMDA-like synapses
with time constants (in the model) of about 100 ms.
These synapses open and slowly close again, remain-
ing open long after an afferent volley. Because of their
voltage-sensitive nature, this input will have no effect on
the dynamics intrinsic to the second population unless
there is already a substantial degree of depolarization.
If there is then, through self-excitation and inhibition,
the concomitant opening of fast excitatory and inhibitory
channels, this will generally increase membrane conduc-
tance, decrease the effective membrane time constants
and lead to fast oscillatory transients. This is what we
observe in the lower panel of Figure 39.2. In relation
to the MEG analyses, the implied modulatory mecha-
nisms that may underpin this effect are entirely consistent
with the anatomy, laminar specificity and functional role
attributed to prefrontal efferents (Rockland and Pandya,
1979; Selemon and Goldman-Rakic, 1988).

CONCLUSION

In this chapter, we have dealt with some interesting
and interrelated aspects of effective connectivity, neu-
ronal codes, non-linear coupling, neuronal transients and
dynamic correlations (e.g. induced oscillations). The key
points can be summarized as follows:

• Starting with the premise that the brain can be repre-
sented as an ensemble of connected input-state-output
systems (e.g. cellular compartments, cells or popula-
tions of cells), there is an equivalent input-output for-
mulation in terms of a Volterra series. This is simply
a functional expansion of each system’s inputs that

produces its outputs (where the outputs of one system
are the inputs to another).

• The existence of this expansion suggests that the his-
tory of inputs, or neuronal transients, and the Volterra
kernels are a complete and sufficient description of
brain dynamics. This is the primary motivation for
framing dynamics in terms of neuronal transients and
using Volterra kernels to model effective connectivity.

• The Volterra formulation provides constraints on the
form that neuronal interactions and implicit codes
must conform to. There are two limiting cases: when
the kernel decays very quickly; and when high-order
kernels disappear. The first case corresponds to instan-
taneous codes (e.g. rate codes) and the second to syn-
chronous interactions (e.g. synchrony codes).

• High-order kernels in the Volterra formulation speak to
non-linear interactions and implicitly to asynchronous
coupling. Asynchronous coupling implies coupling
among the expression of different frequencies.

• Coupling among different frequencies is easy to
demonstrate using neuromagnetic measurements of
real brain dynamics. This implies that non-linear, asyn-
chronous coupling is a prevalent component of func-
tional integration.

• High-order kernels correspond to modulatory inter-
actions that can be construed as a non-linear effect
of inputs that interact with the intrinsic states of the
recipient system. This implies that driving connections
may be linear and engender synchronous interactions.
Conversely, modulatory connections, being non-linear,
may be revealed by asynchronous coupling and induce
high-order kernels.

In the next chapter, we look at another way of sum-
marizing and quantifying temporal dependencies among
measured brain responses, using multivariate autoregres-
sion models. These models are formulated in discrete
time, as opposed to the continuous time formulation used
for generalized convolution models.
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Rigid Body Registration
J. Ashburner and K. Friston

INTRODUCTION

Rigid body registration is one of the simplest forms
of image registration, so this chapter provides an ideal
framework for introducing some of the concepts that
will be used by the more complex registration methods
described later. The shape of a human brain changes
very little with head movement, so rigid body transfor-
mations can be used to model different head positions
of the same subject. Registration methods described in
this chapter include within modality, or between dif-
ferent modalities such as positron emission tomography
(PET). and magnetic resonance imaging (MRI). Matching
of two images is performed by finding the rotations and
translations that optimize some mutual function of the
images. Within-modality registration generally involves
matching the images by minimizing the mean squared
difference between them. For between-modality registra-
tion, the matching criterion needs to be more complex.

Image registration is important in many aspects of
functional image analysis. In imaging neuroscience, par-
ticularly for functional MRI (fMRI), the signal changes
due to any haemodynamic response can be small com-
pared to apparent signal differences that can result from
subject movement. Subject head movement in the scan-
ner cannot be completely eliminated, so retrospective
motion correction is performed as a preprocessing step.
This is especially important for experiments where sub-
jects may move in the scanner in a way that is corre-
lated with the different conditions (Hajnal et al., 1994).
Even tiny systematic differences can result in a significant
signal accumulating over numerous scans. Without suit-
able corrections, artefacts arising from subject movement
correlated with the experimental paradigm may appear
as activations. A second reason why motion correction
is important is that it increases sensitivity. The t-test is
based on the signal change relative to the residual vari-
ance. The residual variance is computed form the sum

of squared differences between the data and the linear
model to which it is fitted. Movement artefacts add to
this residual variance, and so reduce the sensitivity of
the test to true activations.

For studies of a single subject, sites of activation can
be accurately localized by superimposing them on a high
resolution structural image of the subject (typically a T1-
weighted MRI). This requires registration of the func-
tional images with the structural image. As in the case of
movement correction, this is normally performed by opti-
mizing a set of parameters describing a rigid body trans-
formation, but the matching criterion needs to be more
complex because the structural and functional images
normally look very different. A further use for this reg-
istration is that a more precise spatial normalization can
be achieved by computing it from a more detailed struc-
tural image. If the functional and structural images are
in register, then a warp computed from the structural
image can be applied to the functional images.

Another application of rigid registration is within the
field of morphometry, and involves identifying shape
changes within single subjects by subtracting coregis-
tered images acquired at different times. The changes
could arise for a number of different reasons, but most
are related to pathology. Because the scans are of the
same subject, the first step for this kind of analysis
involves registering the images together by a rigid body
transformation.

At its simplest, image registration involves estimat-
ing a mapping between a pair of images. One image
is assumed to remain stationary (the reference image),
whereas the other (the source image) is spatially trans-
formed to match it. In order to transform the source
to match the reference, it is necessary to determine
a mapping from each voxel position in the reference
to a corresponding position in the source. The source
is then resampled at the new positions. The mapping
can be thought of as a function of a set of estimated

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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transformation parameters. A rigid body transformation
in three dimensions is defined by six parameters: three
translations and three rotations.

There are two steps involved in registering a pair of
images together. There is the registration itself, whereby
the set of parameters describing a transformation is esti-
mated. Then there is the transformation, where one of the
images is transformed according to the estimated param-
eters. Performing the registration normally involves iter-
atively transforming the source image many times, using
different parameters, until some matching criterion is
optimized.

First of all, this chapter will explain how images are
transformed via the process of resampling. This chapter
is about rigid registration of images, so the next section
describes the parameterization of rigid body transforma-
tions as a subset of the more general affine transforma-
tions. The final two sections describe methods of rigid
body registration, in both intra- and inter-modality con-
texts. Intra-modality registration implies registration of
images acquired using the same modality and scanning
sequence or contrast agent, whereas inter-modality regis-
tration allows the registration of different modalities (e.g.
T1- to T2-weighted MRI, or MRI to PET).

RE-SAMPLING IMAGES

An image transformation is usually implemented as a
‘pulling’ operation (where pixel values are pulled from
the original image into their new location) rather than
a ‘pushing’ one (where the pixels in the original image
are pushed into their new location). This involves deter-
mining for each voxel in the transformed image, the cor-
responding intensity in the original image. Usually, this
requires sampling between the centres of voxels, so some
form of interpolation is needed.

Simple interpolation

The simplest approach is to take the value of the clos-
est voxel to the desired sample point. This is referred
to as nearest neighbour or zero-order hold resampling. This
has the advantage that the original voxel intensities are
preserved, but the resulting image is degraded quite con-
siderably, resulting in the resampled image having a
‘blocky’ appearance.

Another approach is to use trilinear interpolation (first-
order hold) to resample the data. This is slower than near-
est neighbour, but the resulting images are less ‘blocky’.
However, trilinear interpolation has the effect of losing
some high frequency information from the image.

FIGURE 4.1 Illustration of image interpolation in two dimen-
sions. Points a through to p represent the original regular grid of
pixels. Point u is the point whose value is to be determined. Points
q to t are used as intermediates in the computation.

Figure 4.1 will now be used to illustrate bilinear inter-
polation (the two dimensional version of trilinear inter-
polation). Assume that there is a regular grid of pixels at
coordinates xa�ya to xp�yp, having intensities va to vp, and
that the point to re-sample is at u. The value at points r
and s are first determined (using linear interpolation) as
follows:

vr = �xg −xr�vf + �xr −xf �vg

xg −xf

vs = �xk −xs�vj + �xs −xj�vk

xk −xj

4.1

Then vu is determined by interpolating between vr and
vs:

vu = �yu −ys�vr + �yr −yu�vs

yr −ys

4.2

The extension of the approach to three dimensions is
trivial.

Windowed sinc interpolation

The optimum method of applying rigid body transfor-
mations to images with minimal interpolation artefact is
to do it in Fourier space. In real space, the interpolation
method that gives results closest to a Fourier interpola-
tion is sinc interpolation. This involves convolving the
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FIGURE 4.2 Sinc function in two dimensions, both with (right) and without (left) a Hanning window.

image with a sinc function centred on the point to be
re-sampled. To perform a pure sinc interpolation, every
voxel in the image should be used to sample a single
point. This is not feasible due to speed considerations,
so an approximation using a limited number of nearest
neighbours is used. Because the sinc function extends to
infinity, it is often truncated by modulation with a Han-
ning window (Figure 4.2). Because the function is sepa-
rable, the interpolation is performed sequentially in the
three dimensions of the volume. For one dimension the
windowed sinc function using the I nearest neighbours
would be:

I∑
i=1

vi

sin��di�

�di

1
2

�1+ cos�2�di/I��

∑I
j=1

sin��dj�

�dj

1
2

�1+ cos�2�dj/I��

4.3

where di is the distance from the centre of the ith voxel
to the point to be sampled, and vi is the value of the
ith voxel.

Generalized interpolation

The methods described so far are all classical interpola-
tion methods that locally convolve the image with some
form of interpolant. Much more efficient re-sampling can
be performed using generalized interpolation (Thévenaz
et al., 2000). Generalized interpolation methods model an
image as a linear combination of basis functions with
local support, typically B-splines or o-Moms (maximal-
order interpolation of minimal support) basis functions
(Figure 4.3). Before resampling begins, an image of basis
function coefficients is produced, which involves a very
fast deconvolution (Unser et al., 1993a,b). The separabil-
ity of the basis functions allow this to be done sequen-
tially along each of the dimensions. Resampling at each
new point then involves computing the appropriate lin-
ear combination of basis functions, which can be thought
of as a local convolution of the basis function coefficients.
Again, this is done sequentially because of the separabil-
ity of the bases.

B-splines are a family of functions of varying degree.
Interpolation using B-splines of degree 0 or 1 (first and

second order) is identical to nearest neighbour1 or lin-
ear interpolation respectively. B-splines of degree n are
given by:

�n�x� =
n∑

j=0

�−1�j�n+1�

�n+1− j�!j! max
(

n+1
2

+x− j� 0
)n

4.4

An nth degree B-spline has a local support of n + 1,
which means that during the final resampling step, a
linear combination of n + 1 basis functions are needed
to compute an interpolated value. o-Moms are derived
from B-splines, and consist of a linear combination of
the B-spline and its derivatives. They produce the most
accurate interpolation for the least local support, but lack
some of the B-splines’ advantages. Unlike the o-Moms’
functions, a B-spline of order n is n−1 times continuously
differentiable.

2 4 6 8 10 12 14 16
–1

0

1

2

3

4

5

FIGURE 4.3 This figure illustrates a one dimensional B-spline
representation of an image, where the image is assumed to be com-
posed of a linear combination of B-spline basis functions. The dotted
lines are the individual basis functions, which sum to produce the
interpolated function (solid line).

1 Except with a slightly different treatment exactly in the centre
of two voxels.
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Fourier methods

Higher order interpolation is slow when many
neighbouring voxels are used, but there are faster ways
of interpolating when doing rigid body transformations.
Translations parallel to the axes are trivial, as these sim-
ply involve convolving with a translated delta function.
For translations that are not whole numbers of pixels,
the delta function is replaced by a sinc function centred
at the translation distance. The use of fast Fourier trans-
forms means that the convolution can be performed most
rapidly as a multiplication in Fourier space. It is clear how
translations can be performed in this way, but rotations
are less obvious. One way that rotations can be effected
involves replacing them by a series of shears (Eddy et al.,
1996; Cox and Jesmanowicz, 1999) (see later). A shear
simply involves translating different rows or columns
of an image by different amounts, so each shear can be
performed as a series of one dimensional convolutions.

RIGID BODY TRANSFORMATIONS

Rigid body transformations consist of only rotations and
translations, and leave given arrangements unchanged.
They are a subset of the more general affine2 transfor-
mations. For each point �x1�x2�x3� in an image, an affine
mapping can be defined into the coordinates of another
space �y1�y2�y3�. This is expressed as:

y1 = m11x1 +m12x2 +m13x3 +m14

y2 = m21x1 +m22x2 +m23x3 +m24 4.5

y3 = m31x1 +m32x2 +m33x3 +m34

which is often represented by a simple matrix multipli-
cation �y = Mx�:

⎡
⎢⎢⎢⎣

y1

y2

y3

1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎥⎦ 4.6

The elegance of formulating these transformations in
terms of matrices is that several of them can be combined
simply by multiplying the matrices together to form a sin-
gle matrix. This means that repeated re-sampling of data
can be avoided when reorienting an image. Inverse affine
transformations are obtained by inverting the transfor-
mation matrix.

2 Affine means that parallel lines remain parallel after the trans-
formation.

Translations

If a point x is to be translated by q units, then the
transformation is simply:

y = x +q 4.7

In matrix terms, this can be considered as:

⎡
⎢⎢⎢⎣

y1

y2

y3

1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎥⎦ 4.8

Rotations

In two dimensions, a rotation is described by a single
angle. Consider a point at coordinate �x1�x2� on a two-
dimensional plane. A rotation of this point to new coor-
dinates �y1�y2�, by � radians around the origin, can be
generated by the transformation:

y1 = cos���x1 + sin���x2

y2 = −sin���x1 + cos���x2

4.9

This is another example of an affine transformation. For
the three-dimensional case, there are three orthogonal
planes that an object can be rotated in. These planes of
rotation are normally expressed as being around the axes.
A rotation of q1 radians about the first �x� axis is per-
formed by:

⎡
⎢⎢⎢⎢⎣

y1

y2

y3

1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos�q1� sin�q1� 0

0 −sin�q1� cos�q1� 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎥⎥⎦ 4.10

Similarly, rotations about the second �y� and third �z�
axes are carried out by the following matrices:

⎡
⎢⎢⎢⎢⎣

cos�q2� 0 sin�q2� 0

0 1 0 0

−sin�q2� 0 cos�q2� 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦and

⎡
⎢⎢⎢⎢⎣

cos�q3� sin�q3� 0 0

−sin�q3� cos�q3� 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ �

Rotations are combined by multiplying these matrices
together in the appropriate order. The order of the opera-
tions is important. For example, a rotation about the first
axis of �/2 radians followed by an equivalent rotation
about the second would produce a very different result to
that obtained if the order of the operations was reversed.
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Zooms

The affine transformations described so far will generate
purely rigid body mappings. Zooms are needed to
change the size of an image, or to work with images
whose voxel sizes are not isotropic, or differ between
images. These represent scalings along the orthogonal
axes, and can be represented via:

⎡
⎢⎢⎢⎢⎣

y1

y2

y3

1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

1

⎤
⎥⎥⎥⎥⎦ 4.11

A single zoom by a factor of −1 will flip an image.
Two flips in different directions will merely rotate it by �
radians (a rigid body transformation). In fact, any affine
transformation with a negative determinant will render
the image flipped.

Shears

Shearing by parameters q1� q2 and q3 can be performed
by the following matrix:

⎡
⎢⎢⎣

1 q1 q2 0
0 1 q3 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ 4.12

A shear by itself is not a rigid body transformation,
but it is possible to combine shears in order to generate a
rotation. In two dimensions, a matrix encoding a rotation
of � radians about the origin can be constructed by mul-
tiplying together three matrices that effect shears (Eddy
et al., 1996):

⎡
⎢⎢⎣

cos��� sin��� 0

−sin��� cos��� 0

0 0 1

⎤
⎥⎥⎦≡

⎡
⎢⎣

1 tan��/2� 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0

sin��� 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 tan��/2� 0

0 1 0

0 0 1

⎤
⎥⎦ 4.13

Rotations in three dimensions can be decomposed into
four shears (Cox and Jesmanowicz, 1999). As shears can
be performed quickly as one dimensional convolutions,
then these decompositions are very useful for doing accu-
rate and rapid rigid body transformations of images.

Parameterizing a rigid body transformation

When doing rigid registration of a pair of images, it is
necessary to estimate six parameters that describe the
rigid body transformation matrix. There are many ways
of parameterizing this transformation in terms of six
parameters (q). One possible form is:

M = TR 4.14

where

T =

⎡
⎢⎢⎢⎢⎣

1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1

⎤
⎥⎥⎥⎥⎦ 4.15

and

R =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos�q4� sin�q4� 0

0 −sin�q4� cos�q4� 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

cos�q5� 0 sin�q5� 0

0 1 0 0

−sin�q5� 0 cos�q5� 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

cos�q6� sin�q6� 0 0

−sin�q6� cos�q6� 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ 4.16

Sometimes it is desirable to extract transformation
parameters from a matrix. Extracting these parameters
q from M is relatively straightforward. Determining
the translations is trivial, as they are simply con-
tained in the fourth column of M. This just leaves the
rotations:

R =

⎡
⎢⎢⎢⎢⎣

c5c6 c5s6 s5 0

−s4s5c6 − c4s6 −s4s5s6 + c4c6 s4c5 0

−c4s5c6 + s4s6 −c4s5s6 − s4c6 c4c5 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ 4.17

where s4� s5 and s6 are the sines, and c4� c5 and c6 are the
cosines of parameters q4� q5 and q6 respectively. There-
fore, provided that c5 is not zero:

q5 = sin−1�r13�

q4 = atan2�r23/cos�q5�� r33/cos�q5��

q6 = atan2�r12/cos�q5�� r11/cos�q5�� 4.18

where atan2 is the four quadrant inverse tangent.
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Working with volumes of differing or
anisotropic voxel sizes

Voxel sizes need to be considered during image
registration. Often, the images (say f and g) will have vox-
els that are anisotropic. The dimensions of the voxels are
also likely to differ between images of different modal-
ities. For simplicity, a Euclidean space is used, where
measures of distance are expressed in millimetres. Rather
than transforming the images into volumes with cubic
voxels that are the same size in all images, one can sim-
ply define affine transformation matrices that map from
voxel coordinates into this Euclidean space. For example,
if image f is of size 128×128×43 and has voxels that are
2�1 mm × 2�1 mm × 2�45 mm, the following matrix can be
defined:

Mf =

⎡
⎢⎢⎢⎢⎣

2�1 0 0 −135�45

0 2�1 0 −135�45

0 0 2�45 −53�9

0 0 0 1

⎤
⎥⎥⎥⎥⎦ 4.19

This transformation matrix maps voxel coordinates to
a Euclidean space whose axes are parallel to those of
the image and distances are measured in millimetres,
with the origin at the centre of the image volume (i.e.
Mf	64�5 64�5 22 1
T = 	0 0 0 1
T . A similar matrix can be
defined for g �Mg�. Because modern MR image formats,
such as DICOM, generally contain information about
image orientations in their headers, it is possible to extract
this information to compute automatically values for Mf

or Mg. This makes it possible to register easily images
together that were originally acquired in completely dif-
ferent orientations.

The objective of a rigid body registration is to deter-
mine the affine transformation that maps the coordi-
nates of image g to that of f. To accomplish this, a rigid
body transformation matrix Mr is determined, such that
Mf

−1Mr
−1Mg will map from voxels in g to those in f. The

inverse of this matrix maps from f to g. Once Mr has been
determined, Mf can be set to MrMf. From there onwards
the mapping between the voxels of the two images can
be achieved by Mf

−1Mg. Similarly, if another image (h) is
also registered with g in the same manner, then not only
is there a mapping from h to g (via Mg

−1Mh), but there
is also one from h to f, which is simply Mf

−1Mh (derived
from Mf

−1MgMg
−1Mh).

Left- and right-handed coordinate systems

Positions in space can be represented in either a left-
or right-handed coordinate system (Figure 4.4), where
one system is a mirror image of the other. For example,

FIGURE 4.4 Left- and right-handed coordinate systems. The
thumb corresponds to the x-axis, the index finger to the y-axis and
the second finger to the z-axis.

the system used by the atlas of Talairach and Tournoux
(1988) is right-handed, because the first dimension (often
referred to as the x direction) increases from left to right,
the second dimension goes from posterior to anterior
(back to front) and the third dimension increases from
inferior to superior (bottom to top). The axes can be
rotated by any angle, and they still retain their handed-
ness. An affine transformation mapping between left and
right-handed coordinate systems has a negative deter-
minant, whereas one that maps between coordinate sys-
tems of the same kind will have a positive determinant.
Because the left and right sides of a brain have similar
appearances, care must be taken when reorienting image
volumes. Consistency of the coordinate systems can be
achieved by performing any reorientations using affine
transformations, and checking the determinants of the
matrices.

Rotating tensors

Diffusion tensor imaging (DTI) is becoming increasingly
useful. These datasets are usually stored as six images
containing a scalar field for each unique tensor element.
It is worth noting that a rigid body transformation of
a DTI dataset is not a simple matter of rigidly rotating
the individual scalar fields.3 Once these fields have been
resampled, the tensor represented at every voxel position
needs to be rotated. A 3×3 tensor T can be rotated by a
3×3 matrix R by T′ = RTRT .

If DTI volumes are to be transformed using more
complex warping models, then the local derivatives of
the deformations (Jacobian matrices) need to be com-
puted at each voxel. Suitable transformations can then

3 It is worth noting that some interpolation methods are unsuit-
able for resampling the raw scalar fields, as the introduction
of sampling errors can cause the positive definite nature of the
tensors to be lost.
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be extracted from these derivatives, and applied to each
element of the re-sampled tensor field (Alexander et al.,
1999, 2001).

WITHIN-MODALITY RIGID
REGISTRATION

Whenever several images of the same subject have been
acquired, it is extremely useful to have them all in regis-
ter. Some of the simple benefits of this include allowing
images to be averaged in order to increase signal to noise,
or to subtract one image from another to emphasize dif-
ferences between the images. Rigid4 registration is nor-
mally used for retrospectively registering images of the
same subject that have been collected at different times.
Even if images were acquired during the same scanning
session, the subject may have moved slightly between
acquisitions.

The most common application of within-modality reg-
istration in functional imaging is to reduce motion arte-
facts by realigning the volumes in image time-series.
The objective of realignment is to determine the rigid
body transformations that best map the series of func-
tional images to the same space. This can be achieved by
minimizing the mean squared difference between each
of the images and a reference image, where the refer-
ence image could be one of the images in the series. For
slightly better results, this procedure could be repeated,
but instead of matching to one of the images from the
series, the images would be registered to the mean of
all the realigned images. Because of the non-stationary
variance in the images, a variance image could be com-
puted at the same time as the mean, in order to provide
better weighting for the registration. Voxels with a lot of
variance should be given lower weighting, whereas those
with less variance should be weighted more highly.

Within-modality image registration is also useful for
looking at shape differences of brains. Morphometric
studies sometimes involve looking at changes in brain
shape over time, often to study the progression of a dis-
ease such as Alzheimer’s, or to monitor tumour growth
or shrinkage. Differences between structural MR scans
acquired at different times are identified, by first coreg-
istering the images and then looking at the difference
between the registered images. Rigid registration can
also be used as a preprocessing step before using non-
linear registration methods for identifying shape changes
(Freeborough and Fox, 1998).

4 Or affine registration if voxel sizes are not accurately known.

Image registration involves estimating a set of
parameters describing a spatial transformation that ‘best’
match the images together. The goodness of the match
is based on an objective function, which is maximized or
minimized using some optimization algorithm. This section
deals with registering images that have been collected
using the same (or similar) modalities, allowing a rela-
tively simple objective function to be used. In this case,
the objective function is the mean squared difference
between the images. The more complex task of regis-
tering images with different contrasts will be dealt with
later.

Optimization

The objective of optimization is to determine the val-
ues for a set of parameters for which some function of
the parameters is minimized (or maximized). One of the
simplest cases involves determining the optimum param-
eters for a model in order to minimize the mean squared
difference between a model and a set of real world data.
Normally there are many parameters and it is not possi-
ble to search exhaustively through the whole parameter
space. The usual approach is to make an initial parame-
ter estimate, and begin iteratively searching from there.
At each iteration, the model is evaluated using the cur-
rent parameter estimates, and the objective function com-
puted. A judgement is then made about how the parame-
ter estimates should be modified, before continuing on to
the next iteration. The optimization is terminated when
some convergence criterion is achieved (usually when
the objective function stops decreasing, or its derivatives
with respect to the parameters become sufficiently small).

The registration approach described here is essentially
an optimization. One image (the source image) is spa-
tially transformed so that it matches another (the ref-
erence image) by minimizing the mean squared differ-
ence. The parameters that are optimized are those that
describe the spatial transformation (although there are
often other nuisance parameters required by the model,
such as intensity scaling parameters). A good algorithm
to use for rigid registration (Friston et al., 1995; Woods
et al., 1998) is Gauss-Newton optimization, and it is illus-
trated here.

Suppose that bi�q� is the function describing the differ-
ence between the source and reference images at voxel
i, when the vector of model parameters have values q.
For each voxel, a first approximation of Taylor’s theorem
can be used to estimate the value that this difference will
take if the parameters q are decreased by t:

bi�q − t� � bi�q�− t1
�bi�q�

�q1
− t2

�bi�q�

�q2
� � � 4.20
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This allows the construction of a set of simultaneous
equations (of the form At � b) for estimating the values
that t should assume to in order to minimize

∑
i bi�q − t�2:

⎡
⎢⎢⎢⎢⎢⎣

�b1�q�

�q1

�b1�q�

�q2
� � �

�b2�q�

�q1

�b2�q�

�q2
� � �

���
���

� � �

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

t1

t2

���

⎤
⎥⎥⎦�

⎡
⎢⎢⎣

b1�q�

b2�q�

���

⎤
⎥⎥⎦ 4.21

From this, an iterative scheme can be derived for improv-
ing the parameter estimates. For iteration n, the parame-
ters q are updated as:

q�n+1� = qn − �AT A�−1AT b 4.22

where A =

⎡
⎢⎢⎢⎢⎢⎣

�b1�q�

�q1

�b1�q�

�q2
� � �

�b2�q�

�q1

�b2�q�

�q2
� � �

���
���

� � �

⎤
⎥⎥⎥⎥⎥⎦

and b =

⎡
⎢⎢⎣

b1�q�

b2�q�
���

⎤
⎥⎥⎦.

This process is repeated until convergence. There is no
guarantee that the best global solution will be reached,
because the algorithm can get caught in a local mini-
mum. To reduce this problem, the starting estimates for
q should be set as close as possible to the optimum solu-
tion. The number of potential local minima can also be
decreased by working with smooth images. This also has
the effect of making the first order Taylor approximation
more accurate for larger displacements. Once the regis-
tration is close to the final solution, it can continue with
less smooth images.

In practice, AT A and AT b from Eqn. 4.22 are often
computed ‘on the fly’ for each iteration. By computing
these matrices using only a few rows of A and b at
a time, much less computer memory is required than
would be needed for the whole of matrix A. Also, the
partial derivatives �bi�q�/�qj can be rapidly computed
from the gradients of the images using the chain rule (see
Woods, 1999 for detailed information).

It should be noted that AT b corresponds to the first
derivatives of the objective function with respect to the
parameters, and AT A approximately corresponds to the
second derivatives (one half of the Hessian matrix, often
referred to as the curvature matrix – see Press et al., 1992,
Section 15.5 for a general description, or Woods, 1999,
2000 for more information related to image registration).
Another way of thinking about the optimization is that
it fits a quadratic function to the error surface at each
iteration. Successive parameter estimates are chosen such
that they are at the minimum point of this quadratic
(illustrated for a single parameter in Figure 4.5).

FIGURE 4.5 The optimization can be thought of as fitting a
series of quadratics to the error surface. Each parameter update is
such that it falls at the minimum of the quadratic.

Implementation

This section is about estimating parameters that describe
a rigid body transformation, but the principles can be
extended to models that describe non-linear warps. To
register a source image f to a reference image g, a six
parameter rigid body transformation (parameterized by
q1 to q6) would be used. To perform the registration, a
number of points in the reference image (each denoted
by xi) are compared with points in the source image
(denoted by Mxi, where M is the rigid body transfor-
mation matrix constructed from the six parameters). The
images may be scaled differently, so an additional inten-
sity scaling parameter �q7� may be included in the model.
The parameters (q) are optimized by minimizing the
mean squared difference5 between the images according
to the algorithm described in the previous section. The
function that is minimized is:

∑
i

�f�Mxi�− q7g�xi��
2

where M = Mf
−1Mr

−1Mg, and Mr is constructed from
parameters q. Vector b is generated for each iteration as:

b =

⎡
⎢⎢⎣

f�Mx1�− q7g�x1�

f�Mx2�− q7g�x2�
���

⎤
⎥⎥⎦ 4.23

5 Inevitably, some values of Mxi will lie outside the domain of
f, so nothing is known about what the image intensity should
be at these points. The computations are only performed for
points where both xi and Mxi lie within the field of view of the
images.
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Each column of matrix A is constructed by differentiating
b with respect to parameters q1 to q7:

A =

⎡
⎢⎢⎢⎢⎢⎣

�f�Mx1�

�q1

�f�Mx1�

�q2
� � �

�f�Mx1�

�q6
−g�x1�

�f�Mx2�

�q1

�f�Mx2�

�q2
� � �

�f�Mx2�

�q6
−g�x2�

���
���

� � �
���

���

⎤
⎥⎥⎥⎥⎥⎦
4.24

Because non-singular affine transformations are easily
invertible, it is possible to make the registration more
robust by also considering what happens with the inverse
transformation. By swapping around the source and
reference image, the registration problem also becomes
one of minimizing:

∑
j

�g�M−1yj�− q−1
7 f�yj��

2

In theory, a more robust solution could be achieved by
simultaneously including the inverse transformation to
make the registration problem symmetric (Woods et al.,
1998). The objective function would then be:

1

∑
i

�f�Mxi�− q7g�xi��
2 +2

∑
j

�g�M−1yj�− q−1
7 f�yj��

2
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Normally, the intensity scaling of the image pair will be
similar, so equal values for the weighting factors (1 and
2) can be used. Matrix A and vector b would then be
formulated as:

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
1
2
1 �f�Mx1�− q7g�x1��

�
1
2
1 �f�Mx2�− q7g�x2��

���

�
1
2
2 �g�M−1 −y1�− q−1

7 f�y1��

�
1
2
2 �g�M−1 −y2�− q−1

7 f�y2��

���

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Residual artefacts from PET and fMRI

Even after realignment, there may still be some motion
related artefacts remaining in functional data. After ret-
rospective realignment of PET images with large move-
ments, the primary source of error is due to incorrect
attenuation correction. In emission tomography methods,
many photons are not detected because they are atten-
uated by the subject’s head. Normally, a transmission
scan (using a moving radioactive source external to the
subject) is acquired before collecting the emission scans.
The ratio of the number of detected photon pairs from
the source, with and without a head in the field of view,
produces a map of the proportion of photons that are
absorbed along any line-of-response. If a subject moves
between the transmission and emission scans, then the
applied attenuation correction is incorrect because the
emission scan is no longer aligned with the transmis-
sion scan. There are methods for correcting these errors
(Andersson et al., 1995), but they are beyond the scope of
this book.

In fMRI, there are many sources of motion related arte-
facts. The most obvious ones are:

• Interpolation error from the re-sampling algorithm
used to transform the images can be one of the main
sources of motion related artefacts.

• When MR images are reconstructed, the final images
are usually the modulus of the initially complex data.
This results in voxels that should be negative being ren-
dered positive. This has implications when the images
are re-sampled, because it leads to errors at the edge
of the brain that cannot be corrected however good the
interpolation method is. Possible ways to circumvent
this problem are to work with complex data, or apply
a low pass filter to the complex data before taking the
modulus.

• The sensitivity (slice selection) profile of each slice also
plays a role in introducing artefacts (Noll et al., 1997).

• fMRI images are spatially distorted, and the amount of
distortion depends partly upon the position of the sub-
ject’s head within the magnetic field. Relatively large
subject movements result in the brain images changing
shape, and these shape changes cannot be corrected by
a rigid body transformation (Jezzard and Clare, 1999;
Andersson et al., 2001).

• Each fMRI volume of a series is currently acquired a
plane at a time over a period of a few seconds. Subject
movement between acquiring the first and last plane
of any volume is another reason why the images may
not strictly obey the rules of rigid body motion.

• After a slice is magnetized, the excited tissue takes
time to recover to its original state, and the amount of
recovery that has taken place will influence the inten-
sity of the tissue in the image. Out of plane movement
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will result in a slightly different part of the brain being
excited during each repeat. This means that the spin
excitation will vary in a way that is related to head
motion, and so leads to more movement related arte-
facts (Friston et al., 1996).

• Nyquist ghost artefacts in MR images do not obey the
same rigid body rules as the head, so a rigid rotation
to align the head will not mean that the ghosts are
aligned. The same also applies to other image artefacts,
such as those arising due to chemical shifts.

• The accuracy of the estimated registration parameters
is normally in the region of tens of microns. This is
dependent upon many factors, including the effects
just mentioned. Even the signal changes elicited by the
experiment can have a slight effect (a few microns) on
the estimated parameters (Freire and Mangin, 2001).

These problems cannot be corrected by simple image
realignment and so may be sources of possible stimulus
correlated motion artefacts. Systematic movement arte-
facts resulting in a signal change of only one or two per
cent can lead to highly significant false positives over an
experiment with many scans. This is especially impor-
tant for experiments where some conditions may cause
slight head movements (such as motor tasks, or speech),
because these movements are likely to be highly corre-
lated with the experimental design. In cases like this,
it is difficult to separate true activations from stimulus
correlated motion artefacts. Providing there are enough
images in the series and the movements are small, some
of these artefacts can be removed by using an analysis of
covariation (ANCOVA) model to remove any signal that
is correlated with functions of the movement parame-
ters (Friston et al., 1996). However, when the estimates of
the movement parameters are related to the experimental
design, it is likely that much of the true fMRI signal will
also be lost. These are still unresolved problems.

BETWEEN-MODALITY RIGID
REGISTRATION

The combination of multiple imaging modalities can pro-
vide enhanced information that is not readily apparent
on inspection of individual image modalities. For studies
of a single subject, sites of activation can be accurately
localized by superimposing them on a high resolution
structural image of the subject (typically a T1-weighted
MRI). This requires registration of the functional images
with the structural image. A further possible use for this
registration is that a more precise spatial normalization
can be achieved by computing it from a more detailed
structural image. If the functional and structural images

are in register, then a warp computed from the struc-
tural image can be applied to the functional images. Nor-
mally a rigid body model is used for registering images
of the same subject, but because fMRI images are usu-
ally severely distorted – particularly in the phase encode
direction (Jezzard and Clare, 1999; Jezzard, 2000) – it is
often preferable to do non-linear registration (Kybic et al.,
2000; Studholme et al., 2000). Rigid registration models
require voxel sizes to be accurately known. This is a prob-
lem that is particularly apparent when registering images
from different scanners.

Two images from the same subject acquired using
the same modality or scanning sequences generally look
similar, so it suffices to find the rigid body transfor-
mation parameters that minimize the sum of squared
differences between them. However, for coregistration
between modalities there is nothing quite so obvious to
minimize, as there is no linear relationship between the
image intensities (Figure 4.6).

FIGURE 4.6 An example of T1- and T2-weighted MR images
registered using mutual information. The two registered images are
shown interleaved in a chequered pattern.
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Older methods of registration involved the manual
identification of homologous landmarks in the images.
These landmarks are aligned together, thus bringing the
images into registration. This is time-consuming, requires
a degree of experience, and can be rather subjective.
One of the first widely used semiautomatic coregistra-
tion methods was that known as the ‘head-hat’ approach
(Pelizzari et al., 1988). This method involved extracting
brain surfaces of the two images, and then matching
the surfaces together. There are also a number of other
between-modality registration methods that involve par-
titioning the images, or finding common features, and
then registering them together, but they are beyond the
scope of this chapter.

The first intensity based inter-modal registration
method was AIR (Woods et al., 1993), which has been
widely used for a number of years for registering PET
and MR images. This method uses a variance of intensity
ratios (VIR) objective function, and involves dividing the
MR images into a number of partitions based on intensity.
The registration is approximately based on minimizing
the variance of the corresponding PET voxel intensities
for each partition. It makes a number of assumptions
about how the PET intensity varies with the MRI inten-
sity, which are generally valid within the brain, but do
not work when non-brain tissue is included. Because
of this, the method has the disadvantage of requiring
the MR images to be edited to remove non-brain tissue.
For reviews of a number of inter-modality registration
approaches, see Zuk and Atkins, 1996 and Hill et al., 2001.

Information theoretic approaches

The most recent voxel-similarity measures to be used for
inter-modal (as well as intra-modal (Holden et al., 2000))
registration have been based on information theory. These
measures are based on joint probability distributions of
intensities in the images, usually discretely represented
in the form of 2D joint histograms, which are normalized
to sum to one.

The first information theoretic measure to be pro-
posed was the entropy of the joint probability distribu-
tion (Studholme et al., 1995), which should be minimized
when the images are in register:

H�f� g� = −
∫ �

−�

∫ �

−�
P�f� g� log P�f� g�dfdg 4.28

The discrete representation of the probability distribu-
tions is from a joint histogram, which can be considered
as an I by J matrix P. The entropy is then computed from
the histogram according to:

H�f� g� =∑J

j=1

∑I

i=1
pij log pij 4.29

In practice, the entropy measure was found to produce
poor registration results, but shortly afterwards, a more
robust measure of registration quality was introduced.
This was based on mutual information (MI) (Collignon
et al., 1995; Wells et al., 1996) (also known as Shannon
information), which is given by:

I�f� g� = H�f�+H�g�−H�f� g� 4.30

where H�f� g� is the joint entropy of the images, and H�f�
and H�g� are their marginalized entropies given by:

H�f� = −
∫ �

−�
P�f� log P�f�df 4.31

H�g� = −
∫ �

−�
P�g� log P�g�dg 4.32

MI is a measure of dependence of one image on
the other, and can be considered as the distance
(Kullback-Leibler divergence) between the joint distri-
bution �P�f� g�� and the distribution assuming complete
independence �P�f�P�g��. When the two distributions are
identical, this distance (and the mutual information) is
zero. After rearranging, the expression for MI becomes:

I�f� g� = KL�P�f� g���P�f�P�g��

=
∫ �

−�

∫ �

−�
P�f� g� log

(
P�f� g�

P�f�P�g�

)
dfdg 4.33

It is assumed that the MI between the images is max-
imized when they are in register (Figure 4.7). Another
information theoretic measure (Studholme et al., 1999)
that can be used for registration is:

Ĩ �f� g� = H�f�+H�g�

H�f� g�
4.34

Another useful measure (Maes et al., 1997) is:

Ĩ �f� g� = 2H�f� g�−H�f�−H�g� 4.35

and also the entropy correlation coefficient (Maes et al., 1997)
(see Press et al., 1992, for more information):

U�f� g� = 2
H�f�+H�g�−H�f� g�

H�f�+H�g�
4.36

Implementation details

Generating a joint histogram involves scanning through
the voxels of the reference image and finding the cor-
responding points of the source. The appropriate bin in
the histogram is incremented by one for each of these
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FIGURE 4.7 An illustration of how the joint histogram of an
image pair changes as they are displaced relative to each other (note
that the pictures show log�1 + N�, where N is the count in each
histogram bin). The MI of the images is also shown.

point pairs. Pairs are ignored if the corresponding voxel
is unavailable because it lies outside the image volume.
The coordinate of the corresponding point rarely lies
at an actual voxel centre, meaning that interpolation is
required.

Many developers use partial volume interpolation (Col-
lignon et al., 1995), rather than interpolating the images
themselves, but this can make the MI objective func-
tion particularly susceptible to interpolation artefact
(Figure 4.8). The MI tends to be higher when voxel centres
are sampled, where one is added to a single histogram
bin. MI is lower when sampling in the centre of the eight
neighbours, as an eighth is added to eight bins. These
artefacts are especially prominent when fewer point pairs
are used to generate the histograms.

A simpler alternative is to interpolate the images them-
selves, but this can lead to new intensity values in the
histograms, which also cause interpolation artefact. This
artefact largely occurs because of aliasing after integer
represented images are rescaled so that they have values
between zero and I −1, where I is the number of bins in
the histogram (Figure 4.9). If care is taken at this stage,
then interpolation of the image intensities becomes less
of a problem. Another method of reducing these artefacts
is to not sample the reference image on a regular grid, by
(for example) introducing a random jitter to the sampled
points (Likar and Pernuš, 2001).

Histograms contain noise, especially if a relatively
small number of points are sampled in order to gen-
erate them. The optimum binning to use is still not
fully resolved, and is likely to vary from application to
application, but most researchers use histograms ranging
between about 16 × 16 and 256 × 256. Smoothing a his-
togram has a similar effect to using fewer bins. Another

FIGURE 4.8 The mutual information objective function can be particularly susceptible to interpolation artefacts. This figure shows a
plot of the MI between two images when they are translated with respect to each other. The dotted and dot-dashed lines show it computed
using partial volume interpolation at high and lower sampling densities respectively. The solid and dashed lines show MI computed by
interpolating the images themselves (solid indicates high sampling density, dashed indicates lower density).
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FIGURE 4.9 Rescaling an image can lead to aliasing artefacts in its histogram. Above: histogram based on original integer intensity
values, simulated to have a Gaussian distribution. Below: the histogram after the intensities are rescaled shows aliasing artefacts.

alternative is to use a continuous representation of the
joint probability distribution, such as a Parzen window
density estimate (Wells et al., 1996), or possibly even a
Gaussian mixture model representation.

A method of optimization based on the first and second
derivatives of the objective function was introduced ear-
lier. Similar principles have been applied to minimizing
the VIR objective function (Woods et al., 1993), and also to
maximizing MI (Thévenaz and Unser, 2000).6 However,
the most widely adopted scheme for maximizing MI is
Powell’s method (see Press et al., 1992), which involves
a series of successive line searches. Failures occasion-
ally arise if the voxel similarity measure does not vary
smoothly with changes to the parameter estimates. This
can happen because of interpolation artefact, or if insuffi-
cient data contribute to the joint histogram. Alternatively,
the algorithm can get caught within a local optimum, so
it is important to assign starting estimates that approxi-
mately register the images. The required accuracy of the
starting estimates depends on the particular images, but
an approximate figure for many brain images with a good

6 This paper uses Levenberg-Marquardt optimization (Press
et al., 1992), which is a stabilized version of the Gauss-Newton
method.

field of view would be in the region of about 5 cm for
translations and 15° for rotations.
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Multivariate autoregressive models
W. Penny and L. Harrison

INTRODUCTION

Functional neuroimaging has been used to corroborate
functional specialization as a principle of organization
in the human brain. However, disparate regions of the
brain do not operate in isolation and, more recently, neu-
roimaging has been used to characterize the network
properties of the brain under specific cognitive states
(Buchel and Friston, 1997a; Buchel and Friston, 2000).
These studies address a complementary principle of orga-
nization, functional integration.

Functional magnetic resonance imaging (fMRI) pro-
vides a unique opportunity to observe simultaneous
recordings of activity throughout the brain evoked by
cognitive and sensorimotor challenges. Each voxel within
the brain is represented by a time-series of neurophys-
iological activity that underlies the measured blood
oxygen-level-dependent (BOLD) response. Given these
multivariate, voxel-based time-series, can we infer large-
scale network behaviour among functionally specialized
regions?

A number of methods have been proposed to answer
this question including regression models (McIntosh
et al., 1994; Friston et al., 1993, 1995, 1997), convolu-
tion models (Friston and Buchel, 2000; Friston, 2001) and
state-space models (Buchel and Friston, 1998). Regression
techniques, underlying for example the analysis of psy-
chophysiological interactions (PPIs), are useful because
they are easy to fit and can test for the modulatory inter-
actions of interest (Friston et al., 1997). However, this is
at the expense of excluding temporal information, i.e.
the history of an input or physiological variable. This is
important as interactions within the brain, whether over
short or long distances, take time and are not instan-
taneous. Structural equation modelling (SEM), as used
by the neuroimaging community (McIntosh et al., 1994;

Buchel and Friston, 1997b) has similar problems.1 Con-
volution models, such as the Volterra approach, model
temporal effects in terms of an idealized response char-
acterized by the kernels of the model (Friston, 2000). A
criticism of the Volterra approach is that it treats the
system as a black box, meaning that it has no model of
the internal mechanisms that may generate data. State-
space models account for correlations within the data by
invoking state variables whose dynamics generate data.
Recursive algorithms, such as the Kalman filter, may be
used to estimate these states through time, given the data
(Buchel and Friston, 1998).

This chapter describes an approach based on
multivariate autoregressive (MAR) models. These are
linear multivariate time-series models which have a
long history of application in econometrics. The MAR
model characterizes interregional dependencies within
data, specifically in terms of the historical influence one
variable has on another. This is distinct from regression
techniques that quantify instantaneous correlations. We
use MAR models to make inferences about functional
integration from fMRI data.

The chapter is divided into three sections. First, we
describe the theory of MAR models, parameter esti-
mation, model order selection and statistical inference.
We have used a Bayesian technique for model order
selection and parameter estimation, which is introduced
in Chapter 24 and is described fully in Penny and
Roberts (2002). Secondly, we model neurophysiological
data taken from an fMRI experiment addressing atten-
tional modulation of cortical connectivity during a visual
motion task (Buchel and Friston, 1997b). The modula-
tory effect of one region upon the responses to other
regions is a second order interaction which is precluded

1 There exist versions of SEM that do model dynamic informa-
tion, see Cudeck (2002) for details of dynamic factor analysis.
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in linear models. To circumvent this we have introduced
bilinear terms (Friston et al., 1997). Thirdly, we discuss the
advantages and disadvantages of MAR models, their use
in spectral estimation and possible future developments.

THEORY

Multivariate autoregressive models

Given a univariate time-series, its consecutive measure-
ments contain information about the process that gener-
ated it. An attempt at describing this underlying order
can be achieved by modelling the current value of the
variable as a weighted linear sum of its previous val-
ues. This is an autoregressive (AR) process and is a very
simple, yet effective, approach to time-series character-
ization (Chatfield, 1996). The order of the model is the
number of preceding observations used, and the weights
characterize the time-series.

Multivariate autoregressive models extend this
approach to multiple time-series so that the vector of cur-
rent values of all variables is modelled as a linear sum
of previous activities. Consider d time-series generated
from d variables within a system, such as a functional
network in the brain, and where m is the order of the
model. An MAR(m) model predicts the next value in a
d-dimensional time-series, yn as a linear combination of
the m previous vector values:

yn =
m∑

i=1

yn−iA�i�+ en 40.1

where yn = �yn�1�� yn�2�� � � � � yn�d�� is the nth sample of
a d-dimensional time-series, each A�i� is a d-by-d matrix
of coefficients (weights) and en = �en�1�� en�2�� � � � � en�d��
is additive Gaussian noise with zero mean and covari-
ance R. We have assumed that the data mean has been
subtracted from the time-series.

The model can be written in the standard form of a
multivariate linear regression model as follows:

yn = xnW + en 40.2

where xn = �yn−1�yn−2� � � � � yn−m� are the m previous mul-
tivariate time-series samples and W is a �m × d�-by-d
matrix of MAR coefficients (weights). There are therefore
a total of k = m×d×d MAR coefficients.

If the nth rows of Y , X and E are yn, xn and en respec-
tively and there are n = 1��N samples then we can write:

Y = XW +E 40.3

where Y is an �N − m�-by-d matrix, X is an �N − m�-
by-�m × d� matrix and E is an (N − m)-by-d matrix. The

number of rows N −m (rather than N ) arises as samples
at time points before m do not have sufficient preceding
samples to allow prediction.

MAR models are fully connected in that each region is,
by default, assumed connected to all others. However, by
fitting the model to data and testing to see which connec-
tions are signficantly non-zero, one can infer a sub-network
that mediates the observed dynamics. This can be imple-
mented using Bayesian inference as described below.

These sub-networks are related to the concept of
‘Granger causality’ (Granger, 1969), which is defined
operationally as follows. Activity in region X ‘Granger’
causes activity in region Y if any of the connections from
X to Y, over all time lags, are non-zero. These causality
relationships can be summarized by directed graphs as
described in Eichler (2005). An example will be presented
later on in the chapter.

Non-linear autoregressive models

Given a network model of the brain, we can think of two
fundamentally different types of coupling: linear and non-
linear. The model discussed so far is linear. Linear systems
are described by the principle of superposition, which is
that inputs have additive effects on the response that are
independent of each other. Non-linear systems are charac-
terized by inputs which interact to produce a response.

In Buchel and Friston (1997b), non-linear interac-
tions were modelled using ‘bilinear terms’. This is the
approach adopted in this chapter. Specifically, to model
a hypothesized interaction between variables yn�j� and
yn�k� one can form the new variable:

In�j� k� = yn�j�yn�k� 40.4

This is a ‘bilinear variable’. This is orthogonalized with
respect to the original time-series and placed in an aug-
mented MAR model with connectivity matrices Ã�i�.

�yn� In�j� k�� =
m∑

i=1

�yn−i� In−i�j� k��Ã�i�+ en 40.5

The relevant entries in Ã�i� then reflect modulatory influ-
ences, e.g. a change of the connection strength between
y�j� and other time-series due to the influence of y�k�.

It should be noted that each bilinear variable intro-
duces only one of many possible sources of non-linear
behaviour into the model. The example above specifically
models non-linear interactions between yn�j� and yn�k�,
however, other bilinear terms could involve, for instance,
the time-series yn�j� and inputs u�t�. The inclusion of
these terms is guided by the hypothesis of interest, e.g.
does ‘time’ change the connectivity between earlier and
later stages of processing in the dorsal visual pathway?
Here u�t� would model time.
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Maximum likelihood estimation

Reformulating MAR models as standard multivariate lin-
ear regression models allows us to retain contact with the
large body of statistical literature devoted to this subject
(e.g. see Box and Tiao, 1992: 423). The maximum likeli-
hood (ML) solution (e.g. see Weisberg, 1980) for the MAR
coefficients is:

Ŵ = �XT X�−1XT Y 40.6

The maximum likelihood noise covariance, SML, can be
estimated as:

SML = 1
N −k

�Y −XŴ�T �Y −XŴ� 40.7

where k = m × d × d. We define ŵ = vec�Ŵ � where vec
denotes the columns of Ŵ being stacked on top of
each other (for more on the vec notation, see Muirhead,
1982). To recover the matrix Ŵ we simply ‘un-stack’ the
columns from the vector ŵ.

The ML parameter covariance matrix for ŵ is given by
(Magnus and Neudecker, 1997: 321):

	̂ = SML ⊗ �XT X�−1 40.8

where ⊗ denotes the Kronecker product (e.g. see Box and
Tiao, 1992: 477) The optimal value of m can be chosen
using a model order selection criterion such as the mini-
mum description length (MDL) ( e.g. see Neumaier and
Schneider, 2000).

Bayesian estimation

It is also possible to estimate the MAR parameters and
select the optimal model within a Bayesian framework
(Penny and Roberts, 2002). This has been shown to give
better model order selection and is the approach used in
this chapter. The maximum-likelihood solution is used
to initialize the Bayesian scheme.

In what follows N�m�Q−1� is a multivariate Gaussian
with mean m and precision (inverse covariance) Q. Also,
Ga�b� c� is the gamma distribution with parameters b and
c defined in Chapter 24. The gamma density has mean
bc and variance b2c. Finally, Wi�s�B� denotes a Wishart
density (Box and Tiao, 1992). The Bayesian model uses
the following prior distributions:

p�W �m� = N�0�
−1I� 40.9

p�
�m� = Ga�b� c�

p���m� = ���−�d+1�/2

where m is the order of the model, 
 is the precision
of the Gaussian prior distribution from which weights
are drawn and � is the noise precision matrix (inverse
of R). In Penny and Roberts (2002), it is shown that the
corresponding posterior distributions are given by:

p�W �Y�m� = N�ŴB� 	̂B� 40.10

p�
�Y�m� = Ga�b̂� ĉ�

p���Y�m� = Wi�s�B�

The parameters of the posteriors are updated in an iter-
ative optimization scheme described in Appendix 40.1.
Iteration stops when the ‘Bayesian evidence’ for model
order m, p�Y �m�, is maximized. A formula for computing
this is also provided in Appendix 40.1. Importantly, the
evidence is also used as a model order selection criterion,
i.e., to select the optimal value of m. This is discussed at
length in Chapters 24 and 35.

Bayesian inference

The Bayesian estimation procedures outlined above
result in a posterior distribution for the MAR coefficients
P�W �Y�m�. Bayesian inference can then take place using
confidence intervals based on this posterior (e.g. see Box
and Tiao, 1992). The posterior allows us to make infer-
ences about the strength of a connection between two
regions. Because this connectivity can be expressed over a
number of time lags, our inference is concerned with the
vector of connection strengths, a, over all time lags. To
make contact with classical (non-Bayesian) inference, we
say that a connection is ‘significantly non-zero’ or simply
‘significant’ at level 
 if the zero vector lies outside the
1−
 confidence region for a. This is shown schematically
in Figure 40.1.

a(2)

a(1)

FIGURE 40.1 For a MAR(2) model the vector of connection
strengths, a, between two regions consists of two values, a�1�
and a�2�. The probability distribution over a can be computed
from the posterior distribution of MAR coefficients as shown in
Appendix 40.1 and is given by p�a� = N���V �. Connectivity between
two regions is then deemed significant at level 
 if the zero-vector
lies on the 1 − 
 confidence region. The figure shows an example
1−
 confidence region for a MAR(2) model.
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APPLICATION

The responsiveness of dorsal visual brain regions in
neuroimaging studies suggests attention is associated
with changes in connectivity (Assad and Maunsell, 1995;
O’Craven and Savoy, 1995). In this chapter, we use data
from an fMRI study investigating attentional modulation
of connectivity within the dorsal visual pathways (Buchel
and Friston, 1997b). This provides a testbed for assessing
how MAR models estimate changes in connectivity.

In brief, the experiment was performed on a 2T MRI
scanner. The visual stimulus involved random dots mov-
ing radially outwards at a fixed rate. Subjects were trained
beforehand to detect changes in velocity of radial motion.
Attentional set was manipulated by asking the subject to
attend to changes in velocity or to just observe the motion.
Both of these states were separated by periods of ‘fixa-
tion’ where the screen was dark and only a fixation dot
was visible. Each block ended with a ‘stationary’ condi-
tion in which a static image of the previously moving dots
was shown. Unknown to the subjects, the radial velocity
remained constant throughout the experiment such that
the only experimental manipulation was attentional set.

Categorical comparisons using general linear model
(GLM) analyses (see e.g. Chapter 8) were used to iden-
tify changes in brain activity dependent on attentional
set. This revealed activations throughout right and left
hemispheres in the primary visual cortex V1/2 complex,
visual motion region V5 and regions involved in the
attentional network including posterior parietal cortex
(PPC) and in the right prefrontal cortex (PFC). Regions
of interest (ROI) were defined with a diameter of 8 mm
centred around the most significant voxel and a repre-
sentative time-series was defined by the first eigenvariate
of the region. For details of the experimental design and
acquisition see Buchel and Friston (1997b). We analyse
data from three subjects. Time-series from subject 1 are
shown in Plate 57 (see colour plate section).

Inspecting the four time-series reveals a number of
characteristics. The time-series from the V1/2 complex
shows a dependence on the presentation of the moving
image with a small difference between attention and non-
attention. However, in the higher brain areas of PPC and
PFC, attentional set is the dominant influence, with a
marked increase in activity during periods of attention.
The relative influence each region has on others is not
obvious from visual inspection but, as we shall see, can
be revealed from an MAR analysis.

Three models were tested using the regions and inter-
action terms shown below:

• Model 1: V1/V2, V5, PPC and PFC
• Model 2: V1/V2, V5 and Iv1�ppc

• Model 3: V5, PPC and Iv5�pfc

where Iv1�ppc denotes an interaction between V1/V2 and
PPC and Iv5�pfc an interaction between V5 and PFC.
These variables were created as described in the earlier
section on non-linear autoregressive models. The interac-
tion terms can be thought as ‘virtual’ nodes in a network.

For each type of model, we computed the model evi-
dence as a function of model order m. The results in
Figure 40.2 show that the optimal order for all three mod-
els was m = 4 (subject 1). A model order of m = 4 was
then used in the results reported below.

Model 1 was applied to right hemisphere data only, to
identify the functional network connecting key regions
in the visual and attentional systems. Figure 40.3 shows
connections in this model which, across all time lags,
are significantly non-zero for subject 1. Over the three
subjects, all V1/V2 to V5 connections (
 < 0�0004) and all
PFC to PPC (
 < 0�02) connections were significant. We
can therefore infer that activity in V1/V2 Granger causes
activity in V5, and PFC Granger causes PPC. Also, the
V5 to PPC connection was significant (
 < 0�0009) in two
out of three subjects.

The second model was applied both to left and right
hemisphere data. Figure 40.4 shows significantly non-
zero connections for left hemisphere data from subject 1.
This shows that activity in PPC changes the connectivity
between V1/V2 and V5. The same was true for the other
two subjects. For the right hemisphere data, however,
only subject 1 showed an effect (
 < 0�03).

The third model was applied to right hemisphere data.
Figure 40.5 shows significantly non-zero connections for
data from subject 1. This shows that activity in PFC
changes how PPC responds to V5. Subject 2 also showed
this effect (
 < 0�03) but subject 3 did not.

FIGURE 40.2 Plots of log-evidence, computed using the
expression in Appendix 40.1, for each of the three MAR models for
subject 1. The optimal order is m = 4 in each case.
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FIGURE 40.3 Inferred connectivity for model 1. Arrows indi-
cate Granger causal relations. Thin arrows indicate 0�001 ≤ 
 ≤ 0�05
and thick, 
 ≤ 0�001.

FIGURE 40.4 Inferred connectivity for model 2. Arrows show
Granger causal relations (0�001 ≤ 
 ≤ 0�05). The model supports the
notion that PPC modulates the V1/V2 to V5 connection.

FIGURE 40.5 Inferred connectivity for model 3. Arrows show
Granger causal relations (0�001 ≤ 
 ≤ 0�05). The model supports the
notion that PFC modulates the V5 to PPC connection.

DISCUSSION

We have proposed the use of MAR models for mak-
ing inferences about functional integration using fMRI
time-series. One motivation for this is that the previ-
ously dominant model used for making such inferences
in the existing fMRI/PET (positron emission tomogra-
phy) literature, namely structural equation modelling, as
used in McIntosh et al. (1994) and Buchel and Friston
(1997b), is not a time-series model. Indeed, inferences are
based solely on the instantaneous correlations between
regions – if the series were randomly permuted over
time, SEM would give the same results. Thus SEM throws
away temporal information.

Further, MAR models may contain loops and self-
connections, yet parameter estimation can proceed in a
purely linear framework, i.e. there is an analytic solution
that can be found via linear algebra. In contradistinction,
SEM models with loops require non-linear optimization.
The reason for this is that MAR models do not contain
instantaneous connections. The between-region connec-
tivity arises from connections between regions at differ-
ent time lags. Due to temporal persistence in the activity
of each region, this captures much the same effect, but in
a computationally simpler manner.

In this chapter, we applied Bayesian MAR models
to fMRI data. Bayesian inferences about connections
were then made on the basis of the estimated poste-
rior distribution. This allows for the identification of a
sub-network of connections that mediate the observed
dynamics. These connections describe causal relations, in
the sense of Granger (Granger, 1969).

This is in the spirit of how general linear models are
used for characterizing functional specialization; all con-
ceivable factors are placed in one large model and then
different hypotheses are tested using t- or F-contrasts
(Frackowiak et al., 1997). We note that this approach is
fundamentally different from the philosophy underlying
SEM. In SEM, only a few connections are modelled. These
are chosen on the basis of prior anatomical or functional
knowledge and are interpreted as embodying causal rela-
tions. Thus, with SEM, causality is ascribed a priori (Pearl,
1998), but with MAR, causality can be inferred from data.

MAR models can also be used for spectral estima-
tion. In particular, they enable parsimonious estima-
tion of coherences (correlation at particular frequen-
cies), partial coherences (the coherence between two
time-series after the effects of others have been taken
into account), phase relationships (Marple, 1987; Cas-
sidy and Brown, 2000) and directed transfer functions
(Kaminski et al., 1997). MAR models have been used
in this way to investigate functional integration from
electroencephalography (EEG) and Electrocorticogram
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(ECOG) recordings (Bressler et al., 1999). This provides
a link with a recent analysis of fMRI data (Muller et al.,
2001) which looks for sets of voxels that are highly coher-
ent. MAR models provide a parametric way of estimating
this coherence, although in this chapter we have reported
the results in the time domain.

A further aspect of MAR models is that they capture
only linear relations between regions. Following Buchel
and Friston (1997b), we have extended their capabili-
ties by introducing bilinear terms. This allows one to
infer that activity in one region modulates connectivity
between two other regions. Such inferences are beyond
the current capabilities of dynamic causal models for
fMRI (see Chapter 41).

It is also possible to include further higher-order terms,
for instance, second-order interactions across different
lags. Frequency domain characterization of the resulting
models would then allow us to report bi-spectra (Priest-
ley, 1988). These describe the correlations between differ-
ent frequencies which may be important for the study of
functional integration (Friston, 2000, see also Chapter 39).

A key aspect of our approach has been the use of
a mature Bayesian estimation framework (Penny and
Roberts, 2002). This has allowed us to select the optimal
MAR model order. One promising direction for extend-
ing the model is to replace Gaussian priors with sparse
priors. This would effectively remove most connections,
allowing the model to be applied to a very large num-
ber of regions. This approach has been investigated in
a non-Bayesian framework using penalized regression
and pruning based on false discovery rates (Valdes-Sosa
et al., 2005).

APPENDIX 40.1

Bayesian estimation

Following the algorithm developed in Penny and
Roberts, (2002), the parameters of the posterior distribu-
tions are updated iteratively as follows:

�D = �̂⊗ �XT X� 40.11

	̂B = ��D + 
̂I�−1

ŴB = 	̂B�DŴ

1

b̂
= 1

2
Ŵ T

B ŴB + 1
2
Tr�	̂B�+ 1

b

ĉ = k

2
+ c


̂ = b̂ĉ

s = N

B = 1
2

�Y −XŴB�T �Y −XŴB�

+∑
n

�I ⊗xn�	̂B�I ⊗xn�T

�̂ = sB−1

The updates are initialized using the maximum-
likelihood solution. Iteration terminates when the
Bayesian log-evidence increases by less than 0.01 per cent.
The log-evidence is computed as follows:

log p�Y �m� = N

2
log �B�−KLN �p�W �m��p�W �Y�m�� 40.12

−KLGa�p�
�m��p�
�Y�m��+ log d�N/2�

where KLN and KLGa denote the Kullback-Liebler (KL)
divergences for normal and gamma densities defined in
Chapter 24. Essentially, the first term in the above equa-
tion is an accuracy term and the KL terms act as a penalty
for model complexity (see Chapters 24 and 35 for more
on model comparison).

Testing the significance of connections

The connectivity between two regions can be expressed
over a number of time lags. Therefore, to see if the con-
nectivity is significantly non-zero, we make an inference
about the vector of coefficients a, where each element of
that vector is the value of a MAR coefficient at a different
time lag. First, we specify �k × k� (k = m × d × d) sparse
matrix C such that

a = CT w 40.13

returns the estimated weights for connections between
the two regions of interest. For an MAR(m) model, this
vector has m entries, one for each time lag. The probabil-
ity distribution is given by p�a� = N���V� and is shown
schematically in Figure 40.1. The mean and covariance
are given by:

� = CT ŵ 40.14

V = CT 	̂BC

where ŵ = vec�ŴB� and 	̂B are the Bayesian estimates of
the parameters of the posterior distribution of regression
coefficients from the previous section. In fact, p�a� is just
that part of p�w� that we are interested in.

The probability 
 that the zero vector lies on the 1−

confidence region for this distribution is then computed
as follows. We first note that this probability is the same
as the probability that the vector m lies on the edge of
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the 1 − 
 region for the distribution N�0�V�. This latter
probabilitiy can be computed by forming the test statistic:

d = �T V −1� 40.15

which will be the sum of r = rank�V� independent,
squared Gaussian variables. As such it has a �2 distribu-
tion:

p�d� = �2�r� 40.16

This results in the same test for multivariate effects in
general linear models described in Chapter 25. In the
present context, if a are the autoregressive coefficients
from region X to region Y, and the above test finds them
to be significantly non-zero, then we can conclude that X
Granger causes Y (Eichler, 2005).
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41

Dynamic Causal Models for fMRI
K. Friston

INTRODUCTION

In this chapter, we apply the system identification tech-
niques described in Chapter 34 to the dynamic models
of effective connectivity introduced in Chapter 38. In this
chapter, we consider simple bilinear models for haemo-
dynamic time-series (i.e. functional magnetic resonance
imaging, fMRI). In the next chapter, we describe more
elaborate models for electrical and magnetic responses
as measured with electroencephalography and mag-
netoencephalography (EEG-MEG). By using a bilinear
approximation, to any system’s equations of motion, the
parameters of the implicit causal model reduce to three
sets. These comprise parameters that: mediate the influ-
ence of extrinsic inputs on the states; mediate regional
coupling among the states; and [bilinear] parameters that
allow the inputs to modulate that coupling.

We use this bilinear model for the analysis of effec-
tive connectivity using experimentally designed inputs
and fMRI responses. In this context, the coupling param-
eters determine effective connectivity and the bilinear
parameters reflect the changes in connectivity induced
by inputs. The ensuing framework allows one to char-
acterize fMRI experiments, conceptually, as an experi-
mental manipulation of integration among brain regions
(by contextual or trial-free inputs, like time or attentional
set) that is disclosed using evoked responses (to per-
turbations or trial-bound inputs like stimuli). As with
previous analyses of effective connectivity, the focus
is on experimentally induced changes in coupling (cf.
psychophysiological interactions). However, unlike pre-
vious approaches in neuroimaging, the causal model
ascribes responses to designed deterministic inputs, as
opposed to treating inputs as unknown and stochas-
tic. To date, dynamic causal modelling (DCM) has been
applied to a wide range of issues; ranging from category-
effects (Mechelli et al., 2003) through to affective prosody
(Ethofer et al., 2006) and rhyming (Bitan et al., 2005).

Background

This chapter is about modelling interactions among neu-
ronal populations, at a cortical level, using neuroimaging
(haemodynamic) time-series. It presents the motivation
and procedures for dynamic causal modelling of evoked
brain responses. The aim of this modelling is to esti-
mate, and make inferences about, the coupling among
brain areas and how that coupling is influenced by
changes in experimental context (e.g. time or cognitive
set). Dynamic causal modelling represents a fundamental
departure from existing approaches to effective connec-
tivity because it employs a more plausible generative
model of measured brain responses that embraces their
non-linear and dynamic nature.

The basic idea is to construct a reasonably realistic
neuronal model of interacting cortical regions or nodes.
This model is then supplemented with a forward model
of how neuronal or synaptic activity is transformed
into a measured response. This enables the parame-
ters of the neuronal model (i.e. effective connectivity)
to be estimated from observed data. These supplemen-
tary models may be forward models of electromagnetic
measurements or haemodynamic models of fMRI mea-
surements. In this chapter, we will focus on fMRI.
Responses are evoked by known deterministic inputs that
embody designed changes in stimulation or context. This
is accomplished by using a dynamic input-state-output
model with multiple inputs and outputs. The inputs cor-
respond to conventional stimulus functions that encode
experimental manipulations. The state variables cover
both the neuronal activities and other neurophysiological
or biophysical variables needed to form the outputs. The
outputs are measured electromagnetic or haemodynamic
responses over the brain regions considered.

Intuitively, this scheme regards an experiment as a
designed perturbation of neuronal dynamics that are
distributed throughout a system of coupled anatomical
nodes to change region-specific neuronal activity. These

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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changes engender, through a measurement-specific for-
ward model, responses that are used to identify the
architecture and time-constants of the system at the neu-
ronal level. This represents a departure from conven-
tional approaches (e.g. structural equation modelling and
autoregression models, McIntosh and Gonzalez-Lima,
1994; Büchel and Friston 1997), in which one assumes the
observed responses are driven by endogenous or intrinsic
noise (i.e. innovations). In contrast, dynamic causal mod-
els assume the responses are driven by designed changes
in inputs. An important aspect of dynamic causal mod-
els, for neuroimaging, pertains to how the experimental
inputs enter the model and cause neuronal responses.
We have established in previous chapters that experi-
mental variables can elicit responses in one of two ways.
First, they can elicit responses through direct influences
on specific anatomical nodes. This would be appropri-
ate, for example, in modelling sensory evoked responses
in early visual cortices. The second class of input exerts
its effect vicariously, through a modulation of the cou-
pling among nodes. These sorts of experimental variables
would normally be more enduring, for example, atten-
tion to a particular attribute or the maintenance of some
perceptual set. These distinctions are seen most clearly in
relation to existing analyses and experimental designs.

DCM and existing approaches

The central ideal DCM is to treat the brain as a deter-
ministic non-linear dynamic system that is subject to
inputs and produces outputs. Effective connectivity is
parameterized in terms of coupling among unobserved
brain states (e.g. neuronal activity in different regions).
The objective is to estimate these parameters by per-
turbing the system and measuring the response. This
is in contradistinction to established methods, for esti-
mating effective connectivity from neurophysiological
time-series, which include structural equation modelling
and models based on multivariate autoregressive pro-
cesses. In these models, there is no designed perturbation
and the inputs are treated as unknown and stochastic.
Multivariate autoregression models and their spectral
equivalents like coherence analysis, not only assume
the system is driven by stochastic innovations, but are
usually restricted to linear interactions. Structural equa-
tion modelling assumes the interactions are linear and,
furthermore, instantaneous in the sense that structural
equation models are not time-series models. In short,
dynamic causal modelling is distinguished from alter-
native approaches not just by accommodating the non-
linear and dynamic aspects of neuronal interactions, but
by framing the estimation problem in terms of perturba-
tions that accommodate experimentally designed inputs.

This is a critical departure from conventional approaches
to causal modelling in neuroimaging and, importantly,
brings the analysis of effective connectivity much closer
to the analysis of region-specific effects: dynamic causal
modelling calls upon the same experimental design prin-
ciples to elicit region-specific interactions that we use
in conventional experiments to elicit region-specific acti-
vations. In fact, as shown later, the convolution model,
used in the standard analysis of fMRI time-series, is a
special and simple case of DCM that arises when the
coupling among regions is discounted. In DCM, the
causal or explanatory variables that comprise the conven-
tional design matrix become the inputs and the param-
eters become measures of effective connectivity.
Although DCM can be framed as a generalization of
the linear models used in conventional analyses to cover
bilinear models (see below), it also represents an attempt
to embed more plausible forward models of how neu-
ronal dynamics respond to inputs and produce measured
responses. This reflects the growing appreciation of the
role that neuronal models may have to play in under-
standing measured brain responses (see Horwitz et al.,
2001 for a discussion).

This chapter can be regarded as an extension of pre-
vious work on the Bayesian identification of haemody-
namic models (Friston 2002) to cover multiple regions. In
Chapter 34, we focused on the biophysical parameters of
a haemodynamic response in a single region. The most
important parameter was the efficacy with which experi-
mental inputs could elicit an activity-dependent vasodila-
tory signal. In this chapter, neuronal activity is modelled
explicitly, allowing for interactions among the activities
of multiple regions in generating the observed haemody-
namic response. The estimation procedure employed for
DCM is formally identical to that described in Chapter 34
(see also Appendix 4).

DCM and experimental design

DCM is used to test the specific hypothesis that moti-
vated the experimental design. It is not an exploratory
technique, as with all analyses of effective connectivity
the results are specific to the tasks and stimuli employed
during the experiment. In DCM, designed inputs can
produce responses in one of two ways. Inputs can elicit
changes in the state variables (i.e. neuronal activity)
directly. For example, sensory input could be modelled
as causing direct responses in primary visual or auditory
areas. The second way in which inputs affect the system
is through changing the effective connectivity or inter-
actions. Useful examples of this sort of effect would be
the attentional modulation of connections between pari-
etal and extrastriate areas. Another ubiquitous example
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of contextual effects would be time. Time-dependent
changes in connectivity correspond to plasticity. It is use-
ful to regard experimental factors as inputs that belong
to the class that produce evoked responses or to the class
of contextual factors that induce changes in coupling
(although, in principle, all inputs could do both). The first
class comprises trial- or stimulus-bound perturbations,
whereas the second establishes a context in which effects
of the first sort evoke responses. This second class is typ-
ically trial-free and induced by task instructions or other
contextual changes. Measured responses in high-order
cortical areas are mediated by interactions among brain
areas elicited by trial-bound perturbations. These inter-
actions can be modulated by other set-related or contex-
tual factors that modulate the latent or regional coupling
among areas. Figure 41.1 illustrates this schematically.
The important implication here, for experimental design
in DCM, is that it should be multifactorial, with at least
one factor controlling sensory perturbation and another
factor manipulating the context in which the responses
are evoked (cf. psychophysiological interactions).

In this chapter, we use bilinear approximations to any
DCM. The bilinear approximation reduces the parame-
ters to three sets that control three distinct things: first,
the direct or extrinsic influence of inputs on brain states
in any particular area; second, the regional or latent

coupling of one area to another; and finally, changes in
this coupling that are induced by input. Although, in
some instances, the relative strengths of coupling may be
of interest, most analyses of DCMs focus on the changes
in coupling embodied in the bilinear parameters. The
first class of parameters is generally of little interest in
the context of DCM, but is the primary focus in classical
analyses of regionally specific effects. In classical analy-
ses, the only way experimental effects can be expressed
is though a direct or extrinsic influence on each voxel
because mass-univariate models (e.g. statistical paramet-
ric mapping, SPM) preclude coupling among voxels or
its modulation.

Questions about the modulation of effective connec-
tivity are addressed through inference about the bilin-
ear parameters described above. They are bilinear in the
sense that an input-dependent change in connectivity can
be construed as a second-order interaction between the
input and activity in the source, when causing a response
in a target region. The key role of bilinear terms reflects
the fact that the more interesting applications of effective
connectivity address changes in connectivity induced by
set or time. In short, DCM with a bilinear approxima-
tion allows one to claim that an experimental manipula-
tion has ‘activated a pathway’ as opposed to a cortical
region. Bilinear terms correspond to psychophysiological

V1

V4

BA37

STG

BA39

Stimulus-bound
perturbations - u1

{e.g. visual words} 

y

y

y

y

y

Stimulus-free context - u2
{e.g. cognitive set or time}

FIGURE 41.1 This is a schematic illustrating the concepts underlying dynamic causal modelling. In particular, it highlights the two
distinct ways in which inputs or perturbations can elicit responses in the regions or nodes that comprise the model. In this example, there are
five nodes, including visual areas V1 and V4 in the fusiform gyrus, areas 39 and 37 and the superior temporal gyrus (STG). Stimulus-bound
perturbations designated u1 act as extrinsic inputs to the primary visual area V1. Stimulus-free or contextual inputs u2 mediate their effects
by modulating the coupling between V4 and BA39 and between BA37 and V4. For example, the responses in the angular gyrus (BA39)
are caused by inputs to V1 that are transformed by V4, where the influences exerted by V4 are sensitive to the second input. The dark
square boxes represent the components of the DCM that transform the state variables zi in each region (neuronal activity) into a measured
[haemodynamic] response yi.
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interaction terms in conventional regression analyses
of effective connectivity (Friston et al., 1997) and those
formed by moderator variables (Kenny and Judd, 1984)
in structural equation modelling (Büchel and Friston,
1997). Their bilinear aspect speaks again of the impor-
tance of multifactorial designs that allow these interac-
tions to be measured and the central role of the context
in which region-specific responses are formed (see
McIntosh, 2000).

DCM and inference

Because DCMs are not restricted to linear or instanta-
neous systems, they are necessarily complicated and,
potentially, need a large number of free parameters.
This is why they have greater biological plausibility in
relation to alternative approaches. However, this makes
model inversion more dependent upon constraints. A
natural way to embody the requisite constraints is within
a Bayesian framework. Consequently, dynamic causal
models are inverted using Bayesian schemes to furnish
conditional estimators and inferences about the connec-
tions. In other words, the estimation procedure provides
the probability distribution of a coupling parameter in
terms of its mean and standard deviation. Having estab-
lished this posterior density, the probability that the
connection exceeds some specified threshold is easily
computed. Bayesian inferences like this are more straight-
forward than corresponding classical inferences and
eschew the multiple comparisons problem. The posterior
density is computed using the likelihood and prior den-
sities. The likelihood of the data, given some parameters,
is specified by the forward model or DCM (in one sense
all models are simply ways of specifying the likelihood
of an observation). The prior densities on the coupling
parameters offer suitable constraints to ensure robust and
efficient estimation. These priors harness some natural
constraints about the dynamics of coupled systems (see
below), but also allow the user to specify which con-
nections are present and which are not. An important
use of prior constraints of this sort is the restriction of
where inputs can elicit extrinsic responses. It is inter-
esting to reflect that conventional analyses suppose that
all inputs have unconstrained access to all brain regions.
This is because classical models assume activations are
caused directly by experimental factors, as opposed to
being mediated by afferents from other brain areas.

Additional constraints on the intrinsic connections and
their modulation by contextual inputs can also be spec-
ified, but they are not necessary. These additional con-
straints can be used to make a model more parsimonious,
allowing one to focus on a particular connection. We
will provide examples of this below. Unlike structural

equation modelling, there are no limits on the number of
connections that can be modelled because the assump-
tions and estimation scheme used by dynamic causal
modelling are completely different, relying upon known
inputs.

Overview

This chapter comprises a theoretical section and three
sections demonstrating the use and validity of DCM. In
the theoretical section, we present the concepts used in
the remaining sections. The later sections address the
face, predictive and construct validity of DCM respec-
tively. Face validity entails the estimation, and infer-
ence procedure identifies what it is supposed to. The
subsequent section on predictive validity uses empiri-
cal data from an fMRI study of single-word processing
at different rates. These data were obtained consecu-
tively in a series of contiguous sessions. This allowed
us to repeat the DCM using independent realizations of
the same paradigm. Predictive validity over the multi-
ple sessions was assessed in terms of the consistency
of the coupling estimates and their posterior densities.
The final section on construct validity revisits changes
in connection strengths among parietal and extrastriate
areas induced by attention to optic flow stimuli. We have
established previously attentionally mediated increases
in effective connectivity using both structural equation
modelling and a Volterra formulation of effective con-
nectivity (Büchel and Friston, 1997; Friston and Büchel,
2000). Here we show that dynamic causal modelling
leads to the same conclusions. This chapter ends with a
brief discussion of dynamic causal modelling, its limita-
tions and potential applications.

THEORY

In this section, we present the theoretical motivation and
operational details upon which DCM rests. In brief, DCM
is a fairly standard non-linear system identification pro-
cedure using Bayesian inversion of deterministic input-
state-output dynamic models. In this chapter, the system
can be construed as a number of interacting brain regions.
We will focus on a particular form for the dynamics that
corresponds to a bilinear approximation to any analytic
system. However, the idea behind DCM is not restricted
to bilinear forms, as we will see in the next chapter.

This section is divided into three parts. First, we
describe the DCM itself, then consider the nature of pri-
ors on the parameters of the DCM and finally summarize
the inference procedure. The estimation conforms to the
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posterior density analysis under Gaussian assumptions
described in Chapter 34. In Chapter 34, we were primar-
ily concerned with estimating the efficacy with which
input elicits a vasodilatory signal, presumably mediated
by neuronal responses to the input. The causal models
here can be regarded as a collection of haemodynamic
models, one for each area, in which the experimental
inputs are supplemented with neural activity from other
areas. The parameters of interest now cover not only the
direct efficacy of experimental inputs, but also the effi-
cacy of neuronal input from distal regions, i.e. effective
connectivity (see Figure 41.1).

The Bayesian inversion finds the maximum or mode
of the posterior density of the parameters (i.e. the most
likely coupling parameters given the data) by performing
a gradient assent on the log-posterior. The log-posterior
requires both likelihood and prior terms. The likelihood
obtains from Gaussian assumptions about the errors in
the observation model supplied by the DCM. This like-
lihood or forward model is described in the next sub-
section. By combining the likelihood with priors on the
coupling and haemodynamic parameters, described in
the second subsection, one can form an expression for
the posterior density that is used in the estimation.

Dynamic causal models

The dynamic causal model is a multiple-input multiple-
output (MIMO) system that comprises m inputs and
l outputs with one output per region. The m inputs corre-
spond to designed causes (e.g. boxcar or stick stimulus-
functions). The inputs are exactly the same as those
used to form design matrices in conventional analyses
of fMRI and can be expanded in the usual way when
necessary (e.g. using polynomials or temporal basis func-
tions). In principle, each input could have direct access to
every region. However, in practice, the extrinsic effects
of inputs are usually restricted to a single input region.
Each of the l regions produces a measured output that
corresponds to the observed blood oxygenation-level-
dependent (BOLD) signal. These l time-series would nor-
mally be taken as the average or first eigenvariate of key
regions, selected on the basis of a conventional analy-
sis. Each region has five state variables. Four of these
are of secondary importance and correspond to the state
variables of the haemodynamic model first presented in
Friston et al. (2000) and described in previous chapters.
These haemodynamic states comprise a vasodilatory sig-
nal, normalized flow, normalized venous volume, and
normalized deoxyhaemoglobin content. These biophys-
ical states are required to compute the observed BOLD
response and are not influenced by the states of other
regions.

Central to the estimation of coupling parameters is
the neuronal state of each region. This corresponds to
average neuronal or synaptic activity and is a function of
the neuronal states of other brain regions. We will deal
first with the equations for the neuronal states and then
briefly reprise the differential equations that constitute
the haemodynamic model for each region.

Neuronal state equations

Restricting ourselves to the neuronal states z =
�z1� � � � � zl�

T one can posit any arbitrary form or model
for effective connectivity:

ż = F�z�u��� 41.1

where F is some non-linear function describing the neu-
rophysiological influences exerted by inputs u�t� and the
activity in all brain regions on the evolution of the neu-
ronal states. � are the parameters of the model whose
posterior density we require for inference. It is not nec-
essary to specify the form of this equation because its
bilinear approximation provides a natural and useful re-
parameterization in terms of coupling parameters.

ż ≈ Az+∑ujB
jz+Cu

= (
A+∑ujB

j
)
z+Cu

A = 	F

	z

∣∣∣∣
u=0

Bj = 	2F

	z	uj

= 	A

	uj

C = 	F

	u

∣∣∣∣
z=0

41.2

The Jacobian or connectivity matrix A represents the first-
order coupling among the regions in the absence of input.
This can be thought of as the regional coupling in the
absence of experimental perturbations. Notice that the
state, which is perturbed, depends on the experimen-
tal design (e.g. baseline or control state) and therefore
the regional coupling is specific to each experiment. The
matrices Bj are effectively the change in regional coupling
induced by the j-th input. Because Bj are second-order
derivatives these terms are referred to as bilinear. Finally,
the matrix C encodes the extrinsic influences of inputs
on neuronal activity. The parameters �c = 
A�Bj�C� are
the coupling matrices we wish to identify and define
the functional architecture and interactions among brain
regions at a neuronal level. Figure 41.2 shows an example
of a specific architecture to demonstrate the relationship
between the matrix form of the bilinear model and the
underlying state equations for each region. Notice that
the units of coupling are per unit time and therefore cor-
respond to rates. Because we are in a dynamical setting,
a strong connection means an influence that is expressed
quickly or with a small time constant. It is useful to
appreciate this when interpreting estimates and thresh-
olds quantitatively. This will be illustrated below.
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FIGURE 41.2 This schematic (upper panel) recapitulates the architecture in Figure 41.1 in terms of the differential equations implied
by a bilinear approximation. The equations in each of the white areas describe the changes in neuronal activity zi in terms of linearly
separable components that reflect the influence of other regional state variables. Note particularly, how the second contextual inputs enter
these equations. They effectively increase the intrinsic coupling parameters, aij , in proportion to the bilinear coupling parameters, bk

ij . In this
diagram, the haemodynamic component of the DCM illustrates how the neuronal states enter a region-specific haemodynamic model to
produce the outputs yi that are a function of the region’s biophysical states reflecting deoxyhaemoglobin content and venous volume (qi and
vi). The lower panel reformulates the differential equations in the upper panel into a matrix format. These equations can be summarized
more compactly in terms of coupling parameter matrices A, Bj and C. This form is used in the main text and shows how it relates to the
underlying differential equations that describe the state dynamics.

