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SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing,
we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source
reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory;
(ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors;
(iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several
variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase
coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis
methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI)
and batching tools.

1. Introduction

Statistical parametric mapping (SPM) is a free and open
source academic software distributed under GNU General
Public License. The aim of SPM is to communicate and
disseminate methods for neuroimaging data analysis to the
scientific community that have been developed by the SPM
coauthors associated with the Wellcome Trust Centre for
Neuroimaging, UCL Institute of Neurology.

The origins of SPM software go back to 1990, when SPM
was first formulated for the statistical analysis of positron
emission tomography (PET) data [1, 2]. The software incor-
porated several important theoretical advances, such as the
use of general linear model (GLM) to describe, in a generic
way, a variety of experimental designs [3] and random field
theory (RFT) to solve the problem of multiple comparisons
arising from the application of mass univariate tests to

images with multiple voxels [4]. As functional magnetic
resonance imaging (fMRI) gained popularity later in the
decade, SPM was further developed to support this new
imaging modality, introducing the notion of a hemodynamic
response function and associated convolution models for
serially correlated time series. This formulation became an
established standard in the field and most other free and
commercial packages for fMRI analysis implement variants
of it. In parallel, increasingly more sophisticated tools for
registration, spatial normalization, and segmentation of
functional and structural images were developed [5]. In
addition to finessing fMRI and PET analyses, these methods
made it possible to apply SPM to structural MRIs [6], which
became the field of voxel-based morphometry (VBM).

The first decade of the 21st century brought about two
further key theoretical developments for SPM: increasing
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use of Bayesian methods (e.g., posterior probability mapping
[7]) and a focus on methods for studying functional inte-
gration rather than specialization. Dynamic causal modelling
(DCM [8]) was introduced as a generic method for studying
functional integration in neural systems. This approach uses
Bayesian methods for fitting dynamic models (formulated as
systems of differential equations) to functional imaging data,
making inferences about model parameters and performing
model comparison. Bayesian model comparison uses an
approximation to the model evidence (probability of the data
given the model). Model evidence quantifies the properties of
a good model; that is, that it explains the data as accurately
as possible and, at the same time, has minimal complexity
[9–11]. Further development and refinement of DCM and
related methods are likely to remain the focus of research in
the future.

In the second half of the decade, the research focus of
the SPM group shifted towards the analysis of MEG and
EEG (M/EEG). This resulted in three main developments.
First, the “classical” SPM approach was extended to the
analysis of M/EEG scalp maps [12–14] and time-frequency
images [15]. Second, a new approach to electromagnetic
source reconstruction was introduced based on Bayesian
inversion of hierarchical Gaussian process models [16–18].
The Bayesian perspective was also applied to the problem of
equivalent current dipole modelling [19]. Third, DCM was
extended to M/EEG data and several variants of the approach
were validated, focusing on evoked responses [20], induced
responses [21], steady state responses [22], and phase
coupling [23]. In order to make it possible for our colleagues
to apply these methods easily to their data, infrastructure for
conversion and pre-processing of M/EEG data from a wide
range of recording systems were incorporated in the SPM
software, with notable contribution from the developers of
the FieldTrip software (http://www.ru.nl/donders/fieldtrip,
see Oostenveld et al. in this issue). SPM for M/EEG is con-
structed to support the high-level functionality developed
by our group and is not intended as a generic repository
of useful methods. This distinguishes SPM from some other
toolboxes (e.g., FieldTrip).

The present paper focuses on the implementation of
these tools in the most recent SPM version, SPM8. We will
not rehearse all the technical details of the methods, for
which the reader is referred to the relevant papers. Moreover,
we will also avoid focusing on specific interface details, as
these often change with intensive SPM development. The
details we do mention are correct for SPM8 version 4010,
released on July 21, 2010. Our aim is to provide an overview
of SPM functionality and the data analysis pathways that
the software presently supports. This overview is quite long
and inclusive. This reflects the fact that the software covers
three distinct domains, source reconstruction, statistical
parametric mapping (topological inference over various
spaces) and dynamic causal modeling. Each entails a set
of assumptions and procedures, some of which are fairly
basic and common to most analyses of electromagnetic
data and some of which are unique to the applications we
consider. We have elected to cover all the basic issues for
completeness and to relate them to the specific issues within

each domain. However, the readers who are familiar with
the basic parts could easily skip these sections. The paper
is organized as follows. After presenting a brief overview
of the SPM8 user interface, we focus on each of the three
core parts of SPM for M/EEG presented above: (i) statistical
analysis of images, (ii) Bayesian source reconstruction, and
(iii) DCM for M/EEG. The Appendix describes the M/EEG
pre-processing infrastructure in SPM8 and explains how to
get from raw M/EEG data to the format suitable for analysis
with one of the core SPM methods.

2. SPM8 Interface and Overview

The SPM software consists of a library of MATLAB M-
files and a small number of C-files, using the MATLAB
MEX gateway for the most computer-intensive operations.
Its installation simply consists of unpacking a ZIP archive on
the user computer and adding the root SPM directory to the
MATLAB path. More details on the installation (especially
compilation of the MEX files if needed) can be found on
the SPM wiki on Wikibooks (http://en.wikibooks.org/wiki/
SPM). SPM requires a prior installation of MATLAB, a com-
mercial high-end numerical software platform developed
by the MathWorks, Inc. (Natick, USA). More specifically,
SPM requires version R14SP3 (released in 2005) or any
more recent version (up to the latest R2010b). It runs on
any platform supported by MATLAB, that is, Microsoft
Windows, Macintosh OS, and Linux, 32- and 64-bit. A
standalone version of SPM8, compiled using the MATLAB
compiler, is available upon request—it allows using most of
the SPM functionalities without requiring the availability of
a MATLAB licence.

SPM for M/EEG can be invoked by typing spm eeg
on the MATLAB command line and pressing Enter. After
a brief initialization, the SPM GUI will appear. It consists
of three windows (see Figure 1). The menu window on
the top left (Figure 1(a)) contains buttons and other GUI
elements used to access different SPM functions. This win-
dow’s contents only change if the user switches modalities
(fMRI/PET/MEEG). The interactive window (bottom left,
Figure 1(b)) is used by SPM functions for creating dynamic
GUI elements, when necessary (for instance, to present the
user with a choice or ask for input). The graphics window on
the right (Figure 1(c)) is where SPM presents intermediate
and final results of its analyses. It is also used by the SPM
M/EEG reviewing tool. Additional graphics windows are
created when necessary.

There are three ways to access SPM M/EEG func-
tionality. The first is to use the GUI. Since SPM8 is
a GUI-based application, all the standard pre-processing
and analysis procedures can be accessed this way with no
need for programming. We recommend that beginners use
the GUI first, because this will prompt SPM to ask for
all relevant information needed to process the data. The
second way is to use the matlabbatch tool (Figure 1(d)).
Matlabbatch (http://sourceforge.net/projects/matlabbatch/)
is a standalone batch system for MATLAB developed by
Volkmar Glauche, based on the job manager, originally



Computational Intelligence and Neuroscience 3

4
3
2
1
0
−1
−2
−3
−4
−5
−6

(d)

(e)

 

 

(a)

(b)

(c)

(f)

Figure 1: SPM8 for M/EEG graphical user interface tools; see also Figure 11. (a) Menu window, (b) interactive window showing a series of
inputs required for conversion of an EEG dataset, (c) graphics window with the SPM8 for M/EEG reviewing tool. Evoked responses recorded
in a mismatch negativity experiment are displayed in a topographical plot, (d) MATLAB batch tool with the configuration interface for data
conversion, (e) Scalp map of potential distribution for mismatch negativity data that was created from the reviewing tool, and (f) 3D source
reconstruction interface.

developed for SPM5. Matlabbatch basically allows “program-
ming without programming”. Processing pipelines can be
built and configured using a specialized batch GUI and then
applied to multiple datasets in noninteractive mode. The
batch system is designed for repetitive analyses of data, once
the user knows what should be done, and in which order.
Matlabbatch can be accessed by pressing the “Batch” button
in the SPM menu window. This will open the batch tool
window. SPM functionality can be accessed via the “SPM”
menu in this window. Finally, users familiar with MATLAB
programming can call SPM functions directly from their
scripts without using the GUI. We will refer to this way of
using SPM as “scripting” as opposed to “batching”; that is,
using the batch tool. The use of GUI, batching, and scripting
are not always clearly separated, as for some functions the
batch tool is the only available GUI. Also, batch pipelines can
be created, modified, and run via scripts. In fact, creating
a template batch and then invoking it from a script with
specific inputs is the most convenient way to prescribe
some of the more complicated analyses in SPM. Thus, SPM

scripts can combine the user’s own code with invoking SPM
functions directly or via batch pipelines. The facilities used by
SPM programmers to create dynamic GUIs and batch tools
are also available to users for their own custom tools.

All the analysis procedures in SPM are optimized to
reduce computation time: typically an analysis of a single
dataset (e.g., source reconstruction or DCM) can be com-
pleted in minutes (or in the worst case, tens of minutes)
on a standard desktop computer. SPM does not require any
special computer infrastructure or parallel computations,
although one of our development directions is to introduce
parallelization to finesse analysis of multiple subjects and
fitting multiple alternative models to the data.

In what follows, we consider the three main domains in
which SPM functionality is used. We start with analyses of
M/EEG data in sensor space and then proceed to source space
analyses in the subsequent sections. Typically, sensor-level
analyses are used to identify peristimulus time or frequency
windows, which are the focus of subsequent analyses in
source space. These sensor space analyses use, effectively,
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standard SPM procedures (topological inference) applied to
a variety of electromagnetic data features that are organised
into images.

3. Sensor-Level Analysis and
Topological Inference

EEG and MEG typically produce a time-varying modulation
of signal amplitude or frequency-specific power in some
peristimulus time period, at each electrode or sensor. Often,
researchers are interested in whether condition-specific
effects (observed at particular sensors and peristimulus
times) are statistically significant. However, this inference
must correct for the number of statistical tests performed.
One way to do so is to control the family-wise error rate
(FWER), the probability of making a false positive over the
whole search space [24]. For independent observations, the
FWER scales with the number of observations. A simple
method for controlling FWER is the Bonferroni correction.
However, this procedure is rarely adopted in neuroimaging
because it assumes that neighbouring observations are
independent. When there is a high degree of correlation
among neighbouring samples (e.g., when data features are
smooth), this correction is far too conservative.

Although the multiple comparisons problem has always
existed for M/EEG analyses (due to the number of time bins
in the peristimulus time window), the need for a correction
method has become more acute with the advent of high-
density EEG caps and MEG sensor arrays that increase
the number of observations across the scalp. In many
analyses, the multiple comparisons problem is circumvented
by restricting the search space prior to inference, so that
there is only one test per repeated measure. This is usually
accomplished by averaging the data over prespecified sensors
and time bins of interest. This produces one summary
statistic per subject per condition. In many instances, this is a
powerful and valid way to sidestep the multiple comparisons
problem; however, it requires the space of interest to be
specified a priori. A principled specification of this space
could use orthogonal or independent data features. For
example, if one were interested in the attentional modulation
of the N170 (a typical event-related wave recorded 170 ms
after face presentation), one could first define the electrodes
and time bins that expressed an N170 (compared to baseline)
and then test for the effects of attention on their average.
Note that this approach assumes that condition-specific
effects occur at the same sensors and time, and is only valid
when selection is not biased [25]. In situations where the
location of evoked or induced responses is not known a priori
or cannot be localized independently, one can use topological
inference to search over some space for significant responses;
this is the approach implemented in SPM. It is based on
the random field theory (RFT [4]). RFT provides a way
of adjusting the P-values that takes into account the fact
that neighbouring sensors are not independent, by virtue of
continuity in the original data. Provided the data are smooth,
the RFT adjustment is less severe (i.e., is more sensitive)
than a Bonferroni correction for the number of sensors.

The theoretical basis of topological inference for M/EEG has
been recently reviewed by Kilner and Friston [14]. Here, we
rehearse some of the points from this review and provide
more details about the SPM implementation of the method.

Statistical analyses of M/EEG data in SPM use the
same mechanisms as all other data types (PET, fMRI, and
structural MRI in VBM). This simply requires transforming
data from SPM M/EEG format to image files (NIfTI
format, http://nifti.nimh.nih.gov/nifti-1/). Once the data are
in this image format, statistical analyses for M/EEG are
procedurally identical to between-subject analyses of PET or
VBM data (e.g., second level analyses in fMRI [26]). These
analyses assume one summary statistic image per subject
per condition (or level of an experimental factor). Here,
a summary statistic image is just a technical term for the
data feature summarising treatment effects that one wants to
make an inference about. More formally, when this summary
statistic is itself a maximum likelihood estimate based on
within-subject data, the analysis is called a summary-statistic
procedure for random effect models. In the present context,
we will see that the summary statistic can comprise many
different data features.

3.1. Creating Summary Statistics: Conversion to Images. This
function takes SPM M/EEG sensor data as input and gener-
ates an image for each trial (for trials that were not rejected).
This analysis can be applied to EEG and MEG (separately). In
the case of MEG systems with planar gradiometers, images
can be generated from root-mean-square values combining
the two planar gradiometers at each location. In an averaged
dataset, this will produce a single image per condition and
enable statistical comparisons across subjects. In an epoched
dataset, there will be an image per trial and multiple images
per condition. It is, therefore, possible to perform within-
subject statistical tests and then also take further summary
statistic images (usually contrasts of parameter estimates
from the within-subject models) from each subject to second
level analyses between subjects.

3.1.1. Images over Time. Data in the time domain are
converted into an image by generating a scalp map for
each time frame and stacking scalp maps over peristimulus
time (see Figure 2). Scalp maps are generated using the 2D
sensor layout specified in the dataset (see Appendix B.3)
and linear interpolation between sensors. The user is asked
to specify the output dimensions of the interpolated scalp
map. Typically, we suggest 64 pixels in each spatial direction.
There is also an option to either interpolate or remove bad
channels from the images. Interpolation is the preferred
option when there is a sufficient number of good channels
around each bad channel. If bad channels are removed, there
will be “holes” in the resulting images and these holes will
be propagated throughout the statistical analysis. A directory
is created with the same name as the input dataset. In this
directory there will be a subdirectory for each trial type.
These directories will contain 3D image files, where the
dimensions are space (x, y) and time (z). In the case of
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Figure 2: Construction of (space × space × time) summary statistic image and the ensuing SPM inference. The data are MEG responses to
presentation of images of faces and scrambled faces. (a) Average ERF for a single subject recorded at a left temporal sensor in response to
face presentation. The vertical line indicates the maximum positive value of this ERF. (b) Sensor-space map interpolated across all sensors at
185 ms after the stimulus, indicated by the line in (a). (c) Construction of a 3D (space× space× time) data volume from sensor-space maps,
such as shown in (b). (d) Results of F test for difference between responses to faces and scrambled faces. Overall, single trials (168 for each
condition) were converted to images as shown in (c). A two-sample t-test was performed and the results were assessed with an F-contrast to
test for differences of either polarity. The results were thresholded at P = .05 with FWER correction based on random field theory. The red
arrow indicates the peak value of the F-statistic (at 245 ms).

averaged data (e.g., an event-related potential-ERP), a single
image is placed in each directory. In the case of epoched data,
there will be an image for each trial.

3.1.2. Averaging over Time. If the time window of interest is
known in advance (e.g., in the case of a well-characterized
ERP or event-related field (ERF) peak) one can average over
this time window to create a 2D image with just the spatial
dimensions.

3.1.3. Time-Frequency Data. Although, in principle, topo-
logical inference can be done for any number of dimen-
sions, the present implementation in SPM8 is limited to
3 dimensions or less. Thus, when time-frequency features
are exported to summary statistic images, it is necessary to

reduce the data dimensionality from 4D (space × space ×
time × frequency) to either a 3D image (space × space ×
time) or a 2D time-frequency image (time × frequency).
This is achieved by averaging either over channels (space
× space) or frequencies. Averaging over channels (or as a
common special case, selecting one channel) furnishes 2D
time-frequency images (Figure 3).

When averaging over frequencies, one needs to specify
the frequency range of interest. The power is then averaged
over the specified frequency band to produce channel wave-
forms. These waveforms are saved in a new time-domain
M/EEG dataset. This dataset can be reviewed and further
processed in the same way as ordinary time domain datasets
(source reconstruction or DCM would not be appropriate
because the data features are power or energy [21]). Once this
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Figure 3: SPM analysis of time × frequency images. (a) Time-frequency images were calculated for each subject and smoothed by
convolution with a Gaussian kernel. (b) A t-statistic image was calculated from the smoothed time-frequency images and thresholded at
P < .01 (uncorrected). The location of the peak bin is shown. The white dotted box indicates our illustrative a priori window of interest. (c)
Statistical test restricted to the window of interest shown in (b) revealed a significant cluster (P = .005, cluster-level FWER correction). This
figure was adapted with permission from [15].

dataset is generated, it is automatically exported to images in
the same way as data in the time domain (see above).

3.1.4. Smoothing. The images generated from M/EEG data
are generally smoothed prior to second level (i.e., group
level) analysis by multidimensional convolution with a Gaus-
sian kernel (standard image smoothing available in SPM).
Smoothing is necessary to accommodate spatial/temporal
variability over subjects and ensure the images conform to
the assumptions of the topological inference approach. The
dimensions of the smoothing kernel are specified in the units
of the original data: [mm × mm × ms] for space-time, [Hz
× ms] for time-frequency images. The guiding principle for
deciding how much to smooth is based on the matched filter
theorem, which says that the smoothing kernel should match
the scale of data features one expects. Therefore, the spatial
extent of the smoothing kernel should be more or less similar
to the extent of the dipolar patterns expected in the data

(probably of the order of a few cm). In practice, one can
try smoothing the images with different kernels, according
to the principle above; this is a form of scale space search or
feature selection. Smoothing in time is not always necessary,
as temporal filtering has the same effect. Once the images
have been smoothed, one can proceed to the second level
analysis.

Figure 2 is a schematic illustrating the construction of
(space × space × time) summary-statistic image and the
ensuing SPM testing for an effect of faces versus scrambled
faces stimuli over subjects. This example highlights the role
of topological inference (based on random field theory)
to identify significant sensor-time regions that contain a
significant condition-specific response. Figure 3 illustrates a
typical analysis in time × frequency space using a single
channel. These analyses can then be reported directly or used
to finesse the subsequent characterisation of the appropriate
peristimulus time window and frequency bands in source
space.
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4. Source Analysis

This section focuses on the imaging (or distributed) methods
for EEG/MEG source reconstruction in SPM. This approach
results in a spatial projection of sensor data into (3D) brain
space and considers brain activity as comprising a very
large number of dipolar sources spread over the cortical
sheet, with fixed locations and orientations. This renders
the observation model linear, the unknown variables being
the source amplitudes. Given epoched and preprocessed
data, the evoked and/or induced activity for each dipolar
source can be estimated, for either a short time segment
or a wider peristimulus time window. The reconstructed
activity is in 3D voxel space and can then be analyzed using
mass univariate analysis in SPM, using appropriate summary
statistic images over time and/or frequency.

In contrast to PET/fMRI image reconstruction, M/EEG
source reconstruction is a nontrivial operation. Often com-
pared to estimating a body shape from its shadow, inferring
brain activity from scalp data is mathematically ill-posed and
requires prior information such as anatomical, functional,
or mathematical constraints to isolate a unique and highly
probable solution [27]. Distributed linear models have
been around for more than a decade now [28], and the
recommended pipeline in SPM for an imaging solution is
very similar to common approaches in the field [29, 30].
However, at least three aspects are original and should be
emphasized here.

(i) Based on an empirical Bayesian formalism, the inver-
sion is meant to be generic, in the sense that it can
incorporate and estimate the relevance of multiple
constraints of a varied nature (i.e., it can reproduce a
variety of standard constraints of the sort associated
with minimum norm [29], LORETA [30], and other
well-known solutions to the inverse problem). The
data-driven relevance of different constraints (priors)
is established through Bayesian model inversion, and
different sets of constraints can be evaluated using
Bayesian model comparison [16–18, 31, 32].

(ii) Subject-specific anatomy is incorporated in the gen-
erative model of the data, in a fashion that eschews
individual cortical surface extraction. The individ-
ual cortical mesh is obtained automatically from a
canonical mesh in MNI space, providing a simple
and efficient way of reporting results in stereotactic
coordinates [33].

(iii) SPM uses a Gaussian process model [34, 35] for
source reconstruction based on the sample channel×
channel covariance of the data over time. Crucially,
this means it does not reconstruct one time bin at
a time but uses the variance over time to furnish
a full spatiotemporal inversion for each time series.
This finesses any problems with specifying baselines,
because only the variance (change from prestimulus
baseline) contributes to the sample covariance and,
therefore, the solution. In short, SPM reconstructs
changes in source activity (not activity per se). This

becomes important when specifying the time win-
dow for inversion (see below).

The M/EEG imaging pipeline is divided into four
consecutive steps, which characterize any inverse procedure
with an additional step of summarizing the results. In this
section, we go through each of the steps that comprise a full
inverse analysis.

(i) Source space modelling.

(ii) Data coregistration.

(iii) Forward computation.

(iv) Inverse reconstruction.

(v) Summarizing the reconstructed response as an
image.

Whereas the first three steps specify the forward or gen-
erative model, the inverse reconstruction step is concerned
with Bayesian inversion of that model and is the only step
that requires the EEG/MEG data.

4.1. Getting Started. Everything described below is accessible
from the SPM user interface by pressing the “3D Source
Reconstruction” button. A new window will appear with
a GUI that guides the user through the necessary steps
to obtain an imaging reconstruction of their data (see
Figure 1(f)). At each step, the buttons not yet relevant for
this step will be disabled. At the beginning, only two buttons
are enabled: “Load”, which is used to load a preprocessed
SPM M/EEG dataset and the “Group inversion” button that
will be described below. One can load a dataset that is either
epoched with single trials for different conditions, averaged
with one ERP/ERF per condition, or grand averaged. An
important precondition for loading a dataset is that it should
contain sensors and fiducials (see “Section 4.3.”). This will
be checked when loading a file and loading will fail if
there is a problem. The user should make sure that for
each modality in the dataset as indicated by channel types
(either EEG or MEG), there is a sensor description. For
instance, to load MEG data with some EEG channels that
are not actually used for source reconstruction, the type
of these channels should be changed to “LFP” (local field
potential) or “Other” before trying to load the dataset.
Unlike “Other” channels, “LFP” channels are filtered and are
available for artefact detection. MEG data converted by SPM
from their raw formats will usually contain valid sensor and
fiducial descriptions. In the case of EEG, for some supported
channel setups (such as extended 10–20 or Biosemi), SPM
will provide default channel locations and fiducials that
can be used for source reconstruction. Sensor and fiducial
descriptions can be modified using the “Prepare” interface
(see Appendix B.3).

When a dataset is loaded, the user is asked to give
a name to the reconstruction. In SPM, it is possible to
perform multiple reconstructions of the same dataset with
different parameters. The results of these reconstructions
will be stored with the dataset after pressing the “Save”
button. They can be loaded and reviewed using the “3D
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Source Reconstruction” GUI and also with the SPM M/EEG
reviewing tool. From the command line, one can access
source reconstruction results via the D.inv field of the @meeg
object. This field (if present) is a cell array of structures. Each
cell contains the results of a different reconstruction. One can
navigate among these cells in the GUI, using the buttons in
the second row. One can also create, delete, and clear analysis
cells. The label provided at the beginning will be attached to
the cell for the user to identify it.

4.2. Source Space Modelling. After entering the label, the
“Template” and “MRI” buttons will be enabled. The “MRI”
button creates individual head meshes describing the bound-
aries of different head compartments based on the subject’s
structural scan. SPM will ask for the subject’s structural
image. It might take some time to prepare the model, as
the image needs to be segmented as part of computing
the nonlinear transformation from individual structural
spaces to the template space [5]. The individual meshes are
generated by applying the inverse of the spatial deformation
field, which maps the individual structural image to the MNI
template, to canonical meshes derived from this template
[33], Figure 4(b). This method is more robust than deriving
the meshes from the structural image directly and can work
even when the quality of the individual structural images is
low.

In the absence of an individual structural scan, com-
bining the template head model with the individual head
shape also results in a fairly precise head model. The
“Template” button uses SPM’s template head model based
on the MNI brain. The corresponding structural image can
be found under canonical/single subj T1.nii in the SPM
directory. When using the template, different things are done
depending on whether the data are EEG or MEG. For EEG,
the electrode positions will be transformed to match the
template head. So even if the subject’s head is quite different
from the template, one should be able to obtain reasonable
results. For MEG, the template head will be transformed to
match the fiducials and head shape that come with the MEG
data. In this case, having a head shape measurement can be
helpful in providing SPM with more data to scale the head
correctly.

Irrespective of whether the “MRI” or “Template” button
is used, the cortical mesh describing the locations of possible
sources of the EEG and MEG signal is obtained from a
template mesh (Figure 4(a)). In the case of EEG, the mesh is
used as is, and in the case of MEG it is transformed with the
head model. Three cortical mesh sizes are available: “coarse”,
“normal”, and “fine” (5124, 8196, and 20484 vertices, resp.).
We advise to work with the “normal” mesh. “Coarse” is
useful for less powerful computers and “fine” will only work
on 64-bit systems with enough main memory. The inner-
skull, outer-skull, and scalp canonical surfaces each comprise
2562 vertices, irrespective of the cortical mesh size.

For the purposes of forward computation, the orienta-
tions of the sources are assumed to be normal to the cortical
mesh. This might seem as a hard constraint at first glance,
especially for the “Template” option, where the details of

the mesh do not match the individual cortical anatomy.
However, in our experience, when a detailed enough mesh is
used, the vertices in any local cortical patch vary sufficiently
in their orientation to account for any activity that could
come from the corresponding brain area; provided the mesh
is sufficiently dense. All the (three) mesh resolutions offered
by SPM provide sufficient degrees of freedom in this context.
When comparing meshes with free and fixed orientation,
Henson et al. [36] found the latter to be superior for SPM’s
default source reconstruction method.