The evolution of neuronal activity in each region causes
changes in volume and deoxyhaemoglobin to engender
the observed BOLD response y as described next.

Haemodynamic state equations

The remaining state variables of each region are bio-
physical states (s, f , v, q), which form the BOLD sig-
nal and mediate the translation of neuronal activity
into haemodynamic responses. Haemodynamic states
are a function of, and only of, the neuronal state of
each region. The state equations have been described
in Chapters 27 and 34. These constitute a haemody-
namic model that embeds the Balloon-Windkessel model

(Buxton et al., 1998; Mandeville et al., 1999). In brief, an
activity-dependent vasodilatory signal s increases flow f .
Flow increases volume and dilutes deoxyhaemoglobin (v
and q). The last two haemodynamic states enter an out-
put non-linearity to give the observed BOLD response.
A list of the biophysical parameters �h = �������� is
provided in Table 41-1 and a schematic of the haemody-
namic model is shown in Figure 41.3.

The likelihood model

Combining the neuronal and haemodynamic states
x = z� s� f�v� q gives us a full forward model specified by
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TABLE 41-1 Priors on biophysical parameters

Parameter Description Prior mean �� Prior variance C�

� Rate of signal
decay

0.65 per second 0�015

 Rate of flow-
dependent
elimination

0.41 per second 0�002

� Haemodynamic
transit time

0.98 second 0�0568

� Grubb’s
exponent

0.32 0�0015

� Resting oxygen
extraction
fraction

0.34 0�0024

Neuronal input

Haemodynamic response

The hemodynamic model ),( qvg

z

y

flow

z

s

ν

f

State variables

ν
q

x = z,s,f,ν,q

f

q

signal
s = z – κs – γ(f – 1)

y = g(ν,q)

volume

τν = f – ν 
I/α

dHb
τq = f E(f,ρ)/ρ – ν 

I/αq /ν

f = s

FIGURE 41.3 This schematic shows the architecture of the
haemodynamic model for a single region (regional subscripts have
been dropped for clarity). Neuronal activity induces a vasodila-
tory and activity-dependent signal s that increases the flow f . Flow
causes changes in volume and deoxyhaemoglobin (v and q). These
two haemodynamic states enter an output non-linearity to give
the observed BOLD response y. This transformation from neuronal
states zi to haemodynamic response yi is encoded graphically by
the dark-grey boxes in the previous figure and in the insert above.

the neuronal bilinear state equation (Eqn. 41.2) and the
haemodynamic equations in Figure 41.3:

ẋ = f�x�u���

y = g�x���
41.3

with parameters � = 
�c� �h�. For any set of parameters
and inputs, the state equation can be integrated and
passed through the output non-linearity to give the pre-
dicted response h�u���. This integration can be made
quite expedient by capitalizing on the sparsity of stimu-
lus functions commonly employed in fMRI designs (see
Chapter 34; Eqn. 34.16). Integrating Eqn. 41.3 is equiv-
alent to a generalized convolution of the inputs with
the system’s Volterra kernels. These kernels are easily
derived from the Volterra expansion of Eqn. 41.3 (Bendat,
1990 and Appendix 2):

hi�u��� =∑
k

t∫
0

� � �

t∫
0

�k
i ��1� � � � ��k�u�t −�1�� � � � �

u�t −�k�d�1� � � � � d�k

�k
i ��1� � � � ��k� = 	kyi�t�

	u�t −�1�� � � � � 	u�t −�k�
41.4

either by numerical differentiation or analytically
through bilinear approximations (see Friston, 2002). �k

i

is the k-th order kernel for region i. For simplicity,
Eqn. 41.4 is for a single input. The kernels are simply a re-
parameterization of the model. We will use these kernels
to characterize regional impulse responses at neuronal
and haemodynamic levels later.

The dynamic model can be made into a likelihood
model by adding errors and confounding or nuisance
effects X�t� to give y = h�u��� + X� + �. Here � are
the unknown coefficients for confounds. In the exam-
ples below, X�t� comprises a low-order discrete cosine
set, modelling low-frequency drifts and a constant term.
The likelihood model specifies p�y�����u� = N�h�u���+
X�������, where � are some hyperparameters control-
ling the covariance of the errors ����. To complete
the specification of the generative model p�y�����u� =
p�y�����u�p���p��� we need the priors p��� and p���. We
will treat confounds as fixed effects, which means these
have flat priors. The priors on the coupling and haemo-
dynamic parameters are described next.

Priors

In this application, we use a fully Bayesian approach
because there are clear and necessary constraints on neu-
ronal dynamics that can be used to motivate priors on the
coupling parameters and empirically determined priors
on the biophysical haemodynamic parameters are rela-
tively easy to specify. We will deal first with the coupling
parameters.
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Priors on the coupling parameters

It is self-evident that neuronal activity cannot diverge
exponentially to infinite values. Therefore, we know that,
in the absence of input, the dynamics must to return to a
stable mode. We use this constraint to motivate a simple
shrinkage prior on the coupling parameters that make
large values and self-excitation unlikely. These priors
impose a probabilistic upper bound on the intrinsic cou-
pling, imposed by Gaussian priors that ensure its largest
Lyapunov exponent is unlikely to exceed zero. The spec-
ification of priors on the connections is finessed by a
re-parameterization of the coupling matrices A and Bj .

A → e�A = e�

⎡
⎢⎣

−1 a12 · · ·
a21 −1
���

� � �

⎤
⎥⎦Bj → e�Bj = e�

⎡
⎢⎢⎣

b
j
11 b

j
12 · · ·

b
j
21

� � �
���

⎤
⎥⎥⎦

41.5

This factorization into a non-negative scalar and nor-
malized coupling matrix renders the normalized cou-
plings adimensional, such that strengths of connections
among regions are relative to their self-connections. From
now on, we will deal with normalized parameters. Each
connection has a prior Gaussian density with zero expec-
tation and variance (see Friston et al., 2002a, b):

Ca = l/�l−1�

��1−p�
41.6

where � is the inverse of the �2
l�l−1� cumulative distri-

bution and p is a small probability that the system will
become unstable if all the connections are the same.
As the number of regions, l increases, the prior vari-
ance decreases. A Gaussian prior p��� = N�0� 1

4 � ensures
that the temporal scaling exp��� is positive and covers
dynamics that have a characteristic time constant of about
a second.1

To provide an intuition about how these priors keep
the system from diverging exponentially, a quantitative
example is shown in Figure 41.4. Figure 41.4 shows the
prior density of two connections that renders the proba-
bility of instability less than one in a hundred. It can be
seen that this density lies in a domain of parameter space
encircled by regions in which the maximum Lyapunov
exponent exceeds zero (bounded by dotted white lines)
(see the Figure legend for more details). Priors on the

1 We will use the same device to place non-negative, log-normal
priors on parameters in the next chapter dealing with neuronal
kinetics. This parameterization is particularly useful in dynamic
models because most of the parameters are rate constants, which
cannot be negative.
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FIGURE 41.4 Prior probability density on the intrinsic cou-
pling parameters for a specific intrinsic coupling matrix A. The
left-hand panel shows the real value of the largest eigenvalue of A
(the principal Lyapunov exponent) as a function of the connection
from the first to the second region and the reciprocal connection
from the second to the first. The remaining connections were held
constant at 0.5. This density can be thought of as a slice through a
multidimensional distribution over all connections. The right panel
shows the prior probability density function and the boundaries at
which the largest real eigenvalue exceeds zero (dotted lines). The
variance or dispersion of this probability distribution is chosen to
ensure that the probability of excursion into unstable domains of
parameter space is suitably small. These domains are the upper
right and lower left bounded regions.

bilinear coupling parameters have the same form (zero
mean and variance) as the intrinsic coupling parameters.
Conversely, priors on the influences of extrinsic input
are not scaled and are relatively uninformative with zero
expectation and unit variance. As noted in the introduc-
tion, additional constraints can be implemented by pre-
cluding certain connections by setting their variance to
zero.

Haemodynamic priors

The haemodynamic priors are based on those used in
Friston (2002) and in Chapter 34. In brief, the mean
and variance of posterior estimates of the five biophys-
ical parameters were computed over 128 voxels using
the single-word presentation data presented in the next
section. These means and variances (see Table 41-1) were
used to specify Gaussian priors on the haemodynamic
parameters.

Combining the prior densities on the coupling and
haemodynamic parameters allows us to express the
prior probability of the parameters in terms of their
prior expectation and covariance p��� = N����C��. Hav-
ing specified the priors, we can proceed to estimation
and inference.
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Estimation and inference

Following the approach described in Chapter 34 we note:

y −h�u����y � ≈ J�� +X�+�

= �J�X�

[
��
�

]
+�

�� = � −���y

41.7

This local linear approximation then enters an
expectation–maximization �EM� scheme as described
previously:

Until convergence


E-step

J = 	h����y�

	�

ȳ =
[

y −h����y�
�� −���y

]
� J̄ =

[
J X
1 0

]
� C̄� =

[∑
�iQi 0
0 C�

]

C��y = (
J̄ T C̄−1

� J̄
)−1

[
����y
���y

]
= C��y

(
J̄ T C̄−1

� ȳ
)

���y ← ���y +����y

M-step 41.8

P = C̄−1
� − C̄−1

� J̄C��yJ̄ T C̄−1
�

	F

	�i

= − 1
2 tr
PQi�+ 1

2 ȳT PT QiPȳ

〈
	2F

	�2
ij

〉
= − 1

2 tr
PQiPQj�

� ← �−
〈
	2F

	�2

〉−1
	F

	�

�

These expressions are formally the same as Eqn. 34.11 in
Chapter 34 but for the addition of confounding effects
in X. These confounds are treated as fixed effects with
infinite prior variance, which does not need to appear
explicitly in the EM scheme.

Note that the prediction and observations encompass
the entire experiment. They are therefore large l×n vec-
tors whose elements run over l regions and n time bins.
Although the response variable could be viewed as a
multivariate times-series, it is treated as a single obser-
vation vector, whose error covariance embodies both
temporal and interregional correlations C� = V ⊗���� =∑

�iQi. This covariance is parameterized by some covari-
ance hyperparameters �. In the examples below, these
correspond to region-specific error variances assuming
the same temporal correlations Qi = V ⊗�i in which �i

is an l × l sparse matrix with the i-th leading diagonal
element equal to one.

Eqn. 41.8 enables us the estimate the conditional
moments of the coupling parameters (and the haemody-
namic parameters) plus the hyperparameters controlling
error and represents a posterior density analysis under
Gaussian assumptions. In short, the estimation scheme
provides the approximating Gaussian posterior density
of the parameters q��� = N����y�C��y� in terms of its expec-
tation and covariance. The expectation is also known as
the posterior mode or maximum a posteriori (MAP) esti-
mator. The marginal posterior probabilities are then used
for inference that any particular parameter or contrast
of parameters cT ���y (e.g. average) exceeded a specified
threshold .

p = erf

⎛
⎜⎝cT ���y −√

cT C��yc

⎞
⎟⎠ 41.9

As above, erf is the cumulative normal distribution. In
this chapter, we are primarily concerned with the cou-
pling parameters �c and, among these, the bilinear terms.
The units of these parameters are Hz or per second (or
adimensional if normalized) and the thresholds are spec-
ified as such. In dynamical modelling, coupling parame-
ters play the same role as rate-constants in kinetic models.

Relationship to conventional analyses

It is interesting to note that conventional analyses of fMRI
data, using linear convolution models, are a special case
of dynamic causal models using a bilinear approxima-
tion. This is important because it provides a direct con-
nection between DCM and classical models. If we allow
inputs to be connected to all regions and discount inter-
actions among regions by setting the prior variances on
A and B to zero, we produce a set of disconnected brain
regions or voxels that respond to, and only to, extrinsic
input. The free parameters of interest reduce to the values
of C, which reflect the ability of input to elicit responses
in each voxel. By further setting the prior variances on
the self-connections (i.e. scaling parameter) and those on
the haemodynamic parameters to zero, we end up with a
single-input-single-output model at each and every brain
region that can be reformulated as a convolution model
as described in Friston (2002). For voxel i and input j the
parameter cij can be estimated by simply convolving the
input with 	�1

i /	cij where �1
i is the first-order kernel med-

itating the influence of input j on output i. The convolved
inputs are then used to form a general linear model that
can be estimated in the usual way. This is precisely the
approach adopted in classical analyses, in which 	�1

i /	Cij

is the haemodynamic response function. The key point
here is that the general linear models used in typical data
analyses are special cases of bilinear models but embody



Elsevier UK Chapter: Ch41-P372560 30-9-2006 5:35p.m. Page:550 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines
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more assumptions. These assumptions enter through the
use of highly precise priors that discount interactions
among regions and prevent any variation in biophysi-
cal responses. Having described the theoretical aspects
of DCM, we now turn to applications and its validity.

FACE VALIDITY – SIMULATIONS

In this section, we use simulated data to establish the
utility of the bilinear approximation and the robust-
ness of the estimation scheme described in the previ-
ous section. We deliberately chose an architecture that
would be impossible to characterize using existing meth-
ods based on regression models (e.g. structural equation
modelling). This architecture embodies loops and recip-
rocal connections and poses the problem of vicarious
input, the ambiguity between the direct influences of one
area and influences that are mediated through others.

A toy system

The simulated architecture is depicted in Figure 41.5 and
has been labelled so that it is consistent with the DCM
characterized empirically in the next section. The model
comprises three regions: a primary (A1) and secondary
�A2� auditory area and a higher-level region �A3�. There
are two inputs. The first is a sensory input u1 encoding
the presentation of epochs of words at different frequen-
cies. The second input u2 is contextual in nature and is
simply an exponential function of the time elapsed since
the start of each epoch (with a time constant of 8 s). These
inputs were based on a real experiment and are the same
as those used in the empirical analyses of the next section.
The scaling of the inputs is important for the quanti-
tative evaluation of the bilinear and extrinsic coupling
parameters. The convention adopted here is that inputs
encoding events approximate delta functions such that
their integral over time corresponds to the number of
events that have occurred. For event-free inputs, like the
maintenance of a particular instructional set, the input is
scaled to a maximum of unity, so that the integral reflects
the number of seconds over which the input was prevalent.
The inputs were specified in time bins that were a sixteenth
of the interval between scans (repetition time; TR = 1�7 s).

The auditory input is connected to the primary area;
the second input has no direct effect on activity but mod-
ulates the forward connections from A1 to A2 so that
its influence shows adaptation during the epoch. The sec-
ond auditory area receives input from the first and sends
signals to the higher area �A3�. In addition to reciprocal
backward connections, in this simple auditory hierarchy
a connection from the lowest to the highest area has

A2

A1
.4

.4

.8

.4

–.4

.4

.8

Context
{adaptation}

1 10

8

6

4

2

5

6

4

2

0

–2

4

3

2

1

0

6

4

2

0

–2

–4

–1

0

0.8

0.6

0.4

0.2

0
0 200 400 600

0 200 400 600

0 200 400 600

0 200 400 600

0 200 400 600

Output

simulated response

Drifts and noise

Time {seconds}

Time {seconds}

Neuronal
saturation

Sensory input

A3

Simulated
response 

FIGURE 41.5 This is a schematic of the architecture used to
generate simulated data. Non-zero regional connections are shown
as directed black arrows with the strength or true parameter along-
side. Here, the perturbing input is the presentation of words (sen-
sory inputs) and acts as an intrinsic influence on A1. In addition, this
input modulates the self-connection of A3 to emulate saturation-
like effects (see main text and Figure 41.6). The contextual input is
a decaying exponential of within-epoch time and positively modu-
lates the forward connection from A1 to A2. The lower panel shows
how responses were simulated by mixing the output of the system
described above with drifts and noise as described in the main text.

been included. Finally, the first input (word presentation)
modulates the self-connections of the third region. This
influence has been included to show how bilinear effects
can emulate non-linear responses. A bilinear modulation
of the self-connection can augment or attenuate decay
of synaptic activity, rendering the average response to
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streams of stimuli rate-dependent. This is because the
bilinear effect will only be expressed if sufficient synap-
tic activity persists after the previous stimulus. This, in
turn, depends on a sufficiently fast presentation rate. The
resulting response emulates a saturation at high presen-
tation rates or small stimulus onset asynchronies that has
been observed empirically. Critically, we are in a position
to disambiguate between neuronal saturation, modelled
by this bilinear term, and haemodynamic saturation,
modelled by non-linearities in the haemodynamic com-
ponent of this DCM. A significant bilinear self-connection
implies neuronal saturation above and beyond that
attributable to haemodynamics. Figure 41.6 illustrates
this neuronal saturation by plotting the simulated
response of A3 in the absence of saturation B1 = 0 against
the simulated response with b1

3�3 = −0�4. It is evident that
there is a non-linear sub-additive effect at high response
levels. It should be noted that true neuronal saturation of
this sort is mediated by second-order interactions among
the states (i.e. neuronal activity). However, as shown in
Figure 41.6, we can emulate these effects by using the
first extrinsic input as a surrogate for neuronal inputs
from other areas in the bilinear component of the model.

Using this model we simulated responses using the
values for A�B1�B2 and C given in Figure 41.7 and the
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FIGURE 41.6 This is a plot of the simulated response with
saturation against the equivalent response with no saturation. These
simulated responses were obtained by setting the bilinear coupling
parameter b1

33 labelled ‘neuronal saturation’ in Figure 41.5 to −0�4
and zero respectively. The key thing to observe is a saturation
of responses at high levels. The broken line depicts the response
expected in the absence of saturation. This illustrates how bilinear
effects can introduce non-linearities into the response.
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FIGURE 41.7 Results summarizing the conditional estimation
based upon the simulated data of Figure 41.5. The upper panels
show the conditional estimates and posterior probabilities pertain-
ing to the regional coupling parameters. The lower panels show
the equivalent results for bilinear coupling parameters mediating
the effect of within-epoch time. Conditional or MAP estimates of
the parameters are shown in image format with arbitrary scal-
ing. The posterior probabilities that these parameters exceeded a
threshold of ln(2)/4 per second are shown as three-dimensional bar
charts. True values and probabilities are shown on the left, whereas
the estimated values and posterior probabilities are shown on the
right. This illustrates that the conditional estimates are a reasonable
approximation to the true values and, in particular, the posterior
probabilities conform to the true probabilities, if we consider values
of 90 per cent or more.

prior expectations for the biophysical parameters given
in Table 41-1. The values of the coupling parameters were
chosen to match those seen typically in practice. This
ensured the simulated responses were realistic in relation
to simulated noise. After down-sampling these determin-
istic responses every 1.7 s (the TR of the empirical data
used in the next section), we added known noise to pro-
duce simulated data. These data comprised time-series of
256 observations with independent or serially correlated
Gaussian noise based on an AR(1) process. Unless other-
wise stated, the noise had standard deviation of one half
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and was IID (independent and identically distributed).
The drift terms were formed from the first six compo-
nents of a discrete cosine set mixed linearly with normal
random coefficients, scaled by one over the order. This
emulates a 1/f 2 plus white noise spectrum for the noise
and drifts (see the lower panel of Figure 41.7 for an exem-
plar data simulation with IID noise of unit variance).

Exemplar analysis

The analysis described in the previous section was
applied to the data shown in Figure 41.5. The priors
on coupling parameters were augmented by setting the
variance of the off-diagonal elements of B1 (saturation)
and all but two connections in B2 (adaptation) to zero.
These two connections were the first and second forward
connections of this cortical hierarchy. The first had sim-
ulated adaptation, whereas the second did not. Extrinsic
input was restricted to the primary area A1 by setting
the variances of all but c11 to zero. We placed no fur-
ther constraints on the regional coupling parameters. This
is equivalent to allowing full connectivity. This would
be impossible with structural equation modelling. The
results are presented in Figure 41.7 in terms of the MAP
or conditional expectations of the coupling parameters
(upper panels) and the associated posterior probabilities
(lower panels). It can be seen that the regional coupling
parameters are estimated reasonably accurately with a
slight overestimation of the backward connection from
A3 to A2. The bilinear coupling parameters modelling
adaptation are shown in the lower panels and the estima-
tors have correctly identified the first forward connection
as the locus of greatest adaptation. The posterior proba-
bilities suggest inferences about the coupling parameters
would lead us to the veridical architecture if we consid-
ered only connections whose half-life exceeded 4 s with
90 per cent confidence or more.

The MAP estimates allow us to compute the MAP ker-
nels associated with each region, in terms of neuronal
output and haemodynamics response. The neuronal and
haemodynamic kernels for the three regions are shown
in Plate 58 (upper panels) (see colour plate section). It is
interesting to note that the regional variation in the form
of the neuronal kernels is sufficient to induce differential
onset and peak latencies, in the order of a second or so, in
the haemodynamic kernels, despite the fact that neuronal
onset latencies are the same. This difference in form is
due to the network dynamics as activity is promulgated
up the system and then re-enters lower levels. Notice also
that the neuronal kernels have quite protracted dynamics
compared to the characteristic neuronal time constants of
each area (about a second). This enduring activity, partic-
ularly in the higher two areas is a product of the network
dynamics. The MAP estimates also enable us to compute

the predicted response (lower left panel) in each region
and compare it to the true response without observation
noise (lower right panel). This comparison shows that
the actual and predicted responses are very similar.

In Friston et al. (2002b), we repeated this estimation
procedure to explore the face validity of the estimation
scheme over a range of hyperparameters like noise lev-
els, slice timing artefacts, extreme values of the biophys-
ical parameters etc. In general, the scheme proved to be
robust to most violations assessed. Here we will just look
at the effects of error variance on estimation because this
speaks of some important features of Bayesian estimation
and the noise levels that can be tolerated.

The effects of noise

In this sub-section, we investigate the sensitivity and
specificity of posterior density estimates to the level
of observation noise. Data were simulated as described
above and mixed with various levels of white noise.
For each noise level the posterior densities of the cou-
pling parameters were estimated and plotted against the
noise hyperparameter (expressed as its standard devi-
ation) in terms of the posterior mean and 90 per cent
confidence intervals. Figure 41.8 shows some key cou-
pling parameters that include both zero and non-zero
connection strengths. The solid lines represent the poste-
rior expectation or MAP estimator and the broken lines
indicate the true value. The grey areas encompass the
90 per cent confidence regions. Characteristic behaviours
of the estimation are apparent from these results. As
one might intuit, increasing the level of noise increases
the uncertainty in the posterior estimates as reflected by
an increase in the conditional variance and a widening
of the confidence intervals. This widening is, however,
bounded by the prior variances to which the conditional
variances asymptote, at very high levels of noise. Con-
comitant with this effect is ‘shrinkage’ of some poste-
rior means to their prior expectation of zero. Put simply,
when the data become very noisy the estimation relies
more heavily upon priors and the prior expectation is
given more weight. This is why priors of the sort used
here are referred to as ‘shrinkage priors’. These simu-
lations suggest that, for this level of evoked response,
noise levels between zero and two permit the connection
strengths to be identified with a fair degree of preci-
sion and accuracy. Noise levels in typical fMRI experi-
ments are about one. The units of signal and noise are
adimensional and correspond to percentage whole brain
mean. Pleasingly, noise did not lead to false inferences
in the sense that the posterior densities always encom-
passed the true values, even at high levels of noise
(Figure 41.8).
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The effects 
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FIGURE 41.8 Posterior densities as a func-
tion of noise levels: the analysis, summarized in
the previous two figures, was repeated for sim-
ulated data sequences at different levels of noise
ranging from 0 to 2 units of standard deviation.
Each graph shows the conditional expectation
or MAP estimate of a coupling parameter (solid
line) and the 90 per cent confidence region (grey
region). The true value for each parameter is
also shown (broken line). The top row shows
the temporal scaling parameter and the extrinsic
connection between the first input and the first
area. The middle row shows some regional cou-
pling parameters and the bottom row bilinear
parameters. As anticipated, the conditional vari-
ance of these estimators increases with noise,
as reflected by a divergence of the confidence
region with increasing error.

PREDICTIVE VALIDITY – AN ANALYSIS
OF SINGLE WORD PROCESSING

In this section, we illustrate the predictive validity
of DCM by showing that reproducible results can be
obtained from independent data. The data set we used
was especially designed for these sorts of analyses, com-
prising over 1200 scans with a relatively short TR of
1.7 s. This necessitated a limited field of coverage, but
provided relatively high temporal acuity. The paradigm
was a passive listening task, using epochs of single
words presented at different rates. These data have been
used previously to characterize non-linear aspects of
haemodynamics (e.g. Friston et al., 1998, 2000, 2002a).
Details of the experimental paradigm and acquisition
parameters are provided in the legend to Figure 41.9.
These data were acquired in consecutive sessions of 120
scans enabling us to analyse the entire time-series or
each session independently. We first present the results
obtained by concatenating all the sessions into a single
data sequence. We then revisit the data, analysing each

session independently to provide ten independent con-
ditional estimates of the coupling parameters, to assess
reproducibility and mutual predictability.

Analysis of the complete time-series

Three regions were selected using maxima of the SPM
F�
following a conventional SPM analysis (see Figure 41.9).
The three maxima were those that were closest to the
primary and secondary auditory areas and Wernicke’s
area, using the anatomic designations provided in the
atlas of Talairach and Tournoux (1988). Region-specific
time-series comprised the first eigenvariate of all voxels
within a 4 mm-radius sphere centred on each location.
The anatomical locations are shown in Figure 41.9. As in
the simulations, there were two inputs corresponding to a
delta-function for the occurrence of an aurally presented
word and a parametric input modelling within-epoch
adaptation. The outputs of the system were the three
principal eigenvariates from each region. As in the pre-
vious section, we allowed for a fully connected system.
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An empirical example:

Single-word processing at different rates

FIGURE 41.9 Region selection for the empirical word processing example: statistical parametric maps of the F -ratio, based upon a
conventional SPM analysis, are shown in the left panels and the spatial locations of the selected regions are shown on the right. These are
superimposed on a T1-weighted reference image. The regional activities shown in the next figure correspond to the first eigenvariates of
a 4 mm-radius sphere centred on the following coordinates in the standard anatomical space of Talairach and Tournoux (1988). Primary
auditory area A1; −50, −26, 8 mm. Secondary auditory area A2; −64, −18, 2 mm and Wernicke’s area WA; −56, −48, 6 mm. In brief, we
obtained fMRI time-series from a single subject at 2 tesla using a Magnetom VISION (Siemens, Erlangen) whole-body MRI system, equipped
with a head volume coil. Contiguous multislice T2∗-weighted fMRI images were obtained with a gradient echo-planar sequence using an
axial slice orientation �TE = 40 ms� TR = 1�7 s� 64×64×16 voxels). After discarding initial scans (to allow for magnetic saturation effects) each
time-series comprised 1200 volume images with 3 mm isotropic voxels. The subject listened to monosyllabic or bisyllabic concrete nouns (i.e.
‘dog’, ‘radio’, ‘mountain’, ‘ate’) presented at five different rates (10, 15, 30, 60 and 90 words per minute) for epochs of 34 s, intercalated with
periods of rest. The five presentation rates were successively repeated according to a Latin Square design. The data were smoothed with a
5 mm isotropic Gaussian kernel. The SPM{F} above was based on a standard regression model using word presentation rate as the stimulus
function and convolving it with a canonical haemodynamic response and its temporal derivative to form regressors.

In other words, each region was potentially connected
to every other region. Generally, one would impose con-
straints on highly unlikely or implausible connections by
setting their prior variance to zero. However, we wanted
to demonstrate that dynamic causal modelling can be
applied to connectivity graphs that would be impossi-
ble to analyse with structural equation modelling. The
auditory input was connected to A1. In addition, audi-
tory input entered bilinearly to emulate saturation, as in
the simulations. The contextual input, modelling puta-
tive adaptation, was allowed to exert influences over all
regional connections. From a neurobiological perspec-
tive an interesting question is whether plasticity can
be demonstrated in forward connections or backward
connections. Plasticity, in this instance, entails a time-
dependent increase or decrease in effective connectivity

and would be inferred by significant bilinear coupling
parameters associated with the second input.

The inputs, outputs and priors on the DCM parame-
ters entered the Bayesian inversion as described above.
Drifts were modelled with the first 40 components of a
discrete cosine set, corresponding to X in Eqn. 41.8. The
results of this analysis, in terms of the posterior densities
and Bayesian inference, are presented in Figures 41.10
and 41.11. Bayesian inferences were based upon the
probability that the coupling parameters exceeded 0.0866.
This corresponds to a half-life of 8 s. Intuitively, this
means that we only consider the influences, of one region
on another, to be meaningful if this influence is expressed
within a time frame of 8 s or less. The results show
that the most probable architecture, given the inputs
and data, conforms to a simple hierarchy of forward
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FIGURE 41.10 Results of a DCM anal-
ysis applied to the data described in the pre-
vious figure. The display format follows that
of Figure 41.5. The coupling parameters are
shown alongside the corresponding connec-
tions. The values in brackets are the percent-
age confidence that these values exceed a
threshold of ln(2)/8 per second.

connections where A1 influences A2 and WA, whereas
A2 sends connections just to WA (Figure 41.10). Although
backward connections between WA and A2 were esti-
mated to be greater than our threshold with 82 per cent
confidence they are not shown in Figure 41.11 (which
is restricted to posterior probabilities of 90 per cent
or more). Saturation could be inferred in A1 and WA
with a high degree of confidence with b1

11 and b1
33 being

greater than 0.5. Significant plasticity or time-dependent
changes were expressed predominantly in the forward
connections, particularly that between A1 and A3, i.e.
b2

13 = 0�37. The conditional estimates are shown in more
detail in Figure 41.11, along with the conditional fitted
responses and associated kernels. A full posterior density
analysis for a particular contrast of effects is shown in
Figure 41.11(a) (lower panel). This contrast tested for the
average plasticity over all forward and backward connec-
tions and demonstrates that we can be virtually certain
plasticity was greater than zero.

This analysis illustrates three things. First, the DCM
has defined a hierarchical architecture that is the most
likely given the data. This hierarchical structure was
not part of the prior constraints because we allowed
for a fully connected system. Second, the significant

bilinear effects of auditory stimulation suggest there
is measurable neuronal saturation above and beyond
that attributable to haemodynamic non-linearities. This is
quite significant because such disambiguation is usually
impossible given just haemodynamic responses. Finally,
we were able to show time-dependent decreases in
effective connectivity in forward connections from A1.
Although this experiment was not designed to test for
plasticity, the usefulness of DCM, in studies of learning
and priming, should be self-evident.

Reproducibility

The analysis above was repeated identically for each 120-
scan session to provide ten sets of Bayesian estimators.
Drifts were modelled with the first four components of a
discrete cosine set. The estimators are presented graphi-
cally in Figure 41.12 and demonstrate extremely consis-
tent results. In the upper panels, the intrinsic connections
are shown to be very similar; again reflecting a hierarchi-
cal architecture. The conditional means and 90 per cent
confidence regions for two connections are shown in
Figure 41.12(a). These connections included the forward
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FIGURE 41.11 This figure provides a more detailed characterization of the conditional estimates. The images in the top row are the
MAP estimates for the regional and bilinear coupling parameters, pertaining to saturation and adaptation. The middle panel shows the
posterior density of a contrast of all bilinear terms mediating adaptation, namely the modulation of regional connections by the second
time-dependent experimental effect. The predicted responses based upon the conditional estimators are shown for each of the three regions
on the lower left (solid lines) with the original data (dots) after removal of confounds. A re-parameterization of the conditional estimates, in
terms of the first-order kernels, is shown on the lower right. The haemodynamic (left) and neuronal (right) kernels should be compared with
the equivalent kernels for the simulated data in Plate 58.

connection from A1 to A2 that is consistently strong. The
backward connection from WA to A2 was weaker, but
was certainly greater than zero in every analysis. Equiv-
alent results were obtained for the modulatory effects or
bilinear terms, although the profile was less consistent
(Figure 41.12(b)). However, the posterior density of the
contrast testing for average time-dependent adaptation
or plasticity is relatively consistent and again almost cer-
tainly greater than zero, in each analysis.

To illustrate the stability of hyperparameter estimates,
the standard deviations of observation error are presented
for each session over the three areas in Figure 41.13. As
typical of studies at this field strength the standard devi-
ation of noise is about 0.8–1 per cent whole brain mean. It
is pleasing to note that the session-to-session variability in
hyperparameter estimates was relatively small, in relation
to region-to-region differences.

In summary, independent analyses of data acquired
under identical stimulus conditions, on the same subject,
in the same scanning session, yield remarkably similar
results. These results are biologically plausible and speak
of time-dependent changes, following the onset of a stream
of words, in forward connections among auditory areas.

CONSTRUCT VALIDITY – AN
ANALYSIS OF ATTENTIONAL EFFECTS

ON CONNECTIONS

In this final section, we address the construct validity of
DCM. In previous chapters, we have seen that attention
positively modulates the backward connections in a dis-
tributed system of cortical regions mediating attention
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FIGURE 41.12 Results of the reproducibility
analyses: (a) results for the regional parameters.
The profile of conditional estimates for the 10 inde-
pendent analyses described in the main text are
shown in image format, all scaled to the maximum.
The posterior densities, upon which these estimates
are based, are shown for two selected connections
in the lower two graphs. These densities are dis-
played in terms of their expectation and 90 per cent
confidence intervals (grey bars) for the forward
connection from A1 to A2. The equivalent densities
are shown for the backward connection from WA
to A2. Although the posterior probability that the
latter connections exceeded the specified threshold
was less than 90 per cent, it can be seen that this
connection is almost certainly greater than zero. (b)
Equivalent results for the bilinear coupling matri-
ces mediating adaptation. The lower panels here
refer to the posterior densities of a contrast testing
for the mean of all bilinear parameters (left) and
the extrinsic connection to A1 (right).

to radial motion. We use the same data in this section.
In brief, subjects viewed optic flow stimuli compris-
ing radially moving dots at a fixed velocity. In some
epochs, subjects were asked to detect changes in velocity
(that did not actually occur). This attentional manipu-
lation was validated post hoc using psychophysics and
the motion after-effect. Analyses using structural equa-
tion modelling (Büchel and Friston, 1997) and a Volterra

formulation of effective connectivity (Friston and Büchel,
2000) have established a hierarchical backwards mod-
ulation of effective connectivity, where a higher area
increases the effective connectivity among two subordi-
nate areas. These analyses have been extended using vari-
able parameter regression and Kalman filtering (Büchel
and Friston, 1998) to look at the effect of attention
directly on interactions between V5 and the posterior
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FIGURE 41.13 Hyperparameter variance estimates for each
region and analysis: these estimates provide an anecdotal character-
ization of the within- and between-area variability, in hyperparam-
eter estimates, and show that they generally lie between 0.8 and 1
(adimensional units corresponding to per cent whole-brain mean).

parietal complex. Even simple analyses, such as those
employing psychophysiological interactions, point to the
same conclusion that attention generally increases the
effective connectivity among extrastriate and parietal
areas. In short, we have established that the superior
posterior parietal cortex (SPC) exerts a modulatory role

on V5 responses using Volterra-based regression models
(Friston and Büchel, 2000) and that the inferior frontal
gyrus (IFG) exerts a similar influence on SPC using struc-
tural equation modelling (Büchel and Friston, 1997). The
aim of this section was to show that DCM leads to the
same conclusions.

The experimental paradigm and data acquisition
parameters are described in the legend to Figure 41.14b.
This figure also shows the location of the regions that
entered the DCM (Figure 41.14(b) – insert). These regions
were based on maxima from conventional SPMs testing
for the effects of photic stimulation, motion and atten-
tion. As in the previous section, regional time courses
were taken as the first eigenvariate of spherical volumes
of interest centred on the maxima shown in the figure.
The inputs, in this example, comprise one sensory pertur-
bation and two contextual inputs. The sensory input was
simply the presence of photic stimulation and the first
contextual input was presence of motion in the visual
field. The second contextual input, encoding attentional
set, was unity during attention to speed changes and
zero otherwise. The outputs corresponded to the four
regional eigenvariates in Figure 41.14(b). The intrinsic
connections were constrained to conform to a hierarchical
pattern, in which each area was reciprocally connected
to its supraordinate area. Photic stimulation entered at,
and only at, V1. The effect of motion in the visual field
was modelled as a bilinear modulation of the V1 to V5
connectivity and attention was allowed to modulate the
backward connections from IFG and SPC.

V1 IFG

V5

SPC

Motion

Photic

Attention

.82
(100%)

.42
(100%)

.37
(90%)

1
0.8
0.6
0.4
0.2
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0.6
0.4
0.2

0

1
0.8
0.6
0.4

0.2
0

.69 (100%)
.47

(100%)

.65 (100%)

.52 (98%)

.56
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(a)

FIGURE 41.14 Results of the empirical analysis of the attention study. (a) Functional architecture based upon the conditional estimates
displayed using the same format as Figure 41.10. The most interesting aspects of this architecture involved the role of motion and attention
in exerting bilinear effects. Critically, the influence of motion is to enable connections from V1 to the motion sensitive area V5. The influence
of attention is to enable backward connections from the inferior frontal gyrus (IFG) to the superior parietal cortex (SPC). Furthermore,
attention increases the latent influence of SPC on V5. Dotted arrows connecting regions represent significant bilinear affects in the absence of
a significant regional coupling.
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FIGURE 41.14 (Continued) (b) Fitted responses based upon the conditional estimates and the adjusted data are shown using the same
format as in Figure 41.11. The insert shows the location of the regions, again adopting the same format in previous figures. The location of
these regions centred on the primary visual cortex V1; 6, −84, −6 mm: motion-sensitive area V5; 45, −81, 5 mm. Superior parietal cortex, SPC;
18, −57, 66 mm. Inferior frontal gyrus, IFG, 54, 18, 30 mm. The volumes from which the first eigenvariates were calculated corresponded to
8 mm-radius spheres centred on these locations.

Subjects were studied with fMRI under identical stimulus conditions (visual motion subtended by radially moving dots) while manipulating
the attentional component of the task (detection of velocity changes). The data were acquired from normal subjects at 2 tesla using a
Magnetom VISION (Siemens, Erlangen) whole-body MRI system, equipped with a head volume coil. Here we analyse data from the first
subject. Contiguous multislice T2∗-weighted fMRI images were obtained with a gradient echo-planar sequence (TE = 40 ms� TR = 3�22 s,
matrix size = 64×64×32, voxel size 3×3×3 mm). Each subject had four consecutive 100-scan sessions comprising a series of 10-scan blocks
under five different conditions D F A F N F A F N S. The first condition (D) was a dummy condition to allow for magnetic saturation effects.
F (Fixation) corresponds to a low-level baseline where the subjects viewed a fixation point at the centre of a screen. In condition A (Attention),
subjects viewed 250 dots moving radially from the centre at 4.7 degrees per second and were asked to detect changes in radial velocity. In
condition N (No attention), the subjects were asked simply to view the moving dots. In condition S (Stationary), subjects viewed stationary
dots. The order of A and N was swapped for the last two sessions. In all conditions, subjects fixated the centre of the screen. In a pre-scanning
session the subjects were given five trials with five speed changes (reducing to 1 per cent). During scanning there were no speed changes.
No overt response was required in any condition.

The results of the DCM are shown in Figure 41.14(a).
Of primary interest here is the modulatory effect of atten-
tion that is expressed in terms of the bilinear coupling
parameters for this third input. As hoped, we can be
highly confident that attention modulates the backward
connections from IFG to SPC and from SPC to V5. Indeed,
the influences of IFG on SPC are negligible in the absence
of attention (dotted connection in Figure 41.14(a)). It
is important to note that the only way that attentional
manipulation can affect brain responses was through
this bilinear effect. Attention-related responses are seen
throughout the system (attention epochs are marked with
arrows in the plot of IFG responses in Figure 41.14(b)).
This attentional modulation is accounted for by chang-
ing just two connections. This change is, presumably,
instantiated by instructional set at the beginning of each

epoch. The second thing this analysis illustrates is how
functional segregation is modelled in DCM. Here one
can regard V1 as a ‘segregating’ motion from other
visual information and distributing it to the motion-
sensitive area V5. This segregation is modelled as a bilin-
ear ‘enabling’ of V1 to V5 connections when, and only
when, motion is present. Note that, in the absence of
motion, the V1 to V5 connection was trivially small (in
fact the MAP estimate was −0�04). The key advantage of
entering motion through a bilinear effect, as opposed to a
direct effect on V5, is that we can finesse the inference that
V5 shows motion-selective responses with the assertion
that these responses are mediated by afferents from V1.
The two bilinear effects above represent two important
aspects of functional integration that DCM was designed
to characterize.
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CONCLUSION

In this chapter, we have presented dynamic causal
modelling. DCM is a causal modelling procedure for
dynamical systems in which causality is inherent in the
differential equations that specify the model. The basic
idea is to treat the system of interest, in this case the
brain, as an input-state-output system. By perturbing the
system with known inputs, measured responses are used
to estimate various parameters that govern the evolution
of brain states. Although there are no restrictions on the
parameterization of the model, a bilinear approximation
affords a simple re-parameterization in terms of effective
connectivity. This effective connectivity can be latent or,
through bilinear terms, model input-dependent changes
in coupling. Parameter estimation proceeds using fairly
standard approaches to system identification that rest
upon Bayesian inference.

Dynamic causal modelling represents a fundamental
departure from conventional approaches to modelling
effective connectivity in neuroscience. The critical dis-
tinction between DCM and other approaches, such as
structural equation modelling or multivariate autoregres-
sive techniques, is that the input is treated as known,
as opposed to stochastic. In this sense, DCM is much
closer to conventional analyses of neuroimaging time-
series because the causal or explanatory variables enter as
known fixed quantities. The use of designed and known
inputs in characterizing neuroimaging data with the gen-
eral linear model or DCM is a more natural way to anal-
yse data from designed experiments. Given that the vast
majority of imaging neuroscience relies upon designed
experiments, we consider DCM a potentially useful com-
plement to existing techniques. We develop this point
and the relationship of DCM to other approaches in
Appendix 2.

In the next chapter, we consider DCMs for EEG. Here
the electromagnetic model mapping neuronal states to
measurements is simpler than the haemodynamic mod-
els used in fMRI. Conversely, the neuronal component
of the model is much more complicated and realis-
tic. This is because there is more temporal information
in EEG.
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Dynamic causal models for EEG
K. Friston, S. Kiebel, M. Garrido and O. David

INTRODUCTION

Neuronally plausible, generative or forward models are
essential for understanding how event-related fields
(ERFs) and potentials (ERPs) are generated. In this
chapter, we describe the dynamic causal modelling
(DCM) of event-related responses measured with elec-
troencephalography (EEG) or magnetoencephalography
(MEG). This approach uses a biologically informed causal
model to make inferences about the underlying neu-
ronal networks generating responses. The approach can
be regarded as a neurobiologically constrained source
reconstruction scheme, in which the parameters of
the reconstruction have an explicit neuronal interpreta-
tion. Specifically, these parameters encode, among other
things, the coupling among sources and how that cou-
pling depends upon stimulus attributes or experimental
context. The basic idea is to supplement conventional
electromagnetic forward models, of how sources are
expressed in measurement space, with a model of how
source activity is generated by neuronal dynamics. A
single inversion of this extended forward model enables
inference about both the spatial deployment of sources
and the underlying neuronal architecture generating
them. Critically, this inference covers long-range connec-
tions among well-defined neuronal subpopulations.

In Chapter 33, we simulated ERPs using a hierarchical
neural-mass model that embodied bottom-up, top-down
and lateral connections among remote regions. In this
chapter, we describe a Bayesian procedure to estimate
the parameters of this model using empirical data. We
demonstrate this procedure by characterizing the role
of changes in cortico-cortical coupling, in the genesis of
ERPs using two examples. In brief, in the first example,
ERPs recorded during the perception of faces and houses
are modelled as distinct cortical sources in the ventral
visual pathway. We will see that category-selectivity,
as indexed by the face-selective N170, can be explained

by category-specific differences in forward connections
from sensory to higher areas in the ventral stream. These
changes allow one to identify where, in the processing
stream, category-selectivity emerges. The second exam-
ple uses an auditory oddball paradigm to show that
mismatch negativity can be explained by changes in con-
nectivity. Specifically, using Bayesian model selection,
we will assess changes in backward connections, above
and beyond changes in forward connections. In accord
with theoretical predictions, we will see strong evidence
for learning-related changes in both forward and back-
ward coupling. These examples illustrate DCM for ERPs
to address category- or context-specific coupling among
cortical regions.

Background

ERFs and ERPs have been used for decades as magneto-
and electrophysiological correlates of perceptual and
cognitive operations. However, the exact neurobiologi-
cal mechanisms underlying their generation are largely
unknown. Previous studies have shown that ERP-like
responses can be reproduced by perturbations of model
cortical networks (Jansen and Rit, 1995; Rennie et al.,
2002; Jirsa, 2004; David et al., 2005). Here we show that
changes in connectivity, among distinct cortical sources,
are sufficient to explain stimulus- or set-specific ERP
differences.

Functional versus effective connectivity

The aim of dynamic causal modelling (Friston et al., 2003)
is to make inferences about the coupling among brain
regions or sources and how that coupling is influenced
by experimental factors. DCM uses the notion of effective
connectivity, defined as the influence one neuronal system
exerts over another. DCM represents a departure from
existing approaches to connectivity because it employs
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an explicit generative model of measured brain responses
that embraces their non-linear causal architecture. The
alternative to causal modelling is simply to establish sta-
tistical dependencies between activity in one brain region
and another. This is referred to as functional connectiv-
ity. Functional connectivity is useful because it rests on
an operational definition and eschews any arguments
about how dependencies are caused. Most approaches in
the EEG and MEG literature address functional connec-
tivity, with a focus on dependencies that are expressed
at a particular frequency of oscillations (i.e. coherence)
(see Schnitzler and Gross, 2005 for a nice review).
Recent advances have looked at non-linear or general-
ized synchronization in the context of chaotic oscilla-
tors (e.g. Rosenblum et al., 2002) and stimulus-locked
responses of coupled oscillators (see Tass, 2004). These
characterizations often refer to phase-synchronization
as a useful measure of non-linear dependency. Another
exciting development is the reformulation of coherence
in terms of autoregressive models. A compelling example
is reported in Brovelli et al. (2004), who were able show
that: ‘synchronized beta oscillations bind multiple sen-
sorimotor areas into a large-scale network during motor
maintenance behaviour and carry Granger causal influ-
ences from primary somatosensory and inferior posterior
parietal cortices to motor cortex’. Similar developments
have been seen in functional neuroimaging with fMRI
(e.g. Harrison et al., 2003; Roebroeck et al., 2005).

These approaches generally entail a two-stage proce-
dure. First, an electromagnetic forward model is inverted
to estimate the activity of sources in the brain. Then,
a post-hoc analysis is used to establish statistical depen-
dencies (i.e. functional connectivity) using coherence,
phase-synchronization, Granger influences or related
analyses such as (linear) directed transfer functions and
(non-linear) generalized synchrony. DCM takes a very
different approach and uses a forward model that explic-
itly includes long-range connections among neuronal
subpopulations underlying measured sources. A single
Bayesian inversion allows one to infer on the coupling
parameters of the model (i.e. effective connectivity) that
mediate functional connectivity. This is like performing a
biological informed source reconstruction with the added
constraint that the activity in one source has to be caused
by activity in others, in a biologically plausible fashion.
This approach is much closer in sprit to the work of
Robinson et al. (2004) who show that, ‘model-based elec-
troencephalographic (EEG) methods can quantify neu-
rophysiologic parameters that underlie EEG generation
in ways that are complementary to and consistent with
standard physiologic techniques’. DCM also speaks of
the interest in neuronal modelling of ERPs in specific
systems. See, for example, Melcher and Kiang (1996), who
evaluate a detailed cellular model of brainstem auditory

evoked potentials (BAEP) and conclude: ‘it should now
be possible to relate activity in specific cell populations
to psychophysical performance since the BAEP can be
recorded in behaving humans and animals’ (see also Dau,
2003). Although the models presented in this chapter
are more generic than those invoked to explain the
BAEP, they share the same ambition of understanding
the mechanisms of response generation and move away
from phenomenological or descriptive quantitative EEG
measures.

Dynamic causal modelling

The central idea behind DCM is to treat the brain as a
deterministic non-linear dynamical system that is subject
to inputs, and produces outputs. Effective connectivity is
parameterized in terms of coupling among unobserved
brain states, i.e. neuronal activity in different regions.
Coupling is estimated by perturbing the system and mea-
suring the response. This is in contradistinction to estab-
lished methods for estimating effective connectivity from
neurophysiological time-series, which include structural
equation modelling and models based on multivariate
autoregressive processes (Mcintosh and Gonzalez-Lima,
1994; Büchel and Friston, 1997; Harrison et al., 2003). In
these models, there is no designed perturbation and the
inputs are treated as unknown and stochastic. Although
the principal aim of DCM is to explain responses in terms
of context-dependent coupling, it can also be viewed as
a biologically informed inverse solution to the source
reconstruction problem. This is because estimating the
parameters of a DCM rests on estimating the hidden
states of the modelled system. In ERP studies, these states
correspond to the activity of the sources that comprise the
model. In addition to biophysical and coupling parame-
ters, the DCM’s parameters cover the spatial expression
of sources at the sensor level. This means that invert-
ing the DCM entails a simultaneous reconstruction of the
source configuration and their dynamics.

Implicit in the use of neural-mass models is the
assumption that the data can be explained by ran-
dom fluctuations around population dynamics that are
approximated with a point mass (i.e. the mean or
expected state of a population). This is usually inter-
preted in relation to the dynamics of an ensemble of
neurons that constitute sources of signal. However, in
the context of modelling ERPs and ERFs, there is also
an ensemble of trials that are averaged to form the data.
The mean-field-like assumptions that motivate neural-
mass models can be extended to cover ensembles of
trials. This sidesteps questions about the trial-to-trial gen-
esis of ERPs. However, we have previously addressed
these questions using the same neural-mass model used
in this chapter (David et al., 2005), by dissociating
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‘the components of event-related potentials (ERPs) or
event-related fields (ERFs) that can be explained by a
linear superposition of trial-specific responses and those
engendered non-linearly (e.g. by phase-resetting)’ (see
David et al., 2005 and Chapter 33 for further details).

DCM has been validated previously with functional
magnetic resonance imaging (fMRI) time-series (Friston
et al., 2003; Riera et al., 2004). fMRI responses depend on
haemodynamic processes that effectively lowpass filter
neuronal dynamics. However, with ERPs this is not the
case and there is sufficient information, in the temporal
structure of evoked responses, to enable precise condi-
tional identification of quite complicated DCMs. We will
use a model (David et al., 2005 and Chapter 33) that
embeds cortical sources, with several source-specific neu-
ronal subpopulations, into hierarchical cortico-cortical
networks.

This chapter is structured as follows. In the theory
section, we review the neural-mass model used to gener-
ate M/EEG-like evoked responses. This section summa-
rizes Chapter 33, in which more details about the gener-
ative model and associated dynamics can be found. The
next section provides a brief review of Bayesian estima-
tion, conditional inference and model comparison that
are illustrated in the subsequent section. An empirical
section then demonstrates the use of DCM for ERPs by
looking at changes in connectivity that were induced,
either by category-selective activation of different path-
ways in the visual system, or by sensory learning in an
auditory oddball paradigm.

THEORY

Intuitively, the DCM scheme regards an experiment as
a designed perturbation of neuronal dynamics that are
distributed throughout a system of coupled anatomical
nodes or sources to produce region-specific responses.
This system is modelled using a dynamic input-
state-output system with multiple inputs and outputs.
Responses are evoked by deterministic inputs that cor-
respond to experimental manipulations (i.e. presentation
of stimuli). Experimental factors (i.e. stimulus attributes
or context) can also change the parameters or causal
architecture of the system producing these responses.
The state variables cover both the neuronal activities and
other neurophysiological or biophysical variables needed
to form the outputs. In our case, outputs are those com-
ponents of neuronal responses that can be detected by
MEG-EEG sensors.

In neuroimaging, DCM starts with a reasonably real-
istic neuronal model of interacting cortical regions. This
model is then supplemented with a forward model of

how neuronal activity is transformed into measured
responses, here, MEG-EEG scalp-averaged responses.
This enables the parameters of the neuronal model (i.e.
effective connectivity) to be estimated from observed
data. For MEG-EEG data, the supplementary model is
a forward model of electromagnetic measurements that
accounts for volume conduction effects (e.g. Mosher et al.,
1999 and Chapter 28). We first review the neuronal
component of the forward model and then turn to the
modality-specific measurement model.

A neural-mass model

The majority of neural-mass models of MEG-EEG
dynamics have been designed to generate spontaneous
rhythms (Lopes da Silva et al., 1974; Jansen and Rit, 1995;
Stam et al., 1999; Robinson et al., 2001; David and Friston,
2003) and epileptic activity (Wendling et al., 2002). These
models use a small number of state variables to repre-
sent the expected state of large neuronal populations,
i.e. the neural mass. To date, event-related responses of
neural-mass models have received less attention (Jansen
and Rit, 1995; Rennie et al., 2002; David et al., 2005). Only
recent models have embedded basic anatomical princi-
ples that underlie extrinsic connections among neuronal
populations.

The cortex has a hierarchical organization (Crick and
Koch, 1998; Felleman and Van Essen, 1991), compris-
ing forward, backward and lateral processes that can be
understood from an anatomical and cognitive perspec-
tive (Engel et al., 2001). The direction of an anatomical
projection is usually inferred from the laminar pattern
of its origin and termination (see Chapter 36 for more
details). The hierarchical cortical described in Chapter 33
is used here as a DCM. In brief, each source is mod-
elled with three neuronal subpopulations. These sub-
populations are interconnected with intrinsic connections
within each source. The sources are interconnected by
extrinsic connections among specific subpopulations. The
specific source and target subpopulations define the con-
nection as forward, backward or lateral. The model is
now reviewed in terms of the differential equations that
embody its causal architecture.

Neuronal state equations

The model (David et al., 2005) embodies directed extrin-
sic connections among a number of sources, each based
on the Jansen model (Jansen and Rit, 1995), using the
connectivity rules described in Felleman and Van Essen
(1991). These rules, which rest on a tri-partitioning of the
cortical sheet into supra- and infra-granular layers and
granular layer 4, have been derived from experimental
studies of monkey visual cortex. We assume these rules
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FIGURE 42.1 Schematic of the DCM
used to model a single source. This
schematic includes the differential equa-
tions describing the dynamics of the
source’s states. Each source is modelled
with three subpopulations (pyramidal,
spiny-stellate and inhibitory interneu-
rons). These have been assigned to
granular and agranular cortical layers,
which receive forward and backward con-
nections respectively.
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generalize to other cortical regions (but see Smith and
Populin, 2001 for a comparison of primary visual and
auditory cortices). Under these simplifying assumptions,
directed connections can be classified as: bottom-up or
forward connections that originate in agranular layers
and terminate in layer 4; top-down or backward connec-
tions that connect agranular layers; lateral connections
that originate in agranular layers and target all layers.
These long-range or extrinsic cortico-cortical connections
are excitatory and comprise the axonal processes of pyra-
midal cells.

The Jansen model (Jansen and Rit, 1995) emulates the
MEG-EEG activity of a cortical source using three neu-
ronal subpopulations. A population of excitatory pyra-
midal (output) cells receives inputs from inhibitory and
excitatory populations of interneurons, via intrinsic con-
nections (intrinsic connections are confined to the cortical
sheet). Within this model, excitatory interneurons can be
regarded as spiny stellate cells found predominantly in
layer 4. These cells receive forward connections. Excita-
tory pyramidal cells and inhibitory interneurons occupy
agranular layers and receive backward and lateral inputs.
Using these connection rules, it is straightforward to con-
struct any hierarchical cortico-cortical network model of
cortical sources (Figure 42.1).

The ensuing DCM is specified in terms of its state
equations and an observer or output equation:

ẋ = f�x�u���

h = g�x���
42.1

where x are the neuronal states of cortical areas, u are
exogenous inputs and h is the output of the system. � are

quantities that parameterize the state and observer equa-
tions. The state equations f�x�u��� (Jansen and Rit, 1995;
David and Friston, 2003; David et al., 2005) for the neu-
ronal states are:1

ẋ7 = x8

ẋ8 = He

�e

��B+L+�3I�S�x0��− 2x8

�e

− x7

�2
e

ẋ1 = x4

ẋ4 = He

�e

��F +L+�1I�S�x0�+Uu�− 2x4

�e

− x1

�2
e

ẋ0 = x5 −x6

ẋ2 = x5

ẋ5 = He

�e

��B+L�S�x0�+�2S�x1��− 2x5

�e

− x2

�2
e

ẋ3 = x6

ẋ6 = Hi

�i

�4S�x7�− 2x6

�i

− x3

�2
i

42.2

The states xi are column vectors of the i-th state over all
sources. Each represents a mean transmembrane poten-
tial or current of one of the three subpopulations. The
state equations specify the rate of change of voltage as
a function of current and specify how currents change
as a function of voltage and current. The depolarization

1 Propagation delays on the connections have been omitted for
clarity, here and in Figure 42.1. See Appendix 42.1 for details of
how delays are incorporated.
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of pyramidal cells x0 = x2 − x3 represents a mixture of
potentials induced by excitatory and inhibitory (depo-
larizing and hyperpolarizing) currents respectively. This
pyramidal potential is the presumed source of observed
MEG-EEG signals.

Figure 42.1 depicts the states by assigning each sub-
population to a cortical layer. For schematic reasons
we have lumped superficial and deep pyramidal units
together, in the infra-granular layer. The matrices F�B�L
encode forward, backward and lateral extrinsic connec-
tions respectively. From Eqn. 42.2 and Figure 42.1 it
can be seen that the state equations embody the con-
nection rules above. For example, extrinsic connections
mediating changes in mean excitatory (depolarizing) cur-
rent x8, in the supra-granular layer, are restricted to
backward and lateral connections. Interactions, among
the subpopulations, depend on the constants �1� � � ���4,
which control the strength of intrinsic connections and
reflect the total number of synapses expressed by each
subpopulation.

The remaining constants in the state equation pertain
to two operators, on which the dynamics rest. The first
transforms the average density of presynaptic inputs into
the average postsynaptic membrane potential. This trans-
formation is equivalent to a convolution with an impulse
response or kernel:

	�t�e =
⎧⎨
⎩

He

�e

t exp�−t/�e� t ≥ 0

0 t < 0
42.3

where subscript ‘e’ stands for excitatory and ‘i’ is used
for inhibitory synapses. H controls the maximum post-
synaptic potential and � represents a lumped rate-
constant. The second operator S transforms the potential
of each subpopulation into firing rate, which is the input
to other subpopulations. This operator is assumed to be
an instantaneous sigmoid non-linearity:

S�x� = 1
1+exp�−rx�

− 1
2

42.4

where r = 0
56 determines its form. Figure 42.2 shows
examples of these synaptic kernels and sigmoid func-
tions. Note that the output of the firing rate function can
be negative. This ensures that the neuronal system has a
stable fixed-point, when all the states are equal to zero.
Because the states approximate the underlying popula-
tion or density dynamics, the fixed-point corresponds to
the system’s equilibrium or steady state. This means all
the state variables can be interpreted as the deviation
from steady-state levels. A DCM, at the neuronal level,
obtains by coupling sources with extrinsic connections as
described above. A typical three-source DCM is shown
in Figure 42.3 and is the example used in Chapter 3.
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FIGURE 42.2 Left: form of the synaptic impulse response
function, converting synaptic input (discharge rate) into mean trans-
membrane potential. Right: the non-linear static transformation of
transmembrane potential into synaptic input. In this figure, the con-
stants are set to unity, with the exception of r = 0
56. See main text
for details.
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FIGURE 42.3 Typical hierarchical network composed of three
cortical areas. Extrinsic inputs evoke transient perturbations around
the resting state by acting on a subset of sources, usually the lowest
in the hierarchy. Interactions among different regions are mediated
through excitatory connections encoded by coupling matrices.

Event-related responses

To model event-related responses, the network receives
inputs via input connections U. These connections are
exactly the same as forward connections and deliver
inputs u to the spiny stellate cells in layer 4. In the present
context, inputs u model afferent activity relayed by sub-
cortical structures and is modelled with two components:

u�t� = b�t��1��2�+∑�c
i cos�2��i−1�t� 42.5



Elsevier UK Chapter: Ch42-P372560 30-9-2006 5:35p.m. Page:566 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

566 42. DYNAMIC CAUSAL MODELS FOR EEG

TABLE 42-1 Prior densities of parameters for connections to the i-th source from the
j-th, in the k-th ERP

Fijk = FijGijk Fij = 32 exp��F
ij � �F

ij ∼ N�0� 1
2 �

Bijk = BijGijk Bij = 16 exp��B
ij � �B

ij ∼ N�0� 1
2 �

Extrinsic coupling parameters Lijk = LijGijk Lij = 4 exp��L
ij � �L

ij ∼ N�0� 1
2 �

Gijk = exp��G
ijk� �G

ij ∼ N�0� 1
2 �

Ui = exp��U
i � �U

i ∼ N�0� 1
2 �

Intrinsic coupling parameters �1 = 128 �2 = 4
5 �1 �3 = 1

4 �1 �4 = 1
4 �1

Conduction delays (ms) ii = 2 ij = 16 exp��
ij � �

ij ∼ N�0� 1
16 �

Synaptic parameters (ms)
Ti = 16 T

�i�
e = 8 exp��T

i � �T
i ∼ N�0� 1

16 �

Hi = 32 H
�i�
e = 4 exp��H

i � �H
i ∼ N�0� 1

16 �

Input parameters (s)
u�t� = b�t��1��2�+∑�c

i cos �2��i−1�t� �c
i ∼ N�0� 1�

�1 = 96 exp���
1 � ��

1 ∼ N�0� 1
16 �

�2 = 1024 exp���
2 � ��

2 ∼ N�0� 1
16 �

The first is a gamma density function b�t��1��2� =
��1

2 t�1−1 exp�−�2t�
/

���1� with shape and scale constants
�1 and �2 (see Table 42-1). This models an event-related
burst of input that is delayed by �1/�2 s, with respect
to stimulus onset and dispersed by subcortical synapses
and axonal conduction. Being a density function, this
component integrates to unity over peristimulus time.
The second component is a discrete cosine set modelling
systematic fluctuations in input, as a function of peris-
timulus time. In our implementation, peristimulus time
is treated as a state variable, allowing the input to be
computed explicitly during integration.

Critically, the event-related input is exactly the same
for all ERPs. This means the effects of experimental fac-
tors are mediated by ERP-specific changes in connec-
tion strengths. This models experimental effects in terms
of differences in forward, backward or lateral connec-
tions that confer a selective sensitivity on each source,
in terms of its response to others. The experimental or
ERP-specific effects are modelled by coupling gains:

Fijk = FijGijk

Bijk = BijGijk 42.6

Lijk = LijGijk

Here, Gijk encodes the k-th ERP-specific gain in coupling
to the i-th source from the j-th. By convention, we set the
gain of the first ERP to unity, so that subsequent ERP-
specific effects are relative to the first.2 The reason we

2 In fact, in our implementation, the coupling gain is a function
of any set of explanatory variables encoded in a design matrix,
which can contain indicator variables or parametric variables.
For simplicity, we limit this chapter to categorical (ERP-specific)
effects.

model experimental effects in terms of gain, as opposed
to additive effects, is that by construction, connections
are always positive. This is assured, provided the gain is
also positive.

The important point here is that we are explaining exper-
imental effects, not in terms of differences in neuronal
responses, but in terms of the neuronal architecture or
coupling that generates those responses. This is a funda-
mental departure from classical approaches, which char-
acterize experimental effects descriptively, at the level of
the states (e.g. a face-selective difference in ERP amplitude
around 170 ms). DCM estimates these response differen-
tials, but only as an intermediate step in the estimation of
their underlying cause, namely changes in coupling.

Eqn. 42.2 defines the neuronal component of the DCM.
These ordinary differential equations can be integrated
(see Appendix 42.1) to generate pyramidal depolariza-
tions, which enter the observer function to generate the
predicted MEG-EEG signal.

Observation equations

The dendritic signal of the pyramidal subpopulation of
each source is detected remotely on the scalp surface in
MEG-EEG. Critically, the mapping between pyramidal
activity and scalp data is linear:

h = g�x��� = LKx0 42.7

where L is a lead-field matrix (i.e. forward electromag-
netic model), which accounts for passive conduction of
the electromagnetic field (Mosher et al., 1999). If the spa-
tial properties (orientation and position) of the source are
known, then the lead-field matrix L is also known. In this
case, K = diag��K� is a leading diagonal matrix, which
controls the contribution �K

i of pyramidal depolarization
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to the i-th source density. If the orientation is not known
then � becomes a function of free parameters encoding
the location and orientation of the source (see Kiebel et al.,
2006 for details). For simplicity we will assume a fixed
location and orientation for each source but allow the
orientation to be parallel or anti-parallel (i.e. �K can be
positive or negative). The rationale for this is that the
direction of current flow induced by pyramidal cell depo-
larization depends on the relative density of synapses
proximate and distal to the cell body.

Dimension reduction

For computational reasons, it is sometimes expedient
to reduce the dimensionality of the sensor data, while
retaining the maximum amount of information. This is
assured by projecting the data onto a subspace defined
by its principal eigenvectors or spatial modes �. The
projection is applied to the data and lead-field:

y ← �y

L ← �L 42.8

� ← ��

In the examples below, the data were projected onto
the first three spatial modes following a singular value
decomposition of the scalp data, between 0 and 500 ms.
Reduction using principal eigenvariates preserves infor-
mation in the data; in our examples about 70 per cent.
Generally, one uses a small number of modes, noting
that the dimension of the subspace containing predicted
responses cannot exceed the number of sources.

The likelihood model

In summary, our DCM comprises a state equation that
is based on neurobiological heuristics and an observer
based on an electromagnetic forward model. By integrat-
ing the state equation and passing the ensuing states
through the observer we generate a predicted measure-
ment. This corresponds to a generalized convolution of
the inputs to generate an output h���. This generalized
convolution furnishes an observation model for the vec-
torized data3 y and the associated likelihood:

y = vec�h���+X�X�+�

p�y ����� = N�vec�h���+X�X��diag���⊗V �
42.9

Measurement noise � is assumed to be zero mean and inde-
pendent over channels, i.e. Cov��� = diag��� ⊗ V , where
� is an unknown vector of channel-specific variances.

3 Concatenated column vectors of data from each channel.

V represents the error’s temporal autocorrelation matrix,
which we assume is the identity matrix. This is tenable
because we down-sample the data to about 8 ms. Low-
frequency noise or drift components are modelled by X,
which is a block diagonal matrix with a low-order dis-
crete cosine set for each ERP and channel. The order of
this set can be determined by Bayesian model selection
(see below). In this chapter, we used three components
for the first study and four for the second. The first com-
ponent of a discrete cosine set is simply a constant.

This model is fitted to data using Bayesian inversion.
This involves maximizing the variational free energy
with respect to the conditional moments of the free
parameters �. The parameters are constrained by a
prior specification of the range they are likely to lie in
(Friston, 2003). These constraints, which take the form
of a prior density p���, are combined with the likeli-
hood p�y�����, to form a posterior density p���y��� ∝
p�y�����p��� according to Bayes’ rule. It is this posterior
or conditional density we want to approximate. Gaus-
sian assumptions about the errors in Eqn. 42.9 enable us
to compute the likelihood from the prediction error. The
only outstanding quantities we require are the priors.

Priors

Under Gaussian assumptions, the prior distribution p��i�
of the i-th parameter is defined by its mean and vari-
ance. The mean corresponds to the prior expectation. The
variance reflects the amount of prior information about
the parameter. A tight distribution (small variance) cor-
responds to precise prior knowledge. Critically, nearly
all the constants in our DCM are positive. To ensure
positivity, we place Gaussian priors on the log of these
constants. This is equivalent to a log-normal prior on the
constants per se. For example, the forward connections are
parameterized as Fij = exp��F

ij�, where p��F
ij� = N����2�.

We will use this notion for the other parameters as well.
A relatively tight or informative log-normal prior obtains
when �2 ≈ 1

16 . This allows for a scaling around the prior
expectation of up to a factor of two. Relatively flat priors,
allowing for an order of magnitude scaling, correspond
to �2 ≈ 1

2 . The ensuing log-normal densities are shown
in Figure 42.4 for a prior expectation of unity (i.e. � = 0).

The parameters of the state equation can be divided
into five subsets: (i) extrinsic connection parameters, which
specify the coupling strengths among areas; (ii) intrin-
sic connection parameters, which reflect our knowledge
about canonical microcircuitry within an area; (iii) con-
duction delays; (iv) synaptic parameters controlling the
dynamics within an area; and (v) input parameters, which
control the subcortical delay and dispersion of event-
related responses. Table 42-1 shows how the constants



Elsevier UK Chapter: Ch42-P372560 30-9-2006 5:35p.m. Page:568 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

568 42. DYNAMIC CAUSAL MODELS FOR EEG

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

variance = 1/16

Scaling

D
en

si
ty

Priors

variance = 1/2

FIGURE 42.4 Log-normal densities on exp��� entailed by
Gaussian priors on � with a prior expectation of zero and vari-
ances of 1/2 and 1/16. These correspond to fairly uninformative
and informative priors respectively.

of the state equation are parameterized in terms of �.
It can be seen that we have adopted relatively uninfor-
mative priors on the extrinsic coupling �2 ≈ 1

2 and tight
priors for the remaining constants �2 ≈ 1

16 . Some param-
eters (intrinsic connections and inhibitory synaptic para-
meters) have infinitely tight priors and are fixed at their
prior expectation. This is because changes in these para-
meters and the excitatory synaptic parameters are almost
redundant, in terms of system responses. The priors in
Table 42-1 conform to the principle that the parameters
we want to make inferences about, namely extrinsic con-
nectivity, should have relatively flat priors. This ensures
that the evidence in the data constrains the posterior or
conditional density in an informative and useful way (see
David et al., 2006 for more details).

Summary

In summary, a DCM is specified through its priors.
These are used to specify how regions are intercon-
nected, which regions receive subcortical inputs, and
which cortico-cortical connections change with the levels
of experimental factors. Usually, the most interesting
questions pertain to changes in cortico-cortical coupling
that explain differences in ERPs. These rest on infer-
ences about the coupling gains Gijk = exp��G

ijk�. This
section has covered the likelihood and prior densities
necessary for conditional estimation. For each model,
we require the conditional densities of two synaptic
parameters per source ���

i � �H
i �, ten input parameters

���
1 � ��

2 � �c
1� � � � � �c

8� and the extrinsic coupling parameters,
gains and delays ��F � �B� �L� �G��U ���. The next section

reviews conditional estimation of these parameters, infer-
ence and model selection.

BAYESIAN INFERENCE AND MODEL
COMPARISON

In this section, we cover model inversion and selec-
tion. Model selection was introduced in Chapter 35 and
will be dealt with in greater depth in the next chapter,
using DCMs of fMRI data. For a given DCM, say model
m, parameter estimation corresponds to approximat-
ing the moments of the posterior distribution given by
Bayes’ rule:

p���y�m� = p�y���m�p���m�

p�y�m�
42.10

The estimation procedure employed in DCM is
described in Chapter 34 and Friston (2002). The poste-
rior moments (conditional mean � and covariance �) are
updated iteratively using variational Bayes under a fixed-
form Laplace (i.e. Gaussian) approximation to the con-
ditional density q��� = N�����. This is equivalent to an
expectation maximization (EM) algorithm that employs
a local linear approximation of Eqn. 42.9 about the cur-
rent conditional expectation. The E-step conforms to a
Fisher-scoring scheme (Press et al., 1992) that optimizes
the variational free energy F�q���m� with respect to the
conditional moments. In the M-step, the error variances
� are updated in exactly the same way. The estimation
scheme can be summarized as follows:

Repeat until convergence

E-step q ← max
q

F�q���m�

M-step � ← max
�

F�q���m�

F�q���m� = 	ln p�y�����m�+ ln p���m�− ln q���
q

= ln p�y���m�−D�q��p���y���m�

42.11

Note that the free energy is simply a function of the log-
likelihood and the log-prior for a particular DCM and
q���. q��� is the approximation to the posterior density
p���y���m� we require. The E-step updates the moments
of q��� (these are the variational parameters � and �) by
maximizing the variational free energy. The free energy
is the log-likelihood minus the divergence between the
real and approximate conditional density. This means
that the conditional moments or variational parameters
maximize the log-likelihood while minimizing the dis-
crepancy between the true and approximate conditional
density. Because the divergence does not depend on the
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covariance parameters, minimizing the free energy in the
M-step is equivalent to finding the maximum likelihood
estimates of the covariance parameters. This scheme is
identical to that employed by DCM for fMRI, the details
of which can be found in the previous chapter (see also
Friston, 2002; Friston et al., 2003 and Appendix 2).

Conditional inference

Inference on the parameters of a particular model pro-
ceeds using the approximate conditional or posterior den-
sity q���. Usually, this involves specifying a parameter
or compound of parameters as a contrast cT �. Inferences
about this contrast are made using its conditional covari-
ance cT �c. For example, one can compute the probability
that any contrast is greater than zero or some meaningful
threshold, given the data. This inference is conditioned on
the particular model specified. In other words, given the
data and model, inference is based on the probability that
a particular contrast is bigger than a specified threshold.
In some situations, one may want to compare different
models. This entails Bayesian model comparison.

Model comparison and selection

Different models are compared using their evidence
(Penny et al., 2004). The model evidence is:

p�y�m� =
∫

p�y���m�p���m�d� 42.12

The evidence can be decomposed into two compo-
nents: an accuracy term, which quantifies the data fit; and
a complexity term, which penalizes models with a large
number of parameters. Therefore, the evidence embodies
the two conflicting requirements of a good model, that it
explains the data and is as simple as possible. In the fol-
lowing, we approximate the model evidence for model
m, with the free energy, after convergence. This rests on
the assumption that � has a point mass at its maximum
likelihood estimate (equivalent to its conditional estimate
under flat priors); i.e. ln p�y�m� = ln 	p�y���m�
�. After
convergence the divergence is minimized and:

ln p�y�m� ≈ F�q���m� 42.13

(see Eqn. 42.11). The most likely model is the one with
the largest log-evidence. This enables Bayesian model
selection. Model comparison rests on the likelihood ratio
of the evidence for two models. This ratio is the Bayes
factor Bij . For models i and j:

ln Bij = ln p�y�m = i�− ln p�y�m = j� 42.14

Conventionally, strong evidence in favour of one
model requires the difference in log-evidence to be about

three or more. We have now covered the specification,
estimation and comparison of DCMs. In the next section,
we will illustrate their application to real data using two
examples of how changes in coupling can explain ERP
differences.

EMPIRICAL STUDIES

In this section, we illustrate the use of DCM by look-
ing at changes in connectivity induced in two different
ways. In the first experiment, we recorded ERPs during
the perception of faces and houses. It is well known that
the N170 is a specific ERP correlate of face perception
(Allison et al., 1999). The N170 generators are thought to
be located close to the lateral fusiform gyrus, or fusiform
face area (FFA). Furthermore, the perception of houses
has been shown to activate the parahippocampal place
area (PPA) using fMRI (Aguirre et al., 1998; Epstein and
Kanwisher, 1998; Haxby et al., 2001; Vuilleumier et al.,
2001). In this example, differences in coupling define the
category-selectivity of pathways that are accessed by dif-
ferent categories of stimuli. A category-selective increase
in coupling implies that the region receiving the con-
nection is selectively more sensitive to input elicited by
the stimulus category in question. This can be attributed
to a functional specialization of the region receiving the
connection. In the second example, we use an auditory
oddball paradigm, which produces mismatch negativity
(MMN) or P300 components in response to rare stimuli,
relative to frequent (Linden et al., 1999; Debener et al.,
2002). In this paradigm, we attribute changes in coupling
to plasticity underlying the perceptual learning of fre-
quent or standard stimuli.

In the category-selectivity paradigm, there are no
necessary changes in connection strength; pre-existing
differences in responsiveness are simply disclosed by
presenting different stimuli. This can be modelled by dif-
ferences in forward connections. However, in the oddball
paradigm, the effect only emerges once standard stimuli
have been learned. This implies some form of perceptual
or sensory learning. We have presented a quite detailed
analysis of perceptual learning in the context of empirical
Bayes in Chapter 36 (see also Friston, 2003). We con-
cluded that the late components of oddball responses
could be construed as a failure to suppress prediction
error, after learning the standard stimuli. Critically, this
theory predicts that learning-related plasticity should
occur in backward connections generating the prediction,
which are then mirrored in forward connections. In short,
we predicted changes in forward and backward connec-
tions when comparing ERPs for standard and oddball
stimuli.
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In the first example, we are interested in where
category-selective differences in responsiveness arise in a
forward processing stream. We use inferences based on
the conditional density of forward coupling-gain, when
comparing face and house ERPs, to address this ques-
tion. Backward connections are probably important in
mediating this selectivity but exhibit no learning-related
changes per se. In the second example, our question is
more categorical in nature, namely, are changes in back-
ward and lateral connections necessary to explain ERP
differences between standards and oddballs, relative to
changes in forward connections alone? We illustrate the
use of Bayesian model comparison to answer this ques-
tion. (See the figure legends for a description of the data
acquisition, lead-field specification and pre-processing.)

Category-selectivity: effective connectivity
in the ventral visual pathway

ERPs elicited by brief presentation of faces and houses
were obtained by averaging trials over three succes-
sive 20-minute sessions. Each session comprised thirty
blocks of faces or houses only. Each block contained
twelve stimuli presented for 400 ms every 2.6 s. The stim-
uli comprised 18 neutral faces and 18 houses, presented
in greyscale. To maintain attentional set, the subject was
asked to perform a one-back task, i.e. indicate, using a
button press, whether or not the current stimulus was
identical to the previous.

As reported classically, we observed a stronger N170
component during face perception in the posterior tem-
poral electrodes. However, we also found other com-
ponents, associated with house perception, which were
difficult to interpret on the basis of scalp data. It is gen-
erally thought that face perception is mediated by a hier-
archical system of bilateral regions (Haxby et al., 2002):
a core system of occipito-temporal regions in extrastri-
ate visual cortex (inferior occipital gyrus, IOG; lateral
fusiform gyrus or face area, FFA; superior temporal sul-
cus, STS) that mediates the visual analysis of faces, and
an extended system for cognitive functions. This system
(intra-parietal sulcus, auditory cortex, amygdala, insula,
limbic system) acts in concert with the core system to
extract meaning from faces. House perception has been
shown to activate the parahippocampal place area (PPA)
(Aguirre et al., 1998; Epstein and Kanwisher, 1998; Haxby
et al., 2001; Vuilleumier et al., 2001). In addition, the ret-
rosplenial cortex (RS) and the lateral occipital gyrus are
more activated by houses, compared to faces (Vuilleu-
mier et al., 2001). Most of these regions belong to the ven-
tral visual pathway. It has been argued that the functional
architecture of the ventral visual pathway is not a mosaic
of category-specifics modules, but rather embodies a

continuous representation of information about object
attributes (Ishai et al., 1999).

DCM specification

We tested whether differential propagation of neuronal
activity through the ventral pathway is sufficient to
explain the differences in measured ERPs. On the basis
of a conventional source localization and previous stud-
ies (Allison et al., 1999; Ishai et al., 1999; Haxby et al.,
2001, 2002; Vuilleumier et al., 2001), we specified the fol-
lowing DCM (Plate 59, see colour plate section): bilat-
eral occipital regions close to the calcarine sulcus (V1)
received subcortical visual inputs. From V1 onwards, the
pathway for house perception was bilateral and con-
nected to RS and PPA using forward and backward con-
nections. The pathway engaged by face perception was
restricted to the right hemisphere and comprised con-
nections from V1 to IOG, which projects to STS and
FFA. In addition, bilateral connections were included,
between STS and FFA, as suggested in Haxby et al.
(2002). These connections constituted our DCM mediat-
ing ERPs to houses and faces. Face- or house-specific ERP
components were hypothesized to arise from category-
selective, stimulus-bound, activation of forward path-
ways. To identify these category-selective streams, we
allowed the forward connections, in the right hemi-
sphere, to change with category. Our hope was that these
changes would render PPA more responsive to houses,
while the FFA and STS would express face-selective
responses.

Conditional inference

The results are shown in Figure 42.5 in terms of predicted
cortical responses and coupling parameters. Using this
DCM, we were able to replicate the functional anatomy,
disclosed by the above fMRI studies: the response in PPA
was more marked when processing houses versus faces.
This was explained, in the model, by an increase in for-
ward connectivity in the medial ventral pathway from
RS to PPA. This difference corresponded to a coupling-
gain of over fivefold. Conversely, the model exhibited
a much stronger response in FFA and STS during face
perception, as suggested by the Haxby model (Haxby
et al., 2002). This selectivity was due to an increase in
coupling from IOG to FFA and from IOG to STS. The
face-selectivity of STS responses was smaller than in the
FFA, the latter mediated by an enormous gain of about
ninefold �1/0
11 = 9
09� in sensitivity to inputs from IOG.
The probability, conditional on the data and model, that
changes in forward connections to the PPA, STS and
FFA were greater than zero, was essentially 100 per cent
in all cases. The connections from V1 to IOG showed
no selectivity. This suggests that category-selectivity
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FIGURE 42.5 DCM results for the category-selectivity paradigm: Left: predicted (thick) and observed (thin) responses in measurement
space. These are a projection of the scalp or channel data onto the first three spatial modes or eigenvectors of the channel data (faces:
grey; houses: black). The predicted responses are based on the conditional expectations of the DCM parameters. The agreement is evident.
Right: reconstructed responses for each source and changes in coupling for the DCM modelling category-specific engagement of forward
connections, in the ventral visual system. As indicated by the predicted responses in PPA and FFA, these changes are sufficient to explain
an increase response in PPA when perceiving houses and, conversely, an increase in FFA responses during face perception. The coupling
differences mediating this category-selectivity are shown alongside connections, which showed category-specific differences (highlighted by
solid lines). Differences are the relative strength of forward connections during house presentation, relative to faces. The per cent conditional
confidence that this difference is greater than zero is shown in brackets. Only changes with 90 per cent confidence or more are reported and
these connections are highlighted in bold.

The data reported in this and subsequent figures were acquired from the same subject, in the same session, using 128 EEG electrodes
and 2048 Hz sampling. Before averaging, data were referenced to mean activity and bandpass filtered between 1 and 20 Hz. Trials showing
ocular artefacts (∼30 per cent) and 11 bad channels were removed from further analysis. To compute the lead field for each source we used a
distributed source reconstruction procedure based on the subject’s anatomical MRI and described in David et al. (2006). Following dimension
reduction to the three principal eigenvariates, the data were down-sampled to 8 ms time bins. These reduced channel data were then used to
invert the DCM.

emerges downstream from IOG, at a fairly high level.
Somewhat contrary to expectations (Vuilleumier et al.,
2001), the coupling from V1 to RS showed a mild face-
selective bias, with an increase of about 80 per cent
�1/0
55 = 1
82�.