4.3. Data Coregistration. For SPM to provide a meaningful
interpretation of the results of source reconstruction, it
should map the coordinate system in which sensor positions
are originally represented to the coordinate system of a
structural MRI (MNI coordinates).

There are two possible ways of coregistering M/EEG data
to the structural MRI space.

(i) A landmark-based coregistration (using fiducials
only). The rigid-body transformation matrices (rota-
tion and translation) are computed such that they
match each fiducial in the M/EEG space to the
corresponding one in MRI space. The same transfor-
mation is then applied to the sensor positions.

(ii) Surface matching (between some head shape in
M/EEG space and some MRI-derived scalp tessella-
tion).

For EEG, the sensor locations can be used instead of the
head shape. For MEG, the head shape is first coregistered
with MRI space; the inverse transformation is then applied to
the head model and the mesh. Surface matching is performed
using an iterative closest point algorithm (ICP). The ICP
algorithm [37] is an iterative alignment algorithm that works
in three phases.

(i) Establish correspondence between pairs of features in
the two structures that are to be aligned, based on
proximity.

(ii) Estimate the rigid transformation that best maps the
first member of the pair onto the second.

(iii) Apply that transformation to all features in the first
structure. These three steps are then reapplied until
convergence. Although simple, the algorithm works
quite effectively when given a good initial estimate.

In practice, after pressing the “Coregister” button one
needs to specify the points in the MRI that correspond to the
M/EEG fiducials. If more than three fiducials are available
(which may happen for EEG as, in principle, any electrode
can be used as a fiducial), the user is asked at the first step
to select the fiducials to use. It is possible to select more than
three, but not less. Then for each M/EEG fiducial selected,
the user is asked to specify the corresponding position in the
MRI in one of three ways.

(i) “Select”—locations of some points such as the
commonly used nasion and preauricular points and



Computational Intelligence and Neuroscience 9

(a) (b)

Figure 4: Template meshes used for distributed source imaging. (a) “Normal” cortical template mesh (8196 vertices), left view. The
triangular grid shows the representation of the cortical surface used by SPM. (b) All template meshes (cortex, inner skull, outer skull,
and scalp) superimposed on the template MRI. Default fiducial locations associated with the template anatomy are displayed in light blue.

also CTF-recommended fiducials for MEG are hard-
coded in SPM. If an M/EEG fiducial corresponds to
one of these points, the user can select this option and
then select the correct point from a list.

(ii) “Type”—here it is possible to enter the MNI coordi-
nates for the fiducial (1 × 3 vector). If the fiducial
is not in the SPM hard-coded list, it is advised to
carefully find the correct point on either the template
image or on the subject’s own image registered to
the template. This can be done by opening the image
using SPM’s image display functionality. One can
then record the MNI coordinates and use them in
subsequent coregistration, using the “type” option.

(iii) “Click”—the user is presented with a structural
image and can click on the correct point. This option
is good for “quick and dirty” coregistration or to try
out different options.

After specifying the fiducials, the user is asked whether
to use the head shape points if they are available. For EEG
this is advised. For MEG, the head model is based on the
subject’s MRI, and precise information about the fiducials is
available (e.g., from a MRI with fiducials marked by vitamin
E capsules); using the head shape might actually do more
harm than good.

The results of the coregistration are presented in SPM’s
graphics window (see Figure 5). It is important to examine
the results carefully before proceeding. The top panel shows
the scalp, the inner skull, and the cortical mesh, with the
sensors and the fiducials. For EEG one should make sure that
the sensors are on the scalp surface. For MEG one should
check that the head position, in relation to the sensors, makes
sense and the head does not, for instance, protrude outside
the sensor array. In the bottom panel, the sensor labels are
shown in topographical array. One should check that the top
labels correspond to anterior sensors, bottom to posterior,
left to left, and right to right and also that the labels are where

expected topographically (e.g., that there is no shift when
matching positions to channels).

4.4. Forward Computation. This refers to computing, for
each dipole on the cortical mesh, the effect it would have
on the sensors. The result is an N × M matrix where N is
the number of sensors and M is the number of mesh vertices
(chosen from several options at a previous step). This matrix
can be quite large and is therefore stored in a separate MAT-
file (whose name starts with “SPMgainmatrix”). This file is
written to the same directory as the dataset. Each column
in this matrix is a so-called “lead field”, corresponding to
one mesh vertex. The lead fields are computed using the
“forward” toolbox, which SPM shares with FieldTrip (see
Oostenveld et al., this issue). This computation is based
on Maxwell’s equations and makes assumptions about the
physical properties of the head. There are different ways
to specify these assumptions which are known as “forward
models”.

The “forward” toolbox supports different forward mod-
els. After pressing the “Forward Model” button (which
should be enabled after successful coregistration), the user
has a choice of several head models, depending on the
modality of the data. In SPM8, we recommend using
a “single shell” model [38] for MEG and “EEG BEM”
(Boundary Elements Model [39–43]) for EEG. One can also
try other options and compare them using their model
evidence ([36], see below). The first time the EEG BEM
option is used with a new structural image (and also the first
time the “Template” option is used) a lengthy computation
will take place that prepares the BEM model based on the
head meshes. The BEM will then be saved in a large MAT-file
with ending “ EEG BEM.mat” in the same directory as the
structural image (this is the “canonical” subdirectory of SPM
for the template). When the head model is ready, it will be
displayed in the graphics window, with the cortical mesh and
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Figure 5: Examples of coregistration display (appears after the co-registration step has been completed). Top row shows the 3D outcome
of the co-registration, while the bottom row shows the sensor arrangement in 2D with corresponding labels. (a) EEG data (128 Biosemi
system) from the multimodal face perception experiment available from the SPM website. EEG sensor locations have been adjusted to fit the
scalp surface. (b) MEG data (275-channel CTF system) from the same experiment.

sensor locations, for verification (Figure 6). The actual lead
field matrix is computed at the beginning of the next step
and saved. This is a time-consuming step, particularly for
high-resolution meshes. The lead field file will be used for all
subsequent inversions, if the coregistration and the forward
model are not changed.

4.5. Inverse Reconstruction. The inverse reconstruction is
invoked by pressing the “Invert” button. The first choice
one gets is between “Imaging”, “VB-ECD”, and “DCM”. For
reconstruction based on an empirical Bayesian approach
(to localize evoked responses, evoked power, or induced
power) one should press the “Imaging” button. The other
options are explained in greater detail below. When there are
several conditions (trial types) in the dataset, then the next
choice is whether to invert all the conditions together or to
choose a subset. If one is planning a statistical comparison
between a set of conditions, one should invert all of them
together. After selecting the conditions one gets a choice
between “Standard” and “Custom” inversion. For “Standard”

inversion, SPM will start the computation with default
settings. These correspond to the multiple sparse priors
(MSP) algorithm [17], which is then applied to the whole
time series.

To fine tune the parameters of the inversion, the “Cus-
tom” option can be chosen. There will then be a possibility
to choose among several types of inversion, differing in
terms of their hyperpriors (priors on priors or constraints):
IID—equivalent to classical minimum norm [29], COH—
smoothness prior similar to methods such as LORETA [30],
or multiple sparse priors (MSP) [17]. The latter gives the
most plausible results and has been shown to have greater
model evidence in relation to other priors [36].

One can then choose the time window that will be used
for inversion. Based on our experience, we recommend the
time window be limited to periods in which the activity of
interest is expressed. The reason is that if irrelevant high-
amplitude activity is included, source reconstruction will
focus on reducing the error for reconstructing this activity
and might suppress the responses of interest. There is also
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(a) (b)

Figure 6: Examples of forward model display (appears after the forward modelling step has been completed). The figure includes the
cortical mesh, the sensor locations and the other layers used to compute the lead-field matrix. (a) EEG data (128 Biosemi system) from the
multimodal face perception experiment available from the SPM website. This figure shows the head model that was used to compute the
BEM forward solution for these data. (b) MEG data (275-channel CTF system) from the same experiment. This figure shows the head model
that was used to compute the realistic single shell solution for these data.

an option to apply a Hanning taper to the time series to
down-weight possible baseline noise at the beginning and
end of the trial. The next option is to prefilter the data.
This is mainly for focusing on certain temporal scales during
reconstruction (e.g., alpha band for ERPs or gamma for
faster induced responses or sensory-evoked responses). The
next option allows for extra source priors. This makes it
possible to integrate prior knowledge from the literature
or from fMRI/PET/DTI into the inversion [44]. Here, one
can just provide a thresholded statistical image and SPM
will generate the priors based on its suprathreshold clusters.
Custom priors are not a “hard” way to restrict the solution.
They will only be used when leading to a solution with higher
model evidence. A “hard” restriction of the inverse solution
is provided by the next option.

Here, one can restrict solutions to particular brain areas
by loading (or specifying) a MAT-file with a K × 3
matrix, containing MNI coordinates of the areas of interest.
This option may seem strange initially; as it may seem
to overly bias the source reconstruction. However, in the
Bayesian inversion framework, it is possible to compare
different inversions of the same data using Bayesian model
comparison. By limiting the solutions to particular brain
areas, one can greatly simplify the model, and if this
simplification appropriately captures the sources generating
the response, then the restricted model will have higher
model evidence than the unrestricted one. If, however, the
restricted sources cannot account for the data, the restriction
will result in a worse model fit and the unrestricted model
might be better (note that for model comparison to be valid,
all settings that affect the data, like the time window and
filtering, should be identical).

SPM8 imaging source reconstruction also supports mul-
timodal datasets. These are datasets that have both EEG and
MEG data from a simultaneous recording. Datasets from the

Elekta/Neuromag Vectorview MEG system, which has two
kinds of MEG sensors, are also treated as multimodal. If the
dataset is multimodal, a dialogue box will appear asking one
to select the modalities for source reconstruction from a list.
When selecting more than one modality, multimodal fusion
will be performed. This option uses a heuristic to rescale the
data from different modalities so that they can be fused [45].

Once the inversion is complete, the time course of the
source with maximal activity is presented in the top panel of
the graphics window (see Figure 7). The bottom panel shows
the maximum intensity projection (MIP) at the time of the
maximum activation. The log-evidence, which can be used
for model comparison as explained above, is also shown.
Note that not all of the output of the inversion is displayed.
The full output consists of time courses for all the sources
and conditions for the entire time window. It is possible to
view more of these results using the controls in the bottom
right corner of the 3D GUI. These allow one to focus on
a particular time, brain area, and condition. One can also
display a movie of the evolution of source activity.

4.6. Summarizing the Reconstructed Response as an Image.
SPM allows one to create summary statistic images in terms
of contrasts (mixtures of parameter or activity estimates)
over time and frequency. These are in the form of 3D NIfTI
images, so that one can proceed to GLM-based statistical
analysis in the usual way (at the between-subject level).
This entails summarizing the trial- and subject-specific
responses with a single 3D image in source space and involves
specifying a time-frequency window for each contrast image.
This is a flexible and generic way of specifying the data
features one wants to make an inference about (e.g., gamma
activity around 300 ms or average response between 80 and
120 ms). The contrast is specified by pressing the “Window”
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Figure 7: Display of the estimated distributed solution for evoked responses. The top panel shows the time course of the source having
maximal activity while the bottom panel shows the maximum intensity projections (MIP) at the time of maximum activation. (a) EEG data
from the multimodal face perception experiment available from the SPM website. (b) MEG data from the same experiment. Time course in
red is for the face stimuli while the light grey is for scrambled faces. The lighter red and gray lines indicate 90% confidence intervals.

button. The user will then be asked about the time window
of interest (in ms, peristimulus time). It is possible to specify
one or more time segments (separated by a semicolon).
To specify a single time point the same value can be
repeated twice. The next prompt pertains to the frequency
band. To average the source time course one can simply
leave this at the default of zero. In this case, the window
will be weighted by a Gaussian function. In the case of a
single time point, this will be a Gaussian with 8 ms full

width half maximum (FWHM). If one specifies a particular
frequency or a frequency band, then a series of Morlet
wavelet projectors will be generated, summarizing the energy
in the time window and frequency band of interest.

There is a difference between specifying a frequency band
of interest as zero, as opposed to specifying a wide band that
covers the whole frequency range of the data. In the former
case, the time course of each dipole is averaged over time,
weighted by a Gaussian. Therefore, if within the selected time
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window this time course changes polarity, the activity can
average out and even a strong response can produce a value
of zero. In the latter case, the power is integrated over the
whole spectrum ignoring phase, and this would be equivalent
to computing the sum of squared amplitudes in the time
domain.

Finally, if the data file is epoched rather than averaged,
there is a choice between “evoked”, “induced”, and “trials”.
The projectors generated at the previous step can either be
applied to each trial and the results averaged (induced) or
applied to the averaged trials (evoked). Thus, it is possible
to localize induced activity that has no phase locking to the
stimulus. It is also possible to focus on frequency content of
the ERP using the “evoked” option. Clearly the results will
not be the same. The projectors specified (bottom panel of
Figure 8) and the resulting MIP (top panel) will be displayed
when the operation is completed. The “trials” option makes
it possible to export an image per trial, which is useful for
performing parametric within-subject analyses (e.g., looking
for the correlates of reaction times).