Note how the ERPs of each source are successively
transformed and delayed from area to area. This reflects
the intrinsic transformations within each source, the
reciprocal exchange of signals between areas and the con-
duction delays. These transformations are mediated by
intrinsic and extrinsic connections and are the dynamic
expression of category selectivity in this DCM. The con-
ditional estimate of the subcortical input is also shown
in Figure 42.5. The event-related response input was
expressed about 96 ms after stimulus onset. The accuracy
of the model is evident in the left panel of Figure 42.5,
which shows the measured and predicted responses in
sensor space, after projection onto their three principal
eigenvectors.

Auditory oddball: effective connectivity
and sensory learning

Auditory stimuli, 1000 or 2000 Hz tones with 5 ms rise and
fall times and 80 ms duration, were presented binaurally
for 15 minutes, every 2 s in a pseudo-random sequence;
2000 Hz tones (oddballs) occurred 20 per cent of the time
(120 trials) and 1000 Hz tones (standards) 80 per cent of
the time (480 trials). The subject was instructed to keep a
mental record of the number of 2000 Hz tones.

Late components, characteristic of rare events, were
seen in most frontal electrodes, centred on 250 ms to
350 ms post-stimulus. As reported classically, early com-
ponents (i.e. the N100) were almost identical for rare
and frequent stimuli. Using a conventional reconstruc-
tion algorithm (see figure legend), cortical sources were
localized symmetrically along the medial part of the
upper bank of the Sylvian fissure, in the right mid-
dle temporal gyrus, left medial and posterior cingulate,
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and bilateral orbitofrontal cortex (see insert in Plate 60).
These locations are in good agreement with the literature:
sources along the upper bank of the Sylvian fissure can
be regarded as early auditory cortex, although they are
generally located in the lower bank of the Sylvian fissure
(Heschls gyrus). Primary auditory cortex has major inter-
hemispheric connections through the corpus callosum.
In addition, these areas project to temporal and frontal
lobes following different streams (Romanski et al., 1999;
Kaas and Hackett, 2000). Finally, cingulate activations are
often found in relation to oddball tasks, either auditory
or visual (Linden et al., 1999).

DCM specification

Using these sources and prior knowledge about the func-
tional anatomy of the auditory system, we constructed
the following DCM (see Plate 60): an extrinsic (thala-
mic) input entered bilateral primary auditory cortex (A1)
which was connected to ipsilateral orbitofrontal cortex
(OF). In the right hemisphere, an indirect forward path-
way was specified from A1 to OF through the superior
temporal gyrus (STG). All these connections were recip-
rocal. At the highest level in the hierarchy, OF and left
posterior cingulate cortex (PC) were laterally and recip-
rocally connected.

Model comparison

Given these nodes and their connections, we created
four DCMs that differed in terms of which connections

could show putative learning-related changes. The base-
line model precluded any differences between standard
and oddball trials. The remaining four models allowed
changes in forward F, backward B, forward and back-
ward FB and all connections FBL, with the primary
auditory sources. The results of a Bayesian model com-
parison are shown in Plate 60, in terms of the respective
log-evidences (referred to the baseline model with no
coupling changes). There is very strong evidence for con-
joint changes in backward and lateral connections, above
and beyond changes in forward or backward connections
alone. The FB model supervenes over the FBL model
that was augmented with plasticity in lateral connections
between A1. This is interesting because the FBL model
had more parameters, enabling a more accurate mod-
elling of the data. However, the improvement in accuracy
did not meet the cost of increasing the model complexity
and the log-evidence fell by 4.224. This means there is
strong evidence for the FB model, in relation to the FBL
model. Put more directly, the data are e4
224 = 68
3 times
more likely to have been generated by the FB model than
the FBL model. The results of this Bayesian model com-
parison suggest the theoretical predictions were correct.

Conditional inference

The conditional estimates and posterior confidences for
the FB MODEL are shown in Figure 42.6 and reveal a pro-
found increase, for rare events, in all connections. We can
be over 95 per cent confident these connections increased.
As above, these confidences are based on the conditional

FIGURE 42.6 DCM results for the audi-
tory oddball (FB model). This figure adopts
the same format as Figure 42.5. Here the
oddball-related responses show many compo-
nents and are expressed most noticeably in
mode 2. The mismatch response is expressed
in nearly every source (black: oddballs, grey:
standards), and there are widespread learning-
related changes in connections (solid lines:
changes with more than 90 per cent conditional
confidence). In all connections, the coupling
was stronger during oddball processing, rela-
tive to standards.
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FIGURE 42.7 Conditional density of a contrast averaging over
all learning-related changes in backward connections. It is evident
that change in backward connections is unlikely to be zero or less
given our data and DCM.

density of the coupling-gains. The conditional density of
a contrast, averaging over all gains in backward connec-
tions, is shown in Figure 42.7. We can be 99.9 per cent
confident this contrast is greater than zero. The average
is about one, reflecting a gain of about e1 ≈ 2
7, i.e. more
than a doubling.

These changes produce a rather symmetrical series of
late components, expressed to a greater degree, but with
greater latency, at hierarchically higher levels. In com-
parison with the visual paradigm above, the subcortical
input appeared to arrive earlier, around 64 ms after stim-
ulus onset. The remarkable agreement between predicted
and observed channel responses is seen in the left panel,
again shown as three principal eigenvariates.

In summary, this analysis suggests that a sufficient
explanation for mismatch responses is an increase in for-
ward and backward connections with primary auditory
cortex. This results in the appearance of exuberant
responses after the N100 in A1 to unexpected stimuli.
This could represent a failure to suppress prediction
error, relative to predictable or learned stimuli, which
can be predicted more efficiently.

CONCLUSION

We have described a Bayesian inference procedure in
the context of DCM for ERPs. DCMs are used in the
analysis of effective connectivity to provide posterior
or conditional distributions. These densities can then be

used to assess changes in effective connectivity caused
by experimental manipulations. These inferences, how-
ever, are contingent on assumptions about the architec-
ture of the model, i.e. which regions are connected and
which connections are modulated by experimental fac-
tors. Bayesian model comparison can be used to adjudi-
cate among competing models, or hypotheses, as demon-
strated above. The approach can be regarded as a neu-
robiologically constrained source reconstruction scheme,
in which the parameters of the reconstruction have an
explicit neuronal interpretation, or as a characterization
of the causal architecture of the neuronal system gener-
ating responses. We have seen that it is possible to test
mechanistic hypotheses in a more constrained way than
classical approaches because the prior assumptions are
physiologically informed.

The DCM in this chapter used a neural-mass model
that embodies long-range cortico-cortical connections by
considering forward, backward and lateral connections
among remote areas (David et al., 2005). This allows us to
embed neural mechanisms generating MEG-EEG signals
that are located in well-defined regions. This may make
the comparison with fMRI activations easier than alterna-
tive models based on continuous cortical fields (Robinson
et al., 2001; Liley et al., 2002). However, it would be
interesting to apply DCM to cortical field models.

Frequently asked questions

In presenting this work to our colleagues, we have
encountered a number of recurrent questions. We use
these questions to frame our discussion of DCM for ERPs.

• How do the results change with small changes in the priors?
Conditional inferences are relatively insensitive to
changes in the priors. This is because we use relatively
uninformative priors on the parameters about which
inferences are made. Therefore, confident inferences
about coupling imply a high conditional precision. This
means that most of the conditional precision is based
on the data (because the prior precision is very small).
Changing the prior precision will have a limited effect
on the conditional density and the ensuing inference.

• What are the effects of wrong network specification (e.g.
including an irrelevant source or not including a relevant
source or the wrong specification of connections)?
This is difficult to answer because the effects will
depend on the particular data set and model employed.
However, there is a principled way in which questions
of this sort can be answered. This uses Bayesian model
comparison: if the contribution of a particular source
or connection is in question, one can compute the log-
evidence for two models that do and do not contain
the source or connection. If it was important, the differ-
ences in log-evidence will be significant. Operationally,



Elsevier UK Chapter: Ch42-P372560 30-9-2006 5:35p.m. Page:574 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

574 42. DYNAMIC CAUSAL MODELS FOR EEG

the effects of changing the architecture are reformu-
lated in terms of changing the model. Because the data
do not change, these effects can be evaluated quanti-
tatively in terms of the log-evidence (i.e. likelihood of
the data given the models in question).

• How sensitive is the model to small changes in the parameters?
This is quantified by the curvature of the free energy
with respect to parameters. This sensitivity is, in fact,
the conditional precision or certainty. If the free energy
changes quickly as one leaves the maximum (i.e. con-
ditional mode or expectation), then the conditional
precision is high. Conversely, if the maximum is rela-
tively flat, changes in the parameter will have a smaller
effect and conditional uncertainty is higher. Condi-
tional uncertainly is a measure of the information about
the parameter in the data.

• What is the role of source localization in DCM?
It has no role. Source localization refers to inversion
of an electromagnetic forward model. Because this is
only a part of the DCM, Bayesian inversion of the DCM
implicitly performs the source localization. Having said
this, in practice, priors on the location or orientation
(i.e. spatial parameters) can be derived from classical
source reconstruction techniques. In this chapter, we
used a distributed source reconstruction to furnish spa-
tial priors on the DCM. However, these priors do not
necessarily have to come from a classical inverse solu-
tion. Our evaluations of DCM, using somatosensory
evoked potentials (whose spatial characteristics are well
known) suggest that the conditional precision of the
orientation is much greater than the location. This means
that one could prescribe tight priors on the location
(from source reconstruction, from fMRI analyses, or
from the literature) and let DCM estimate the conditional
density of the orientation (Kiebel et al., 2006).

• How do you select the sources for the DCM?
DCM is an inference framework that allows one to
answer questions about a well-specified model of func-
tional anatomy. The sources specify that model. Con-
ditional inferences are then conditional on that model.
Questions about which is the best model use Bayesian
model selection as described above. In principle, it is
possible to compare an ensemble of models with all
permutations of sources and simply select the model
that has the greatest log-evidence. We will illustrate
this in a forthcoming multisubject study of the MMN
in normal subjects.

• How do you assess the generalizability of a DCM?
In relation to a particular data set, the conditional
density of the parameters implicitly maximizes gener-
alizability. This is because the free energy can be refor-
mulated in terms of an accuracy term that is maximized
and a complexity term that is minimized (Penny et al.,
2004). Minimizing complexity ensures generalization.

This aspect of variational learning means that we do
not have to use ad-hoc measures of generalization (e.g.
splitting the data into training and test sets). General-
ization is an implicit part of the estimation. In relation
to generalization over different data sets, one has to
consider the random effects entailed by different sub-
jects or sessions. In this context, generalization and
reproducibility are a more empirical issue.

• How can you be sure that a change in connectivity is not
due to a wrong model?
There is no such thing as a wrong model. Models can
only be better or worse than other models. We quantify
this in terms of the likelihood of each model (i.e. the
log-evidence) and select the best model. We then usu-
ally make conditional inferences about the parameters,
conditional on the best model. One could of course
argue that all possible models have not been tested, but
at least one has a framework that can accommodate
any alternative model.

• What is the basis for the claim that the neural-mass models
and DCMs are biologically grounded?
This is based largely on the use of the Jansen and Rit
model (1995) as an elemental model for each source.
We deliberately chose an established model from the
EEG literature for which a degree of predictive and
face validity had already been established. This model
has been evaluated in a range of different contexts and
its ability to emulate and predict biological phenomena
has been comprehensively assessed (Jansen and Rit,
1995; David et al., 2005 and references therein). The bio-
logical plausibility of the extrinsic connections has been
motivated at length in David and Friston (2003), where
we show that a network of Jansen and Rit sources can
reproduce a variety of EEG phenomena.

• Why did we exclude thalamus from our models?
Because it was not necessary to answer the question we
wanted to ask. In the models reported in this chapter,
the effects of subcortical transformations are embodied
in the parameters of the input function. If one thought
that cortico-subcortical interactions were important, it
would be a simple matter to include a thalamic source
that was invisible to measurement space (i.e. set the
lead field’s priors to zero). One could then use Bayesian
model comparison to assess whether modelled cortico-
thalamic interactions were supported by the data.

• Does DCM deal with neuronal noise?
No. In principle, DCM could deal with noise at the level
of neuronal states by replacing the ordinary differ-
ential equations with stochastic differential equations.
However, this would call for a very different estima-
tion scheme in which there was conditional uncertainty
about the [hidden] neuronal states. Conventionally,
these sorts of systems are estimated using a recurrent
Bayesian update scheme such as Kalman or Particle
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filtering. We are working on an alternative (dynamic
expectation maximization), but it will be some time
before it will be applied to DCM.

• Why are the DCMs for EEG and fMRI not the same?
This is an important question, especially if one wants
to use a DCM to explain both fMRI and EEG responses
in the context of multimodal fusion. The DCM for
EEG is considerably more complicated than the mod-
els used previously for fMRI. In fact, the bilinear form
for the dynamics in fMRI is formally the same as the
bilinear approximation to the state equations used in
this chapter. The reason that DCM for EEG rests on
more complicated models is that there is more condi-
tional information in electromagnetic data about the
parameters. This means that more parameters can be
estimated efficiently (i.e. with greater conditional cer-
tainty). It would be perfectly possible to replace the
bilinear approximation in DCMs for fMRI with the cur-
rent neuronal model. However, Bayesian model com-
parison would show that the bilinear approximation
was much better because it is not over-parameterized
for fMRI data. Conversely, model comparison using
both fMRI and EEG data should select the detailed
model used here.

• Why try to explain evoked responses solely by a change in
effective connectivity?
In DCM, most of the biophysical parameters are rate
or connectivity parameters that fall into three groups:
(i) extrinsic connections among areas; (ii) intrinsic
connections within an area (i.e. among the three
sub-populations); and (iii) within subpopulation (i.e.
the rate or time constants governing self-inhibition
or adaptation). We have chosen to explain exper-
imental differences in terms of coupling changes
between areas. This is motivated by theoretical
considerations that suggest sensory and perceptual
learning involves experience-dependent changes in
extrinsic forward and backward connections. How-
ever, the DCM machinery could easily be adapted (by a
different choice of priors on the parameters) to explain
differences in terms of changes in intrinsic connections,
or even time-constants within a subpopulation. Fur-
thermore, using Bayesian model comparison we can
compare models to ask, for example, whether changes
in intrinsic or extrinsic connections are the most likely
explanation for observed responses.

SUMMARY

In this chapter, we have focused on the changes in con-
nectivity, between levels of an experimental factor, to
explain differences in the form of ERFs-ERPs. We have

illustrated this through the analysis of real ERPs recorded
in two classical paradigms: ERPs recorded during the
perception of faces versus houses and the auditory odd-
ball paradigm. We were able to differentiate two streams
within the ventral visual pathway corresponding to face
and house processing, leading to preferential responses
in the fusiform face area and parahippocampal place
area respectively. These results concur with fMRI stud-
ies (Haxby et al., 2001;Vuilleumier et al., 2001). We have
shown how different hypotheses about the genesis of the
MMN could be tested, such as learning-related changes
in forward or backward connections. Our results suggest
that bottom-up processes have a key role, even in late
components such as the P300. This finding is particularly
interesting as top-down processes are usually invoked to
account for late responses.

APPENDIX

Here we describe the approximate integration of delay
differential equations of the form:

ẋi�t� = fi�x1�t −�i1�� � � � � xn�t −�in�� 42.A1

for n states x = �x1�t�� � � � � xn�t��T , where state j causes
changes in state i with delay �ij . By taking a Taylor expan-
sion about � = 0 we get, to first order:

ẋi = fi�x�−∑
j

�ij�fi

/
��ij

= fi�x�−∑
j

�ijJij ẋj

42.A2

where J = �f
/

�x is the system’s Jacobian. 42.A2 can be
expressed in matrix form as:

ẋ = f�x�− �� × J�ẋ 42.A3

where × denotes the Hadamard or element-by-element
product. On rearranging 42.A3, we obtain an ordinary
differential equation that can be integrated in the usual
way:

ẋi = D−1f�x�

D = I +� × J
42.A4
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Dynamic Causal Models and Bayesian selection
K. E. Stephan and W. D. Penny

INTRODUCTION

Ever since the description of localizable lesion and exci-
tation effects in the nineteenth century, neuroscience
has revolved around the dual themes of functional
specialization and functional integration. Functional spe-
cialization refers to the notion that local neural popu-
lations are specialized in certain aspects of information
processing, whereas functional integration refers to the
interactions among distinct populations. A variety of
techniques exist for understanding functional specializa-
tion of brain regions, which rest on either measuring neu-
ronal responses (e.g. neuroimaging, invasive recordings)
or observing the consequences of selectively disabling
particular parts of the brain (e.g. anatomical or phar-
macological lesions; transcranial magnetic stimulation).
Understanding the principles of functional integration
requires two things: first, simultaneous measurements of
activity in multiple interacting brain regions and second,
a formal model designed to test assumptions about the
causal mechanisms which underlie these interactions (see
Chapters 36 and 38 and Friston, 2002).

To specify the structure of a neural system model, one
needs to specify three things: (i) which areas are ele-
ments of the system; (ii) which anatomical connections
exist; and (iii) which experimentally designed inputs
affect system dynamics, either by directly evoking activ-
ity in specific areas (e.g. visual stimuli evoking responses
in primary visual cortex) or by altering the strength of
specific connections (e.g. changes of synaptic strengths
during learning), and where these inputs enter the sys-
tem. A key issue is how to test competing hypotheses
about the organization of a system. Given experimental
measurements of the system of interest, an ideal solu-
tion is to formalize each hypothesis in terms of a spe-
cific model and use a Bayesian model selection (BMS)
procedure that takes into account both model fit and

model complexity (Pitt and Myung, 2002; Penny et al.,
2004; see also Chapter 35). In principle, model selection
can concern any aspect of a system so long as differ-
ent models are compared using the same data.1 In this
chapter, we focus on how model selection can be used to
decide which of several experimentally controlled inputs
change particular connection strengths. To illustrate this,
we deal with inter-hemispheric integration in the ventral
visual pathway during a letter decision task. After sum-
marizing BMS as implemented for dynamic causal mod-
elling (DCM) for functional magnetic resonance imaging
(fMRI), we present the results from a combined DCM
and BMS analysis of a single subject data set (Stephan
et al., 2005). Inter-hemispheric integration is a particu-
larly instructive example for the usefulness of BMS; this
is because a variety of competing theories about its func-
tional principles and mechanisms exist, all of which make
fairly precise predictions about what experimental fac-
tors should be the primary cause of changes in inter-
hemispheric connection strengths and what pattern of
effective connectivity should be observed.

Bayesian model selection in DCM for fMRI

A generic problem encountered by any kind of mod-
elling is the question of model selection: given some
observed data, which of several alternative models is

1 This means that in DCM for fMRI, where the data vector results
from a concatenation of the time series of all areas in the model,
only models can be compared that contain the same areas. In
this case, model selection cannot be used to address whether
or not to include a particular area in the model. In contrast,
in DCM for ERPs, the data measured at the sensor level are
independent of how many neuronal sources are assumed in a
given model. Here, model selection could also be used to decide
which sources should be included.
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the optimal one? This problem is not trivial because the
decision cannot be made solely by comparing the rela-
tive fit of the competing models. One also needs to take
into account the relative complexity of the models as
expressed, for example, by the number of free param-
eters in each model. Model complexity is important to
consider because there is a trade-off between model fit
and generalizability (i.e. how well the model explains
different data sets that were all generated from the same
underlying process). As the number of free parameters
is increased, model fit increases monotonically, whereas
beyond a certain point, model generalizability decreases.
The reason for this is ‘over-fitting’; an increasingly com-
plex model will, at some point, start to fit noise that is
specific to one dataset and thus become less generaliz-
able across multiple realizations of the same underlying
generative process.2

Therefore, the question: ‘What is the optimal model?’
can be reformulated more precisely as: ‘What is the model
that represents the best balance between fit and complex-
ity?’. In a Bayesian context, the latter question can be
addressed by comparing the evidence, p�y�m�, of differ-
ent models. According to Bayes’ theorem:

p���y�m� = p�y���m�p���m�

p�y�m�
43.1

the model evidence can be considered as a normalization
constant for the product of the likelihood of the data and
the prior probability of the parameters, therefore:

p�y�m� =
∫

p�y���m�p���m�d� 43.2

Here, the numbers of free parameters (as well as the
functional form) are subsumed by the integration. Unfor-
tunately, this integral cannot usually be solved analyti-
cally, therefore, an approximation to the model evidence
is needed.

In the context of DCM, one potential solution could be
to make use of the Laplace approximation, i.e. to approx-
imate the model evidence by a Gaussian that is centred
on its mode. As shown by Penny et al. (2004), this yields
the following expression for the natural logarithm of the
model evidence: ���y denotes the maximum a posteriori
(MAP) estimate, C��y is the posterior covariance of the
parameters, C� is the error covariance, �� is the prior
mean of the parameters, C� is the prior covariance and

2 Generally, in addition to the number of free parameters, the
complexity of a model also depends on its functional form (Pitt
and Myung, 2002). This is not an issue for DCM, however,
because here competing models usually have the same func-
tional form.

h�u����y� is the prediction by the model given the known
system inputs u and MAP estimate ���y:

ln p�y�m� = accuracy�m�− complexity�m�

=
[
−1

2
ln �C��−

1
2

� T
y C−1

� �y

]

−
[

1
2

ln �C��−
1
2

ln �C��y�+
1
2

� T
� C−1

� ��

]

�y = y −h�u����y�

�� = ���y −��

43.3

This expression reflects the requirement, as discussed
above, that the optimal model should represent the best
compromise between model fit (accuracy) and model
complexity. The complexity term depends on the prior
density, for example, the prior covariance of the intrinsic
connections. This is problematic in the context of DCM
for fMRI because this prior covariance is defined in a
model-specific fashion to ensure that the probability of
obtaining an unstable system is small (specifically, this is
achieved by choosing the prior covariance of the intrinsic
coupling matrix A such that the probability of obtaining
a positive Lyapunov exponent of A is p < 0�001; see Fris-
ton et al., 2003 for details). Consequently, the comparison
of models with different numbers of connections is con-
flated with a comparison of different priors. Alternative
approximations to the model evidence, which depend
less on the priors, are useful for DCMs of this sort.

Suitable approximations, which do not depend on the
prior density, are afforded by the Bayesian information
criterion (BIC) and Akaike information criterion (AIC),
respectively. As shown by Penny et al. (2004), for DCM
these approximations are given by:

BIC = accuracy�m�− p�

2
ln n

AIC = accuracy�m�−p�

43.4

where p� is the number of parameters and n is the number
of data points (scans). If one compares the complexity
terms of BIC and AIC, it is obvious that BIC pays a
heavier penalty than AIC as soon as one deals with eight
or more scans (which is virtually always the case for fMRI
data):

d�

2
ln n > p� ⇒ n > e2 ≈ 7�39 43.5

Therefore, BIC will be biased towards simpler mod-
els, whereas AIC will be biased towards more complex
models. This can lead to disagreement between the two
approximations about which model should be favoured.
We adopt the convention that, for any pairs of models
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mi and mj , a model is selected if, and only if AIC and
BIC concur (see below); the decision is then based on the
approximation which gives the smaller Bayes factor (BF):

BFij = p�y�mi�

p�y�mj�
43.6

Just as conventions have developed for using p-values
in frequentist statistics, there are conventions for Bayes
factors. For example, Raftery (1995) suggests interpreta-
tion of Bayes factors as providing weak �BF < 3�, positive
�3 ≤ BF < 20�, strong �20 ≤ BF < 150� or very strong �BF ≥
150� evidence for preferring one model over another.

We conclude this section with a short comment on
group studies with DCM and BMS. When trying to find
the optimal model for a group of individuals, it is likely
that the optimal model will vary, at least to some degree,
across subjects. An overall decision for N subjects can
be made as follows. First, because model comparisons
from different individuals are statistically independent,
we can compute a group Bayes factor (GBF) by multiplying
all N individual Bayes factors (where k is an index across
subjects):

GBFij =∏
k

BF k
ij 43.7

In principle, this is sufficient to select the optimal model
across a group of subjects. However, the magnitude of the
group Bayes factor may not always be easily interpretable
since its value depends on N . It can therefore be useful
to compute an average Bayes factor (ABF) which is the
geometric mean of the group Bayes factor:

ABFij = N

√
GBFij 43.8

A problem that both GBF and ABF may suffer from is
the presence of outliers.3 For example, imagine you com-
pare models mi and mj in a group of 11 subjects where,
for 10 subjects, one finds BFij = 10 for a given comparison
of interest and for a single subject one finds BFij = 10−12.
In this case, we would obtain GBFij = 10−2 and ABFij ≈
0�66. Since these results are driven by a single outlier, it
is doubtful whether one should conclude on the basis of
these values that Y is the better model. A heuristic that
precludes this sort of thing is the positive evidence ratio
(PER), i.e. the number of subjects where there is positive

3 Of course, the problem of outliers is not specific to Bayesian
inference with DCMs but is inherent to all group analyses. In
random-effects analyses, for example, subjects are assumed to
derive from a Gaussian distribution about a typical subject (see
Chapter 11, Hierarchical Models). This assumption is clearly
violated in the presence of outliers.

(or stronger) evidence for model mi divided by the num-
ber of subjects with positive (or stronger) evidence for
model mj :

PERij = �k 	 BFk
ij > 3�

�k 	 BFk
ji > 3� 43.9

where k = 1� 
 
 
 �N and �·� denotes set size.
Overall, BMS is a powerful procedure to decide

between competing hypotheses represented by differ-
ent DCMs. These hypotheses can concern any part of a
model, e.g. the pattern of intrinsic connections or which
inputs affect the system and where they enter. In the
next section, we present an example that demonstrates
how the combination of DCM and BMS can be applied
to questions of inter-hemispheric integration.

INTER-HEMISPHERIC INTEGRATION
IN THE VENTRAL STREAM

Theories of inter-hemispheric integration

Currently, three major theories of inter-hemispheric inte-
gration are entertained (see Stephan et al., 2006a for a
review). The oldest is that of information transfer between
the hemispheres (e.g. Poffenberger, 1912). In the context
of lateralized tasks with hemisphere-specific inputs (e.g.
peripheral visual presentation), this theory predicts that
transfer of sensory information should be asymmetri-
cally enhanced from the non-dominant to the dominant
hemisphere to ensure efficient processing in the special-
ized hemisphere (e.g. Nowicka et al., 1996; Endrass et al.,
2002). In terms of effective connectivity, it predicts a task-
dependent increase in influence of the non-dominant on
the dominant hemisphere, but only when stimulus infor-
mation is initially restricted to the non-dominant hemi-
sphere.

A more recent and similarly influential concept has
been the notion of inter-hemispheric inhibition (Kinsbourne,
1970). It has been argued that the regulatory mechanisms
that ‘coordinate, select, and integrate the processes sub-
served by each hemisphere’ will also require a range
of inter-hemispheric inhibitory mechanisms ‘to achieve
unified performance from a bilateral system capable
of producing simultaneous and potentially conflicting
outputs’ (Chiarello and Maxfield, 1996). With regard to
connectivity, inter-hemispheric inhibition predicts a task-
dependent and symmetric pattern of negative connection
strengths between hemispheres. It is important to note,
however, that this does not necessarily mean that two
areas, which affect each other by task-dependent inter-
hemispheric inhibition, show decreased activity during



Elsevier UK Chapter: Ch43-P372560 30-9-2006 5:36p.m. Page:580 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

580 43. DYNAMIC CAUSAL MODELS AND BAYESIAN SELECTION

that task. As can be easily shown in simulations, it is per-
fectly possible that task-dependent regional activations
coexist with task-dependent inter-hemispheric inhibition
if other, e.g. intra-hemispheric, influences onto the areas
in question are positive.

The third major concept of inter-hemispheric integra-
tion concerns hemispheric recruitment or processing mode
setting, i.e. whether information processing is restricted
to a single hemisphere or distributed across both hemi-
spheres. Several behavioural studies have shown that, if
the neural resources in the hemisphere receiving a stimu-
lus are insufficient for optimal processing, the benefits of
distributing the processing load across both hemispheres
are likely to outweigh the costs of transcallosal infor-
mation transfer (see Banich, 1998 for review). Given a
sufficiently demanding task, this recruitment of an addi-
tional hemisphere even occurs during lateralized tasks
when the dominant hemisphere receives the stimulus
(Belger and Banich, 1998). This additional recruitment of
the non-dominant hemisphere requires tight cooperation,
i.e. functional coupling, of both hemispheres, regard-
less of which hemisphere initially received the stimu-
lus. Two components are likely to be expressed in terms
of task-dependent changes in effective connectivity: an
increase of the influence from the dominant to the non-
dominant hemisphere that reflects the ‘recruitment’ of
the non-dominant hemisphere, and an increase of con-
nection strengths in the opposite direction, induced by
the non-dominant hemisphere ‘returning’ the results of
the computations delegated to it by the dominant hemi-
sphere. Altogether, this cooperation is expected to be
expressed either in terms of a symmetric task-dependent
increase of connection strength between homotopic areas
or, if ‘recruitment’ and ‘return’ processes are spatially
segregated, an asymmetric task-dependent increase of
connection strength between different areas.

Next, we review an experiment in which inter-
hemispheric integration was necessary and could have
been orchestrated by any of the three mechanisms
described above. Using data from a single subject, we
provide an example of how BMS can be used to disam-
biguate different theories of inter-hemispheric integra-
tion with DCM.

An fMRI study of inter-hemispheric
integration

In a previous fMRI study on the mechanisms underly-
ing hemispheric specialization, we investigated whether
lateralization of brain activity depends on the nature of
the sensory stimuli or on the nature of the cognitive task
performed (Stephan et al., 2003). For example, microstruc-
tural differences between homotopic areas in the left and

right hemisphere have been reported, including visual
(Jenner et al., 1999) and language-related (Amunts et al.,
1999) areas. Within a given hemisphere, these differ-
ences could favour the processing of certain stimulus
characteristics and disadvantage others and might thus
support stimulus-dependent lateralization in a bottom-
up fashion (Sergent, 1982). On the other hand, processing
demands, mediated through cognitive control processes,
might determine, in a top-down fashion, which hemi-
sphere obtains precedence in a particular task (Levy and
Trevarthen, 1976; Fink et al., 1996). To decide between
these two possibilities, we used a paradigm in which the
stimuli were kept constant throughout the experiment,
and subjects were alternately instructed to attend to cer-
tain stimulus features and ignore others (Stephan et al.,
2003). The stimuli were concrete German nouns (each
four letters in length) in which either the second or third
letter was printed in red (the other letters were black). In
a letter decision (LD) task, the subjects had to ignore the
position of the red letter and indicate whether or not the
word contained the target letter ‘A’. In a spatial decision
(SD) task they were required to ignore the language-
related properties of the word and to judge whether the
red letter was located left or right of the word centre; 50
per cent of the stimuli were presented in the non-foveal
part of the right visual field (RVF) and the other 50 per
cent in the non-foveal part of the left visual field (LVF).

The results of a conventional fMRI data analysis
were clearly in favour of the top-down hypothesis:
despite the use of identical word stimuli in all con-
ditions, comparing spatial to letter decisions showed
strongly right-lateralized responses in the parietal cor-
tex, whereas comparing letter to visuo-spatial decisions
showed strongly left-lateralized responses, involving
classical language areas in the left inferior frontal gyrus
and visual areas in the left ventral visual stream, e.g. in
the fusiform gyrus (FG), middle occipital gyrus (MOG)
and lingual gyrus (LG) (Plate 61, see colour plate section).
Notably, the LG areas also showed a main effect of visual
field, whereas task-by-visual field interactions were not
significant at the group level due to spatial variability of
their locations across subjects (see Discussion).

Constructing a basic DCM

Through the conjoint use of lateralized and demanding
tasks with peripheral visual representation, we ensured
that inter-hemispheric integration was a necessary com-
ponent of the cognitive processes in this paradigm. We
now want to demonstrate how to use DCM to inves-
tigate which theory of inter-hemispheric integration is
most likely to account for our data. We focus on the
ventral stream of the visual system which, as shown
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FIGURE 43.1 (a) Basic model that comprises the left and right
lingual gyrus (LG) and left and right fusiform gyrus (FG). The
areas are reciprocally connected (black arrows). Driving inputs are
shown as grey arrows. RVF stimuli directly affect left LG activity
and LVF stimuli directly affect right LG activity, regardless of task.
Individual stimuli lasted for 150 ms, therefore, these inputs are rep-
resented as trains of events (delta-functions). During the instruction
periods, bilateral visual field input was provided for 6 s; this was
modelled as a boxcar input affecting LG in both hemispheres. (b)
Schema showing how the 16 models tested were constructed by
combining four different types of modulatory inputs for inter- and
intra-hemispheric connections respectively.

in Plate 61, is preferentially involved in letter decisions
in this experiment. For simplicity, we use a four-area
model comprising LG and FG in both hemispheres. First,
we need to define a model comprising these four areas
(Figure 43.1(a)). Starting with the direct (driving) inputs
to the system, we model the lateral stimulus presenta-
tion and the crossed course of the visual pathways by
allowing all RVF stimuli to affect directly left LG activ-
ity and all LVF stimuli to directly affect right LG activ-
ity, regardless of task. Each stimulus lasted for 150 ms
only; therefore these inputs are represented as trains of
short events (delta functions). The induced activity then
spreads through the system according to the connections
of the model. For visual areas, a general rule is that
both intra- and inter-hemispheric connections are recip-
rocal and that homotopic regions in both hemispheres
are linked by inter-hemispheric connections (Segraves
and Rosenquist, 1982; Cavada and Goldman-Rakic, 1989;
Kötter and Stephan, 2003).4

Deriving a set of alternative models

Note that up to this point there are few, if any, plau-
sible alternatives for how a DCM of inter-hemispheric
integration between LG and FG, respectively, should

4 To be precise, we should point out that in primates left and
right area V1 only have extremely sparse callosal connections
with each other; this is in contrast to other visual areas like V2,
which are strongly linked by homotopic callosal connections
(Kennedy et al., 1986; Abel et al., 2000).

be constructed. However, the important issue is how
experimental factors affect transcallosal information in
this system during the LD task. This is directly related to
the predictions from the three theories described above.
Instead of testing exclusively for these three predictions,
we compare a larger, systematically derived set of models
which will include those predicted by the three theories.

Given that some areas also showed a main effect of
visual field, one could assume that inter-hemispheric
interactions between visual areas are primarily deter-
mined by the visual field of stimulus presentation, inde-
pendent of task demands: for example, whenever a
stimulus is presented in the LVF and stimulus informa-
tion is received initially by the right visual cortex, this
information is transmitted transcallosally to the left visual
cortex. Vice versa, whenever a stimulus is presented in
the RVF, stimulus information is transmitted transcal-
losally from left to right visual cortex. In this scenario,
the task performed is assumed to have no influence on
callosal couplings, and task effects could, as shown in a
previous analysis of connectivity, be restricted to mod-
ulate functional couplings within hemispheres (Stephan
et al., 2003). This model is subsequently referred to as the
S-model, for stimulus-dependent.

Alternatively, one might expect that callosal connec-
tion strengths depend more on which task is performed
than on which visual field the stimulus is presented in.
That is, right → left and/or left → right callosal connec-
tions could be altered during the LD task. This type of
modulation is predicted by two theories described above,
the inter-hemispheric inhibition and hemispheric recruit-
ment theories; however, they predict opposite directions
of the change in coupling. This model is referred to as
the T-model, for task dependent.

As a third hypothesis, it is conceivable that both visual
field and task exert an influence on callosal connection
strengths, but independently of each other. This is the
S+T-model. As a fourth and final option, one might pos-
tulate that task demands modulate callosal connections,
but conditional on the visual field, i.e. right → left con-
nections are only modulated by LD during LVF stimulus
presentation �LD�LVF� whereas left → right connections
are only modulated by LD during RVF stimulus presen-
tation �LD�RVF�. This is the S ×T-model.

Although less interesting in the present context, the
same questions about the nature of modulatory inputs
arise with respect to the intra-hemispheric connections.
Therefore, to perform a thorough model comparison,
we systematically compared all 16 combinations of how
inter- and intra-hemispheric connections are changed in
the four ways (S, T, S + T, S × T� described above (note
that in the models presented here, we only allowed
for modulation of the intra-hemispheric forward con-
nections, i.e. from LG → FG; see Figures 43.2, 43.3).
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FIGURE 43.2 This figure shows the maximum a posteriori
(MAP) estimates of the parameters (± square root of the posterior
variances; units: Hz) for the S × T-T model which, for the particu-
lar subject studied, proved to be the best of all models tested. For
clarity, only the parameters of interest, i.e. the modulatory parame-
ters of inter- and intra-hemispheric connections, are shown and the
bilateral visual field input has been omitted.

Figure 43.1(b) summarizes the combinatorial logic that
resulted in 16 different models which were fitted to the
same data. In the following, we refer to these 16 models
by first listing the modulation of inter- and then intra-
hemispheric connections. For example, the T-S-model is
one where the callosal connections are modulated by the

letter decision task and the intra-hemispheric connections
are modulated by the visual field of stimulation.

Once the best model is identified, we can do two things.
First, we need to decide whether any of the three theo-
ries of inter-hemispheric integration described above is
compatible with the structure and the pattern of param-
eter estimates of the best model. For example, if the
best model is one in which inter-hemispheric connec-
tions are modulated by task only, this would be compat-
ible with the predictions by both the inter-hemispheric
inhibition and hemispheric recruitment theories; how-
ever, inter-hemispheric inhibition predicts decreases and
hemispheric recruitment predicts increases in callosal
coupling (see above). Second, we can use the posterior
density of the parameters of the optimal model to make
statistical inferences about the strength of callosal cou-
pling and its modulation. This would allow us to quan-
tify how certain we are that contextual modulation of
callosal connections is present at all levels within the ven-
tral stream hierarchy, or whether it is regionally specific.
With the exception of some EEG (electroencephalogra-
phy) studies (Nowicka et al., 1996; Schack et al., 2003),
which have a rather low spatial resolution, this is a
largely unexplored issue.

Results

Here we report the results from fitting the 16 DCMs
described above to the fMRI data of a single subject from
the study by Stephan et al. (2003). The time-series were
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FIGURE 43.3 Asymmetry of callosal connections with regard to contextual modulation in the model shown in Figure 43.2. The plots
show the probability that the modulation of the right → left connection by task conditional on left visual field stimulation is stronger than the
modulation of the left → right connection by task conditional on right visual field stimulation. (a) For the callosal connections between left and
right LG, we can be very confident that this asymmetry exists: the probability of the contrast being larger than zero is p�cT ���y > 0� = 98�7%. (b)
For the callosal connections between left and right FG, we are considerably less certain about the presence of this asymmetry: the probability
of the contrast being larger than zero is p�cT ���y > 0� = 68�0%.
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selected based on local maxima of the ‘main effect of
task’ contrast in the SPM (statistical parametric map).
However, the regional time-series showed a main effect
of task �LD > SD�, a main effect of VF, a simple main
effect (LD > SD separately for LVF and RVF presentation)
and task-by-VF interactions (see Discussion).

The BMS procedure indicated that the optimal
model was the S × T-T-model, i.e. modulation of inter-
hemispheric connections by task, conditional on the
visual field of stimulus presentation, and modulation of
intra-hemispheric connection strengths by the task only
(Figure 43.2). Table 43-1 shows the Bayes factors for the
comparison of the S ×T-T-model with the other models.
The AIC and BIC approximations agreed for all compar-
isons. The second-best model was the T-S×T-model (i.e.
the ‘flipped’ version of the S × T-T-model). The Bayes
factor of comparing the S × T-T-model with the T-S × T-
model was 2.33 which, according to the criteria summa-
rized by Penny et al. 2004 (see their Table 1), could be
interpreted as weak evidence in favour of the S × T-T-
model. All other comparisons gave Bayes factors larger
than 3, representing positive, strong or very strong evi-
dence in favour of the S ×T-T-model (see Table 43-1).

The optimal S×T-T-model has a structure (in terms of
modulatory inputs) predicted by the information trans-
fer hypothesis (see above). It remains to be tested, how-
ever, whether the pattern of modulatory parameters
also matches the predictions from that hypothesis, i.e.
whether for the left-lateralized LD task the modulation of
right → left connections by LD�LVF is significantly higher
than the modulation of the left → right connections by

TABLE 43-1 Bayes factors (middle column) for the
comparison of the best model with each of the other 15 models

(left column)

S × T-T versus BF Evidence in favour of S × T-T

S +T-S +T 477.31 very strong
S +T-S ×T 60.83 strong
S +T-T 110.84 strong
S +T-S 479.03 very strong
S ×T-S +T 3.92 positive
S ×T −S ×T 4.48 positive
S ×T-S 46267.47 very strong
T-S +T 19.96 positive
T −S ×T 2.33 weak
T −T 3.43 positive
T −S 29.74 strong
S-S +T 16.85 positive
S −S ×T 4.81 positive
S-T 5.59 positive
S-VF 1�35E+13 very strong

The right column lists the interpretation of the evidence in favour of the S × T-T
model according to the criteria in Raftery (1995); see the summary by Penny et al.
(2004).

LD�RVF. Figure 43.2 shows the maximum a posteriori
(MAP) estimates ���y of the modulatory parameters (±
standard deviation, i.e. the square root of the posterior
variances) for the S×T-T-model. The modulatory param-
eter estimates indeed indicated a strong hemispheric
asymmetry: both at the levels of LG and FG, the MAP
estimates of the modulation of the right → left connec-
tions are much larger than those of the left → right
connections. But how certain can we be about the pres-
ence of this asymmetry? This issue can be addressed by
means of contrasts cT ���y of the appropriate parameter
estimates (cT is a transposed vector of contrast weights).
The contrasts comparing modulation of the right → left
connection by LD�LVF versus modulation of the left →
right connection by LD�RVF are shown in Figure 43.3
(separately for connections at the level of LG and FG,
respectively). These plots show p�cT ���y > 0�, i.e. our cer-
tainty about asymmetrical modulation of callosal inter-
actions in terms of the probability that these contrasts
exceed a value of zero. For the particular subject shown
here, we can be very certain (98.7 per cent) that modu-
lation of the right LG → left LG connection by LD�LVF
is larger than the modulation of the left LG → right LG
connection by LD�RVF (cf. Figure 43.2). In contrast, we
are much less confident (68.0 per cent) that this asymme-
try also exists for callosal connections between right and
left FG.

DISCUSSION

In this chapter, we have shown how BMS can help
to decide between different cognitive-neurobiological
hypotheses, each represented by a specific model.
Together with BMS, DCM is a powerful tool to assess
which experimental manipulations (e.g. stimulus type,
induction of cognitive set, learning processes etc.) have
a significant impact on the dynamics of the network
under investigation. By representing experimental fac-
tors as external inputs in the model, modelled effects can
be interpreted fairly directly in neurobiological terms:
any given DCM specifies precisely where inputs enter and
whether they are driving (i.e. exert their effects through
direct synaptic responses in the target area) or modula-
tory (i.e. exert their effects through changing synaptic
responses in the target area to inputs from another area).
This distinction, made at the level of neural populations,
has a nice correspondence to empirical observations that
single neurons can either have driving or modulatory
effects on other neurons (Sherman and Guillery, 1998).

In our empirical example, we demonstrated that, for
the particular task and subject studied, inter-hemispheric
integration in the ventral visual stream conforms to the
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principle of inter-hemispheric information transfer. This
conclusion rests on two findings: (i) the measured data
are best explained by a model in which inter-hemispheric
interactions depend on task demands, but conditional on
the visual field of stimulus presentation; and (ii) there is
a hemispheric asymmetry in context-dependent transcal-
losal interactions, with modulation of connections from
the non-dominant (right) to the dominant (left) hemi-
sphere being considerably stronger than modulation of
the connections in the opposite direction. Importantly,
this asymmetry was not equally pronounced for all visual
areas studied. It was particularly strong for the callosal
connections between left and right LG: performance of
the letter decision task specifically enhanced the strength
of the influence of the right on the left LG, but only if the
stimulus was presented in the left visual field and thus
the information was initially only available in the right
hemisphere. The reversed conditional effect, i.e. modula-
tion of left LG → right LG by LD�RVF, was much weaker
(and actually slightly negative, see Figure 43.2). This
result means that enhancement of callosal connections
was only necessary if stimulus information was initially
represented in the ‘suboptimal’, i.e. right, hemisphere.

Two short technical comments may be useful for a full
understanding of the particular model structure chosen
here. First, one may be concerned about the presence
of correlations between inputs (in the extreme case, the
presence of identical inputs entering the model at multi-
ple sites). Concerning model selection, such correlations
are not an issue when using Eqn. 43.3 (which takes into
account the posterior covariance of the parameters), but
may be problematic when using approximations such as
AIC or BIC (see Eqn. 43.4). This can be easily investi-
gated for any given model using synthetic data generated
from known parameters and adding observation noise.
For the particular model here, we investigated this issue
and found that even at high levels of noise: (i) the model
selection reliably chose the correct model; and (ii) the
estimates for the contrasts of interests (i.e. comparisons
of modulations of callosal connections) were not biased,
i.e. did not deviate significantly from the true values
(Stephan et al., unpublished data).

A second question concerns the interpretations of the
DCM results in relation to the SPM results. One may
argue that the type of statistical contrast used to decide
which regions to sample from pre-determines the out-
come of the model selection procedure. This is only true,
however, for simple models. As an example, let us imag-
ine a two-area T-T-model that only consists of left and
right LG. In this model, the driving of right LG by LVF
and the modulation of the right LG → left LG connection
by the LD task corresponds to modelling a task-by-VF
interaction in left LG. However, it would be misleading
to conclude from this that the full four-area T-T-model

is only appropriate to explain time-series dominated
by task-by-VF interactions. In the full T-T-model with
its complex connectivity loops, both main effects and
interactions can be modelled, depending on the relative
strengths of the modulatory inputs and the intrinsic con-
nections. For example, as can be demonstrated with sim-
ulations, choosing a strongly positive modulation of the
intra-hemispheric forward connections by LD, setting the
strength of callosal modulations by LD to low positive
values and choosing strong intra-hemispheric backward
projections primarily models a main effect of task in FG
and also in LG (because of the back-projections). Over-
all, the model parameters need to be fitted to explain
optimally the overall constellation of main effects and
interactions in all areas of the model. This precludes
straightforward predictions about the outcome of model
selection in situations where the model structure is com-
plex and where regional time-series are influenced by
various experimental effects, as in the present data set.

We conclude by emphasizing the importance of model
selection. Model selection is essentially the same as
hypothesis testing, in the sense that every hypothesis
can be framed in terms of the difference between two
models. This makes model selection central to the sci-
entific process. Furthermore, model selection can also
play an important role in clinical neuroscience, e.g. in
psychiatry where diseases like schizophrenia often com-
prise heterogeneous phenotypes. BMS could be used to
find subgroups of patients that differ in terms of DCMs
that optimally explains the measured neurophysiological
data. If the neural models are sophisticated enough to
distinguish between the effects of different transmitter
receptors, it might also be possible to obtain predictions
for the optimal pharmacological treatment of individual
patients (see Stephan 2004; Stephan et al., 2006b).
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5

Non-linear Registration
J. Ashburner and K. Friston

INTRODUCTION

This chapter provides an overview of the ideas
underlying non-linear image registration and explains
the principles behind the spatial normalization in the
statistical parametric mapping (SPM) software. The
previous chapter described rigid body approaches for
registering brain images of the same subject, which
assume that there are no differences among the shapes of
the brains. This is often a reasonable assumption to make
for intra-subject registration, but this model is not appro-
priate for matching brain images from different subjects.
In addition to estimating an unknown pose and position,
inter-subject registration approaches also need to model
the different shapes of the subjects’ heads or brains.

There are also cases when within subject registration
of brain images may need to account for different shapes.
This can be because there have been real changes in a
brain’s anatomy over time. Such changes can arise as
a result of growth, ageing, disease and surgical inter-
vention. There can also be shape differences that are
purely due to artefacts in the images. For example, func-
tional magnetic resonance imaging (fMRI) data usually
contain quite large distortions (Jezzard and Clare, 1999),
which means that accurate intra-subject alignment with
an anatomical image can be problematic. In an fMRI
study, if a match between anatomical and functional
images is poor, then this will lead to mis-localization
of brain activity. Interactions between image distortion
and the orientation of a subject’s head in the scanner
can also cause other problems because purely rigid body
alignment does not take this into account (Andersson
et al., 2001).

The main application for non-linear image registration
within the SPM software is spatial normalization. This
involves warping images from a number of individuals
into roughly the same standard space to allow signal
averaging across subjects. In functional imaging studies,

spatial normalization is useful for determining what hap-
pens generically over individuals. A further advantage of
using spatially normalized images is that activation sites
can be reported according to their Euclidean coordinates
within a standard space (Fox, 1995). The most commonly
adopted coordinate system within the brain imaging
community is that described by Talairach and Tournoux
(1988), although new standards are now emerging that
are based on digital atlases (Evans et al., 1993, 1994;
Mazziotta et al., 1995).

Another application for non-linear registration is for
assisting in image segmentation and for generating indi-
vidualized brain atlases (Collins et al., 1995; Tzourio-
Mazoyer et al., 2002). If a template image is warped to
match an individual’s brain image, then other data that
are in alignment with the template can be overlayed on
to that image. These additional data can be predefined
labels or probability maps. The next chapter says more
on this subject.

Sometimes, the actual shape differences among brains
are of interest in their own right. There is now an enor-
mous literature on comparing anatomy (Dryden and
Mardia, 1998; Kendall et al., 1999; Miller, 2004). Most of
these approaches require some sort of representation of
the relative shapes of the brains, which can be derived
using non-linear registration.

Methods of registering images can be broadly divided
into label based and intensity based. Label based techniques
identify homologous features (labels) in the source and
reference images and find the transformations that best
superpose them. The labels can be points, lines or sur-
faces. Homologous features are often identified manu-
ally, but this process is time-consuming and subjective.
Another disadvantage of using points as landmarks is
that there are very few readily identifiable discrete points
in the brain. Lines and surfaces are more readily identi-
fied, and in many instances they can be extracted auto-
matically (or at least semiautomatically). Once they are

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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identified, the spatial transformation is effected by bring-
ing the homologies together. If the labels are points, then
the required transformations at each of those points is
known. Between the points, the deforming behaviour is
not known, so it is forced to be as ‘smooth’ as possi-
ble. There are a number of methods for modelling this
smoothness. The simplest models include fitting splines
through the points in order to minimize bending energy
(Bookstein, 1989, 1997). More complex forms of interpo-
lation, such as viscous fluid models, are often used when
the labels are surfaces (Davatzikos, 1996; Thompson and
Toga, 1996).

Intensity (non-label) based approaches identify a spa-
tial transformation that optimizes some voxel-similarity
measure between a source and reference image, where
both are treated as unlabelled continuous processes. The
matching criterion is often based upon minimizing the
sum of squared differences or maximizing the correlation
between the images. For this criterion to be successful,
it requires the reference to appear like a warped ver-
sion of the source image. In other words, there must be
correspondence in the grey levels of the different tissue
types between the source and reference images. In order
to warp together images of different modalities, a few
intensity based methods have been devised that involve
optimizing an information theoretic measure (Studholme
et al., 2000; Thévenaz and Unser, 2000).

Intensity matching methods are usually very suscepti-
ble to poor starting estimates, so more recently a number
of hybrid approaches have emerged that combine inten-
sity based methods with matching user defined features
(typically sulci). Registration methods usually search for
the single most probable realization of all possible trans-
formations. Robust optimization methods that almost
always find the global optimum would take an extremely
long time to run with a model that uses millions of
parameters. These methods are simply not feasible for
problems of this scale. However, if sulci and gyri can be
easily labelled from the brain images, then robust meth-
ods can be applied in order to match the labelled fea-
tures. Robust methods become more practical when the
amount of information is reduced to a few key features.
The robust match can then be used to bias the registration
(Joshi et al., 1995; Davatzikos, 1996; Thompson and Toga,
1996), therefore increasing the likelihood of obtaining the
global optimum.

The next section of this chapter will discuss objective
functions, which are a measure of how well images are
registered. Registering images involves estimating some
mapping from the domain of one image to the range of
another, where the measure of ‘goodness’ is the objective
function. The mapping is parameterized in some way,
and this is the subject of the deformation models section.
A procedure for estimating the optimal parameters is

introduced in estimating the mappings, along with some
strategies for improving the internal consistency of the
registration models. Then the spatial normalization in the
SPM software is described briefly, before finishing with a
discussion about evaluation strategies for non-linear regis-
tration approaches.

OBJECTIVE FUNCTIONS

Image registration procedures use a mathematical model
to explain the data. Such a model will contain a number
of unknown parameters that describe how an image is
deformed. The objective is usually to determine the single
‘best’ set of values for these parameters. The measure
of ‘goodness’ is known as the objective function. The aim
of the registration is usually to find the most probable
deformation, given the data. In such cases, the objective
function is a measure of this probability. A key element
of probability theory is Bayes’ theorem, which states:

P���D� = P���D�P�D� = P�D���P��� 5.1

This can be rearranged to give:

P���D� = P�D���P���

P�D�
5.2

This posterior probability of the parameters given the
image data �P���D�� is proportional to the probability
of the image data given the parameters �P�D��� – the
likelihood), times the prior probability of the parameters
�P����. The probability of the data �P�D�� is a constant.
The objective is to find the most probable parameter val-
ues, and not the actual probability density, so this factor
is ignored. Bayes’ theorem is illustrated in Plate 4 (see
colour plate section).

The single most probable estimate of the parameters
is known as the maximum a posteriori (MAP) estimate.1

There is a monotonic relationship between a value and
its logarithm. In practice, the objective function is nor-
mally the logarithm of the posterior probability (in which
case it is maximized) or the negative logarithm (which is
minimized). It can therefore be considered as the sum of
two terms: a likelihood term, and a prior term.

− log P���D� = − log P�D���− log P��� 5.3

1 True Bayesians realize that such a point estimate is slightly
arbitrary as the mode of the probability density may change if
the parameterization is changed, but it is a commonly accepted
approach within the image registration field.
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Likelihood term

The likelihood term is a measure of the probability of
observing an image given some set of model parameters.
A simple example would be where an image is mod-
elled as a warped version of a template image, but with
Gaussian random noise added. We denote the intensity
of the ith voxel of the image by gi, the parameters by �
(a column vector of M elements), and the intensity of the
ith voxel of the deformed template image by fi���. If the
variance of the Gaussian noise is �2, then the probability
of observing gi given the parameters is:

P�gi��� = (
2��2

)− 1
2 exp

(
− �gi −fi����2

2�2

)
5.4

If the Gaussian noise at each voxel is identically and
independently distributed (IID), then the probability of
the whole image g is obtained from the product of the
probabilities at each of the I voxels.

P�g��� =
I∏

i=1

(
2��2

)− 1
2 exp

(
− �gi −fi����2

2�2

)
5.5

Therefore, the negative log-likelihood is:

− log P�g��� = I

2
log

(
2��2

)+ I∑
i=1

�gi −fi����2

2�2
5.6

If I and �2 are constant, then maximizing P�g��� can be
achieved by minimizing the following sum of squared
difference:

���� = 1
2�2

I∑
i=1

�gi −fi����2 5.7

There is often a slight complication though, and that is
that I may not be constant. It is possible that parts of g
correspond to a region that falls outside the field of view
of f (i.e. fi��� is not defined at certain voxels). Differ-
ent parameter estimates result in different deformations
and, hence, different numbers of voxels without cor-
responding regions in the template. For this reason,
it is common simply to minimize the mean squared
difference instead. The motivation for this approach is
that it assumes the residuals that should arise from the
missing data are drawn from the same distribution as
those that can be computed. Another issue is that the
residual differences are rarely IID in practice, as there are
usually correlations among neighbouring voxels. If this
non-sphericity is not taken into consideration, then the
model will overestimate the likelihood.

The mean-squared difference objective function makes
a number of assumptions about the data. If the data do
not meet these assumptions then the probabilities may not

accurately reflect the goodness of fit, and the estimated
deformations will be poor. In particular, it assumes that
the image resembles a warped version of the template.
Under some circumstances, it may be better to model spa-
tially varying variances, which would effectively weight
different regions to a greater or lesser extent. For exam-
ple, if matching a template to a brain image containing
a lesion, then the mean squared difference around the
lesion should contribute little or nothing to the objective
function (Brett et al., 2001). This is achieved by assigned
lower weights (higher �2) in these regions, so that they
have much less influence on the final solution.

In addition to modelling non-linear deformations of
the template, there may also be additional parameters
within the model that describe intensity variability.2

A very simple example would be the inclusion of an
additional intensity scaling parameter, but the models
can be much more complicated. There are many possible
objective functions, each making a different assumption
about the data and requiring different parameterizations
of the template intensity distribution. These include the
information theoretic objective functions mentioned in
Chapter 4, as well as the objective function described in
Chapter 6. There is no single universally best criterion to
use for all data.

Prior term

This term reflects the prior probability of a deforma-
tion occurring – effectively biasing the deformations to
be realistic. If one considers a model whereby each
voxel can move independently in three dimensions, then
there would be three times as many parameters to esti-
mate as there are observations. This would simply not be
achievable without regularizing the parameter estimation
by modelling a prior probability.

The prior term is generally based on some measure
of deformation smoothness. Smoother deformations are
deemed to be more probable – a priori – than defor-
mations containing a great deal of detailed information.
Usually, the model parameters are such that they can be
assumed to be drawn from a multivariate Gaussian distri-
bution. If the mean of the distribution of the parameters
� (a column vector of length M) is �0 and the covariance
matrix describing the distribution is C�, then:

P��� = �2��− M
2 �C��− 1

2 exp
(

−1
2

��−�0�
T C�

−1 ��−�0�

)

5.8

2 Ideally, the likelihood would be marginalized with respect to
these additional parameters, but this is usually intractable in
practice.
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By taking the negative logarithm of this probability, we
obtain an expression that can be compared with that of
Eqn. 5.6.

− log P��� =M

2
log �2��+ 1

2
log �C��

+ 1
2

��−�0�
T C�

−1 ��−�0� 5.9

In most implementations, the mean of the probability
distribution is zero, and the inverse of the covariance
matrix has a simple numerical form. The expression
1
2 �T C−1

� � is often thought of as an ‘energy density’
�� ����. Commonly used forms for this are the membrane
energy (Amit et al., 1991; Gee et al., 1997b), bending energy
(Bookstein, 1997) or linear-elastic energy (Miller et al., 1993;
Christensen et al., 1996a; Davatzikos, 1996). The form of
the prior used by the registration will influence the esti-
mated deformations. This is illustrated by Figure 5.1.

The simplest model used for linear regularization is
based upon minimizing the membrane energy of a vector
function u�x��� over the domain of the image (see next
section). If u is a linear function of �, then this can be
represented by 1

2 �T C−1
� � = uT LT Lu, where L is a matrix

of differential operators. The membrane energy model is
also known as the Laplacian model.

� ��� = 	

2

∫
x
�

3∑
i=1

3∑
j=1

(
�ui�x���

�xj

)2

dx 5.10

The bending energy (biharmonic or thin plate model)
would be given by:

� ��� = 	

2

∫
x
�

3∑
i=1

3∑
j=1

3∑
k=1

(
�2ui�x���

�xj�xk

)2

dx 5.11

The linear elastic energy is given by:

� ��� = 1
2

∫
x
�

3∑
j=1

3∑
k=1

(
	

(
�uj�x���

�xj

)(
�uk�sx���

�xk

)

+ 

2

(
�uj�x���

�xk

+ �uk�x���

�xj

)2
⎞
⎠dx 5.12

In reality, the true amount of anatomical variability is
very likely to differ from region to region (Lester et al.,
1999), so a non-stationary prior probability model could,
in theory, produce more accurate estimates. If the true
prior probability distribution of the parameters is known
(somehow derived from a large number of subjects), then
C� could be an empirically determined covariance matrix
describing this distribution. This approach would have
the advantage that the resulting deformations are more
typically ‘brain like’, and so increase the face validity of
the approach.

In principle, the hyperparameters (e.g. 	 and �2) of
the registration model could be estimated empirically
using restricted maximum likelihood (ReML – also known
as type II maximum likelihood, ML-II or parametric empirical

FIGURE 5.1 This figure illustrates the effect of different types of regularization. The top row on the left shows simulated 2D images
of a circle and a square. Below these is the circle after it has been warped to match the square, using both membrane and bending energy
priors. These warped images are almost visually indistinguishable, but the resulting deformation fields using these different priors are quite
different. These are shown on the right, with the deformation generated with the membrane energy prior shown above the deformation that
used the bending energy prior.
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Bayes) with Laplace approximation schemes similar to those
mentioned in the later chapters. In practice, however,
values for these hyperparameters are often imputed in
a way that depends upon a subjective belief in what an
optimal trade-off between the likelihood and prior terms
should be.

Deformation models

At its simplest, image registration involves estimating a
smooth, continuous mapping between the points in one
image, and those in another. This mapping allows one
image to be re-sampled so that it is warped (deformed)
to match another (Figures 5.2 and 5.3). There are many
ways of modelling such mappings, but these fit into two
broad categories of parameterization (Miller et al., 1997).

• The small deformation framework does not necessarily
preserve topology3 – although if the deformations are
relatively small, then it may still be preserved.

• The large deformation framework generates deforma-
tions (diffeomorphisms) that have a number of elegant
mathematical properties, such as enforcing the preser-
vation of topology.

Both of these approaches require some model of a
smooth vector field. Such models will be illustrated with

FIGURE 5.2 This figure illustrates a hypothetical deformation
field that maps between points in one image and those in another.
This is a continuous function over the domain of the image.

3 The word ‘topology’ is used in the same sense as in ‘Topolog-
ical properties of smooth anatomical maps’ (Christensen et al.,
1995). If spatial transformations are not one-to-one and contin-
uous, then the topological properties of different structures can
change.

the simpler small deformation framework, before briefly
introducing the principles that underlie the large defor-
mation framework.

Small deformation approaches

First of all, some simple notation is introduced. Each coor-
dinate within an image is a vector of three elements. For
example, the coordinate of the ith voxel could be denoted
by xi = [

xi1 xi2 xi3

]
. For an image f, the ith voxel may be

indicated by fi or by f�xi�. Similarly, a point in a deforma-
tion field can also be denoted as a vector. The ith voxel of
an image deformed this way could be denoted by gi���
or g�y�xi����. The images are treated as continuous func-
tions of space. Reading off the value at some arbitrary
point involves interpolating between the original vox-
els. For many interpolation methods, the functions are
parameterized by linear combinations of basis functions,
such as B-spline bases, centred at each original voxel.
Similarly, the deformations themselves can be parame-
terized by a linear combination of smooth, continuous
basis functions.

y�xi��� =
M∑

m=1

�m�m�xi� 5.13

Most models treat the basis functions as scalar fields
representing deformations in the three orthogonal direc-
tions4 (Figure 5.4) such that:

y1�xi��� =
M∑

m=1

�m1�m1�xi�

y2�xi��� =
M∑

m=1

�m2�m2�xi�

y3�xi��� =
M∑

m=1

�m3�m3�xi�

5.14

A potentially enormous number of parameters are
required to describe the non-linear transformations that
warp two images together (i.e. the problem can be very
high-dimensional). However, much of the spatial vari-
ability can be captured using just a few parameters.
Sometimes only an affine transformation is used to reg-
ister approximately images of different subjects. This
accounts for differences in position, orientation and over-
all brain dimensions (Figure 5.5), and often provides a
good starting point for higher-dimensional registration
models. The basis functions for such a transform are

4 Exceptions are some models that use linear elastic regulariza-
tion (Christensen et al., 1996a).
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FIGURE 5.3 This figure illustrates a deformation field that brings the top left image into alignment with the bottom left image. At the
top right is the image with the deformation field overlayed, and at the bottom right is this image after it has been warped. Note that in this
example, the deformation wraps around at the boundaries.

FIGURE 5.4 This figure illustrates 2D displacements generated from two scalar fields. On the left are the horizontal displacements,
where dark areas indicate displacements to the right, and light areas indicate displacements to the left. Vertical displacements are shown
on the right, with dark indicating upward displacements and light indicating downward. These displacement fields are modelled by linear
combinations of basis functions. The superimposed arrows show the combined directions of displacement.
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FIGURE 5.5 Images of six subjects registered using a 12-parameter affine registration (see also Figure 5.9). The affine registration matches
the positions and sizes of the images.

coordinates themselves, leading to the following param-
eterization in 3D:

y1�x��� =�1x1 +�2x2 +�3x3 +�4

y2�x��� =�5x1 +�6x2 +�7x3 +�8

y3�x��� =�9x1 +�10x2 +�11x3 +�12

5.15

Low spatial frequency global variability of head shape
can be accommodated by describing deformations by
a linear combination of a few low frequency basis
functions. One widely used basis function registration
method is part of the AIR package (Woods et al., 1998a,b),
which uses polynomial basis functions (Figure 5.6) to
model shape variability. These basis functions are a sim-
ple extension to those used for parameterizing affine
transformations. For example, a two-dimensional third
order polynomial mapping is:

y1�x��� =�1 +�2x1 +�3x
2
1 +�4x

3
1

�5x2 +�6x1x2 +�7x
2
1x2

�8x
2
2 +�9x1x

2
2

�10x
3
2

y2�x��� =�11 +�12x1 +�13x
2
1 +�14x

3
1

�15x2 +�16x1x2 +�17x
2
1x2

�18x
2
2 +�19x1x

2
2

�20x
3
2

5.16

FIGURE 5.6 Polynomial basis functions. Note that additional
basis functions not shown in Eqn. 5.16 are included here.

Other models parameterize a displacement field, which
is added to an identity transform:

y�xi��� = xi +
M∑

m=1

�m�m�xi� 5.17

In such parameterizations, the inverse transforma-
tion is sometimes approximated by subtracting the
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FIGURE 5.7 This figure illustrates the small
deformation setting. At the top is an illustration
of a displacement added to an identity transform.
Below this is a forward and inverse deformation
generated within the small deformation setting.
Note that the one-to-one mapping is lost because
the displacements are too large, and the mappings
are not accurate inverses of each other.

displacement (Figure 5.7). It is worth noting that this is
only a very approximate inverse, which fails badly for
larger deformations.

Families of basis functions for such models include
Fourier bases (Christensen, 1999), sine and cosine trans-
form basis functions (Christensen, 1994; Ashburner and
Friston, 1999) (Figures 5.8 and 5.9). These models usu-
ally use in the order of about 1000 parameters. The small
number of parameters will not allow every feature to be
matched exactly, but it will permit the global head shape
to be modelled rapidly.

The choice of basis functions depends upon how trans-
lations at borders should behave (i.e. the boundary condi-
tions). If points at the borders over which the transform is
computed are not required to move in any direction, then
the basis functions should consist of the lowest frequen-
cies of the three-dimensional sine transform. If the bor-
ders are allowed to move freely, then a three-dimensional
cosine transform is more appropriate. Fourier transform
basis functions could be used if the displacements are to
wrap around (circulant boundary conditions). All these
transforms use the same set of basis functions to rep-
resent warps in each of the directions. Alternatively, a FIGURE 5.8 Cosine transform basis functions.
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FIGURE 5.9 Six subjects’ brains registered with both affine and cosine transform basis function registration (see also Figure 5.8), as
implemented by SPM. The basis function registration estimates the global shapes of the brains, but is not able to account for high spatial
frequency warps.

mixture of cosine and sine transform basis functions can
be used to constrain translations at the surfaces of the
volume to be parallel to the surface only (sliding bound-
ary conditions). By using a different combination of basis
function sets, the corners of the volume can be fixed and
the remaining points on the surface can be free to move in
all directions (bending boundary conditions) (Christensen,
1994). These various boundary conditions are illustrated
in Figure 5.10.

Radial basis functions are another family of parame-
terizations which are often used in conjunction with an
affine transformation. Each radial basis function is cen-
tred at some point, and the amplitude is then a function
of the distance from that point. Thin-plate splines are one
of the most widely used radial basis functions for image
warping, and are especially suited to manual landmark
matching (Bookstein, 1989, 1997; Glasbey and Mardia,
1998). The landmarks may be known, but interpolation
is needed in order to define the mapping between these
known points. By modelling it with thin-plate splines, the
mapping function has the smallest bending energy. Other
choices of basis function reduce other energy measures,
and these functions relate to the convolution filters that
are sometimes used for fast image matching (Bro-Nielsen
and Gramkow, 1996; Beg et al., 2005).

B-spline bases are also used for parameterizing dis-
placements (Studholme et al., 2000; Thévenaz and Unser,
2000) (Figure 5.11). They are related to the radial basis

FIGURE 5.10 Different boundary conditions. Above left: fixed
boundaries (generated purely from sine transform basis functions).
Above right: sliding boundaries (from a mixture of cosine and sine
basis functions). Below left: bending boundaries (from a different
mixture of cosine and sine basis functions). Below right: free bound-
ary conditions (purely from cosine basis functions).

functions in that they are centred at discrete points, but
the amplitude is the product of functions of distance in
the three orthogonal directions (i.e. they are separable).
The separability and local support of these basis functions
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FIGURE 5.11 B-spline basis functions.

confers certain advantages in terms of being able rapidly
to generate displacement fields through a convolution-
like procedure.

Very detailed displacement fields can be generated
by modelling an individual displacement at each voxel.
These may not appear to be basis function approaches,
but the assumptions within the registration models often
assume that the fields are tri-linearly interpolated. This is
the same as a first degree B-spline basis function model.

LARGE DEFORMATION APPROACHES

Approaches that parameterize the deformations them-
selves do not necessarily enforce a one-to-one mapping,
particularly if the prior is a multivariate Gaussian proba-
bility density. Small deformation models that incorporate
this constraint have been devised (Edwards et al., 1998;
Ashburner et al., 1999, 2000), but their parameterization
is still essentially within a small deformation setting.

The key element of the large-deformation or diffeomor-
phic5 setting is that the deformations are generated by
the composition of a number of small deformations (i.e.
warped warps). A composition of two functions is essen-
tially taking one function of the other in order to produce

5 A diffeomorphism is a globally one-to-one (bijective) smooth
and continuous mapping with derivatives that are invertible
(i.e. non-zero Jacobian determinant).

a new function. For two functions, y2 and y1 this would
be denoted by:

�y2 �y1��x� = y2�y1�x�� 5.18

For deformations, the composition operation is achieved
by re-sampling one deformation field by another. Provid-
ing the original deformations are small enough, then they
are likely to be one-to-one. A composition of a pair of
one-to-one mappings will produce a new mapping that
is also one-to-one. Multiple nesting can also be achieved,
so that large one-to-one deformations can be obtained
from the composition of many very small deformations.

�y3 �y2 �y1��x� = ��y3 �y2��y1��x�

= �y3 � �y2 �y1���x� = y3�y2�y1�x��� 5.19

The early diffeomorphic registration approaches were
based on the greedy ‘viscous fluid’ registration method of
Christensen and Miller (Christensen et al., 1994, 1996b).
In these models, finite difference methods are used to
solve the partial differential equations that model one
image as it ‘flows’ to match the shape of the other.
At the time, the advantage of these methods was that
they were able to account for large displacements while
ensuring that the topology of the warped image is pre-
served. They also provided a useful foundation from
which the later methods arose. Viscous fluid methods
require the solutions to large sets of partial differential
equations (see Chapter 19 of Press et al., 1992). The ear-
liest implementations were computationally expensive
because solving the equations used successive over-
relaxation. Such relaxation methods are inefficient when
there are large low frequency components to estimate.
Since then, a number of faster ways of solving the differ-
ential equations have been devised (Modersitzki, 2003).
These include the use of Fourier transforms to convolve
with the impulse response of the linear regularization
operator (Bro-Nielsen and Gramkow, 1996), or by con-
volving with a separable approximation (Thirion, 1995).
Another fast way of solving such equations would be to
use a multigrid method (Haber and Modersitzki, 2006),
which efficiently makes use of relaxation methods over
various spatial scales.

The greedy algorithm works in several stages. In the
first stage, a heavily regularized small deformation �y1�
would be estimated that brings one image f into slightly
better correspondence with the other g. A deformed ver-
sion of this image would then be created by f1 = f�y1�.
Then another small deformation is estimated �y2� by
matching f1 with g, and a second deformed version of
f created by f2 = f�y2�y1�. This procedure would be
repeated, each time generating a warped version of f that
is closer to g. Although the likelihood will be increased
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FIGURE 5.12 This figure illustrates the large
deformation setting. In this setting, the deforma-
tions follow a curved trajectory (just as a rigid-
body rotation follows a curved trajectory). Below is
an example of a forward and inverse deformation.
Unlike those shown in Figure 5.6, these are one-
to-one mappings, and the transforms are actually
inverses of each other.

by such a greedy algorithm, it will not produce the
smoothest possible deformation. Such a warping strategy
does not maximize any clearly defined prior probability
of the parameters.

More recent algorithms for large deformation
registration do aim to maximize both the log-likelihood
and log-prior. For example, the LDDMM (large defor-
mation diffeomorphic metric mapping) algorithm (Beg
et al., 2005) does not fix the deformation parameters once
they have been estimated. It continues to update them
using a gradient descent algorithm such that the log-prior
term is properly optimized. Such approaches essentially
parameterize the model by velocities, and compute the
deformation as the medium warps over unit time (Joshi
and Miller, 2000; Miller et al., 2006).

Diffeomorphic warps can also be inverted (Figure 5.12).
If each small deformation is generated by adding a small
displacement (velocity) to an identity transform, then
their approximate inverses can be derived by subtract-
ing the same displacement. A composition of these small

deformation inverses will then produce the inverse of the
large deformation.

In principle, a single velocity field could be used
to parameterize the model,6 which would confer cer-
tain computational advantages. In Group theory, the
velocities are a Lie algebra, and these are exponentiated
to produce a deformation, which is a Lie group (see e.g.
Miller and Younes, 2001; Woods, 2003; Miller et al. 2006;
Vaillant et al., 2004). If the velocity field is assumed con-
stant throughout, then the exponentiation can be done
recursively in a way that is analogous to exponentiating
a matrix (Moler and Loan, 2003) by recursive squaring.
A full deformation can be computed from the square7 of
a half-way deformation, a half-way deformation can be

6 In such a model, the motion is at constant velocity within the
Lagrangian frame of reference, but variable velocity if viewed
within the Eulerian frame.
7 The use of ‘square’ is in the sense of a composition of a function
by itself.
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computed by squaring a quarter-way deformation, and
so on.

Many researchers are interested in deriving metrics
from deformations in order to compare the similarities
of shapes (Miller et al., 1997, Miller, 2004). These met-
rics are a measure of the difference between the shapes,
and can be thought of as measures of geodesic dis-
tance. One example of the use of such distance measures
would be for tackling multivariate classification prob-
lems using non-linear kernel methods (such as support
vector machines). In order to be a metric, a measure must
be non-negative �dist�A�B�� 0�, symmetric �dist�A�B� =
dist�B�A�� and satisfy the triangle inequality �dist�A�B�+
dist�B�C� � dist�A�C��. The more recent diffeomorphic
registration approaches generate suitable measures of
difference between shapes, which are derived from the
energy densities of the velocity fields.

ESTIMATING THE MAPPINGS

Most non-linear registration approaches search for a
maximum a posteriori (MAP) estimate of the parameters
defining the warps. This corresponds to the mode of the
posterior probability density of the model parameters.
There are many optimization algorithms that try to find
the mode, but most of them only perform a local search.
It is possible to use relatively simple strategies for fit-
ting models with few parameters but, as the number of
parameters increases, the time required to estimate them
will increase dramatically. For this reason, it is common
to use optimization algorithms that utilize the derivatives
of the objective function with respect to the parameters,
as these indicate the best direction in which to search.
Some developers use schemes related to gradient descent,
whereby the parameters are repeatedly changed by a
tiny amount in the direction that improves the objective
function. This procedure can still be quite slow – partic-
ularly when there are dependencies among the parame-
ters. Faster algorithms have been devised, which assume
that the probability densities can be approximated by
a multivariate Gaussian. Their effectiveness depends on
how good this approximation is.

The Levenberg-Marquardt (LM) algorithm is a very
good general purpose optimization strategy (see Press
et al., 1992 for more information). The procedure is a local
optimization, so it needs reasonable initial starting esti-
mates. It uses an iterative scheme to update the param-
eter estimates in such a way that the objective function
is usually improved each time. Each iteration requires
the first and second derivatives of the objective function,
with respect to the parameters. In the following scheme,
I is an identity matrix and � is a scaling factor. The choice

of � is a trade-off between speed of convergence, and sta-
bility. A value of zero for � gives the Newton-Raphson
or Gauss-Newton optimization scheme, which may be
unstable if the probability density is not well approxi-
mated by a Gaussian. Increasing � will slow down the
convergence, but increase the stability of the algorithm.
The value of � is usually decreased slightly after iter-
ations that decrease (improve) the cost function. If the
cost function increases after an iteration, then the previ-
ous solution is retained, and � is increased in order to
provide more stability.

��n+1� = ��n� −
(

�2� ���

��2

∣∣∣
��n�

+ �I
)−1

�� ���

��

∣∣∣
��n�

5.20

The objective function � ��� is the sum of two terms.
Ignoring the constants, these are the negative logarithm
of the likelihood ������ and the negative logarithm of the
prior probability density �� ����. The prior probability of
the parameters is generally modelled by a multivariate
Gaussian density, with mean �0 and covariance C�.

� ��� = 1
2

��−�0�C�
−1��−�0� 5.21

The first and second derivatives of � ��� (see Eqn. 5.9)
with respect to the parameters are therefore:

�� ���

��
= �����

��
+C�

−1��−�0� and

�2� ���

��2
= �2�

��2
+C�

−1 5.22

If the model is very high-dimensional (more than about
4000 parameters), then storing a full matrix of second
derivatives becomes difficult because of memory lim-
itations. For this reason, it can be convenient to use
sparse representations of the second derivatives, and
use approaches for solving systems of sparse equations
(Gilbert et al., 1992). Sparse matrices of second deriva-
tives can be obtained by parameterizing the deforma-
tions with basis functions that have local support (e.g.
B-splines). A faster approach, however, would be to use
matrix solvers that are especially designed for the partic-
ular class of problem. Full multigrid (FMG) approaches
are especially suited to solving such equations, and a
good introductory explanation of these methods can be
found in Chapter 19 of Press et al. (1992).

Optimization problems for complex non-linear mod-
els, such as those used for image registration, can eas-
ily get caught in local optima, so there is no guarantee
that the estimate determined by the algorithm is glob-
ally optimum. If the starting estimates are sufficiently
close to the global optimum, then a local optimization
algorithm is more likely to find the true MAP solution.
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Therefore, the choice of starting parameters can influence
the validity of the final registration result. One method
of increasing the likelihood of achieving a good solution
is gradually to reduce the value of 	 relative to 1/�2

over time.8 This has the effect of making the registration
estimate the more global deformations before estimating
more detailed warps. Most shape variability is low fre-
quency, so an algorithm can get reasonably close to a
good solution using a relatively high value for 	. This
also reduces the number of local minima for the early
iterations. The images could also be smoother for the
earlier iterations in order to reduce the amount of con-
founding information and the number of local minima.
A review of such approaches can be found in Lester and
Arridge (1999).

Internal consistency

Currently, most registration algorithms use only a single
image from each subject, which is typically a T1-weighted
MR image. Such images only really delineate different
tissue types. Further information that may help the reg-
istration could be obtained from other data, such as dif-
fusion weighted images (Zhang et al., 2004). This should
provide anatomical information more directly related to
connectivity and implicitly function, possibly leading to
improved registration of functionally specialized areas
(Behrens et al., 2006). Matching DTI images of a pair
of subjects together is likely to give different deforma-
tion estimates than would be obtained through match-
ing T1-weighted images of the same subjects. The only
way to achieve an internally consistent match is through
performing the registrations simultaneously, within the
same model.

Another form of consistency is inverse consistency
(Christensen, 1999). For example, suppose a deformation
that matches brain f to brain g is estimated, and also
a deformation that matches brain g to brain f. If one
deformation field is not the inverse of the other, then
something has to be wrong. The extreme case of an incon-
sistency between a forward and inverse transformation is
when the one-to-one mapping between the images breaks
down. The best way of ensuring such internal consistency
is through using diffeomorphic matching strategies.

Many registration approaches use the gradients of only
one of the images to drive the registration, rather than
the gradients of both. This can be another reason why

8 Regularize heavily to begin with and decrease the amount of
regularization over time. The residuals are much further from
IID in the early iterations, so the likelihood is overestimated.
Increasing the regularization partially compensates for this.

inconsistencies may arise between forward and inverse
registration approaches. One way in which the regis-
tration can be made more symmetric is iteratively to
match the images to their warped average. The result
of this procedure would be two deformations that map
‘half way’. From the appropriate compositions of these
‘half way’ deformations, a pair of deformations can be
generated that map between the original images, and are
both inverses of each other.

Sometimes, instead of simply matching a pair of
images, the objective is to match the images of multi-
ple subjects. This is sometimes done by registering all
the images with a single template image. Such a proce-
dure would produce different results depending upon
the choice of template, so this is another area where inter-
nal consistency should be considered. One could consider
an optimal template being some form of average (Hirani
et al., 2001; Avants and Gee, 2004; Davis et al., 2004; Loren-
zen et al., 2004). Registering such a template with a brain
image generally requires smaller (and therefore less error
prone) deformations than would be necessary for regis-
tering to an unusually shaped template. Such averages
generally lack the detail present in the individual sub-
jects. The structures that are more difficult to match are
generally slightly blurred in the average, whereas the
structures that can be more reliably matched are sharper.
Such an average generated from a large population of
subjects would be ideal for use as a general purpose tem-
plate.

SPATIAL NORMALIZATION IN THE
SPM SOFTWARE

This section describes the steps involved in the algo-
rithm that SPM uses to normalize spatially images of
different subjects into roughly the same coordinate sys-
tem. The coordinate system is defined by the template
image (or series of images), which is usually one of the
images released with the software. So far, this chapter has
assumed the template is deformed to match an individ-
ual’s brain image. In this section, the individual subjects’
images are warped to approximate a template image.
This is slightly suboptimal because it assumes the noise
is in the template image rather than the individual image;
the original motivation for this strategy was to avoid
having to invert the estimated deformation fields.

Spatial normalization in SPM is currently implemented
in a small deformation setting and warps a smoothed
version of the image to a smooth template. It works by
estimating the optimum coefficients for a set of bases,
by minimizing the mean squared difference between the
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template and a warped source image, while simultane-
ously minimizing the deviation of the transformation
from its expected value. The images may be scaled dif-
ferently, so an additional parameter �w� is needed to
accommodate this difference. In fact, four intensity scal-
ing parameters are used for each template image (also
to model linear intensity gradients), but they will not
be included in the following description. With a single
scaling parameter, the minimized likelihood function is:

� = 1
2�2

I∑
i=1

�f�y�xi����−wg�xi��
2 5.23

A Gauss-Newton approach is used to optimize the
parameters. This requires the following first derivatives:

��

��m

= 1
�2

I∑
i=1

�f�y�xi����

��m

�f�y�xi����−wg�xi�� 5.24

��

�w
= 1

�2

I∑
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and second derivatives:

�2�

��m��n

= 1
�2

I∑
i=1

(
�f�y�xi����

��m

�f�y�xi����

��n

+�2f�y�xi����

��m��n

�f�y�xi����−wg�xi��

)
5.26
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In practice, the following approximate second deriva-
tives are used, because they can be computed more easily,
and they also make the algorithm more stable:

�2�

��m��n

� 1
�2

I∑
i=1

�f�y�xi����

��m

�f�y�xi����

��n

5.29

The prior used for non-linear registration is based on
the bending energy of the displacement field. The amount
of spatial variability is assumed to be known a priori (i.e.
	 in Eqn. 5.11 is assigned by the user), but the algorithm
tries to determine an optimal �2 value for the partic-
ular image being registered. SPM is applied to a wide
variety of images with different noise properties. Deter-
mining an optimal value for �2 may be impractical for
most users, so the algorithm uses a heuristic approach to
assign a suitable value. The heuristic is based on the mean
squared difference between the template and warped
image, but with a correction based on the number of inde-
pendent voxels. This correction is computed at each itera-
tion using the smoothness of the residuals. Fully Bayesian

approaches assume that the variance associated with each
voxel is already known, whereas the approach described
here is a type of empirical Bayes, which attempts to esti-
mate this variance from the residuals. Because the regis-
tration is based on smooth images, correlations between
neighbouring voxels are considered when estimating the
variance. This makes the same approach suitable for the
spatial normalization of both high quality MR images,
and low resolution noisy PET images.