The values of the exported images are normalized to
reduce between-subject variance. Therefore, for best results
one should export images for all the time windows and con-
ditions that will be included in the same statistical analysis
together. Note that the images exported from the source
reconstruction are a little peculiar because of smoothing
from a 2D cortical sheet into 3D volume (Figure 9). SPM’s
statistical machinery has been optimized to deal with these
peculiarities and ensure sensible results.

In what follows, we consider some auxiliary functions
associated with source reconstruction.

4.6.1. Rendering Interface. By pressing the “Render” button
one can open a new GUI window, which displays a rendering
of the inversion results on the brain surface. One can rotate
the brain, focus on different time points, run a movie, and
compare the predicted and observed scalp topographies and
time series. A useful option is the “virtual electrode”, which
allows one to extract the time course from any point on the
mesh and form the MIP at the time of maximum activation
at this point. An additional tool for reviewing the results is
available in the SPM M/EEG reviewing tool.

4.6.2. Group Inversion. A problem encountered with MSP
inversion is that it sometimes produces solutions that are
so focal in each subject that the spatial overlap between
the activated areas across subjects is not sufficient to yield
a significant result at the between-subject level. This could
be finessed by smoothing, but smoothing compromises the
spatial resolution and thus subverts the main advantage of
using an inversion method that can produce focal solutions.
The more principled solution is to tell the model that
the same distributed brain system has been engaged in
all subjects or sessions (by design). This is simple to do
using a hierarchical extension of the MSP method [46] that
effectively ensures the activated sources are the same in all
subjects (only the time course of activation is allowed to
vary over subjects). We showed that this modification makes

it possible to obtain significance levels close to those of
nonfocal methods such as minimum norm, while preserving
accurate spatial localization. Group inversion can yield much
better results than individual inversions because it introduces
an additional constraint for the ill-posed inverse problem,
namely, that the responses in all subjects should be explained
by the same set of sources. It is the inversion method of
choice, when analyzing an entire study with subsequent
topological inference on the contrast images.

Operationally, group inversion involves computing prior
spatial covariances in source space that are common to
all subjects. This rests on realigning the sensor-level data
to pool sample covariances over subjects. In principle,
this is straightforward because the linear mappings from
each subject’s sensors to a canonical set of cortical sources
imply there is a unique linear mapping from one subject’s
montage to another; in other words, we can compute what
we would have seen if one subject had been studied with
the montage of another subject. However, in practice, the
requisite realignment is a little more difficult because the
“average” montage must converse information from all
subjects. Imagine that two subjects have been studied with
a single electrode and that the lead fields of these two
electrodes are orthogonal. This means that realigning the
sensor from one subject with the other would lose all the
information from the subject being realigned. What we seek
is an average sensor that captures the signals from both
subjects in a balanced way. This can be achieved by iteratively
solving a set of linear equations under the constraint that the
mutual information between the average (realigned) sensor
data and each subject’s data is maximized. SPM8 uses a
recursive (generalised) least squares scheme to do this.

Group inversion can be started by pressing the “Group
inversion” button right after opening the 3D source recon-
struction GUI. The user is asked to specify a list of M/EEG
datasets to invert together. Then one is asked to coregister
each of the files and specify all the inversion parameters in
advance. It is also possible to specify contrasts in advance.
Then the inversion will proceed by computing the inverse
solution for all the files and will write out the output images.
The results for each subject are saved in the header of the
corresponding input file. It is possible to load this file into the
3D GUI, after inversion, and explore the results as described
above.

4.6.3. Batching Source Reconstruction. One can also run
imaging source reconstructions using the matlabbatch tool.
It can be accessed by pressing the “Batch” button in the
main SPM window and then going to “M/EEG source
reconstruction” under “SPM” and “M/EEG”. There are three
separate tools here for building head models, computing the
inverse solution and creating contrast images. This makes
it possible to generate images for several different contrasts
from the same inversion. All the three tools support multiple
datasets as inputs. Group inversion is used automatically for
multiple datasets.
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Figure 8: Display of the estimated distributed solution for evoked power in a specific frequency band. The same can be obtained for induced
power and for each trial. The top panel shows the maximum intensity projections (MIP) while the bottom panel shows the applied time-
frequency contrast. (a) EEG data from the multimodal face perception experiment available from the SPM website. (b) MEG data from the
same experiment. Evoked power was computed between 150 and 200 ms, for frequencies between 1 and 20 Hz.

This completes our review of distributed source recon-
struction. Before turning to the final section, we consider
briefly the alternative sort of source space model, which is
much simpler but, unlike the cortical mesh described in this
section, leads to a nonlinear forward model parametrisation.

5. Localization of Equivalent Current Dipoles

This section describes source reconstruction based on
Variational bayesian equivalent current dipoles (VB-ECDs)
[19]. 3D imaging (or distributed) reconstruction methods

consider all possible source locations simultaneously, allow-
ing for large and distributed clusters of activity. This is
to be contrasted with “equivalent current dipole” (ECD)
approaches, which rely on two hypotheses.

(i) Only a few (say less than ∼5) sources are active
simultaneously, and that

(ii) those sources are focal.

This leads to the ECD forward model, where the observed
scalp potential is explained by a handful of discrete current
sources; that is, dipoles, located inside the brain volume.
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Figure 9: Axial, sagittal, and coronal views of the contrast image shown in Figure 8, projected into MNI voxel space and superimposed on
the template structural MRI image. (a) EEG data from the multimodal face perception experiment available from the SPM website. (b) MEG
data from the same experiment. The intensity was normalised to the mean over voxels to reduce intersubject variance.

In contrast to imaging reconstruction, the number of ECDs
considered in the model, that is, the number of active loca-
tions, has to be defined a priori. This is a crucial step, as the
number of sources considered defines the ECD model. This
choice should be based on empirical knowledge about the
brain activity observed or any other source of information
(e.g., by looking at the scalp potential distribution). Note
that the number of ECDs can be optimised post hoc using
model comparison (see below). In general, each dipole is
described by six parameters: three for its location, two for its
orientation, and one for its amplitude. To keep the inverse
problem overdetermined, the number of ECDs therefore
must not exceed the number of channels divided by 6, and
preferably should be well below this threshold. Once the
number of ECDs is fixed, a nonlinear Variational Bayesian
scheme is used to optimise the dipole parameters (six times
the number of dipoles) given the observed potentials.

Classical ECD approaches use a simple best fitting
optimisation using “least square error” criteria. This leads to
relatively simple algorithms but presents a few drawbacks.

(i) Constraints on the dipoles are difficult to include in
the framework.

(ii) Noise cannot be properly taken into account, as its
variance should be estimated alongside the dipole
parameters.

(iii) It is difficult to define confidence intervals on the
estimated parameters, which could lead to overcon-
fidence in the results.

(iv) Models with different numbers of ECDs cannot
be compared, except through their goodness-of-fit,

which can be misleading. As adding dipoles to a
model will necessarily improve the overall goodness
of fit, one could erroneously be tempted to use
as many ECDs as possible and to perfectly fit the
observed signal.

However, using Bayesian techniques, it is possible to cir-
cumvent all of the above limitations of classical approaches.
Briefly, a probabilistic generative model is built, providing a
likelihood model for the data. This assumes an independent
and identically distributed normal distribution for the errors,
but other distributions could be specified. The model is
completed by priors on the various parameters, leading to a
Bayesian forward model, which allows the inclusion of user-
specified prior constraints.

An iterative Variational Bayesian scheme is then
employed to estimate the posterior distribution of the
parameters (in fact the same scheme used for distributed
solutions). The confidence interval on the estimated param-
eters is therefore directly available through the posterior
variance of the parameters. Crucially, in a Bayesian context,
different models can be compared using their evidence. This
model comparison is superior to classical goodness-of-fit
measures, because it takes into account the complexity of
the models (e.g., the number of dipoles) and, implicitly,
uncertainty about the model parameters. VB-ECD can
therefore provide an objective and accurate answer to the
question: would this dataset be better modelled by two or
three ECDs? We now describe the procedure for using the
VB-ECD approach in SPM8.

The engine calculating the projection (lead field) of the
dipolar sources to the scalp electrodes comes from FieldTrip
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and is the same for the 3D imaging or DCM. The head model
should thus be prepared the same way, as described in the
previous section. For the same data set, differences between
the VB-ECD and imaging reconstructions are, therefore,
only due to the reconstruction chosen.

5.1. VB-ECD Reconstruction. After loading and preparing
the head model, one should select the VB-ECD option after
pressing the “Invert” button in the “3D source reconstruc-
tion” window. The user is then invited to fill in information
about the ECD model and click on buttons in the following
order.

(i) Indicate the time bin or window for the reconstruc-
tion. Note that the data will be averaged over the
selected time window. VB-ECD will thus always be
calculated for a single scalp topography.

(ii) Enter the trial type(s) to be reconstructed. Each trial
type will be reconstructed separately.

(iii) Add a single (i.e., individual) dipole or a pair of
symmetric dipoles to the model.

(iv) Select “Informative” or “Noninformative” location
priors. “Non-informative” invokes flat priors over
the brain volume. With “Informative”, one can enter
the a priori location of the source (for a symmetric
pair of dipoles, only one set of dipole coordinates is
required).

(v) At this point, it is possible to go back and add more
dipole(s) to the model, or stop adding dipoles.

(vi) Specify the number of iterations. These are repeti-
tions of the fitting procedure with different initial
conditions. Since there are multiple local maxima
in the objective function, multiple iterations are
necessary to ensure good results, especially when
non-informative location priors are chosen.

The routine then proceeds with the VB optimization
scheme to estimate the model parameters. There is a
graphical display of intermediate results. When the best
solution is selected, the model evidence will be shown at the
top of the SPM graphics window (see Figure 10(a)). This
can be used to compare solutions with different priors or
number of ECDs. Results of the inversion are saved to the
data structure and displayed in the graphics window.

5.1.1. Result Display. The VB-ECD results can be displayed
again by pressing the “dip” button, located under the
“Invert” button that will be enabled after computing VB-
ECD solution. In the upper part, the three main figures
display orthogonal views of the brain with the dipole
location and orientation superimposed (see Figure 10(b)).
The location confidence interval is reported by the dotted
ellipse around the dipole location (Figure 10(c)). The lower
left table displays the current dipole location, orientation
(Cartesian or polar coordinates), and amplitude in various
formats. The lower right table allows for the selection of
trial types and dipoles. Display of multiple trial types and

multiple dipoles is also possible. The display will centre itself
on the average location of the dipoles.

This completes our discussion of source reconstruc-
tion. The previous sections introduced distributed and
ECD solutions based on forward models mapping from
sources to sensors. These models are not constrained to
produce physiologically plausible neuronal activity estimates
and ignore the neuronal coupling among different dipolar
sources in generating observed sensor signals. In the final
section, we turn to dynamic causal modelling (DCM),
which effectively puts a neuronal model underneath the
electromagnetic forward models considered above. Usually,
source reconstruction (imaging or ECD) is used to answer
questions about the functional anatomy of evoked or
induced responses, in terms of where sources have been
engaged. This information is generally used to specify the
location priors of sources in DCM.

6. Dynamic Causal Modelling for M/EEG

Dynamic causal modelling (DCM) is based on an idea
initially developed for fMRI data [8]. Briefly, measured data
are explained by a network model consisting of a few sources,
which are dynamically coupled (cf. spatiotemporal dipole
modelling introduced by Scherg and colleagues [47, 48]).
This network model is inverted using the same Variational
Bayesian scheme used for source reconstruction. Model
inversion furnishes the model evidence (used to search
model spaces or hypotheses) and the posterior density on
model parameters (used to make inferences about connec-
tions between sources or their condition-specific modula-
tion), under the model selected. David et al. [20] extended
the DCM idea to modelling ERPs. At its heart DCM for ERP
(DCM-ERP) is a source reconstruction technique, and for
the spatial domain we use exactly the same forward model as
the approaches in previous sections. However, what makes
DCM unique is that it combines the spatial forward model
with a neurobiologically informed temporal forward model,
describing the connectivity among sources. This crucial
ingredient not only makes the source reconstruction more
robust, by implicitly constraining the spatial parameters, but
also allows inference about connectivity architectures.

For M/EEG data, DCM can be a powerful technique
for inferring (neuronal) parameters not observable with
M/EEG directly. Specifically, one is not limited to ques-
tions about source strength, as estimated using a source
reconstruction approach, but can test hypotheses about
connections between sources in a network. As M/EEG data
are highly resolved in time, as compared to fMRI, precise
inferences about neurobiologically meaningful parameters
(e.g., synaptic time constants) are possible. These relate more
directly to the causes of the underlying neuronal dynamics.
In the recent years, several variants of DCM for M/EEG
have been developed. DCM for steady state responses (DCM-
SSR) [22, 49, 50] uses the same neural models as DCM-
ERP to generate predictions for power spectra and cross-
spectra measured under steady state assumptions. There
are also (phenomenological) DCMs that model specific
data features, without an explicit neural model. DCM for
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Figure 10: VB-ECD solution illustrated here on EEG data from the multimodal face perception experiment available from the SPM website.
A symmetric dipole pair was fitted to the topography of the difference between faces and scrambled faces averaged between 170 and 180 ms.
(a) The upper part shows the dipole location through the transparent cortical mesh; the middle part shows the correspondence between
observed and predicted scalp data in two ways (topographies and dot plot); the bottom part shows the free energy, the explained variance,
and the estimated dipole amplitude (from left to right) obtained from each of the ten repetitions of the procedure with different initial
locations. Results correspond to the one with highest free energy (red point). (b) Orthogonal views of the brain with dipole locations
obtained from the solution with highest free energy. (c) Enlarged fragment of the axial image shown by white square in (b). The ellipse
shows the 95% confidence volume for dipole location.

induced responses (DCM-IR) [21] models event-related
power dynamics (time-frequency features). DCM for phase
coupling (DCM-PHA) [23] models event-related changes in
phase relations between brain sources: DCM-PHA can be
applied to one frequency band at a time. Presently, all M/EEG
DCMs share the same interface, as many of the variables that
need to be specified are the same for all four approaches.
Therefore, we will focus on DCM for evoked responses and
then point out where the differences to the other DCMs lie.

In this section, we only provide a procedural guide for
the practical use of DCM for M/EEG. For the scientific
background, the algorithms used or how one would typically
use DCM in applications, we recommend the following. A
general overview of M/EEG DCMs can be found in [51].

The two key technical contributions for DCM-ERP can be
found in [20, 52]. Tests of interesting hypotheses about
neuronal dynamics are described in [53, 54]. Other examples
of applications demonstrating the kind of hypotheses testable
with DCM can be found in [55, 56]. Another good source
of background information is the recent SPM book [57]
where parts 6 and 7 cover not only DCM for M/EEG but
contextualise DCM with related research from our group.
DCM-IR is covered in [21, 58], DCM-SSR in [22, 49, 50],
and DCM-PHA in [23].

6.1. Overview. The goal of DCM is to explain measured
data (such as evoked responses) as the output of an inter-
acting network consisting of several areas, some of which
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receive input (i.e., the stimulus). The differences between
evoked responses, measured under different conditions, are
modelled as a modulation of specified DCM parameters;
for example, cortico-cortical connections [20]. The implicit
model of evoked responses makes hypotheses about connec-
tivity directly testable. For example, one can ask whether the
difference between two evoked responses can be explained
by top-down modulation of early areas [55]. Importantly,
because model inversion is implemented using a Bayesian
approach, one can compare Bayesian model evidences. These
can be used to compare alternative, equally plausible, models
and select the best [9–11].

DCM for evoked responses takes the spatial forward
model into account. This makes DCM-ERP a spatiotemporal
model of the full data set (over channels and peristimulus
time). Alternatively, one can describe DCM as a spatiotem-
poral source reconstruction algorithm, which uses additional
temporal constraints given by neural mass dynamics and
long-range effective connectivity. This is achieved by param-
eterising the lead field, that is, the spatial projection of source
activity to the sensors. In the current version, this can be
done using two different approaches. The first assumes that
the lead field of each source is modelled by a single equivalent
current dipole (ECD) [52]. The second models each source
as a “patch” of dipoles on the grey matter sheet [59]. This
spatial model is complemented by a model of the temporal
dynamics of each source. Importantly, these dynamics not
only describe how the intrinsic source dynamics evolve over
time, but also how a source reacts to external input, from
subcortical areas (stimulus) or from other cortical sources.

The GUI allows one to enter all the information necessary
for specifying a spatiotemporal DCM for a given data
set. To fit multiple models, we recommend using a batch
script. An example of such a script can be found in the
man/example scripts folder of the distribution.

6.2. Getting Started. The button for calling the DCM GUI
is found in the menu window of SPM. When pressing the
button, the GUI pops up (Figure 11). The GUI is partitioned
into five parts, going from the top to the bottom. The
first part deals with loading and saving existing DCMs,
and selecting the type of model. The second part is about
selecting data, the third is for specification of the spatial
forward model, and the fourth is for specifying neuronal
connections. The last row of buttons calls the DCM inversion
and results display.

Data selection and model specification must be per-
formed in a fixed order (data selection > spatial model >
connectivity model). This order is necessary because there
are dependencies among the three parts that would otherwise
be hard to resolve. At any time, it is possible to switch back
and forth from one part to the next. Also, within each part,
information can be specified in any order.

6.3. Load, Save, and Select Model Type. The buttons at the
top part of the GUI allow one to load an existing DCM or
save the current one. In general, saving is possible during
model specification at any time. There are two drop-down

Figure 11: DCM for M/EEG graphical user interface. The con-
figuration shown corresponds to the example DCM for mismatch
negativity experiment available from the SPM website; see text for
additional details.

boxes in this part of the DCM-GUI. The one on the left is
for switching between different DCM variants. The default is
ERP which is the DCM for evoked responses described here.
Currently, there are three additional options: IND, SSR, and
PHA as mentioned above. The menu on the right-hand side
is for choosing the neuronal model. Currently, there are four
model types. The first is ERP which is the standard model
described in most of the application papers; for example
[55]. The second is SEP which uses a variant of this model;
however, priors on the neuronal dynamics make them faster
to model early evoked responses [60]. The third is NMM
which is a nonlinear (conductance-based) neural mass model
[61]. The fourth is a mean field model MFM which is also
nonlinear and is based on a second-order approximation to
population dynamics [62]. Finally, data can be loaded using
the “new data” button. The data can be either averaged or
epoched EEG or MEG. For DCM-ERP, epoched data will be
averaged to produce evoked potentials or fields.
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6.3.1. Data and Design. This part deals with selecting and
refining the data and modelling between trial effects. On
the right-hand side of the DCM GUI, there are three text
boxes that specify between-trial effects. These are the effects
that are mediated by changing connection strengths. The
top box should contain the indices of conditions to include
in the model. For example, to model the second and third
evoked response contained within a dataset, 2 and 3 should
be specified. The indices correspond to the order, which
can be specified by the user (see Appendix D.7). If the two
evoked responses, for some reason, are in different files, these
files need to be merged prior to DCM. Below the condition
selection box, there is a box for specification of effects. This
is used to define different options for modelling the experi-
mental effects (i.e., the differences between conditions). For
example, if trial 1 is the standard and trial 2 is the deviant
response in an oddball paradigm, one can use the standard
as the baseline and model the differences by modulations
of the connections that are necessary to fit the deviant. To
do this the effect should be specified as [0 1]. Alternatively,
if the effect is specified as [−1 1], then the baseline will be
the average of the two conditions and the same factor will
be subtracted from the baseline connections to model the
standard and added to the connections to model the deviant.
The latter option is perhaps not optimal for an oddball
paradigm but might be suitable for other paradigms where
there is no clear “baseline condition”. When modelling three
or more evoked responses, one can model modulations of
connection strength over multiple conditions as two effects
relative to the first evoked response. However, one can also
choose to couple the connection strength over conditions by
imposing a relationship on how this connection changes. For
example a single linear effect, over three trials or conditions,
can be specified as [−1 0 1]. This can be useful when one
wants to add constraints on how connections (or other DCM
parameters) change. A compelling example of this can be
found in [63]. For each experimental effect specified, one
later selects the connections in the model that it affects (see
below).

The leftmost textbox can be used to define names for
the experimental effects (e.g., “oddball”). Further to the left
there are several more controls whose purpose is refining the
data before modelling. Under “time window (ms)” one has
to enter the peristimulus times to model, for example, 1 to
200 ms. One can also choose whether to model the mean or
drifts of the data at the sensor level. Under “detrend” one
can select the number of discrete cosine transform terms to
use to model low frequency drifts (selecting 1 means that
just the mean will be removed). In the “subsample” option,
one may choose to downsample the data before computing
the ERP. This subsampling is not proper down sampling
but decimation, so it is not advised to use it routinely. If
necessary, it is preferable to down-sample the data during
pre-processing. In DCM, we use a projection of the data to
a subspace (mixtures of channels) to reduce the amount of
data and suppress noise. This spatial projection is described
in [54]. One can select the number of modes: the default is
8. One can also choose to window the data, in peristimulus
time, with a Hanning window (radio button). This will

reduce the influence of the beginning and end of the time
series, which might be noisy or not captured by the idealised
responses used to predict observed data.

Once satisfied with data selection, the projection and the
detrending terms, the user can click on the “>” (forward)
button to go to the next stage, electromagnetic model. From
this, the red “<” button can be used, if necessary, to get back
to the data and design specification.

6.3.2. Electromagnetic Model. Presently, there are three
options for how to model evoked responses spatially. The
first is to use a single equivalent current dipole (ECD) for
each source, the second is to use a patch on the cortical
surface (IMG), and the third (LFP) is to not use a spatial
model at all (and assume that each channel samples a source
with unknown gain). In all three cases, it is necessary to enter
the source names (one name in one row). For ECD and IMG,
the prior source locations (in mm in MNI coordinates) must
be specified. Note that by default DCM uses uninformative
priors on dipole orientations, but tight priors on locations.
This is because M/EEG data contains limited information
about location but supports precise estimates of orientation
[64, 65]. This means each dipole stays in its designated area
and retains its meaning in terms of anatomical designation.
The prior location for each dipole can be found either by
using available anatomical knowledge or by relying on source
reconstructions (see the previous sections). Also note that
the prior location does not need to be overly exact, because
the spatial resolution of M/EEG, depending on location, can
be on a scale of several centimetres [65, 66]. It is also possible
to load the prior locations from a file (“load”). The locations
can be visualized by pressing “dipoles”.

An “onset” parameter determines when the stimulus,
presented at 0 ms peristimulus time, is assumed to activate
the cortical area to which it is connected. In DCM, we usually
do not model small early responses, but start modelling at the
first large deflection. Because the propagation of the stimulus
impulse through the input nodes causes a delay, we find that
the default value of 60 ms onset time is a good value for many
evoked responses where the first large deflection (population
response) is seen around 100 ms. However, this value is a
prior; that is, the inversion routine can optimise it. The prior
mean should be chosen according to the specific responses
of interest. This is because the time until the first large
deflection is dependent on the paradigm or the modality; for
example, audition or vision, cortical or subcortical, and so
forth. Changing the onset prior might have an effect on how
the data are fitted. This is because the onset time has strongly
nonlinear effects (a delay) on the predicted responses, which
might induce local minima in the solution space, for different
prior values. It is also possible to type several numbers in this
box (identical or not). Each value invokes its own separate
input, whose timing will be optimised separately. These
inputs can be connected to the same or different sources of
the model. This can be useful, for instance, for modelling a
paradigm with combined auditory and visual stimulation.

To proceed to the next model specification stage, hit the
“>” (forward) button and proceed to the “Neuronal model”.
If this is the first estimation and source reconstruction has
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not been previously done with the same dataset, DCM will
build a spatial forward model. The steps here are the same as
described in the “3D source reconstruction” section above.

6.3.3. Neuronal Model. This section is the most critical for
model specification. In DCM, one usually specifies a series of
models (model space) for model comparison. For the model
comparison to be valid, the models should only differ in
their connectivity; that is, in the parameters specified in this
part. DCM-ERP (as well as DCM-SSR) makes it possible to
compare models with different sources. However, because of
the data projection used (see above and [54]), this should
be done by specifying all the sources in “Electromagnetic
model” and then leaving the sources not participating in a
particular neuronal model unconnected.

In this part of the GUI, there are five (or more) matrices,
which are specified by radio button switches. The first three
are the connection strength (A) matrices. For ERP and
SEP models, there are three types of connections: forward,
backward, and lateral. For NMM and MFM models the
corresponding types are excitatory, inhibitory, and mixed
(excitatory and inhibitory) connections, respectively. These
matrices encode connections from source regions to target
regions. For example, switching on the element (2, 1) (i.e.,
second row, first column) in the intrinsic forward connec-
tivity matrix means that a forward connection from area 1
to 2 is enabled (can take nonzero values). This is basically
an adjacency matrix for those familiar with graph theory.
Some people find the meaning of each element slightly
counterintuitive, because the column index corresponds to
the source region, and the row index to the target region.
This convention is motivated by the direct correspondence
between the matrices in the GUI and connectivity matrices in
DCM equations, and is probably intuitive to anyone familiar
with matrix algebra.

The one or more inputs (onsets) specified previously
can go to any source or to multiple sources. Receiving
sources can be specified by selecting indices in the input (C)
matrix. The number of columns in this matrix corresponds
to the number of inputs specified previously. For a single
input, C is a column vector. The bottom set of matrices (B-
matrices) specify gain modulations of connection strengths
as set in the A-matrices. These modulations are specified
by the experimental effects described above. For example,
for two evoked responses and experimental effect specified
as [0 1], DCM explains the first response by using the A-
matrix only. The 2nd response is modelled by modulating
the connections specified by the B-matrix. The number of B-
matrices is the same as the number of experimental effects.
Since it is assumed that a connection between any two
sources is of one type (forward, backward, or lateral), only
one B-matrix per effect is necessary. The diagonal entries
in the B-matrices allow modulation of the intrinsic (within
source) connections. As described in [53], this makes it
possible to model local changes in the excitability of a cortical
area.