In practice, it may be meaningless even to attempt an
exact match between brains beyond a certain resolution.
There is not a one-to-one relationship between the corti-
cal structures of one brain and those of another, so any
method that attempts to match brains exactly must be
folding the brain to create sulci and gyri that do not exist.
Even if an exact match is possible, because the registra-
tion problem is not convex, the solutions obtained by
high-dimensional warping techniques may not be truly
optimum. High-dimensional registrations methods are
often very good at registering grey matter with grey
matter (for example), but there is no guarantee that the
registered grey matter arises from homologous cortical
structures.

Also, structure and function are not always tightly
linked. Even if structurally equivalent regions can be
brought into exact register, it does not mean that the same
is true for regions that perform the same or similar func-
tions. For inter-subject averaging in SPM, an assumption
is made that functionally equivalent regions lie in approx-
imately the same parts of the brain. This leads to the
current rationale for smoothing images from multisubject
functional imaging studies prior to performing statistical
analyses. Constructive interference of the smeared acti-
vation signals then has the effect of producing a signal
that is roughly in an average location. In order to account
for substantial fine scale warps in a spatial normalization,
it is necessary for some voxels to increase their volumes
considerably, and for others to shrink to an almost neg-
ligible size. The contribution of the shrunken regions to
the smoothed images is tiny, and the sensitivity of the
tests for detecting activations in these regions may be
reduced. This is another argument in favour of spatially
normalizing on a relatively global scale.

The first step in registering images from different sub-
jects involves determining the optimum 12-parameter
affine transformation. Unlike in Chapter 4 – where the
images to be matched together are from the same sub-
ject – zooms and shears are needed to register heads of
different shapes and sizes. Prior knowledge of the vari-
ability of head sizes and overall proportions is used to
increase the robustness and accuracy of the method (Ash-
burner et al., 1997).

The next part is a non-linear registration for correct-
ing gross differences in head shapes that cannot be
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accounted for by the affine normalization alone. The
non-linear warps are modelled by linear combinations
of smooth cosine transform basis functions. For speed
and simplicity, a relatively small number of parame-
ters (approximately 1000) are used to describe the non-
linear components of the registration (Ashburner and
Friston, 1999).

Affine registration

Almost all inter-subject registration methods for brain
images begin by determining the optimal affine trans-
formation that registers the images together. This step
is normally performed automatically by minimizing (or
maximizing) some mutual function of the images. The
objective of affine registration is to fit the source image to
a template image, using a twelve-parameter affine trans-
formation. The images may be scaled quite differently,
so an additional intensity scaling parameter is included
in the model.

Without constraints and with poor data, simple
maximum-likelihood parameter optimization can pro-
duce some extremely unlikely transformations. For exam-
ple, when there are only a few slices in the image, it is
not possible for the algorithms to determine an accurate
zoom in the out of plane direction. Any estimate of this
value is likely to have very large errors. When a regular-
ized approach is not used, it may be better to assign a
fixed value for this difficult-to-determine parameter, and
simply fit for the remaining ones.

By incorporating prior information into the optimiza-
tion procedure, a smooth transition between fixed and
fitted parameters can be achieved. When the error for a
particular fitted parameter is known to be large, then that
parameter will be based more upon the prior information.
In order to adopt this approach, the prior distribution of
the parameters has to be specified. This is derived from
the zooms and shears determined by registering a large
number of brain images to the template.

Non-linear registration

The non-linear spatial normalization approach of SPM
assumes that the image has already been approximately
registered with the template according to a twelve-
parameter affine registration. This section illustrates how
the parameters describing global shape differences (not
accounted for by affine registration) between an image
and template can be determined. A small-deformation
framework is used, and regularization is by the bending
energy of the displacement field. Further details can be
found in Ashburner and Friston (1999).

The deformations are parameterized by a linear com-
bination of about 1000 low-frequency three-dimensional
cosine transform bases. The spatial transformation from
x, to y is:

y1�x��� =x1 +u1 = x1 +
M∑

m=1

�m1�m�x�

y2�x��� =x2 +u2 = x2 +
M∑

m=1

�m2�m�x�

y3�x��� =x3 +u3 = x3 +
M∑

m=1

�m3�m�x�

5.30

where �mk is the mth coefficient for dimension k, and
�m�x� is the mth basis function at position x. The
basis functions are separable, and each one is gener-
ated by multiplying three one-dimensional basis func-
tions together.

�m�x� = �m3
�x3��m2

�x2��m1
�x1� 5.31

In one dimension, the cosine transform bases are gener-
ated by:

�1�i� = 1√
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i = 1��I

�m�i� =
√

2
I

cos
(
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)
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5.32

EVALUATION STRATEGIES

Validation of warping methods is a complex area. The
appropriateness of an evaluation depends on the partic-
ular application that the deformations are to be used for.
For example, if the application was spatial normaliza-
tion of functional images of different subjects, then the
most appropriate evaluation may be based on assessing
the sensitivity of voxel-wise statistical tests (Gee et al.,
1997a; Miller et al., 2005). Because the warping proce-
dure is based only on structural information, it is blind
to the locations of functional activation. If the locations
of activations can be brought into close correspondence
in different subjects, then it is safe to say that the spa-
tial normalization procedure is working well. The best
measure of correspondence depends on how much the
images are smoothed prior to performing the statistical
tests. Different registration methods will perform dif-
ferently depending on the amount of smoothing used.
For example, the difference in performance of high- ver-
sus low-dimensional methods will be less when lots
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of smoothing is used. Another application may involve
identifying shape differences among populations of sub-
jects. In this case, the usefulness of the warping algo-
rithm would be assessed by how well the deformation
fields can be used to distinguish between the populations
(Lao et al., 2004). These approaches can be considered
as forms of cross-validation, because they assess how
well the registration helps to predict additional infor-
mation.

Generally, the results of an evaluation are specific only
to the data used to evaluate the model. MR images vary
a great deal with different subjects, field strengths, scan-
ners, sequences etc, so a model that is good for one set
of data may not be appropriate for another. For exam-
ple, consider intra-subject brain registration, under the
assumption that the brain behaves like a rigid body. If
the scanner causes no distortion and computes the pixel
sizes and slice thickness of the image volumes exactly,
then the best model is a rigid body registration. If the
scanner computes the voxel sizes incorrectly, then the
best model may be an affine registration. If there are dis-
tortions, then the best registration approach will model
distortions. Validation should therefore relate to both the
data and the algorithm. The question should be about
whether it is appropriate to apply a model to a dataset,
given the assumptions made by the model.

An assessment of how well manually defined land-
marks in real brains can be colocalized is another useful
validation strategy, because it allows the models to be
compared with human expertise (Hellier et al., 2001, 2002,
2003). The use of simulated images with known underly-
ing deformations is not appropriate for proper validation
of non-linear registration methods. This is particularly
true if the deformation model is the same for the simula-
tions as it is for the registration, because this only illus-
trates whether or not the optimization strategy works.
Another commonly used form of ‘evaluation’ involves
looking at the residual difference after registration. Such
a strategy would ignore the possibility of over-fitting,
and tends to favour those models with less regulariza-
tion.

Within a Bayesian framework, it is possible to compare
models, and decide which is more appropriate for a given
dataset. This involves comparing the posterior probabil-
ities for different models, after taking the model com-
plexities into consideration. Occam’s razor9 is implicitly
incorporated by penalizing more complicated models.

9 Occam’s razor is the principle that one should not increase,
beyond what is necessary, the number of entities required to
explain anything. It is sometimes known as the the principle of
parsimony, and has been historically linked with the philosopher,
William of Ockham.

Given a choice of I alternative models, the probability of
model �i is given by:

P��i�D� = P�D��i�P��i�∑I
j P�D��j�P��j�

5.33

where the evidence for model �i is obtained by
marginalizing with respect to model parameters ���:

P�D��i� =
∫

�
P�D����i�P����i�d� 5.34

Unfortunately, the large number of model parame-
ters required by non-linear registration would make
such an exact integration procedure computationally
intractable.10 Note also that this includes a prior proba-
bility term for each model, which many may consider as
subjective. There are, however, broad criteria for assign-
ing such priors, based on an understanding of the model
assumptions, its complexity and on any inconsistencies
it may contain.

In summary: to validate a warping method for a
particular dataset, it must be considered in relation to
other available methods. The Bayesian paradigm allows
a model comparison to be made, from which the best
can be selected. However, this model selection may not
generalize for all data.
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6

Segmentation
J. Ashburner and K. Friston

INTRODUCTION

This chapter describes a method of segmenting mag-
netic resonance (MR) images into different tissue classes,
using a modified Gaussian mixture model. By knowing
the prior spatial probability of each voxel that is grey
matter, white matter or cerebrospinal fluid, it is possi-
ble to obtain quite robust classifications. A probabilistic
framework is presented that enables image registration,
tissue classification, and bias correction to be combined
within the same generative model. A derivation of a log-
likelihood objective function for this unified model is
provided. The model is based on a mixture of Gaussians,
and is extended to incorporate a smooth intensity vari-
ation and non-linear registration with tissue probability
maps. A strategy for optimizing the model parameters is
described, along with the requisite partial derivatives of
the objective function.

Segmentation of brain images usually takes one of two
forms. It can proceed by adopting a tissue classification
approach, or by registration with a template. The aim
of this chapter is to unify these procedures into a single
probabilistic framework.

• The first approach rests on tissue classification,
whereby voxels are assigned to a tissue class according
to their intensities. In order to make these assignments,
the intensity distribution of each tissue class needs to
be characterized, often from voxels chosen to represent
each class. Automatic selection of representative voxels
can be achieved by first registering the brain volume
to some standard space, and automatically selecting
voxels that have a high probability of belonging to
each class. A related approach involves modelling the
intensity distributions by a mixture of Gaussians, but
using tissue probability maps to weight the classifica-
tion according to Bayes’ rule.

• The other approach involves some kind of registration,
where a template brain is warped to match the brain
volume to be segmented (Collins et al., 1995). This need
not involve matching volumes: some methods that are
based on matching surfaces (MacDonald et al., 2000;
Pitiot et al., 2004) would also fall into this category.
These approaches allow regions that are predefined on
the template to be overlaid, allowing different struc-
tures to be identified automatically.

A paradigm shift is evident in the field of neuroimag-
ing methodology, away from simple sequential process-
ing, towards a more integrated generative modelling
approach. The model described in this chapter (which is
implemented in SPM5) is one such example (see also Fis-
chl et al., 2004). Both approaches combine tissue classifi-
cation, bias correction and non-linear warping within the
same framework. Although the integrated frameworks
have some disadvantages, these should be outweighed
by more accurate results. The main disadvantage is that
the approaches are more complex and therefore more
difficult to implement. In addition, the algorithms are
integrated, making it difficult to mix and match different
programs within ‘pipeline’ procedures (Zijdenbos et al.,
2002; Fissell et al., 2003; Rex et al., 2003). A perceived
disadvantage of these combined models is that execution
time is longer than it would be for sequentially applied
procedures. For example, optimizing two separate mod-
els with 100 parameters is likely to be faster than opti-
mizing a combined single model with 200 parameters.
However, the reason a combined model takes longer to
run is because it actually completes the optimization.
There are usually conditional correlations among param-
eters of the different models, which sequential processing
discounts. The advantage of unified models is that they
are more accurate, making better use of the information
available in the data. Scanning time is relatively expen-
sive, but computing time is relatively cheap. Complete
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models may take longer to run, but they should add
value to the raw data.

THE OBJECTIVE FUNCTION

In this section, we describe the segmentation model and
how it is used to define an objective function. In the next
section, we will show how this function is used to esti-
mate the parameters of interest. The objective function,
minimized by the optimum parameters, is derived from
a mixture of Gaussians model. We show how this objec-
tive function can be extended to model smooth inten-
sity non-uniformity. Tissue probability maps are used to
assist the classification, and we describe how the objec-
tive function accommodates deformations of these maps,
so that they best match the image to segment. The section
ends by explaining how the estimated non-uniformity
and deformations are constrained to be spatially smooth.
The end-point of these model elaborations is a generative
model whose inversion segments, spatially normalizes
and intensity corrects a given image.

Mixture of Gaussians

A distribution can be modelled by a mixture of K Gaus-
sians. This is a standard technique (see e.g. Bishop,
1995), which is used widely by many tissue classifica-
tion algorithms. For univariate data, the kth Gaussian
is modelled by its mean ��k�, variance ��2

k � and mixing
proportion (�k, where

∑K
k=1 �k = 1 and �k ≥ 0). Fitting a

mixture of Gaussians (MOG) model involves maximiz-
ing the probability of observing the I elements of data y,
given the parameterization of the Gaussians. In a simple
MOG, the probability1 of obtaining a datum with inten-
sity yi given that it belongs to the kth Gaussian �ci = k�,
and that the kth Gaussian is parameterized by �k and
�2

k is:

P�yi�ci = k��k��k� = 1

�2��2
k �

1
2

exp
(

− �yi −�k�
2

2�2
k

)
6.1

The prior probability of any voxel, irrespective of
its intensity, belonging to the kth Gaussian, given the

1 Strictly speaking, it is a probability density rather than a
probability. The mathematical notation used is P�·� for both
probabilities and probability densities. Some authors make a
distinction by using P�·� for probabilities and p�·� for probability
densities.

proportion of voxels that belong to that Gaussian is
simply:

P�ci = k��k� = �k 6.2

Using Bayes’ rule, the joint probability of cluster k and
intensity yi is:

P�yi� ci = k��k��k��k�

= P�yi�ci = k��k��k�P�ci = k��k� 6.3

By integrating over all k Gaussians, we obtain the prob-
ability of yi given the parameters:

P�yi������� =
K∑

k=1

P�yi� ci = k��k��k��k� 6.4

The probability of the entire dataset y is derived by
assuming that all elements are independent:

P�y������� =∏
I
i=1P�yi�������

=∏
I
i=1

(∑
K
k=1

�k

�2��2
k �

1
2

exp
(

− �yi −�k�
2

2�2
k

))

6.5

This probability is maximized with respect to the
unknown parameters (�� � and �), when the follow-
ing cost function �	� is minimized (because the two are
monotonically related):

	 =− log P�y�������

=−∑ I
i=1 log

(∑
K
k=1

�k

�2��2
k �

1
2

exp
(

− �yi −�k�
2

2�2
k

))
6.6

The assumption that voxels are independent is clearly
implausible, but the priors embody a certain degree
of spatial dependency. This means that the conditional
probability that a voxel belongs to a tissue class shows
spatial dependencies, even though the likelihood in
Eqn. 6.5 does not.

Intensity non-uniformity

MR images are usually corrupted by a smooth, spatially
varying artefact that modulates the intensity of the image
(bias). There are a number of sources of this artefact,
which are reviewed by Sled et al. (1998). These artefacts,
although not usually a problem for visual inspection, can
impede automated processing of the images. Early bias
correction techniques involved homomorphic filtering,
but these have generally been superseded. A review of
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bias correction approaches is presented in Belaroussi et al.
(2006). Most current methods can be broadly classed as
those that use parametric representations of image inten-
sity distributions (such as mixtures of Gaussians), and
those that use non-parametric representations (such as
histograms).

• Non-parametric models usually involve image inten-
sity histograms. Some authors have proposed using a
multiplicative model of bias, and optimizing a func-
tion that minimizes the entropy of the histogram of
the bias corrected intensities. One problem with this is
that the entropy is minimized when the bias field is
uniformly zero, resulting in a single bin containing all
the counts. This was a problem (pointed out by Arnold
et al. (2001)) for the bias field correction in SPM99 (Ash-
burner and Friston, 2000), where there was a tendency
for the correction to reduce the mean intensity of brain
tissue in the corrected image. The constraint that the
multiplicative bias should average to unity resulted in
a bowl-shaped dip in the estimated bias field.

To counter this problem, Mangin (2000) minimized
the entropy of the histograms, but included an addi-
tional term in the cost function to minimize the squared
difference between the original and restored image
mean. A related solution was devised by Likar et al.
(2001). In addition to modelling a multiplicative bias
field, the latter method also modelled a smooth addi-
tive bias. These represent partial solutions to the prob-
lem, but are not ideal. When the width of a Gaussian
(or any other distribution) is multiplied by a factor of

, then the entropy of the distribution is increased by
log 
. Therefore, when scaling data by some value, the
log of this factor needs to be considered when devel-
oping an entropy-based cost function.

An alternative solution is to minimize the entropy of
the histogram of log-transformed intensities. In addi-
tion to being generally better behaved, this also allows
the bias fields to be modelled as an additive effect in
log-space (Sled et al., 1998). In order to work with log-
transformed data, low intensity (and negative valued)
voxels are excluded so that numerical problems are not
introduced. This exclusion motivates a more generic
model of all regional effects.

• Parametric bias correction models are often an integral
part of tissue classification methods, many of which
are based upon modelling the intensities of different
tissues as a mixture of Gaussians. Other clustering
methods can also be used, such as k-means and fuzzy
c-means. Additional information is often encoded, in
these approaches, using Markov random field mod-
els to embed knowledge that neighbouring voxels are
likely to belong to the same tissue class. Most algo-
rithms assume that the bias is multiplicative, but there

are three commonly used models of how the bias inter-
acts with noise.

In the first parametric model, the observed signal
�yi� is assumed to be an uncorrupted signal ��i�, scaled
by some bias �
i� with added Gaussian noise �ni� that
is independent of the bias (Pham and Prince, 1999;
Shattuck et al., 2001). The noise source is assumed to
be from the scanner itself:

yi = �i/
i +ni 6.7

The second model is similar to the first, except that the
noise is added before the signal is scaled. In this case,
the noise is assumed to be due to variations in tissue
properties. This model is the one used in this chapter:

yi = ��i +ni�/
i 6.8

A combination of the scanner and tissue noise models
has been adopted by Fischl et al. (2004). This would
probably be a better model, especially for images cor-
rupted by a large amount of bias. The single noise
source model was mainly chosen for its simplicity.

A third approach involves log transforming the data
first, allowing a multiplicative bias to be modelled as an
additive effect in log-space (Wells et al., 1996b; Garza-
Jinich et al., 1999; Van Leemput et al., 1999a; Styner,
2000; Zhang et al., 2001). The cost function for these
approaches is related to the entropy of the distribu-
tion of log-transformed bias corrected data. As with
the non-parametric model based on log-transformed
data, low intensity voxels have to be excluded to avoid
numerical problems. The generative model is of a form
similar to:

log yi = log �i − log 
i +ni

yi =�ie
ni/
i 6.9

Sometimes these methods do not use a consistent gen-
erative model throughout, for example when alternat-
ing between the original intensities for the classification
steps, and the log-transformed intensities for the bias
correction (Wells et al., 1996a).

In the model described here, bias correction is included
in the MOG by extra parameters that account for smooth
intensity variations. The field modelling the variation at
element i is denoted by 
i���, where � is a vector of
unknown parameters. Intensities from the kth cluster are
assumed to be normally distributed with mean �k/
i���,
and variance ��k/
i����2. Therefore, the probability of



Elsevier UK Chapter: Ch06-P372560 3-10-2006 3:02p.m. Page:84 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

84 6. SEGMENTATION

obtaining intensity yi from the kth cluster, given its
parameterization is:

P�yi�ci =k��k��k��� =


i���
1

�2��2
k �

1
2

exp
(

− �
i���yi −�k�
2

2�2
k

)
6.10

The tissue classification objective function is now:

	 = −
I∑

i=1

log

(

i���

K∑
k=1

�k

�2��2
k �

1
2

exp
(

− �
i���yi −�k�
2

2�2
k

))

6.11

The model employed here parameterizes the bias as the
exponential of a linear combination of low-frequency
basis functions. A small number of basis functions are
used, as bias tends to be spatially smooth. Positivity is
ensured by the exponential.

Spatial priors

Rather than assuming stationary prior probabilities based
upon mixing proportions, additional information is used,
derived from tissue probability maps from other subjects’
brain images. Priors are usually generated by registering
a large number of subjects together, assigning voxels to
different tissue types and averaging tissue classes over
subjects. The data used by SPM5 are a modified version
of the ICBM Tissue Probabilistic Atlas.2 They consist of
tissue probability maps of grey and white matter, and of
CSF (Figure 6.1). A fourth class is also used, which is sim-
ply one minus the sum of the first three. These maps give
the prior probability of any voxel in a registered image
being of any of the tissue classes – irrespective of its inten-
sity. The implementation uses tissue probability maps for
grey matter, white matter and CSF, although maps for
additional tissue types (e.g. blood vessels) could also be
included. The simple model of grey matter being all of
approximately the same intensity could also be refined
by using tissue probability maps for various internal grey
matter structures (Fischl et al., 2002).

The model in Eqn. 6.11 is modified to account for these
spatial priors. Instead of using stationary mixing propor-
tions �P�ci = k��� = �k�, the prior probabilities are allowed
to vary over voxels, such that the prior probability of
voxel i being drawn from the kth Gaussian is:

P�ci = k��� = �kbik∑K
j=1 �jbij

6.12

2 Avaliable from http://www.loni.ucla.edu/ICBM/ICBM_
Probabilistic.html

FIGURE 6.1 The tissue probability maps for grey matter, white
matter, CSF and ‘other’.

where bik is the tissue probability for class k at voxel i.
Note that � is no longer a vector of true mixing propor-
tions, but for the sake of simplicity, its elements will be
referred to as such.

The number of Gaussians used to represent the inten-
sity distribution for each tissue class can be greater than
one. In other words, a tissue probability map may be
shared by several Gaussians. The assumption of a sin-
gle Gaussian distribution for each class does not hold
for a number of reasons. In particular, a voxel may not
be purely of one tissue type, and instead contain sig-
nal from a number of different tissues (partial volume
effects). Some partial volume voxels could fall at the
interface between different classes, or they may fall in
the middle of structures, such as the thalamus, which
may be considered as being either grey or white mat-
ter. Various image segmentation approaches use addi-
tional Gaussians to model such partial volume effects.
These generally assume that a pure tissue class has a
Gaussian intensity distribution, whereas intensity distri-
butions for partial volume voxels are broader, falling
between the intensities of the pure classes. Most of these
models assume that a mixing combination of, e.g. 50/50,
is just as probable as one of 80/20 (Laidlaw et al., 1998;
Shattuck et al., 2001; Tohka et al., 2004), whereas others
allow a spatially varying prior probability for the mixing
combination, which is dependent upon the contents of
neighbouring voxels (Van Leemput et al., 2001). Unlike
these partial volume segmentation approaches, the model
adopted here simply assumes that the intensity distri-
bution of each class may not be Gaussian, and assigns
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belonging probabilities according to these non-Gaussian
distributions. Selecting the optimal number of Gaussians
per class is a model order selection issue, and will not be
addressed here. Typical numbers of Gaussians are three
for grey matter, two for white matter, two for CSF, and
five for everything else.

Deformable spatial priors

The above formulation (Eqn. 6.12) is refined further by
allowing the tissue probability maps to be deformed
according to parameters �. This allows registration to
a standard space to be included within the genera-
tive model.

P�ci = k����� = �kbik���∑K
j=1 �jbij���

6.13

After including the full priors, the objective function
becomes:

� = −
I∑

i=1

log

(

i���∑K

k=1 �kbik���

K∑
k=1

�kbik����2��2
k �− 1

2

×exp
(

− �
i���yi −�k�
2

2�2
k

))
6.14

There are many ways of parameterizing how the tissue
probability maps could be deformed. The implementa-
tion in SPM5 uses a low-dimensional approach, which
parameterizes the deformations by a linear combination
of about a thousand cosine transform bases (Ashburner
and Friston, 1999). This is not an especially precise way
of encoding deformations, but it can model the variabil-
ity of overall brain shape. Evaluations have shown that
this simple model can achieve a registration accuracy
comparable to other fully automated methods with many
more parameters (Hellier et al., 2001, 2002). This defor-
mation means that inversion of the generative model can,
implicitly, normalize images. Indeed, this is the prefered
method of spatial normalization in SPM5.

Regularization

One important issue relates to the distinction between
intensity variations that arise because of bias artefact due
to the physics of MR scanning, and those that arise due
to different tissue properties. The objective is to model
the latter by different tissue classes, while modelling the
former with a bias field. We know a priori that intensity
variations due to MR physics tend to be spatially smooth,
whereas those due to different tissue types tend to con-
tain more high frequency information. A more accurate

estimate of a bias field can be obtained by including prior
knowledge about the distribution of the fields likely to
be encountered by the correction algorithm. For exam-
ple, if it is known that there is little or no intensity
non-uniformity, then it would be wise to penalize large
values for the intensity non-uniformity parameters. This
regularization can be placed within a Bayesian context,
whereby the penalty incurred is the negative logarithm
of a prior probability for any particular pattern of non-
uniformity. Similarly, it is possible for intensity varia-
tions to be modelled by incorrect registration. If we had
some knowledge about a prior probability distribution
for brain shape, then this information could be used to
regularize the deformations. It is not possible to deter-
mine a complete specification of such a probability distri-
bution empirically. Instead, the SPM5 approach (as with
most other non-linear registration procedures) uses an
educated guess for the form and amount of variability
likely to be encountered. Without such regularization, the
pernicious interactions (Evans, 1995) among the param-
eter estimates could be more of a problem. With the
regularization terms included, fitting the model involves
maximizing:

P�y����������2� = P�y�����������P���P��� 6.15

This is equivalent to minimizing:

� = − log P�y����������� = �− log P���− log P���
6.16

In the SPM5 implementation, the probability densities
of the spatial parameters are assumed to be zero-mean
multivariate Gaussians �P��� = N�0� C�� and P��� =
N�0� C��). For the non-linear registration parameters, the
covariance matrix is defined such that �T C−1

� � gives the
bending energy of the deformations (see Ashburner and
Friston, 1999 for details). The prior covariance matrix for
the bias is based on the assumption that a typical bias
field could be generated by smoothing zero mean ran-
dom Gaussian noise by a broad Gaussian smoothing ker-
nel (about 70 mm FWHM, full width at half maximum),
and then exponentiating (i.e. C� is a Gaussian Toeplitz
matrix).

OPTIMIZATION

This section describes how the objective function from
Eqns 6.14 and 6.16 is minimized (i.e. how the model
is inverted). There is no closed-form solution for the
parameters, and optimal values for different parameters
depend upon the values of others. An iterated conditional
modes (ICM) approach is used. It begins by assigning



Elsevier UK Chapter: Ch06-P372560 3-10-2006 3:02p.m. Page:86 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

86 6. SEGMENTATION

starting estimates for the parameters, and then iterating
until a locally optimal solution is found. Each iteration
involves alternating between estimating different groups
of parameters, while holding the others fixed at their cur-
rent ‘best’ solution (i.e. conditional mode). The mixture
parameters are updated using expectation maximization
(EM), while holding the bias and deformations fixed at
their conditional modes. The bias is estimated while hold-
ing the mixture parameters and deformation constant.
Because intensity non-uniformity is very smooth, it can
be described by a small number of parameters, mak-
ing the Levenberg-Marquardt (LM) scheme ideal for this
optimization. The deformations of the tissue probability
maps are re-estimated while fixing the mixture parame-
ters and bias field. A low-dimensional parameterization
is used for the spatial deformations, so the LM strategy
is also applicable here.

The model is only specified for brain, as there are no
tissue probability maps for non-brain tissue (scalp etc).
Because of this, there is a tendency for the approach
to stretch the probability maps so that the background
class contains only air, but no scalp. A workaround
involves excluding extra-cranial voxels from the fitting
procedure. This is done by fitting a mixture of two Gaus-
sians to the image intensity histogram. In most cases,
one Gaussian fits air, and the other fits everything else.
A suitable threshold is then determined, based on a
50 per cent probability. Fitting only the intra-cranial vox-
els also saves time.

Mixture parameters (��� and �)

It is sufficient to minimize 	 with respect to the mix-
ture parameters because they do not affect the prior or
regularization terms in � (see Eqn. 6.16). For simplic-
ity, we summarize the parameters of interest by � =
�����������. These are optimized by EM (see e.g.
Dempster et al., 1977; Bishop, 1995 or Neal and Hinton,
1998), which can be considered as using some distribu-
tion, qik, to minimize the following upper bound on �:

	 ≤ 	EM = −
I∑

i=1

log P�yi���

+
I∑

i=1

K∑
k=1

qik log
(

qik

P�ci = k�yi���

)
6.17

EM is an iterative approach, and involves alternating
between an E-step (which minimizes �EM with respect to
qik), and an M-step (which minimizes �EM with respect
to �). The second term of Eqn. 6.17 is a Kullback-Leibler
distance, which is at a minimum of zero when qik = P�ci =
k�yi���, and Eqn. 6.17 becomes an equality �� = �EM�.

Because qik does not enter into the first term, the E-step
of iteration n consists of setting:

q�n�
ik = P�ci = k�yi���n�� = P�yi� ci = k���n��

P�yi���n��

= pik∑K
j=1 pij

6.18

where

pik = �kbik���∑K
j=1 �jbij���

�2��2
k �− 1

2

×exp
(

− �
i���yi −�k�
2

2�2
k

)
6.19

The M-step uses the recently updated values of q�n�
ik in

order to minimize 	 with respect to �. Eqn. 6.17 can be
reformulated3 as:

	 = 	EM = −
I∑

i=1

K∑
k=1

qik log P�yi� ci = k���

+
I∑

i=1

K∑
k=1

qik log qik 6.20

Because the second term is independent of �, the M-step
involves assigning new values to the parameters, such
that the derivatives of the following are zero:

−
I∑

i=1

K∑
k=1

qik log P�yi� ci = k��� =

I∑
i=1

K∑
k=1

qik

(
log

(
K∑

j=1

�jbij���

)
− log �k

)

+
I∑

i=1

K∑
k=1

qik

(
1
2

log��2
k �+ 1

2�2
�
i���yi −�k�

2
)

+
I∑

i=1

K∑
k=1

qik

(
1
2

log�2��− log�
i���bik����

)
6.21

Differentiating Eqn. 6.21 with respect to �k gives:

�

�k

= 	

�k

=
I∑

i=1

q�n�
ik

�2
k

��k −
i���yi� 6.22

This gives the update formula for �k by solving for �
�k

= 0

��n+1�
k =

∑I
i=1 q�n�

ik 
i���yi∑I
i=1 q�n�

ik

6.23

3 Through Bayes’ rule, and because
∑K

k=1 qik = 1, we obtain

log P�yi��� = log
(

P�yi�ci=k���

P�ci=k�yi���

)
=∑K

k=1 qik log
(

P�yi�ci=k���

P�ci=k�yi���

)
.
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Similarly, differentiating Eqn. 6.21 with respect to �2
k :

�

�2
k

= �

�2
k

=
∑I

i=1 q�n�
ik

2�2
k

−
∑I

i=1 q�n�
ik ��k −
i���yi�

2

2��2
k �2

6.24

This gives the update formula for �2
k :

��2
k ��n+1� =

∑I
i=1 q�n�

ik ���n+1�
k −
i���yi�

2

∑I
i=1 q�n�

ik

6.25

Differentiating Eqn. 6.21 with respect to �k:

�

�k

= 	

�k

=
I∑

i=1

bik���∑K
j=1 �jbij���

−
∑I

i=1 q�n�
ik

�k

6.26

Deriving an exact update scheme for �k is difficult, but
the following ensures convergence:4

��n+1�
k =

∑I
i=1 q�n�

ik∑I
i=1

bik���∑K
j=1 �

�n�
j bij ���

6.27

Bias (�)

The next step is to update the estimate of the bias field.
This involves holding the other parameters fixed, and
improving the estimate of � using an LM optimization
approach (see Press et al., 1992 for more information).
Each iteration requires the first and second derivatives
of the objective function, with respect to the parameters.
In the following scheme, I is an identity matrix and � is
a scaling factor. The choice of � is a trade-off between
speed of convergence, and stability. A value of zero for �
gives the Newton-Raphson or Gauss-Newton optimiza-
tion scheme, which may be unstable. Increasing � will
slow down the convergence, but increase the stability of
the algorithm. The value of � is usually decreased slightly
after iterations that decrease (improve) the cost function.
If the cost function increases after an iteration, then the
previous solution is retained, and � is increased in order
to provide more stability.

��n+1� = ��n� −
(

2�

�2

∣∣∣
��n�

+�I
)−1

F

�

∣∣∣
��n�

6.28

The prior probability of the parameters is modelled by a
multivariate Gaussian density, with mean �0 and covari-
ance C�.

− log P��� = 1
2

��−�0�C�
−1��−�0�+ const 6.29

4 The update scheme was checked empirically, and found to
always reduce �. It does not fully minimize it though, which
means that this part of the algorithm is really a generalized EM.

The first and second derivatives of � (see Eqn. 6.16) with
respect to the parameters are therefore:

�

�
= 	

�
+C�

−1��−�0� and
2�

�2
= 2	

�2
+C�

−1 6.30

The first and second partial derivatives of 	 are:

	

�m

= −
I∑

i=1


i���

�m

×
(


i���−1 +yi

∑
K
k=1

qik��k −
i���yi�

�2
k

)
6.31

2	

�m�n

=∑
I
i=1


i���

�m


i���

�n

(

i���−2 +y2

i

∑
K
k=1

qik

�2
k

)

−∑ I
i=1

2
i���

�m�n

×
(


i���−1 +yi

∑
K
k=1

qik ��k −
i���yi�

�2
k

)
6.32

The bias field is parameterized by the exponential of a
linear combination of smooth basis functions:


i��� = exp

(
M∑

m=1

�m�im

)
�


i���

�m

= �im
i����

and
2
i���

�m�n

= �im�in
i��� 6.33

Therefore, the derivatives used by the optimization are:

	

�m

=−∑ I
i=1�im

(
1+
i���yi

∑
K
k=1

qik��k −
i���yi�

�2
k

)

2	

�m�n

=∑ I
i=1�im�in

(
�
i���yi�

2
∑

K
k=1

qik

�2
k

−
i���yi

∑
K
k=1

qik ��k −
i���yi�

�2
k

)
6.34

Deformations (�)

The same LM strategy (Eqn. 6.28) is used as for updating
the bias. Schemes such as LM or Gauss-Newton are usu-
ally used only for registering images with a mean squared
difference objective function, although some rare excep-
tions exist where LM has been applied to information-
theoretic image registration (Thévenaz and Unser, 2000).
The strategy requires the first and second derivatives of
the cost function, with respect to the parameters that
define the deformation. In order to simplify deriving the
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derivatives, the likelihood component of the objective
function is re-expressed as:

� = −
I∑

i=1

log

(
K∑

k=1

fiklik

)
−

I∑
i=1

log 
i��� 6.35

where

fik = bik���∑K
j=1 �jbij���

6.36

and

lik = �k�2��2
k �− 1

2 exp
(

− �
i���yi −�k�
2

2�2
k

)
6.37

The first derivatives of 	 with respect to � are:

	

�m

= −
I∑

i=1

∑K
k=1

fik

�m
lik∑K

k=1 fiklik
6.38

The second derivatives are:

2�

�m�n

=
I∑

i=1

(∑K
k=1

fik

�m
lik

)(∑K
k=1

fik

�n
lik

)
(∑K

k=1 fiklik
)2

−
I∑

i=1

∑K
k=1

2fik

�m�n
lik∑K

k=1 fiklik
6.39

The following is needed in order to compute deriva-
tives of 	 with respect to �:

fik

�m

=
bik���

�m∑K
j=1 �jbij���

− bik���
∑K

j=1 �j
bij ���

�m(∑K
j=1 �jbij���

)2 6.40

The second term in Eqn. 6.39 is ignored in the opti-
mization (Gauss-Newton approach), but it could be used
(Newton-R̀aphson approach). These gradients and cur-
vatures enter the update scheme as in Eqn. 6.28.

The chain rule is used to compute derivatives of fik,
based on the rate of change of the deformation fields
with respect to changes of the parameters, and the tissue
probability map gradients sampled at the appropriate
points. Trilinear interpolation could be used as the tissue
probability maps contain values between zero and one.
Care is needed when attempting to sample the images
with higher degree B-spline interpolation (Thévenaz et al.,
2000), as negative values should not occur. B-spline inter-
polation (and other generalized interpolation methods)
require coefficients to be estimated first. This essentially
involves deconvolving the B-spline bases from the image
(Unser et al., 1993a, b). Sampling an interpolated value
in the image is then done by re-convolving the coef-
ficients with the B-spline. Without any non-negativity

constraints on the coefficients, there is a possibility of
negative values occurring in the interpolated probabil-
ity map.

One possible solution is to use a maximum-likelihood
deconvolution strategy to estimate some suitable coef-
ficients. This is analogous to the iterative method for
maximum-likelihood reconstruction of PET (positron
emission tomography) images (Shepp and Vardi, 1982),
or to the way that mixing proportions are estimated
within a mixture of Gaussians model. A second solu-
tion is to add a small background value to the probabil-
ity maps, and take a logarithm. Standard interpolation
methods could be applied to the log-transformed data,
before exponentiating again. Neither of these approaches
is really optimal. In practice, 3rd degree B-spline inter-
polation is used, but without first deconvolving. This
introduces a small, but acceptable, amount of additional
smoothness to the tissue probability maps.

Example

The segmentation accuracy is illustrated for data gener-
ated by the BrainWeb MR simulator (Kwan et al., 1996;
Cocosco et al., 1997; Collins et al., 1998). The simulated
images were all of the same subject, had dimensions of
181 × 217 × 181 voxels of 1 × 1 × 1 mm and had 3 per
cent noise (relative to the brightest tissue in the images).
The contrasts of the images simulated T1-weighted, T2-
weighted and proton density (PD). The T1-weighted
image was simulated as a spoiled FLASH sequence, with
a 30� flip angle, 18 ms repeat time, 10 ms echo time. The
T2 and PD images were simulated by a dual echo spin
echo, early echo technique, with 90� flip angle, 3300 ms
repeat time and echo times of 35 and 120 ms. Three differ-
ent levels of image non-uniformity were used: 0 per cent
RF (which assumes that there is no intensity variation
artefact), 40 per cent RF, and 100 per cent RF (Figure 6.2).
Three components were considered: grey matter, white
matter and whole brain (grey and white matter). Because
the causes of the simulated images were available, it
was possible to compare the segmented images with
images of ‘true’ grey and white matter using the Dice
metric, which is used widely for evaluating segmenta-
tion algorithms (e.g. Van Leemput et al., 1999b; Shattuck
et al., 2001). The probabilities were thresholded at 0.5 in
order to compute the number of misclassifications. If TP
refers to the number of true positives, FP to false posi-
tives and FN to false negatives, then the Dice metric is
given by:

Dice metric = 2×TP
2×TP+FP+FN

6.41
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FIGURE 6.2 Results from applying the
method to the BrainWeb data. The first column
shows the tissue probability maps for grey and
white matter. The first row of columns two, three
and four show the 100 per cent RF BrainWeb T1, T2
and PD images after they are warped to match the
tissue probability maps (by inverting the spatial
transform). Below the warped BrainWeb images
are the corresponding segmented grey and white
matter.

Our results are shown in Table 6-1. Values range from
zero to one, where higher values indicate better agree-
ment.

Discussion

This chapter illustrates a framework whereby tissue clas-
sification, bias correction and image registration are inte-
grated within the same generative model. The objective
was to explain how this can be done, rather than focus
on the details of a specific implementation. The same
framework could be used for a more sophisticated imple-
mentation. When devising a model, it is useful to think
about how that model could be used to generate data. The
distribution of randomly generated data should match
the distribution of any data the model has to explain.

There are a number of aspects of our model that could
be improved in order to achieve this goal.

The SPM5 implementation assumes that the brain con-
sists of grey and white matter, and is surrounded by a
thin layer of CSF. The addition of extra tissue probabil-
ity maps should improve the model. In particular, grey
matter classes for internal structures may allow them to
be segmented more accurately.

It is only a single channel implementation, which can
segment a single image, but is unable to make optimal
use of information from two or more registered images of
the same subject. Multispectral data may provide more
accurate results by allowing the model to work with
joint intensity probability distributions. For two regis-
tered images of the same subject, one form of objective
function would use axis-aligned multivariate Gaussians
(with �2

k1 and �2
k2 are diagonal elements of a 2×2 covari-

ance matrix).

TABLE 6-1 Dice metrics computed from segmented BrainWeb images

Dice metric

T1 T2 PD

0% 40% 100% 0% 40% 100% 0% 40% 100%

Grey matter 0.932 0.934 0.918 0.883 0.881 0.880 0.872 0.880 0.872
White matter 0.961 0.961 0.939 0.916 0.916 0.915 0.923 0.928 0.923
Whole brain 0.977 0.978 0.978 0.967 0.966 0.965 0.957 0.959 0.955
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� =−∑ I
i=1 log

(

i1���
i2���∑K

k=1 �kbik���

)

−∑ I
i=1 log

(∑
K
k=1�kbik���

×
exp

(
− �
i1���yi1−�k1�2

2�2
k1

)

�2��2
k1�

1
2

exp
(
− �
i2���yi2−�k2�2

2�2
k2

)

�2��2
k2�

1
2

⎞
⎠ 6.42

Multispectral classification usually requires the images to
be registered together. Another possible extension of the
framework could be to include within-subject registration
(Xiaohua et al., 2004).

The generative model contains nothing to encode the
probability that neighbouring voxels are more likely to
belong to the same class. The inclusion of such priors
should make the generative model more realistic. One
solution could be to include a Markov random field
(MRF) (Besag, 1986) in the model. Another strategy for
making the model more realistic may be to have crisper
tissue probability maps, and more precise warping.

Objective functions, such as the mean squared differ-
ence or cross-correlation, can only be used to register
MR images generated using the same sequences, field
strengths etc. An advantage that they do have over infor-
mation theoretic measures (such as mutual information),
is that they are also appropriate for registering to smooth
averaged images. One of the benefits of the approach
is that the same averaged tissue probability maps can
be used to normalize spatially (and segment) images
acquired with a wide range of different contrasts (e.g.
T1-weighted, T2-weighted etc). This flexibility could also
be considered a weakness. If the method is only to be
used with images of a particular contrast, then additional
constraints relating to the approximate intensities of the
different tissue types could be included (Fischl et al.,
2002). Alternatively, the MR parameters could be esti-
mated within the model (Fischl et al., 2004), and the clus-
ter means constrained to be more realistic. Rather than
using fixed intensity distributions for the classes, a better
approach would invoke some kind of hierarchical mod-
elling, whereby prior probability distributions for the
cluster parameters are used to inform their estimation.

The hierarchical modelling scheme could be extended
in order to generate tissue probability maps and other
priors using data from many subjects. This would involve
a very large model, whereby many images of different
subjects are simultaneously processed within the same
hierarchical framework. Strategies for creating average
(in both shape and intensity) brain atlases are currently
being devised (Ashburner et al., 2000; Avants and Gee,
2004; Joshi et al., 2004). Such approaches could be refined
in order to produce average shaped tissue probability
maps and other data for use as priors.
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Voxel-Based Morphometry
J. Ashburner and K. Friston

INTRODUCTION

At its simplest, voxel-based morphometry (VBM)
involves a voxel-wise comparison of regional grey-matter
‘density’ between two groups of subjects.1 The proce-
dure is relatively straightforward, and involves spatially
normalizing and segmenting high-resolution magnetic
resonance (MR) images into the same stereotaxic space.
These grey-matter segments are then smoothed to a spa-
tial scale at which differences are expressed (usually
about 12 mm). Voxel-wise parametric statistical tests are
performed, which compare the smoothed grey-matter
images from the groups using statistical parametric map-
ping. Corrections for multiple comparisons are generally
made using the theory of random fields.

Since the advent of magnetic resonance imaging (MRI),
neuroscientists have been able to measure structures in
living human brains. A large number of automated or
semiautomated approaches for characterizing differences
in the shape and neuroanatomical configuration of dif-
ferent brains have emerged due to improved resolution
of anatomical scans and the development of new image
processing techniques. There are many ways of identify-
ing and characterizing structural differences among pop-
ulations. Voxel-based morphometry (Wright et al., 1995,
1999; Ashburner and Friston, 2000; Davatzikos et al., 2001)
is one such method, which has been used widely over
the past decade. Its applications range from the study
of progressive supranuclear palsy to neurogenetic stud-
ies of polymorphisms and age-related changes. Unlike
other approaches to morphometry, VBM does not refer
explicitly to anatomy; it treats images as continuous
scalar measurements and tests for local differences at the

1 Density here refers to the relative amount of grey matter and
should not be confused with cell-packing density (number of
cells per unit volume of neuropil).

appropriate spatial scale. This scale is controlled by the
smoothing. Smoothing is critical for VBM because it sets
a lower bound on the anatomical scale at which differ-
ences can be expressed. It does so by removing fine-scale
structure that is not conserved from subject to subject.
Effectively, VBM is a scale-space search for anatomi-
cal differences. There are several reasons why VBM has
proved so popular: first, in contrast to conventional anal-
yses of anatomical structures, it tests for differences any-
where in the brain. Second, VBM can be applied to any
measure of anatomy, for example, grey-matter density,
compression maps based on the Jacobian of deformation
fields, or fractional anisotropy from diffusion weighted
imaging. By choosing the data and their transformations
carefully, a large range of anatomical attributes can be
analysed in a simple and anatomically unbiased way.

Summary

In summary, VBM is a simple procedure that enables
classical inferences about the regionally-specific effects,
of experimental factors, on some structural measure.
These effects are tested after discounting the large-scale
anatomical differences removed by spatial normalization.
Because these differences have been removed, VBM is not
a surrogate for classical volume analysis of large struc-
tures or lesions (Mehta et al., 2003). Furthermore, it will
not replace shape analysis (Dryden and Mardia, 1998;
Kendall et al., 1999; Miller, 2004); VBM infers on smooth
scalar fields, where constructs like ‘edges’ or ‘shape’
have no meaning. In short, VBM represents an estab-
lished and effective complement to shape and volume
analyses that is used widely in many basic and clinical
contexts.

In what follows, we look at the various stages involved
in preparing the data for VBM and then consider
modelling and inference on these data.
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PREPARING THE DATA

VBM relies on good quality high-resolution MR images
from different subjects, and uses these to identify corre-
lations between disease severity and the spatial deploy-
ment of different tissue types. Many researchers assume
that voxel-based morphometry can only be implemented
within the statistical parametric mapping package; this is
not the case. There are many software tools that could be
used to perform the requisite sequence of operations. The
MR images are segmented, producing images that reflect
the spatial distribution of a tissue type or attribute (e.g.
grey matter). To compare brains of different subjects, all
the grey-matter segments are warped to the same stereo-
taxic space. A correction can be applied to the data that
accounts for expansion and contraction during this non-
linear spatial normalization. The normalized segments
are then smoothed. This makes each voxel a measure of
the proportion of the brain, in a region around the voxel
that is grey matter (i.e. grey-matter density). Statistical
analysis using the general linear model (GLM) is used to
identify regions that are significantly related to the effects
under study (Friston et al., 1995). The GLM is a flexible
framework that allows many different tests to be applied.
The output is a statistical parametric map (SPM) showing
regions where tissue density differs significantly among
the groups. A voxel-wise SPM comprises the result of
many statistical tests, so it is necessary to correct for mul-
tiple dependent comparisons using the theory of random
fields (Friston et al., 1996; Worsley et al.,1996, 1999).

Segmentation

The images are typically partitioned into different tis-
sue classes using one of a number of segmentation
techniques. Usually, VBM involves an analysis of grey
matter, but it is possible to work with other tissue
classes or any other scalar measure of anatomy (e.g. frac-
tional anisotropy). To segment the images accurately,
the image needs to show clear differentiation among
tissue types. Usually, high resolution T1-weighted MR
images are used (Figure 7.1), although multispectral
images may allow more accurate tissue classification.
Different segmentation models have different require-
ments. For example, many approaches take smooth inten-
sity inhomogeneities into account, so they can deal
with some of the artefacts that arise in MR images.
Most automated segmentation algorithms assume that
the intracranial cavity contains only grey matter, white
matter and cerebrospinal fluid (CSF), so they may
be confounded by lesions. However, there are some
that have been especially designed for dealing with
such pathology (Van Leemput et al., 2001), although

FIGURE 7.1 This figure shows the result of segmenting the
grey matter from a T1-weighted MR image. Note that towards
the top of the brain, the segmentation is less accurate because the
grey matter is hardly visible in the original image. Similarly, in
grey-matter regions such as thalamus, the intensity is closer to
that of white matter, resulting in incorrect segmentation. Some par-
tial volume voxels can be seen around the ventricles. These arise
because voxels containing signal from both white matter and CSF
have intensities that are close to grey matter.

they generally require multispectral images (e.g. aligned
T1- and T2-weighted scans).

Many segmentation approaches use prior spatial infor-
mation in the form of tissue probability maps, which
inform the segmentation algorithm about the approxi-
mate spatial distribution of the various tissues. In most
cases, the tissue probability maps need to be regis-
tered with the image to segment, but the segmentation
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framework of SPM5 combines this registration with the
tissue classification (Ashburner and Friston, 2005).

Spatial normalization

Spatial normalization involves warping all the grey-
matter images to the same stereotaxic space, which is
achieved by matching to a common template image
(Figure 7.2). There are many non-linear registration meth-
ods that could be used for this. The unified segmentation-
normalization approach (Ashburner and Friston, 2005)
in SPM5 is a robust procedure because it accommo-
dates conditional dependences among the segmentation
and normalization parameters. It is a low-dimensional
method, which uses about a thousand parameters to
describe the deformations. Other approaches have many
more degrees of freedom, and may be more accurate.
However, just because a method can warp anything to
anything else, does not mean that it furnishes the most
likely registration (high-dimensional procedures gener-
ally overfit the data). For example, the evaluations of
Hellier et al. (2001, 2002), which compared registration
accuracy of different approaches, found that the simple
spatial normalization of SPM2 was as accurate as other
methods with more degrees of freedom.

The objective of VBM is to localize regions (in stereo-
taxic space) where there are significant differences.
Accurate spatial normalization and segmentation
ensures regional differences can be attributable to

FIGURE 7.2 An image (top left) is warped to match a template
(top right) to produce a spatially normalized version (top centre).
For clarity, the original image was approximately aligned with the
template, and the warping only done in two dimensions. The bottom
row shows the difference between the template and image, both
before and after the warping.

local effects, rather than systematic, pathology-induced
mis-registration artefacts (Bookstein, 2001). However,
registration can never be perfect because there is no
correspondence between one subject and another at a
fine spatial scale. For example, many sulci are shared
between brains, but this is not the case for all. Generally,
the primary sulci, which are formed earliest and tend
to be quite deep, are conserved over subjects. Sulci that
develop later are much more variable. Therefore, some
sulci can be matched objectively, whereas others cannot.
VBM accommodates the fact that the scale of anatomical
correspondence, and implicitly the scale of differences in
anatomy, has a lower bound by smoothing the segments
(see below).

Jacobian adjustment

Non-linear spatial normalization changes the volumes
of brain regions. This has implications for the inter-
pretation of what VBM tests. The objective of VBM is
to identify regional differences in the composition of
brain tissue. To preserve the actual amounts of a tissue
class within each voxel (Goldszal et al., 1998; Davatzikos
et al., 2001), a further processing step can be incorpo-
rated that multiplies (modulates) the partitioned images
by the relative voxel volumes before and after warping.
These relative volumes are simply the Jacobian determi-
nants of the deformation field (Figure 7.3). In the lim-
iting case of extremely precise registration (using very
high-dimensional registration), all the segments would
be identical. The adjustment preserves the differences in
volume of a particular tissue class (Figure 7.4).

The deformations from spatial normalization map
points in a template �x1�x2�x3� to equivalent points in
individual source images �y1�y2�y3�. The derivatives of
the deformation field can be thought of as matrix at each
point. These are the Jacobian matrices of the deforma-
tions, and are defined by:

J =
⎡
⎣�y1/�x1 �y1/�x2 �y1/�x3

�y2/�x1 �y2/�x2 �y2/�x3

�y3/�x1 �y3/�x2 �y3/�x3

⎤
⎦

The determinant of this matrix encodes the relative vol-
umes of deformed and undeformed structures.

Smoothing

The warped grey-matter images are now smoothed by
convolving with an isotropic Gaussian kernel. This makes
the subsequent voxel-by-voxel analysis comparable to a
region of interest approach, because each voxel in the
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FIGURE 7.3 Warping an image results in some
regions growing and others shrinking. The top-left image
is a spatially normalized image with deformations over-
layed (the same data as in Figure 7.2). Beside it is a map
of Jacobian determinants, where darker regions indicate
regions where the deformation lines are closer together.
The bottom-left image is the original un-deformed image,
with the deformations that would spatially normalize it
overlayed. This deformation field is the inverse of the one
shown above it. Beside it are the Jacobian determinants
showing expansion and contraction.

smoothed images contains the average amount of grey
matter from around the voxel (where the region around
the voxel is defined by the form of the smoothing ker-
nel; Figure 7.5). This is often referred to as grey-matter
density, but should not be confused with cell pack-
ing density measured cytoarchitectonically. Critically,
smoothing removes finescale structure from the data that
is not conserved from subject to subject. This increases

FIGURE 7.4 The image on the left is a warped grey-matter
image. In the centre is a map of the Jacobian determinants from
the warp (see Figure 7.3). The image on the right is the result of
multiplying them together, such that the amount of grey matter is
preserved.

the sensitivity of VBM to differences that are expressed
at a larger spatial scale. The smoothing conforms to the
matched filter theorem, which says that the smoothing
should match the scale of the difference in question. Nor-
mally, the smoothing kernel is Gaussian with a full width
at half maximum (FWHM) of between 4 and 16 mm. By
the central limit theorem, smoothing also has the effect
of rendering the data more normally distributed, thus
increasing the validity of parametric statistical tests.

STATISTICAL MODELLING AND
INFERENCE

Voxel-wise statistical tests are performed on the pre-
processed images using standard linear models (GLM).
The results of these tests are an SPM (Friston et al., 1995)
showing significant regional effects. The GLM allows
many different tests to be applied, ranging from group
comparisons and identification of regional correlates of
disease severity or age, to complex interactions among
these effects. In the GLM, the model is expressed as
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FIGURE 7.5 Smoothing effectively converts the images to
maps containing a weighted count of the number of grey-matter
voxels within each region. The top row shows three un-smoothed
images. The middle row shows these images after they have been
convolved with a circular shaped kernel. It should be clear that the
result is a count of the values within each circular region. The bot-
tom row shows the images after convolving with a Gaussian shaped
kernel. The result here is a weighted count of the values around
each point, where values in the centre are weighted more heavily.

a design matrix. Each row of this matrix corresponds
to a scan, whereas each column is some effect that is
modelled. At each voxel, the optimal linear combination
of effects is computed in terms of parameter estimates.
Statistics are then based on the parameter estimates
at each voxel. Standard statistics (t-tests and F -tests)
are used to test the hypotheses, and are valid provid-
ing the residuals, after fitting the model, are normally
distributed.

Occasionally, researchers want to mix images from
different scanners, or data acquired using different
sequences. The effects of different types of images can
generally be modelled by including confounds in the
design matrix. Note that for a comparison of one group
versus another, where one group is collected on one
scanner, and the other group is collected on another,

then modelling the scanner effect will explain away all
group differences. An important confound is the global
or whole measure.

Global normalization and other confounds

Global normalization is a generic issue in neuroimag-
ing (Friston et al., 1990). SPM is used to identify region-
ally specific (i.e. non-global) effects. This can be ensured
by treating the global signal as a confound, which is
explained away during inference. Because the global
effect is the sum of all regional effects, this means that the
sum of all regional effects, over the brain, is zero. Global
normalization therefore partitions effects into regional
and global components. In the context of grey matter-
VBM density, this involves modelling the global grey
matter as a linear confound (or by scaling each seg-
ment by its global mean). The implicit partitioning into
regional and global effects finesses the characterization of
anatomical differences. For example, a regional increase
in grey-matter density can mean one of two things. First,
it could be due to local hyperplasia, or it could be a local
sparing of the region in the context of diffuse cortical
atrophy everywhere else. The resolution of this ambigu-
ity rests on inference about the global measure. In the
first instance, there will be no global difference, but it
would be significant in the second.

There are other confounds people include in the statis-
tical models that remove variance in grey-matter density
that could have been caused by mechanisms that are non-
specific (in relation to cohort selection or experimental
factors). These can be expressed in a regionally selec-
tive fashion (e.g. age or experimental factors) or glob-
ally. For example, larger brains have proportionally more
white matter than grey (Zhang and Sejnowski, 2000),
leading some people to treat total intracranial volume as
a confound.

Inference

Following application of the GLM, the significance of any
regional difference is ascertained using the parameters’
estimates and their associated statistics. A voxel-wise
SPM comprises the results of many statistical tests, so it is
necessary to correct for multiple dependent comparisons.
Without any correction, the number of false-positive
results would be proportional to the number of inde-
pendent tests. A Bonferroni correction would be applied
if the tests were independent, but this is not the case
because of the inherent spatial smoothness of the data.
In practice, the effective number of independent statisti-
cal tests is determined using random field theory (RFT)
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(Friston et al., 1996; Worsley et al., 1996, 1999). RFT pro-
vides a correction for multiple dependent comparisons
that controls the rate of false-positive results. Paramet-
ric statistical tests are based on assumptions about the
data. In particular, they assume that the residuals after
fitting the model are normally distributed. There is a spe-
cial caveat in VBM concerning the normality assumption:
grey-matter segments contain values between zero and
one, where most of the values are close to either of the
extremes. In this case, smoothing is essential to render
the residuals sufficiently normal. For group comparisons,
normality can be assured with smoothing at or above
4 mm FWHM (Ashburner and Friston, 2000). For single-
case comparisons, numerical studies suggest that at least
12 mm should be used (Salmond et al., 2002). An alterna-
tive, for unbalanced designs like, for example single-case
studies, are non-parametric methods (Holmes et al., 1996;
Bullmore et al., 1999).

The t or F -fields produced by SPM are thresholded at
some value. Regions of the field that survive the thresh-
old (called ‘clusters’, ‘excursion sets’ or simply ‘blobs’)
are then examined further. SPM allows inferences to be
made based on the spatial extent of blobs, under the
assumption that large blobs are less likely to occur by
chance than small blobs. In the SPM software, implemen-
tation of RFT inferences on the extent of a cluster (but not
the height of a peak) assumes that the smoothness of the
residuals is roughly the same everywhere. This is assured
for data that have been smoothed. However, without
smoothing, large blobs that occur by chance in smooth
regions may be declared significant, whereas smaller true
blobs in rough regions may be missed.

Non-stationary behaviour of error terms can also mis-
direct the interpretation of true positive results. Spa-
tial changes in error variance can cause blobs to move
towards regions with low variance and away from
regions with high residual variance (Bookstein, 2001).
This explains the occasional finding of significant differ-
ences outside the brain (because the residual variance
approaches zero as one moves away from the brain).
Accurate localization of differences should not use the
SPM. As with all applications of SPM, interpretation rests
on looking at the parameter estimates that subtend the
significant effect. In this instance the grey-matter differ-
ence maps provide the veridical localization.

Frequentist statistical tests cannot be used to prove
a hypothesis, only to reject a null hypothesis. Any
significant differences that are detected could be
explained by a number of different causes, which are not
disambiguated by the inference per se. When the null
hypothesis has been rejected, it does not impute a
particular explanation for the difference if there are
several causes that could explain it (Figure 7.6). The pre-
processing employed by VBM manipulates the data so

Thickening Thinning Mis-classification

Folding Mis-classification Mis-registration

Mis-registration

FIGURE 7.6 Significant differences determined using VBM
can be explained in many ways.

that the ensuing tests are more sensitive to some causes
relative to others. In particular, VBM has been devised
to be sensitive to systematic differences in the density
of a particular tissue class, but significant results can
also arise for other reasons. A critique of VBM is that it
is sensitive to systematic shape differences attributable
to mis-registration from the spatial normalization step
(Bookstein, 2001). This is one of a number of poten-
tial systematic differences that can arise (Ashburner and
Friston, 2001). This does not mean that VBM is invalid
but the explanation for the significant result may be
complicated. VBM will only detect systematic group dif-
ferences. This applies to mis-registration. Because the
registration is driven by anatomy, any difference must
be due to anatomical differences but these may not be
mediated locally (e.g. misplacement of the cortex by sub-
cortical lesions). Some explanations can be trivial (e.g.
some patient groups may have to be positioned differ-
ently in the scanner) and it is important to identify con-
founds of this sort. In short, there may be real differences
among the data, but these may not necessarily be due to
reductions in regional grey matter.

VBM in clinical research

Neurodegeneration involves regional loss of tissue
over time. Volumetric changes can be inferred on
voxel-compression maps from high-resolution warping
algorithms applied to longitudinal data (Freeborough
and Fox, 1998; Thompson et al., 2000). This approach
has shown that the rate of tissue loss, rather than tis-
sue distribution itself, has a better predictive validity
in relation to disease progression. Comparisons of these
maps between subjects requires some kind of regional
averaging: either in the form of parcellation (Goldszal
et al., 1998) or spatial smoothing, as in VBM. Regions of
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compression and dilation often lie close to each other, so
simple regional averaging approaches may cause differ-
ences to cancel (Scahill et al., 2002). The most straight-
forward approach involves partitioning the compression
maps into different tissue classes (cf. the RAVENS map
approach (Davatzikos et al., 2001)). VBM with simple
intra-subject rigid registration of longitudinal data is
a simpler way of achieving similar results (Ashburner
and Friston, 2001). Although it is useful for research,
VBM may not be the most sensitive approach for diag-
nosing a disease in an individual. For example, VBM
may be able to say that Alzheimer patients have smaller
hippocampi than controls, but it is difficult to say for
certain that an individual is in the early stages of the
disease, simply by examining hippocampal volume. We
have contrasted generative models of regional pathol-
ogy and recognition models for diagnosis and classifi-
cation. Classification approaches (Davatzikos, 2004; Lao
et al., 2004; Davatzikos et al., 2005) are generally not
interested in regionally specific differences, but try to
find the best non-linear function of the data, over the
entire brain, which predicts diagnosis. Multivariate ker-
nel methods, such as support-vector machines (Vap-
nik, 1998), relevance-vector machines (Tipping, 2001) or
Gaussian process models (Williams and Barber, 1998),
are established recognition models that may be useful in
diagnosis and endo-phenotyping.
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The General Linear Model
S.J. Kiebel and A.P. Holmes

INTRODUCTION

In this chapter, we introduce the general linear model. All
classical analyses of functional data (electroencephalo-
graphy/magnetoencephalography (EEG)/(MEG)/fun-
ctional magnetic resonance imaging (fMRI)/positron
emission tomography (PET)) are based on this model.
Analysis comprises three parts: model specification;
parameter estimation; and finally inference. Here, we
focus on model specification. This chapter, and indeed
this general linear model section, should be useful in
two ways. First, working through the model equations
helps one to learn about the nature of models and how
they are communicated. Model specification, with an
equation, or design matrix (see below), is a crucial step
in the analysis of imaging data. Second, these equations
entail the theory that underpins analysis. Although
much of the modelling in statistical parametric mapping
(SPM) is automated, one often encounters situations in
which it is not obvious how to model data. We hope
that this and the following chapters will help in these
situations.

We assume that the data have already been prepro-
cessed (e.g. reconstructed, normalized, and smoothed).
Because SPM is a mass-univariate approach, i.e. the same
model is used at each voxel, in this and the following
chapters, we will focus on the model for a single voxel.

Model specification is followed by parameter estima-
tion and finally, inference using voxel-wise statistical
tests. Here, we treat inferences at a single voxel. Part 4
of this book covers inferences over many voxels and the
multiple comparison problem this entails.

In the first part of this chapter, we look at the anal-
ysis of PET data. In the second part, we extend the
model to accommodate fMRI data. The remaining chap-
ters of Part 3 describe, in detail, different aspects of
modelling in SPM. Chapter 9 focuses on specification of
contrast weights and Chapter 10 introduces the concept

of non-sphericity, which is important for modelling the
error. Chapter 11 extends the general linear model by
combining multiple models to form hierarchies. This
approach is very useful for performing random-effects
analyses (Chapter 12). Chapter 13 integrates the classical
analysis of variance, which is a subdomain of the general
linear model, into the SPM framework. Finally, Chap-
ters 14, 15 and 16 treat, in detail, specific design issues
for fMRI and M/EEG data.

THE GENERAL LINEAR MODEL

Before turning to the specifics of PET and fMRI, we
consider the general linear model. This requires some
basic matrix algebra and statistical concepts. These will
be used to develop an understanding of classical hypoth-
esis testing. Healy (1986) presents a brief summary of
matrix methods relevant to statistics. Newcomers to sta-
tistical methods are directed towards Mould’s excellent
text Introductory Medical Statistics (1989), while the more
mathematically experienced will find Chatfield’s Statis-
tics for Technology (1983) useful. Draper and Smith (1981)
give a good exposition of matrix methods for the general
linear model, and go on to describe regression analysis
in general. The definitive tome for practical statistical
experimental design is Winer et al. (1991). An excellent
book about experimental design is Yandell (1997). A
rather advanced, but very useful, text on linear models
is Christensen (1996).

The general linear model – introduction

Suppose we conduct an experiment in which we mea-
sure a response variable (such as regional cerebral blood
flow (rCBF) at a particular voxel) Yj , where j = 1� � � � � J

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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102 8. THE GENERAL LINEAR MODEL

indexes the observation. Yj is a random variable, conven-
tionally denoted by a capital letter.1 Suppose also that
for each observation we have a set of L�L < J� explanatory
variables (each measured without error) denoted by xjl,
where l = 1� � � � �L indexes the explanatory variables. The
explanatory variables may be continuous (or sometimes
discrete) covariates, functions of covariates, or they may be
dummy variables indicating the levels of an experimental
factor.

A general linear model explains the response variable
Yj in terms of a linear combination of the explanatory
variables plus an error term:

Yj = xj1�1 +· · ·+xjl�l +· · ·+xjL�L +�j 8.1

Here the �l are (unknown) parameters, corresponding to
each of the L explanatory variables xjl. The errors �j are
independent and identically distributed normal random

variables with zero mean and variance �2, written �j

iid∼
� �0��2�.

Examples: dummy variables

Many classical parametric statistical procedures are spe-
cial cases of the general linear model. We will illustrate
this by going through the equations for two well-known
models.

Linear regression

A simple example is linear regression, with one con-
tinuous explanatory variable xj for each observation
j = 1� � � � � J . The model is usually written as:

Yj = 	+xj�+�j 8.2

where the unknown parameters are 	, a constant term in

the model, the regression slope � and �j

iid∼� �0��2�. This
can be re-written as a general linear model by using a
dummy variable, which takes the value xj1 = 1 for all j:

Yj = xj1	+xj2�2 +�j 8.3

This has the form of Eqn. 8.1, on replacing �1 with 	.

Two-sample t-test

Similarly, the two-sample t-test is a special case of a gen-
eral linear model: suppose Yj1 and Yj2 are two indepen-
dent groups of random variables. The two-sample t-test

1 We talk of random variables, and of observations prior to their
measurement, because classical (frequentist) statistics is con-
cerned with what could have occurred in an experiment. Once
the observations have been made, they are known, the residuals
are known, and there is no randomness.

assumes Yqj

iid∼ � �	q��2�, for q = 1� 2, and assesses the
null hypothesis � 
 	1 = 	2. The index j indexes the data
points in both groups. The standard statistical way of
writing the model is:

Yqj = 	q +�qj 8.4

The q subscript on the 	q indicates that there are two

levels to the group effect, 	1 and 	2. Here, �qj

iid∼ � �0��2�.
This can be rewritten using two dummy variables xqj1

and xqj2 as:

Yqj = xqj1	1 +xqj2	2 +�qj 8.5

Which has the form of Eqn. 8.1, after re-indexing for qj.
Here the dummy variables indicate group membership,
where xqj1 indicates whether observation Yqj is from the
first group, in which case it has the value 1 when q = 1,

and 0 when q = 2. Similarly, xqj2 =
{

0 if q = 1
1 if q = 2

.

Matrix formulation

In the following, we describe the matrix formulation
of the general linear model and derive its least-squares
parameter estimator. We then describe how one can make
inferences based on a contrast of the parameters. This
theoretical treatment furnishes a set of equations for the
analysis of any data that can be formulated as a general
linear model.

The general linear model can be expressed using matrix
notation. Consider writing out Eqn. 8.1 in full, for each
observation j, giving a set of simultaneous equations:

Y1 = x11�1 +· · ·+x1l�l +· · ·+x1L�L +�1

��� = ���

Yj = xj1�1 +· · ·+xjl�l +· · ·+xjL�L +�j

��� = ���

YJ = xJ1�1 +· · ·+xJl�l +· · ·+xJL�L +�J

This has an equivalent matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Y1
���

Yj

���
YJ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1l · · · x1L

���
� � �

���
� � �

���

xj1 · · · xjl · · · xjL

���
� � �

���
� � �

���

xJ1 · · · xJl · · · xJL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

�1
���

�l

���
�L

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1
���
�j

���
�J

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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which can be written in matrix notation as:

Y = X�+� 8.6

where Y is the column vector of observations, � the col-
umn vector of error terms, and � the column vector of
parameters; � = ��1� � � � ��l� � � � ��LT . The J × L matrix
X, with jlth element xjl is the design matrix. It has one
row per observation, and one column (explanatory vari-
able) per model parameter. The important point about the
design matrix is that it is a near complete description of
our model; the remaining model assumptions are about
the distribution of errors. The design matrix encodes and
quantifies our knowledge about how the expected signal
was produced.

Parameter estimation

Once an experiment has been completed, we have obser-
vations of the random variables Yj , which we denote
by yj . Usually, the simultaneous equations implied by
the general linear model (with � = 0) cannot be solved,
because the number of parameters L is typically less than
the number of observations J . Therefore, some method of
estimating parameters that ‘best fit’ the data is required.
This is achieved by the method of ordinary least squares.

Denote a set of parameter estimates by �̃ =
��̃1� � � � � �̃LT . These parameters lead to fitted values
Ỹ = �Ỹ1� � � � � ỸJ 

T = X�̃, giving residual errors e =
�e1� � � � � eJ 

T = Y − Ỹ = Y −X�̃. The residual sum-of-squares
S = ∑J

j=1 e2
j = eT e is the sum of the square differences

between the actual and fitted values, and measures the
fit of the model afforded by these parameter estimates.2

The least squares estimates are the parameter estimates
which minimize the residual sum-of-squares. In full:

S =
J∑

j=1

�Yj −xj1�̃1 −· · ·−xjL�̃L�2

This is minimized when:

�S

��̃l

= 2
J∑

j=1

�−xjl��Yj −xj1�̃1 −· · ·−xjL�̃L� = 0

This equation is the lth row of XT Y = �XT X��̃. Thus, the
least squares estimates, denoted by �̂, satisfy the normal
equations:

XT Y = �XT X��̂ 8.7

2 eT e is the L2 norm of e – geometrically equivalent to the dis-
tance between the model and data.

For the general linear model, the least squares estimates
are the maximum likelihood estimates, and are the best lin-
ear unbiased estimates.3 That is, of all linear parameter
estimates consisting of linear combinations of the data,
whose expectation is the true value of the parameters,
the least squares estimates have the minimum variance.

If �XT X� is invertible, which it is if, and only if, the
design matrix X is of full rank, then the least squares
estimates are:

�̂ = (
XT X

)−1
XT Y 8.8

Overdetermined models

If X has linearly dependent columns, it is rank deficient,
i.e. �XT X� is singular and has no inverse. In this case, the
model is overparameterized: there are infinitely many
parameter sets describing the same model. Correspond-
ingly, there are infinitely many least squares estimates
�̂ satisfying the normal equations. We will illustrate this
with an example and discuss the solution that is adopted
in SPM.

One way ANOVA example

A simple example of an overdetermined model is the
classic Q group one-way analysis of variance (ANOVA)
model. Generally, an ANOVA determines the variabil-
ity in the measured response which can be attributed to
the effects of factor levels. The remaining unexplained
variation is used to assess the significance of the effects
(Yandell, 1997, page 4 and pages 202ff). The model for a
one-way ANOVA is given by:

Yqj = 	+�q +�qj 8.9

where Yqj is the jth observation in group q = 1� � � � �Q.
Clearly, this model does not specify the parameters
uniquely: for any given 	 and �q , the parameters 	′ =
	+d and �′

q = �q −d give an equivalent model for any
constant d. That is, the model is indeterminate up to the
level of an additive constant between the constant term
	 and the group effects �q . Similarly, for any set of least
squares estimates 	̂� �̂q . Here, there is one degree of inde-
terminacy in the model. This means the design matrix has
rank Q, which is one less than the number of parameters
(the number of columns of X). If the data vector Y has

3 Gauss-Markov theorem.
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observations arranged by group, then for three groups
�Q = 3�, the design matrix and parameter vectors are:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
���

���
���

���
1 1 0 0
1 0 1 0
���

���
���

���
1 0 1 0
1 0 0 1
���

���
���

���
1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� =

⎡
⎢⎢⎣

	
�1

�2

�3

⎤
⎥⎥⎦

This matrix is rank deficient: the first column is the sum
of the others. Therefore, in this model, one cannot test for
the effect of one or more groups. However, the addition
of the constant 	 does not affect the differences between
pairs of group effects. Therefore, differences in group
effects are uniquely estimated, regardless of the partic-
ular set of parameter estimates used. In other words,
even if the model is overparameterized, there are still lin-
ear combinations of parameters (i.e. differences between
pairs of group effects) that are unique. This important
concept is relevant in many designs, especially for PET
and multisubject data. It will be treated more thoroughly
in the Estimable functions and contrasts section below.

Pseudoinverse constraint

In the overdetermined case, a set of least squares
estimates can be found by imposing constraints on the
estimates, or by inverting �XT X� using a pseudoin-
verse technique, which essentially implies a constraint.
In either case, it is important to remember that the esti-
mates obtained depend on the particular constraint or
pseudoinverse method chosen. This has implications for
inference: it is only meaningful to consider functions of
the parameters that are not influenced by the particular
constraint chosen.

Some obvious constraints are based on removing
columns from the design matrix. In the one-way ANOVA
example, one can remove the constant term to construct a
design matrix which has linearly independent columns.
However, in more complicated designs, it is not clear
which columns should be removed. In particular, each
experimentally induced effect could be represented by
one or more regressors. This precludes the removal of
columns to deal with overdetermined models.

The alternative is to use a pseudoinverse method: let
�XT X�− denote the pseudoinverse of �XT X�. Then we can
use �XT X�− in place of �XT X�−1 in Eqn. 8.8. A set of
least squares estimates is given by �̂ = �XT X�−XT Y =

X−Y . The pseudoinverse implemented in MATLAB is
the Moore-Penrose pseudoinverse.4 This results in least
squares parameter estimates with the minimum sum-of-
squares (minimum L2 norm ���̂��2). For example, with the
one-way ANOVA model, this can be shown to give para-
meter estimates 	̂ =∑Q

j=1�Y q•�/�1 +Q� and �̂q = Y q• − 	̂.
By Y q• we denote the average of Y over the observation
index j, i.e. the average of the data in group q.

Using the pseudoinverse for parameter estimation in
overdetermined models is the approach adopted in SPM.
As mentioned above, this does not allow one to test for
those linear combinations of effects for which there exist
an infinite number of solutions; however, it does allow
us to estimate unique mixtures without changing how X
is specified.

Geometrical perspective

For some, a geometrical perspective provides a nice intu-
ition for parameter estimation. (This section can be omit-
ted without loss of continuity.)

The vector of observed values Y defines a single point
in �J , J -dimensional Euclidean space. X�̃ is a linear com-
bination of the columns of the design matrix X. The
columns of X are J -vectors, so X�̃ for a given �̃ defines a
point in �J . This point lies in the subspace of �J spanned
by the columns of the design matrix, the X-space. The
dimension of this subspace is rank(X). Recall that the
space spanned by the columns of X is the set of points Xc
for all c ∈ �L. The residual sum-of-squares for parameter
estimates �̃ is the distance from X�̃ to Y . Thus, the least
squares estimates �̂ correspond to the point in the space
spanned by the columns of X that is nearest to the data
Y . The perpendicular from Y to the X-space meets the
X-space at Ŷ = X�̂. It should now be clear why there are
no unique least squares estimates if X is rank-deficient;
in this case, any point in the X-space can be obtained by
infinitely many linear combinations of the columns of X,
i.e. the solution exists on a hyperplane and is not a point.

If X is of full rank, then we can define a projection
matrix as PX = X�XT X�−1XT . Then Ŷ = PXY , and geomet-
rically PX is a projection onto the X-space. Similarly, the
residual forming matrix is R = �IJ −PX�, where IJ is the
identity matrix of rank J . Thus RY = e, and R is a projec-
tion matrix onto the space orthogonal to the X-space.

As a concrete example, consider a linear regres-
sion with only three observations. The observed data
y = �y1�y2�y3

T defines a point in three-dimensional
Euclidean space ��3�. The model (Eqn. 8.2) leads to a

4 IfX is of full rank, then �XT X�− is an inefficient way of computing
�XT X�−1.
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Y1,Y2,Y3

c = RYY

Y = PXY

X − plane

ˆ

FIGURE 8.1 Geometrical perspective on linear regression. The
three dimensional data Y lie in a three dimensional space. In this
observation space, the (two-column) design matrix spans a sub-
space. Note that the axes of the design space are not aligned with
the axes of the observation space. The least squares estimate is the
point in the space spanned by the design matrix that has minimal
distance to the data point.

design matrix X =
⎡
⎣1 x1

1 x2

1 x3

⎤
⎦. Provided the xjs are not

all the same, the columns of X span a two dimensional
subspace of �3, a plane (Figure 8.1).

INFERENCE

Here, we derive the t- and F -statistics, which are used
to test for a linear combination of effects. We will also
return to the issue of overdetermined models and look
at which linear combinations (contrasts) we can test.

Residual sum of squares

For an independent and identical error, the residual
variance �2 is estimated by the residual sum-of-squares
divided by the appropriate degrees of freedom: �̂2 =
eT e
J−p

∼ �2 �2
J−p

J−p
where p = rank�X�. (See the Appendix (8.2)

for a derivation.)

Linear combinations of the parameter
estimates

It is not too difficult to show that the parameter esti-
mates are normally distributed: if X is full rank then
�̂ ∼ � ����2�XT X�−1�. From this it follows that for a col-
umn vector c containing L weights:

cT �̂ ∼ �
(
cT �� �2cT �XT X�−1c

)
8.10

Furthermore, �̂ and �̂2 are independent (Fisher’s
law). Thus, prespecified hypotheses concerning lin-
ear compounds of the model parameters cT � can be
assessed using:

cT �̂− cT �√
�̂2cT �XT X�−1c

∼ tJ−p 8.11

where tJ−p is a Student’s t-distribution with J −p degrees
of freedom. For example, the hypothesis � 
 cT � = d can
be assessed by computing

T = cT �̂−d√
�̂2cT �XT X�−1c

8.12

and computing a p-value by comparing T with a t-
distribution having J −p degrees of freedom. In SPM, all
null hypotheses are of the form cT � = 0. Note that SPM
tests based on this t-value are always one-sided.

Example – two-sample t-test

For example, consider the two-sample t-test. The model
(Eqn. 8.4) leads to a design matrix X with two columns
of dummy variables indicating group membership and
parameter vector � = �	1�	2

T . Thus, the null hypothesis
� 
 	1 = 	2 is equivalent to � 
 cT � = 0 with c = �1�−1T .

The first column of the design matrix contains n1 1s and
n2 0s, indexing the measurements from group one, while
the second column contains n1 0s and n2 1s for group

two. Thus �XT X� =
(

n1 0
0 n2

)
� �XT X�−1 =

(
1/n1 0

0 1/n2

)
,

and cT �XT X�−1c = 1/n1 + 1/n2, giving the t-statistic (by
Eqn. 8.11):

T = 	̂1 − 	̂2√
�̂2�1/n1 +1/n2�

This is the standard formula for the two-sample t-
statistic, with a Student’s t-distribution of n1 + n2 − 2
degrees of freedom under the null hypothesis.

Estimable functions and contrasts

Recall that if the model is overparameterized (i.e. X is
rank deficient), then there are infinitely many parame-
ter sets describing the same model. Constraints or the
use of a pseudoinverse isolate one set of parameters
from infinitely many. Therefore, when examining linear
compounds cT � of the parameters, it is imperative to
consider only compounds that are invariant over the
space of possible parameters. Such linear compounds are
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called contrasts. In the following, we will characterize
contrasts as linear combinations having two properties,
which determine whether a linear compound is a proper
contrast or not.

In detail (Scheffé, 1959), a linear function cT � of the
parameters is estimable if there is a linear unbiased esti-
mate c′T Y for some constant vector of weights c′. That
is cT � = E�c′T Y�. �E�Y� is the expectation of the random
variable Y .) The natural estimate cT �̂ is unique for an
estimable function whichever solution, �̂, of the normal
equations is chosen (Gauss-Markov theorem). Further:
cT � = E�c′T Y� = c′T X� ⇒ cT = c′T X, so c is a linear combi-
nation of the rows of X.

A contrast is an estimable function with the addi-
tional property cT �̂ = c′T Ŷ = c′T Y . Now c′T Ŷ = c′T Y ⇔
c′T PXY = c′T Y ⇔ c′ = PXc′ (since PX is symmetric), so c′

is in the X-space. In summary, a contrast is an estimable
function whose c′ vector is a linear combination of the
columns of X.5

One can test whether c is a contrast vector by combin-
ing the two properties (i) cT = c′T X and (ii) c′ = PXc′ for
some vector c′. It follows that cT = c′T PXX. Because of
(i), cT = cT �XT X�−XT X. In other words, c is a contrast, if
it is unchanged by post-multiplication with �XT X�−XT X.
This test is used in SPM for user-specified contrasts.6

For a contrast it can be shown that cT �̂ ∼
�
(
cT �� �2c′T c′). Using a pseudoinverse technique, PX =

X�XT X�−XT , so c′ = PXc′ ⇒ c′T c′ = c′T X�XT X�−XT c′ =
cT �XT X�−c since c = c′T X for an estimable function.

This shows that the distributional results given above
for unique designs (Eqn. 8.10 and Eqn. 8.11) apply to
contrasts of the parameters of non-unique designs, where
�XT X�−1 is replaced by its pseudoinverse.

In many cases, contrasts have weights that sum
to zero over the levels of each factor. For example,
for the one-way ANOVA with parameter vector � =
�	��1� � � � ��QT , the linear compound cT � with weights
vector c = �c0� c1� � � � � cQT is a contrast if c0 = 0 and∑Q

q=1 cq = 0.

Extra sum of squares principle; F-contrasts

The extra sum-of-squares principle allows one to assess
general linear hypotheses, and compare models in a hier-
archy, where inference is based on an F -statistic. Here,
we describe the classical F -test, based on the assump-
tion of an independent identically distributed error. In

5 In statistical parametric mapping, one usually refers to the
vector c as the vector of contrast weights. Informally, we will also
refer to c as the contrast, a slight misuse of the term.
6 The actual implementation of this test is based on a more
efficient algorithm using a singular value decomposition.

SPM, both statistics, the t- and the F -statistic, are used
for making inferences.

We first present the classical F -test as found in intro-
ductory statistical texts. We will then address two critical
limitations of this description and derive a more general
and flexible implementation of the F -test.

Suppose we have a model with parameter vector � that
can be bi-partitioned into, � = [

�T
1 ��T

2

]T , and suppose we
wish to test � 
 �1 = 0. The corresponding partitioning of

the design matrix X is X =
[

X1

���X2

]
, and the full model is:

Y =
[

X1

���X2

]⎡
⎣ �1

� � �
�2

⎤
⎦+�

which, when � is true, reduces to the reduced model: Y =
X2�2 + �. Denote the residual sum-of-squares for the full
and reduced models by S��� and S��2� respectively. The
extra sum-of-squares due to �1 after �2 is then defined as
S��1��2� = S��2�− S���. Under �� S��1��2� ∼ �2�2

p inde-
pendent of S���, where the degrees of freedom are p =
rank�X�− rank�X2�. (If � is not true, then S��1��2� has a
non-central chi-squared distribution, still independent of
S���.) Therefore, the following F -statistic expresses evi-
dence against � :

F =
S��2�−S���

p−p2

S���

J −p

∼ Fp−p2�J−p 8.13

where p = rank�X� and p2 = rank�X2�. The larger F gets,
the more unlikely it is that F was sampled under the null
hypothesis H . Significance can then be assessed by com-
paring this statistic with the appropriate F -distribution.
Draper and Smith (1981) give derivations.

This formulation of the F -statistic has two limitations.
The first is that two (nested) models, the full and the
reduced model, have to be inverted (i.e. estimated). The
second limitation is that a partitioning of the design
matrix into two blocks of regressors is too restrictive:
one can partition X into any two sets of linear combi-
nations of the regressors. This is particularly important
when the effects of interest are encoded by a mixture of
regressors (e.g. a difference). In this case, one cannot use
Eqn. 8.13 to partition the design space into interesting
and null subspaces. Rather, one has to re-parameterize
the model such that the differential effect is modelled
explicitly by a single regressor. As we will show next,
this re-parameterization is unnecessary.

The key to implement F -tests that avoid these lim-
itations lies in the notion of contrast matrices. A con-
trast matrix is a generalization of a contrast vector. Each
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column of a contrast matrix consists of one contrast
vector. Importantly, the contrast matrix specifies a parti-
tioning of the design matrix X.

A contrast matrix c is used to specify a subspace of the
design matrix, i.e. Xc = Xc. The orthogonal contrast to c
is given by c0 = Ip − cc−. Then, let X0 = Xc0 be the design
matrix of the reduced model. We wish to test the effects
Xc can explain, after fitting the reduced model X0. This
can be achieved using a matrix that projects the data onto
the subspace of Xc, which is orthogonal to X0. We denote
this subspace by Xa.

The projection matrix M due to Xa is derived from the
residual forming matrix of the reduced model X0, which
is given by R0 = IJ −X0X0

−. The projection matrix is then
M = R0 − R, where R is the residual forming matrix of
the full model, i.e. R = IJ −XX−.

The F -statistic can then be written as:

F = �MY�T MY

�RY�T RY

J −p

p1
= Y T MY

Y T RY

J −p

p1
∼ Fp1�J−p 8.14

where p1 is the rank of Xa. Since M projects onto a sub-
space within X, we can also write:

F = �̂T XT MX�̂

Y T RY

J −p

p1
∼ Fp1�J−p 8.15

This equation means that we can compute an F -statistic
conveniently for any user-specified contrast without a
re-parameterization. In SPM, all F -statistics are based on
the full model so that Y T RY is only estimated once and
is stored for subsequent use. More about F -contrasts and
their applications can be found in Chapter 9.

Example – one-way ANOVA

Consider a one-way ANOVA (Eqn. 8.9), where we wish
to assess the omnibus null hypothesis that all the groups
are identical: � 
 �1 = �2 = · · · = �Q. Under � the model
reduces to Yqj = 	+�qj . Since the ANOVA model contains
a constant term, 	, � is equivalent to � 
 �1 = �2 = · · · =
�Q = 0. Thus, let �1 = ��1� � � � ��Q�T , and �2 = 	. Eqn. 8.13
then gives an F -statistic which is precisely the standard
F -statistic for a one-way ANOVA.

Alternatively, we can apply Eqn. 8.15. The contrast
matrix c is a diagonal Q+ 1-matrix with Q ones on the
upper main diagonal and a zero in the Q+1st element on
the main diagonal (Figure 8.2). This contrast matrix tests
whether there was an effect due to any group, after taking
into account a constant term across groups. Application
of Eqn. 8.15 results in the same F-value as in Eqn. 8.13,
but without the need to invert two models.

Regressors

S
ca

ns

Contrast matrix

FIGURE 8.2 Example of ANOVA design and contrast matrix.
Both matrices are displayed as images, where 0s are coded by black
and 1s by white. Left: design matrix, where five groups are modelled
by their mean and overall mean. The model is overdetermined by
one degree of freedom. Right: F -contrast matrix, which tests for any
group-specific deviation from the overall mean.

Adjusted and fitted data

Once an inference has been made it is usually necessary
to report the nature of the effect that has been inferred.
This can be in terms of the parameter estimates, or in mea-
surement space after the estimates are projected through
the design matrix. In short, one can report significant
effects quantitatively using the parameter estimates or
the responses that these estimates predict. Adjusted data
are a useful way of summarizing effects, after uninter-
esting or confounding effects having been removed from
the raw data Y .

How does one tell SPM which effects are of interest?
The partitioning of the design matrix into interesting and
uninteresting parts is based upon the same principles as
the F -test developed in the preceding subsection. We can
use an F -contrast for the partitioning, which is equiva-
lent to specifying a full and reduced model. Adjusted
data are the residuals of the reduced model, i.e. compo-
nents that can be explained by the reduced model have
been removed from the data. To compute adjusted data
we need to tell SPM which part of the design matrix
is of interest (to specify the reduced model). SPM then
treats the part of the design matrix, which is orthogonal
to the reduced model, as the effects of interest. This will
be illustrated below by an example. Note that the par-
titioning of the design matrix follows the same logic as
the F -test: first, any effect due to the reduced model is
removed and only the remaining effects are taken to be
of interest. An important point is that any overlap (cor-
relation) between the reduced model and our partition
of interest is explained away by the reduced model. In the
context of adjusted data, this means that the adjusted
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108 8. THE GENERAL LINEAR MODEL

data will not contain that component of the effects that
can be explained by the reduced model.

Operationally, we compute the adjusted data using
the same procedure used to calculate the F -statistic.
A user-specified contrast matrix c induces a partitioning
of the design matrix X. The reduced model is given by
X0 = Xc0 and its residual forming matrix R0 = IJ −X0X

−
0 .

The adjusted data can then be computed by Ỹ = R0Y .
Note that this projection technique again makes a re-
parameterization redundant.

An alternative way of computing the adjusted data Ỹ
is to compute the data explained by the design matrix
partition orthogonal to X0 and add the residuals of the
full model, i.e. Ỹ = Yf + e. The residuals are given by
e = RY , where R is the residual forming matrix of the full
model, and Yf = MY , where Yf is referred to as fitted data.
The projection matrix M is computed by M = R0 −R. In
other words, the fitted data are equivalent to the adjusted
data minus the estimated error, i.e. Yf = Ỹ − e.

In SPM, both adjusted and fitted data can be plotted for
any voxel. For these plots, SPM requires the specification
of an F -contrast, which encodes the partitioning of the
design matrix into effects of interest and no interest.

Example

Consider a one-way ANOVA with four groups (condi-
tions). The design matrix comprises four columns, which
indicate group membership. Each group has 12 measure-
ments, so that we have 48 measurements altogether. In
this example, we are interested in the average of two dif-
ferences. The first difference is between groups 1 and 2
and the second difference between groups 2 and 3. If we
want to test this difference with a t-statistic, the contrast
vector is c = �−1� 1� −1� 1T . In Figure 8.3 (left), we show
the data. It is easy to see that there is a difference between
the average of the first two groups compared to the aver-
age of the last two groups, i.e. c = �−1� −1� 1� 1T .
However, by visual inspection, it is hard to tell whether
there is a difference between the average of groups 1

and 3 compared to the average of groups 2 and 4. This
is a situation where a plot of adjusted and fitted data
is helpful. First, we have to specify a reduced model. In
our example, the difference is represented by the con-
trast vector c = �−1� 1� −1� 1T . The contrast matrix c0

is given by c0 = I4 −cc−. With c0, we can compute X0� R0

and M , all of which are needed to compute the adjusted
and fitted data. In Figure 8.3 (right), we show the fitted
and adjusted data. In this plot it is obvious that there is a
difference between groups 1 and 2 and between groups
3 and 4. This example illustrates that plots of fitted and
adjusted data are helpful, when the effect of interest is
obscured or confounded by other effects.

Design matrix images

SPM uses grey-scale images of the design matrix to rep-
resent linear models. An example for a single subject PET
activation study with four scans, under each of three con-
ditions, is shown in Figure 8.4. The first three columns
contain indicator variables (consisting of zeroes and ones)
indexing the condition. The last column contains the
(mean corrected) global cerebral blood flow (gCBF) val-
ues (see below).

In the grey-scale design matrix images, −1 is black,
0 mid-grey, and +1 white. Columns containing covari-
ates are scaled by subtracting the mean (zero for centred
covariates). For display purposes regressors are divided
by their absolute maximum, giving values in �−1� 1.
Design matrix blocks, containing factor by covariate
interactions, are scaled such that the covariate values lie
in [0,1], preserving the zeroes as mid-grey.

PET AND BASIC MODELS

Having estblished the details of the general linear model,
we turn our attention to models used in functional brain
mapping, discuss the practicalities of their application,

FIGURE 8.3 Adjusted and fitted data.
Left: plot of raw data. Right: adjusted data
(solid line); fitted data (dashed line).
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FIGURE 8.4 Single subject activation experiment, ANCOVA
design. Illustrations for a three-condition experiment with four
scans in each of three conditions, ANCOVA design. Design matrix
image, with columns labelled by their respective parameters. The
scans are ordered by condition.

and introduce some terminology used in SPM. As the
approach is mass-univariate, the same model is used at
every voxel simultaneously, with different parameters
and error variances for each voxel. We shall concentrate
on PET data, with its mature family of standard sta-
tistical experimental designs. Models of fMRI data will
be presented in the next section. Although most PET
experiments employ multiple subjects, many of the key
concepts are readily demonstrated using a single subject
design.

Global normalization

There is an important distinction between regional and
global effects. Regional effects refer to the response in a
single voxel or a small volume of voxels that is not medi-
ated by global effects. Global effects have no regional
specificity and can be expressed everywhere in the
brain. Usually, global effects are considered as confounds
(e.g. arbitrary changes in global signal due to scan-
to-scan variations in radioactivity delivered). Although
true global effects are generally unknown, they can be
estimated using the whole-brain signal, which enters
the model as a global confound. Typically, modelling
global effects enhances the sensitivity and accuracy of
the subsequent inference about experimentally induced
regional effects.

As an example, consider a simple single subject PET
experiment. The subject is scanned repeatedly under both
baseline (control) and activation (experimental) conditions.

(b)(a)

gCBF

rC
B

F

rC
B

F

FIGURE 8.5 Single subject PET experiment, illustrative plots
of rCBF at a single voxel: (a) Dot-plots of rCBF; (b) plot of rCBF
versus gCBF. Both plots indexed by condition: 	 for baseline, for
active.

Inspection of regional activity (used as a measure of
regional cerebral blood flow (rCBF)), at a single voxel,
may not suggest an experimentally induced effect. How-
ever, after accounting for global effects (gCBF) differences
between the two conditions are disclosed (Figure 8.5).

In statistical parametric mapping, the precise definition
of global activity is user-dependent. The default defini-
tion is that global activity is the global average of image
intensities of intracerebral voxels. If Y k

j is the image inten-
sity at voxel k = 1� � � � �K of scan j, the estimated global
activity is gj = Y

•
j =∑K

k=1 Y k
j /K.

Having estimated the global activity for each scan, a
decision must be made about which model of global
activity should be used. In SPM, there are two alterna-
tives. The first is proportional scaling and the second is an
analysis of covariance analysis (ANCOVA).

Proportional scaling

One way to account for global changes is scale each scan
by its estimated global activity. This approach is based on
the assumption that the measurement process introduces
a (global) scaling of image intensities at each voxel, a gain
factor. Scaling has the advantage of converting the raw
data into a canonical range to give parameter estimates an
interpretable scale. For PET data, the mean global value is
usually chosen to be a typical gCBF of 50 ml/min/dl. The
scaling factor is thus 50

ḡ•
. We shall assume that the count

rate recorded in the scanner (counts data) has been scaled
into a physiologically meaningful scale. The normalized
data are Y ′k

j = 50
gj

Y k
j . The model is then:

Y k
j = gj

50
�X�k�j +�′k

j 8.16

where �′k ∼ � �0��2
k ×diag��gj/50�2��. The diag() operator

transforms a column vector to a diagonal matrix with the
vector on its main diagonal and zero elsewhere. This is a
weighted regression, i.e. the shape of the error covariance
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FIGURE 8.6 (a) Adjustment by proportional scaling; (b) sim-
ple single subject activation as a t-test on adjusted rCBF: weighted
proportional regression.

matrix is no longer IJ , but a function of estimated global
activity. Also note that the jth row of X is weighted by gj .

The adjustment of data from Y to Y ′ is illustrated in
Figure 8.6(a).

The ANCOVA approach

Another approach is to include the mean corrected global
activity vector g as an additional regressor in the model.
In this case the model (Eqn. 8.6) becomes:

Y k
j = �X��j + �k�gj − ḡ•�+�k

j 8.17

where �k ∼ � �0��2
k IJ � and �k is the slope parameter for

the global activity. In this model, the data are explained
as the sum of experimentally induced regional effects and
some global effects, which varies over scans. Note that
the model of Eqn. 8.17 can be extended by allowing for
different slopes between replications, conditions, subjects
and groups.

Proportional scaling versus ANCOVA

Clearly, one cannot apply both normalization models,
because proportional scaling will normalize the global
mean activity such that the mean corrected g in the
ANCOVA approach will be a zero vector. Proportional
scaling is most appropriate for data for which there
is a gain (multiplicative) factor that varies over scans.

This can be a useful assumption for fMRI data (see next
section). In contrast, an ANCOVA approach is appropri-
ate if the gain does not change over scans. This is the
case for PET scans using protocols which control for the
administered dose. This means that a change in estimated
global activity reflects a change in a subject’s global
activity and not a change in a global (machine specific)
gain. Moreover, the ANCOVA approach assumes that
regional experimentally induced effects are independent
of changes in global activity. Note that the ANCOVA
approach should not be used for PET data where the
administered dose is not controlled for in image con-
struction. In this case, the true underlying gCBF might be
constant over scans, but the global gain factor will vary
(similarly, for single photon emission computed tomog-
raphy (SPECT) scans)

Implicit in allowing for changes in gCBF (either by
proportional scaling or ANCOVA) when assessing con-
dition specific changes in rCBF, is the assumption that
gCBF represents the underlying background flow, about
which regional differences are assessed. That is, gCBF is
independent of condition. Clearly, since gCBF is calcu-
lated as the mean intracerebral rCBF, an increase of rCBF
in a particular brain region must cause an increase of
gCBF unless there is a corresponding decrease of rCBF
elsewhere. This means that, after global normalization,
regional effects are relative regional effects, having dis-
counted global effects.

If gCBF varies considerably between conditions, as
in pharmacological activation studies, then testing for
an activation after allowing for global changes involves
extrapolating the relationship between regional and
global flow beyond the range of the data. This extrapo-
lation might not be valid, as illustrated in Figure 8.7(a).

If gCBF is increased by a large activation that is
not associated with a corresponding deactivation, then
global normalization will make non-activated regions
(whose rCBF remained constant) appear de-activated.
(Figure 8.7(b) illustrates the scenario for a simple sin-
gle subject activation experiment using ANCOVA.) This
means it is important to qualify inferences about regional
effects under global normalization, especially if the global
activity shows a treatment effect. In these cases, it is
useful to report an analysis of the the global signal
itself, properly to establish the context in which relative
regional effects are expressed.

Grand mean scaling

Grand mean scaling refers to the scaling of all scans
by some factor such that the mean global activity is a
(user-specified) constant over all scans. Note that this
factor has no effect on inference, because it cancels in
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FIGURE 8.7 Single subject data, illustrative (ANCOVA) plots
of rCBF versus gCBF at a single voxel showing potential problems
with global changes. (a) Large change in gCBF between conditions.
The apparent activation relies on linear extrapolation of the base-
line and active condition regressions (assumed to have the same
slope) beyond the range of the data. The actual relationship between
regional and global for no activation may be given by the curve, in
which case there is no activation effect. (b) Large activation inducing
increase in gCBF measured as brain mean rCBF. Filled 	 denotes
rest, 	 denotes active condition values if this is an activated voxel,
while black 	 denotes active condition values where this voxel is
not activated (in which case an relative deactivation is seen).

the expressions for the t- and F -statistics (Eqns. 8.12
and 8.14). However, it does change the scaling and units
of the data and parameter estimates. The units of both
are rendered adimensional and refer, in a proportional
sense to the grand mean after scaling. This is useful in
fMRI, where the grand mean of a time-series is set to 100.
This means that any activation is expressed as a per cent
of whole brain mean, over scans.

PET models

In the following, we demonstrate the flexibility of the
general linear model using models in the context of
PET experiments. For generality, ANCOVA style mod-
els are used, with gCBF as a confounding covariate. The
corresponding ANCOVA models for data adjusted by

proportional scaling obtain by omitting the global term.
Voxel-level models are presented in the usual statisti-
cal notation, alongside the SPM description and design
matrix images. The form of contrasts for each design are
indicated, and some practical issues of design specifica-
tion will be discussed.

Single subject models

Single subject activation design

The simplest experimental paradigm is the single subject
activation experiment. Suppose there are Q conditions,
with Mq scans under condition q. Let Y k

qj denote the rCBF
at voxel k in scan j = 1� � � � �Mq under condition q =
1� � � � �Q. The model is:

Y k
qj = �k

q +	k + �k�gqj − ḡ••�+�k
qj 8.18

There are Q+ 2 parameters for the model at each voxel:
the Q condition effects, the constant term 	k, and the
global regression effect, giving a parameter vector �k =
��k

1� � � � ��k
Q�	k� �k�T at each voxel. In this model, repli-

cations of the same condition are modelled with a single
effect. The model is overparameterized, having only Q+1
degrees of freedom, leaving N −Q−1 residual degrees of
freedom, where N =∑

Mq is the total number of scans.
Contrasts are linear compounds cT �k for which the

weights sum to zero over the condition effects, and
give zero weight to the constant term, i.e.

∑Q
q=1 cq = 0

(Figure 8.8). Therefore, linear compounds that test for a
simple group effect or for an average effect over groups
cannot be contrasts. However, one can test for differences
between groups. For example, to test the null hypothesis
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(b)(a)

gCBF

rC
B

F

g••

2μk + α 
k

3μk + α 
k

1μk + α 
k

FIGURE 8.8 Single subject study, ANCOVA design. Illustra-
tion of a three-condition experiment with four scans in each of
three conditions, ANCOVA design. (a) Illustrative plot of rCBF ver-
sus gCBF. (b) Design matrix image with columns labelled by their
respective parameters. The scans are ordered by condition.
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� k 
 �k
1 = ��k

2 + �k
3�/2 against the one sided alternative

�
k


 �k
1 > ��k

2 + �k
3�/2, the appropriate contrast weights

would be c = �1�− 1
2 �− 1

2 � 0� � � � � 0T . In other words, one
tests whether the effect of group 1 is greater than the
average of groups 2 and 3. Large positive values of the
t-statistic express evidence against the null hypothesis,
in favour of the alternative hypothesis.

Single subject parametric design

Consider the single subject parametric experiment where
there is a single covariate of interest, or ‘score’. For
instance, the covariate may be a physiological variable,
a reaction time, or a performance score. We want to
find regions where rCBF is highly correlated with the
covariate, taking into account global effects. Figure 8.9(a)
depicts the situation. If Y k

j is the rCBF at voxel k of scan
j = 1� � � � � J and sj is the independent covariate, then a
simple ANCOVA-style model is a multiple regression
with two covariates:

Y k
j = �k�sj − s̄•�+	k + �k�gj − ḡ•�+�k

j 8.19

Here, � is the slope of the regression plane in the direction
of increasing score, fitted separately for each voxel.

There are three model parameters, leaving J −3 resid-
ual degrees of freedom. The design matrix (Figure 8.9(b))
has three columns, a column containing the (centred)
score covariate, a column of dummy 1s corresponding to
	k, and a column containing the (centred) global values.

The design is uniquely specified, so any linear com-
bination of the three parameters is a contrast. The null
hypothesis of no score effect at voxel k� � k 
 �k = 0, can
be assessed against the one sided alternative hypotheses
�

k

 �k > 0 (rCBF increasing with score) with contrast

weight for the effect of interest c1 = +1, and against �
k



�k < 0 (rCBF decreasing as score increases) with contrast
weight c1 = −1.

This simple model assumes a linear relationship
between rCBF and the covariate (and other explana-
tory variables). More general relationships (sometimes
referred to as neurometric functions) can be modelled by
including other functions of the covariate. These func-
tions are essentially new explanatory variables which, if
combined in a linear way, still fit within the framework
of the general linear model. For instance, the logarithm of
sj , i.e. ln�sj�, could be used in place of, or in addition to sj .
Adding powers of covariates as additional explanatory
variables leads to polynomial regression. More generally,
a set of basis functions can be used to expand covariates
to model, in a flexible fashion, the non-linear mapping
between experimental factors and responses. This theme
will be developed later in the context of fMRI, and in
Chapter 14.

Single subject activation revisited

It is often possible to re-parameterize the same model
in many ways. Recall the two-condition �Q = 2� single
subject design above. The model (Eqn. 8.18) is:

Y k
qj = �k

q +	k + �k�gqj − ḡ••�+�k
qj

This model is over-determined, so consider a sum-to-zero
constraint on the condition effects. For two conditions
this implies �k

1 = −�k
2. Substituting for �k

2, the resulting
design matrix has a column containing +1s and −1s indi-
cating the condition q = 1 or q = 2 respectively, a column
of 1s for the overall mean, and a column containing the
(centred) gCBF (Figure 8.10). The corresponding param-
eter vector is �k = ��k

1�	k� �kT . Clearly, this is the same
design matrix as that for a parametric design with a
(non-centred) ‘score’ covariate, indicating the condition
as active or baseline (with +1 or −1 respectively). The
hypothesis of no activation at voxel k� � k 
 �k

1 = 0 can
be tested against the one sided alternatives �

k

 �k

1 > 0

FIGURE 8.9 Single subject parametric
experiment: (a) plot of rCBF versus score
and gCBF. (b) Design matrix image for
Eqn. 8.19, illustrated for a 12-scan exper-
iment. Scans are ordered in the order of
acquisition.
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FIGURE 8.10 Example design matrix image for single subject
activation study, with six scans in each of two conditions, formu-
lated as a parametric design. The twelve scans are ordered so they
alternate between baseline and activation conditions.

(activation) and �
k


 �k
1 < 0 with contrast weights for the

effects of interest c1 = 1 and c1 = −1 respectively.

Single subject: conditions and covariates

Frequently, there are other confounding covariates in
addition to gCBF that can be added to the model. For
example, a linear effect of time can be modelled sim-
ply by entering the scan number as a covariate. In SPM
these appear in the design matrix as additional columns
adjacent to the global flow column.

Factor by covariate interactions

A more interesting experimental scenario is when a para-
metric design is repeated under multiple conditions in
the same subject(s). A specific example would be a PET
language experiment in which, during each of twelve
scans, lists of words are presented. Two types of word
list (the two conditions) are presented at each of six
rates (the parametric component). We may be interested
in locating regions where there is a difference in rCBF
between conditions (accounting for changes in presenta-
tion rate), the main effect of condition; locating regions
where rCBF increases with rate (accounting for condi-
tion), the main effect of rate; and assessing evidence

for condition-specific rate effects, an interaction.7 Let Y k
qrj

denote the rCBF at voxel k for the j-th measurement
under rate r = 1� � � � �R and condition q = 1� � � � �Q, with
sqr the rate covariate (some function of the rates). A suit-
able model is:

Y k
qrj = �k

q +�k
q�sqr − s̄••�+	k + �k�gqrj − ḡ•••�+�k

qrj 8.20

Note the q subscript on the parameter �k
q , indicating

different slopes for each condition. Ignoring the global
flow for the moment, the model describes two simple
regressions with common error variance (Figure 8.11(a)).
SPM describes such factor by covariate interactions as
‘factor-specific covariate fits’. The interaction between
condition and covariate effects is manifest as a dif-
ferent regression slope for each condition. There are
2Q + 2 parameters for the model at each voxel, �k =
��k

1� � � � ��k
Q��k

1� � � � ��k
Q�	k� �kT , with 2Q+ 1 degrees of

freedom. A design matrix for the two condition exam-
ple is shown in Figure 8.11(b). The factor by covariate
interaction occupies the third and fourth columns, corre-
sponding to the parameters �k

1 and �k
2. Here, the covariate

has been split between the columns according to condi-
tion and the remaining cells filled with zeroes.

Only the constant term and global slope are
confounds, leaving 2Q effects of interest �k

1 =
��k

1� � � � ��k
Q��k

1� � � � ��k
QT . As with the activation study

model, contrasts have weights that sum to zero over the
condition effects. For the two-condition word presenta-
tion example, contrast weights c1 = �0� 0� 1� 0T test for a
covariate effect in condition one, with large values indi-
cating evidence of a positive covariate effect. Weights
c1 = �0� 0� 1

2 � 1
2 T address the hypothesis that there is no
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α1α2ρ1 ρ2 ζμ
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kμk +α2

kμk +α1

FIGURE 8.11 Single subject experiment with conditions,
covariate, and condition by covariate interaction: (a) illustrative plot
of rCBF versus rate. (b) Design matrix image for Eqn. 8.20. Both
are illustrated for the two-condition 12-scan experiment described
in the text. The scans have been ordered by condition.

7 Two experimental factors interact if the level of one affects the
expression of the other.
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average covariate effect across conditions, against the
one-sided alternative that the average covariate effect is
positive. Weights c1 = �0� 0�−1�+1T test the null hypoth-
esis that there is no condition by covariate interaction,
i.e. that the regression slopes are the same.

The contrast weights c1 = �−1�+1� 0� 0T and c1 =
�+1�−1� 0� 0T are used to assess the hypothesis of no
condition effect against appropriate one-sided alterna-
tives. However, inference on main effects is confounded
in the presence of an interaction: in the above model, both
gCBF and the rate covariate were centred, so the condi-
tion effects �k

q are the relative heights of the respective
regression lines (relative to 	k) at the mean gCBF and
mean rate covariate. Clearly, if there is an interaction,
then the difference in the condition effects (the separation
of the two regression lines) depends on where you look
at them. Were the rate covariate not centred, the com-
parison would be at mean gCBF and zero rate, possibly
yielding a different result. More generally, the presence
of an interaction means that the main effects are difficult
to interpret. This difficulty is resolved by reporting the
simple effects. In factorial designs, it is usual to test first
for interactions. If the interactions are significant, one
then proceeds to test for the appropriate simple effects.
If it is not, then one reports the main effects.

Multisubject designs

Frequently, experimentally induced changes in rCBF are
small, and many analyses pool data from different sub-
jects to find significant effects. Models of data from many
subjects can either treat the subject effect as a fixed quan-
tity (giving fixed-effect models) or treat the subject effect
as random (giving random-effect models). In this chapter,
we consider fixed-effects models. Random- or mixed-
effects models are covered in Chapter 12. In fixed-effect
models the subject-effect is treated just like a condition-
effect and can be regarded as just another factor.

The single-subject designs presented above can be
extended to account for subject to subject differences. The
simplest type of subject effect is an additive effect, oth-
erwise referred to as a block effect. This implies that all
subjects respond in the same way, save for an overall
shift in rCBF (at each voxel). We extend our notation by
adding subscript i for subjects, so Y k

iqj is the rCBF at voxel
k of scan j under condition q on subject i = 1� � � � �N .

Multisubject activation (replications)

For instance, the single-subject activation model
(Eqn. 8.18) is extended by adding subject effects �k

i giving
the model:

Y k
iqj = �k

q +�k
i + �k�giqj − ḡ•••�+�k

iqj 8.21

A schematic plot of rCBF versus gCBF for this model is
shown in Figure 8.12(a). In SPM terminology, this is a ‘mul-
tisubject: replication of conditions’ design. The parame-
ter vector at voxel k is �k = ��k

1� � � � ��k
Q��k

1� � � � ��k
N � �kT .

The design matrix (Figure 8.12(b)) has N columns of
dummy variables corresponding to the subject effects.
(Similarly, a multisubject parametric design could be
derived from the single-subject case by including
appropriate additive subject effects.)

Again, the model is overparameterized, although this
time we have omitted the explicit constant term from the
confounds, since the subject effects can model an overall
level. Adding a constant to each of the condition effects
and subtracting it from each of the subject effects gives
the same model. Bearing this in mind, it is clear that
contrasts must have weights that sum to zero over both
the subject and condition effects.

Condition by replication interactions

The above model assumes that (accounting for global
and subject effects) replications of the same condition
give the same (expected) response. There are many rea-
sons why this assumption may be inappropriate, such

FIGURE 8.12 Multisubject activation experiment,
replication of conditions (Eqn. 8.21). Illustrations for a
five-subject study, with six replications of each of two
conditions per subject: (a) illustrative plot of rCBF versus
gCBF. (b) Design matrix image: the first two columns
correspond to the condition effects, the next five to the
subject effects, the last to the gCBF regression parameter.
The design matrix corresponds to scans ordered by subject,
and by condition within subjects.
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as learning effects or more generally effects that change
as a function of time. Time effects can be modelled by
including appropriate functions of the scan number as
confounding covariates. With multisubject designs, we
have sufficient degrees of freedom to test for replica-
tion by condition interactions. These interactions imply
that the (expected) response to each condition changes
with replications (having accounted for other effects
in the model). Usually in statistical models, interaction
terms are added to a model containing main effects (see
also Chapter 13). However, this supplemented model
is overparameterized such that the main effects are
redundant. When they are omitted, the model is:

Y k
iqj = ��k

�qj� +�k
i + �k�giqj − ḡ•••�+�k

iqj 8.22

where ��k
�qj� is the interaction effect for replication j of

condition q, the condition-by-replication effect. As with
the previous model, this model is overparameterized (by
one degree of freedom), and contrasts must have weights
which sum to zero over the condition-by-replication
effects. There are as many condition-by-replication terms
as there are scans per subject. (An identical model is
arrived at by considering each replication of each experi-
mental condition as a separate condition.) If the scans are
reordered such that the j-th scan corresponds to the same
replication of the same condition in each subject, then the
condition-by-replication corresponds to the scan num-
ber. An example design matrix for five subjects scanned
twelve times is shown in Figure 8.13 where the scans
have been reordered.

This is the ‘classic’ SPM ANCOVA implemented in the
original SPM software and affords great latitude for the
specification of contrasts: appropriate contrasts can be
used to assess main effects, specific forms of interaction,
and even parametric effects. For instance, consider the
verbal fluency dataset described by Friston et al. (1995):8

Five subjects were scanned twelve times; six times under
two conditions, word-shadowing (condition A) and
intrinsic word-generation (condition B). The scans were
reordered to ABABABABABAB for all subjects. Then, a
contrast with weights (for the condition-by-replication
effects) of c1 = �−1� 1�−1� 1�−1� 1�−1� 1�−1� 1�−1� 1T

assesses the hypothesis of no main effect of
word-generation (against the one-sided alternative
of activation). A contrast with weights of c1 =
�5 1

2 � 4 1
2 � 3 1

2 � 2 1
2 � 1 1

2 � 1
2 �− 1

2 �−1 1
2 �−2 1

2 �−3 1
2 �−4 1

2 �−5 1
2 T is

sensitive to linear decreases in rCBF over time, inde-
pendent of condition, and accounting for subject effects
and changes in gCBF. A contrast with weights of

8 This data set is available via http://www.fil.ion.ucl.ac.uk/
spm/data/
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FIGURE 8.13 Multisubject activation experiment, ‘classic’
SPM design, where each replication of each experimental condition
is considered as a separate condition (Eqn. 8.22). Illustrative design
matrix image for five subjects, each having 12 scans, the scans hav-
ing been ordered by subject, and by condition and replication within
subject. The columns are labelled with the corresponding parame-
ter. The first twelve columns correspond to the ‘condition’ effects,
the next five to the subject effects, the last to the gCBF regression
parameter.

c1 = �1�−1� 1�−1� 1�−1�−1� 1�−1� 1�−1� 1 assesses the
interaction of time and condition, subtracting the activa-
tion in the first half of the experiment from that in the
latter half.

Interactions with subject

While it is (usually) reasonable to use ANCOVA style
models to account for global flow, with regression param-
eters constant across conditions, the multisubject mod-
els considered above also assume that this regression
parameter is constant across subjects. It is possible that
rCBF at the same location for different subjects will
respond differentially to changes in gCBF – a subject by
gCBF interaction. The gCBF regression parameter can be
allowed to vary from subject to subject. Extending the
multisubject activation (replication) model (Eqn. 8.21) in
this way gives:

Y k
iqj = �k

q +�k
i + �k

i �giqj − ḡ•••�+�k
iqj 8.23

Note the i subscript on the global slope term, �k
i , indicat-

ing a separate parameter for each subject. A schematic
plot of rCBF versus gCBF for this model and an exam-
ple design matrix image are shown in Figure 8.14. In the
terminology of the SPM this is an ‘ANCOVA by sub-
ject’. The additional parameters are of no interest, and
contrasts remain as before.
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116 8. THE GENERAL LINEAR MODEL

FIGURE 8.14 Multisubject activa-
tion experiment, replication of conditions,
ANCOVA by subject. Model Eqn. 8.23.
Illustrations for a five-subject study, with six
replications of each of two conditions per
subject: (a) illustrative plot of rCBF versus
gCBF. (b) Design matrix image: the first two
columns correspond to the condition effects,
the next five to the subject effects, the last
five to the gCBF regression parameters for
each subject. The design matrix corresponds
to scans ordered by subject, and by condition
within subjects.
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Multistudy designs

The last class of SPM models for PET we consider
are the ‘multistudy’ models. In these models, subjects
are grouped into two or more studies. The ‘multistudy’
designs fit separate condition effects for each study. In
statistical terms, this is a split plot design. As an exam-
ple, consider two multisubject activation studies, the first
with five subjects scanned twelve times under two condi-
tions (as described above), the second with three subjects
scanned six times under three conditions. An example
design matrix for a model containing study-specific con-
dition effects, subject effects and study-specific global
regression (termed ‘ANCOVA by group’ in SPM) is
shown in Figure 8.15. The first two columns of the design
matrix correspond to the condition effects for the first
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FIGURE 8.15 Design matrix image for the example multi-
study activation experiment described in the text.

study, the next two to the condition effects for the second
study, the next eight to the subject effects, and the last
to the gCBF regression parameter. (The corresponding
scans are assumed to be ordered by study, by subject
within study, and by condition within subject.)

Contrasts for multistudy designs in SPM have weights
that, when considered for each of the studies individu-
ally, would define a contrast for that study. Thus, con-
trasts must have weights which sum to zero over the
condition effects within each study. There are three types
of useful comparison. The first is a comparison of con-
dition effects within a study; the contrast weights for
this are padded with zeros for the other studies, e.g.
c1 = �1�−1� 0� 0� 0T for the first study in our example.
This has additional power, relative to an analysis of this
study in isolation, since observations from the second
study make the variance estimates more precise. The sec-
ond is an average effect across studies; here, contrasts
for a particular effect are concatenated over studies. For
example, if the second study has the same conditions
as the first, plus an additional condition, then the con-
trast could have weights c1 = �−1� 1�−1� 1� 0T . Lastly,
differences of contrasts across studies can be assessed,
such as differences in activation. The contrasts weights
for the appropriate main effect in each study are con-
catenated, with some study-contrasts negated. In our
example, c1 = �−1� 1� 1�−1� 0T would be appropriate for
locating regions where the first study activated more than
the second, or where the second deactivated more than
the first.

In many instances, it is appropriate to assume that the
error variance between subjects or between studies is
the same (i.e. homoscedasticity). For very different study
populations or studies using different scanners or pro-
tocols, this assumption may not be tenable and the dif-
ferent variances should be modelled. We will cover the
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specification of this non-sphericity9 in Chapter 10 and,
briefly, in the next section on fMRI. These considerations
pertain to the assumptions about the covariance compo-
nents of the error but do not affect the specification of
the design matrices considered in this section.

Basic models

In this section, we will discuss some of the models that
are referred to in SPM as basic models. Typically, basic
models are used for analyses at the second or between-
subject level to implement mixed-effects models (see
Chapter 12). For example, basic models include the one-
sample t-test, the two-sample t-test, the paired t-test and
a one-way ANCOVA, which are described below. For
clarity, we shall drop the voxel index superscript k.

One-sample t-test

The one-sample t–test can be used to test the null hypoth-
esis that the mean of J scans is zero. This is the simplest
model available and the design matrix consists of just a
constant regressor. The model is:

Y = x1�1 +� 8.24

where x1 is a vector of ones and � ∼ N�0��2IJ �. The null
hypothesis is � 
 �1 = 0 and the alternative hypothesis is
� 
 �1 > 0. The t-value is computed using Eqn. 8.12 as:

T = �̂1√
�̂2/J

∼ tJ−1 8.25

where �̂2 = Y T RY/�J −1�, where R is the residual forming
matrix (see above) and Y T RY are the sum of squares of
the residuals. This could also be expressed as Y T RY =∑J

j=1�Yj − Ŷj�
2, where Ŷj = �x1�̂1�j = �̂1.

Two-sample t-test

The two-sample t-test allows one to test the null hypothe-
sis that the means of two groups are equal. The resulting
design matrix consists of three columns: the first two
encode the group membership of each scan and the third
models a common constant across scans of both groups.
This model is overdetermined by one degree of free-
dom, i.e. the sum of the first two regressors equals the
third regressor. Notice the difference in parameteriza-
tion compared to the earlier two-sample t-test example.

9 Non-sphericity refers to the deviation of the error covariance
matrix from a diagonal shape or a shape that can be transformed
into a diagonal shape. See also Chapter 10.

Nevertheless, the resulting t-value is the same for a dif-
ferential contrast. Let the number of scans in the first
and second groups be J1 and J2, where J = J1 + J2. The
three regressors consists of ones and zeros, where the
first regressor consist of J1 ones, followed by J2 zeroes.
The second regressor consists of J1 zeroes, followed by J2

ones. The third regressor contains ones only.
Let the contrast vector be c = �−1� 1� 0T , i.e. the alter-

native hypothesis is � 
 �1 < �2. Then:

�XT X� =
⎛
⎝ J1 0 J1

0 J2 J2

J1 J2 J

⎞
⎠ �

This matrix is rank deficient so we use the pseudo-inverse
�XT X�− to compute the t-statistic. We sandwich �XT X�−

with the contrast and get cT �XT X�−c = 1/J1 + 1/J2. The
t-statistic is then given by:

T = �̂2 − �̂1√
�̂2/�1/J1 +1/J2�

∼ tJ−2 8.26

and �̂2 = Y T RY/�J − 2�. We have assumed here that we
have equal variance in both groups. This assumption may
not be tenable (e.g. when comparing normal subjects with
patients) and we may have to take this non-sphericity
into account (see Chapter 10).

Paired t-test

The model underlying the paired t-test is an extension
of the two-sample t-test model. It assumes that the scans
come in pairs, i.e. one scan of each pair is in the first
group and the other is in the second group. The extension
is that the means over pairs are not assumed to be equal,
i.e. the mean of each pair is modelled separately. For
instance, let the number of pairs be Npairs = 5, i.e. the
number of scans is J = 10. The design matrix consists
of seven regressors. The first two model the deviation
from the pair-wise mean within group and the last five
model the pair-specific means. The model has degrees of
freedom one less than the number of regressors.

Let the contrast vector be c = �−1� 1� 0� 0� 0� 0� 0T , i.e.
the alternative hypothesis is � 
 �1 < �2. This leads to:

T = �̂2 − �̂1√
�̂2/�1/J1 +1/J2�

∼ tJ−J/2−1 8.27

The difference between this and a two-sample t-test lies
in the degrees of freedom J − J/2 − 1. The paired t-test
can be a more appropriate model for a given data set, but
more effects are modelled, i.e. there are fewer degrees of
freedom.
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One-way ANCOVA

A one-way ANCOVA allows one to model group effects,
i.e. the mean of each of Q groups. This model includes the
one-sample and two-sample t-tests, i.e. the cases when
1 ≤ Q ≤ 2.

Let the number of groups be Q = 3, where there are
five scans within each group, i.e. Jq = 5 for q = 1� � � � �Q.
There are a range of different contrasts available. For
instance, we could test the null hypothesis that the group
means are all equal using the F -contrast as described
earlier. We may want to test the null hypothesis that
the mean of the first two groups is equal to the mean
of the third group, i.e. � 
 ��1 + �2�/2 − �3 = 0 and our
alternative hypothesis is � 
 ��1 +�2�/2 < �3. This can be
tested using a t-statistic, where c = �−1/2�−1/2� 1� 0T .
The resulting t-statistic and its distribution is:

T = ��̂1 + �̂2�/2− �̂3√
�̂2/�1/J1 +1/J2 +1/J3�

∼ tJ−Q 8.28

fMRI MODELS

In this section, we describe the analysis of single-session
fMRI data. Models for fMRI data are slightly more com-
plicated than ANCOVA-like models for PET because
fMRI data represent time-series. This means that the
data have serial correlations, and temporal non-sphericity
must be modelled. Furthermore, the data are caused by
dynamical processes that call upon a convolution model
for their modelling.

Historically, SPM was first developed for PET data and
then generalized to handle fMRI data. In this section, we
describe the extensions this entailed. This section cov-
ers linear time-series models for fMRI data, temporal or
serial correlations and their estimation, temporal filter-
ing, parameter estimation and inference.

A linear time-series model

SPM is a mass-univariate device, i.e. we use the same
temporal model at each voxel. Therefore, we can describe
the temporal model for fMRI data by looking at how the
data from a single voxel (a time-series) are modelled. A
time-series comprises sequential measures of fMRI signal
intensities over the period of the experiment. Usually,
fMRI data are acquired for the whole brain with a sample
time of roughly 2 to 5 s, using an echo-planar imaging
(EPI) sequence.

Multisubject data are acquired in sessions, with one
or more sessions for each subject.10 Here, we deal only
with models for one of these sessions, e.g. a single-subject
analysis. Multisubject analyses are based on hierarchial
models and are described in Chapter 12.

Suppose we have a time series of N observations
Y1� � � � �Ys� � � � �YN , acquired at one voxel at times ts,
where s = 1� � � � �N is the scan number. The approach is to
model at each voxel the observed time-series as a linear
combination of explanatory functions, plus an error term
(where we omit voxel superscripts):

Ys = �1f
1�ts�+· · ·+�lf

l�ts�+· · ·+�LfL�ts�+�s 8.29

The L functions f 1���� � � � � f L��� are a suitable set of regres-
sors, designed such that linear combinations of them span
the space of possible fMRI responses for this experiment,
up to the level of error. Consider writing out the above
Eqn. 8.29 for all time points ts, to give a set of equations:

Y1 = �1f
1�t1�+· · ·+�lf

l�t1�+· · ·+�LfL�t1�+�1

��� = ���

Ys = �1f
1�ts�+· · ·+�lf

l�ts�+· · ·+�LfL�ts�+�s

��� = ���

YN = �1f
1�tN �+· · ·+�lf

l�tN �+· · ·+�LfL�tN �+�N

which in matrix form is:
⎛
⎜⎜⎜⎜⎜⎜⎝

Y1
���

Ys

���
YN

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f 1�t1� � � � f l�t1� � � � f L�t1�
���

� � �
���

� � �
���

f 1�ts� � � � f l�ts� � � � f L�ts�
���

� � �
���

� � �
���

f 1�tN � � � � f l�tN � � � � f L�tN �

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

�1
���

�l

���
�L

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

�1
���
�s

���
�N

⎞
⎟⎟⎟⎟⎟⎟⎠

8.30

or in matrix notation:

Y = X�+� 8.31

Here each column of the design matrix X contains the
values of one of the continuous regressors evaluated at
each time point ts of fMRI time series. That is, the columns
of the design matrix are the discretized regressors.

The regressors are chosen to span the space of all pos-
sible fMRI responses for the experiment in question, such
that the error vector � is normally distributed with zero
mean. As will be discussed later, we assume a serially
correlated error process �.

10 The term session will be defined later.
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Proportional and grand mean scaling

Before we proceed to construction of fMRI regressors,
we consider the issue of global normalization. fMRI data
are known to arise from various processes that cause
globally distributed confounding effects (e.g. Andersson
et al., 2001). A simple global confound is scanner gain.
This volume-wise gain is a factor that scales the whole
image and is known to vary slowly during a session.
A simple way to remove the effect of gain is to esti-
mate the gain for every image and divide all the image
intensities by this estimate. This is known as proportional
scaling.

If one does not use proportional scaling, SPM applies,
by default, a session-specific scaling. This type of scaling
divides each volume by a session-specific global estima-
tor. This is known in SPM as grand mean scaling. Session-
specific grand mean scaling is recommended, because the
scaling of fMRI data can vary between sessions and could
mask regional activations.

To estimate the scaling factors, SPM uses a rough esti-
mate of the volume-wise intracerebral mean intensity.
Note that both kinds of scaling render the mean global
activity (either of a volume or of a session) 100. The data
and a signal change can then be interpreted conveniently
as a per cent of the global mean.

Constructing fMRI regressors

In the following, we describe how the regressors in
Eqn. 8.30 are generated and the underlying model of
blood oxygen-level-dependent (BOLD) responses that
this entails. This process consists of several stages.
Although most are hidden from the user, it is helpful
to know about the intermediate processing steps, so that
one can understand the assumptions on which the model
is based. Basically, SPM needs to know two things to con-
struct the design matrix. The first is the timing of exper-
imental changes and the second is the expected shape
of the BOLD response elicited by these changes. Given
this information, SPM can then construct the design
matrix.

Experimental timing

Here we describe how a design matrix for one session of
functional data is generated. Let the number of scans in a
session be Nscans, where the data be ordered according to
their acquisition. In SPM, a session starts at session-time
zero. This time point is when the first slice of the first scan
was acquired. Session-time can be measured in scans or
seconds. The duration of a session is the number of scans
multiplied by the volume repetition time (RT), which is
the time spent from the beginning of the acquisition of

one scan to the beginning of the acquisition of the next
scan. We assume that RT stays constant throughout a
session. The RT and the number of scans of a given ses-
sion define the start and the end of a session. Moreover,
because RT stays constant throughout the experiment,
one also knows the onset of each scan.

The design of the experiment is described as a series
of trials or events, where each trial is associated with a
trial type. Let N m

trials be the number of trials of trial type
m and Ntypes the number of trial types. For each trial j of
trial type m, one needs to specify its onset and duration.
Note that we do not need to make a distinction between
event-related or blocked designs, so a trial can be either
a short event or an epoch. Let the onset vector of trial
type m be Om so that Om

j is the onset of trial j of trial
type m. For example, the onset of a trial that started at
the beginning of scan four is at session time three (in
scans) or at session time 3 · RT (in seconds). Let vector
Dm contain the user-specified stimulus durations of each
trial for trial type m.

Given all the onsets Om and durations Dm, SPM gen-
erates an internal representation of the experiment. This
representation consists of the stimulus function Sm for
each trial type m. All time bins of a session are covered
such that the vectors Sm represent a contiguous series
of time bins. These time bins typically do not cover a
time period of length RT, but a fraction of it, to provide
a well-sampled discrete approximation to the stimulus
functions Sm, i.e. they are over-sampled with respect to
the data.

The occurrence of a stimulus in a particular time bin
is represented by an indicator variable of 1 or 0 (but see
later in the Parametric modulation section). In other words,
the stimulus function is a long vector of ‘switches’ that
encode the presence or absence of a particular trial type.
In this way, stick-functions or boxcar functions of any
sort can be represented.

Note that the degree of discretization of the stimulus
functions is controlled by the user. Time bin size is spec-
ified as the number of time bins per RT.11

For example, assume the RT is 3.2 s. Then each time bin,
with the default of 16 bins/RT, covers 200 ms. The length
of the vector Sm is 16Nscans. Note that choosing a smaller
time bin size does not necessarily provide a higher tem-
poral precision for the resulting regressors in the design
matrix. This is because the BOLD response occupies a
rather low-frequency band. Therefore, responses to trials
a few hundred milliseconds apart are virtually indistin-
guishable.

11 The effective time bin size is accessible in SPM as variable
fMRI_T. Its default value is 16.
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High-resolution basis functions

After the stimulus functions have been specified in terms
of onsets and durations, we need to describe the shape
of the expected response. This is done using temporal
basis functions. The underlying assumption is that the
BOLD response for a given trial type m can be gener-
ated by passing the stimulus function through a linear
finite impulse response (FIR) system, whose output is
the observed data Y . This is expressed by the convolu-
tion model:

Y = d�

Ntypes∑
m=1

hm ⊗Sm�+� 8.32

where hm is the impulse response function for trial type
m. The ⊗ operator denotes the convolution of two vectors
(Bracewell, 1986). d�·� denotes the down-sampling oper-
ation, which is needed to sample the convolved stimulus
functions at each RT. In other words, the observed data
Y are modelled by summing the output of Ntypes different
linear systems. The input to the mth linear system is the
stimulus function of trial type m.

The impulse response functions hm are not known, but
we assume that they can be modelled as linear combina-
tions of some basis functions bi:

Y =
Ntypes∑
m=1

Nbf∑
i=1

d�bi�
m
i ⊗Sm�+� 8.33

where �m
i is the ith coefficient for trial type m and Nbf is

the number of basis functions bi. We can now move the
coefficients outside the sampling operator to give:

Y = d�
[
�b⊗S1��1 +· · ·+ �b⊗SNtypes ��Ntypes

]
�+� 8.34

where b =
[
b1� � � � � bNbf

]
and �m =

[
�mT

1 � � � � ��mT

Nbf

]T

.
Note that the convolution operates on the columns of

matrix b. If we let X =
[

�b⊗S1�
��� · · · ����b⊗SNtypes �

]
and � =

[
�1T

� � � � ��Ntypes
T
]T

, we see that Eqn. 8.34 is a linear
model, like Eqn. 8.31. The columns of the design matrix
X are given by the convolution of each of the Ntypes stim-
ulus functions with each of the Nbf basis functions. Note
that, although we model different impulse response func-
tions for each trial type m, our parametrization uses the
same basis functions bi for each trial type, but different
parameters �m

1 � � � � ��m
Nbf

.
In summary, when we choose a specific basis set bi, we

are implicitly modelling the haemodynamic response as
a linear combination of these basis functions. The ques-
tion remains: which basis function set is best for fMRI
data? In SPM, the default choice is a parameterized model
of a canonical impulse response function. This function

is a mixture of two gamma functions. To form a basis
set, one usually supplements this function with its first
partial derivatives with respect to its generating parame-
ters: the onset and dispersion. This gives: b1 the canonical
response function; b2 its partial derivative with respect
to onset (time); and b3 its partial derivative with respect
to dispersion. This is referred to as the ‘haemodynamic
response function (HRF) with derivatives’. This set can
model a BOLD response that: (i) can be slightly shifted
in time with respect to the canonical form; or (ii) has a
different width.

Parametric modulation

When we first introduced the stimulus functions Sm they
were described as vectors consisting of ones and zeroes.
However, one can assign other values to Sm by spec-
ifying a vector parametric weights that are applied to
each event. This weighting allows models in which the
stimulus function has an event-specific scaling. There are
many applications for this parametric modulation. For
instance, one can weight events by a linear function of
time; this models a linear change in the responses over
time. Another application is weighting of Sm with some
external measure that was acquired trial-wise, e.g. reac-
tion times. These modulated regressors allow one to test
for a linear dependence between the modulating param-
eter and evoked responses, while taking into account
the convolution with the HRF. Higher-order relation-
ships can be modelled using polynomial expansions of
the modulating parameter to give a series of stimulus
functions for each trial type, each convolved with the
haemodynamic basis set.

Down-sampling

In Eqn. 8.34, a down-sampling operator d was applied
to the high-resolution (continuous) regressors to the low-
resolution temporal space of the data Y . Here, one has to be
aware of a slight limitation for event-related data that arise
due to the use of the same temporal model at each voxel.

fMRI data are acquired slice-wise, so that a small
amount of time elapses from the acquisition of one slice
to the next. Given standard EPI sequences, the acquisi-
tion of one slice takes roughly 60–100 ms. Therefore, an
optimal sampling of the high-resolution basis functions
does not exist, because any chosen sampling will only be
optimal for one slice. The largest timing error is given
for a slice that lies in acquisition order �Nslices/2 slices
away from the slice for which the temporal model is
exact.12 This sampling issue is only relevant for event-
related designs, which elicit BOLD responses lasting for

12 �x denotes the nearest integer less or equal to x.
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only a few seconds. For blocked designs, timing errors
are small compared to epoch length so that the potential
loss in sensitivity is negligible.

In SPM, there are two ways to solve this slice-timing
issue. The first is to choose one time point and tempo-
rally realign all the slices to this time. This is called slice
timing correction. However, this interpolation requires a
rather short RT (<3 s), because the sampling has to be
dense, in relation to the width of the BOLD response.
The second option is to model latency differences with
the temporal derivative of the HRF. As discussed above,
the temporal derivative can model a temporal shift of
the expected BOLD response. This temporal shift can
not only model onset timing differences due to different
slice times, but also differences due to a different vascu-
lar response onset, for example. Note that the temporal
derivative can only model small shifts of up to a second
(forwards or backwards in time). We generally recom-
mend the use of the temporal derivative as part of the
model to capture any potential latency differences.

Additional regressors

It is possible to add regressors to the design matrix with-
out going through the convolution process described
above. An important example is the modelling of
movement-related effects. Because movement expresses
itself in the data directly, and not through any haemody-
namic convolution, these are added directly as explana-
tory variables in the usual way.

Serial correlations

fMRI data exhibit short-range serial or temporal correla-
tions. By this we mean that the error �s at a given scan
s is correlated with its temporal neighbours. This has to
be modelled, because ignoring correlations leads to an
inappropriate estimate of the degrees of freedom. When
forming a t- or F -statistic, this would cause a biased esti-
mate of the standard error leading to invalid tests. More
specifically, when using ordinary least squares estimates,
serial correlations enter through the effective degrees of
freedom of the statistic’s null distribution.13 With serial
correlations the effective degrees of freedom are lower
than in the case of independence. Ignoring serial correla-
tions leads to capricious and invalid tests. To derive cor-
rect tests we have to estimate the error covariance matrix
by assuming some kind of non-sphericity (Chapter 10).
We can then use this estimate in one of two ways.

13 Effective degrees of freedom refer to the degrees of freedom of
an approximation to the underlying null distribution (Worsley
and Friston, 1995).

First, we can use it to form generalized least squares
estimators that correspond to the maximum likelihood
estimates. This is called pre-whitening and involves de-
correlating the data (and design matrix) as described in
Chapters 10 and 22. In this case, the whitened errors are
IID and the degrees of freedom revert to their usual value.

The alternative is to proceed with the ordinary least
squares (OLS) estimates and form statistics in the usual
way. One then makes a post-hoc adjustment to the
degrees of freedom (cf. a Greenhouse-Geisser correction)
to ensure the inflated estimate of the estimators’ pre-
cision is accommodated when comparing the statistic
obtained, with its null distribution. Current implemen-
tations of SPM use the maximum likelihood approach,
which requires no post-hoc correction. However, to retain
the connection with classical statistics in this chapter,
we will describe how serial correlations are used with
OLS estimates, to give the effective degrees of freedom.
In both cases, one needs to estimate the serial correla-
tions first.

Note that we are only concerned with serial correla-
tions in the error � (Eqn. 8.31). The correlations induced
by the experimental design are modelled by the design
matrix X. Serial correlations in fMRI data are caused by
various sources including cardiac, respiratory and vaso-
motor sources (Mitra et al., 1997).

One model that captures the typical form of serial
correlations in fMRI data is the autoregressive (order
1) plus white noise model �AR�1� + wn� (Purdon and
Weisskoff, 1998).14 This model accounts for short-range
correlations. We only need to model short-range corre-
lations, because we also highpass filter the data. The
highpass filter removes low frequency components and
long-range correlations. We refer the interested reader
to Appendix 8.1 for a mathematical description of the
AR�1�+wn model.

Estimation of the error covariance matrix

Assuming that the AR�1�+ wn is an appropriate model
for the fMRI error covariance matrix, we need to estimate
three hyperparameters (see Appendix 8.1) at each voxel.
The hyperparameterized model gives a covariance matrix
at each voxel (Eqn. 8.45). In SPM, an additional assump-
tion is made to estimate this matrix very efficiently, which
is described in the following.

The error covariance matrix can be partitioned into
two components. The first component is the correlation
matrix and the second is the variance. The assumption
made by SPM is that the correlation matrix is the same at
all voxels of interest (see Chapter 10 for further details).

14 The AR�1�+wn is also known as the autoregressive moving-
average model of order (1,1) (ARMA(1,1)).
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The variance is assumed to differ between voxels. In other
words, SPM assumes that the pattern of serial correla-
tions is the same over all interesting voxels, but its ampli-
tude is different at each voxel. This assumption seems
to be quite sensible, because the serial correlations over
voxels within tissue types are usually very similar. The
ensuing estimate of the serial correlations is extremely
precise because one can pool information from the subset
of voxels involved in the estimation. This means the cor-
relation matrix at each voxel can be treated as a known
and fixed quantity in subsequent inference.

The estimation of the error covariance matrix proceeds
as follows. Let us start with the linear model for voxel k:

Y k = X�k +�k 8.35

where Y k is an N ×1 observed time-series vector at voxel
k�X is an N ×L design matrix, �k is the parameter vector
and �k is the error at voxel k. The error �k is normally
distributed with � ∼ N�0��k2

V�. The critical difference, in
relation to Eqn. 8.6, is the distribution of the error; where
the identity matrix I is replaced by the correlation matrix
V . Note that V does not depend on the voxel position k,
i.e. as mentioned above we assume that the correlation
matrix V is the same for all voxels k = 1� � � � �K. However,
the variance �k2 is different for each voxel.

Since we assume that V is the same at each voxel, we
can pool data from all voxels and then estimate V on this
pooled data. The pooled data are given by summing the
sampled covariance matrix of all interesting voxels k, i.e.
VY = 1/K

∑
k Y kY kT . Note that the pooled VY is a mixture

of two variance components; the experimentally induced
variance and the error variance component:

VY =∑
k

X�k�kT
XT +�k�kT

8.36

The conventional way to estimate the components of
the error covariance matrix Cov��k� = �k2

V is to use
restricted maximum likelihood (ReML) (Harville, 1997;
Friston et al., 2002). ReML returns an unbiased estima-
tor of the covariance components, while accounting for
uncertainty about the parameter estimates. ReML can
work with precision or covariance components; in our
case we need to estimate a mixture of covariance com-
ponents. The concept of covariance components is a very
general concept that can be used to model all kinds of
non-sphericity (see Chapter 10). The model described in
Appendix 8.1 (Eqn. 8.44) is non-linear in the hyperpa-
rameters, so ReML cannot be used directly. But if we use
a linear approximation:

V =∑
l

�lQl 8.37

where Ql are N ×N components and the �l are the hyper-
parameters, ReML can be applied. We want to specify

Scans

S
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FIGURE 8.16 Graphical illustration of the two covariance
components, which are used for estimating serial correlations. Left:
component Q1 that corresponds to a stationary white variance com-
ponent; right: components Q2 that implements the AR�1� part with
an autoregression coefficient of 1/e.

Ql such that they form an appropriate model for serial
correlations in fMRI data. The default model in SPM is to
use two components Q1 and Q2. These are Q1 = IN and:

Q2ij
=
{

e−�i−j� 
 i �= j
0 
 i = j

8.38

Figure 8.16 shows the shape of Q1 and Q2.
A voxel-wide estimate of V is then derived by re-

scaling V such that V is a correlation matrix.
This method of estimating the covariance matrix at

each voxel uses the two voxel-wide (global) hyperparam-
eters �1 and �2. A third voxel-wise (local) hyperparame-
ter (the variance �2) is estimated at each voxel using the
usual estimator in a least squares mass-univariate scheme
(Worsley and Friston, 1995):

�2k = Y kT
RY k

trace�RV�
8.39

where R is the residual forming matrix. This completes
the estimation of the serial correlations at each voxel k.
Before we can use these estimates to derive statistical
tests, we will consider the highpass filter and the role it
plays in modelling fMRI data.

Temporal filtering

Filtering is motivated by the observation that certain fre-
quency bands in the data contain more noise than others.
In an ideal world, our experimentally induced effects
would lie in one frequency band and all of the noise in
another. Applying a filter that removes the noise from
the data would then give us increased sensitivity. How-
ever, the data are a mixture of activation and noise that
share some frequency bands. The experimenter’s task is
therefore to make sure that the interesting effects do not
lie in a frequency range which is especially exposed to
noise. In fMRI, the low frequencies (say less than half
a cycle per minute, i.e. 1/120 Hz) are known to contain
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scanner drifts and possibly cardiac/respiratory artefacts.
Any activations that lie within this frequency range are
virtually undistinguishable from noise. This is why: (i)
fMRI data are highpass filtered to remove noise; and (ii)
the experimenter constructs a design that puts the inter-
esting effects into frequencies higher than 1/120 Hz. This
issue is especially important for event-related designs
and is described in more detail in Chapter 14. Here, we
describe how the highpass filter is implemented.

The highpass filter is implemented using a discrete
cosine transform (DCT) basis set. These are an implicit
part of the design matrix. However, to the user of SPM,
they are invisible in the sense that the DCT regressors are
not actually estimated. This is simply to save space. In
practice, the effects explained by the DCT or drift terms
are removed from the data and design matrix using their
residual forming matrix. This does not affect any of the
remaining parameters estimates or any statistics, but is
computationally more convenient.

Mathematically, for time points t = 1� � � � �N , the dis-
crete cosine set functions are fr�t� = √

2/N
(
cos

(
r� t

N

))
.

(See Figure 8.17 for an example.) The integer index r
ranges from 1 (giving half a cosine cycle over the N time
points), to a user-specified maximum R. Note that SPM
asks for a highpass cutoff dcut in seconds. R is then chosen
as R = �2NRT/dcut +1.

To summarize, the regressors in the design matrix X
account for all the components in the fMRI time series
up to the level of residual noise. The highpass filter
is effectively a part of the design matrix and removes
unwanted low-frequency components. Therefore, long-
range correlations are treated as fixed effects. The short
range correlations are treated as random effects and are
estimated using ReML and a linear approximation to the
AR�1�+wn model. In the next section, we describe how
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FIGURE 8.17 A discrete cosine transform set.

the model parameter estimates are used to form a t- or F -
statistic at each voxel, in the context of serial correlations.

Parameter estimates and distributional results

The ordinary least-squares parameter estimates �̂ are
given by:

�̂ = �XT X�−XT Y = X−Y 8.40

As described above, we estimate the error correlation
matrix V using the ReML method. The error covariance
matrix is then given by �̂2V (Eqn. 8.39). The covariance
of the parameter estimates is:

Var��̂� = �2X−VX−T 8.41

A t-statistic can then be formed by dividing a contrast of
the estimated parameters cT �̂ by its estimated standard
deviation:

T = cT �̂√
�̂2cT X−VX−T c

8.42

where �2 is estimated using Eqn. 8.39.
The key difference, in relation to the spherical case,

i.e. when the error is IID, is that the correlation matrix
V enters the denominator of the t-value. This gives us
a more accurate t-statistic. However, because of V , the
denominator of Eqn. 8.42 is not the square root of a
�2-distribution. (The denominator would be exactly �2

distributed, when V describes a spherical distribution.)
This means that Eqn. 8.42 is not t-distributed and we
cannot simply make inferences by comparing with a null
distribution with trace(RV) degrees of freedom.

Instead, one approximates the denominator with a �2-
distribution (Eqn. 8.42). T is then approximated by a t-
distribution. The approximation proposed (Worsley and
Friston, 1995) is the Satterthwaite approximation (see also
Yandell, 1997), which is based on fitting the first two
moments of the denominator distribution with a �2 dis-
tribution. The degrees of freedom of the approximating
�2-distribution are called the effective degrees of freedom
and are given by:

� = 2E��̂2�2

Var��̂2�
= trace�RV�2

trace�RV RV�
8.43

See Appendix 8.2 for a derivation of this Satterthwaite
approximation.

Similarly, the null distribution of an F -statistic in the
presence of serial correlations can be approximated. In
this case, both the numerator and denominator of the
F -value are approximated by a �2-distribution.
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Summary

After reconstruction, realignment, spatial normalization
and smoothing, functional imaging data are ready for
statistical analysis. This involves two steps: first, statis-
tics indicating evidence against a null hypothesis of no
effect at each voxel are computed to produce a statistical
image (i.e. an SPM); second, this statistical image must be
assessed, while limiting the possibility of false positives.
These two steps are referred to as (1) estimation and (2)
inference and they are covered separately in this book.

As models are designed with inference in mind it
is often difficult to separate the two issues. However,
the inference section, Part 4 of this book, is concerned
largely with the multiple comparison problem, i.e. how to
make inferences from large volumes of statistical images.
A distinction can be made between such ‘image-level’
inference and statistical inference at a single voxel. This
second sort of inference has been covered in this chapter
and will be dealt with further in the remainder of Part 3.

We have shown how the general linear model, the
workhorse of functional imaging analysis, provides a
single framework for many statistical tests and models,
giving great flexibility for experimental design and analy-
sis. The use of such models will be further highlighted in
the following chapters, especially Chapters 12, 14, and 16.
In the next chapter, we take a closer look at contrasts
and how they enable us to interrogate the parameter esti-
mates described in this chapter.

APPENDIX 8.1 THE AUTOREGRESSIVE
MODEL OF ORDER 1 PLUS WHITE

NOISE

Mathematically, the AR�1�+wn model at voxel k can be
written in state-space form:

��s� = z�s�+���s�

z�s� = az�s −1�+�z�s� 8.44

where ���s� ∼ N�0���
2�� �z�s� ∼ N�0��z

2� and a is the
AR�1� coefficient. This model describes the error compo-
nent ��s� at time point s and at voxel k as the sum of
an autoregressive component z�s� plus white noise ���s�.
We have three hyperparameters15 at each voxel k, the
variances of the two error components �� and �z and the

15 We call these parameters hyperparameters to distinguish
them from the parameter vector �.

autoregressive coefficient a. The resulting error covari-
ance matrix is then given by:

E���T � = �z
2�IN −A�−1�IN −A�−T +��

2 8.45

where A is a matrix with all elements of the first lower
off-diagonal set to a and zero elsewhere. IN is the identity
matrix of dimension N .

APPENDIX 8.2 THE SATTERTHWAITE
APPROXIMATION

The unbiased estimator for �2 is given by dividing
the sum of the squared residuals by its expectation
(Worsley and Friston, 1995). Let e be the residuals
e = RY , where R is the residual forming matrix. (Note
that many steps in the following equations can be
derived using properties of the trace operator; e.g. see the
Matrix Reference Manual available under http://www.ee.
ic.ac.uk/hp/staff/dmb/matrix/.)

E�eT e� = E�trace�eeT ��

= E�trace�RYY T RT ��

= trace�R�2VRT �

= �2trace�RV�

An unbiased estimator of �2 is given by �̂2 = eT e
trace�RV�

. If
V is a diagonal matrix with identical non-zero elements,
trace�RV� = trace�R� = J − p, where J is the number of
observations and p the number of parameters.

In what follows, we derive the Satterthwaite approx-
imation to a �2-distribution given a non-spherical error
covariance matrix.

We approximate the distribution of the squared
denominator of the t-value (Eqn. 8.42) d =
�2cT �XT X�−XT VX�XT X�−c �2 with a scaled �2-variate, i.e.,

d ∼ p�ay� 8.46

where p�y� ∼ �2���. We want to estimate the effective
degrees of freedom �. Note that, for a �2��� distribution,
E�y� = � and Var�y� = 2�. The approximation is made
by matching the first two moments of d to the first two
moments of ay:

E�d� = a� 8.47

Var�d� = a22� 8.48

If the correlation matrix V (Eqn. 8.42) is assumed to be
known, it follows that:

� = 2E��̂2�2

Var��̂2�
8.49
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With E��̂2� = �2 and:

E�eT eeT e� = Var�eT e�+ �E�eT e��2

= 2trace�E�eeT �2�+ trace�E�eeT ��2

= �4�2trace�RV RV�+ trace�RV�2�

we have:

Var��̂2� = E��̂4�−E��̂2�2

= �4�2trace�RV RV�+ trace�RV�2�

trace�RV�2
−�4

= 2�4trace�RV RV�

trace�RV�2

Using Eqn. 8.49, we get:

� = trace�RV�2

trace�RV RV�
8.50
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Contrasts and Classical Inference
J. Poline, F. Kherif, C. Pallier and W. Penny

INTRODUCTION

The general linear model (GLM) characterizes the rela-
tionship between our experimental manipulations and
observed data. It allows us to ask questions like: does
frontal lobe activity in a memory task depend on age? Is
the activity greater for normal subjects than for patients?
While many questions concern only one effect (e.g. age,
group), often our questions speak to multiple effects.
In 1926, John Russell wrote ‘An experiment is simply
a question put to nature � � � Even in the best planned
experiment the answer can simply be yes or no � � � The
chief requirement is simplicity: only one question should
be asked at a time’, but R.A. Fisher’s answer in his 1935
Design of experiments was: ‘I am convinced that this view
is wholly mistaken. If we ask Nature a single question,
she will often refuse to answer until some other topic has
been discussed’. In other words, we model several effects
that may or may not influence our measures and ask
several questions by comparing the relative importance
of and interactions among those effects. This chapter
explains how one models and tests for effects through
the use of ‘contrasts’. These enable us to focus on specific
questions that are put to the data.

There is no unique model of an experimental
paradigm. For example, in a functional imaging exper-
iment with three conditions ‘A’, ‘B’ and ‘C’, the ‘C’
condition (say a ‘baseline’1 or low level condition) can
be modelled explicitly or implicitly. This issue gener-
alizes to more complex designs. Contrast specification
and the interpretation of the ensuing results depend
on model specification, which, in turn, depends on the

1 There is no absolute baseline condition. In fact, we generally
only interpret the difference between two conditions, and there-
fore an activation pattern in neuroimaging is almost universally
associated with at least two experimental conditions.

design of the experiment. The most important step is the
specification of the experimental paradigm: if a design
is clearly thought through, the questions asked of the
data are generally formulated easily and contrasts are
straightforward to interpret.

In general, it is not very useful simply to show that the
measured signal in a specific brain area is higher under
one condition relative to another. Rather, we want to
know whether this difference is statistically significant.
We will therefore review the aspects of hypothesis testing
that relate directly to the specification of contrasts.

This chapter is organized as follows. First, we review
the theoretical background behind the construction of
contrasts. In the next section, we describe the rules for
constructing contrasts that specify t-tests. We then dis-
cuss F -contrasts and the important issue of correlations
between predictors and their impact on the interpretation
of t- or F -tests. We conclude with some general remarks
and a summary.

CONSTRUCTING MODELS

What should be included in the model?

Put simply, the model should include all factors (con-
tinuous or discrete) that might have an impact on the
measurements. Deciding what should or should not be
included is crucial (for instance, in a functional magnetic
resonance imaging (fMRI) model, should the subjects’
movement estimates be included?). The question ‘should
this factor be included in the model?’ can be resolved
with model selection, but a-priori knowledge is essen-
tial to limit the exploration of model space. With limited
information about which factors influence the measured
signal, the model will be larger and more complex.

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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FIGURE 9.1 Model 1: design with simple linear
increase. The regressors, from top to bottom, model (i)
the effects of a linear increase in force, (ii) the effect of
force itself and (iii) the baseline response.

To make this point clear, consider an fMRI experiment
looking at motor cortex responses when a subject presses
a device with four different force levels: ‘press’ conditions
are interleaved with ‘rest’ periods. The conditions are
ordered ‘press force 1’, ‘rest’, ‘press force 2’, ‘rest’, � � � ,
‘press force 4’, etc.2

The first issue is how one models the ‘press’ and ‘rest’
conditions. One may have very specific prior assump-
tions, for example, that the response should be a linear
function of the force. In this case, we construct a vector (a
so-called regressor, covariate, or predictor) that represents
this linear relationship. In the present example, this pre-
dictor could comprise 1s for all scans obtained during
the first (lowest) force level, 2s for all scans acquired dur-
ing the second force level, etc. If the ‘rest’ periods are
represented by zeroes, the model assumes that the dif-
ference between rest and the first force level is the same
as the difference between the first and the second force
level (or between any two neighbouring force levels).
To relax this assumption and construct a more flexible
model, the difference between any ‘press’ condition and
the rest period must be modelled explicitly in another
predictor that takes value 1 during ‘press’ conditions and
0 during ‘rest’.

Our model is then:

yi = x1
i �1 +x2

i �2 +�i 9.1

2 This order would not be used in an actual experiment, where
one would normally randomize the different force levels.

for which yi is the ith measurement (scan), x1 represents
the predictor of the linear increase with force, and x2

the difference between ‘press’ (x2
i = 1) and ‘rest’ (x2

i = 0).
The parameters �1 and �2, which we need to estimate,
are the coefficients of the linear functions encoded in
our model. The error �i is the difference between the
model prediction and the data yi. If the signal is not
zero during the rest condition (and this is always the
case in neuroimaging), this offset has to be modelled
by a constant term (i.e. a regressor consisting entirely
of 1s). With this additional regressor, our model is
written as:

yi = x1
i �1 +x2

i �2 +1�3 +�i 9.2

in which �3 represents the absolute offset of the data.
Figure 9.1 shows an example for the three regressors
from this model3 which, throughout this chapter, we refer
to as a ‘linear parametric model’ or simply ‘model 1’.
Note that this model may or may not provide a good
explanation for the measured data. It may lack important
predictors, or the measured response may not be a lin-
ear function of force. Two things can be done with this
model once its parameters have been estimated. One can

3 For models of fMRI data, one needs to take into account the
delay and dispersion of the haemodynamic signal. This is usu-
ally done by convolving the regressors with a haemodynamic
response function (see Chapter 8). Here, we have omitted this
convolution step to concentrate on the modelling aspect.
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make statistical inferences about its parameters (the �s),
i.e. specify a contrast, and one can compare it with an
alternative model.

Modelling the ‘baseline’

Should we add a predictor for the ‘rest’ periods to our
model? This predictor could consist of 1 for scans during
‘rest’ and 0 for scans during all other conditions. This is
not necessary because the difference between ‘press’ and
‘rest’ represented by predictor 2 �x2� already encodes the
difference between ‘rest’ and ‘press’.

Given the model in Eqn. 9.2, the following questions
can be asked:

1 Does the measured response increase linearly with
force, i.e. is �1 significantly greater than zero?

2 Is there an additive offset for the ‘press’ condition that
is not accounted for by the first predictor, i.e. is �2

significantly greater than zero?
3 Is the signal during ‘rest’ above zero, i.e. is �3 signifi-

cantly greater than zero?

Note that the model in this example could be con-
structed differently, i.e. reparameterized, while encod-
ing exactly the same information. For example, we could
remove the average value of the first and second predic-
tors (x1 and x2) so that their mean is zero. This operation
is called ‘mean centring’. This would not change the
parameter estimates or interpretation of the first two pre-
dictors but would change the interpretation of the third
predictor in this model (see below).

Extending the first model

The assumption that the response increases linearly with
force is a rather strong one. There are at least two ways
in which this assumption can be relaxed.

First, the first covariate can be expanded using a
Taylor-like expansion, such that not only linear but
higher-order (quadratic, cubic, etc.) increases are mod-
elled. In this example, we restrict this expansion to second
order, including a new regressor that is the square of the
linear regressor. This results in a ‘quadratic-parametric
model’ (model 2) which is shown in Figure 9.2.

Alternatively, one can choose a non-parametric form,
enabling the model to capture any differences between
the four force levels. This is achieved by represent-
ing each force level as a separate predictor. This ‘non-
parametric’ model (model 3) is shown in Figure 9.3.
Note that we would like to model two separate aspects
of the data. First, the average activation over all force
levels (the main effect of pressing). In model 3, this
average can be computed from the sum of the different
force levels. Second, we would like to model the differ-
ences between all pairs of neighbouring force levels, i.e.
�1−2�+ �2−3�+ �3−4�. Modelling differences between
levels is similar to modelling interactions in factorial
designs (see Chapter 10). We therefore have the alterna-
tive choice to model the main effect and the interaction
directly. This alternative model, model 4, is shown in
Figure 9.4 (main effect and interactions). The questions
that can be put to model 3 and model 4 are exactly the
same; they just have to be ‘rephrased’ using appropriate
contrasts.

FIGURE 9.2 Model 2: linear and quadratic increase
covariates. Note the scale of the second covariate.
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FIGURE 9.3 Model 3: different force levels are modelled using
separate covariates. Black is 0 and white is 1 on this panel.
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FIGURE 9.4 Model 4: the main effect of force is modelled with
the first regressor and the interactions are modelled with regressors
2 to 4.

The choice between parametric and non-parametric
models often depends on the number of parameters that
are required. If this number is large, then parametric
models might be preferred. Relatively few parameters
(compared to the number of data points) and limited
prior information would speak to using non-parametric
models that are more flexible.

For the parametric models, we might be interested in
the following questions:

• Is there a linear increase or decrease in activation with
force level (modelled by the first covariate)?

• Is there a quadratic change in activation with force
level additionally to the linear variation (modelled by
the second covariate)?

• Is there any linear or quadratic dependency of the
response on force (a joint test on the first and second
covariate)?

Note that in the parametric model, the linear and
quadratic regressors are not uncorrelated and therefore

influence each other’s parameter estimates and statistical
inference. Issues concerning correlated regressors or con-
trasts are reviewed later in this chapter.

For the non-parametric models, interesting questions
might be:

• Is there an overall difference between force levels and
the rest condition? This question can be addressed by
means of the first four regressors in model 3 and the
first regressor in model 4, respectively.

• Are there any differences between different force lev-
els? This can be addressed by looking jointly at all
differences in force levels versus rest in model 3 and
at regressors 2 to 4 in model 4.

• Would it be possible to test for a linear dependency
of the measured signal on force level? Because any
differences between force levels have been modelled,
it is possible (but not easy) to test for a specific linear
increase.

These model specification questions are often framed
in the following form: should conditions A and B be mod-
elled separately, or should the common part of A and B
�A+B� be modelled together with the difference �A −B�?
Note that if there is no third condition (or implicit base-
line) only �A −B� can be estimated from the data.

CONSTRUCTING AND TESTING
CONTRASTS

Parameter estimation

We now turn to the issue of parameter estimation. As
reviewed in depth in Chapter 8, the general linear model4

rests on the equation:

Y = X�+� 9.3

This equation models the data Y (comprising n measure-
ments) as a linear combination of predictors which form
the columns of the design matrix X. X is of dimension
�n�p� and contains all effects x1� � � � � xp that are assumed
to influence the measured data. The quantity � is additive
noise and has a normal distribution with zero mean and
covariance �2	i.

The model in Eqn. 9.3 states that the expectation of the
data Y is equal to X�. If the data cannot be modelled by a
linear combination of the predictors in X then the model
is not appropriate and statistical results are difficult to
interpret. This might occur if X does not contain all effects

4 Most of the notation used in this chapter and Chapter 8 is
identical but we also summarize notation in Appendix 9.1.
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that influence the data, if it contains too many predictors
that are unrelated to the data, or if the assumed linear
relation between data and predictors does not hold.

A common method, used to solve the above equation,
is called ordinary least squares (OLS).5 OLS finds those
parameter estimates �̂ for which the sum of squared
errors becomes minimal: � � �2 =� Y −X� �2.

This corresponds to finding a �̂ such that X�̂ is as close
as possible to Y . This means that X�̂ is the orthogonal
projection of Y onto C�X�, the vector space spanned by
the columns of X (see Figure 9.15 for an illustration).
Therefore, if PX is the orthogonal projection matrix (see
Appendix 9.3) onto C�X�� �̂ must satisfy:

PXY = X�̂

This equation expresses the relationship between the
parameters �̂ and the data. For one-way analysis of vari-
ance ANOVA (Chapter 13), PXY provides the means of
the various groups, and the above equations describe the
relationship between the �̂ and these means (see below).

The matrix PX depends only on the space spanned by Xs
columns (i.e. C(X)). Therefore, two models with different
design matrices X1 and X2 are equivalent if C�X1� = C�X2�:
they explain the same aspects of the data �X��, have the
same error components, and each contrast formulated for
one model can be rephrased in the context of the other,
such that it leads to the same statistical conclusions.

The parameters � are estimated from the data using:

�̂ = �XT X�−XT Y 9.4

where X− denotes the (Moore-Penrose) pseudoinverse of
X. The fitted data Ŷ are defined as:

Ŷ = X�̂ 9.5

and represent what is predicted by the model. The esti-
mated noise (error) is:

Y − Ŷ = RY = �̂ 9.6

where

R = In −PX 9.7

The noise variance is estimated with:

�̂2 = Y T RY/tr
R	i� 9.8

Eqn. 9.4 has two important implications:

• Parameter estimates depend on the scaling of the
regressors in X. This scaling is not important when a

5 If the properties of the noise are known, the most efficient way
to estimate the parameters is a maximum likelihood procedure.
This entails whitening the noise.

parameter estimate is compared to its standard devi-
ation (see below). However, it is important if param-
eter estimates of different regressors are compared.
When defined through statistical parametric mapping’s
(SPM) graphical user interface, regressors are appro-
priately scaled to ensure sensible comparisons.

• If X is not of full rank, there are infinitely many parameter
vectors � which solve the equation. In this case, estima-
tion of �̂has a degree of arbitrariness and only some com-
pounds will be meaningful. These are called estimable
contrasts and are the subject of the next section.

Estimability

One can appreciate that not all parameters may be
estimable by looking at a model that contains the same
regressor twice, say x1 and x2 = x1 (with parameters �1

and �2). There is no information in the data on which to
base the choice of �̂1 compared to �̂2. In this case, any
solution of the form �̂1 + �̂2 = constant will provide the
same fitted data, the same residuals, but an infinity of
solutions �̂1 and �̂2.

To generalize this argument, we can consider linear
functions of the parameter estimates:

�1�̂1 +· · ·+�p�̂p = �T �̂ 9.9

The constants �i are the coefficients of a function that
‘contrasts’ the parameter estimates. The vector �T =

�1� � � � ��p�, where p is the number of parameters in X,
is referred to as the contrast vector. The word contrast is
used for the result of the operation �T �̂. A contrast is a
random variable, because �̂ is estimated from noisy data.

The matrix X is said to be rank deficient or degenerate
when (some of) the parameter estimates are not unique
and therefore do not convey any meaning on their own.
At first sight, this situation seems unlikely. However,
many designs for positron emission tomography (PET)
data or population inference, are degenerate.