The “Review priors” button, also located in this part
of the GUI, is for power users and opens another window
making it possible to directly specify and refine priors on the

neuronal model parameters and look at how they affect the
model’s dynamical responses.

Several additional radio buttons located below the con-
nectivity matrices are for toggling options specific to DCM-
ERP.

(i) The “Dipolar symmetry constraints” option is useful
for modelling bilateral symmetric sources (e.g., audi-
tory cortices).

(ii) “Optimise source locations” only works in combi-
nation with the “ECD” option and allows DCM
more freedom with moving the dipoles as part of the
optimisation process.

(iii) “Lock trial-specific effects” ensures that all the
changes in connectivity are the same. This is useful
when there is a specific hypothesis that some experi-
mental factor increases (or decreases) all connection
strengths.

6.3.4. Estimation. After model specification, the “Estimate”
button can be pressed to invert the model. DCM then
estimates the model parameters, which can take some time
(typically from several minutes to an hour, depending on
model complexity). One can follow the optimisation by
observing the iterative model fit in a graphics window. In
the MATLAB command window, the code will display the
predicted and actual change in free energy (a bound approx-
imation to the model’s log-evidence that is being optimised)
following each iteration. At convergence, DCM saves the
results in a DCM file, by default named “DCM ERP.mat”.
The name can be changed by pressing “save” at the top of
the GUI and saving to a different name.

6.3.5. Results. After estimation is finished, the results can
be assessed by choosing from the pull-down menu at the
bottom (middle). With “ERPs (mode)” one can plot, for each
mode, the data for both evoked responses and the model
fit (see Figure 12(a)). When selecting “ERPs (sources)”, the
(posterior expectations of) dynamics in each source are plot-
ted (see Figure 12(b)). The activities of the pyramidal cells
(which are the reconstructed source activities) are plotted in
solid lines, and the activities of the two other populations
(inhibitory and excitatory interneurons) are plotted as dotted
lines. The option “coupling (A)” will display a summary of
the posterior distributions over the connections in the A-
matrix. In the upper row (Figure 12(c)), the posterior means
for all intrinsic connections are shown. As above, element
(i, j) corresponds to a connection from area j to i. In the
lower row (Figure 12(d)), for each connection, one can find
the probability that its posterior mean is different from the
prior mean, taking into account the posterior variance. With
the option “coupling (B)” one can access the posterior means
for the gain modulations of the connections. With “coupling
(C)” one can see a summary of the posterior distribution for
the strength of the input into the input-receiving source(s).
On the left-hand side, DCM plots the posterior means
for each area. On the right-hand side, the corresponding
probabilities are provided. See Figure 12 for examples of
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Figure 12: Examples from results display of DCM-ERP. The EEG data was taken from the mismatch negativity experiment available from
the SPM website (a) “ERPs (mode)” display for the first two (out of eight) modes. The thin lines show the data and the thick lines the
model prediction. Response to frequently presented tone is shown in blue and response to rare tone—in red. (b) “ERPs (sources)” display
showing the predicted dynamics of two of the sources in the model (left and right auditory cortices). Each source consists of 3 neuronal
populations. Response to frequently presented tone is shown in blue and response to rare tone—in red. (c) “Coupling (B)” display showing
the posterior means for the gain modulations of the connections. (d) Posterior probability map from the same display showing for each
modulated connection the probability that the effect of experimental conditions (frequent versus rare) on the connection was different from
zero.

these summaries based on the posterior (conditional) density
over the model’s hidden states and parameters. There are
several other quantities that can be examined (see the SPM
manual for further details).

There are two additional buttons to the right of the
“Results” menu. The “Initialise” button makes it possible
to assign parameter values as initial starting points for
the inversion. These values are taken from another already
estimated DCM, which the user can select. The “BMS”
button opens the SPM batch tool for model selection. This
tool allows one to perform Bayesian model comparison
and Bayesian model averaging [9–11], which is usually the
prelude to examining the parameter estimates of the selected
model or Bayesian model average.

This concludes our description of the specification and
inversion of a DCM-ERP. We will now consider briefly the
other DCMs and the interface features specific to these
variants.

6.4. DCM for Steady State Responses. DCM-SSR is accessed
by selecting “SSR” in the top-left drop-down menu. The

second drop-down menu in the right of the top panel
specifies (as with all DCMs) whether the analysis should be
performed using a model that is linear in the states (ERP) or
a conductance-based model (NMM) that is nonlinear in the
states. The data selection and specification of between-trial
effects are the same as for the case of ERPs, described above.
The same is true for the electromagnetic model. DCM-
SSR is commonly used with intracranial data, particularly
from animal models and, therefore, the LFP option is
especially relevant for this form of DCM. In the “Neuronal
Model” the main difference from DCM-ERP is in the inputs.
In DCM-SSR, inputs are not discrete events in time but
endogenous noise sources. Therefore, the “onset” parameter
is not relevant. The C matrix makes it possible to specify
how the model sources are driven by noise. Usually, in this
context, C is an identity matrix, prescribing endogenous
fluctuations (noise) in all sources.

6.4.1. Cross-Spectral Densities. In addition to variables dis-
cussed above, with DCM-SSR, it is necessary to select
the frequencies that will be modelled. These could be
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part of a broad frequency range; for example, like the
default 4–48 Hz, or one could enter a narrow band; for
example, 8 to 12 Hz, which would model the alpha band.
This specification is implemented via “frequency window
(Hz)” boxes close to the bottom of the DCM window.
After pressing the “invert DCM” button, the cross spectral
densities are computed automatically (using the “spectral”
toolbox in SPM [67]). The data features used for model
inversion (i.e., those features generated or predicted by the
model) include the auto-spectra and cross-spectra between
channels (or modes). These data features are evaluated using
a multivariate autoregressive model, which can accurately
measure periodicities in the time-domain data. The resulting
spectra are then presented as an upper-triangular, channel ×
channel matrix (or mode × mode), with autospectra on the
main diagonal and cross-spectra in the off-diagonal terms.

6.4.2. Output and Results. The “Results” menu provides
several estimates. By examining the “spectral data”, one can
see observed spectra in the matrix format described above.
Selecting “Cross-spectral density” gives both observed and
predicted responses. To examine the connectivity estimates
one should select the “coupling (A)” results option, or for the
modulatory parameters, the “coupling (B)” option. Also one
can examine the input strength at each source by selecting
the “coupling (C)” option, as in DCM-ERP. To examine the
spectral input to these sources the “Input” option should be
selected; this is a mixture of white and pink noise.

6.5. DCM for Induced Responses. DCM-IR models coupling
within and between frequencies that are associated with
linear and nonlinear mechanisms, respectively. DCM-IR
is accessed by selecting “IND” in the top-left drop-down
menu. Since this is a phenomenological DCM, the neural
model menu is not relevant (i.e., it uses a simple bilinear
approximation).

6.5.1. Data Features. The data features (time-frequency
response) modelled are formed from single-trial, epoched
data. DCM-IR models the entire spectra, including both
the evoked (phase locked to the stimulus) and induced
(non-phase-locked) components. The “modes” variable has
a different meaning in DCM-IR than in DCM-ERP. Here,
these are not spatial modes but frequency modes that
are taken from singular value decomposition of the time-
frequency data concatenated across sources. The more modes
selected, the more details of the time-frequency response
will be modelled. However, when there are too many
modes, DCM inversion is slow, and the higher order modes
usually capture noise rather than physiologically meaningful
dynamics. Usually the first 3-4 modes capture most of the
interesting features so the default value of 8 should be more
than sufficient in most cases.

6.5.2. Electromagnetic Model. Unlike the DCMs above,
DCM-IR does not model the data features in sensor space.
The reason for this is that DCM-IR only models power
and discards phase information. This makes it impossible

to predict the sensor data given modelled source dynamics.
Consequently, DCM-IR first inverts the electromagnetic
model by using the pseudoinverse of the lead field matrix
and then computes the source power, which is subsequently
modelled. The IMG option is not relevant for this two-step
procedure and, therefore, only the ECD and LFP options
are available. When using the ECD option, the location
parameters of the spatial model are not optimized. This
means that DCM-IR will project the data into source space
using the spatial locations specified by the user. We are
currently considering more spatially specific methods for
extracting source waveforms (e.g., beamforming). These
methods will be implemented in the future.

6.5.3. Neuronal Model. In DCM for induced responses, the
A-matrices encode the strength of linear and nonlinear
coupling between sources. The leftmost matrix in the
first row specifies the linear connections. These are the
connections where frequency energy in one source affects
the dynamics of the same frequency in another source. Note
that all connections in the model should be at least linear,
so if a connection is present, the corresponding button in
this matrix should be on. Also, the buttons on the leading
diagonal of the matrix are always on because each node in
the model has a linear intrinsic connection with negative
sign. This ensures that induced activity has a tendency to
dissipate. To the right of the linear connectivity matrix there
is a nonlinear connectivity matrix. The idea here is the same.
Note that the corresponding linear connection should be
enabled as well. When a connection is nonlinear, a frequency
in the source node can affect all the frequencies in the target
node. Intrinsic connections can be made nonlinear as well so
as to explain nonlinearities among putative subpopulations
within each source.

The use of the input matrix and the onset parameters
are similar to DCM-ERP. The B-matrices are also used as
described above. It does not matter whether a connection is
linear or nonlinear when specifying modulation by experi-
mental effects. Hence, there is only one modulation matrix
per experimental effect. Self-connections can be modified
by experimental effects, thus the diagonal entries of the B-
matrices can be toggled.

6.5.4. Wavelet Transform. This button, located below the
connectivity matrices allows one to transfer data into the
time-frequency domain using a Morlet wavelet transform.
One must also specify the frequency window that defines
the desired frequency band and the number of cycles in the
wavelet, which specifies the temporal-frequency resolution
(see Appendix C.7). For the latter, we recommend values
greater than 5 to obtain a stable estimation.

6.5.5. Results. The “Frequency modes” option will display
the frequency modes, identified using singular value decom-
position of spectral dynamics in source space (over time
and sources). “Time modes” will display the observed time
courses of the frequency modes (dashed lines) and the model
predictions (solid lines). Here, one can also see whether



Computational Intelligence and Neuroscience 23

Faces Scrambled
faces

O
bs

er
ve

d
(a

dj
u

st
ed

fo
r

co
n

fo
u

n
ds

)

Fr
eq

u
en

cy
(H

z)
Fr

eq
u

en
cy

(H
z)

20

30

40

0

10

100 200 300

20

30

40

0

10

100 200 300

20

30

40

0

10

100 200 300

20

30

40

0

10

100 200 300

P
re

di
ct

ed

Peristimulus time (ms) Peristimulus time (ms)

(a)

Fr
eq

u
en

cy
(H

z)

Frequency (Hz)

20

20

30

40

40

10

(b)

Figure 13: Examples from results display of DCM-IR. The MEG data was taken from the multimodal face perception experiment available
from the SPM website. (a) Part of “Time-Frequency” display showing the observed and predicted time-frequency power for one of the
model sources (right fusiform face area, rFFA). (b) Part of “Coupling (B-Hz)” display showing an example of a cross-frequency coupling
matrix, in this case for connection between rFFA and right occipital source.

the activity picked up by the minor modes is noise, which
is helpful for optimizing the number of modes. “Time-
Frequency” will display the observed time-frequency power
data for all prespecified sources (upper panel) and the
fitted data (lower panel); see Figure 13(a) for an exam-
ple. “Coupling (A-Hz)” will display the coupling matrices
representing the coupling strength from source to target
frequencies. These matrices are obtained by multiplying
the between-mode coupling estimates with the frequency
profiles of the modes [21]. “Coupling (B-Hz)” is similar to
the above and reports modification of coupling by exper-
imental effects (see Figure 13(b)). “Coupling (A-modes)”
will display the coupling matrices between modes and the
posterior probabilities that the coefficients are different from
zero. This representation is useful for diagnostics when the
inversion fails but the physiological interpretation is less
straightforward. See the SPM manual for a more complete
description and other options for reviewing the conditional
estimates from DCM-IR.

A “Save as img” option allows one to save the cross-
frequency coupling matrices as images. When analyzing a
group of subjects one can use these images as summary
statistics in SPM to find common features in coupling
and coupling changes across subjects. The image names
will include identifiers like “A12” or “B31” which relate

to the source connection matrices; either the basic (A) or
experimental effects (B).

6.6. DCM for Phase Coupling. DCM-PHA is based on a
weakly coupled oscillator model of neuronal interactions.
This approach is used to describe dynamic phase changes in a
network of oscillators; see Figure 14 for examples of this kind
of dynamics. The influence that the phase of one oscillator
has on the rate of change of phase of another is characterised
in terms of a phase interaction function (PIF) as described
in [23]. SPM supports PIFs specified using arbitrary order
Fourier series. However, to simplify the interface, one is
restricted to simple sinusoidal PIFs when using the GUI.