A contrast is estimable if (and only if) the contrast
vector can be written as a linear combination of the rows
of X. This is because the information about a contrast
is obtained from combinations of the rows of Y . If no
combination of rows of X is equal to �T , then the contrast
is not estimable.6

In more technical terms, the contrast � has to lie within
the space of XT , denoted by � ⊂ ��XT �, or, equivalently, �

6 In Chapter 8, we define a contrast as an estimable function of
the parameter estimates. If a linear combination of parameter
estimates is not estimable then that linear combination is not a
contrast. In this chapter, however, we often use the expression
‘estimable contrast’ for purposes of emphasis.
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is unchanged when projected orthogonally onto the rows
of X (i.e. PXT � = � with PXT being the ‘projector’ onto XT ;
see Appendix 9.3). The reason for this is as follows: if
there is redundancy in X, for some linear combination
q, we have Xq = 0. Therefore, Y = X� + Xq + � = X�� +
q�+�. So, if we test �T �, we also test �T ��+ q�, hence an
estimable contrast � will satisfy �T q = 0. A necessary and
sufficient condition for this is that �T = vX.

The SPM interface ensures that any specified contrast is
estimable, hence offering protection against contrasts that
would not make sense in degenerate designs. However,
a contrast may be estimable but misinterpreted. In this
chapter, we hope to clarify the interpretation of contrasts.

Three design matrices for a two-sample t-test

The (unpaired) two-sample t-test, comparing the mean
of two groups, can be implemented in the linear model
framework as follows. Consider an experiment with two
groups of 2 (group 1) and 3 (group 2) subjects. In imaging
experiments, these numbers will be larger (at least 10 or
so). We have:

X =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎦

then

PXY =

⎡
⎢⎢⎢⎢⎣

1/2 1/2 0 0 0
1/2 1/2 0 0 0
0 0 1/3 1/3 1/3
0 0 1/3 1/3 1/3
0 0 1/3 1/3 1/3

⎤
⎥⎥⎥⎥⎦Y = X� =

⎡
⎢⎢⎢⎢⎣

ȳ1

ȳ1

ȳ2

ȳ2

ȳ2

⎤
⎥⎥⎥⎥⎦

where ȳi is the mean observation in group i. We will now
describe two other parameterizations of the same model
(such that the matrix PX is identical in all cases) and show
how to specify meaningful contrasts.

Design matrix Parameters Contrasts

(1) X =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎦

{
�̂1 = ȳ1

�̂2 = ȳ2

�1� 0��̂ = ȳ1

�0� 1��̂ = ȳ2

�1�−1��̂ = ȳ1 − ȳ2

�5� 5��̂ = mean�ȳ1� ȳ2�

(2) X =

⎡
⎢⎢⎢⎢⎣

1 1
1 1
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎦

{
�̂1 + �̂2 = ȳ1

�̂2 = ȳ2

�1� 1��̂ = ȳ1

�0� 1��̂ = ȳ2

�1� 0��̂ = ȳ1 − ȳ2

�5� 1��̂ = mean�ȳ1� ȳ2�

(3) X =

⎡
⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1
0 1 1

⎤
⎥⎥⎥⎥⎦
{

�̂1 + �̂3 = ȳ1

�̂2 + �̂3 = ȳ2

�1� 0� 1��̂ = ȳ1

�0� 1� 1��̂ = ȳ2

�1�−1� 0��̂ = ȳ1 − ȳ2

�5� 5� 1��̂ = mean
�ȳ1� ȳ2�

The only intuitive case is the first parameterization. In
the two other cases, the interpretation of the parameter
estimates is not obvious and the contrasts are not intu-
itive. In case 3, parameters are not estimable and not all
contrasts are meaningful. Estimable contrasts are orthog-
onal to 
1 1 −1�, because column 1 plus column 2 equals
column 3.

Constructing and testing t-contrasts

If it is clear what the parameter estimates represent, then
specification of contrasts is simple, especially in the case
of t-contrasts. These contrasts are of the form described
above, i.e. univariate linear combinations of parameter
estimates. We return to our first model, which includes
the four forces and ‘rest’ as regressors. For model 1, we
can ask if there is a linear increase by testing �1 using
the combination 1�1 +0�2 +0�3 with the contrast vector
�T = 
1 0 0�. A linear decrease can be tested with �T =

−1 0 0�.

To test for the additive offset of the ‘press’ condition,
not accounted for by the linear increase, we use �T =

0 1 0�. Note here that the linear increase is starting with
a value of one for the first force level, and increases to 4
for the fourth level (see Figure 9.1).

When testing for the second regressor, we are effectively
removing that part of the signal that can be accounted
for by the first regressor. This means that the second
parameter estimate is not the average of the difference
between the ‘press’ conditions and the rest condition.
To obtain the latter difference, we have to construct
a re-parameterization of model 1 and replace the first
regressor so that it models only differences of ‘force lev-
els’ around an average difference between ‘press’ and
‘rest’. This is achieved by orthogonalizing the first regres-
sor with respect to the second. This new model, model
5, is shown in Figure 9.5. The parameter estimates of
this new model are [10 30 100] as compared to [10 5
100] for model 1. This issue is detailed in Andrade et al.
(1999) and an equivalent effect can be seen for F -tests.
This emphasizes the principle that one should have in
mind not only what is, but also what is not, tested by a
contrast.

Another solution (useful in neuroimaging where esti-
mating the parameters can be time consuming) is to
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FIGURE 9.5 Model 5: this is the same as model 1
but the main effect of force has been removed from the
first regressor. This changes the interpretation of the sec-
ond regressor.
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identify an equivalent contrast: the contrast vector �T =

1 1 0� is valid but difficult to interpret. For example, the
individual effects may be strong but, because they can
have different signs, the overall effect may be weak.

For model 3 the average amplitude of the ‘press’ con-
dition compared to ‘rest’ would be tested with �T =

1 1 1 1 0�. With model 4, the same effect can be tested
with �T = 
1 0 0 0 0�. The two contrasts give exactly the
same t-maps. Note that in both cases the average over
levels is tested, which could be significant just because
of the effect of a single level.

An interesting question is whether we can test for the
linearity of the response over the four levels. For model
3, the intuitive contrast to enter would be �T = 
1 2 3 4 0�.
This would indeed test for a linear increase with force
level, but in a very unspecific manner: in the sense that
the test might be significant in a situation where only
the fourth condition has a greater signal than in the rest
condition. This is because we are testing for the weighted
sum of the corresponding parameters. The test is valid,
but does not ensure that the signal changes linearly with
force. In other words, the model is flexible and we are
testing a very restricted hypothesis, such that the shape
of the predicted signal may be distinct from the shape of
the component tested.

Computing t-statistics

Whatever contrast is used, the contrast t-statistics are
produced using (Friston et al., 1995; Worsley and Friston,
1995):

tdf = �T �̂/SD��T �̂� 9.10

where SD�z� denotes the standard deviation of z and is
computed as the square root of the variance:

var
�T �̂� = �̂2�T �XT X�−XT 	iX�XT X�−� 9.11

For Gaussian errors, tdf follows approximately a Stu-
dent distribution with degrees of freedom given by df =
tr
R	i�

2/tr
R	iR	i�. At the voxel level, the p-value of tdf

is computed using its null distribution.
The important point is that the standard deviation of

the contrast depends on the matrix X. More specifically,
when regressors are correlated, the variance of the corre-
sponding parameter estimates increases. In other words,
the precision of the estimation for one component is
greater when other components in the model are not
correlated. The dependence of the covariance of the esti-
mated effects and the correlation within the model can
be used, for instance, to optimize event-related designs.

The test of tdf is one-tailed when testing exclusively
for a positive (or negative) effect, and two-tailed when
jointly testing for positive or negative effects.

CONSTRUCTING AND TESTING
F-CONTRASTS

In this section, we consider an experiment with two
event-related conditions using the simple case of right
and left motor responses. The subject is asked to press a
button with the right or left hand with a visual instruc-
tion. The events arrive pseudo-randomly but with a long
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FIGURE 9.6 The left panel shows the design matrix for
analysing two event-related conditions (left or right motor
responses). The shape of the HRF is assumed to be known, up to
a scaling factor. The two first regressors have been constructed by
convolution of a series of Dirac functions with the ‘canonical’ HRF
(right panel).

inter-stimulus interval. We are interested in brain regions
that are more activated for right versus left movements.

Our first model assumes that the shape of the haemo-
dynamic response function (HRF) can be modelled by a
‘canonical HRF’ (see Chapter 14). This model is shown
in Figure 9.6. To find brain regions that are more
active for left versus right motor responses we can use
�T = 
1 −1 0�. Using Eqn. 9.10 we can compute the t-
map shown in Figure 9.7. This shows activation of con-

SPM{T247}

FIGURE 9.7 SPM-t image corresponding to the overall differ-
ence between the left and right responses. This map was produced
using the 
1 −1 0� contrast weights, using the model shown in
Figure 9.6.

tralateral motor cortex plus other typical regions, such as
ipsilateral cerebellum.

Because there is an implicit baseline, the parameters are
also interpretable individually, and when tested (t-maps
not shown) they reveal the appropriate visual and motor
regions.7 Instead of having the two regressors encod-
ing the left and right responses separately, an equiv-
alent model could have the first regressor modelling
the response common to right and left and the second
modelling the difference between them.

The fact that the HRF varies across brain regions and
subjects can be accommodated as follows. A simple exten-
sion of the model of Figure 9.6 is presented in Figure 9.8,
for which each response is modelled with three basis
functions. These functions can model small variations in
the delay and dispersion of the HRF, as described in
Chapter 14. They are mean centred, so the mean parameter
will represent the overall average of the data.

In this new model, how do we test for the effects of,
for instance, the right motor response? The most obvi-
ous approach is to test for all regressors modelling this
response. This does not entail the sum (or average) of the
parameter estimates because the sign of those parameter
estimates is not interpretable, but rather the (weighted)
sum of squares of those parameter estimates. The appro-
priate F -contrast is shown in Figure 9.9.

FIGURE 9.8 The same model as in Figure 9.6, but we use
three regressors to model each condition. The first three columns
model the first condition (left motor response) while columns 4 to 6
model the second condition (right motor response). Each set of three
regressors is the result of the convolution of the stimulus onsets
with the canonical HRF and its derivatives with respect to time and
dispersion.

7 Interestingly, there is some ipsilateral activation in the motor
cortex such that the ‘left-right’ contrast is slightly less significant
in the motor regions than the ‘left’ [1 0 0] contrast.
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FIGURE 9.9 An ‘F -contrast’ testing for the regressors mod-
elling the right motor response. As described in the text, this cor-
responds to constructing the reduced model that does not contain
the regressors that are ‘marked’ with the F -contrast.

One interpretation of the F -contrast is that it is a
series of one-dimensional contrasts, each testing the null
hypothesis that the relevant parameter is zero. To test for
the overall difference between right and the left responses
we use the contrast shown in Figure 9.10. Note that
multiplying the F -contrast coefficients by −1 does not
change the statistic. The F -test image corresponding to
this contrast is shown in Figure 9.11. This image is very
similar to the corresponding image for the simpler model
(Figure 9.12). Finally, Figure 9.13 shows that the more
complex model provides a better fit to the data.

To conclude this section, we look at another exam-
ple; a 2 by 3 factorial design. In this experiment, words
are presented either visually (V) or aurally (A) and
belong to three different categories (C1, C2, C3). In the
design matrix, the six event-types are ordered as fol-
lows: V-C1 (presented visually and in category one),
V-C2, V-C3, A-C1, A-C2, A-C3. We can then test for
the interaction between the modality and category fac-
tors. We suppose that the experiment is a rapid event-
related design with no implicit baseline, such that only
comparisons between different event-types are meaning-
ful. In the first instance, we model each event using

FIGURE 9.10 F -contrast used to test the overall difference
(across basis functions) between the left and right responses.

FIGURE 9.11 SPM-F image corresponding to the overall dif-
ference between the left and right responses. This map was pro-
duced using the F -contrast in Figure 9.10 and the design matrix in
Figure 9.8.

a single basis function. A test for the main effect of
modality is presented in Figure 9.14(a). Figure 9.14(b)
shows the test for the main effect of category. Note
that because there is no implicit baseline here, the main
effects of factors are given by differences between levels.
Finally, the interaction term would be tested for as in
Figure 9.14(c).

SPM{F[1,247]}

FIGURE 9.12 SPM-F image corresponding to the overall dif-
ference (positive or negative) from the left and right responses. This
map was produced with an F -contrast [1 0 0;0 1 0] using the model
shown in Figure 9.6.
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FIGURE 9.13 Haemodynamic responses
at a single voxel (the maxima of the SPM-F map
in Figure 9.11). The left plot shows the HRF as
estimated using the simple model (Figure 9.6)
and demonstrates a certain lack of fit. The fit
based on a more flexible model (Figure 9.8) is
better (right panel).

The number of rows in an interaction contrast (without
implicit baseline) is given by:

Nrows =
N∏

i=1

�li −1� 9.12

where N is the number of factors and li the number of
levels of factor i.

Interpretation of F-contrasts

There are two equivalent ways of thinking about
F -contrasts. For example, we can think about the
F -contrast in Figure 9.9 as fitting a reduced model that
does not contain the ‘right motor response’. This reduced
model would have a design matrix X0 with zero entries

FIGURE 9.14 F -contrasts testing respectively for (a) the main
effect of modality, (b) the main effect of categories, and (c) the
interaction modality × category.

in place of the ‘right motor response’ regressors of the
‘full’ design matrix X. The test then compares the vari-
ance of the residuals as compared to that of the full model
X. The F -test simply computes the extra sum of squares
that can be accounted for by inclusion of the three ‘right
hand’ regressors. Following any statistical textbook (e.g.
Christensen, 1996) and the work of Friston et al. (1995)
and Worsley and Friston (1995), this is expressed by test-
ing the following quantity:

Fdf1�df2
= �Y T �I −PX0

�Y −Y T �I −PX�Y�/�1

Y T �I −PX�Y/�2
9.13

with

�1 = tr��R0 −R�	i�

�2 = tr�R	i� 9.14

and

df1 = tr��R0 −R�	i�R0 −R�	i�/tr��R0 −R�	i�
2 9.15

df2 = tr�R	iR	i�/tr�R	i�
2 9.16

where R0 is the projector onto the residual space of X0

and PX is the orthogonal projector onto X.
The second interpretation of the F -test is as a series

of one-dimensional contrasts, each of them testing the
null hypothesis that the respective contrast of parameters
is zero.

We now show formally how these two interpretations
are linked. The model in Eqn. 9.3, Y = X�+� is restricted
by the test cT � = 0 where c is now a ‘contrast matrix’.
If c yields an estimable function, then we can define a
matrix H such that c = HT X. Therefore, HT X� = 0 which,
together with Eqn. 9.3, is equivalent to Y ⊂ ��X� and
Y ⊂ ��H⊥�, the space orthogonal to H . It can be shown
that the reduced model corresponding to this test is X0 =
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PX −PH . This is valid if, and only if, the space spanned
by X0 is the space defined by ��H�⊥⋂��X�: it is easy to
show that this is indeed the case.

If ��H� ⊂ ��X�, the numerator of Eqn. 9.13 can be
rewritten as:

Y T �R0 −R�Y = Y T �X0 −R�Y = Y T �PX −X0�Y = Y T �PH�Y
9.17

We choose H such that it satisfies the condition above
with H = �XT �−c, which yields:

Y T �PH�Y = Y T X�XT X�−XT H�HT H�−HT X�XT X�−XT Y

= �̂T c�HT H�−cT �̂ 9.18

This reformulation of the F -test is important for several
reasons. First, it makes the specification and computation
of F -tests feasible in the context of large data sets. Speci-
fying a reduced model and computing the extra sum of
squares using Eqn. 9.13 would be computationally too
demanding. Second, it links the t-test and the test of a
reduced model, and therefore makes it explicit that the
‘extra’ variability cannot be explained by the reduced
model. Third, it makes the test of complex interactions
using F -tests more intuitive.

The F -contrast that looks at the total contribution of
all the ‘right regressors’ is, however, quite a non-specific
test. One may have a specific hypothesis about the mag-
nitude or the delay of the response and would like to test
for this specifically. A reasonable test would be a t-test
with contrast [0 0 0 1 0 0 0 0], testing for a positive value
of the parameter that scales the standard HRF. This is
perfectly valid, but it is not a test of the magnitude of
the response. For instance, if the response has the shape
implied by the standard model but is delayed signifi-
cantly, the test might produce poor results, even if the
delay is taken into account by the temporal derivative
(Chapter 14). This may be important when comparing
the magnitude of responses between two conditions: if
the magnitudes are the same but the delays are differ-
ent, across conditions, the test comparing the standard
response regressors might be misinterpreted: a difference
in delays might appear as a difference of magnitude even
if the basis functions are orthogonal to each other.

Note that the simplest F -contrasts are unidimensional,
in which case the F -statistic is simply the square of the
corresponding t-statistic. To differentiate between unidi-
mensional F -contrasts and t-contrasts in the SPM inter-
face, the former are displayed in terms of images and the
latter as bars.

An important point is that, generally, if we are confi-
dent about the shape of the expected response, F -tests are
often less sensitive than t-tests. The reason is that, with
increased model complexity, it becomes more likely that
a signal of no interest could be captured by the F -contrast.

The F -test implicitly corrects for this (Eqn. 9.13), but this
decreases sensitivity of the test, as compared to the more
constrained t-test.

CORRELATION BETWEEN REGRESSORS

Correlationsamongregressorscanmakethe interpretation
of tests difficult. Unfortunately, such correlation is often
imposed by the brain’s dynamics, experimental design or
the method of measurement. The risks of misinterpreta-
tion have been extensively discussed in Sen and Srivastava
(1990) and Andrade et al., (1999). To summarize, one could
miss activations when testing for a given contrast if there
is a substantial correlation with the rest of the design. A
frequently encountered example is when the response to
a stimulus is highly correlated with a motor response

If one believes that a region’s activity will not be influ-
enced by the motor response, then it is advisable to test
this specific region by first removing, from the motor
response regressor, all that can be explained by the stim-
ulus. This can be seen as a ‘dangerous’ procedure because
if, in fact, the motor response does influence the signal
in this region, then an ‘activation’ could be wrongly
attributed to a stimulus-induced effect.

Because the issue of what is and what is not tested
in a model is so important, we use two complementary
perspectives that might shed light on it. First, from a
geometrical perspective, the model is understood as some
low-dimensional space; for purposes of visualization we
choose a two-dimensonal space. The data lie in a greater
3D space. The fitted data are an orthogonal projection of
the data onto the model space (Figure 9.15). If the model
space is spanned by two predictors C1 and C2, testing for
C2 will, in effect, test for the part of C2 that is orthogonal
to C1. If the two vectors are very similar (correlated), this

FIGURE 9.15 Geometrical perspective: estimation. The data Y
are projected orthogonally onto the space of the design matrix (X)
defined by two regressors C1 and C2. The error e is the distance
between the data and the nearest point within the model space.
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FIGURE 9.16 Hypothesis testing: the geometrical perspective.
With a model defined by the two regressors C1 and C2, testing
for C2 in effect measures its part orthogonal to C1. If the model
is explicitly orthogonalized, (i.e. C2 is replaced by C2orth), the test
of C2 is unchanged, but the test of C1 is, and will capture more
variability, as indicated by C1full.

part can be very small. Explicit orthogonalization of C2
will make the effect tested by C1 appear much greater,
while the effect tested by the C2orth is left unchanged
(Figure 9.16).

A second perspective obtains from the following anal-
ogy. Let us consider a series of discs of different colours.
Each disc represents a predictor, or more generally, a
series of predictors in our model. Say we have two discs,
a blue and a red one. The discs are placed on a table,
where they might overlap. Testing for the effect of the
first regressor would be analogous to measuring the sur-
face of the blue disc that can be seen. If the two discs are
non-overlapping (i.e. the regressors are not correlated),
the two tests can be performed independently. But if the
two discs do overlap (there is some correlation between
the two regressors), testing for the blue disc corresponds
to placing the red on top and measuring what remains
of the blue. To put the blue on top amounts to orthogo-
nalizing the red. Testing for the full surface of both discs
corresponds to an F -test, and this does not depend on
how the discs are placed on each other.

Moving the variance across correlated
regressors

If one decides that regressors, or a combination of regres-
sors, should be orthogonalized with respect to some part
of the design matrix, it is not necessary to reparameterize
and fit the model again. Once the model has been fit-

ted, all the information needed can be found in the fitted
parameter estimates. For instance, instead of testing for
the additional variance explained by a regressor, one may
wish to test for all the variance that can be explained
by this regressor. If c is the contrast testing for the extra
sum of squares, it is easy to show that the contrast
matrix:

cFull_space = XT Xc 9.19

tests for all the variance explained by the subspace of X
defined by Xc since we then have H = Xc.

Contrasts and reparameterized models

The above procedure can be generalized as follows: if the
design matrix contains three subspaces (say S1� S2� S3�,
one may wish to test for what is in S1, having removed
what could be explained by S2 (but not by S3). Other
examples are conjunction analyses, in which a series of
contrasts can be modified such that the effects they test
are orthogonal. This involves orthogonalizing the sub-
sequent subspaces tested. The results may therefore dif-
fer depending on the order in which these contrasts are
entered.

The principle for computing the same contrast in two
different model parameterizations, which span the same
space, is simple. If X and Xp are two differently parame-
terized versions of the same model then we can define a
matrix T such that Xp = XT . If cp is a test expressed in Xp

while the data have been fitted using X, the equivalent
of cp using the parameter estimates of X is

c = cp�T
T XT XT�−TT XT X 9.20

DESIGN COMPLEXITY

Before acquiring neuroimaging data one should think
about how to model them and which contrasts are of
interest. Most of the problems concerning contrast spec-
ification derive from poor design specification. Poor
designs may be unclear about the objectives pursued,
include factors that are confounded, or may try to
answer too many questions in a single experiment.
This often leads to compromises and it can become
difficult to provide clear answers to the questions of
interest.



Elsevier UK Chapter: Ch09-P372560 3-10-2006 3:04p.m. Page:138 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

138 9. CONTRASTS AND CLASSICAL INFERENCE

This does not preclude the use of a complex paradigm,
in the sense that many conditions can and (often should
be) included in the design. The process of recruiting
subjects and acquiring data is long and costly, and it
is only natural that one would like to answer as many
questions as possible with the same data. However, this
requires careful thought about which contrasts will be
specified and whether they actually answer the question
of interest.

SUMMARY

In functional imaging experiments, one is often interested
in many sorts of effects, e.g. the main effect of a factor
and the possible interactions between factors. To analyse
each of these effects one could fit several different GLMs
and test hypotheses by looking at individual parameter
estimates. However, this approach is impractical, because
functional imaging data sets are very large. A more expe-
dient approach is to fit larger models and test for effects
using specific contrasts.

In this chapter, we have seen how the specification of
the design matrix is intimately related to the specification
of contrast weights. For example, it is often the case that
main effects and interactions can be set up using paramet-
ric or non-parametric designs. These different designs lead

to the use of different contrasts. Parametric approaches are
favoured for factorial designs with many levels per factor.
Contrasts must be estimable to be interpretable, and we
have described the conditions for estimability.

In fMRI, one can model haemodynamic responses
using the canonical HRF. This allows one to test for acti-
vations using t-contrasts. To account for the variabil-
ity in the haemodynamic response, across subjects and
brain regions, one can model the HRF using a canonical
HRF plus its derivatives, with respect to time and disper-
sion. Inferences about differences in activation can then
be made using F -contrasts. We have shown that there
are two equivalent ways of interpreting F -contrasts, one
employing the extra-sum-of-squares principle to compare
the model and a reduced model, and one specifying a
series of one-dimensional contrasts. Designs with corre-
lations between regressors are less efficient and correla-
tion can be removed by orthogonalizing one effect with
respect to others. However, this may have a strong impact
on the interpretation of subsequent tests. Finally, we have
shown how such orthogonalization can be applied retro-
spectively, i.e. without having to refit the models.

In this chapter, we have focused on how to test for
specific treatment effects encoded by the design matrix
of the general linear model. However, the general linear
model also entails assumptions about the random errors.
In the next chapter, we examine these assumptions, in
terms of covariance components and non-sphericity.

APPENDIX 9.1 NOTATION

Y : Data The �n� 1� time series, where n is the number of time points or
scans. yi: one of those measures.

c or �: Contrast weights Linear combination of the parameter estimates used to form the
(numerator) of the statistics

X: Design matrix or design model the �n�p� matrix of regressors
�: Model parameters The true (unobservable) coefficients such that the weighted sum

of the regressors is the expectation of our data (if X is correct)
�̂: Parameter estimates The computed estimation of the � using the data Y : �̂ =

�XT X�−XT Y
C�X�: Vector space spanned by X Given a model X, the vector space spanned by X are all vectors v

that can be written as v = X�
PX�X� or
M�X�: The orthogonal projector onto X PX = X�XT X�−XT

R: Residual forming matrix Given a model X, the residual forming matrix R = In −XX− trans-
forms the data Y into the residuals r = RY .

�2	i: scan (time) covariance This �n�n� matrix describes the (noise) covariance between scans
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APPENDIX 9.2 SUBSPACES

Let us consider a set of p vectors xi of dimension �n� 1�
(with p < n), e.g. regressors in fMRI. The space spanned
by this set of vectors is formed from all possible vectors
(say u) that can be expressed as a linear combination
of the xi: u = �1x1 + �2x2 + � � � �pxp. If the matrix X is
formed with the xi : X = 
x1x2 � � � xp�, we denote this space
as ��X�.

Not all the xi may be necessary to form ��X�. The
minimal number needed is called the rank of the matrix
X. If only a subset of the xi is selected, they form a
smaller matrix X0. The space spanned by X0, ��X0�,
is called a subspace of X. A contrast defines two
subspaces of the design matrix X: one that is tested
and one of ‘no interest’, corresponding to the reduced
model.

APPENDIX 9.3 ORTHOGONAL
PROJECTION

The orthogonal projection of a vector x onto the space of
a matrix A is the vector (e.g a time-series) that is closest
in the space C�A�, where distance is measured as the
sum of squared errors. The projector onto A, denoted
PA, is unique and can be computed with PA = AA−, with

A− denoting the Moore-Penrose pseudoinverse8 of A. For
instance, the fitted data Ŷ can be computed with

Ŷ = PXY = XX−Y = X�XT X�−XT Y = X�̂ 9.21

Most of the operations needed when working with linear
models only involve computations in parameter space, as
is shown in Eqn. 9.18. For a further gain in computational
expediency, one can work with an orthonormal basis of
the space of X, if the design is degenerate. This is how
the SPM code is implemented.
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A P P E N D I X

1

Linear models and inference
K. Friston

INTRODUCTION

In this appendix, we gather together different perspec-
tives on inference with multivariate linear models. In
brief, we will see that all inference, whether it is based on
likelihood ratios (i.e. classical statistics), canonical vari-
ates analysis, linear discriminant analysis, Bayesian anal-
ysis or information theory, can be regarded as tests of the
same thing, namely, the statistical dependence between
one set of variables and another. This is useful to appreci-
ate because it means there is no difference between infer-
ence using generative models (i.e. functions of causes that
generate data) and inference based on recognition models
(i.e. functions of data that recognize causes). This equiv-
alence rests on the invertability of linear models, which
means that recognition or classification models are sim-
ply the inverse of generative or forward models. In other
words, there is no difference between reverse-correlation
methods (e.g. Hansen et al., 2004; Hasson et al., 2004) or
brain-reading (Cox and Savoy, 2003) and conventional
analyses (e.g. Friston et al., 1996; Worsley et al., 1997;
Kherif et al., 2002), provided the models are linear.

In what follows, we look at the problem of establishing
statistical dependencies from an information theory point
of view and then revisit the same issue from a classical,
a Bayesian and finally a multivariate perspective.

INFORMATION THEORY AND
DEPENDENCY

The aim of classification is to find some function of data
y that can be used to classify or predict their causes x.
Conversely, the aim of hypothesis testing is to show that
hypothetical causes predict data. For simplicity, we will
assume both x and y represent s independent samples

drawn from multivariate distributions. The ability to pre-
dict one, given the other, rests on the statistical dependen-
cies between x and y that are quantified by their mutual
information. Irrespective of the form of these dependen-
cies, the mutual information is given by the difference
between both their entropies and the entropy of both:

I�x�y� = H�y�+H�y�−H�x�y�

= H�y�−H�y�x�
A1.1

This is the difference between the entropy, or infor-
mation, of one minus the information given the other.
Under Gaussian assumptions, we have only to consider
moments of the densities to second-order (i.e. covari-
ances). Their Gaussian form allows us to express the
densities in terms of �y ⊗ Is, the covariance of vec(y) and
its conditional covariance �y�x ⊗ Is.

H�y� = �− ln p�y�� = 1
2

ln ��y ⊗ Is�

H�y �x � = �− ln p�y�x�� = 1
2

ln ��y�x ⊗ Is�

I�x�y� = s

2
�ln ��y�− ln ��y�x��

= s

2
ln ��−1

y�x�y�

A1.2

Here and throughout, constant terms have been ignored.
The mutual information can be estimated using sample
covariances. From Eqn. A1.1, and using standard results
for the determinant of block matrices:

I�x�y� = s

2
�ln �yT y�− ln �yT y −yT x�xT x�−1xT y��

H�x� = s

2
ln ��x� = s

2
ln �xT x�

H�y� = s

2
ln ��y� = s

2
ln �yT y�

H�x�y� = s

2
ln
∣∣∣∣
[
xT x yT x
xT y yT y

]∣∣∣∣

A1.3

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7

589



Elsevier UK Chapter: Appendix1-P372560 3-10-2006 4:22p.m. Page:590 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

590 A1. LINEAR MODELS AND INFERENCE

Comparison of Eqn. A1.2 and Eqn. A1.3 shows:

�y = yT y

�y�x = yT y −yT x�xT x�−1xT y
A1.4

In fact, we will see below that these are the maximum
likelihood estimates of the covariances. It is sometimes
useful to express the mutual information or predictabil-
ity in terms of linearly separable components using the
generalized eigenvector solution, with a leading diagonal
matrix of eigenvalues �:

�yc = �y�xc�

cT c = I

I�x�y� = s

2
ln ��−1

y�x�y�

= s

2
ln ���

= s

2
ln �1 + s

2
ln �2 +· · ·

A1.5

where ci are the generalized eigenvectors, which define
orthogonal mixtures of y that express the greatest mutual
information with x. This information is simply s

2 ln �i. We
will see below that ci are canonical vectors. Practically
speaking, one could use these vectors to predict x, using
one or more canonical variates vi = yci.

OTHER PERSPECTIVES

Classical inference

In a classical setting, we test a null hypothesis. This calls
for a model comparison, usually of a null model against
an alternate model. We will assume a linear mapping
between the causes and data:

y = x� +� A1.6

where � is some well-behaved error term. The null
hypothesis is � = 0. Following the Neyman-Pearson
Lemma, classical statistics uses the maximum likelihood
ratio, which, in this context, is:

L = p�y�x� �̂�

p�y�
⇒

ln L = ln p�y�x� �̂�− ln p�y�

�̂ = max
�

p�y�x��� = �xT x�−1xT y

A1.7

The maximum likelihood value of the parameters is
the usual least squares estimator (this is because we

assumed the errors are IID (independent and identi-
cally distributed) and can be derived simply by solving
	 ln p�y�x���/	� = 0. The maximum log-likelihoods, under
the null and alternate hypotheses are:

ln p�y� = − s

2
ln �R0�−

1
2

vec�y�T �R−1
0 ⊗ Is�vec�y�

R0 = max
R0

ln p�y� = yT y

ln p
(
y�x� �̂

)
= − s

2
ln �R�− 1

2
vec�r�T �R−1 ⊗ Is�vec�r�

r = y −x�̂

R = max
R

ln p�y�x� �̂� = rT r

= yT y −yT x�xT x�−1xT y

A1.8

R0 = �y and R = �y�x are the sum of squares and prod-
ucts (SSQP) of the residuals under the null and alter-
nate hypotheses respectively. The maximum likelihood
expression for R0, like the parameters, is obtained easily
by solving 	 ln p�y�/	R−1

0 = 0. Similarly for R, substituting
Eqn. A1.8 into Eqn. A1.7 shows that the log-likelihood
ratio statistic is simply the mutual information:

ln L = s

2
�ln �R0�− ln �R�� = s

2
�ln ��y�− ln ��y�x�� = I�x�y�

A1.9

In this context, the likelihood ratio is known as Wilk’s
Lambda 
 = L−1. When the dimensionality of y is one,
this statistic is the basis of the F -ratio. When the dimen-
sionality of x is also one, the square root of the F -ratio is
the t-statistic. Classical inference uses the null distribu-
tion of the log-likelihood ratio to reject the null hypoth-
esis that � = 0 to infer that I�x�y� > 0.

A Bayesian perspective

A Bayesian perspective on the predictability issue would
call for a comparison of two models, with and without
x as a predictor. This would proceed using the differ-
ences in log-evidence or marginal likelihoods between
the alternative and null models:

ln p�y�x�− ln p�y� = − s

2
ln �R�+ s

2
ln �R0� = I�x�y� A1.10

In the context of linear models, this is simply the mutual
information.

A multivariate perspective

In linear multivariate models, such as canonical variates
analysis, canonical correlation analysis, and linear dis-
criminant function analysis, one is trying to find a mix-
ture of y that affords the best discrimination, in relation
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to x. This proceeds by maximizing the length of a vector
projected onto the subspace of y, which can be explained
by x, relative to its length in the subspace that cannot.
More formally, subject to the constraint cT c = I , we want:

c = max
c

cT Tc

cT Rc

T = �T xT x�

A1.11

where T is referred to as the SSQP due to treatments. This
is the null space of the residual SSQP. This means the total
SSQP of y decomposes into the orthogonal covariance
components:

R0 = T +R A1.12

The canonical vectors c are the principal generalized
eigenvectors:

Tc = Rc�

cT c = I

However, from Eqn. A1.12:

�R0 −R�c = Rc�

R0c−Rc = Rc�

R0c = Rc��+ I� =
�yc = �y�xc��+ I�

A1.13

which has exactly the same form as Eqn. A1.5. In other
words, the canonical vectors are simply the mixtures
that express the greatest mutual information with x; the
amount of information is s

2 ln��i +1�, where �i = �i −1 is
the i-th canonical value. From Eqn. A1.5, Eqn. A1.9 and
Eqn. A1.13 we get:

− ln 
 = I�x�y�

= s

2
ln �1 + s

2
ln �2 +· · ·

= s

2
ln��1 +1�+ s

2
ln��2 +1�+· · ·

A1.14

Tests for the dimensionality of the subspace are based
on the canonical values ln��i +1� (see Chapter 37).

SUMMARY

In the context of linear mappings under Gaussian
assumptions, the heart of inference lies in the gener-
alized eigenvalue solution. This solution finds pairs of
generalized eigenvectors that show the greatest statistical
dependence between two sets of multivariate data. The
generalized eigenvalues encode the mutual information
between the i-th variate and its corresponding vector. The
total information is the log-likelihood ratio, or log-Bayes
factor, comparing models with and without a linear map-
ping. Special cases of this quantity are Wilk’s Lambda,
Hotelling’s T -square, the F -ratio and the t-statistic, upon
which classical inference is based.
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Dynamical systems
K. Friston

INTRODUCTION

This appendix reviews models of dynamical systems. The
review is framed in terms of analyses of functional and
effective connectivity, in which we focus on the nature
and form of the models and less on estimation or infer-
ence issues. The aim is to relate various models and to
make their underlying assumptions transparent.

As we have seen in the preceding chapters, there are
a number of models for estimating effective connectiv-
ity using neuroimaging time-series. By definition, effec-
tive connectivity depends on a causal model, through
which it is defined operationally (Friston, 1995). This
appendix reviews the principal models that could be
adopted and how they relate to each other. We consider
dynamic causal models (DCM), generalized convolution
models (GCM), coherence analyses, structural equation
models (SEM), state-space models (SSM) and multivari-
ate autoregression-moving average (ARMA) models. In
brief, we will show that they are all special cases of each
other and try to emphasize their points of contact. How-
ever, some fundamental distinctions arise that guide the
selection of the appropriate models in different situations.
We now review these distinctions.

Coupling among inputs, outputs
or hidden states?

The first distinction rests upon whether the model is
used to explain the coupling between the inputs and
outputs, among different outputs or among the system‘s
states (e.g. neuronal activity in different ensembles). In
terms of models, this distinction is between input-output
models, e.g. multiple-input-single-output models (MISO)
or multiple-input-multiple-output models (MIMO) and

explicit input-state-output models. Usually, the input-
output approach is concerned with the non-linear trans-
formation of inputs, enacted by a system, to produce
its outputs. This is like trying to establish a statistical
dependence of the outputs on the inputs, without any
comment on the mechanisms mediating this dependency.
In some instances (e.g. ARMA and coherence analyses),
dependences among different outputs are characterized
(cf. functional connectivity).

Conversely, the input-state-output approach is gener-
ally concerned with characterizing the coupling among
hidden variables that represent the states of the sys-
tem. These states are observed vicariously through the
outputs (Figure A2.1). Inferring the coupling among
states induces the need for a causal model of how states
affect each other and form outputs (cf. effective con-
nectivity). Examples of input-output models include the
Volterra formulation and generalized coherence analy-
ses in the spectral domain. An example of a model that
tries to estimate coupling among hidden states is DCM.
In short, input-output models of coupling can proceed
without reference to the hidden states. Conversely, inter-
actions among hidden states require indirect access to
the states through some model of the causal architecture
of the system. In the next section, we start by reviewing
input-output models and then turn to input-state-output
models.

Deterministic or stochastic inputs?

The second key distinction is when the input is known
(e.g. DCM) and when it is not (e.g. ARMA and SEM).
This distinction depends on whether the inputs enter as
known and/or deterministic quantities (e.g. experiment-
ally designed causes of evoked responses) or whether
we know (or can assume) something about the statistics

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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Response
Response

Response

States

y1(t ) = g1(x ) + ε1 
y2(t ) = g2(x ) + ε2 y3(t ) = g3(x ) + ε3

Inputs
u

States
States

K(σ) = exp(Jσ)

Kij 
(σ) = 

∂xi 
(t

 
)

∂xj 
(t − σ)

Ei 
(σ) = 

∂y
 
(t

 
)

∂ui 
(t − σ)

∂xi

∂xj
Jij = 

x1(t ) = ƒ1(x,u
.

.

x2(t ) = ƒ2(x,u)
.

x3(t ) = ƒ3(x,u,θ)
.

FIGURE A2.1 Schematic depicting the difference between analyses that address input-output behaviours and those that refer explicitly
to interactions among coupled states.

of the input (i.e. its statistics up to second or higher
orders). Most models of the stochastic variety assume
the inputs are Gaussian, IID (independent and identically
distributed) and stationary. Some stochastic models (e.g.
coherence) use local stationarity assumptions to estimate
high-order moments from observable but noisy inputs.
For example, polyspectral analysis represents an inter-
mediate case in which the inputs are observed but only
their statistics are used.

Stationarity assumptions in stochastic models are crit-
ical because they preclude full analyses of evoked neu-
ronal responses or transients that, by their nature, are
non-stationary. On the other hand, there are situations
where the input is not observable or under experimen-
tal control. In these cases, approaches like ARMA and
SEM can be used if the inputs can be regarded as station-
ary. The distinction between deterministic and stochastic
inputs is critical in the sense that it would be inappropri-
ate to adopt one class of model in a context that calls for
the other.

Connections or dependencies?

The final distinction is in terms of what is being esti-
mated or inferred. Recall that functional connectivity is
defined by the presence of statistical dependences among
remote neurophysiological measurements. Conversely,
effective connectivity is a parameter of a model that spec-
ifies the causal influences among states. It is useful to
distinguish inferences about statistical dependencies and
estimation of effective connectivity in terms of the distinc-
tion between functional and effective connectivity. Exam-
ples of approaches that try to establish statistical depen-
dences include coherence analyses and ARMA. This is
because these techniques do not presume a model of
how hidden states interact to produce responses. They

are interested only in establishing dependences among
outputs over different frequencies or time lags. Although
ARMA may employ some model to assess dependences,
this is a model of dependences among outputs. There
is no assertion that outputs cause outputs. Conversely,
SEM and DCM try to estimate the model parameters and
constitute analyses of effective connectivity proper.

EFFECTIVE CONNECTIVITY

Effective connectivity is the influence that one system
exerts over another at a unit or ensemble level. This
should be contrasted with functional connectivity, which
implies a statistical dependence between two systems
that could be mediated in any number of ways. Oper-
ationally, effective connectivity can be expressed as the
response induced in an ensemble, unit or node by input
from others, in terms of partial derivatives of the target
activity xi, with respect to the source activities. First- and
second-order connections are then:

Kij��1� = �xi�t�

�xj�t −�1�

Kijk��1��2� = �2xi�t�

�xj�t −�1��xk�t −�2�
� � � � A2.1

First-order connectivity embodies the response evoked
by a change in input at t − �1. In other words, it is a
time-dependent measure of driving efficacy. Second-order
connectivity reflects the modulatory influence of the input
at t − �1 on the response evoked at t − �2. And so on
for higher orders. Note that, in this general formula-
tion, effective connectivity is a function of inputs over
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594 A2. DYNAMICAL SYSTEMS

the recent past.1 Furthermore, implicit in Eqn. A2.1 is
the fact that effective connectivity is causal, unless �1

is allowed to be negative. It is useful to introduce the
dynamic equivalent, in which the response of the target
is expressed in terms of changes in activity:

Jij = �ẋi

�xj

�Jij

�xk

= �2ẋi

�xj�xk

� � � A2.2

where ẋi = �xi

/
�t. In this dynamic form, all influences

are causal and instantaneous. In this appendix, we will
call the K��� effective connections and J coupling. We
will see later that they are related by K��� = exp�J�� and
that effective connectivity can be formulated in terms of
Volterra kernels. Before considering specific models of
effective connectivity, we will review briefly their basis
(see also Chapter 38).

Dynamical systems

A plausible model of neuronal systems is a non-
linear dynamical model that corresponds to an ana-
lytic multiple-input-multiple-output (MIMO) system.
The state and output equations of a analytic dynamical
system are:

ẋ�t� = f�x�u���

y�t� = g�x�+	
A2.3

Typically the inputs u�t� correspond to designed
experimental effects (e.g. stimulus functions in func-
tional magnetic resonance imaging, fMRI), or represent
stochastic fluctuations or system perturbations. Stochas-
tic observation error 	 ∼ N�0�
� enters linearly in this
model. For simplicity, the expressions below deal with
single-input-single-output (SISO) systems, and will be
generalized later. The measured response y is some
non-linear function of the states of the system x. These
state variables are usually unobserved or hidden (e.g.
the configuration of all ion channels, the depolarization
of every dendritic compartment etc.). The parameters
of the state equation embody effective connectivity,
either in terms of mediating the coupling between
inputs and outputs (MISO models of a single region)
or through the coupling among state variables (MIMO
models of multiple regions). The objective is to estimate
and make inferences (usually Bayesian) about these
parameters, given the outputs and possibly the inputs.

1 In contrast, functional connectivity is model-free and simply
reflects the mutual information I�xi� xj�. In this appendix we are
concerned only with models of effective connectivity.

Sometimes this requires one to specify the form of the
state equation. A ubiquitous and useful form is the
bilinear approximation; expanding around x0:

ẋ�t� ≈ Ax+uBx+Cu

y = Lx

A = �f

�x
� B = �2f

�x�u
� C = �f

�u
� L = �g

�x

A2.4

For simplicity, we have assumed x0 = 0 and f�0� = g�0� = 0.
This bilinear model is sometimes expressed in a more
compact form by augmenting the states with a constant:

Ẋ = �M +uN�X

y = HX

X =
[

1
x

]
M =

[
0 0
f A

]
N =

[
0 0
C B

]
H = [

g L
] A2.5

(see Friston, 2002). Here the coupling parameters com-
prise the matrices � = A�B�C�L. We will use the bilinear
parameterization when dealing with MIMO models and
their derivatives below. We will first deal with MISO
models, with and without deterministic inputs.

INPUT-OUTPUT MODELS

Models for deterministic inputs – The
Volterra formulation

In this section, we review the Volterra formulation
of dynamical systems. This formulation is important
because it allows the input-output behaviour of a sys-
tem to be characterized in terms of kernels that can be
estimated without knowing the states of the system.

The Fliess fundamental formula (Fliess et al., 1983)
describes the causal relationship between the outputs and
the history of the inputs. This relationship conforms to
a Volterra series which expresses the output as a gen-
eralized convolution of the input, critically without ref-
erence to the states. This series is simply a functional
Taylor expansion of the outputs with respect to the inputs
(Bendat, 1990). The reason it is a functional expansion is
that the inputs are a function of time:

y�t� = h�u���+	

h�u��� =∑
i

t∫
0

� � �

t∫
0

�i��1� � � ���i�u�t −�1�� � � ��

u�t −�i�d�1� � � �� d�i A2.6

�i��1� � � ���i� = �iy�t�

�u�t −�1�� � � �� �u�t −�i�
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where �i��1� � � � ��i� is the i-th order kernel. In Eqn. A2.6,
the integrals are over the past or history of the inputs.
This renders the model causal. In some situations an
acausal model may be appropriate (e.g. in which the
kernels have non-zero values for future inputs; see
Friston and Büchel, 2000). One important thing about the
Volterra expansion is that it is linear in the unknowns,
enabling relatively simple unbiased estimates of the
kernels. In other words, Eqn. A2.6 can be treated as a
general linear observation model enabling all the usual
estimation and inference procedures (see Chapter 38 for
an example). Volterra series are generally thought of as a
high-order or generalized non-linear convolution of the
inputs to provide an output. To ensure the kernels can
be estimated efficiently, they can be expanded in terms
of some appropriate basis functions qi

j��1� � � ���i� to give
the general linear model:

y�t� =∑
ij

�i
jh

i
j�u�+	

hi
j�u� =

t∫
0

� � �

t∫
0

qi
j��1� � � ���i�u�t −�1�� � � ��

u�t −�i�d�1� � � �� d�i A2.7

�i��1� � � ���i� =∑
j

�i
jq

i
j ��1� � � ���i�

The Volterra formulation is useful as a way of character-
izing the influence of inputs on the responses of a region.
The kernels can be regarded as a re-parameterization of
the bilinear form in Eqn. A2.4 that encodes the impulse
response to input. The kernels for the states are:

�0 = X�0�

�1��1� = e�1MNe−�1MX�0�

�2��1��2� = e�2MNe��1−�2�MNe−�1MX�0�

�2��1��2��3� = � � �

A2.8

The kernels associated with the output follow from the
chain rule:

h0 = H�0

h1��1� = H�1��1�

h2��1��2� = H�2��1��2�+�1��1�
T �H

/
�X�1��2�

h2��1��2��3� = � � �

A2.9

(see Friston, 2002 for details). If the system is fully
non-linear, then the kernels can be considered local
approximations. If the system is bilinear they are globally
exact. It is important to remember that the estimation
of the kernels does not assume any form for the state

equation and completely eschews the states. This is the
power and weakness of Volterra-based analyses.

The Volterra formulation can be used directly in the
assessment of effective connectivity if we assume the
measured response of one region constitutes the input to
another, i.e. ui�x� = yj�t�. In this case, the Volterra kernels
have a special interpretation; they are synonymous with
effective connectivity. From Eqn. A2.6, the first-order
kernels are:

�1��1�ij = �yi�t�

�yj�t −�1�
= Kij��1� A2.10

Extensions to multiple inputs (MISO) models are triv-
ial and allow for high-order interactions among inputs
to a single region to be characterized. This approach was
used in Friston and Büchel (2000) to examine parietal
modulation of V2 inputs to V5, by making inferences
about the appropriate second-order kernel. The advan-
tage of the Volterra approach is that non-linearities can
be modelled and estimated in the context of highly non-
linear transformations within a region and yet model
inversion proceeds in a standard linear setting. However,
one has to assume that the inputs conform to measured
responses elsewhere in the brain. This may be tenable for
some electrophysiological data, but the haemodynamic
responses measured by fMRI make this a more question-
able approach. Furthermore, there is no causal model of
the interactions among areas that would otherwise offer
useful constraints on the inversion. The direct applica-
tion of Volterra estimation, in this fashion, simply exam-
ines each node, one at a time, assuming the activities of
other nodes are veridical measurements of the inputs to
the node in question. In summary, although the Volterra
kernels are useful characterizations of the input-output
behaviour of single nodes, they are not constrained by
any model of interactions among regions. Before turning
to DCMs that embody these interactions, we will deal
with the SISO situation in which the input is treated as
stochastic.

Models for stochastic inputs – coherence
and polyspectral analysis

In this section, we deal with systems in which the input
is stochastic. The aim is to estimate the kernels (or their
spectral equivalents) given only statistics about the joint
distribution of the inputs and outputs. When the inputs
are unknown, one generally makes an assumption about
their distributional properties and assumes [local] sta-
tionariness. Alternatively, the inputs may be measurable
but too noisy to serve as inputs in a Volterra expansion.
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In this case, they can be used to estimate the input
and output densities in terms of high-order cumulants
or polyspectral density. The n-th order cumulant of the
input is:

cu�1� � � ���n−1� = �u�t�u�t −�1�� � � ��u�t −�n−1�� A2.11

where we have assumed here, and throughout, that
the expectation E�u�t�� = 0. It can be seen that cumu-
lants are a generalization of autocovariance functions.
The second-order cumulant is simply the autocovariance
function of lag and summarizes the stationary second-
order behaviour of the input. Cumulants allow one to
formulate the Volterra expansion in terms of the second-
order statistics of input and outputs. For example:

cyu�a� = �y�t�u�t −�a��

=∑
i

t∫
0

� � �

t∫
0

�i��1� � � ���i� �u�t −�a�u�t −�1� � � �

u�t −�i��d�1 � � � d�i

=∑
i

t∫
0

� � �

t∫
0

�i��1� � � ���i�×

cu�a −�1� � � ��� −�i�d�1� � � d�i A2.12

This equation says that the cross-covariance between the
output and the input can be decomposed into compo-
nents that are formed by convolving the i-th order ker-
nel with the input’s i + 1-th cumulant. The important
thing about this is that all cumulants, greater than second
order, of Gaussian processes are zero. This means that if
we can assume the input is Gaussian then:

cyu�a� =
t∫

0

�i��1�cu�a −�1�d�1 A2.13

In other words, the cross-covariance between the input
and output is simply the autocovariance function of the
inputs convolved with the first-order kernel. Although
it is possible to formulate the covariance between inputs
and outputs in terms of cumulants, the more conven-
tional formulation is in frequency space using poly-
spectra. The n-th polyspectrum is the Fourier transform
of the corresponding cumulant:

gu��1� � � ���n−1� =
(

1
2�

)n−1 ∫
� � �

∫
cu�1� � � ���n−1�e

−j���1� � � ����n−1�d�1� � � �� d�n−1 A2.14

Again, polyspectra are simply a generalization of spec-
tral densities. For example, the second polyspectrum is

spectral density and the third polyspectrum is bi-spectral
density. It can be seen that these relationships are gen-
eralizations of the Wiener-Khinchine theorem, relating
the autocovariance function and spectral density through
the Fourier transform. Introducing the spectral density
representation:

u�t� =
∫

su���e−j�d� A2.15

we can now rewrite the Volterra expansion as:

h�u��� =∑
i

�∫
−�

� � �

�∫
−�

ej��1+� � � � �+�i�t

×�1��1� � � ���i�su��1�� � � �� su��i�d�1� � � �� d�i A2.16

where the functions

�1��1� =
�∫

0

e−j�1�1�1��1�d�1

�2��1��2� =
�∫

0

�∫
0

e−j��1�1+�2�2��2��1��2�d�1d�2

� � �

are the Fourier transforms of the kernels. These functions
are called generalized transfer functions and mediate the
expression of frequencies in the output given those in the
input. Critically, the influence of higher order kernels, or
equivalently generalized transfer functions means that a
given frequency in the input can induce a different fre-
quency in the output. A simple example of this would
be squaring a sine wave input to produce an output of
twice the frequency. In the Volterra approach, the ker-
nels were identified in the time domain using the inputs
and outputs directly. In this section, system identification
means estimating their Fourier transforms (i.e. the trans-
fer functions) using second and higher order statistics of
the inputs and outputs. Generalized transfer functions
are usually estimated through estimates of polyspectra.
For example, the spectral form for Eqn. A2.13, and its
high-order counterparts are:

guy�−�1� = �1��1�gu��1�

guuy�−�1�−�2� = 2�2��1��2�gu��1�gu��2�

���

gu � � � y�−�1� � � � �−�n� = n!�n��1� � � � ��n�gu��1�� � � gu��n�

A2.17

Given estimates of the requisite [cross]-polyspectra, these
equalities can be used to provide estimates of the transfer



Elsevier UK Chapter: Appendix2-P372560 3-10-2006 4:23p.m. Page:597 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

INPUT-STATE-OUTPUT MODELS 597

SSM (Dynamic)Transfer functions 
(coherence and bi-

coherence)

Volterra kernels
(1st and 2nd order kernels )

DCM
(with a bilinear
approximation)

Input-output coupling Coupling among states

Deterministic input Stochastic input Deterministic input Stochastic input

x
J  =  

xy(t ) = 

ux + x + ux (t ) ≈ 

 = A
∂x

∂ƒ
 = 

∂x
∂

∂x
∂g

∂u

∂ƒ
∂x∂u

∂2ƒ
∂x
∂ƒ

xt + 1 = eτAxt + ηt xt = A0xt + ut

Quasi-bilinear extensions

→x

Require inputs
 No inputs, but assumes states are

observed directly

SEM (Static)

K1 
(σ1) = 

∂y
 
(t

 
)

∂ui 
(t − σ1)

Γ1 
(ω1) = 

gu y 
(–ω1)

gu 
(ω1)

Γ2 
(ω1, ω2) = 

gυu y 
(–ω1,–ω2)

2gu(ω1)gu(ω2)
K1 

(σ1, σ2) = 
∂2y

 
(t

 
)

∂ui 
(t − σ1)∂ui 

(t − σ2) xi 
ν

x

... ...
.

.

FIGURE A2.2 Overview of the models considered in this chapter. They have been organized to reflect whether they require known
inputs or not and whether the model is a time-series model or not.

functions (see Figure A2.2). These equalities hold when
the Volterra expansion contains just the n-th order term
and are a generalization of the classical results for the
transfer function of a linear system (i.e. the first equal-
ity in Eqn. A2.17). The importance of these results, in
terms of effective connectivity, is the implicit meaning
conferred on coherence and bi-coherence analyses. Coher-
ence is simply the second-order cross spectrum guy���
between the input and output and is related to first-order
effects (i.e. the first-order kernel or transfer function)
through Eqn. A2.17. Coherence is therefore a surrogate
for first-order or linear connectivity. Bi-coherence or the
cross-bi-spectrum guuy��1��2� is the third-order cross-
polyspectrum and implies a non-zero second-order ker-
nel or transfer function. Bi-spectral analysis was used (in
a simplified form) to demonstrate non-linear coupling
between parietal and frontal regions using magnetoen-
cephalography (MEG) in Chapter 39. In this example,
cross-bi-spectra were estimated, in a simple fashion,
using time-frequency analyses.

Summary

In summary, Volterra kernels (generalized transfer
functions) characterize the input-output behaviour of
a system. The n-th order kernel is equivalent to n-th
order effective connectivity when the inputs and outputs
conform to processes that mediate interactions among
neuronal systems. If the inputs and outputs are known,
or can be measured precisely, the estimation of the
kernels is straightforward. In situations where inputs
and outputs are observed less precisely, kernels can be

estimated indirectly through their generalized transfer
functions using cross-polyspectra. The robustness of ker-
nel estimation, conferred by expansion in terms of tem-
poral basis functions, is recapitulated in the frequency
domain by smoothness constraints during estimation of
the polyspectra. The spectral approach is limited because
it assumes the system contains only the kernel of the
order estimated and stationariness. The intuition behind
the first limitation relates to the distinction between
parameter estimation and variance partitioning in stan-
dard regression analyses. Although it is perfectly possible
to estimate the parameters of a regression model given a
set of non-orthogonal explanatory variables, it is not pos-
sible uniquely to partition variance in the output caused
by these explanatory variables.

INPUT-STATE-OUTPUT MODELS

In this section, we address models for multiple intercon-
nected nodes (e.g. brain regions) where one can mea-
sure their responses to input that may or may not be
known. Although it is possible to extend the techniques
of the previous sections to cover MIMO systems, the
ensuing inferences about the influence of input to one
node on the response of another are not sufficiently spec-
ified to constitute an analysis of effective connectivity.
This is because these influences may be mediated in
many ways and are not parameterized in terms of the
effective connectivity among the nodes themselves. A
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parameterization that encodes this inter-node coupling
is therefore required. All the models discussed below
assume some form or model for the interactions among
the state variables in one or more nodes and attempt to
estimate the parameters of this model, sometimes with-
out observing the states themselves.

Models for known inputs – dynamic
causal modelling

The most direct and generic approach is to estimate the
parameters of Eqn. A2.3 directly and, if necessary, use
them to compute effective connectivity as described in
Eqn. A2.1 and Eqn. A2.2. Although there are many forms
one could adopt for Eqn. A2.3, we will focus on the
bilinear approximation, which is possibly the most parsi-
monious but useful non-linear approximation available.
Furthermore, as shown below, the bilinear approxima-
tion re-parameterizes the state equations of the model
directly in terms of effective connectivity. Dynamic causal
modelling does not necessarily entail the use of a bilin-
ear model. Indeed, DCMs can be specified to any degree
of biological complexity and realism supported by the
data. There are examples in this book where the para-
meters of the state equation are already effective connec-
tivity or coupling parameters, for example, the extrinsic
and intrinsic connections in neural-mass models of event-
related potentials (ERPs) (see Chapter 42). However, we
focus on bilinear approximations here because they rep-
resent the simplest form to which all DCMs can be
reduced. This reduction allows analytic derivation of ker-
nels and other computations, like integrating the state
equation, to proceed in an efficient fashion.

Each region may comprise several state variables
whose causal interdependencies are summarized by the
bilinear form in Eqn. A2.4. Here the coupling parameters
of the state equation are the matrices M and N . For a
given set of inputs or experimental context, the bilinear
approximation to any state equation is:

Ẋ�t� = JX�t�

X�t +�� = eJ�X�t� A2.18

J = M +∑
i

Niui

Notice that there are now as many N matrices as there
are inputs. The bilinear form reduces the model to first-
order connections that can be modulated by the inputs.

In MIMO models, the coupling is among the states such
that first-order effective connections are simply:

J = �Ẋ

�X

K = �X�t�

�X�t −��
= eJ�

A2.19

Note that these are context-sensitive in the sense that the
Jacobian J is a function of experimental context or inputs
u�t� = u1�t�� � � � �um�t�. A useful way to think about the
bilinear matrices is to regard them as the intrinsic or
latent dynamic coupling, in the absence of input, and
changes induced by each input (see Chapter 41 for a
fuller description):

J�0� = M =
[

0 0
f�0� A

]

�J

�ui

= Ni =
[

0 0
Ci Bi

] A2.20

The latent coupling among the states is A. Often, one is
more interested in Bi as embodying changes in this cou-
pling induced by different cognitive set, time or drugs.
Note that Ci enters as the input-dependent component
of coupling to the constant term. Clearly, it would be
possible to introduce other high-order terms to model
interactions among the states, but we will restrict our-
selves to bilinear models for simplicity.

Dynamic causal modelling has two parts: first, specifi-
cation of the state and output equations of an ensemble
of region-specific state variables. If necessary, a bilinear
approximation to any state equation reduces the model to
first-order coupling and bilinear terms that represent the
modulation of that coupling by inputs. Second, inversion
of the DCM allows one to estimate and make inferences
about inter-regional connections and the effect of exper-
imental manipulations on those connections.

As mentioned above, the state equations do not have
to conform to the bilinear form. This is important because
the priors may be specified more naturally in terms of the
original biophysical parameters of the DCM, as opposed
to the bilinear form. A nice example of this is the use of
log-normal priors to enforce positivity constraints on the
rate constants of ERP models in Chapter 42. Furthermore,
the choice of the state variables clearly has to reflect their
role in mediating the effect of inputs on responses and
the interactions among areas. In the simplest case, the
state variables could be reduced to mean synaptic activity
per region, plus any biophysical state variables needed
to determine the output (e.g. the states of haemodynamic
models for fMRI). Implicit in choosing such state vari-
ables is the assumption that they model all the dynamics
to the level of detail required. Mean field models and
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neural-mass models may be useful here in motivating the
number of state variables and the associated state equa-
tions (see Chapter 31). Operationally, issues of parame-
terization and number of state variables can be resolved
with Bayesian model selection and is directed principally
by the nature of the data.

Summary

In summary, DCM is the most general and direct
approach to identifying the effective connectivity among
the states of MIMO systems. The identification of DCMs
usually proceeds using Bayesian inversion to estimate the
posterior mode or most likely parameters of the model
given the data. The state equations can be arbitrarily
complicated and non-linear, however, there will be an
optimal level of model complexity that is supported by
the data (and identified using Bayesian model selection).
The simplest model is probably a bilinear approximation
to causal influences among state variables. This serves
to minimize the complexity of the model by parame-
terizing the model in terms of first-order coupling and
its changes with input (the bilinear terms). In the next
section, we deal with the situations in which the input is
unknown. This precludes DCM with deterministic sys-
tems, because the likelihood of the responses cannot be
computed unless we know what caused them.

Models for stochastic inputs – SEM
and regression models

When the inputs are unknown, and the statistics of the
outputs are considered to second order, one is effectively
restricted to linear or first-order models of effective con-
nectivity. Although it is possible to deal with discrete-
time bilinear models, with white noise inputs, they have
the same covariance structure as ARMA (autoregressive
moving average) models of the same order (Priestley,
1988: 66). This means that to distinguish between lin-
ear and non-linear models, one would need to study
moments higher than second order (cf. the third-order
cumulants in bi-coherence analyses). Consequently, we
will focus on linear models of effective connectivity,
under white stationary inputs. There are two important
classes of model here: structural equation models and
ARMA models. Both are finite parameter linear models
that are distinguished by their dependency on dynamics.
In SEM, the interactions are assumed to be instantaneous,
whereas in ARMA the dynamics are retained.

An SEM can be derived from any DCM by assum-
ing the inputs vary slowly in relation to neuronal and

haemodynamics. This is appropriate for positron emis-
sion tomography (PET) experiments and possibly some
epoch-related fMRI designs, but not for event-related
designs in ERP or fMRI. Note that this assumption per-
tains to the inputs or experimental design, not to the
time constants of the outputs. In principle, it would be
possible to apply DCM to a PET study.

Consider a linear approximation to any DCM where
we can observe the states precisely and there was only
one state variable per region:

ẋ = f�x�u�

= Ax+u = �A0 −1�x+u

y = g�x� = x

A2.21

Here, we have discounted observation error but allow
stochastic inputs u ∼ N�0�Q�. To make the connection to
the SEM more explicit, we have expanded the connec-
tivity matrix into off-diagonal connections and a leading
diagonal matrix, modelling unit decay A = A0 − 1. For
simplicity, we have absorbed C into the covariance struc-
ture of the inputs Q. As the inputs are changing slowly
relative to the dynamics, the change in states will be zero
at the point of observation and we obtain the regression
model used by SEM:

ẋ = 0 ⇒
�1−A0�x = u

x = �1−A0�−1u

A2.22

(see Chapter 38). The more conventional motivation for
Eqn. A2.22 is to start with an instantaneous regression
equation x = A0x+u that is formally identical to the sec-
ond line above. Although this regression model obscures
the connection with dynamic formulations, it is impor-
tant to consider because it is the basis of commonly
employed methods for estimating effective connectivity
in neuroimaging to data. These are simple regression
models and SEM.

Simple regression models

x = A0x +u can be treated as a general linear model by
focusing on one region at a time, for example the first, to
give (cf. Eqn. 38.11 in Chapter 38):

x1 = �x2� � � �� xn�

⎡
⎢⎣

A12
���

A1n

⎤
⎥⎦+u1 A2.23

The elements of A can then be solved in a least squares
sense by minimizing the norm of the unknown stochas-
tic inputs u for that region (i.e. minimizing the unex-
plained variance of the target region given the states of
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the remainder). This approach was proposed in Friston
(1995) and has the advantage of providing precise esti-
mates of connectivity with high degrees of freedom.
However, these maximum likelihood estimators assume,
rather implausibly, that the inputs are orthogonal to the
states and, more importantly, do not ensure the inputs
to different regions conform to the known covariance Q.
Furthermore, there is no particular reason that the input
variance should be minimized just because it is unknown.
Structural equation modelling overcomes these limita-
tions at the cost of degrees of freedom for efficient
estimation

Structural equation modelling

In SEM, estimates of A0 minimize the difference (KL
divergence) between the observed covariance among the
[observable] states and that implied by the model and
assumptions about the inputs.

〈
xxT

〉= 〈
�1−A0�−1uuT �1−A0�−1T

〉
= �1−A0�−1Q�1−A0�−1T

A2.24

This is critical because the connectivity estimates implic-
itly minimize the discrepancy between the observed and
implied covariances among the states induced by stochas-
tic inputs. This is in contradistinction to the instanta-
neous regression approach (above) or ARMA analyses
(below) in which the estimates simply minimize unex-
plained variance on a region-by-region basis. It should
be noted that SEM can be extended to embrace dynam-
ics by temporal embedding. However, these models
then become formally the same as autoregressive-moving
average models, which are considered below. Estima-
tion of the effective connectivity in SEM, in the context
of designed experiments (i.e. in neuroimaging) is rather
poorly motivated. This is because one throws away all
the information about the temporal pattern of designed
inputs and uses only Q = 〈

uuT
〉
. In many applications of

SEM, the inputs are discarded and Q is assumed to be a
leading diagonal or identity matrix.

Quasi-bilinear models – psychophysiological
interaction and moderator variables

There is a useful extension to the regression model
implicit in Eqn. A2.22 that includes bilinear terms formed
from known inputs that are distinct from stochastic
inputs inducing [co]variance in the states. Let these
known inputs be denoted by v. These usually represent
some manipulated experimental context, such as cogni-
tive set (e.g. attention) or time. These deterministic inputs

are also known as moderator variables in SEM. The
underlying quasi-bilinear DCM, for one such input, is:

ẋ = �A0 −1�x+Bvx+u A2.25

Again, assuming the system has settled at the point of
observation:

ẋ = 0

�1−A0 −Bv�x = u

x = A0x+Bvx+u

A2.26

This regression equation can be used to form least
squares estimates as in Eqn. A2.23, in which case the
additional bilinear regressors vx are known as psychophy-
siological interaction (PPI) terms (for obvious reasons). The
corresponding SEM or path analysis usually proceeds by
creating extra ‘virtual’ regions whose dynamics corre-
spond to the bilinear terms. This is motivated by rewrit-
ing the last expression in Eqn. A2.26 as:

[
x
vx

]
=
[
A0 B
0 1

][
x
vx

]
+
[
u
0

]
A2.27

It is important to note that psychophysiological inter-
actions and moderator variables in SEM are exactly the
same thing and both speak of the importance of bilin-
ear terms in causal models. Their relative success in
the neuroimaging literature is probably due to the fact
that they model changes in effective connectivity that
are generally much more interesting than the connec-
tion strengths per se. Examples are changes induced by
attentional modulation, changes during procedural learn-
ing and changes mediated pharmacologically. In other
words, bilinear components afford ways of characteriz-
ing plasticity and, as such, play a key role in methods
for functional integration. It is for this reason we focused
on bilinear approximations as a minimal DCM in the
previous section.

Summary

In summary, SEM is a simple and pragmatic approach
to effective connectivity when dynamical aspects can be
discounted, a linear model is sufficient, the state variables
can be measured precisely and the input is unknown
but stochastic and stationary. These assumptions are
imposed by ignorance about the inputs. Some of these
represent rather severe restrictions that limit the utility of
SEM in relation to DCM or state-space models considered
next. The most profound criticism of linear regression
and SEM in imaging neuroscience is that they are models
for interacting brain systems in the context of unknown
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input. The whole point of designed experiments is that
the inputs are known and under experimental control.
This renders the utility of SEM for designed experiments
somewhat questionable.

MULTIVARIATE ARMA MODELS

ARMA (autoregressive-moving average) models can be
represented as state-space (or Markov) models that pro-
vide a compact description of any finite parameter linear
model. From this state-space representation, multivari-
ate autoregressive (MAR) models can be derived and
estimated using a variety of well-established techniques
(see Chapter 40). We will focus on how the state-space
representation of linear models can be derived from the
dynamic formulation and the assumptions required in
this derivation. Many treatments of dynamic systems
consider the dynamic formulation in terms of a state-
equation, a continuous state-space model (SSM). We
preserve the distinction because there is an important
asymmetry in the sense that one can always derive a
discrete SSM from a DCM. However, there is no neces-
sary mapping from an SSM to a DCM. This is critical
for causal inference because only DCMs are causal in the
control theory sense (see below).

Assume a linear DCM in which inputs comprise sta-
tionary white Weiner processes u ∼ N�0�Q� that are
offered to each region in equal strength (i.e. C = 1). This
renders Eqn. A2.3 a linear stochastic differential equation
(SDE):

ẋ = Ax+u

y = Lx
A2.28

The value of x at some future lag comprises a deter-
ministic and a stochastic component � that obtains by
regarding the effects of the input as an accumulation of
local linear perturbations:

x�t +�� = e�Ax�t�+�

� =
�∫

0

e�Au�t +��d�
A2.29

Notice that the stochastic part can be regarded as con-
volving the random state-fluctuations with the system’s
first-order kernel. Using the assumption that the input is
uncorrelated, the covariance of the stochastic part is:

W = 〈
��T

〉=
�∫

0

e�AQe�AT

d� A2.30

It can be seen that when the lag is small in relation
to the Lyapunov exponents, eig�A� we get e�A ≈ 1 and
W ≈ Q�. By incorporating the output transformation and
observation error, we can augment this model to furnish
a state-space model with system matrix F = e�A, input
matrix G = √

W and observation matrix L:

xt = Fxt−1 +Gzt

yt = Lxt +	t

A2.31

where z is an innovation representing dynamically
transformed stochastic input. If we knew L and were
interested in inferring on the hidden states, we would
normally turn to Bayesian filtering (e.g. Kalman filtering)
as described in Appendix 5. However, we will assume
that we are more interested in inference about the cou-
pling implied by the system matrix. In this case, we
can reformulate the state-space model and treat it as an
ARMA model.

Critically, every state-space model has an ARMA rep-
resentation and vice versa. For example, if L = 1, we can
eliminate the hidden states to give:

yt −Fyt−1 = Gzt +	t −F	t−1 A2.32

This is simply an ARMA(1,2) model that can be inverted
using the usual procedures (see Chapter 40). The autore-
gressive part is on the left and the moving average of
the innovations is on the right. Critically, Eqn. A2.32
formulates the dynamics in terms of, and only of, the
response variable and random terms. Although it is
always possible to derive an ARMA representation from
a DCM (through the state-space representation), the
reverse mapping is not necessarily defined. Having said
this, ARMA models can be useful in establishing the pres-
ence of coupling even if the exact form of the coupling is
not specified (cf. Volterra characterizations).

In summary, discrete-time linear models of effective
connectivity can be reduced to multivariate AR (or, more
generally ARMA) models, whose coefficients can be esti-
mated given only the states (or outputs) by assuming the
inputs are white and Gaussian. They therefore operate
under similar assumptions as SEM but are time-series
models.

A note on causality

There are many schemes for inverting state-space mod-
els of the sort in Eqn. A2.31. Inference on the system
matrix could be considered in the light of functional
connectivity, however, the regression coefficients are not
really measures of effective connectivity. This is because
there is no necessary mapping to the parameters of a
DCM. In other words, although one can always map
from the parameters of a causal model to its state-space
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representation F ← e�A, the inverse mapping does not
necessarily exist (a simple intuition here is that the log of
a negative number is not real).

An interesting aspect of inference on the system matrix
(i.e. regression coefficients) is the use of model compari-
son to compare the regression of one channel on another.
Because these coefficients encode statistical dependence
at different temporal lags, this model comparison is often
framed in causal terms, by appeal to temporal prece-
dence (e.g. Granger causality). However, for many, this
rhetoric represents a category error because the regres-
sion coefficients cannot have the attribute ‘causal’. This
is because causal is an attribute of the state equation that
implies A = �f

/
�x is real. This Jacobian is not defined

in the state-space or ARMA representations because the
mapping 1

�
ln�F � → �f

/
�x does not necessarily exist.

It is quite possible to infer Granger causality that is
acausal when a cause is observed after its effect. fMRI
presents a good example of an acausal system, because
of the delay imposed on the expression of neuronal
dynamics (which are causal) at the level of haemody-
namics (which are not). For example, one region, with
a long haemodynamic latency, could cause a neuronal
response in another that was expressed, haemodynami-
cally, before the source. This example demonstrates that
one cannot estimate effective connectivity or coupling
using just the outputs of a system (e.g. observed fMRI
responses).

CONCLUSION

We have reviewed a series of models, all of which can be
formulated as special cases of DCMs. Two fundamental

distinctions organize these models. The first is whether
they model the coupling of inputs to outputs or whether
they model interactions among hidden states. The sec-
ond distinction (see Figure A2.2) is that between mod-
els that require the inputs to be known, as in designed
experiments and those where the input is not under
experimental control but can be assumed to be well
behaved. With only information about the density of the
inputs (or the joint density of the inputs and outputs)
the models of connectivity that can be used are limited;
unless one uses moments greater than second-order, only
linear models can be estimated.

Many methods for non-linear system identification
and causal modelling have been developed in situations
where the system input is not under experimental control
and, in the case of SEM, for static data. Volterra kernels
and DCMs may be especially useful in neuroimaging
because we deal explicitly with time-series data gener-
ated by designed experiments.
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3

Expectation maximization
K. Friston

INTRODUCTION

This appendix describes expectation maximization (EM)
for linear models using statistical mechanics (Neal and
Hinton, 1998). We connect this formulation with classi-
cal methods and show the variational free energy is the
same as the objective function maximized in restricted
maximum likelihood (ReML). In Appendix 4, we show
that EM itself is a special case of variational Bayes
(Chapter 24).

The EM algorithm is ubiquitous in the sense that many
estimation procedures can be formulated as such, from
mixture models through to factor analysis. Its objective
is to maximize the likelihood of observed data p�y���,
conditional on some hyperparameters, in the presence of
unobserved variables or parameters �. This is equivalent
to maximizing the log-likelihood:

ln p�y��� = ln
∫

p������d� ≥

F�q��� =
∫

q��� ln p���y���d� −
∫

q��� ln q���d�

A3.1

where q��� is any density on the model parameters (Neal
and Hinton, 1998). Eqn. A3.1 rests on Jensen’s inequality
that follows from the concavity of the log function, which
renders the log of an integral greater than the integral
of the log. F corresponds to the [negative] free energy
in statistical thermodynamics and comprises two terms:
the energy and entropy. The EM algorithm alternates
between maximizing F and, implicitly, the likelihood of
the data, with respect to the distribution q��� and the
hyperparameters �, holding the other fixed:

E-step� q��� ← max
q

F�q������

M-step� � ← max
�

F�q������

This iterative alternation performs a coordinate ascent on
F . It is easy to show that the maximum in the E-step

obtains when q��� = p���y���, at which point Eqn. A3.1
becomes an equality. The M-step finds the ML estimate
of the hyperparameters, i.e. the values of � that maximize
p�y��� by integrating ln p���y��� = ln p�y����� + ln p�����
over the parameters, using the current estimate of their
conditional distribution. In short, the E-step computes
sufficient statistics (in our case the conditional mean and
covariance) of the unobserved parameters to enable the
M-step to optimize the hyperparameters, in a maximum
likelihood sense. These new hyperparameters re-enter
into the estimation of the conditional density and so on
until convergence.

The E-step

For linear models, under Gaussian (i.e. parametric)
assumptions, the E-step is trivial and corresponds to eval-
uating the conditional mean and covariance as described
in Chapter 22:

y = X� +�

y =
[
y −X�

	�

]
X =

[
X
I

]
C� =

[∑
�iQi 0
0 C�

]

	��y = C��yX
T
C

−1
� y

C��y = �X
T
C

−1
� X�−1

A3.2

where the prior and conditional densities are p��� =
N�	��C�� and q��� = N�	��y�C��y�. This compact form is a
result of absorbing the priors into the errors by augment-
ing the linear system. As described in Chapter 22, the same
augmentation is used to reduce hierarchal models with
empirical priors to their non-hierarchical form. Under local
linearity assumptions, non-linear models can be reduced
to a linear form as described in Chapter 34. The result-
ing conditional density is used to estimate the hyperpara-
meters of the covariance components in the M-step.

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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The M-step

Given that we can reduce the problem to estimating the
error covariances of the augmented system in Eqn. A3.2,
we only need to estimate the hyperparameters of the
error covariances (which contain the prior covariances).
Specifically, we require the hyperparameters that max-
imize the first term of the free energy (i.e. the energy)
because the entropy does not depend on the hyper-
parameters. For linear systems, the free energy is given
by (ignoring constants):

log p���y ��� = −1
2

ln �C��−
1
2

�y −X��T C−1
� �y −X��


∫
q��� ln p���y ���d� = −1

2
ln �C��−

1
2

rT C−1
� r

− 1
2

tr�C��yX
T
C−1

� X�

∫
q��� log q��� = −1

2
ln �C��y� A3.3

F = 1
2

ln �C−1
� �− 1

2
rT C−1

� r

− 1
2

tr�C��yX
T
C−1

� X�+ 1
2

ln �C��y�

where the residuals r = y −X	��y . By taking derivatives
with respect to the error covariance we get:

F

C−1
�

= 1
2

C� − 1
2

rrT − 1
2

XC��y X
T

A3.4

When the hyperparameters maximize the free energy this
gradient is zero and:

C���� = rrT +XC��y X
T

A3.5

(cf. Dempster et al., 1981: 350). This means that the ReML
error covariance estimate has two components: that due
to differences between the data and its conditional pre-
diction; and another due to the variation of the param-
eters about their conditional mean, i.e. their conditional
uncertainty. This is not a closed form expression for
the unknown covariance because the conditional covari-
ance is a function of the hyperparameters. To find the
ReML hyperparameters, one usually adopts a Fisher scor-
ing scheme, using the first and expected second partial
derivatives of the free energy:

�� = −E

(
2F

�2
ij

)−1
F

�i

F

�i

= tr

(
F

C−1
�

C−1
� QiC

−1
�

)

= −1
2

tr�PQi�+ 1
2

yT PT QiPy

2F

�2
ij

= 1
2

tr�PQiPQj�−yT PQiPQjPy A3.6

E

(
2F

�2
ij

)
= −1

2
tr�PQiPQj�

P = C−1
� −C−1

� XC��yX
T
C−1

�

Fisher scoring corresponds to augmenting a Gauss-
Newton scheme by replacing the second derivative or
curvature with its expectation. The curvature or Hessian
is referred to as Fisher’s information matrix1 and encodes
the conditional prediction of the hyperparameters. In this
sense, the information matrix has a close connection to
the degrees of freedom in classical statistics. The gradient
can be computed efficiently by capitalizing on any spar-
sity structure in the constraints and by bracketing the
multiplications appropriately. This scheme is general in
that it accommodates almost any form for the covariance
through a Taylor expansion of C����.

Once the hyperparameters have been updated they
enter the E-step as a new error covariance estimate to
give new conditional moments which, in turn, enter the
M-step and so on until convergence. A pseudo-code
illustration of the complete algorithm is presented in
Figure 22.4 of Chapter 22. Note that in this implemen-
tation one is effectively performing a single Fisher scor-
ing iteration for each M-step. One could postpone each
E-step until this search converged, but a single step is
sufficient to perform a coordinate ascent on F . Techni-
cally, this renders the scheme a generalized EM or GEM
algorithm.

It should be noted that the search for the maximum
of F does not have to employ Fisher scoring or indeed
the parameterization of C� used above. Other search
procedures, such as quasi-Newton searches, are com-
monly employed (Fahrmeir and Tutz, 1994). Harville
(1977) originally considered Newton-Raphson and scor-
ing algorithms, and Laird and Ware (1982) recommend
several versions of EM. One limitation of the linear

1 The derivation of the expression for the information matrix
uses standard results from linear algebra and is most easily seen
by differentiating the gradient, noting:

P

�j

= −PQjP

and taking the expectation, using

E�tr�PQiPyyT PQj�� = tr�PQiPC�PQj� = tr�PQiPQj�
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hyperparameterization described above is that it does not
guarantee that C� is positive definite. This is because the
hyperparameters can take negative values with extreme
degrees of non-sphericity. The EM algorithm employed
by multistat (Worsley et al., 2002) for variance component
estimation in multisubject fMRI studies, uses a slower
but more stable algorithm that ensures positive definite
covariance estimates.

In Appendix 4, we will revisit this issue and look at
linear hyperparameterizations of the precision. The com-
mon aspect of all these algorithms is that they (explicitly
or implicitly) optimize free energy. As shown next, this
is equivalent to restricted maximum likelihood.

RELATIONSHIP TO REML

ReML or restricted maximum likelihood was introduced by
Patterson and Thompson in 1971, for estimating variance
components in a way that accounts for the loss in degrees
of freedom that result from estimating fixed effects
(Harville, 1977), i.e. that accounts for conditional uncer-
tainty about the parameters. It is commonly employed
in standard statistical packages (e.g. SPSS). Under the
present model assumptions, ReML is formally identical
to EM. One can regard ReML as embedding the E-step
into the M-step to provide a single log-likelihood objec-

tive function: substituting C��y =
(
X

T
C−1

� X
)−1

into the
expression for the free energy gives:

F = −1
2

ln �C��−
1
2

rT C−1
� r − 1

2
ln �XT

C−1
� X� A3.7

This is the ReML objective function (see Harville,
1977: 325). Critically, its derivatives with respect to the
hyperparameters are exactly the same as those in the

M-step.2 Operationally, the M-step can be re-formulated
to give a ReML scheme by removing any explicit refer-
ence to the conditional covariance using:

P = C−1
� −C−1

� X�X
T
C−1

� X�−1X
T
C−1

� A3.8

The resulting scheme is formally identical to that
described in Section 5 of Harville (1977). Because one
can eliminate the conditional density, one could think of
ReML as estimating the hyperparameters in a subspace
that is restricted in the sense that the estimates are con-
ditionally independent of the parameters. See Harville
(1977) for a discussion of expressions, comparable to the
terms in Eqn. A3.7 that are easier to compute, for particu-
lar hyperparameterizations of the variance components.

Having established ReML is a special case of EM, in
Appendix 4, we take an even broader perspective and
look at EM as a special case of variational Bayes.
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 ln �XT
C−1

� X�
�i
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Variational Bayes under the Laplace
approximation

K. Friston, J. Mattout, N. Trujillo-Barreto, J. Ashburner and W. Penny

INTRODUCTION

This is a rather technical appendix, but usefully connects
most of the estimation and inference schemes used in
previous chapters, by showing they are all special cases
of a single variational approach. This synthesis is under-
pinned by reference to the various applications we have
considered in detail, so that their motivation and interre-
lationships are more evident.

We will derive the variational free energy under the
Laplace approximation, with a focus on accounting for
additional model complexity induced by increasing the
number of model parameters. This is relevant when using
the free energy as an approximation to the log-evidence
in Bayesian model averaging and selection. By setting
restricted maximum likelihood (ReML) in the larger con-
text of variational learning and expectation maximiza-
tion, we show how the ReML objective function can be
adjusted to provide an approximation to the log-evidence
for a particular model. This means ReML can be used for
model selection, specifically to select or compare models
with difference covariance components. This is useful in
the context of hierarchical models, because it enables a
principled selection of priors. Deriving the ReML objec-
tive function, from basic variational principles, discloses
the simple relationships among variational Bayes, EM
and ReML. Furthermore, we show that EM is formally
identical to a full variational treatment when the preci-
sions are linear in the hyperparameters.