6.6.1. Data Features. The data features (instantaneous phase)
are computed from multiple trial, epoched data. Multiple
trials are required so that the full state space of phase
differences can be explored. This occurs because each trial
is likely to contain different initial relative phase offsets.
Information about different trial types is entered as it is with
DCM-ERP. DCM for phase coupling is intended to model
dynamic transitions toward synchronization states. As these
transitions are short, it is advisable to model short time
windows; the higher the frequency of the oscillations one
is interested in, the shorter this time window should be.
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Figure 14: Examples for interactions between coupled oscillators that can be modelled with DCM-PHA. The left column shows the network
structure used to generate the data in each row. The middle column shows the corresponding bivariate time series for two oscillators. The
right column shows the corresponding phase diagrams on the unit circle with initial phases marked as a red cross for the first oscillator, and
as a blue circle for the second. Subsequent phase evolutions are shown using dots. This figure was taken with permission from [23].

DCM for phase coupling will probably run into memory
problems when using long time windows or large numbers
of trials. Therefore, instead of a “modes” option (not relevant
for DCM-PHA) there is a “subtrials” option which allows a
subsampling of trials (i.e., using every second, every third,
etc.).

6.6.2. Electromagnetic and Neuronal Model. As with DCM-
IR, DCM-PHA projects the data onto source space, using the
spatial locations, provided by the user, and does not optimize
the spatial model. ECD or LFP options are available. There
is only one A-matrix (called “endog” meaning endogenous).
If using the GUI, the phase interaction functions are given
by ai j sin(φi − φj), where ai j are the connection weights that
appear in the A-matrix and φi and φj are the phases in
sources i and j. DCM for phase coupling can also be run from
a MATLAB script. This provides greater flexibility, in that
the phase interaction functions can be approximated using
arbitrary order Fourier series. There is an example in the
man/example scripts subdirectory of the SPM distribution.

6.6.3. Hilbert Transform and Results. Pressing the “Hilbert
transform” button does two things. First, source data are
bandpass filtered into the specified range. Second, a Hilbert
transform is applied, from which time series of phase
variables are obtained. The “Results” drop-down menu
allows examining hidden states and parameter estimates;
“Sin(Data)—Region I” plots the sine of the phase variable
and the corresponding model fit for the i-th region. “Cou-
pling (A)”and “Coupling (B)” will display the intrinsic and
modulatory coupling matrices, respectively. The elements of
A specify how quickly one source changes its phase to align
with another. The corresponding entry in B shows how these
values are changed by experimental manipulation.

7. Conclusion

In summary, we have reviewed the three main sorts of data
analysis supported by the SPM software (and adopted in our
scientific studies). These comprise analyses of sensor-level
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data to identify significant treatment effects in evoked or
induced responses. The idea here is to use standard SPM
(topological inference) to find significant regions in time
× frequency or time × channels search spaces, whose
P-values are properly adjusted for multiple comparisons
and profound correlations over the implicit search spaces.
These analyses can be the endpoint or a device to identify
peristimulus time or frequency windows for subsequent
source reconstruction or DCM. The second analysis domain
we have looked at is source reconstruction, using either
distributed or ECD forward models. These analyses allow
one to identify where in the brain various treatment effects
are expressed. Usually, distributed solutions are used simply
to create summary statistic (time-frequency contrast) images
for topological inference. Again, the ensuing SPM may be the
final analysis or used to specify the number and location of
sources that form the basis of DCM analysis. DCM and its
variants have been reviewed as enabling hypothesis testing
(model comparison) about the functional architectures sub-
tending observed responses. There is an increasing portfolio
of models available and DCM for electromagnetic signals is
likely to be a focus of development for many years to come.

Appendices

These appendices deal with the computer science and
pragmatic aspects of handling data in SPM8. We include here
substantial Appendices B and C on data formats and pre-
processing, which are important parts of the analysis stream
and share many protocols (and code) with other software
platforms.

A. SPM8 and FieldTrip

SPM developers have a formal collaboration with the
developers of the FieldTrip toolbox (see Oostenveld et al.,
this issue) on many analysis themes. For example, SPM and
FieldTrip share routines for converting data to MATLAB
and some of the basic pre-processing and forward modelling
for M/EEG source reconstruction. The SPM8 distribution
contains a version of FieldTrip so that FieldTrip and SPM
functions can be combined easily in custom scripts. For using
FieldTrip functions within SPM, it is not necessary to install
the full FieldTrip version. SPM and FieldTrip complement
each other; SPM is geared toward very specific analysis tools
whereas FieldTrip is a more generic repository of different
methods that can be assembled in flexible ways to perform
a variety of analyses. This flexibility of FieldTrip, however,
comes at the expense of accessibility to a nonexpert user.
FieldTrip does not have a GUI and its functions are accessed
through custom scripts. By combining SPM8 and FieldTrip,
the flexibility of FieldTrip can be complemented by SPM’s
GUI tools and batching system. Within this framework,
power users can easily and rapidly develop specialized
analysis tools with GUIs that can then also be used by
nonproficient MATLAB users.

B. Data Formats and Handling

In this appendix, our goal is to provide a comprehensive
description of how the software can be used to pre-
process M/EEG data, up to the point where one would use
source reconstruction, DCM or statistical analysis of M/EEG
channel data, as described in the main text.

Pre-processing functions can be called via GUI, the
batch system or scripts. For scripting and command-line
specification, we adhere to the principle of providing only
one input argument to each function. This input argument
is usually a MATLAB structure (struct) that contains all
input arguments as fields. This approach has the advantage
that the input does not need to follow a specific input
argument order. If an obligatory input argument is missing,
the function will invoke the GUI and ask the user for the
missing argument. When using the GUI, a function is called
without any input argument; that is, SPM will ask for the
requisite input arguments.

B.1. SPM M/EEG Data Format. The first step of any analysis
is the conversion of data from its native machine-dependent
format to a MATLAB-based, common SPM format. A dataset
in this format consists of two files: DAT-file which is a
binary file containing just the data and MAT-file containing
a structure with all the additional information related to the
dataset.

There are two important programming devices that SPM
uses when working with its M/EEG dataset: using object-
oriented programming to access the header information and
using memory mapping to access the data. The header data
is stored in the MAT-file as a struct but when loaded by
an SPM function into MATLAB memory, it is converted to
an @meeg object. The internal structure of the header is
thereby hidden from the user and is only accessed via special
functions called “methods”. This has several advantages.
First, using an object enforces internal consistency checks
when the object is created or modified. If, for any reason,
the header data becomes inconsistent, SPM will report this
as soon the user tries to load these data. SPM will also
report where the check flagged an inconsistency. If there is
enough information available to fix the inconsistency, it is
fixed on the fly. Second, using methods simplifies internal
book-keeping, which makes it much easier to program
functions operating on the M/EEG object. There is no need
to check in higher level functions whether a particular
header field is present and valid, as the object takes care
of that. Third, using objects lends more flexibility to SPM
developers because some details of the format can be changed
without the need to update higher level SPM functions. It is
therefore recommended that users writing scripts familiarise
themselves briefly with the object functionality and work
with the object rather than with the header struct directly.

The second important programming device is the use
of memory mapping to access the data stored in the DAT-
file. Memory mapping treats the data stored on the hard
drive as if they were in memory, without the need to actually
load all of the data at the same time. The technical details
are handled by the operating system, but the important
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thing is that SPM can work with large files in a memory-
efficient fashion. This means that SPM can handle large data
sets without running into memory errors. The price can
be a slight slowing in performance for some applications.
Users writing custom code that needs to access the data
are advised to do so in chunks (i.e., write a loop loading
the data trial-by-trial or channel-by-channel in a continuous
file) to take full advantage of memory mapping. Due
to the way memory mapping is presently implemented,
SPM only supports fixed-length trials (unlike for instance
FieldTrip).

B.2. Conversion of Data. There are two ways to convert
data from another format and create an SPM M/EEG
dataset. The first is geared towards EEG and MEG datasets
stored in their native formats or in formats of other
analysis packages (e.g., EEGLAB). This conversion facility is
based on “fileio” module (see http://fieldtrip.fcdonders.nl/
development/fileio), which is shared between SPM8, Field-
Trip and EEGLAB toolboxes and jointly developed by the
users of these toolboxes. At the moment, most common
EEG and MEG data formats are supported. For some
formats, it might be necessary to install additional MATLAB
toolboxes (there is an error message if these toolboxes are
missing). If the data format is not recognized by “fileio”,
it will attempt to read the file using the Biosig toolbox
(http://biosig.sourceforge.net/), if available. This can work
for some EEG systems, particularly clinical ones. One of the
consequences of using Biosig as a fallback option is that error
messages from Biosig or mentioning Biosig can appear if the
data format is not supported. If necessary the “fileio” toolbox
can be extended easily to support additional formats.

The majority of formats supported by “fileio” are also
automatically recognized. Therefore, format-specific details
are hidden in the library and SPM can deal with conversion
in a generic fashion. After selecting a file for conversion, the
user can let SPM and fileio convert it automatically and read
all the data in the file. There is also a facility to configure
parameters for conversion. This is useful for instance when
only a part of a large data file needs to be read or only a subset
of channels are of interest.

In many cases, it is necessary to work with data that is not
stored in any standard format; for instance, data stored as a
MATLAB variable or an ASCII file. There are two options
for importing these data, depending on whether the user
can write a MATLAB script or wants to use the GUI. For
users who would like to rely on the GUI, we suggest they
assemble their dataset in EEGLAB (Delorme et al., this issue)
and then save it and convert to SPM as with any other format.
The developers of EEGLAB have invested a lot of effort into
making it possible to build a dataset from scratch, without
using the command line or scripts.

For those who prefer to work with MATLAB scripts,
the most straightforward way to convert custom data is to
create a simple FieldTrip raw data structure and then use
SPM’s spm eeg ft2spm.m function to convert this structure
to SPM. Missing information can then be supplemented
using @meeg methods and SPM functions.

FieldTrip raw struct must contain the following fields.

(i) .fsample—sampling rate (Hz).

(ii) .trial—cell array of trials containing matrices with
identical dimensions (channels × time).

(iii) .time—cell array of time vectors (in sec)—one cell
per trial, containing a time vector the same length as
the second dimension of the data. For SPM, the time
vectors must be identical.

(iv) .label—cell array of strings; a list of channel labels.
Same length as the first dimension of the data.

B.3. Data Reviewing and Augmentation. Following con-
version and throughout pre-processing, the data can be
reviewed using the SPM8 reviewing tool. This tool allows
the user to visualise data and source reconstructions and
review or modify much of the header information on the
dataset (e.g., channel labels and types). When reviewing
continuous data, it is possible to add events manually (e.g.,
mark epileptic spikes). It is also possible to mark trials and
channels as bad.

fMRI artefact rejection and sleep scoring toolbox (FASST,
http://www.montefiore.ulg.ac.be/∼phillips/FASST.html) can
be used as an alternative to the SPM8 reviewing tool to speed
up reviewing of long continuous multichannel datasets (see
Leclercq et al., in this issue).

SPM tries to do its best to extract information auto-
matically from the various data formats. In some cases it
can also supplement the converted dataset with information
not directly present in the raw data. For instance, SPM can
recognise common EEG setups (extended 10–20, Biosemi,
EGI) based on channel labels and assigns “EEG” channel
type and default electrode locations for these cases. However,
there are data types that are either not yet supported in
this way or do not contain sufficient information for SPM
to make automatic choices. Furthermore, channel labels do
not always correctly describe the actual electrode locations in
an experiment. In these cases, further information needs to
be supplied by the user. The SPM “Prepare” tool, accessible
from the reviewing tool, makes it possible to augment
and modify the data in several important ways. First, it
is possible to review and modify channel types. Channel
types are important in SPM because they determine how
SPM interprets the information in the channels and the
dataset as a whole. For instance, if EEG or MEG channels
are present in the dataset, SPM will expect sensor locations
to be defined when this dataset is loaded for 3D source
reconstruction or DCM analysis. Second, using the “Prepare”
interface one can load individual EEG electrode locations
and individual head shapes used for MEG coregistration.
Sensor positions and fiducials for MEG are extracted from
the raw data automatically and are already present after
conversion. However, sometimes head shape measurement
outside the scanner is used to relate the locations of MEG
head position indicator coils to anatomical fiducials that
can be marked on an MRI. SPM handles this by allowing
the user to load the head shape via “Prepare”. Third, an
important function of the “Prepare” interface is to create
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2D channel layouts used for creating topographical scalp
plots and converting M/EEG data to images for statistical
analysis. These layouts can be created automatically by
projecting 3D sensor locations to 2D, but they can also be
built manually by the user or loaded from a fixed template.
When possible, SPM creates 2D layouts automatically at
conversion. Without meaningful 2D coordinates, all SPM
functions will work correctly but the channels will be laid
out in a topographically meaningless rectangular pattern.