Background

This chapter starts with a very general formulation
of inference using approaches developed in statistical
physics. It ends with a treatment of a specific objective

function used in restricted maximum likelihood (ReML)
that renders it equivalent to the free energy in variational
learning. This is important because the variational free
energy provides a bound on the log-evidence for any
model, which is exact for linear models. The log-evidence
plays a central role in model selection, comparison and
averaging (see Penny et al., 2004 and Trujillo-Barreto et al.,
2004, for examples in neuroimaging).

Although this appendix focuses on the various forms for
the free energy, we use it to link variational Bayes (VB), EM
and ReML using the Laplace approximation. This approx-
imation assumes a fixed Gaussian form for the conditional
density of the parameters of a model and is used implicitly
in ReML and many applications of EM. Bayesian inver-
sion using VB is ubiquitous in neuroimaging (e.g. Penny
et al., 2005 and Chapter 24). Its use ranges from spa-
tial segmentation and normalization of images during
pre-processing (e.g. Ashburner and Friston, 2005) to the
inversion of complicated dynamical causal models of
functional integration in the brain (Friston et al., 2003 and
Chapter 34). Many of the intervening steps in classical
and Bayesian analysis of neuroimaging data call on ReML
or EM under the Laplace approximation. This appendix
provides an overview of how these schemes are related
and illustrates their applications with reference to specific
algorithms and routines we have referred to in this book.
One interesting issue that emerges from this treatment is
that VB reduces exactly to EM, under the Laplace approx-
imation, when the precision of stochastic terms is linear
in the hyperparameters. This reveals a close relationship
between EM and full variational approaches.

Conditional uncertainty

In previous chapters, we have described the use of ReML
in the Bayesian inversion of electromagnetic models to

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
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localize distributed sources in electroencephalography
(EEG) and magnetoencephalography (MEG) (e.g. Phillips
et al., 2002; Chapters 29 and 30). ReML provides a princi-
pled way of quantifying the relative importance of priors
that replaces alternative heuristics like L-curve analysis.
Furthermore, ReML accommodates multiple priors and
provides more accurate and efficient source reconstruc-
tion than its precedents (Phillips et al., 2002). We have
also used ReML to identify the most likely combina-
tion of priors using model selection, where each model
comprises a different set of priors (Mattout et al., 2006).
This was based on the fact that the ReML objective func-
tion is the free energy used in expectation maximization
and is equivalent to the log-evidence F� = ln p�y���m�,
conditioned on �, the unknown covariance component
parameters (i.e. hyperparameters) and the model m. The
covariance components encoded by � include the prior
covariances of each model of the data y. However, this
free energy is not a function of the conditional uncer-
tainty about � and is therefore insensitive to additional
model complexity induced by adding covariance com-
ponents (i.e. priors). In what follows we show how F�

can be adjusted to provide the variational free energy,
which, in the context of linear models, is exactly the log-
evidence ln p�y�m�. This rests on deriving the variational
free energy for a general variational scheme and treat-
ing expectation maximization (EM) as a special case, in
which one set of parameters assumes a point mass. We
then treat ReML as the special case of EM, applied to
linear models.

Overview

This appendix is divided into six sections. In the first,
we summarize the basic theory of variational Bayes
and apply it in the context of the Laplace approxima-
tion (see also Chapter 24). The Laplace approximation
imposes a fixed Gaussian form on the conditional den-
sity, which simplifies the ensuing variational steps. In
this section, we look at the easy problem of approxi-
mating the conditional covariance of model parameters
and the more difficult problem of approximating their
conditional expectation or mode using gradient ascent.
We consider a dynamic formulation of gradient ascent,
which generalizes nicely to cover dynamic models and
provides the basis for a temporal regularization of the
ascent. In the second section, we apply the theory to
non-linear models with additive noise. We use the VB
scheme that emerges as the reference for subsequent sec-
tions looking at special cases. The third section considers
EM, which can be seen as a special case of VB in which
uncertainty about one set of parameters is ignored. In the
fourth section, we look at the special case of linear models

where EM reduces to ReML. The fifth section considers
ReML and hierarchical models. Hierarchical models are
important because they underpin parametric empirical
Bayes (PEB) and other special cases, like relevance vector
machines. Furthermore, they provide a link with classi-
cal covariance component estimation. In the final section,
we present some toy examples to show how the ReML
and EM objective functions can be used to evaluate the
log-evidence and facilitate model selection.

VARIATIONAL BAYES

Empirical enquiry in science usually rests upon estimat-
ing the parameters of some model of how observed data
were generated and making inferences about the param-
eters (or model). Estimation and inference are based on
the posterior density of the parameters (or model), con-
ditional on the observations. Variational Bayes is used to
evaluate these posterior densities.

The variational approach

Variational Bayes is a generic approach to posterior den-
sity (as opposed to posterior mode) analysis that approx-
imates the conditional density p���y�m� of some model
parameters �, given a model m and data y. Further-
more, it provides the evidence (or marginal likelihood) of
the model p�y�m� which, under prior assumptions about
the model, furnishes the posterior density p�m�y� of the
model itself.

Variational approaches rest on minimizing the Feyn-
man variational bound (Feynman, 1972). In variational
Bayes, the free energy represents a bound on the log-
evidence. Variational methods are well established in
the approximation of densities in statistical physics (e.g.
Weissbach et al., 2002) and were introduced by Feynman
within the path integral formulation (Titantah et al., 2001).
The variational framework was introduced into statistics
through ensemble learning, where the ensemble or vari-
ational density q��� (i.e. approximating posterior density)
is optimized to minimize the free energy. Initially (Hin-
ton and von Camp, 1993; MacKay, 1995), the free energy
was described in terms of description lengths and cod-
ing. Later, established methods like EM were considered
in the light of variational free energy (Neal and Hinton,
1998; see also Bishop, 1999). Variational learning can be
regarded as subsuming most other learning schemes as
special cases. This is the theme pursued here, with spe-
cial references to fixed-form approximations and classical
methods like ReML (Harville, 1977).
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608 A4. VARIATIONAL BAYES UNDER THE LAPLACE APPROXIMATION

The derivations in this appendix involve a fair amount
of differentiation. To simplify things we will use the nota-
tion fx = �f

/
�x to denote the partial derivative of the

function f , with respect to the variable x. For time deriva-
tives we will also use ẋ = xt.

The log-evidence can be expressed in terms of the free
energy and a divergence term:

ln p�y�m� = F +D�q����p���y�m��

F = �L����q −�ln q����q

L = ln p�y���

A4.1

Here −�ln q����q is the entropy and �L����q the expected
energy. Both quantities are expectations under the vari-
ational density. Eqn. A4.1 indicates that F is a lower-
bound approximation to the log-evidence because the
divergence D�q����p���y�m�� is always positive. In this,
note all the energies are the negative of energies consid-
ered in statistical physics. The objective is to compute
q��� for each model by maximizing F , and then com-
pute F itself, for Bayesian inference and model compari-
son respectively. Maximizing the free energy minimizes
the divergence, rendering the variational density q��� ≈
p���y�m� an approximate posterior, which is exact for lin-
ear systems. To make the maximization easier, one usu-
ally assumes q��� factorizes over sets of parameters �i:

q��� =∏
i

qi A4.2

In statistical physics this is called a mean-field approx-
imation. Under this approximation, the Fundamental
Lemma of variational calculus means that F is maximized
with respect to qi = q��i� when, and only when:

	F i = 0 ⇔ �f i

�qi
= f i

qi = 0

f i = F�i

A4.3

	F i is the variation of the free energy with respect to qi.
From Eqn. A4.1:

f i =
∫

qiq\i ln L���d�\i −
∫

qiq\i ln q���d�\i

f i
qi = I��i�− ln qi − ln Zi

I��i� = �L����q\i

A4.4

where �\i denotes the parameters not in the i-th set. We
have lumped terms that do not depend on �i into ln Zi,
where Zi is a normalization constant (i.e. partition func-
tion). We will call I��i� the variational energy, noting its
expectation under qi is the expected energy. The extremal
condition in Eqn. A4.2 is met when:

ln qi = I��i�− ln Zi ⇔

q��i� = 1
Zi

exp�I��i��
A4.5

If this analytic form were tractable (e.g. through the use
of conjugate priors), it could be used directly. See Beal
and Ghahramani (2003) for an excellent treatment of
conjugate-exponential models. However, we will assume
a Gaussian fixed-form for the variational density to pro-
vide a generic scheme that can be applied to a wide range
of models.

The Laplace approximation

Under the Laplace approximation, the variational density
assumes a Gaussian form qi = N�
i��i� with variational
parameters 
i and �i, corresponding to the conditional
mode and covariance of the i-th set of parameters. The
advantage of this is that the conditional covariance can be
evaluated very simply. Under the Laplace assumption:

F = L�
�+ 1
2

∑
i

�U i + ln ��i�+pi ln 2�e�

I��i� = L��i�
\i�+ 1
2

∑
j �=i

U j A4.6

Ui = tr��iL�i�i �

pi = dim��i� is the number of parameters in the i-th
set. The approximate conditional covariances obtain as
an analytic function of the modes by differentiating
Eqn. A4.6 and solving for zero:

F�i = 1
2

L�i�i + 1
2

�i−1 = 0 ⇒
�i = −L�
�−1

�i�i

A4.7

Note that this solution for the conditional covariances
does not depend on the mean-field approximation, but
only on the Laplace approximation. Substitution into
Eqn. A4.6 means Ui = pi and:

F = L�
�+∑
i

1
2

�ln ��i�+pi ln 2�� A4.8

The only remaining quantities required are the varia-
tional modes which, from Eqn. A4.5 maximize I��i�. The
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leads to the following compact variational scheme, under
the Laplace approximation:

until convergence

for all i


i = max
�i

I��i�

�i = −L�
�−1
�i�i

end

end A4.9

The variational modes

The modes can be found using a gradient ascent based
on:


̇i = �I�
i�

��i
= I�
i��i A4.10

It may seem odd to formulate an ascent in terms of the
motion of the mode in time. However, this is useful when
generalizing to dynamic models (see below). The updates
for the mode obtain by integrating Eqn. A4.10 to give:


i = �exp�tJ�− I�J−1
̇i

J = �
̇i

��i
= I�
i��i�i

A4.11

When t gets large, the matrix exponential disappears,
because the curvature is negative definite and we get a
conventional Gauss-Newton scheme:


i = −I�
i�−1
�i�i I�


i��i A4.12

Together with the expression for the conditional covari-
ance in Eqn. A4.7, this update furnishes a variational
scheme under the Laplace approximation:

until convergence

for all i

until convergence

I�
i��i
k
= L�
��i

k
+ 1

2

∑
j �=i

tr��jL�j�j�i
k
�

I�
i��i
k�i

l
= L�
��i

k�i
l
+ 1

2

∑
j �=i

tr��jL�j�j�i
k�i

l
� A4.13


i = −I�
i�−1
�i�i I�


i��i

end

�i = −L�
�−1
�i�i

end

end

Note that this scheme rests on, and only on, the specifica-
tion of the energy function L��� implied by a generative
model.

Regularizing variational updates

In some instances deviations from the quadratic form
assumed for the variational energy I��i� under the
Laplace approximation can confound a simple Gauss-
Newton ascent. This can happen when the curvature of
the objective function is badly behaved (e.g. when the
objective function becomes convex, the curvatures can
become positive and the ascent turns into a descent). In
these situations, some form of regularization is required
to ensure a robust ascent. This can be implemented by
augmenting Eqn. A4.10 with a decay term:


̇i = I�
i��i −�
i A4.14

This effectively pulls the search back towards the expan-
sion point provided by the previous iteration and
enforces a local exploration. Integration to the fixed
point gives a classical Levenburg-Marquardt scheme (cf.
Eqn. A4.11):


i = −J−1
̇i

= ��I − I�
i��i�i �−1I�
i��i A4.15

J = I�
i��i�i −�I

where � is the Levenburg-Marquardt regularization.
However, the dynamic formulation affords a sim-
pler alternative, namely temporal regularization. Here,
instead of constraining the search with a decay term, one
can abbreviate it by terminating the ascent after some
suitable period t = �; from Eqn. A4.11:


i = �exp��J �− I �J−1
̇i

= �exp��I�
i��i�i �− I�I�
i�−1
�i�i I�


i��i A4.16

J = I�
i��i�i

This has the advantage of using the local gradients and
curvatures while precluding large excursions from the
expansion point. In our implementations � = 1/� is based
on the 2-norm of the curvature � for both regularization
schemes. The 2-norm is the largest singular value and,
in the present context, represents an upper bound on
rate of convergence of the ascent (cf. a Lyapunov expo-
nent).1 Terminating the ascent prematurely is reminiscent

1 Note that the largest singular value is the largest negative
eigenvalue of the curvature and represents the largest rate of
change of the gradient locally.
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Levenburg-Marquardt

Temporal

Gauss-Newton
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FIGURE A4.1 Examples of Levenburg-Marquardt and tempo-
ral regularization. The left panel shows an image of the landscape
defined by the objective function F��1� �2� of two parameters (upper
panel). This landscape was chosen because it is difficult for conven-
tional schemes exhibiting curvilinear valleys and convex regions.
The right panel shows the ascent trajectories, over 256 iterations
(starting at 8, −10), superimposed on a contour plot of the landscape.
In these examples, the regularization parameter was the 2-norm of
the curvature evaluated at each update. Note how the ascent goes off
in the wrong direction with no regularization (Gauss-Newton). The
regularization adopted by Levenburg-Marquardt makes its progress
slow, in relation to the temporal regularization, so that it fails to
attain the maximum after 256 iterations.

of ‘early stopping’ in the training of neural networks
in which the number of weights far exceeds the sample
size (e.g. Nelson and Illingworth, 1991). It is interesting
to note that ‘early stopping’ is closely related to ridge
regression, which is another perspective on Levenburg-
Marquardt regularization.

A comparative example using Levenburg-Marquardt
and temporal regularization is provided in Figure A4.1
and suggests temporal regularization is better, in this
example. Either approach can be implemented in the VB
scheme by simply regularizing the Gauss-Newton update
if the variational energy I��i� fails to increase after each
iteration. We prefer temporal regularization because it is
based on a simpler heuristic and, more importantly, is
straightforward to implement in dynamic schemes using
high-order temporal derivatives.

A note on dynamic models

The second reason we have formulated the ascent as a
time-dependent process is that it can be used to invert
dynamic models. In this instance, the integration time in
Eqn. A4.16 is determined by the interval between obser-
vations. This is the approach taken in our variational
treatment of dynamic systems, namely, dynamic expecta-
tion maximization or DEM (introduced briefly in Friston
et al., 2005 and implemented in spm DEM.m). DEM pro-

duces conditional densities that are a continuous func-
tion of time and avoids many of the limitations of dis-
crete schemes based on incremental Bayes (e.g. extended
Kalman filtering). In dynamic models the energy is a
function of the parameters and their high-order motion,
i.e. I��i� → I��i� �̇i� � � � � t�. This entails the extension of
the variational density to cover this motion, using gen-
eralized coordinates q��i� → q��i� �̇i� � � � � t�. Dynamic
schemes are important for the identification of stochastic
dynamic casual models. However, the applications con-
sidered in this book are restricted to deterministic sys-
tems, without random fluctuations in the hidden states,
and so we will focus on static models.

Having established the operational equations for VB
under the Laplace approximation, we now look at their
application to some specific models.

VARIATIONAL BAYES FOR
NON-LINEAR MODELS

Consider the non-linear generative model with addi-
tive error y = G���+�. Gaussian assumptions about the
errors or innovations p��� = N�0������ furnish a likeli-
hood p�y����� = N�G���������. In this example, we can
consider the parameters as falling into two sets � = �����
such that q��� = q���q���, where q��� = N�
����� and
q��� = N�
�����. We will also assume Gaussian priors
p��� = N������−1� and p��� = N������−1�. We will refer
to the two sets as the parameters and hyperparameters.
These likelihood and priors define the energy L��� =
ln p�y����� + ln p��� + ln p���. Note that Gaussian priors
are not too restrictive because both G��� and ���� are
non-linear functions that can embody a probability inte-
gral transform (i.e. can implement a re-parameterization
in terms of non-Gaussian priors).

Given n samples, p parameters and h hyperparameters:

L��� =

− 1
2

�T �−1�+ 1
2

ln
∣∣�−1

∣∣− n

2
ln 2�

− 1
2

��T ���� + 1
2

ln
∣∣��

∣∣− p

2
ln 2�

− 1
2

��T ���� + 1
2

ln
∣∣��

∣∣− h

2
ln 2�

� = G�
��−y

�� = 
� −��

�� = 
� −��

A4.17
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and

L� = −GT
� �−1�−����

L�� = −GT
� �−1G� −��

L�i = −1
2

tr�Pi���T −���−��
i•�

�

L��ij = −1
2

tr�Pij���T −���− 1
2

tr�Pi�Pj��−��
ij A4.18

Pi = ��−1

��i

Pij = �2�−1

��i��j

Note that we have ignored second-order terms that
depend on G��, under the assumption that the generative
model is only weakly non-linear. The requisite gradients
and curvatures are:

I����k = L���
���k + 1
2

tr���Ak�

I�����kl = L���
����kl +
1
2

tr���Bkl�

Ak
ij = −GT

�•kPij�

Bkl
ij = −GT

�•kPijG�•l

I����i = L�
�����i +
1
2

tr���Ci�

I�����ij = L�
������ij +
1
2

tr���Dij�

Ci = −GT
� PiG�

Dij = −GT
� PijG�

A4.19

where G�•k denotes the k-th column of G�. These enter the
VB scheme in Eqn. A4.13, giving the two-step scheme:

until convergence

until convergence

��−1 = GT
� �−1G� +��

L�
�� = −GT
� �−1�−����

I�
��k = L�
��k
+ 1

2
tr���Ak�

I�
���kl = −��−1

kl + 1
2

tr���Bkl�


� = −I�
�−1
�� I�
��

end

until convergence

��−1

ij = 1
2

tr�Pij���T −��+Pi�Pj��+��
ij

I�
��i = −1
2

tr�Pi���T −�+G��
�GT

� ��−��
i•�

�

I�
���ij = −��−1

ij − 1
2

tr���GT
� PijG��


� = −I�
�−1
�� I�
��

end

end A4.20

The negative free energy for these models is:

F = −1
2

�T �−1�+ 1
2

ln
∣∣�−1

∣∣− n

2
ln 2�

− 1
2

��T ���� + 1
2

ln
∣∣��

∣∣+ 1
2

ln
∣∣��

∣∣ A4.21

− 1
2

��T ���� + 1
2

ln
∣∣��

∣∣+ 1
2

ln
∣∣��

∣∣
In principle, these equations cover a large range of

models and will work provided the true posterior is uni-
modal (and roughly Gaussian). The latter requirement
can usually be met by a suitable transformation of param-
eters. In the next section, we consider a further simplifi-
cation of our assumptions about the variational density
and how this leads to expectation maximization.

EXPECTATION MAXIMIZATION FOR
NON-LINEAR MODELS

There is a key distinction between � and � in the genera-
tive model above: the parameters � are hyperparameters
in the sense, like the variational parameters, they param-
eterize a density. In many instances, their conditional
density per se is uninteresting. In variational expectation
maximization, we ignore uncertainty about the hyperpa-
rameters and assume q��� is a point mass (i.e. �� = 0). In
this case, the free energy is effectively conditioned on �
and reduces to:

F� = ln p�y���−D�q�����p���y����

=

− 1
2

�T �−1�+ 1
2

ln
∣∣�−1

∣∣− n

2
ln 2�

− 1
2

��T ���� + 1
2

ln
∣∣��

∣∣+ 1
2

ln
∣∣��

∣∣

A4.22

Here, F� ≤ ln p�y��� becomes a lower bound on the log
likelihood of the hyperparameters. This means the varia-
tional step updating the hyperparameters maximizes the
likelihood of the hyperparameters ln p�y��� and becomes
an M-step. In this context, Eqn. A4.20 simplifies because
we can ignore the terms that involve �� and �� to give:

until convergence

until convergence: E-step

��−1 = GT
� �−1G� +��


� = −��−1
�GT

� �−1�+�����

end
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until convergence: M-step

I�
��i = −1
2

tr�Pi���T −�+G��
�GT

� ��

I�
���ij = −1
2

tr�Pij���T −�+G��
�GT

� �+Pi�Pj��


� = −I�
�−1
�� I�
��

end

end A4.23

Expectation maximization is an iterative parameter re-
estimation procedure devised to estimate the parameters
and hyperparameters of a model. It was introduced as
an iterative method to obtain maximum likelihood esti-
mators with incomplete data (Hartley, 1958) and was
generalized by Dempster et al. (1977) (see Appendix 3
for more details). Strictly speaking, EM refers to schemes
in which the conditional density of the E-step is known
exactly, obviating the need for fixed-form assumptions.
This is why we used the term variational EM above.

In terms of the VB scheme, the M-step for 
� = max I���
is unchanged because I��� does not depend on ��. The
remaining variational steps (i.e. E-steps) are simplified
because one does not have to average over the condi-
tional density q���. This ensuing scheme is that described
in Friston (2002) for non-linear system identification (see
Chapter 34) and is implemented in spm_nlsi.m. Although
this scheme is applied to time-series, it actually treats
the underlying model as static, generating finite-length
data-sequences. This routine is used to identify haemo-
dynamic models in terms of biophysical parameters for
regional responses and dynamic causal models (DCMs)
of distributed responses in a variety of applications, e.g.
functional magnetic resonance imaging (fMRI) (Friston
et al., 2003 and Chapter 41), EEG (David et al., 2005 and
Chapter 42), MEG (Kiebel et al., 2006), and mean-field
models of neuronal activity (Harrison et al., 2005 and
Chapter 31).

A formal equivalence

A key point here is that VB and EM are exactly the same
when Pij = 0. In this instance the matrices A, B and D
in Eqn. A4.19 disappear. This means the VB-step for the
parameters does not depend on �� and becomes for-
mally identical to the E-step. Because the VB-step for the
hyperparameters is already the same as the M-step (apart
from the loss of hyperpriors) the two schemes converge.
One can ensure Pij = 0 by adopting a hyperparameter-
ization, which renders the precision linear in the hyperpa-
rameters, e.g. a linear mixture of precision components Qi

(see below). This resulting variational scheme is used by

the SPM5 version of spm_nlsi.m for non-linear system
identification.

Hyperparameterizing precisions

One can ensure Pij = 0 by adopting a hyperparameteriza-
tion, where the precision is linear in the hyperparameters,
e.g. a linear mixture of precision components Qi. Con-
sider the more general parameterization of precisions:

�−1 =∑
i

f��i�Qi

Pi = f ′��i�Qi

Pij =
{

0 i �= j

f ′′��i�Qi i = j

A4.24

where f��i� is any analytic function. The simplest is
f��i� = �i ⇒ f ′ = 1 ⇒ f ′′ = 0. In this case VB and EM are
formally identical. However, this allows negative contri-
butions to the precisions, which can lead to improper
covariances. Using f��i� = exp��i� ⇒ f ′′ = f ′ = f pre-
cludes improper covariances. This hyperparameteriza-
tion effectively implements a log-normal hyperprior,
which imposes scale-invariant positivity constraints on
the precisions. This is formally related to the use of con-
jugate [gamma] priors for scale parameters like f��i� (cf.
Berger, 1985), when they are non-informative. Both imply
a flat prior on the log-precision, which means its deriva-
tives with respect to ln f��i� = �i vanish (because it has
no maximum). In short, one can either place a gamma
prior on f��i� or a normal prior on ln f��i� = �i. These
hyperpriors are the same when uninformative.

However, there are many models where it is neces-
sary to hyperparameterize in terms of linear mixtures of
covariance components:

� =∑
i

f��i�Qi

Pi = −f ′��i��
−1Qi�

−1

Pij =
{

2Pi�Pj i �= j

2Pi�Pi + f ′′��i�

f ′��i�
Pi i = j

A4.25

This is necessary when hierarchical generative mod-
els induce multiple covariance components. These are
important models because they are central to empirical
Bayes (see Chapter 22). See Harville (1977) for comments
on the usefulness of making the covariances linear in the
hyperparameters, i.e. f��i� = �i ⇒ f ′ = 1 ⇒ f ′′ = 0.

An important difference between these two hyperpa-
rameterizations is that the linear mixture of precisions
is conditionally convex (Mackay and Takeuchi, 1996),
whereas the mixture of covariances is not. This means
there may be multiple optima for the latter. See Mackay
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and Takeuchi (1996) for further covariance hyperparam-
eterizations and an analysis of their convexity. Interested
readers may find the material in Leonard and Hsu (1992)
useful further reading.

The second key point that follows from the variational
treatment is that one can adjust the EM free energy to
approximate the log-evidence, as described next.

Accounting for uncertainty about the
hyperparameters

The EM free energy in Eqn. A4.22 discounts uncertainty
about the hyperparameters because it is conditioned
upon them. This is a well-recognized problem, sometimes
referred to as the overconfidence problem, for which a
number of approximate solutions have been suggested
(e.g. Kass and Steffey, 1989). Here, we describe a solution
that appeals to the variational framework within which
EM can be treated.

If we treat EM as an approximate variational scheme,
we can adjust the EM free energy to give the variational
free energy required for model comparison and averag-
ing. By comparing Eqn. A4.21 and Eqn. A4.22, we can
express the variational free energy in terms of F� and an
extra term from Eqn. A4.18:

F = F� + 1
2

ln ����
��

ij = −L�
�−1
��

A4.26

Intuitively, the extra term encodes the conditional infor-
mation (i.e. entropy) about the model‘s covariance com-
ponents. The log-evidence will only increase if an extra
component adds information. Adding redundant compo-
nents will have no effect on F . This term can be regarded
as additional Occam factor (Mackay and Takeuchi,
1996). Adjusting the EM free energy to approximate the
log-evidence is important because of the well-know con-
nections between EM for linear models and restricted
maximum likelihood. This connection suggests that the
ReML objective function could also be used to evaluate
the log-evidence and therefore be used for model selec-
tion. We now consider ReML as a special case of EM.

RESTRICTED MAXIMUM LIKELIHOOD
FOR LINEAR MODELS

In the case of general linear models G��� = G� with addi-
tive Gaussian noise and no priors on the parameters (i.e.
�� = 0) the free energy reduces to:

F� = ln p�y���−D�q�����p���y����

= −1
2

�T �−1�+ 1
2

ln
∣∣�−1

∣∣− n

2
ln 2� + 1

2
ln
∣∣��

∣∣ A4.27

Critically, the dependence on q��� can be eliminated using
the closed form solutions for the conditional moments:


� = ��GT �−1y

�� = �GT �−1G�−1

to eliminate the divergence term and give:

F� = ln p�y���

= −1
2

tr��−1RyyT RT �+ 1
2

ln
∣∣�−1

∣∣− n

2
ln 2�

− 1
2

ln
∣∣GT �−1G

∣∣
� = Ry

R = I −G�GT �−1G�−1GT �−1

A4.28

This free energy is also known as the ReML objective
function (Harville, 1977). ReML or restricted maximum
likelihood was introduced by Patterson and Thompson,
in 1971, as a technique for estimating variance compo-
nents, which accounts for the loss in degrees of freedom
that result from estimating fixed effects (Harville, 1977).
The elimination makes the free energy a simple function
of the hyperparameters and, effectively, the EM scheme
reduces to a single M-step or ReML-step:

until convergence: ReML-step

L�
��i = −1
2

tr�PiR�yyT −��RT �

〈
L�
���ij

〉= −1
2

tr�PiR�PjR��


� = −�L�
����−1 L�
��

A4.29

end

Notice that the energy has replaced the variational energy
because they are the same: from Eqn. A4.6 I��� = L���.
This is a result of eliminating q��� from the variational
density. Furthermore, the curvature has been replaced
by its expectation to render the Gauss-Newton descent a
Fisher-Scoring scheme using:

〈
RyyT RT

〉= R�RT = R� A4.30

To approximate the log-evidence, we can adjust the
ReML free energy after convergence as with the EM free
energy:

F = F� + 1
2

ln ����
��

ij = −�L�
����−1
A4.31
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614 A4. VARIATIONAL BAYES UNDER THE LAPLACE APPROXIMATION

The conditional covariance of the hyperparameters uses
the same curvature as the ascent in Eqn. A4.29. Being
able to compute the log-evidence from ReML is useful
because ReML is used widely in an important class of
models, namely hierarchical models reviewed next.

RESTRICTED MAXIMUM LIKELIHOOD
FOR HIERARCHICAL LINEAR MODELS

Parametric empirical Bayes

The application of ReML to the linear models of the pre-
vious section did not accommodate priors on the param-
eters. However, one can absorb these priors into the error
covariance components using a hierarchical formulation.
This enables the use of ReML to identify models with
full or empirical priors. Hierarchical linear models (see
Chapters 11 and 22) are equivalent to parametric empir-
ical Bayes models (Efron and Morris, 1973) in which
empirical priors emerge from conditional independence
of the errors ��i� ∼ N�0���i��:

y�1� =
��1� = G�1���2� +��1�

��2� = G�2���3� +��2�

���

��n� = ��n�

≡

y�1� = ��1�

+G�1���2�

+G�1�G�2���3�

���

+G�1� · · ·G�n−1���n�

A4.32

In hierarchical models, the random terms model uncer-
tainty about the parameters at each level and �����i� are
treated as prior covariance constraints on ��i�. Hierarchi-
cal models of this sort are very common and underlie
all classical mixed effects analyses of variance.2 ReML
identification of simple two-level models like:

y�1� = G�1���2� +��1�

��2� = ��2�
A4.33

is a useful way to impose shrinkage priors on the param-
eters and covers early approaches (e.g. Stein shrinkage
estimators) to recent developments, such as relevance
vector machines (e.g. Tipping, 2001). Relevance vector
machines represent a Bayesian treatment of support vec-
tor machines, in which the second-level covariance �����2�

2 For an introduction to EM algorithms in generalized linear
models see Fahrmeir and Tutz (1994). This text provides an
exposition of EM and PEB in linear models, usefully relating
EM to classical methods (e.g. ReML p. 225).

has a component for each parameter. Most of the ReML
estimates of these components shrink to zero. This means
the columns of G�1� whose parameters have zero mean
and variance can be eliminated, providing a new model
with sparse support.

Estimating these models through their covariances ��i�

with ReML corresponds to empirical Bayes. This esti-
mation can proceed in one of two ways: first, we can
augment the model and treat the random terms as param-
eters to give:

y = J� +�

y =

⎡
⎢⎢⎢⎣

y�1�

0
���
0

⎤
⎥⎥⎥⎦ J =

⎡
⎢⎢⎢⎣

K�2� · · · K�n�

−I
� � �

−I

⎤
⎥⎥⎥⎦� =

⎡
⎢⎢⎢⎣

��1�

��2�

���
��n�

⎤
⎥⎥⎥⎦� =

⎡
⎢⎣

��2�

���
��n�

⎤
⎥⎦

K�i� =
i∏

j=1

G�j−1�

� =
⎡
⎢⎣

��1�

� � �

��n�

⎤
⎥⎦

A4.34

with G�0� = I . This reformulation is a non-hierarchical
model with no explicit priors on the parameters. How-
ever, the ReML estimates of �����i� are still the empirical
prior covariances of the parameters ��i� at each level. If
��i� is known a priori, it simply enters the scheme as a
known covariance component. This corresponds to a full
Bayesian analysis with known or full priors for the level
in question.

spm_peb.m uses this reformulation and Eqn. A4.29 for
estimation. The conditional expectations of the parame-
ters are recovered by recursive substitution of the con-
ditional expectations of the errors into Eqn. A4.33 (cf.
Friston, 2002). spm_peb.m uses a computationally effi-
cient substitution:

1
2

tr�PiR�yyT −��RT � = 1
2

yT RT PiRy− 1
2

tr�PiR�RT � A4.35

to avoid computing the potentially large matrix yyT . We
have used this scheme extensively in the construction of
posterior probability maps or PPMs (Friston and Penny,
2003 and Chapter 23) and mixed-effect analysis of multi-
subject studies in neuroimaging (Friston et al., 2005). Both
these examples rest on hierarchical models, using hierar-
chical structure over voxels and subjects respectively.

Classical covariance component estimation

An equivalent identification of hierarchical models rests
on an alternative and simpler reformulation of Eqn. A4.30
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in which all the hierarchically induced covariance
components K�i�T ��i�K�i�T are treated as components of a
compound error:

y = �

y = y�1� A4.36

� =
n∑

i=1

K�i���i�

� =
n∑

i=1

K�i�T ��i�K�i�T

The ensuing ReML estimates of �����i� can be used to
compute the conditional density of the parameters in the
usual way. For example, the conditional expectation and
covariance of the i-th level parameters ��i� are:


��i� = ���i�K�i�T �̃−1y

���i� = �K�i�T �̃−1K�i� +��i�−1
�−1

�̃ =∑
j �=i

K�j�T ��j�K�j�T

A4.37

where �̃ represents the ReML estimate of error covari-
ance, excluding the component of interest. This compo-
nent ��i� = �����i� is treated as an empirical prior on ��i�.
spm_reml.m uses Eqn. A4.29 to estimate the requisite
hyperparameters. Critically, it takes as an argument the
matrix yyT . This may seem computationally inefficient.
However, there is a special but very common case where
dealing with yyT is more appropriate than dealing with y
(cf. the implementation using Eqn. A4.35 in spm_peb.m).

This is when there are r multiple observations that can
be arranged as a matrix Y = �y1� � � � � yr �. If these obser-
vations are independent, then we can express the covari-
ance components of the vectorized response in terms of
Kronecker tensor products:

y = vec�Y� = �

� =
n∑

i=1

I ⊗K�i���i� A4.38

cov���i�� = I ⊗��i�

This leads to a computationally efficient scheme
employed by spm_reml.m, which uses the compact
forms:3

3 Note that we have retained the residual forming matrix R,
despite the fact that there are no parameters. This is because, in
practice, one usually models confounds as fixed effects at the
first level. The residual forming matrix projects the data onto
the null space of these confounds.

L�
��i = −1
2

tr��I ⊗PiR��yyT − I ⊗���I ⊗RT ��

= − r

2
tr�PiR�

1
r

YY T −��RT �

〈
L�
���ij

〉= −1
2

tr�I ⊗PiR�PjR��

= − r

2
tr�PiR�PjR��

A4.39

Critically, the update scheme is a function of the sam-
ple covariance of the data 1

r
YY T and can be regarded as

a covariance component estimation scheme. This can be
useful in two situations: first, if the augmented form in
Eqn. A4.33 produces prohibitively long vectors. This can
happen when the number of parameters is much greater
than the number of responses. This is a common situa-
tion in underdetermined problems. An important exam-
ple is source reconstruction in electroencephalography,
where the number of sources is much greater than the
number of measurement channels (see Chapters 29 and
30 and Phillips et al., 2005 for an application that uses
spm_reml.m in this context). In these cases one can form
conditional estimates of the parameters using the matrix
inversion lemma and again avoid inverting large �p×p�
matrices:


��i� = ��i�K�i�T �̃−1Y

���i� = ��i� −��i�K�i�T �̃−1K�i���i�

�̃ =
n∑

i=1

K�i�T ��i�K�i�T

A4.40

The second situation is where there are a large number
of realizations. In these cases, it is much easier to handle
the second-order matrices of the data YY T than the data Y
itself. An important application here is the estimation of
non-sphericity over voxels in the analysis of fMRI time-
series (see Chapter 22 and Friston et al., 2002 for this
use of spm_reml.m). Here, there are many more voxels
than scans and it would not be possible to vectorize the
data. However, it is easy to collect the sample covariance
over voxels and partition it into non-spherical covariance
components using ReML.

In the case of sequential correlations among the errors
cov���i�� = V ⊗��i�, one simply replaces YY T with YV−1Y T .
Heuristically, this corresponds to sequentially whiten-
ing the observations before computing their second-order
statistics. We have used this device in the Bayesian inver-
sion of models of evoked and induced responses in
EEG/MEG (Chapter 30 and Friston et al., 2006).

In summary, hierarchical models can be identified
through ReML estimates of covariance components. If the
response vector is relatively small, it is generally more
expedient to reduce the hierarchical form by augmenta-
tion, as in Eqn. A4.34, and use Eqn. A4.35 to compute the
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gradients. When the augmented form becomes too large,
because there are too many parameters, reformulation
in terms of covariance components is computationally
more efficient because the gradients can be computed
from the sample covariance of the data. The latter formu-
lation is also useful when there are multiple realizations
of the data because the sample covariance, over realiza-
tions, does not change in size. This leads to very fast
Bayesian inversion. Both approaches rest on estimating
covariance components that are induced by the observa-
tion hierarchy. This enforces a hyperparameterization of
the covariances, as opposed to precisions.

MODEL SELECTION WITH REML

We conclude with a brief demonstration of model selec-
tion using ReML and its adjusted free energy. In these
examples we use the covariance component formulation
(spm_reml.m), noting exactly the same results would be
obtained with augmentation (spm_peb.m). We use a sim-
ple hierarchical two-level linear model, implementing
shrinkage priors, because this sort of model is common
in neuroimaging data analysis and represents the sim-
plest form of empirical Bayes. The model is described in
Figure A4.2.

8642
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FIGURE A4.2 A hierarchical linear model. (a) The form of the
model with two levels. The first level has a single error covari-
ance component, while the second has two. The second level places
constraints on the parameters of the first, through the second-level
covariance components. Conditional estimation of the hyperparam-
eters, controlling these components, corresponds to an empirical
estimate of their prior covariance (i.e. empirical Bayes). Because
there is no second-level design matrix the priors shrink the condi-
tional estimates towards zero. These are known as shrinkage priors.
(b) The design matrix and covariance components used to generate
128 realizations of the response variable y, using hyperparameters
of one for all components. The design matrix comprised random
Gaussian variables.
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FIGURE A4.3 Model selection in terms of parameters using
ReML. The data generated by the eight-parameter model in
Figure A4.2 were analysed with ReML using a series of models
with an increasing number of parameters. These models were based
on the first p columns of the design matrix above. The profile of
free energy clearly favours the model with eight parameters, corre-
sponding to the design matrix (dotted line in upper panel) used to
generate the data.

The free energy can, of course, be used for model selec-
tion when models differ in the number and deployment
of parameters. This is because both F and F� are functions
of the number of parameters and their conditional uncer-
tainty. This can be shown by evaluating the free energy
as a function of the number of model parameters, for the
same data. The results of this sort of evaluation are seen
in Figure A4.3 and demonstrate that model selection cor-
rectly identifies a model with eight parameters. This was
the model used to generate the data (Figure A4.2).

The critical issue is whether model selection works
when the models differ in their hyperparameterization.
To illustrate this, we analysed the same data, pro-
duced by two covariance components at the second
level, with models that comprised an increasing num-
ber of second-level covariance components (Figure A4.4).
These components can be regarded as specifying the
form of empirical priors over solution space (e.g. spa-
tial constraints in a source reconstruction problem). The
results of these simulations show that the adjusted free
energy F correctly identified the model with two com-
ponents. Conversely, the unadjusted free energy F� rose
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FIGURE A4.4 Covariance components used to analyse the
data generated by the model in Figure A4.2. The covariance com-
ponents are shown at the second level (upper panels) and after pro-
jection onto response space (lower panels) with the eight-parameter
model. Introducing more covariance components creates a series
model with an increasing number of hyperparameters, which we
examined using model selection in Figure A4.5. These covariance
components were leading diagonal matrices, whose elements com-
prised a mean-adjusted discrete cosine set.

progressively as the number of components and accuracy
increased (Figure A4.5).

The lower panel in Figure A4.5 shows the hyperpa-
rameter estimates for two models. With the correctly
selected model, the true values fall within the 90 per cent
confidence interval. However, when the model is over-
parameterized, with eight second-level components, this
is not the case. Although the general profile of hyperpa-
rameters has been captured, this suboptimum model has
clearly overestimated some hyperparameters and under-
estimated others.

Conclusion

We have seen that restricted maximum likelihood is a
special case of expectation maximization and that expec-
tation maximization is a special case of variational Bayes.
In fact, nearly every routine used in neuroimaging anal-
ysis is a special case of variational Bayes, from ordinary
least squares estimation to dynamic causal modelling.
We have focused on adjusting the objective functions

1 2 3 4 5 6 7 8

–690

–685

–680

–675

–670

–665

–660

–690

–685

–680

–675

–670

–665

–660

1 2 3 4 5 6 7 8

F 
θ

Number of 2nd-level
hyperparameters or components

Hyperparameter estimates

i
Q 

(2)

(a)

(b)

F

UnadjustedAdjusted

1
λ(1) ,...,

1
λ(1)

1
λ(2)

8
λ(2)

1
λ(2)

2
λ(2)

FIGURE A4.5 Model selection in terms of hyperparameters
using ReML. (a) The free energy was computed using the data
generated by the model in Figure A4.2 and a series of models
with an increasing number of hyperparameters. The ensuing free
energy profiles (adjusted – left; unadjusted – right) are shown as
a function of the number of second-level covariance components
used (from Figure A4.4). The adjusted profile clearly identified the
correct model with two second-level components. (b) Conditional
estimates (white) and true (black) hyperparameter values with 90
per cent confidence intervals for the correct (3-component, left) and
redundant (9-component, right) models.

used by EM and ReML to approximate the variational
free energy under the Laplace approximation. This free
energy is a lower bound approximation (exact for linear
models) to the log-evidence, which plays a central role
in model selection and averaging. This means one can
use computationally efficient schemes like ReML for both
model selection and Bayesian inversion.
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5

Kalman filtering
K. Friston and W. Penny

INTRODUCTION

Bayesian inversion of state-space models is related
to Bayesian belief update procedures (i.e. recursive
Bayesian filters). The conventional approach to online
Bayesian tracking of states in non-linear or non-Gaussian
systems employs extended Kalman filtering or sequen-
tial Monte Carlo methods, such as particle filtering.
These implementations of Bayesian filters approximate
the conditional densities of hidden states in a recursive
and computationally expedient fashion, assuming that
the parameters and hyperparameters of the system are
known. We start with systems (dynamic models) that are
formulated in continuous time:

y = g�x�+z

ẋ = f�x�v� A5.1

where the innovations z�t� and causes v�t� are treated as
random fluctuations. As we will see below this is con-
verted into a state-space model in discrete time before
application of the filter. Kalman filters proceed recur-
sively in two steps: prediction and update. The predic-
tion uses the Chapman-Kolmogorov equation to compute
the density of the hidden states x�t� conditioned on the
response up to, but not including, the current observation
y→t−1:

p�xt�y→t−1� =
∫

p�xt�xt−1�p�xt−1�y→t−1�dxt−1 A5.2

This conditional density is then treated as a prior for the
next observation and Bayes’ rule is used to compute the
conditional density of the states, conditioned upon all
observations y→t. This gives the Bayesian update:

q�xt� = p�xt�y→t� ∝ p�yt�xt�p�xt�y→t−1� A5.3

Critically, the conditional density covers only the hid-
den states. This is important because it precludes infer-
ence on causes and the ability to de-convolve inputs from
outputs. This is a key limitation of Bayesian filtering.
However, Kalman filtering provides the optimal solution
when the assumptions of the underlying model hold and
one is not interested in causes or inputs. We now consider
in more detail the operation equations for the extended
Kalman filter. The extended Kalman filter is a generaliza-
tion of the Kalman filter, in which the linear operators of
the state equations are replaced by the partial derivatives
of f�x�v� with respect to the states.

THE EXTENDED KALMAN FILTER

This section provides a pseudo-code specification of the
extended Kalman filter based on van der Merwe et al.
(2000). To clarify the notation, we will use fx = �f/�x.
Eqn. A5.1 can be re-written, using local linearization, as
a discrete-time state-space model. This is the formulation
treated in Bayesian filtering procedures:

yt = gxxt +zt

xt = fxxt−1 +wt−1

gx = g�xt�x

fx = exp�f�xt�x�

zt = z�t�

wt−1 =
∫

exp�fx��fvv�t −��d� A5.4

For simplicity, we assume �t = 1. The key thing to note
here is that process noise wt−1 is simply a convolution of
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the causes v�t�. This is relevant for Kalman filtering and
related non-linear Bayesian tracking schemes that assume
wt−1 is a well-behaved noise sequence. The covariance of
process noise is:

〈
wtw

T
t

〉= ∫
exp�fx��� exp�fx��T d�

≈ � A5.5

= fvRfT
v

where R is the covariance of v�t�. We have assumed
v�t� has no temporal correlations and that the Lyapunov
exponents of fx are large relative to the time-step. The
prediction and update steps are:

for all t

Prediction step

xt = fxxt−1

	x
t = �+ fx	

x
t−1fT

x

Update or correction step

K = 	x
t gT

x �	+gx	
x
t gT

x �−1

xt ← xt +K�y −g�xt��

	x
t ← �I −Kgx�	

x
t

end A5.6

Where 	 is the covariance of observation noise. The
Kalman gain matrix K is used to update the prediction
of future states and their conditional covariance, given
each new observation. We actually use xt = xt−1 + �fx − I�
f−1

x f�xt−1�. This is a slightly more sophisticated update
that uses the current state as the expansion point for the
local linearization. As mentioned in Chapter 37, Kalman
filtering is also known as variable parameter regression,
when the hidden state plays the role of a parameter (see
Büchel and Friston, 1998).
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A P P E N D I X

6

Random field theory
K. Worsley and K. Friston

INTRODUCTION

This appendix details the technical background behind
topological inference using random field theory. We treat
the general case of several statistical parametric maps
(SPMs) in terms of conjunctions. A conjunction is defined
here as the occurrence of the same event at the same
location in n independent SPMs. The standard results for
a single SPM are the special case of n = 1. The SPMs or
images are treated, under the null hypothesis, as smooth
isotropic 3D random fields of test statistics, and the event
occurs when the image exceeds a fixed high threshold.
We give a simple approximation to the probability of a
conjunction occurring anywhere in a fixed region, so that
we can test for a local increase in the images at the same
unknown location in all images; this can be regarded as
a generalization of the split-t test. This is the corollary to
a more general result on the expected intrinsic volumes
(i.e. Minkowski functionals) of the set of points where a
conjunction occurs.

THEORY

Let Xi�t� be the value of image i at location t, and let x be
a fixed threshold. The set of points where a conjunction
occurs is:

C = �t ∈ S � Xi�t� > x� A6.1

for 1 ≤ i ≤ n. We are interested in the probability that C
is not empty P�C �= Ø�, i.e. the probability that all images
exceed the threshold at some point inside the volume
S, or that the maximum of min Xi�t� exceeds x. If the

images are independent stationary random fields, then
the expected Lebesgue measure or volume of C is:

��C�� = pn�S�
p = P�Xi�t� > x�

A6.2

Our main result is that Eqn. A6.2 holds if the Lebesgue
measures are replaced by a vector of intrinsic volumes
(i.e. Minkowski functionals), and p is replaced by a matrix
of Euler characteristic intensity functions for the random
field. This gives Eqn. A6.2 as a special case, and other
interesting quantities, such as the expected surface area
of C, which comes from the D − 1 dimensional intrinsic
volume. But the component of most interest to us is the
zero-dimensional intrinsic volume, or Euler characteris-
tic (EC). For high thresholds, the expected EC of C is a
very accurate approximation to the probability we seek,
namely, that C is not empty (Adler, 2000).

INTEGRAL GEOMETRY

In this section, we state some results from integral geom-
etry and stereology that will be used to prove our main
result. Let �i�A� be the i-th intrinsic volume of a set
A ⊂ 	D, scaled so that it is invariant under embedding of
A into any higher dimensional Euclidean space, where:

�i�S� = 1
sD−i

∫
�A

detD−1−i�Q�dt

si = 2	i/2


�i/2�

A6.3

where si is the surface area of a unit sphere in 	i, detj�Q�
is the sum of the determinant of all j × j principal minors
of Q, which is the D−1×D−1 curvature matrix of �A, the

Statistical Parametric Mapping, by Karl Friston et al. Copyright 2007, Elsevier Ltd. All rights reserved.
ISBN–13: 978-0-12-372560-8 ISBN–10: 0-12-372560-7
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622 A6. RANDOM FIELD THEORY

boundary of A. Note that �0�A� is the EC by the Gauss-
Bonnet theorem, and �D−1�A� is half the surface area of
A. �D�A� = �A� is its volume or Lebesgue measure. For
example, the intrinsic volumes of a ball of radius r are:

�0�S� = 1 �1�S� = 4r �2�S� = 2	r2 �3�S� = �4/3�	r3

A6.4

Other examples are provided in Plate 62 (see colour plate
sections) for some common search volumes. We shall also
use the result that any functional ��A� that obeys the
additivity rule:

��A∪B� = ��A�+��B�−��A∩B� A6.5

is a linear combination of intrinsic volumes. Let A�B ⊂
	D, then the Kinematic Fundamental Formula of integral
geometry relates the integrated EC of the intersection of
A and B to their intrinsic volumes.

∫
�0�A∩B� = s2   sD

D∑
i=0

�i�A��D−i�B�

cD
i

cD
i = 
� 1

2 �
� D+1
2 �


� i+1
2 �
� D−i+1

2 �

A6.6

where the integral is over all rotations and translations
of A, keeping B fixed.

RANDOM FIELDS

If Xi�t� is an isotropic random field with excursion set
A = �t � X�t� ≥ x� then:

��0�A∩S�� =
D∑

i=0

�i�i�S� A6.7

for some constants �i. This follows from the fact that the
functional ��0�A∩S�� obeys the additivity rule Eqn. A6.5,
since �0 does, so it must be a linear combination of
the intrinsic volumes. The coefficients �i are called Euler
characteristic (EC) intensities in 	i, and can be evalu-
ated for a variety of random fields (Worsley, 1994; Cao
and Worsley, 1999; Adler, 2000; Worsley et al., 2004).
Figure A6.1 provides the expressions for some common
statistics used in SPMs. The EC intensity is a function of
the image roughness � defined here as cov��X/�t� = �I .

Eqn. A6.7 is fundamental to inference on SPMs because
the expected EC, �0 = ��0�A∩S�� is an accurate approx-
imation to the probability of getting an excursion set
by chance (i.e. the adjusted p-value). Its form helps
understand how this probability arises: the expected EC

FIGURE A6.1 Euler characteristic intensities for some com-
mon statistical fields. These are functions of the field’s roughness �.
When roughness is one, these are the Euler characteristic densities
referred to in previous chapters.

receives contributions, �i�i�S� from each dimension of
the search volume. Each contribution is the product of an
EC intensity and an intrinsic volume. If we were dealing
with statistically flat images with � = 1, these quantities
would correspond to EC densities and resolution ele-
ments (resel) counts respectively (see Chapter 19). The
EC density represents the expected EC per resel and the
resel count represents the resel number at each dimen-
sion. We will now generalize this for multiple images.

We can extend Eqn. A6.7 to higher intrinsic volumes
by the lemma in Worsley and Friston (2000):

��i�A∩S�� =
D∑

j=i

c
j
i�j−i�j�S� A6.8
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Theorem: Let Rk be the upper triangular matrix whose (i,j)
elements are �j−ikc

j
i if j ≥ i and 0 otherwise; i.e.

Rk =
⎡
⎢⎣

�0kc
1
1 · · · �0kc

D
1

���
� � �

���
0 · · · �0kc

D
D

⎤
⎥⎦ and ��S� =

⎡
⎢⎣

�0�S�
���

�D�S�

⎤
⎥⎦

where �ik is the EC intensity of Xk�t� in 	i then:

���C�� = ��0�    ��D�T =
(

n∏
i=1

Ri

)
��S� A6.9

Proof: the proof follows by induction on n. From
Eqn. A6.8, we see that it is clearly true for n = 1. Let Ak

be the excursion set for Xk�t� so that C = A1 ∩    An ∩S.
If the result is true for n = k then by first conditioning on
Ak+1 and replacing S by Ak+1 ∩S, we get:

���A1 ∩    Ak ∩ �Ak+1 ∩S��� =
(

k∏
i=1

Ri

)
���Ak+1 ∩S��

=
(

k∏
i=1

Ri

)
Rk+1��S� A6.10

by the result for n = 1. This completes the proof.
Comparing Eqn. A6.9 with Eqn. A6.2, we see that they

have the same form, where the volumes are replaced
by vectors of intrinsic volumes, and the probability is
replaced by the matrix of weighted EC intensities. The
last element �D = ��C�� is the same as the Lebesgue mea-
sure and the first element �0 is the expected EC of the set
of conjunctions. This is the approximation to the proba-
bility of a conjunction anywhere in S, for high thresholds
x, we require.

EXAMPLE

We shall apply the result in Eqn. A6.9 to some D = 3
dimensional functional magnetic resonance imaging
(fMRI) data. The purpose of the experiment was to deter-
mine those regions of the brain that were consistently
stimulated by all subjects, while viewing a pattern of
radially moving dots. To do this, subjects were presented
with a pattern of moving dots, followed by a pattern of
stationary dots, and this was repeated 10 times, during
which a total of 120 3D fMRI images were obtained at
the rate of one every 3.22 s. For each subject i and at
every point t ∈ 	3, a test statistic Xi�t� was calculated

Excursion sets for each image

Front

Back

Left
LGN

Right
LGN

Conjunction: intersection
of excursion sets

FIGURE A6.2 Conjunction of six SPM�t� from a visual task
(only one slice of the 3D data is shown). The excursion sets of each
are shown in white on a background of brain anatomy (top). The
set of conjunctions C is the intersection of these sets (bottom). The
visual cortex at the back of the brain appears in C, but the most
interesting feature is the appearance of the lateral geniculate nuclei
(LGN) (arrows).

for comparing the fMRI response between the moving
dots and the stationary dots. Under the null hypothe-
sis of no difference, Xi�t� was modelled as an isotropic
Gaussian random field with zero mean, unit variance
and roughness � = 4�68 cm−1. A threshold of x = 1�64,
corresponding to an uncorrected level 5 per cent test,
was chosen, and the excursion sets for each subject are
shown in Figure A6.2 together with their intersection,
which forms the set of conjunctions C. The search vol-
ume was the whole brain area that was scanned, which
was an approximate spherical region with a volume of
�S� = 1226 cm3. Finally, the approximate probability of a
conjunction, calculated from Eqn. A6.9, was 0.0126. We
can thus conclude, at the 1.26 per cent level, that con-
junctions have occurred in the visual cortex, and more
interesting, the lateral geniculate nuclei (see Figure A6.2).
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Action potentials, 352, 391, 393, 509
latency fluctuation, 435
neural mass models, 417

Affine transformation, 12, 50
inter-subject registration, 76, 77, 78
inverse, 52
left-/right-handed coodinate system, 54
rigid body transformations, 52, 53, 54
small deformation models, 67, 71

Age-related morphometric changes, 92
AIR, 59, 67
Akaike information criteria, 459, 460, 461, 578
Alpha rhythms, 431

blood-oxygenation-level-dependent (BOLD) signal
correlations, 410

neural mass models, 415, 416, 418
Alzheimer’s disease, 55, 98
AMOS, 514
AMPA (fast excitory) receptors/channels, 394, 399, 402, 403,

474, 528, 530
Anaerobic brain hypothesis, 340
Analysis of covariance, 5, 17

by group, 116
by subject, 115–116
one-way, 118
removal of movement-related artefacts, 58
voxel-wise model, 3

Analysis of variance, 3, 4, 108, 130, 166–177
between-subject, 166, 167–168
F -contrast, 167–168
F -tests, 166
mixed designs, 166
model evidence, 457
multiway, 173–175

partitioned errors, 174–175
non-sphericity, 169–170, 172, 175
notation, 167
one-way, 103–104, 107, 167–170
random effects analysis, 162
repeated measures (within-subject), 141–142, 166, 168–173,

176–177, 183

partitioned errors, 171, 172, 173
pooled errors, 171–173
Satterthwaite approximation, 143

two-way, 166, 170–173, 183
types, 166

Anatomical models, 4, 32, 33–34, 63
Bayesian inversion, 7
spatial normalization, 10, 12, 14, 63

Aphasia, 488
Associative plasticity, 475, 481
Attention, 215, 483, 508, 528

functional selectivity, 451
to visual motion, 298–299, 451, 485–486, 512, 514, 515, 516,

520, 537, 542, 556–559
dynamic causal model, 40–41, 461–463

Attentional gain, 432, 435
Auditory cortex, 345, 486, 553
Auditory stimulation, 20, 319, 326

oddball experiments, 487–488, 571–573
mismatch negativity, 391

Autoregressive models, 509
moving average, 253
multivariate see Multivariate autoregressive models

Autoregressive plus white noise model, 121, 123, 124,
185, 287

B-splines, 51
deformation models

basis functions, 71–72
segmentation, 88

event-related potential modelling, 328
Balloon model, 182, 339, 341, 342–343, 348, 442

blood-oxygenation-level-dependent (BOLD) response, 187
haemodynamic extension see Haemodynamic model
non-linear evoked responses, 341–343, 347
Volterra series expansion, 341, 342, 343, 348

Balloon-Windkessel model see Balloon mode
Baseline, 128
Basic models, 117–118
Basis functions

covariance component decomposition, 151
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Basis functions (Continued)
deformation models

radial, 71
small deformation approach, 67, 69, 70–72

functional magnetic resonance imaging, 175
linear time-series model, 120

highpass filtering, 184
positron emission tomography, 112
temporal see Temporal basis functions

Bayes factors, 457–458, 461, 462, 463, 464, 579
p-values comparison, 458

Bayes’ theorem, 64
Bayesian inference, 34–35, 148, 230, 275, 276–277, 300, 301,

445, 590
dynamic causal models, 544, 568–569
dynamic models inversion, 441
haemodynamic model, 445, 446–447
hierarchical models

linear, 280, 286
two-level, 149

model averaging, 460
model selection, 454
multivariate autoregressive models, 536
object perception, 479
posterior probabilities, 276, 295
posterior probability maps, 16, 34, 35, 300
priors, 295, 296
single-subject responses, 290
spatially regularized general linear model, 317
spatio-temporal model for electro-encephalography, 328

Bayesian information criteria, 459, 461, 578
Bayesian model averaging, 154, 325, 460, 465
Bayesian model comparisons, 456
Bayesian model selection, 456
Bayesian models, 7–8, 16

blood-oxygenation-level-dependent (BOLD) response, 182
dynamic models inversion, 441
historical aspects, 7–8
likelihood, 64
model selection/averaging, 454–466
multivariate autoregressive models, 536, 538, 539
posterior probability, 64

alternative models comparison, 78
maps, 16, 34

predictive coding, 479
prior probability, 64
spatial normalization, 14
see also Empirical Bayes; Variational Bayes

Beamformer predictions, 329
oscillatory source localization, 388

Belief propagation algorithm, 148, 154–155, 466
model averaging, 454, 460
model evidence, 456
model selection, 454

Bending boundary conditions, 71
Bending energy, 66, 76, 77

minimization, 63
Benjamini and Hochberg false discovery rate method, 248–249
Best linear unbiased estimates, 103

Bias artefact (image intensity non-uniformity)
bias field estimates, 85, 86, 87
correction, 82–84

image intensity histograms, 83
parametric models, 83–84

segmentation optimization, 86, 87
Bilinear interpolation, 50
Bilinear models, 511–512

approximating functions, 509–510
effective connectivity, 508, 509

contextual input-dependent effects, 511, 512, 513
coupling, 512
psychophysiological interactions, 513, 514
static models, 513
see also Dynamic causal models

functional integration, 39–40, 41
functional magnetic resonance imaging see Dynamic

causal models
state equation, 511

Biophysical models, 32, 37–38, 182
input-state-output systems, 37–38, 597–599
non-linear systems identification, 38

Block study designs, 27, 28, 114, 195–196, 200, 201, 203, 204
noise variance, 205

Blood-oxygenation-level-dependent (BOLD) response, 25, 37,
178, 313

balloon model see Balloon model
bilinear models, 40
canonical haemodynamic response function, 181
convolution models, 178
dynamic causal models, 545

attentional effects, 556–559
conventional analysis comparison, 549–550
haemodynamic state equations, 546
likelihood model, 546–547
neuronal state equations, 545–546
noise effects, 552
priors, 547–548
simulations, 550–552
single word processing analysis, 553–556

dynamic model inversion, 441
energy dissipation correlations, 407, 408

effect of activation, 408–409, 411
event models, 196
experimental design, 119, 199

stimulus presentation rate, 38
factors influencing blood oxygenation, 340
functional magnetic resonance imaging regressors, 119,

120, 121
gamma functions, 181
glutamate release, 407
haemodynamic model, 343–346

balloon component, 343–344, 347
experimental results, 347–348
regional cerebral blood flow component, 344–346
Volterra kernels estimation, 346–347

high-reolutiuon basis functions, 120
iterative fitting techniques, 182
linear time-invariant models, 179
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local field potentials relationship, 406
neural activity relationship, 339, 340–350

electrophysiological measures, 341
linear assumptions, 340, 341
magnetic field effects, 340–341
modelled time course, 341

non-linear convolution models, 186–187
non-linearities, 179, 340, 346

evoked responses, 341–343, 347
peak latency differences, 179
post-stimulus undershoot, 178, 343, 345, 346, 347, 349, 443,

450–451
principle, 340
sampling rate, 197
saturation, 179, 186–188, 203, 551
shape estimation methods, 180–183
synaptic activity modelling, 341, 343
time series event-related study, 188–191

categorical model, 188–190
parametric model, 190–191

timing error/slice timing correction, 120, 121
variability, 178–179, 182, 183
see also Functional magnetic resonance imaging

Bonferroni correction, 4, 18, 34, 96, 214, 223, 224–226, 238,
250, 276

independence of observations, 225–226
maximum spatial extent of test statistic, 234
maximum test statistic, 232, 233
random field thresholds comparison, 228

Boundary conditions
electro-encephalography boundary element

method, 354
small deformation models, 70–71

bending, 71
circulant, 70
sliding, 71

Boundary element method, 353
analytical equation, 354–355

analytical solution, 363–364
matrix form, 360–361
numerical solution, 356–363
partial solutions for electrode sites, 362–363
partial solutions for scalp, 362

analytical equation approximation, 356
centre of gravity method, 356, 357, 359, 361
constant potential at vertices method, 356
linear potential at vertices method, 356, 357–358,

359–360, 361
current source model, 356–357
electro-encephalography, 354–355

boundary conditions, 354
Green’s theorem, 354
limitations of numerical solution, 364–365
magneto-encephalography, 355–356
solid angles calculation, 358–359

Boxcar designs, 6, 7, 16, 27
Brain electrical conductivity, 352, 353
Brain response modelling, 32–44
Brain shape differences, 63

Brain tumours, 55
Brainstem auditory evoked potentials, 562
BrainWeb MR simulator, 88–89
Broca’s area, 488

Canonical variate analysis, 39, 502, 503–504
applications, 505

Cardiac/respiratory biorhythm artefacts, 183, 200, 313
highpass filtering, 123

Case studies, 156
Categorical experimental designs, 20
Category selection, 569–570

event-related potentials, 561
visual pathway, 570–571

Causal models, 32
see also Dynamic causal models

Causes and brain function, 476–477
inference, 477

conditional expectation, 477
non-linearities (interactions), 476
predictive coding, 478–479
recognition from sensory data, 476–477, 478, 479, 500

Cellular plasticity, 475
Central limit theorem, application to spatial

smoothing, 13–14, 95
Cerebrospinal fluid, image segmentation, 84, 85, 93
Chaotic itinerancy, 423, 523
Chaotic transience, 423
Circulant boundary conditions, 70
Closed field configuration, 352
Cluster analysis, 39
Cluster-level inference, 19, 237–238, 239, 240

power analysis, 243, 244
voxel-based morphometry, 97

Cognitive conjunction, 20, 194
Cognitive subtraction, 5, 20

confounds, 193
context-sensitive functional specialization, 483–484
factorial experimental design, 22
single-factor subtraction design, 193

Common effect, 174
Computational anatomy, 11–14
Conditional parameter inference, 454, 455–456

linear models, 455–456
non-linear models, 456
variance components, 456

Confounds
cognitive subtraction, 193
data analysis, 15
factor by covariate interactions, 113, 114
functional magnetic resonance imaging, 25, 119
general linear model, 16
global effects, 109
positron emission tomography, 113

Conjunction analyses, 29
Connectionism, 33
Connectivity, 32

see also Effective connectivity; Functional connectivity



Elsevier UK Chapter: Index-P372560 30-9-2006 5:36p.m. Page:628 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

628 INDEX

Context-sensitive responses, 5, 471, 472, 476, 483, 508
asynchronous neuronal coupling, 522
bilinear models, 511, 512, 513
cortical connections, 474, 475
dynamic causal models, 543

simulations, 550–552
dynamic diaschisis, 488
factorial experimental designs, 22
functional specialization, 483–484
general learning algorithm, 480–481
non-linear neuronal coupling, 527
psychophysiological interactions, 514
see also Plasticity

Continuous images, 18–20, 34
Contrast matrices, 106–107, 108, 135, 137
Contrast vector, 130
Contrasts, 126–139, 166

construction, 129–132
design compexity, 137–138
estimability, 130–131
factor by covariate interactions, 114
general linear model, 17

inference, 106, 107
magneto-/electro-encephalography

event-related responses data, 217–218, 219
time-series models, 215

multivariate spatial models, 213
multiway within-subject analysis of variance, 177
notation, 138
positron emission tomography

condition-by-replication interactions, 114–115
multistudy designs, 116
replication (multisubject activation), 114, 115
single subject activation, 111, 112
single subject parametric designs, 112

regressor correlations, 136–137
reparameterized models, 137
spatially regularized general linear model, 317
subspaces, 139
see also F -contrasts; t-contrasts

Convolution models, 5, 36–37, 38
functional magnetic resonance imaging, 6–7, 178–191,

201–203
linear time-invariant models, 179
non-linear, 186–188

temporal basis functions, 6–7
see also Generalized convolution models

Correlation coefficients, 16
Cortex

connectivity see Cortico-cortical connections;
Thalamo-cortical connections

functional segregation, 33–34, 472
hierarchical organization, 22, 421, 473, 480, 481–482,

508, 563
empirical Bayes, 479, 482
models, 421–423
neuronal state equations, 563–565

macrocolumn cytoarchitecture, 416–417
microcircuits (minicolumns), 417, 418

neural mass models, 416–421
surface mapping, 6

Cortical atrophy, 13
Cortical dysplasia, 13
Cortical gain control, 408
Cortical interneurons, 42, 564
Cortico-cortical connections, 416–417, 421–423, 472,

563–564, 568
anatomy/physiology, 473–475
backward, 473, 474, 475, 477, 480–481, 482, 564
driving, 473, 475
extrinsic, 473, 565
feedback, 482–483
forward, 473, 475, 480, 481, 482, 564
functional assessment with brain imaging, 483–488
intrinsic, 42, 473, 565
lateral, 564
learning model implementation, 480–482
mechanisms of establishment, 475
modulatory, 473, 474, 475, 481
reciprocal, 473, 480

Cosine transform basis functions, 70, 71, 85
inter-subject registration, 77

Covariance components, 140, 277
estimation, 143–147, 275, 276, 293, 456

electro-/magneto-encephalography source reconstruction
models, 369, 379–380, 383

expectation maximization, 277, 279, 282–283,
285, 286–290

hierarchical linear models, 279, 280, 281–282, 285
model whitening approach, 146
non-sphericity estimate pooling (over voxels), 144
non-sphericity modelling, 141, 143–144
restricted maximum likelihood, 379, 380, 383
separable errors, 146–147
simulating noise, 145

hierarchical models, 148, 151, 275
Covariance matrix, 142, 143, 144, 281, 282

electro-/magneto-encephalography source
localization, 369

Covariates, 127, 128, 129
positron emission tomography

factor interactions, 113–114
single subject designs, 113

Crossed cerebellar diaschisis, 488

Data analysis
principles, 10–11
spatial transforms, 11–14

Dead time minimization, 200
Deformation field, 14
Deformation models, 67

evaluation, 77, 78
internal consistency, 75
inverse consistency, 75
large deformation (diffeomorphic) approaches, 72–74
morphometry, 14
notation, 67
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segmentation
optimization, 86, 87–88
spatial priors, 85

small deformation approach, 67–72
basis functions, 67, 69, 70–72
boundary conditions, 70–71
spatial normalization, 75, 77

Degrees of freedom, 144, 145, 146, 199
F -statistic, 143
non-sphericity correction, 144, 145, 170

Delta functions, 200
event-related functional magnetic resonance imaging, 195

Delusions, 498
2-Deoxyglucose uptake, 339–340
Design matrix, 34

analysis of variance
one-way between-subject, 167, 168
one-way within-subject, 169
two-way (repeated measures) within-subject, 172, 173

confounds, 96
general linear model see General linear model
hierarchical linear models, 278
stochastic versus deterministic study design, 26
voxel-based morphometry, 96

Deterministic study design, 26
Dice metrics, 88, 89
Diffeomorphic (large deformation) registration, 72–74

greedy ’viscous fluid’ method, 72–73
internal consistency, 75
inverse deformation, 73
measures of difference between shapes, 74

Diffeomorphisms, 67
Differential effect, 174, 175
Diffusion tensor imaging, 54
Diffusion weighted images, 75, 92
Disconnection syndromes, 33, 472
Discrete cosine transformation

functional magnetic resonance imaging low frequency drifts
removal, 314

highpass filtering, 123, 184
Discrete local maxima method, 233
Distributed source localization models,

electro-/magneto-encephalography, 367, 368, 377–389
applications, 383–388

simulated data, 384–386
single subject magneto-encephalography data, 386–388

covariance components estimation, 379–380, 383, 388
empirical Bayes approach, 369
evoked responses, 378
functional magnetic resonance imaging-based

priors, 369, 374
induced responses, 378
linear approaches, 367–375

electro-encephalography simulations, 372–374
magneto-encephalography simulations, 370–372

multitrial models, 382–383
evoked responses, 382–383
induced responses, 383

oscillatory activity, 388

response energy (power) estimation, 381–382
restricted maximum likelihood, 369–370, 378–380,

383, 388
single trial models, 381–382
temporal basis functions, 378, 380–381, 388
weighted minimum norms, 367, 368–369, 377, 378

Dummy variables, 102
Dynamic causal models, 7, 32, 36–37, 38, 335, 392, 414, 460–463,

598–599
attentional modulation (visual motion), 40–41, 461–463
Bayes factors, 457, 461, 462, 463, 579
Bayesian inference, 544, 568–569
Bayesian inversion, 544, 545, 562, 567
bilinear approximation, 39–40, 41, 42, 543–544
effective connectivity modelling, 541, 542, 545, 562
electro-/magneto-encephalography, 561–575

auditory oddball experiment, 571–573
dimension reduction, 567
empirical studies, 569–573
likelihood model, 567
observational equations, 566–567
priors, 567–568, 573
visual pathway category selectivity, 570–571

estimation scheme, 549, 550, 568
event-related potentials, 561, 562, 565–566, 568
evoked responses, 541–542
experimental design, 542–544
functional integration, 39–42
functional magnetic resonance imaging, 460, 541–560, 575,

577–584
attentional effects (construct validity), 556–559
Bayesian model selection, 577–579
conventional analysis comparison, 549–550
inter-hemispheric integration, 580–581, 582–583
noise effects, 552
priors, 547, 548
reproducibility, 555–556
simulations (face validity), 550–552
single word processing analysis (predictive validity),

553–556
haemodynamic state equations, 546
inference, 11, 544, 549, 568–569
likelihood model, 546–547
model evidence, 461–462, 569, 573, 578

computation, 459
model selection, 568, 569, 577–579
neural mass models, 42–43, 421, 422
neuronal state equations, 545–546, 563–565
perceptual learning, 487–488
principle, 562–563
structural equation modelling, 41–42
theory, 544–550, 563

Dynamic diaschisis, 488, 489
Dynamic mean fields, 399
Dynamic models inversion, 441–452

Bayesian inference, 441
conditional densities, 441
dynamic causal models, 544, 545, 562, 567
haemodynamic model, 445–446
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Dynamic models inversion (Continued)
multiple input study, 451
single input study, 449–451

Dynamical systems
brain function, 522
identification, 508–509
models, 592–602

Echo-planar imaging
slice acquisition time, 182, 197

temporal interpolation, 198–199
spatially regularized general linear model

event-related responses, 320
null data, 318

Effective connectivity, 32, 38–39, 392, 472, 492, 493, 508–521,
522–532, 593–594

asynchronous coupling, 522
bilinear models, 508, 509, 511, 512, 513, 514
brain imaging in assessment, 484–486
causal inferences, 476, 483
cellular plasticity, 475
definitions, 492
dynamic causal models, 41, 541, 542, 545, 561–562
dynamic models, 516–521
ensemble dynamics, 523
functional integration, 475–476
generalized convolution models, 518–521, 522
Kalman filter, 516–517
multivariate autoregressive models, 517–518, 534, 537–540
neural mass models, 420
neuronal transients, 522
non-linear coupling, 485–486, 522, 523, 527–528

asynchronous interactions, 528
modulatory interactions, 532, 543
simulated neuronal populations model, 528–531

psychophysiological interactions, 484, 513–514
static models, 512–515

linear, 513
structural equation modelling, 514–515

synaptic plasticity, 475
synchronous interactions, 522, 523
Volterra formulation, 519–520, 521, 522, 525

Efficiency, study design issues, 26–27
functional magnetic resonance imaging, 22–23, 193–209

Eigenimage analysis, 493, 494–496, 502, 504
functional integration modelling, 39
generalized eigenimages, 497–498
generalized eigenvector solution, 497, 498
limitations, 500

Eigenimages, 492, 493–494
canonical variate analysis, 504
dimension reduction, 502–503
multivariate analysis, 502

Eigenvariates, 494, 495
Electro-encephalography

activation effects on spectral profile, 409–410, 411
analysis of variance, 166
Bayesian inversion of models see Empirical Bayes

computational models, 391–392
covariance components, 277
data analysis, 10, 11
distributed modelling see Distributed source

localization models
dynamic causal models see Dynamic causal models
forward models, 352–365

boundary element method approach, 354–355
Maxwell’s equations, 352, 353–354

forward problem, 352, 353
functional magnetic resonance imaging measures integration

see Functional magnetic resonance imaging
hidden Markov models, 311
hierarchical models see Hierarchical models
historical aspects, 8
inverse problem, 352, 353, 367, 377, 407
lead field, 352
mass-univariate models, 213–124, 216
mathematical models, 391, 392
multivariate models, 212–213

vectorized forms, 213, 214
neuronal models see Neural mass models
notation, 212
principle, 391
source reconstruction see Source reconstruction
spatial data, 211, 212–214
spatial models, 212–214
spatio-temporal model see Spatio-temporal model for

electro-encephalography
temporal models, 212, 214–218
three sphere shell model, 363–364, 365
time as dimension of response variable, 212, 214, 215
time as experimental effect/factor, 212, 214, 215, 216

experimental design issues, 216–217
see also Event-related fields; Event-related potentials

Empirical Bayes, 7, 35, 38, 151–154, 275–294
cortical hierarchies, 479, 482
electro-/magneto-encephalography source reconstruction

models, 326, 367–375, 378–379, 388
equal variance model, 152–153
hierarchical models, 295, 296, 297, 367, 369

fitting/inference, 148
linear models, 278, 280–281, 283, 284–286

hyperparameters estimation, 447, 456
learning, 471, 476
neuronal implementation in brain, 476, 479–480
random effects analysis, 156, 158–161, 163

unbalanced designs, 159–160
separable models, 153
serial correlations, 6
spatial normalization, 76
variational Bayes, 456

Ensemble learning see Variational Bayes
Ensemble (population) dynamics, 391, 523

neuronal interactions, 523
see also Population density models

Entropy correlation coefficient, 59
Epoch-related study design, 10, 26, 196

trial duration, 197
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EQS, 514
Equal variance model, 152–153
Equivalent current dipole methods, 367, 377, 388
Error covariance, 277

conditional parameter inference, 456
hierarchical models, 148, 279, 280, 281, 282, 285
posterior density conditional estimators, 296–297, 298
serial correlations, 121–122, 123, 287
spatio-temporal data, 214–216

Error variance, 15, 140
data analysis, 16
estimation methods, 28
multistudy/multisubject designs, 116
non-sphericity, 140–141
pooled versus partitioned errors, 171–173
within-subject versus between-subject variability, 28
see also Error covariance

Euler characteristic, 18, 226, 227–228, 229, 232, 233, 240
Event-related designs, 6, 10, 26, 195, 196

advantages, 196
functional magnetic resonance imaging see Functional

magnetic resonance imaging
highpass filtering, 123
randomized designs, 195, 196
stimulus onset asynchrony, 187–188
trial duration, 196–197

Event-related desynchronization, 391, 411, 430, 437
neural mass models, 416

Event-related fields, 561
neural mass models, 414, 418, 421
phase-resetting, 427–428

Event-related potentials, 15, 195, 196, 324, 391, 403, 561
dynamic causal models, 561, 562, 565–566, 568

auditory oddball experiment, 571–573
empirical studies, 569–573
visual pathway category selectivity, 561, 570–571

evoked power, 432–434
induced responses, 431–436

driving inputs, 432, 434, 436
dynamic effects, 431–432, 433–434, 435, 436–437
modulatory effects, 432, 434, 436
oscillations modelling, 434–436
power, 432–434, 436
structural effects, 431–432, 433–434, 435, 436–437

mismatch negativity, 486, 487
neural mass models see Neural mass models
phase-resetting, 427–428

simulations, 428–430
spatio-temporal model, 325

damped sinusoid models, 326–327
face processing data analysis, 333–334
simulated data analysis, 332–333
temporal priors, 326
wavelet models, 327–328

Event-related responses
functional magnetic resonance imaging

temporal basis functions, 7
variance component estimation, 290–291

magneto-/electro-encephalography, 211, 218–219

experimental effects, 216
hierarchical modelling, 216–217
spatio-temporal models, 215
temporal effects, 216

spatially regularized general linear model, 319–320
null data, 318

see also Event-related fields; Event-related potentials
Event-related synchronization, 391, 430, 437

neural mass models, 416
Evidence framework, 151
Evoked responses, 4, 391, 414

dynamic causal models, 541–542
functional magnetic resonance imaging/electromagnetic

measures integration, 406–407
magneto-/electro-encephalography, 219

distributed source reconstruction model, 378, 382–383, 388
neural mass models, 430–431
non-linear blood-oxygenation-level-dependent (BOLD)

responses (balloon model), 341–343
Exceedance mass, 259
Exchangeability, 255, 256
Expectation maximization, 283, 284, 305, 603–605

Bayesian inversion models, 367, 446–447, 448
covariance components estimation, 275, 277, 279, 282–283,

285, 286–290, 293
functional magnetic resonance imaging serial correlations,

286, 287–288
dynamic causal models, 422

estimation scheme, 549, 568
free energy formulation, 282–283, 478, 486–487
general least squares parameter estimates, 289
general linear model, 17, 35
generalized, 447
hyperparameter estimation, 297, 446–447, 456
inference/learning modelling, 477–478, 486–487
non-linear models, 611–613

dynamic, 446–447, 448
restricted maximum likelihood, 379
segmentation optimization, 86
temporal non-sphericity correction, 215

Expectations, 164–165
Experimental design, 20–28, 101, 126

contrast specification, 137–138
dynamic causal models, 542–544
efficiency, 7, 26–27
epoch-related, 26
event-related, 26
functional magnetic resonance imaging see Functional

magnetic resonance imaging
historical aspects, 5
multiple subjects, 156
null events, 205, 208–209
principles, 10
repeated measures, 141
stimulus onset asynchrony, 26–27
taxonomy, 193–195

Extra sum of squares, 106, 167
Extrastriate cortex, 20
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F -contrasts, 18, 106, 107, 108, 118, 166,
167–168, 174

construction/testing, 132–135
effects of interest, 167
functional magnetic resonance imaging basis

functions, 175
interpretation, 135–136
temporal basis functions, 182

F -maps, 15, 20–21
F -statistic, 16, 34, 121, 136, 140

correction for non-sphericity, 142, 143
degrees of freedom, 143
general linear model, 16, 17, 105, 106, 107
serial correlations, 122

F -test, 96, 97, 106, 166
Face processing, 188–191, 319–320, 333–334, 386–388, 484,

569, 570
Factor analysis, 20–21
Factorial experimental design, 5, 20–22, 166, 175, 193, 194–195

categorical, 193
context-sensitive functional specialization, 483–484
interactions, 20–21, 166

F -contrasts construction, 134–135
main effects, 20, 166
model evidence, 457
parametric, 193

single factor, 194
psychophysiological interactions, 513–514
time series event-related study, 188–191

False discovery exeedance, 247–248
False discovery proportion, 247
False discovery rate, 230, 235–236, 246–252, 254, 301

adaptiveness, 250–251
false discovery exeedance, 247–248
false discovery proportion, 247
false positives control, 246, 247–248
family-wise error rate, 247, 249
methods, 248–249
multiple testing definitions, 246–248
per-comparison error rate, 247, 249
rate definition, 247
totally null image, 247

False positives (type I error), 34, 141, 223, 238,
246, 254

false discovery rate see False discovery rate
family-wise error see Family-wise error rate
functional magnetic resonance imaging, 6
multiple testing definitions, 246–247
permutation tests, 257–258
positron emission tomography, 4
random field theory, 96–97
spatially regularized general linear model, 318
topological inference, 237–238

Family-wise error rate, 223–224, 226, 238, 239, 246, 247, 249,
252, 254, 258, 261, 276, 301

strong/weak control methods, 247
totally null image, 247

Finite difference method, 353, 354
Finite element method, 353, 354, 365

Finite impulse response models, 16, 37
parameters estimation, 28
selective averaging, 180–181
temporal basis functions, 180–181, 182, 183

First-order hold (trilinear) interpolation, 50
Fisher’s exact test, 259
Fisher’s linear discriminant, 504
Fixed effect analysis, 7, 11, 28, 29, 35, 156, 158, 279, 285, 296, 297

functional magnetic resonance imaging, 276
magneto-/electro-encephalography hierarchical

models, 216, 218
positron emission tomography, 114, 161–162

Fliess fundamental formula, 524
Focal attention, 416
Fokker-Planck equation, 392, 395–396, 403

general formulation, 397
solutions, 397–398

numerical, 404
time-dependent, 398

vector fields derivation, 396–397
Forward models

electro-/magneto-encephalography, 352–365
functional magnetic resonance imaging, 339–350

Fourier transforms, 198
basis functions, 70

temporal, 180–181, 199
event-related response data, 217, 219
image re-sampling, 50–51, 52
time-series data, 183, 185, 201–202
viscous fluid registration methods, 72

Fractional anisotropy, 92, 93
Free energy

expectation maximization formulation, 478, 486
inference/learning modelling, 478, 486–487
model evidence (marginal likelihood) relationship, 303–304
negative, 304, 305, 316, 478

Functional connectivity, 32, 33, 34, 38–39, 75, 233, 475–476,
492–493, 561–562

definition, 492
eigenimage analysis, 39, 493, 494–496

generalized eigenimages, 497–498
independent component analysis, 499, 500–501
multidimensional scaling, 493, 496–497
multivariate analysis of covariance, 502–507

canonical variate analysis, 503–504
neural mass models, 420–421
non-linear principal component analysis, 499–500, 501
partial least squares, 493, 497
patterns of correlated activity measurement, 493

Functional integration, 32–33, 471–490, 508, 509, 522, 577
bilinear models, 40, 41
brain imaging in assessment, 483–488
brain lesion studies, 488–489
dynamic causal models, 39–43
effective connectivity, 475–476
eigenimage analysis, 39
functional specialization, 472–476
modelling, 38–44
multivariate autoregressive models, 534
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neural-mass models, 42–43
neuronal codes, 525

Functional magnetic resonance imaging
analysis of variance, 166
basis functions, 175
convolution models, 6–7, 178–191, 201–203

linear time-invariant models, 179
non-linear, 186–188

covariance components, 277
data adjustment, 12
data analysis, 10, 15, 16

non-parametric, 253
spatial transforms, 11–14
see also Time series

dynamic causal models see Dynamic causal models
electro-/magneto-encephalography measures integration,

406–407
activation modelling, 408, 410–411
dimensional analysis, 407–408
effects of activation on BOLD signal, 41, 408–409
effects of activation on EEG, 409–410, 411
empirical evidence, 410–412
membrane potential modelling, 407–408, 410

electro-/magneto-encephalography source localization
priors, 369, 374

event-related, 7, 15, 16, 188–191, 195–199
categorical model, 188–190
null events, 208–209
number of events, 208
number of expeimental conditions, 208
parametric model, 190–191
signal processing, 15, 16, 200–203
statistical perspective, 203–205
timing issues, 197–198, 208

evoked responses modelling, 5–6, 36
experimental design, 6, 7, 20–28, 119, 193–209

correlations, 205–206
dead time minimization, 200
efficiency, 201, 202–203, 204, 205–206, 207–208, 209
noise, 200
non-linearity effects, 207–208
number of scans, 199–200
optimization, 199–209
trials close together in time, 200

false discovery rate, 251–252
false positives, 6
field inhomogeneity efects, 13
forward models, 339–350
general linear models, 118–124
grand mean scaling, 111
historical aspects, 5–7
image registration, 49

image distortion effects, 63
structural/functional, 58–59, 63

inter-hemispheric integration, 580
dynamic causal model, 580–581, 582–583
model selection, 583–584

linear time-series model, 118–121
down sampling, 120–121

experimental timing, 119
grand mean scaling, 119
high-resolution basis functions, 120
movement-related effects, 121
parametric modulation, 120
proportional scaling, 119

motion-related artefacts, 11, 12, 57–58, 121
multisubject design, 286

permutation tests, 268–270
multivariate autoregressive models, 534, 537–538, 539–540
non-sphericity considerations, 6, 286

temporal, 118
Nyquist ghost artefacts, 58
peak-level inference, 243
posterior probability maps, 301–302
repetition time, 119
residual artefacts after realignment, 57–58
serial correlations, 6, 121–122

autoregressive plus white noise model, 121, 123
error covariance matrix estimation, 121–122, 123
ordinary least squares, 121, 123
’pre-colouring/pre-whitening’ procedures, 6

slice timing correction, 120
spatio-temporal models see Spatially regularized general

linear models
temporal autocorrelations, 6, 253, 312
temporal filtering, 122–123
time series see Time series
variance components, 7, 286

two-level model estimation, 290–293
see also Blood-oxygenation-level-dependent (BOLD) response

Functional specialization, 32, 33, 38, 471–472, 508, 577
anatomical models, 33–34
context-sensitive, 483

factorial experimental designs, 483–484
psychophysiological interactions, 484

cortical segregation, 33–34
functional integration, 472–476
segregation, 472

cortical forward connections, 473–474
dynamic causal modelling, 41

Fuzzy c-means, 83

GABA receptors/channels, 394, 402, 403, 474
GABA-ergic neurons, 417, 528
Gain modulation, 434–435, 436
Gauss-Markov estimators, 23, 24, 185, 279, 280, 281, 285, 287,

289, 294, 314, 448
Gauss-Newton methods, 55–56, 74, 76, 87, 88, 446–337, 456

spatial transforms, 12, 13
General linear model, 5, 16–18, 34, 35, 36, 38, 101–125, 126, 129,

140, 148, 166, 172, 253, 276, 278
adjusted data, 107–108
applications, 101
autoregressive models, 517
contrasts, 17–18, 105–106, 107, 108
data analysis, 7
design matrix, 17–18, 34, 36, 38, 105, 129, 130, 503
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General linear model (Continued)
constraint terms removal, 104
covariates, 16, 34
effects of interest, 107
factor by covariate interactions, 113
formulation, 102–103
images, 108
linear time-series model, 118, 119, 120
multiple study designs, 116
multiple subject designs, 115, 161–162
one-sample t-test, 117, 162
paired t-test, 117
partitioning, 105–106, 107
response variable effects, 16
single subject studies, 111, 112, 113
two-sample t-test, 117, 131

dummy variables, 102
expectation maximization, 18, 35
experimental designs, 193
explanatory variables, 102
fitted data, 108
full model, 106, 107, 108
functional magnetic resonance imaging, 118–124,

448, 449
linear time-series model, 118–121

hierarchical models, 35
inference, 105–108

estimable functions, 106
extra sum-of-squares principle, 106
residual sum of sqaures, 105

operational equations, 16
overdetermined models, 103, 104
parameter estimation, 103

geometrical perspective, 104–105
linear combinations of estimates, 105
pseudoinverse constraint, 104

positron emission tomography see Positron emission
tomography

posterior distribution of parameters, 296
posterior mode estimation, 447
reduced model, 106, 107–108
response variable, 101–102
spatially regularized see Spatially regularized general

linear models
spatio-temporal model for electro-encephalography, 326
structural equation modelling (path analysis), 514–515
time-series data, 179, 180
voxel-based morphometry, 93, 95–96

Generalized convolution models, 509
effective connectivity modelling, 518–521

impulse response function (transfer function), 518
Volterra formulation, 519–520, 521, 522

Generalized least squares, 288–289
Generative models, 11

Bayesian approaches, 7, 8
bias (image intensity non-uniformity) correction, 83
empirical Bayes, 476
image segmentation, 81, 82, 89–90

spatial priors, 85

perception modelling, 477
random effects analysis, 151

Gibbs sampling, 309
Global activity, 3, 382
Global normalization, 3, 6

functional magnetic resonance imaging time series, 24, 119
positron emission tomography, 109

analysis of covariance, 110
proportional scaling, 109–110

voxel-based morphometry, 96
Glutamate receptors, 474, 475
Glutaminergic connections/pathways, 422, 528
Grand mean scaling, 167

positron emission tomography, 110–111
time-series linear model, 119

Granger causality, 535, 562
Greedy ’viscous fluid’ registration method, 72–73
Greenhouse-Geisser correction, 121, 143, 145, 170, 172, 176, 289
Greenhouse-Geisser univariate F -test, 141
Green’s theorem, 354
Grey matter

electrical activity modelling (small current dipoles), 352
image segmentation, 84, 85
voxel-based morphometry, 92, 93, 94

confounds, 96, 97
smoothing of images, 94–95

Grubb’s exponent, 344, 443, 445

Haemodynamic model (extended balloon model), 343–344,
441, 442–445, 546

Bayesian inference procedures, 446–447
blood-oxygenation-level-dependent (BOLD) response,

343–346
autoregulation, 349, 443, 445
deoxyhaemoglobin concentration effects, 344, 347, 348
efficacy, 348, 443
resting oxygen extraction, 350, 443, 445
signal decay, 348–349, 443, 445
stiffness parameter, 350
transit times, 344, 350, 443, 445
validity, 348–350
Volterra formulation, 346–347, 444–445

functional magnetic resonance imaging
dynamic causal models, 460
relation to conventional analysis, 448–449

multiple-input-single-output systems, 442, 443
output equation, 443
output non-linearity, 443, 444, 445, 448
priors, 445–446
state equations, 443

Haemodynamic refractoriness, 25, 38, 342, 346, 347, 451
Haemodynamic response function, 5–6, 178, 518, 519, 520

biophysical models, 37, 38
canonical, 133, 175, 179, 181–182, 183, 184, 199, 290, 448
contrasts, 133, 136
convolution models, 36, 201–203
functional magnetic resonance imaging study design, 23
non-linear effects, 38, 180
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non-linear models using Voletrra series, 25
parameterization, 27, 36–37
selective averaging, 181
study design issues, 27
temporal basis functions, 6, 7, 179, 180, 186
temporal derivative, 120, 121

Haemodynamic/neuronal response relationship, 4
Hallucinations, 262, 498
Head structure modelling, 352–353

spherical model, 364, 365
anatomically constrained, 365

three sphere shell model, 363–364, 365
Head-hat registration approach, 59
Heaviside function, 394
Hidden Markov models, 276, 305, 311, 508
Hierarchical models, 7, 38, 148–155

conjunction analyses, 29
cortical networks, 421–423, 479
empirical Bayes, 7, 8, 35, 148, 275–294, 295, 296, 297, 367, 369

cortical hierarchies, 479
source reconstruction, 378–379

empirical priors, 275, 284, 285
inference, 28–29, 35, 148, 154, 218, 275, 277

belief propagation algorithm, 154–155
linear models, 278–281

Bayesian perspective, 280–281, 284–285
classical perspective, 279–280, 284–285
conditional density, 283
covariance components estimation, 279, 280, 281–282
hyperparameter estimation, 277, 280, 282, 284
parameter estimation, 277, 278–279, 280, 282
restricted maximum likelihood, 614–616

magneto-/electro-encephalography, 211, 216–219, 378–379
design factors, 212
hypothesis testing, 218–219
notation, 212
spatial models, 211, 212–214
temporal models, 216–218
time frequency analysis, 219
time series analysis, 218

model classes (model selection), 454
notation, 148
parameter estimation, 277
posterior probability maps, 277
random-effect analysis, 28–29
two-level, 149–151

equal variance, 150
sensor fusion, 150
separable models, 150–151

Highpass filtering, 183–184, 200, 202, 205
functional magnetic resonance imaging, 122–123

Hilbert transform, 219
Historical aspects, 3–8

Bayesian developments, 7–8
electro-encephalography, 8
experimental designs, 5
functional magnetic resonance imaging, 5–7
magneto-encephalography, 8
positron emission tomography, 5, 6

spatial normalization, 4
statistical parametric mapping, 4–5, 14–15
topological inference, 4
voxel-wise models, 3, 4

Hodgkin-Huxley model neuron, 391, 393
Hotellings T -square test, 503, 504
Houses perception, 569, 570
Hyperparameter estimation, 140, 141, 456

electro-/magneto-encephalography source localization, 369,
370, 374

empirical Bayes, 151–152, 447
expectation maximization, 456
hierarchical models, 277, 280, 282, 284
multivariate spatial models, 213
pooled estimates, 185–186
time series data, 185–186

Hyperparameters, 150
Hypothesis testing

famlily-wise error, 223–224
rejection of null hypothesis, 223–224
threshold values, 224

ICBM Tissue Probabilistic Atlas, 84
Image intensity histograms, 83
Image re-sampling, rigid body registration, 50–52

Fourier methods, 50–51, 52
generalized interpolation, 51
simple interpolation, 50
windowed sinc interpolation, 50–51

Independent component analysis, 39, 500–501
generative models, 499–500

Individualized brain atlases, 63
Induced responses, 382, 414–415, 426

event-related potentials see Event-related potentials
magneto-/electro-encephalography, 219

distributed source reconstruction model, 378, 383, 388, 389
neural mass models, 430–431

oscillatory activity, 434–436
trial-to-trial variability, 434–435, 436

neuronal models, 391
Inference, 10, 140

Bayesian see Bayesian inference
belief propagation algorithm, 454
causes from sensory data, 477
classical, 34, 35, 126–139, 276–277, 279, 295, 301, 590

limitations, 276
cluster-level, 237–238, 239, 240, 243
conditional parameter, 454, 455–456, 569
dynamic causal models, 549
general linear model, 105–108

spatially regularized, 317
hierarchical models, 28–29, 35, 148, 154, 218, 275, 277,

279–280
conjunction analyses, 29
fixed-effect analysis, 28, 29
random-effect analysis, 28–29

learning comparison, 477, 478
linear models, 589–591
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Inference (Continued)
mean field models, 399
model, 454, 455–456, 457–458, 463, 568–569
multivariate analysis of covariance, 503
neuronal implementation in brain, 476–480

expectation maximization, 477, 478, 480
nonparametric procedures, 261
non-sphericity adjustment, 288–289
peak-level, 237–238, 239, 240, 242–243
population effects, 29, 156, 164
power analysis, 242–243, 244
randomization test, 261
regional specificity, 239, 244
relation to perception, 479
set-level, 237–238, 239, 240, 243
topological, 10, 18–20, 237–245
variational Bayes (ensemble learning), 305–306
voxel-based morphometry, 96–97
within-subject versus between-subject variability, 28

Information matrix, 205
Information theory, 589–590

between-modality registration approaches, 59
intensity based registration methods, 64

Input-output models, 594–597
Input-state-output models, 37–38, 597–599

hidden states, 37
neuronal transients, 524

Integrate-and-fire neurons (spiking model), 392, 393–394
Inter-hemispheric integration, 577

alternative models, 581–582
functional magnetic resonance imaging, 580
theories, 579–580

Inter-scan interval, 199
Inter-scan variability, 7, 28, 156, 164, 199
Inter-subject registration

affine transformation, 76, 77
limitations, 76
non-linear registration, 76, 77

Inter-subject variability, 7, 28, 94, 156, 164, 199
spatial smoothing of data, 13–14

Interactions, 194, 195
difference of differences, 174
F -contrasts, 174
factorial experimental designs, 22, 166
multiway analysis of variance, 174
two-way analysis of variance, 170, 172

Intercept, 167
Interpolation artefacts, 12, 60, 61
Interpolation for image re-sampling

bilinear, 50
Fourier methods, 50–51, 52
generalized, 51
simple, 50
trilinear (first-order hold), 50
windowed sinc, 50–51

Inverse affine transformations, 52
Inverse consistency, 75
Inverse problems, 478
Isochromatic stimuli, 21

Isoluminant stimuli, 21
Item-effects, 197, 206
Iterated conditional modes, 85–86

Jansen model, 416, 418, 422, 563, 564, 574

K (slow potassium) ion channels, 394
k-means, bias correction, 83
Kalman filtering, 447, 483, 619–620

effective connectivity modelling, 516–517
Karhunen-Loeve expansion, 494
Kendall correlation test, 259
Kronecker products, 146, 159, 167, 174, 176, 195, 213, 290, 315,

378, 388, 506, 536
Kullback-Liebler divergence, 303, 304, 306, 316, 460, 478, 515

L-curve analysis, 8, 369, 375, 378
Landmarks

colocalization assessment, 78
functional identification, 4

Langevin equation, 395, 397
Laplace approximation, 305, 306, 447, 458–459, 568

Bayesian information criteria, 459
model evidence computation, 458–459, 463, 464, 578
variational Bayes, 305, 306, 606–610

Laplacian (membrane energy) model, 66
Laplacian priors, 324, 325
Latency effects, 12, 435

neural mass models, 435, 436
Lead field, 352

boundary element method approach see Boundary
element method

magneto-encephalography, 364
Learning, 476–480, 508

empirical Bayes, 471, 476, 479
neuronal models, 479–480

general algorithm, 479–480
relation to cortical infrastrcture, 480–481

generative models, 477
inference comparison, 477, 478
maximum likelihood of parameters, 477, 478
perceptual, 476, 477

dynamic causal models, 487–488
plasticity, 475, 478, 486
predictive coding, 479
recognition model, 477

Lesion studies, 472
functional integration, 488–489

Levenberg-Marquardt algorithm, 74
segmentation optimization, 86, 87

Likelihood, 64
Linear discriminant analysis, 504
Linear dynamical systems, 305, 510
Linear models, 101, 127

conditional parameter inference, 455–456
convolution, 36, 195, 200
dynamic, 510

functional integration modelling, 509
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effective connectivity, 513
empirical Bayes, 277
expectation maximization, 277
hierarchical see Hierarchical models
inference, 589–591
inversion, 11
magneto-/electro-encephalography, with time as factor,

211, 212
multivariate, 590–591
restricted maximum likelihood, 613–616
time-invariant, 10, 16, 17, 23

Linear regression, 102
Linear-elastic energy, 66
Linearity of response testing (t-contrasts), 132
LISREL, 514
Local field potentials, 392, 403, 431

blood-oxygenation-level-dependent (BOLD) response
relationship, 341, 406, 410

Localizationism, 33
Low resolution tomography (LORETA), 329

constrained (cLORETA), 465, 466
priors, 314, 315, 324
spatio-temporal deconvolution model for

electro-/magneto-encephalography comparison,
331–332

Low-pass filtering, 424

Magnetic resonance imaging, segmentation,
81–90

Magneto-encephalography
analysis of variance, 166
Bayesian inversion of models see Empirical Bayes
data analysis, 10, 11
distributed modelling see Distributed

source-localization models
dynamic causal models see Dynamic causal models
forward models, 352

boundary element method approach, 355–356
Maxwell’s equations, 352, 353–354

forward problem, 352, 353
functional magnetic resonance imaging measures integration

see Functional magnetic resonance imaging
hierarchical models see Hierarchical models
historical aspects, 8
inverse problem, 352, 353, 367, 377, 407
lead field, 352, 364
mass-univariate models, 213–124, 216
multivariate models, 212–213

vectorized forms, 213, 214
neuronal models see Neural mass models
notation, 212
source reconstruction see Source reconstruction
spatial data, 211, 212–214
spatial models, 212–214
spatio-temporal models, 323–335
spherical head model, 364
temporal models, 212, 214–218

time as dimension of response variable, 212,
214, 215

time as experimental effect/factor, 212, 214, 215, 216
experimenetal design effects, 216–217

Main effect, 175, 194, 195
analysis of variance

multi-way, 174
one-way between-subject, 167, 168
two-way, 170, 172

F -contrasts, 174
factor by coavariate interaction design, 113, 114
factorial experimental designs, 20, 166
model evidence, 457

Mann-Whitney test, 259
Marginal likelihood, 151–152, 478

see also Model evidence
Markov chain models, 303, 328, 460
Markov random field models, 90, 276

bias correction, 83
Mass-univariate models, 3, 4, 15, 301, 313

magneto-/electro-encephalography, 212, 213–214
spatial covariances, 214
temporal data, 214

Matched filter theorem, 225, 243
application to spatial smoothing, 14, 95
spatio-temporal models for

magneto-/electro-encephalography, 215
MATLAB, 5, 104, 159, 254
Matrix methods, 101
Maximal statistic distribution, permutation

tests, 258, 259
Maximum a posteriori estimates, 64, 305, 306

dynamic causal models, 549
electro-/magneto-encephalography source

reconstruction, 379
Bayesian inversion models, 367

hierarchical linear models, 280
non-linear registration, 74–75

Maximum information transfer, 426
Maximum likelihood, 7

functional magnetic resonance imaging filtering, 23–24
general linear model, 16, 103
hierarchical linear model parameter estimation, 279, 280,

281, 282–283, 284, 285, 286
image segmentation optimization, 88
multivariate autoregressive models, 536
random effects analysis, 156–157
relationship to Bayesian estimators, 277
serial correlations, 6

error covariance, 121
see also Restricted maximum likelihood

Maximum likelihood II, 66–67, 151
Maximum test statistic, 232–233

discrete local maxima method, 233
maximum spatial extent, 233–234
small region searches, 234

Maximum-intensity projection format, 3
Maxwell’s equations, 324, 352, 353–354
Mean centring, 128
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Mean field models, 304, 391, 392, 523
coupled neuronal populations, 398–399, 523
estimation of parameters, 399
inference, 399
neural mass models, 415, 562
neuronal population modelling, 417–418

Mean squared difference, 65
rigid body within-modality registration, 55, 56
spatial normalization, 75–76

Mean transit time, 344, 350
Membrane energy (Laplacian) model, 66
Memory, 206, 251, 268, 475
Minimum likelihood function, 76
Minimum norms, 280, 388
Mismatch negativity, 478, 486, 487, 561
Mis-registration artefacts, 94, 97
Mixed effects analysis, 28, 29, 35, 117, 278, 279, 296
Mixture of Gausians image segmentation

bias correction, 83–84
objective function, 82

Mixture models, 276
Model averaging, 454–455, 460

source localization with anatomical
constraints, 464–466

Model class, 454
Bayesian model averaging, 460
model inference, 456

Model construction, 126–127
baseline, 128

Model design, 20–28
Model evidence

Akaike information criteria, 459, 460, 461, 578
Bayes factors, 457–458, 464, 579
Bayesian information criteria, 459–460, 461, 578
Bayesian model selection, 456
computation, 456, 458

Laplace approximation, 458–459, 463, 464
dynamic causal models, 461–462, 569, 573, 578
free energy relationship, 303–304
source reconstruction with multiple

constraints, 463–464
Model inference, 454, 455–456

Bayes factors, 457–458
dynamic causal models, 568–569
source reconstruction, 463

Model selection, 454–466
conditional parameter inference, 454, 455–456
dynamic causal models, 568, 569, 577–584
functional magnetic resonance imaging, 577–579

inter-hemispheric integration, 583–584
hierarchical models, 454
model averaging, 454, 460
model inference, 454, 456–460
notation, 455
restricted maximum likelihood, 616–617

Monte Carlo simulations, 239, 395
permutation tests, 260

Moore-Penrose pseudoinverse, 104
Morlet wavelet transform, 217, 219

Morphometric studies, image registration, 55
Motion artefacts, 12, 49, 183, 225, 313

data adjustment, 12
data realignment, 11, 12

residual artefacts, 57–58
preprocessing corrections, 49
within-modality image registration, 55

Motor cortex, 345
Motor responses

adaptation/plasticity, 5, 22
regressor correlations, 136
right/left comparison, 132–134

Multidimensional scaling, 39, 493, 496–497
Multifactorial experimental design, 5, 20
Multiple comparisons problem, 223, 232, 246, 276,

295, 301
permutation tests, 159, 253, 254, 257–258

single threshold test, 258, 259
suprathreshold cluster tests, 258–259

Multiple linear regression, 16, 20–21
Multiple regression analysis see General linear model
Multiple signal classification (MUSIC), 328
Multistat, 145
Multistudy designs, 34, 35

positron emission tomography, 116–117
voxel-wise analysis, 4, 18
see also Multiple comparisons problem

Multisubject designs, 156, 164, 199
functional magnetic resonance imaging, 286
positron emission tomography, 114–116

condition-by-replication interactions, 114–115
interactions with subject (ANCOVA by

subject), 115
replication of conditions, 114

Multivariate analysis of covariance, 39, 214, 492
applications, 505
canonical variate analysis, 503–504
dimension reduction, 502–503
functional connectivity, 502–507
multivariate spatial models, 212, 213
statistical inference, 503

Multivariate autoregressive models, 311, 542, 562
Bayesian estimation, 536, 538, 539
Bayesian inference, 536
effective connectivity modelling, 517–518, 534, 537–540
functional magnetic resonance imaging, 537–538
maximum likelihood estimation, 536
non-linear, 535
theory, 535–536

Multivariate autoregressive-moving average
models, 601–602

Multivariate models, 15, 39
linear, 504, 506, 590–591
source prelocalization, 463
spatial

error covariance matrix, 213
magneto-/electro-encephalography, 212–213, 214

temporal, 214
vectorized, 213, 214
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Multiway within-subject analysis of variance, 173–175
contrasts, 177
partitioned errors, 174–175

Mutual information, between-modality registration
approaches, 59, 60, 61

Nearest neighbour (zero-order hold) resampling, 50
Negative free energy, 304, 305, 316, 478
Neural mass models, 332, 335, 391, 392, 562, 563–565, 574

continuous neuronal fields, 392
conversion operations, 415
cortical area (excitatory) coupling, 418–420

functional connectivity modelling, 420–421
state equations, 418–420

cortical cytoarchitecture, 416–417
electro-/magneto-encephalography, 414–438

signal modelling, 415–416
event-related potentials, 42, 43, 44, 392, 414, 416, 418, 421,

423–426, 562–563, 565–566
adjusted power, 436
bottom-up effects, 424–425
induced oscillations modelling, 434–436
induced responses, 431–436
input effects, 423–424
late components, 425–426
lateral connections, 426–427
phase transition to oscillations, 425, 426
phase-resetting, 427–430
recurrent loops, 425–426
simulations, 428–430
top-down effects, 425–426

functional integration, 42–43
hierarchical models, 421–423

connections, 421–422
state equations, 422–423

induced verus evoked responses, 430–431
Jansen model, 416, 418, 422
lumped models, 392
mean-field approximation, 415, 562
neuronal population modelling, 417–418
neuronal state equations, 563–565
non-linear coupling simulation, 528–531
ongoing activity, 430
perceptual learning, 42, 43, 44
principle, 415

Neurodegeneration, 97–98
Neurogenetic studies, 92
Neurometric functions, 20, 112
Neuron model

deterministic, 393–394, 401
energetics, 406–412
Fokker-Planck equation, 395–398
integrate-and-fire (spiking model), 392, 393–394, 403, 407

temporally augmented, 394
inter-spike time, 394, 404
mean field models, 398–399
membrane potential activations, 408
multiple/coupled populations, 398–399

neuronal network applications see Population density models
notation, 395
simulation parameter values, 397
spike-rate adaptation, 394–395
stochastic, 401

dynamics, 395–397
suprathreshold dynamics, 394
synaptic channel dynamics, 394–395, 399
transmembrane potential, 407–408, 410

Neuronal activity, 352
rate of change of membrane potential, 393
regional cerebral blood flow relationship, 339–340

haemodynamic model, 343–346
spike activity, relation to BOLD signal, 341

Neuronal codes, 525–527
instantaneous rate coding, 526
temporal, 526
transient, 526

asynchronous, 527
synchronous, 526–527

Neuronal ensemble dynamics see Population density models
Neuronal interaction/coupling, 391, 398–399

context-dependent effects see Context-sensitive responses
dynamic causal models, 541–542, 543
neuronal codes, 525–527
neuronal transients, 522
non-linear coupling, 411–412, 522, 523, 527–528

asynchronous interactions, 528
modulatory interactions, 532
simulated neural model, 528–531

self-organizing systems, 523
see also Effective connectivity

Neuronal transients, 522, 523–525
asynchronous, 528
input-state-output brain models, 524
neuronal codes, 525–526
recent history of system inputs, 524
synchronous, 528
Volterrra series formulation, 524, 525, 526

Newton-Raphson optimization, 74, 87, 88, 515
Nitric oxide, 340, 345, 349
NMDA receptors/channels, 394, 403, 432, 434, 474, 475, 481
NMDA synapses, 528, 530, 532
Noise

functional magnetic resonance imaging, 200
time series, 22

highpass filtering, 183–184
neuronal/non-neuronal sources, 22–23
scanner drift, 183

Non-linear models
autoregressive, 12, 535
Bayesian inference, 446–447
conditional parameter inference, 456
convolution, 186–188

Volterra expansion, 186, 188
effective connectivity modelling, 485–486
expectation maximization, 611–613
functional integration modelling, 476, 509
functional magnetic resonance imaging time series, 24–26
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Non-linear models (Continued)
haemodynamic model see Haemodynamic model

(extended balloon model)
model evidence computation, 458

Laplace approximation, 458–459
posterior mode analysis, 447
variational Bayes, 610–611

Non-linear principal component analysis, 499–500, 501
applications, 501
generative models, 499–500

Non-linear registration, 63–78
applications, 63
deformation models, 67

diffeomorphic (large deformation), 72–74
estimating mappings, 74–75

Levenberg-Marquardt algorithm, 74
evaluation strategies, 77–78
greedy ’viscous fluid’ method, 72–73
inter-subject averaging, 76, 77
internal consistency, 75
limitations, 76
objective functions, 64–67
segmentation, 94

Non-linear systems identification, 38
Non-parametric procedures, 128, 129, 253–271

parametric procedures comparison, 270
Non-sphericity, 15, 17, 117, 140, 166

analysis of variance, 169–170, 172, 175
covariance components estimation, 143–144, 286

degrees of freedom, 144, 145
pooling estimates over voxels, 144
simulating noise, 145

data whitening approach, 141, 146
hierarchical models, 150
inference adjustment, 288–289
iterative estimates, 141, 185–186
magneto-/electro-encephalography

spatial models, 212–214
temporal data, 214, 218

mass-univariate models, 214
measures of departure from sphericity, 142–143
post hoc correction, 140–141, 146
repeated measures experimental designs, 141, 142
statistical parametric mapping approaches, 141
time series

hyperparameters estimation, 185–186
temporal autocorrelations, 184

2-Norm, 493
Null distribution, 223
Null events, 205, 208–209
Number of scans, 118, 199
Nyquist ghost artefacts, 58
Nyquist limit, slice-time correction, 199

o-Moms (maximal-order interpolation of minimal support)
basis functions, 51

Objective functions
Bayes’ theorem, 64

likelihood term, 65
prior term, 65–66

empirical Bayes
equal variance model, 152
separable models, 153

mean-squared difference, 65
non-linear registration, 64–67
restricted maximum likelihood with Laplace

approximation, 66–67
rigid body registration, 55
segmentation model, 82–85

Observation equation, 393
Occam’s razor (parsimony principle), 78
Occam’s window, 455, 460, 465, 466
Oddball experimental designs, 196, 569

auditory, 487–488, 571–573
mismatch negativity, 391

Omnibus hypothesis, 258
Open field configuration, 352
Ordinary least squares, 130, 141, 146, 150, 214

general linear model parameter estimation, 103
hierarchical linear model estimators, 280
serial correlations, 121

distributional results, 123
parameter estimates, 123

variational Bayes algorithm, 316
Orthogonal projection, 139
Oscillatory activity, 388, 414, 415, 492, 562

binding hypothesis, 431, 562
blood-oxygenation-level-dependent (BOLD) signal

correlations, 406
evoked, 431, 432
induced, 415, 431, 432, 434–436
local field potentials, 431
neural mass models, 392, 415–416, 434–436

cortical area coupling, 420
event-related potentials, 425, 426
Jansen model, 418

neuronal codes, 526, 527
neuronal transients, 524
ongoing, 430, 431
spectral peaks analysis, 391

Oxygen extraction fraction, 344, 348, 349

Parameter estimation, 129–130, 131, 132
hierarchical models, 277, 278–279, 280, 282

Parametric experimental designs, 20–21
Parametric maps, 4–5
Parametric model construction, 126–127, 128, 129
Parametric procedures, 223–230
Partial least squares, 493, 497
Partial volume effects, 84
Partial volume interpolation, 60
Partitioned error models, 171, 172, 173, 174–175
Path analysis see Structural equation modelling
Pathological lesions

segmentation models, 93
spatial normalization, 13
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Peak-level inference, 19, 237–238, 239, 240
power analysis, 242–243, 244

Perceptual data/perception, 476–477, 479, 508
analysis by synthesis, 477
generative models, 477

Perceptual inference, 471, 479
Perceptual learning, 471, 486–488

dynamic causal models, 487–488
neural-mass model, 42, 43, 44
plasticity, 475, 478, 569, 571

Permutation tests, 253, 254–261
applications, 261–270

multi-subject functional magnetic resonance
imaging, 268–270

multi-subject positron emission tomography, 265–268
single-subject positron emission tomography, 262–265

assumptions, 259–260
exchangeability, 255, 256
generalizability, 261
key steps, 261–262
Monte Carlo tests, 260
multiple testing problem, 257–258

single threshold test, 258
suprathreshold cluster tests, 258–259

multistep, 261
non-parametric statistics, 259
number of relabellings, 260
power, 260–261
pseudo t-statistics, 260, 261
randomization tests, 254–257
single voxel activation, 256–257
step-down tests, 261
test method, 256, 257
test size, 260

Phase-synchronization, 427, 428
Phrenology, 33
Plasticity, 508, 543

associative, 475, 481
bilinear models, 509
learning-related, 486

perceptual learning, 569, 571
task-dependent, 514
see also Context-sensitive responses

Polynomial regression, 112
Pooled error models, 171–173
Population density models, 391–404

applications, 400–403
coupling among populations, 401–403
single population dynamics, 400–401

deterministic model neuron, 393–394
Fokker-Planck equation, 395–398
mean field models, 398–399, 417–418
multiple/coupled populations, 398–399
neuronal populations, 395
stochastic effects, 392

Positron emission tomography
activation scan, 109
analysis of variance, 166
attenuation correction errors, 57

baseline scan, 109
design matrix images, 108
false positive rate, 4
fixed effects analysis (multisubject designs), 161–162
general linear model, 108–117

condition-by-replication interactions, 114–115
confounds/covariates, 113, 114
factor by covariate interactions, 113–114
interactions with subject (ANCOVA by subject), 115
multistudy designs, 116–117
replication (multisubject activation), 114
single subject activation design, 111–112
single subject parametric designs, 112

global normalization, 109
analysis of covariance, 110
proportional scaling, 109–110

grand mean scaling, 110–111
historical aspects, 3, 5, 6
inter-modality registration methods, 59
parametric maps, 4–5
peak-level inference, 243
permutation tests

multi-subject design, 265–268
single-subject design, 262–265

posterior probability maps, 298–301
principle, 340
random effects analysis (multisubject designs), 161,

162–163
residual artefacts after realignment, 57–58
spatial correlations (point spread function), 224–225

Posterior probability, 64
Posterior probability maps, 16, 34, 35, 295–302

functional magnetic resonance imaging, 301–302
hierarchical models, 277
positron emission tomography, 298–301
posterior density, 295, 296

conditional estimators, 296–298
error covariance, 296–297, 298

prior density estimation, 297–298
spatially regularized, 313

contrasts, 317
general linear model, 317, 318

spatio-temporal models for
electro-/magneto-encephalography, 323

thresholds, 301
Postsynaptic potentials, 352, 414

neural mass models, 417, 418, 565
Power analysis, inference, 242–243, 244
Pre-attentive processing, 486
Precision matrices, 455
Pre-colouring, 6

temporal autocorrelations, 184
Prediction error, 478, 486, 500

neuronal models, 480
Predictive coding, 478–479, 483, 486

Bayesian framework, 479
Predictors, 127, 128, 129, 130
Pre-whitening, 6, 121

temporal autocorrelations, 184–185
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Principal component analysis, 20, 39, 213, 305, 493
event-related potentials modelling, 328
non-linear, 499–500, 501

applications, 501
generative models, 499–500

singular value decomposition, 39
Principal coordinate analysis, 493
Prior probability, 64
Procedural learning, 475
Progressive supranuclear palsy, 92
Proportional scaling, 119
Pseudo t-statistics, 260, 261
Pseudoinverse methods, 104
Psychiatric studies, 20
Psychomotor poverty, 22
Psychopharmacological studies, 5

factorial experimental designs, 22
Psychophysiological interactions

bilinear models, 513, 514
context-sensitive functional specialization, 484
effective connectivity modelling, 513–514
factorial experimental designs, 22

Pure insertion assumption, 193–194, 195
Pyramidal cells, 42, 417, 418, 421, 424, 564, 565

electro-encephalographic observational
equations, 566–567

Radial basis functions, 71
Random effects analysis, 7, 11, 28–29, 38, 156–165, 166, 278,

279, 283, 297
empirical Bayes, 156, 158–161, 163

unbalanced designs, 159–160
functional magnetic resonance imaging, 163, 277
generative model, 151
magneto-/electro-encephalography hierarchical

models, 216, 218
maximum likelihood, 156–157
positron emission tomography, 114, 161–163
restricted maximum likelihood, 158
separable (hierarchical) models, 150
summary statistics approach, 157–158, 160–161, 163, 279

Random field theory, 4, 5, 6, 8, 15, 18–20, 34, 223, 226–230,
232–236, 276, 506, 621–623

assumptions, 18
bibliography, 230
error fields, 19
Euler characteristic, 226, 227–228, 229, 232, 233, 240
full width at half maximum (FWHM) estimates, 234–235
functional imaging data analysis, 228
maximum spatial extent of test statistic, 233–234
maximum test statistic, 232–233

small region searches, 234
non-sphericity, 15
small volume correction, 228–229
smoothness estimation (spatial correlation), 226, 227

resels, 18, 19, 227, 239
spatial covariances correction in mass-univariate

models, 214

thresholds calculation, 227, 228, 238–241
Bonferroni thresholds comparison, 228

voxel-based morphometry, 92, 93, 96–97
Random variables, 102
Randomization tests, 254–257

assumptions, 259
exchangeability, 255
experimental randomization, 254

condition presentation order, 254
inference, 261
mechanics, 255–256
null hypothesis, 255
randomization (permutation) distribution, 255

Randomized designs
disadvantages, 196
event-related methods, 195, 196, 205
noise variance, 205
timing issues, 197–198

RAVENS map approach, 98
Realignment, 12

affine transformation, 12
subject movement effects, 11
temporal, 12
time-series images, 55

Receiver operator characteristic (ROC) curve, 242
Receptive fields

context-sensitive effects, 471
extra-classical effects, 471, 528

Region of interest measurements, 3
Regional cerebral blood flow

biophysical models, 37
functional magnetic resonance imaging

BOLD signal, 344–346
time series, 24

neural activity/metabolic demand relationship, 339–340
haemodynamic model, 343–346
oxidative metabolism decoupling, 340

positron emission tomography, 109
factor by covariate interactions, 113–114
multisubject designs, 114–116
normalization models, 110
single subject activation design, 111, 112–113
single subject parametric designs, 112

Regional hypotheses, corrected/uncorrected p values, 229–230
Regionally specific effects, 3, 4, 10, 472, 542

anatomical models, 11, 34
artefactual changes, 11
cognitive conjunctions, 20
cognitive subtraction, 20
context-sensitive interactions, 483–484
data analysis, 15
false positive rate, 4
mass-univariate approaches, 3, 4, 14, 15
topological inference, 19
voxel-based morphometry, 95, 96

Registration, 4, 49
affine, 78
evaluation, 77–78
image segmentation, 81



Elsevier UK Chapter: Index-P372560 30-9-2006 5:36p.m. Page:643 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

INDEX 643

intensity based methods, 63, 64
inter-modality, 50, 58–61
inter-subject, 63
intra-modality, 50, 55–58
label based methods, 63–64
non-linear see Non-linear registration
objective function, 55
reference image, 49
rigid body see Rigid body registration
source image, 49
spatial, 11

functional/anatomical data coregistration, 13–14
spatial normalization, 4
voxel-based morphometry, 94
within-subject, 63

Regression models, 599–600
Regressors, 127, 128, 129, 130

contrasts construction, 131, 133, 136
correlation, 136–137, 205, 206

testing for variance, 137
event versus epoch models, 197
functional magnetic resonance imaging, 118, 119,

120, 121
orthogonalizing, 206–207

Repeated measures analysis of variance, 141–142, 166,
176–177, 183

multiway, 173–175
one-way, 168–170
partitioned errors, 171, 172, 173, 174–175
pooled errors, 171–173
Satterthwaite approximation, 143
two-way, 170–173, 183

Reproducibility
brain mapping, 6
dynamic causal models for functional magnetic resonance

imaging, 555–556
Resampling methods, 259

spatial correlations in data, 225
Resels, 18, 19, 227, 228
Residual sum of sqaures, 103, 105, 106
Restricted maximum likelihood, 148, 286–287, 305

Bayesian inversion models, 367, 369–370
covariance components estimation, 379, 380, 383
distributed electro-/magneto-encephalography source

reconstruction models, 367, 378–380, 383, 388
error covariance estimation, 122, 123
hyperparameter estimation, 140, 143, 144, 146, 185, 282–283,

285, 288, 296–297, 369–370
multivariate spatial models, 213

with Laplace approximation, 66–67
linear models, 613–614
model selection, 616–617
non-sphericity correction, 141, 185–186

temporal variance parameters, 214–215
random effects analysis, 158
simulating noise, 145
temporal basis functions, 183

Retinotopic mapping, 6, 432
Ridge regression, 280

Rigid body registration, 49–61, 78
between-modality, 58–61

implementation (joint histogram generation), 59–61
information theoretic approaches, 59
partial volume interpolation, 60

image re-sampling, 50–52
Fourier methods, 50–51, 52
generalized interpolation, 51
simple interpolation, 50
windowed sinc interpolation, 50–51

registration step, 50
transformations, 50, 52–55

left-/right-handed coodinate system, 54
parameterization, 53
rotating tensors, 54–55
rotations, 52
shears, 53
translations, 52
volumes of differing/anisotropic voxel size, 54
zooms, 53

within-modality, 55–58
implementation, 56–57
mean squared difference, 55, 56
objective function, 55
optimization, 55–56
residual artefacts, 57–58

Sampling rate, 197
Satterthwaite approximation, 122, 124–125, 143, 145,

184, 289
Scalp fields, 352–353
Scanner drift, 183, 200, 313

highpass filtering, 123
Scanner gain, 119
Schizophrenia, 498
Segmentation, 63, 81–90

intensity non-uniformity (bias) correction, 82–84, 85
objective function, 82–85

minimization, 85
mixture of Gausians, 82

optimization, 85–89
bias, 87
deformations, 87–88
mixture parameters, 86–87

partial volume approaches, 84
registration with template, 81
regularization of deformations, 85
spatial normalization, 94
spatial priors, 84–85, 93

deformation, 85
tissue classification approach, 81
voxel-based morphometry, 92, 93–94

pathological lesions, 93
Seizure activity, 416, 418, 426, 563
Selective attention, 197
Selective averaging, 205
Semantic associations, 193, 195

see also Word processing/generation
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Sensitivity, 140, 242, 246
brain mapping, 6
functional magnetic resonance imaging time

series, 23
inference levels, 19
motion correction, 49
spatially regularized general linear model, 318
statistical parametric mapping, 15
topological inference, 237
voxel-based morphometry, 95, 97

Sensory data/sensation, 476–477
recognition model, 477

Sensory evoked potentials, 40
Sensory neuroimgaing, 6
Separable models, 150–151

empirical Bayes, 153
see also Hierarchical models

Serial correlations, 121–122
Set-level inference, 19, 237–238, 239, 240

power analysis, 243, 244
Shannon information, 59
Shears, inter-subject registration, 76, 77
Significance probability mapping, 4, 14
Simes method, 248
Simple effects, 172, 195
Sine transform basis functions, 70, 71
Single factor experimental design, 20
Singular value decomposition, 39, 493, 495, 527
Skull reference X-rays, 4
Slice acquisition time, 197

temporal interpolation, 198–199
Slice timing correction, 120, 182
Sliding boundary conditions, 71
Small deformation approaches see Deformation models
Small region searches, 234
Smoothing, 11, 14

independence of observations, 226
label based registration, 64
non-sphericity in time-series models, 141
spatial correlations, 225, 226
temporal autocorrelations, 184
threshold power analysis, 243
voxel-based morphometry, 92, 93, 94–95

Smoothness estimators, 16
Source reconstruction, 8, 11, 211, 323, 324, 334–335, 367, 377,

407, 463
anatomical constraints (model averaging), 464–466
distributed models see Distributed source localization

models, electro-/magneto-encephalography
dynamic causal models, 561, 562, 574
electro-encephalography

simulated data, 372–374
three sphere shell model, 364

equivalent current dipole methods, 367, 377, 388
magneto-encephalography simulated data, 370–372
model inversion, 11
model selection, 455–456
multiple constraints, 463–464
variational Bayes, 324

Spatial correlation, 224–225
random field theory, 226, 227
relation to Bonferroni correction, 225–226

Spatial independent component analysis, 39
Spatial modes see Eigenimages
Spatial normalization, 4, 11, 12–13, 49, 63, 94, 225

Bayesian inversion of anatomical models, 7
between-modality registration, 58
evaluation, 77
gross anatomical pathology, 13
model-based/template technique, 4
statistical parametric mapping software, 75–77

scaling parameters, 76
voxel-based morphometry, 92, 93, 94

Spatial priors
segmentation, 84–85, 93

deformation, 85
spatio-temporal model for electro-encephalography,

324–326, 330
Spatial registration, 11, 14

functional/anatomical data coregistration, 13–14
Spatial scale, 14
Spatial smoothing, 11, 13–14
Spatial transforms, 11–14

model inversion, 11
realignment, 11, 12

Spatially regularized general linear model, 313–321
approximate posteriors, 315–316, 321

autoregression coefficients, 316
precisions, 316
regression coefficients, 315–316

contrasts, 317
false positive rates, 318
generative model, 313–318
model likelihood, 314
notation, 313
priors, 314

autoregression coefficients, 315
precisions, 315
regression coefficients, 314–315

results, 318–320
event-related responses, 319–320
null data, 318
synthetic data, 318–319

spatio-temporal deconvolution, 316–317
thresholding, 317
variational Bayes, 315, 318, 320

implementation, 316
Spatio-temporal model for electro-encephalography, 323–335

approximate posteriors, 328–329
regression coefficients, 329–330

Bayesian inference, 328
generative model, 324–326
implementation, 330–331
notation, 324
posterior density, 328
posterior probability maps, 323
precision, 330
principal component analysis, 328
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qualitative results, 331–334
comparison with LORETA, 331–332
event-related potentials simulation, 332–333
face processing data analysis, 333–334

spatial priors, 324–326, 330
temporal priors, 323, 326–328, 330

damped sinusoids, 326–327
dimensionality, 328
wavelets, 327–328

variational Bayes, 324, 328, 333
Spatio-temporal models, 11

functional magnetic resonance imaging see Spatially
regularized general linear model

Spearman correlation test, 259
Specificity, 242

brain mapping, 6
spatially regularized general linear model, 318

Spherical head model, 364, 365
anatomically constrained, 365

Sphericity assumption, 140, 142
measures of departure, 142–143
violations see Non-sphericity

Spiny stellate neurons, 417, 418, 423, 424, 564, 565
Split plot design, 116
SPM2, 94
SPM5, 84, 85, 89, 94, 316
Standard anatomical space, 6, 11
State-effects, 197, 206
State-space models, 447–448, 508
Statistical models, 32, 34–38
Statistical non-parametric mapping, 15, 254
Statistical parametric mapping, 20, 253

affine registration, 77
classical inference, 34
degrees of freedom, 143, 145, 146
error variances, 5
general linear model, 14, 16–18
historical aspects, 4–5, 6, 14
limitations, 276
magneto-/electro-encephalography, 214, 215
mass-univariate models, 212, 213–214
non-linear registration, 77
non-sphericity adjustment, 141, 143–144, 145

model whitening approach, 146
positron emission tomography, 4–5
principles, 10–30, 34
random field theory, 15
regionally specific effects, 15
sensitivity, 15
spatial normalization, 75–77

scaling parameters, 76
voxel-based morphometry, 93, 95–96

Stimulus onset asynchrony, 200, 201, 205
blood-oxygenation-level-dependent (BOLD)

response, 178, 179
event-related designs, 187–188, 197, 204–205, 208
haemodynamic response function, 181
stochastic designs, 204, 207–208
study design issues, 26–27

timing, 200, 208
word processing, 25–26

Stochastic processes, 4
neuron model, 395–397
neuronal codes, 526
population density models, 392

Stochastic study design, 26, 28, 201, 203, 204, 207
non-stationary, 26
null events, 205, 208
stationary, 26, 27

Stroke, 13
Structural equation modelling, 41–42, 542, 600

effective connectivity, 514–515
Sulci, conservation/differences between subjects, 94
Sum of squares, 167
Summary statistics

error variance estimation, 28
partitioned errors for multi-way analysis of variance,

174–175
random effects analysis, 157–158, 160–161,

162–163
positron emission tomography, 162–163

Synaptic activity, 492
balloon model, 341, 343
blood flow relationship, 344–345
drivers versus modulators, 432
effective connectivity, 476
efficacy, 476, 512, 524
haemodynamic model, 344–345, 348, 350
neural mass models, 417, 418

event-related potentials, 424
neuron model, 394–395

population density models, 395
plasticity, 475

Synchronized activity, 562
neuronal codes, 525, 526–527
neuronal interactions, 522, 523, 528
neuronal transients, 528

System identification, 508–509

t-contrasts, 18, 136, 203
construction/testing, 131–132

t-maps, 3, 5, 15, 20
t-statistic, 16, 34, 118, 121, 140, 160, 253,

276, 279
computation for contrasts construction, 132
general linear model, 16, 18, 105, 106
positron emission tomography, 112
serial correlations, 122

t-test, 16, 96, 97, 223
one-sample, 117, 118, 162, 277
paired, 117, 166
two-sample, 102, 105, 117, 118, 131, 166

Temporal autocorrelations, 141, 142, 143,
184–185, 199

functional magnetic resonance imaging, 6, 253
pre-colouring, 184
pre-whitening, 184–185
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Temporal basis functions, 36–37, 179, 180–183, 199
convolution model, 6–7
electro-/magneto-encephalography

distributed model, 378, 380–381, 388
hierarchical model, 218
spatio-temporal model, 325, 327–328

F -contrasts, 182, 183
finite impulse response, 180–181
Fourier sets, 180–181
gamma functions, 181
haemodynamic response function, 179, 186
non-linear convolution models, 186

Temporal filtering, 183–184, 200
functional magnetic resonance imaging, 122–123
general linear model, 16–17

Temporal independent component analysis, 39
Temporal interpolation, slice acquisition time correction,

198–199
Temporal priors, 323, 326–328, 330

damped sinusoids, 326–327
wavelet models, 327–328

Temporal realignment, 12
Tensor-based morphometry, 14
Thalamo-cortical connections, 416, 421, 431, 475, 501
Thalamus, 84, 410, 574
Thin-plate splines, 71
Three letter acronyms, 8
Thresholds, 224

comparison of methods, 236
false discovery rate, 235–236
maximum spatial extent of test statistic, 233–234
maximum test statistic, 232–233

small region searches, 234
permutation tests, 260

single threshold test, 258, 259
suprathreshold cluster tests, 258–259

posterior probability maps, 301
power analysis, 242–243
random field theory, 226, 227, 228, 238–241, 276
regional hypotheses (corrected/uncorrected p values),

229–230
spatially regularized general linear model, 317

Time series
dynamic causal models, 541, 545
functional magnetic resonance

imaging, 10–30, 179
covariance components estimation

(expectation maximization), 287
data analysis, 10, 15–17
epoch-related studies, 26
error variances, 141, 146
event-related studies, 26
haemodynamic response function, 23
noise, 22
non-linear models, 24–25
signal (neuronally mediated

haemodynamic change), 22
spatially coherent confounds, 24
study design, 22–28

linear model
down sampling, 120–121
experimental timing, 119
grand mean scaling, 119
high-resolution basis functions, 120
movement-related effects, 121
number of scans, 119
parametric modulation, 120
proportional scaling, 119
regressors, 118, 119, 120, 121
scan number, 118

magneto-/electro-encephalography, 214, 215
event-related responses, 211

multivariate autoregressive models, 535
non-sphericity approaches, 141
serial correlations, 286, 287–288, 289

estimation, 287–288
filtering, 23–24

Tissue classification
bias correction, 83, 84
image segmentation, 81, 82

Tissue probability maps, 81, 82
deformation, 85

optimization, 86, 88
segmentation, 85, 93–94

spatial priors, 84–85
Topological inference, 10, 18–20, 237–245

anatomically closed/open hypotheses, 19
clusters, 237–238
general formulation, 239–240
historical aspects, 4
levels of inference, 19
peaks, 237–238
sets, 237–238

Total intracranial volume, 96
Transmembrane currents, 407
Transmembrane potential

modelling, 407–408, 410
neural mass models, 417, 418

Trial duration
epoch models, 197
event models, 196–197

Trilinear (first-order hold) interpolation, 50
Type I error see False positives

Univariate models, 506

Variability
anatomical, 11
between subject, 7, 14, 28, 94, 156, 164, 199
random effects analysis, 156
within-subject (between scan), 7, 28, 156, 164, 199

Variable resolution electromagnetic tomography (VARETA),
324, 329

Variance
partitioning, 171
transformations, 164–165
within-modality image registration/realignment, 55
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Variational Bayes, 303–311, 313, 447, 456
applications, 306–309

effect size estimation, 309
univariate densities, 306–307, 311

factorized approximations, 304–305, 307–308
free-form approximations, 305, 309
Gibbs sampling, 309
Kullback-Liebler divergence, 303, 304, 306, 316
Laplace approximation, 305, 306, 606–610
model evidence, free energy relationship, 303–304
model inference, 305–306, 308–309
non-linear models, 610–611
notation, 303
parameters of component posteriors, 305
spatially regularized general linear model, 315, 316, 318, 320
spatio-temporal model for

electro-/magneto-encephalography, 324, 328, 333
theory, 303–306

Variational free energy, 447
Verbal fluency, 115, 161–163, 298, 299, 494–496, 498

see also Word processing/generation
Viscous fluid registration methods, 72
Visual cortex, 341, 343, 345, 406, 410, 421, 432, 437, 472, 473,

475, 478, 481, 524, 527, 542, 563
category selection pathway, 570–571
inter-hemispheric integration, 579–583
modulation by attentional mechanisms, 485–486
orientation tuning, 398
retinotopic mapping, 6, 432
sensory evoked potentials modelling, 40

Visual motion processing/visual attention, 20, 21, 22, 33,
40–41, 265, 298–299, 301, 451, 472, 512, 514, 515, 516, 520,
537, 556–559

Visual object recognition, 194, 195
Visual processing, 476, 477, 501
Visual-evoked responses, 23
Volterrra series formulation, 7, 25–26, 594–595

effective connectivity modelling, 485–486, 522, 524, 525
generalized convolution models, 519–520, 521

input-state-output models, 37, 444–445, 524
neuronal transients, 524, 525, 526
non-linear convolution models, 186, 207–208
non-linear evoked responses (balloon model), 341, 342, 343

haemodynamic model, 346–347, 444–445
Voxel-based analysis/models, 3, 4, 10, 11, 14

famlily-wise error, 223–224
hierarchical models, 35
spatial normalization, 4
topological inference, 4, 18–20

Voxel-based morphometry, 14, 92–98, 243
clinical applications, 97–98
data preparation, 93–95

Jacobian adjustment, 92, 94
objectives, 92, 94
principles, 92
segmentation, 92, 93–94
sensitivity, 95, 97
smoothing, 92, 93, 94–95

false-positive results, 97
spatial normalization, 94
statistical modelling, 95–97

confounds, 96, 97
global normalization, 96
inference, 96–97

Warping templates, 4
Wavelet models, 327–328
Wavelet transforms, 253

temporal priors for event-related potential
modelling, 327–328

Weighted minimum norm
L-curve approach, 369, 375, 378
source localization, 388

Bayesian inversion models, 367, 368–369
distributed models, 377, 378, 388

Wernicke’s area, 20, 553
White matter

electrical conductivity, 352
image segmentation, 84, 85
segmentation models, 93

Whitening the data (filtering)
covariance components estimation, 146
functional magnetic resonance imaging time

series, 23–24
drifts removal, 24

non-sphericity, 141, 146
Wilcoxon test, 259
Wilk’s statistic (Wilk’s Lambda), 213, 503, 504, 505
Windkessel theory/model, 343, 344, 345, 350, 443

see also Balloon model
Windowed autocorrelation matrix, 381
Windowed sinc interpolation, 50–51
Within-subject analysis of variance see Repeated measures

analysis of variance
Word processing/generation, 22, 25–26, 186–187, 289, 293, 319,

346, 348, 445, 449–450, 488, 494–496, 498, 505, 550–552,
553–556

modality/category factor interactions, 134–135
multiple subject data, 163

Zero-order hold (nearest neighbour) resampling, 50
Zooms, 76, 77
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Statistical parametric map (SPM)Image time-series

Parameter estimates

Design matrix

Template

Kernel

Random
field theory

p < 0.05

Normalisation

Realignment Smoothing General linear model

Statistical
inference

Plate 1 This schematic depicts the transformations that start with an imaging data sequence and end with a statistical parametric map
(SPM). An SPM can be regarded as an ‘X-ray’ of the significance of regional effects. Voxel-based analyses require the data to be in the same
anatomical space: this is effected by realigning the data. After realignment, the images are subject to non-linear warping so that they match
a spatial model or template that already conforms to a standard anatomical space. After smoothing, the general linear model is employed to
estimate the parameters of a temporal model (encoded by a design matrix) and derive the appropriate univariate test statistic at every voxel
(see Figure 2.3). The test statistics (usually t- or F -statistics) constitute the SPM. The final stage is to make statistical inferences on the basis of
the SPM and random field theory (see Figure 2.4) and characterize the responses observed using the fitted responses or parameter estimates.

Computational neuroanatomy

Multivariate
analyses

Images

segmentation

spatial
normalization

Voxel-based
morphometry

Deformation-based
morphometry

Normalized
images

Deformation
fields

Scalar function

grey-matter density e.g. Jacobian

Plate 2 Schematic illustrating different procedures in computational anatomy. After spatial normalization, one has access to the normalized
image and the deformation field implementing the normalization. The deformation or tensor field can be analysed directly (deformation-based
morphometry) or can be used to derive maps of formal attributes (e.g. compression, dilatation, shear, etc.). These maps can then be subject
to conventional voxel-based analyses (tensor-based morphometry). Alternatively, the normalized images can be processed (e.g. segmented)
to reveal some interesting aspect of anatomy (e.g. the tissue composition) and analysed in a similar way (voxel-based morphometry). Tensor-
based morphometry can be absorbed into voxel-based morphometry. For example, before statistical analysis, Jacobian, or voxel-compression
maps can be multiplied by grey-matter density maps. This endows volumetric changes, derived from the tensor, with tissue specificity, based
on the segmentation.
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Temporal basis functions

Single HRF

y (t ) = βT ⊗ u (t ) + ε
h (t ) = βT (u )

Basis functions

h (t ) = β1T1(t ) + β2T2(t ) + ...

Stimulus function

Ti 
(u )

T (u )

δ(ti)

Ti ⊗u(t )

Design matrixDesign matrix

SPM{F  }

u (t )

FIR model
h (t ) = β1δ  (t1) + β2δ  (t 2) + ...

y (t ) = ∑ βiu (t – ti) + ε
i

y (t ) = ∑ βi 
(Ti  ⊗ u(t )) + ε

i

Plate 3 Temporal basis functions offer useful constraints on the form of the estimated response that retain the flexibility of FIR models and
the efficiency of single regressor models. The specification of these constrained FIR models involves setting up stimulus functions u�t� that
model expected neuronal changes, e.g. boxcar-functions of epoch-related responses or spike-(delta)-functions at the onset of specific events
or trials. These stimulus functions are then convolved with a set of basis functions Ti�t� of peristimulus time that, in some linear combination,
model the HRF. The ensuing regressors are assembled into the design matrix. The basis functions can be as simple as a single canonical HRF
(middle), through to a series of top-hat-functions �i�t� (bottom). The latter case corresponds to an FIR model and the coefficients constitute
estimates of the impulse response function at a finite number of discrete sampling times. Selective averaging in event-related fMRI (Buckner
et al., 1998) is mathematically equivalent to this limiting case.

Likelihood
Prior
Posterior

Parameter Value

P
ro

ba
bi

lit
y

Combining Prior and Likelihood to Obtain the Posterior

Plate 4 This figure illustrates a hypothetical example of Bayes’ theory with a single parameter. By combining the likelihood and prior
probability density, it is possible to obtain a tighter posterior probability density. Note that the area under each of the curves is one.
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Plate 5 Data for PEB example. (a) Red circles denote ‘true’ effect sizes, wi, for each voxel i, generated from the prior p�wi��� = N�0��−1�
with � = 1. (b) The black dots denote ni = 10 data points at each voxel generated from the likelihood p�yi�wi� = N�wi��−1

i � with �i drawn
from a uniform distribution between 0.1 and 1. Thus some voxels, e.g. voxels 2, 15 and 18, have noisier data than others. Plots (c) and (d) are
identical to (a) and (b) but with blue crosses indicating maximum likelihood (ML) estimates of the effect size, ŵi. These are simply computed
as the mean of the data at each voxel, and are used to initialize PEB – see Plate 6.
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Plate 6 The plots show the true effect sizes, wi (red circles) and estimated effect sizes, ŵi (blue crosses), before PEB iteration number
(a) one, (b) three, (c) five and (d) seven. Plot (a) here is the same as plot (c) in Plate 5, as the estimates were initialized using ML.



Elsevier UK Chapter: 0Colorplates1 3-10-2006 4:32p.m. Page:4 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

Plate 7 Analysis of PET data showing active voxels (p < 0�001 uncorrected). The maps in (a) show the significance of subject-specific effects
whereas map (b) shows the significance of the average effect over the group. Map (c) shows the significance of the population effect from an
RFX analysis
.

x2 x3

N = 16, TR = 2s

Scan0 1

o

o

T0 = 16

T0 = 9

x1

Time (s)

–64 0 64 128 192 256 320 384

S
ca

n

20

40

60

80

100

120

140

160

180

0 2
Time (s)

Plate 8 Creation of regressors for design matrix. The predicted BOLD signal for sustained (blue) and decaying (green) activity, during
boxcar stimulation after convolution with an HRF in a time-space with resolution 	t = TR/N seconds (upper left). This predicted time course
is down-sampled every scan �TR = 2 s� at time point T0 to create the columns x1 (boxcar) and x2 (exponential decay) of the design matrix
(together with the constant term x3�. Two possible sample points �T0� are shown: at the middle and end of the scan (the specific choice should
match the relative position of the reference slice within the slice order, if any slice-timing correction is performed).
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Plate 9 Temporal basis functions offered by SPM, T = 32 s: (a) FIR basis set, KFIR = 16; (b) Fourier basis set, KF = 8; (c) Gamma functions,
K = 3; (d) Canonical HRF (red) and its temporal (blue) and dispersion (green) derivatives. The temporal derivative is approximated by the
orthogonalized finite difference between canonical HRFs with peak delay of 7 s versus 6 s; the dispersion derivative is approximated by the
orthogonalized finite difference between canonical HRFs with peak dispersions of 1 versus 1.01.
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Plate 10 Sufficiency of the informed basis set. In (a), two event-types were modelled with both the informed basis set and an FIR (12,
2 s time bins) for 12 subjects within a single, first-level (fixed-effects) design matrix. The event-types were novel or famous faces presented
for 0.5 s and requiring a response with the right hand (mean reaction times less than second; see Henson et al., 2002, for more details). The
maximum intensity projections (MIP) show F -contrasts thresholded at p < 0�05 corrected for (from left to right): the canonical HRF only, its
temporal derivative, its dispersion derivative and all time bins of the FIR. The plots below the MIPs show, for the region circled in each MIP,
the parameter estimates of the three ‘informed’ response functions (left) and for a re-fitted FIR (right), for both event-types (upper and low
plots). The canonical HRF and its two derivatives explain a lot of variability. A left motor region shows a canonical response (i.e. loading
mainly on the canonical HRF); an occipital region shows a response earlier than the canonical; an anterior temporal region shows a response
more dispersed than the canonical, but only for the second event-type (famous faces). Little additional variability is, however, picked up by
the FIR model: only a few voxels in anterior prefrontal cortex, which show a sustained undershoot (which could reflect a non-haemodynamic
artefact). In (b), contrast images of the average of the two event-types for each of 12, 2 s FIR time bins were taken to a second-level (‘random
effects’) analysis. The F -contrast I −h+h, where h is the canonical HRF (sampled every 2 s) and + is the pseudoinverse, shows some regions in
which significant variability across subjects is not captured by the canonical HRF (the ‘null space’ of the canonical HRF; left). The F -contrast
I −H+H , on the other hand, where H is now a matrix including the canonical HRF and its two derivatives, shows little that cannot be
captured by these three functions (right).
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Plate 11 Power spectra, highpass filtering and HRF convolution. Schematic power spectrum and time series (inset) for (a) subject at rest,
(b) after square-wave stimulation at 32 s on, 32 s off, (c) after highpass filtering with cut-off 128 s. (d) Real data (blue) and low-frequency drift
(black) fitted by DCT highpass filter matrix S (cut-off 168 s) derived from the global maximum in a 42 s on; 42 s off auditory blocked design
�TR = 7 s�. (e) Fits of a boxcar epoch model with (red) and without (black) convolution by a canonical HRF, together with the data (blue), after
application of the highpass filter. (f) Residuals after fits of models with and without HRF convolution: note large systematic errors for model
without HRF convolution (black) at onset of each block, corresponding to (non-white) harmonics of the stimulation frequency in the residual
power spectrum (inset).
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Plate 12 Models of fMRI temporal autocorrelation. Power spectra and autocorrelation functions for: (a) data (solid black), derived from
an AR(16) estimation of the mean, globally-normalized residuals from one slice of an event-related dataset; together with fits of an AR(1)
model (dashed blue) and 1/f amplitude model (dashed red); (b) high- (dot-dash) and low- (dotted) pass filters, comprising a bandpass filter
(dashed); (c) data and both models after bandpass filtering (note that bandpass filter characteristics in (b) would also provide a reasonable
approximation to residual autocorrelation); (d) data (solid black) and ReML fit of AR(1)+white noise model (dashed blue) after highpass
filtering (also shown is the bandpass filter power spectrum, demonstrating the high-frequency information that would be lost by lowpass
smoothing).
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Plate 15 A simple design matrix with 5 subjects (sessions) and 12 conditions. (a) A simple subtraction of two levels of a categorical factor
(Generate minus Read) that alternate six times. (b) A linear contrast across a parametric factor, time during experiment, with 12 levels.
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Plate 16 Cognitive conjunction and interactions (from Price and Friston, 1997). (Upper panels) The conjunction of two contrasts shows a
posterior temporal region that is activated when an object is present, regardless of whether the task was passive viewing or naming. (Lower
panels) When the same conditions are treated as a 2×2 factorial design (left), an interaction contrast reveals a more anterior temporal region
that is only active when an object is present and subjects are naming that object.
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Plate 17 (a) Non-linear effects of a parametric factor modelled in a single-subject design matrix using a second-order polynomial expansion.
(b) A linear time-by-condition interaction contrast in a 2×6 factorial design across 5 subjects.
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Plate 18 State- and item-effects (from Chawla et al., 1999). Attention to colour of radially-moving coloured dots increased both baseline
activity (top left) and evoked responses (top right) – i.e. both offset and gain – in V4 relative to attention to motion. The opposite pattern was
found in V5 (bottom row).
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Plate 19 Schematic form of 1/f and white noise (dark and light blue respectively) typical of fMRI data, together with experimentally-
induced signal at 0.03 Hz (red) and highpass filtering (hatched area).
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Plate 20 Efficiency for two event-types (from Josephs and Henson, 1999). Efficiency is expressed in terms of ‘estimated measurable power’
(EMP) passed by an effective HRF, characterized by a canonical HRF, highpass filter with cut-off period of 60 s and lowpass smoothing by a
Gaussian 4 s full-width at half maximum (FWHM), as a function of 	t for main (solid) effect ([1 1] contrast) and differential (dashed) effect
([1 −1] contrast). (a) Randomized design. (b) Alternating (black) and permuted (blue) designs. (c) With (green) and without (red) null events.
Insert: effect of non-linearity (saturation) on average response as a function of SOA within a 32 s blocked design. Solid line: average response
to a train of stimuli predicted using a second-order Volterra model of haemodynamic responses. The broken line shows the predicted response
in the absence of non-linear or second-order effects (Friston et al., 2000).
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Plate 21 For each trial type and subject, the ERR, for each channel, is projected to either three-dimensional brain space (source reconstruc-
tion) or interpolated on the scalp surface. This results in either 3-D or 2-D image time-series.

Plate 22 KL-divergence, KL�q��p� for p as defined in Figure 24.2 and q being a Gaussian with mean � and standard deviation  . The
KL-divergences of the approximations in Figure 24.2 are (a) 11.73 for the first mode (yellow ball), (b) 0.93 for the second mode (green ball)
and (c) 0.71 for the moment-matched solution (red ball).
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Plate 23 PPM for positive auditory activation. Overlay of effect-size, in units of percentage of global mean, on subjects’ MRI for above-
threshold voxels. The default thresholds were used, i.e., we plot cn for voxels which satisfy p�cn > 0� > 1−1/N .

Plate 24 PPM for positive or negative auditory activation. Overlay of �2 statistic on subjects’ MRI for above-threshold voxels. The default
thresholds were used, that is, we plot �2

n for voxels which satisfy p�cn > 0� > 1−1/N .
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Plate 25 PPM showing above-threshold �2 statistics for any effect of faces.

Plate 26 True and estimated source distributions at time t = 20 ms. Note the scaling in the figures. The VB-GLM approach is better both
in terms of spatial localization and the scaling of source estimates.

Plate 27 Two ERP components, derived from a biophysical model, used to generate simulated ERP data. These mimic an early component
and a late component.
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Plate 28 Four components, derived from a biophysical model, used in an over-specified ERP model.

Plate 29 Regression coefficients, wg , from ERP simulation. ‘Coeff 1’ and ‘Coeff 2’ denote the first and second entries in the regression
coefficient vector wg . True model (left) and estimates from correctly specified model (right).
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Plate 30 Estimated regression coefficients, ŵg , from over-specified model. The true coefficients are shown in Plate 29. Note the scaling
of coefficients 3 and 4 (the true values are zero). Despite the high temporal correlation between regressors 2 and 3, the coefficients for
regressor 3 have been correctly shrunk towards zero. This is a consequence of the spatial prior and the iterative nature of the spatio-temporal
deconvolution (see Figure 26.6).

Plate 31 True regression coefficients for ERP simulation with correlated sources. This simulation used a design matrix comprising the
regressors shown in Plate 28, with the first and fourth coefficients set to zero and the second and third set as shown in this figure.



Elsevier UK Chapter: 0Colorplates1 3-10-2006 4:32p.m. Page:19 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

Plate 32 Estimated regression coefficents, ŵg , for ERP simulation with correlated sources. Coefficients 2 and 3 resemble the true values shown
in Plate 31, whereas regressors 1 and 4 have been correctly shrunk towards zero by the spatio-temporal deconvolution algorithm.

Plate 33 The figure shows differential EEG topography for faces minus scrambled faces at t = 160 ms poststimulus.
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Plate 34 Sensor time courses for face data at occipito-temporal electrode B8 (left) and vertex A1 (right) for faces (blue) and scrambled faces
(red).
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Plate 35 First eigen-time-series of downsampled ERP for unfamiliar faces (blue lines in both plots) with wavelet shrinkage approximations
using Daubechies basis (left) and Battle-Lemarie basis (right).

Plate 36 These images are derived from the source reconstruction of ERPs in response to faces and scrambled faces. The plots show
absolute differences between faces and scrambled faces at t = 160 ms post-stimulus. The maps have been thresholded such that the largest
difference appears in red and 50 per cent of the largest difference appears in blue.

Plate 37 Best fitting sphere on a scalp surface extracted from a subject’s structural MRI.
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Plate 38 The left figure shows the original source location, defined by the cortical sheet. The colour scale indicates the radius of the scalp
Rscalp����� in the direction ����� of the dipole locations �Rsb� ����. The right figure is the transformed source space obtained after applying
Eqn. 28.60. The colour scale shows the scaling of the source radii, i.e. Rsphere/Rscalp �����.

Plate 39 Reconstructed sources obtained with ReML using the example shown in Figure 29.2 (SNR = 12): no location priors (top left),
with accurate location priors (bottom left), with close inaccurate location priors (top middle), with distant inaccurate location priors (bottom
middle), with both accurate and close inaccurate location priors (top right) and with both accurate and distant inaccurate location priors
(bottom right).
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Plate 40 Multisubject analysis of face-selective response based on ReML analysis. (a) The mean M170 across participants and (b) its scalp
topography. An identity matrix was used for the noise covariance in sensor space. When using only the MSP source prior, subtraction of the
absolute values of the separate source reconstructions for faces versus scrambled faces revealed (c) activation of right fusiform (+51 −39 −15),
T(7) = 6.61, (d) right middle temporal gyrus (+63 −69 +3), T(7) = 3.48, and right parahippocampal gyrus (+27 −6 −18), T(7) = 3.32, when
thresholded at p < 0.01 uncorrected. MEG data from a 151-channel CTF Omega system were acquired while 9 participants made symmetry
judgements to faces and scrambled faces. The MEG epochs were baseline-corrected from −100 to 0 ms, averaged over trials (approx. 70 face
and 80 scrambled trials) and low-pass filtered to 20 Hz. A time-window around the peak in the global field power of the difference between
the event-related field (ERF) for faces and scrambled faces that corresponded to the M170 was selected for each participant (mean window
= 120–200 ms). Segmented cortical meshes of approximately 7200 dipoles oriented normal to the grey matter were created using Anatomist,
and single-shell spherical forward models were constructed using Brainstorm. Multivariate source prelocalization (MSP) was used to reduce
the number of dipoles to 1500. The localizations on the mesh were converted into 3D images, warped to MNI space using normalization
parameters determined from participants’ MRIs using SPM2, and smoothed with a 20 mm full width half maximum (FWHM) isotropic
Gaussian kernel. These smoothed, normalized images were used to create an SPM of the t-statistic over participants (final smoothness approx
12 × 12 × 12 mm) (c) and (d).
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Plate 41 Real data analysis – sensor level: (a) and (b) show the differences, measured on the scalp, between faces and scrambled faces, in
terms of the event-related field (ERF) from a single sensor (a), and the global energy over sensors (b) using standard time-frequency analysis and
statistical parametric mapping (Kilner et al., 2005). The time-frequency subspace W we tested is shown in (c) by plotting each column as a function
of time. This uses the same representation as the first panel of the previous figure. This subspace tests for responses in the alpha range, around 200
ms (see corresponding time-frequency effect in (a)). The corresponding induced and evoked energy distributions over the scalp are shown in (d),
for two conditions (faces and scrambled faces).
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Plate 42 Real data analysis – source level: reconstructed evoked and induced responses are shown for both faces and scrambled face trials.
These data correspond to conditional expectations, rendered onto a cortical surface. Note that these views of the cortical surface are from
below (i.e. left is on the right). Evoked power was normalized to the maximum over cortical sources.
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Plate 43 Real data analysis – evoked responses: the upper panels show the reconstructed evoked power changes between faces and
scrambled faces. The lower panels show the reconstructed evoked responses associated with three regions where the greatest energy change
was elicited.
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Plate 44 Visualization on the subjects’ MRI: the regions identified as showing energy changes for faces versus scrambled faces in Plate
43 are shown, co-registered with a MRI scan: the right OFC (upper left panel), the right IOG (upper right panel) and the posterior right STS
(lower panel). These source estimates are shown both as cortical renderings (from below) and on orthogonal sections through a structural
MRI, using the radiological convention (right is left).

g (ω,t )e g (ω,t )T g (ω,t )i

g (ω,t )e g (ω,t )T g (ω,t )i

Modelling induced oscillations

Plate 45 Upper panel: simulation of fast stimulus-related modulation of backward connectivity, using the model depicted in Figure 33.18.
Black curves are the responses of area 1; grey curves correspond to area 2. Time-frequency responses are shown for area 1 only. The white line,
superimposed on these spectral profiles, shows the time course of the modulatory input. (a) Evoked power, after averaging over trials, showing
late oscillations that have been augmented by modulatory input. (b) Total power, averaged over trials. (c) Induced power, normalized over
frequency. Lower panel: as for the upper panel, but here the modulatory effect has been delayed. The main difference is that low-frequency
evoked components have disappeared because dynamic and structural perturbations are now separated in time and cannot interact. See main
text for further details.
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Transfer of energy from evoked to induced responses
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Plate 46 Simulation of trial-to-trial latency jitter (2000 trials), using the model depicted in Figure 33.18. Black curves are the responses of
area 1; grey curves correspond to area 2. Time-frequency responses are shown for area 1 only. (a) Canonical response to a stimulus at time
zero. (b) Evoked responses, after averaging over trials. (c) Total power, averaged over trials. (d) Induced power. As predicted, high-frequency
induced oscillations emerge with latency jittering. This is due to the fact that trial-averaging removes high frequencies from the evoked power;
as a result, they appear in the induced response.

g (ω,t )e

g (ω,t )T g (ω,t )i

Plate 47 Simulation of gain variations over trials (2000 trials). The format is the same as in Plate 46. As predicted, although gain variation has
no effect on evoked power it does affect induced power, rendering it a ‘ghost’ of the evoked power. See main text for details.
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Plate 48 Adjusted power (d). The format is the same as in Plate 46. As predicted, the adjusted power is largely immune to the effects of
latency variation, despite the fact that evoked responses still lose their high-frequency components.
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Plate 49 Inflated cortical representation of (a) two simulated source locations (‘valid’ prior) and (b) ‘invalid’ prior location.

(a) (b)

(c)

–1 0 1

Plate 50 Inflated cortical representation of representative source reconstructions using (a) smoothness prior, (b) smoothness and valid
priors and (c) smoothness, valid and invalid priors. The reconstructed values have been normalized between −1 and 1.
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Plate 51 3D segmentation of 71 structures of the probabilistic MRI atlas developed at the Montreal Neurological Institute. As shown in
the colour scale, brain areas belonging to different hemispheres were segmented separately.

Plate 52 Different arrays of sensors used in the simulations. EEG-19 represents the 10/20 electrode system; EEG-120 is obtained by
extending and refining the 10/20 system; and MEG-151 corresponds to the spatial configuration of MEG sensors in the helmet of the CTF
System Inc.



Elsevier UK Chapter: 0Colorplates1 3-10-2006 4:32p.m. Page:28 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

anatomical regions anatomical regions
1

0.5

0

–0.5

–1

–1 0
Functional space

1

1

0.5

0

–0.5

–1

–1 0
Functional space

1

Plate 53 Classical or metric scaling analysis of the functional topography of intrinsic word generation in normal subjects. Left: anatomical
regions categorized according to their colour. The designation was by reference to the atlas of Talairach and Tournoux (1988). Right: regions
plotted in a functional space, following the scaling transformation. In this space the proximity relationships reflect the functional connectivity
among regions. The colour of each voxel corresponds to the anatomical region it belongs to. The brightness reflects the local density of points
corresponding to voxels in anatomical space. This density was estimated by binning the number of voxels in 0.02 ’boxes’ and smoothing with
a Gaussian kernel of full width at half maximum of 3 boxes. Each colour was scaled to its maximum brightness.
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Plate 54 Upper panel: schematic of the neural net architecture used to estimate causes and modes. Feed-forward connections from the
input layer to the hidden layer provide an estimate of the causes using some recognition model (the E-step). This estimate minimizes
prediction error under the constraints imposed by prior assumption about the causes. The modes or parameters are updated in an M-step. The
architecture is quite ubiquitous and when ‘unwrapped’ discloses the hidden layer as a ‘bottleneck’ (see insert). These bottleneck-architectures
are characteristic of manifold learning algorithms, like non-linear PCA. Lower panel (left): condition-specific expression of the two first-order
modes from the visual processing fMRI study. These data represent the degree to which the first principal component of epoch-related
responses over the 32 photic stimulation-baseline pairs was expressed. These condition-specific responses are plotted in terms of the four
conditions for the two modes. Motion – motion present. Stat. – stationary dots. Colour – isoluminant, chromatic contrast stimuli. Isochr. –
isochromatic, luminance contrast stimuli. Lower panels (right): the axial slices have been selected to include the maxima of the corresponding
spatial modes. In this display format, the modes have been thresholded at 1.64 of each mode’s standard deviation over all voxels. The resulting
excursion set has been superimposed onto a structural T1-weighted MRI image.
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Plate 55 A simple non-linear model involving u (input) and y (response). (a) Non-linearity in the response is generated by a bilinear term
uy, which models a non-additive interaction between input and intrinsic activity. The model is noise free for simplicity. The interaction term
is scaled by b2, effectively quantifying the model’s sensitivity to input at different levels of intrinsic activity. (b) Plots of input and output at
different values of b2 disclose the model’s sensitivity to b2. At a fixed input, u = u0, the response varies depending on its value.
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Plate 56 (a) Models for psychophysiological interaction (PPI): subjects were asked to detect changes in velocity of a radially moving
stimulus or just to observe the stimulus. The velocity of the actual stimulus remained constant, so that only the attentional set changed. An
analysis based on the PPI model in (a) identified a significant response in V5 that was consistent with an attentional modulation of input from
V1. The PPI term is basically an interaction between attentional set, u, and V1 activity as measured with fMRI. (b) The change in sensitivity
of V5 to V1 input, depending on attentional set. This is a simple comparative regression analysis, after partitioning the data according to the
level of the attention factor.



Elsevier UK Chapter: 0Colorplates1 3-10-2006 4:32p.m. Page:30 Trim:7.5in×9.25in

Basal Font:Palatino Margins:Top:40pt Gutter:68pt Font Size:9.5/12 Text Width:42pc Depth:55 Lines

3

2

1

0

–1

–2

–3
0 100 200

V1/2 complex

Posterior parietal cortex Prefrontal cortex

V5

300

3

2

1

0

–1

–2

–3
0 100 200 300

3

2

1

0

–1

–2

–3
0 100 200 300

Key Fixation Non-attention
StationaryAttention

Activity

3

2

1

0

–1

–2

–3
0 100 200 300

Plate 57 These are the time-series of regions V1/2 complex, V5, PPC and PFC from subject 1, in the right hemisphere. All plots have the
same axes of activity (adjusted to zero mean and unit variance) versus scan number (360 in total). The experiment consisted of four conditions
in four blocks of 90 scans. Periods of ‘attention’ and ‘non-attention’ were separated by a ‘fixation’ interval where the screen was dark and the
subject fixated on a central cross. Each block ended with a ‘stationary’ condition where the screen contained a freeze frame of the previously
moving dots. Epochs of each task are indicated by the background greyscale (see key) of each series. Visually evoked activity is dominant in
the lower regions of the V1/2 complex, whereas attentional set becomes the prevalent influence in higher PPC and PFC regions.
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Plate 58 These results are based upon the conditional or MAP estimates of Figure 41.7. The upper panels show the implied first-order
kernels for neuronal responses (upper-left) and equivalent haemodynamic responses (upper-right) as a function of peristimulus time for each
of the three regions. The lower panels show the predicted response based upon the MAP estimators and a comparison of this response to the
true response. The agreement is self-evident.
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Plate 59 Model definition for the category-selectivity paradigm: the sources comprising the DCM are connected with forward (solid),
backward (broken) or lateral (grey) connections as shown. V1: primary visual cortex, RS: retrosplenial cortex, PPA: parahippocampal place
area, IOG: inferior occipital gyrus, STS: superior temporal sulcus, FFA: fusiform face area (left is on the left). Insert: transparent views of the
subject’s cortical mesh from the top-right, showing the sources that defined the lead-field for the DCM: a bilateral extrinsic input acts on
the primary visual cortex (red). Two pathways are considered: (i) bilaterally from occipital regions to the parahippocampal place area (blue)
through the retrosplenial cortex (green, laterally interconnected); (ii) in the right hemisphere, from primary visual areas to inferior occipital
gyrus (yellow) which projects to the superior temporal sulcus (cyan) and the lateral fusiform gyrus (magenta). The superior temporal sulcus
and lateral fusiform gyrus are laterally connected.
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Plate 60 DCM specification for the auditory oddball paradigm: Left: graph depicting the sources and connections of the DCM using the
same format as Plate 59: A1: primary auditory cortex, OF: orbitofrontal cortex, PC: posterior cingulate cortex, STG: superior temporal gyrus.
Insert: localized sources corresponding to the lead fields that entered the DCM: a bilateral extrinsic input acts on primary auditory cortex
(red) which project to orbitofrontal regions (green). In the right hemisphere, an indirect pathway was specified, via a relay in the superior
temporal gyrus (magenta). At the highest level in the hierarchy, orbitofrontal and left posterior cingulate (blue) cortices were assumed to be
laterally and reciprocally connected. Lower right: results of the Bayesian model selection among DCMs allowing for learning-related changes
in forward F, backward B, forward and backward FB and all connections FBL. The graph shows the Laplace approximation to the log-evidence
and demonstrates that the FB model supervenes. The log-evidence is expressed relative to a DCM in which no connections were allowed to
change.
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Letter decisions > Spatial decisions

Plate 61 Results from an SPM analysis of the fMRI data from Stephan et al. (2003). Comparing letter decisions to visuo-spatial decisions
about identical stimuli showed strongly left-lateralized responses, including classical language areas in the left inferior frontal gyrus and
visual areas in the left ventral visual stream (white ellipse), e.g. in the fusiform gyrus, middle occipital gyrus and lingual gyrus. Results are
shown at p < 0�05, corrected at the cluster level for multiple comparisons across the whole brain. Adapted, with permission, from Figure 1 in
Stephan et al., 2003.

Search volume S Excursion set C

Intrinsic volumes of C

Plate 62 Left: picture of a search volume S ⊂ �D and its excursion set C = 
t ∈ S � X�t� > x�, defined by a height threshold x. Right:
Minkowski functionals for some common search volumes. After statistical flattening (i.e. with unit roughness) these correspond to the resel
counts.
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