C. Data Processing

In this appendix, we will describe the high-level SPM
functions which are used for pre-processing of converted
M/EEG data (e.g., epoching, filtering, averaging). The major-
ity of these functions have functionality similar to that
implemented in commercial and other open source M/EEG
analysis packages. Here, our aim was to make SPM self-
contained so that the users will not usually need other
software to prepare their data for SPM analyses proper.
Where possible, SPM shares low-level code with FieldTrip.
The general syntax is the same for all functions. If called
from the command line, and if no input arguments are
specified, the function will behave exactly as if called from the
GUI. However, on the command line (or from a script) it is
possible to supply input arguments. When all required input
arguments are specified, the function will run without user
interaction. In this way, one can write a noninteractive script.
Input arguments are provided in a struct called S, whose
fields contain the arguments. One of the fields (usually S.D)
specifies the input dataset and can be either an @meeg object
or file name. The majority of SPM pre-processing functions
create a new output dataset, rather than modify the input
dataset. This is somewhat wasteful in terms of disk space,
but makes it possible to backtrack and try different options
for every analysis step without the need to recompute. The
filenames of the output MAT- and DAT-files are generated
by prepending a single letter to the input file name. In the
example of epoching, this would be an “e”. The idea is that
after calling a sequence of functions on a file, the file name
encodes the pre-processing steps that were called to produce
this file. Note that another way of calling SPM functions and
specifying all input parameters is to use the batch interface.

The order of the pre-processing steps is not fixed and
depends on different considerations. For instance, it is
important to set the channel types correctly prior to filtering
because channels with undefined (“Other”) type are not
filtered. The logic here is to preserve information in channels
for which filtering is not relevant (e.g., trigger channels).

C.1. Epoching. Epoching cuts out little chunks of continuous
data and saves them as “single trials”. In M/EEG research,
this is a standard data selection procedure to remove long
gaps between trials. An epoch starts at some user-specified
pre-stimulus time and ends at some poststimulus time; for
example, from −100 to 400 milliseconds in peristimulus
time. By default, the epoched data will also be baseline

corrected; that is, the mean of the pre-stimulus time is
subtracted from the whole trial.

The epoching function can implement two ways of
specifying trials to epoch. The first is to specify trials using
labelled events stored in the file. The user should define
the prestimulus and poststimulus interval, and specify the
events (triggers) around which the epochs will be “cut”. SPM
identifies events by their “event type” and “event value”.
These are strings or numbers, which the software used by
the EEG or MEG vendor produces when generating the
measurement file. These can sometimes look strange but are
usually the same for a given system, so it is only necessary for
the user to find out once which triggers are relevant for the
experiment. It is also necessary to define a “condition label”
for each trial type, which can be any string. This is the label
that SPM will use to indicate the trial type of a trial at later
processing stages. It is possible to use several types of triggers
for defining trials with the same label.

For most users, the epoching described above is the most
convenient but there are situations when a single trigger is
not sufficient to specify the trial type. This happens, for
instance, when the epoching is done around the stimulus
but the trial type also takes into account the response that
comes later. This situation can be dealt with by epoching
around the stimulus trigger and defining a single trial type
but relabeling the trials at a later stage. Relabeling can be
done using @meeg object methods or the reviewing tool.
In even more complicated cases, or when there is no event
information available in the raw data, it is up to the user to
write a custom script for trial definition and specify explicitly
where each trial is located in the measured time series.

This script should generate an N× 2 so-called “trl”
matrix, where each row contains the start and end of a
trial (in samples). Optionally, there can be a third column
containing the offset of the trigger, with respect to the trial.
An offset of zero (the default) means that the first sample
of the trial corresponds to the trigger. A positive offset
indicates that the first sample is later than the trigger and
a negative offset indicates that the trial begins before the
trigger. In SPM, the offset should be the same for all trials.
The need to specify a whole column is for interoperability
with FieldTrip, where trials can have different time axes. In
addition, condition labels need to be specified either as a
single string or a cell array of strings with a label per trial.

C.2. Filtering. Continuous or epoched data can be filtered,
over time, with a lowpass, highpass, bandstop, or bandpass-
filter.

C.3. Downsampling. The data can be downsampled to any
sampling rate.

C.4. Baseline Correction. This function subtracts the baseline
from channel data. The baseline period needs to be specified
in ms; for example, [−100 0].

C.5. Artefact Detection and Rejection. Some trials not only
contain (neuronal) signals of interest, but also large signals
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from other sources, like eye movements or muscular activity.
These signal components are referred to as artefacts. There
are many kinds of artefacts and methods for detecting them.
The artefact detection function in SPM is, therefore, extend-
able and can automatically detect and use plugin functions
that implement particular detection schemes. Simple algo-
rithms presently implemented include thresholding of the
data, thresholding of the difference between adjacent samples
(to detect jumps), thresholding peak-to-peak amplitude, and
detection of flat segments. Channels containing artefacts
in a large proportion of trials are automatically marked as
bad. Note that the function only indicates which trials are
artefactual or clean and subsequent processing steps (e.g.,
averaging) will take this information into account. However,
no data are actually removed from the DAT-file.

C.6. Montage Application. The montage function in SPM
basically multiplies the channel data by a matrix. This can be
used to implement various processing steps. One common
example is EEG re-referencing: Presently, for source analysis
and DCM, EEG data should be re-referenced to the channel
average, to meet the assumptions of the forward model
used. For sensor level analysis, it is sometimes useful to use
a reference that emphasizes the effects of interest. Other
common uses are deriving bipolar channels, when data are
recorded with common reference (e.g., EMG, EOG), and
adding or removing channels.

The montage function can also be used for denoising and
artefact reduction. Removing artefactual components, using
projections derived from independent component analysis
(ICA), signal space projection (SSP), or the application of
synthetic gradients implemented in the CTF MEG system,
are all particular cases of montage. An important point here
is that the application of the montage function often changes
the dimensionality of the data or the relationship between
sensors and channels. This should be taken into account
when computing the forward model for source analysis.
Presently, this is only done for MEG, where the montage
function automatically updates the sensor representation
to ensure consistency with the data. Similar mechanisms
for EEG will be implemented in the future but for now,
removing too many spatial components from the data should
be avoided, especially with a small number of channels.

C.7. Time-Frequency Analysis. Time-frequency analysis
makes it possible to study oscillatory neural activity that
appears consistently at particular times, relative to the event
of interest; even if this activity is not phase locked to the
event and therefore averages out in conventional analyses
of evoked responses. This usually involves transforming the
data to the frequency domain in short (possibly overlapping)
time windows. Combining the spectra for all time windows
yields 2D images that can be analysed using SPM statistical
machinery (topological inference). All methods of time-
frequency analysis are inherently limited by the uncertainty
principle; stating that the resolution in time is inversely
related to frequency resolution. Therefore, in order to
estimate the frequency of particular response more precisely,

one should examine longer data segments and sacrifice time
resolution. The opposite holds when trying to localize a
signal precisely in time. Different methods of time-frequency
analysis handle this resolution trade-off slightly differently
and are, therefore, optimal for certain kinds of signals and
suboptimal for others. For example, in the 300 ms following
an event (which is more or less the reaction time in simple
tasks) there are only three cycles at alpha frequency (10 Hz)
and 6 cycles at beta frequency (20 Hz). Thus, analysis of
event-related activity at these frequencies requires a method
that can reliably estimate power and phase of an oscillation,
based on a small number of cycles. Wavelet analysis using
Morlet wavelets compares the signal of interest with short
segments of an oscillation multiplied by a Gaussian. This
results in very high time resolution and makes wavelet
analysis the method of choice for low frequencies. However,
when we look at higher frequencies, especially in high
gamma range (above 50 Hz), the number of cycles is no
longer an issue. In 300 ms, there are 24 cycles of an 80 Hz
oscillation. The main problem is now the fact that high
gamma activity may be highly variable in timing and precise
frequency. Therefore, the high time and frequency resolution
of wavelets is rather a disadvantage in this case and results
in patchy time-frequency plots with characteristic “fingers”.
Multitaper spectral analysis is the optimal way to “smooth”
the spectral estimates in both time and frequency, and
thereby gain more power for detecting high gamma activity.
This method is based on premultiplying the data with a series
of tapers optimised for producing uncorrelated estimates
of the spectrum in the given frequency band. This makes
it possible to sacrifice some of the frequency resolution in
a well-controlled manner to gain a higher signal-to-noise
ratio, by effectively multiplying the number of trials by the
number of tapers used.

The above example shows why no single method of
estimating power over time and frequency is optimal for
all applications and even within a method parameters need
to be optimized to get the best spectral estimate for a
particular dataset. SPM makes it possible to perform such
optimization by offering a flexible and extendible interface
based on the matlabbatch GUI. Different spectral estimation
methods are implemented as automatically detectable plug-
ins. Algorithms presently implemented include continuous
Morlet wavelet transform, Hilbert transform, and tapered
fast Fourier transform (FFT), including multitaper spectral
estimation. The result is written to one or two result files, one
containing the instantaneous power and the other (optional)
containing phase estimates (phase estimation is not possible
for some algorithms). One can select the channels and
frequencies for which power and phase should be estimated.
In the future, additional algorithms will be added and we are
planning to share much of the low-level code with FieldTrip.

C.8. Averaging. Averaging of single trial data is the crucial
step to obtain the evoked response. When averaging single
trial data, single trials are averaged within trial type. Power
and phase data of single trials can also be averaged by using
the SPM averaging function.
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A special feature implemented in SPM is robust aver-
aging. This is a rather simple case of robust general linear
modelling [68]. The idea is that for each channel and time
bin (or time-frequency pixel), the distribution of values
over trials is used to downweight outliers, when computing
the average. This suppresses artefacts restricted to narrow
time and frequency ranges, without rejecting whole trials.
Moreover, a clean average can be computed with no clean
trials; given that the artefacts do not consistently overlap and
only corrupt (different) parts of trials.

The robust averaging algorithm estimates weights, lying
between 0 and 1, that indicate how artefactual a particular
sample in a trial is. Later, when averaging to produce evoked
responses, each sample is weighted by this number. If the
weight of a sample is close to zero, it has little influence
on the average. The sensitivity of the algorithm to outliers
is controlled by the “offset for the weighting function”
parameter. This value (3 by default) defines the weighting
function used for averaging the data. This will preserve
roughly 95% of data points drawn randomly from a Gaussian
distribution. Another choice the user should make is whether
to compute the weights by condition (as opposed to all the
trials). If one condition has fewer trials than the others, it
is generally safer to estimate the weights separately for each
condition; otherwise, evoked responses in the rarer condition
will be downweighted and become more similar to the more
common condition(s). The weights can be saved as a separate
dataset, which is useful for finding out what parts of the
data were down-weighted and adjusting the parameters if
necessary. Robust averaging can be applied to either time
or time-frequency data. In the case of time data, if a low-
pass filter was applied before averaging, one should apply it
again (after averaging) because the differential weighting of
adjacent points may introduce high frequencies.

D. Additional Utility Functions

D.1. Grand Mean. The grand mean is usually understood
as the average of evoked responses over subjects. The grand
mean function in SPM is typically used to compute this,
but can also be used to average over multiple EEG files;
for example, multiple sessions of a single subject. There
is an option to weight by the number of trials in each
file (suitable for averaging across sessions within a subject)
or do unweighted averaging (suitable for averaging across
subjects).

D.2. Merge. Merging several M/EEG files can be useful for
concatenating multiple sessions of a single subject. Another
use is to merge files and then use the reviewing tool to
display data from different files in the same graph. The
function has a mechanism for recoding condition labels so
that, for instance, all trials coming from the same original
file will have an identifier added to their condition label in
the merged file.

D.3. Multimodal Fusion. SPM supports datasets containing
simultaneously recorded MEG and EEG. For imaging source

reconstruction, it is possible to use both modalities to
inform the source solution. Usually, combined MEG/EEG
data is contained within the same raw dataset and can be
preprocessed together from the beginning. If this is not the
case, the fusion functionality makes it possible to combine
two datasets with different channels into a single dataset;
given that the sets of channels do not overlap and the datasets
are identical in the other dimensions (i.e., have the same
sampling rate and time axis, the same number of trials,
and the same condition labels in the same order). This
function can be used to create a multimodal dataset from
separately recorded MEG and EEG, for experiments with
highly reproducible ERP/ERFs.

D.4. Rescaling and Baseline Correction of Time-Frequency.
Usually, raw event-related power is not the most informative
thing to look at (although contrasts of raw power between
conditions can be informative). To see the event-related
effects better, the power can be either transformed or
baseline-corrected separately for each frequency. There are
several different ways to do this. “LogR” (log-ratio) method
first computes the log of power and then baseline-corrects
and scales the result to produce values in dB. “Diff” just
does simple baseline subtraction. “Rel” expresses the power
in percentage of the baseline units. Finally, the “Log” and
“Sqrt” options just compute the respective functions without
baseline correction. If necessary, the baseline period needs to
be specified. The baseline can also be taken from a different
dataset. This allows a baseline condition rather than baseline
period.

D.5. Contrast of Trials. As an extension to the averaging
functionality, SPM can also be used to compute linear
combinations of single trials or evoked responses. A simple
example is computing the difference between two evoked
responses with a contrast weight vector [−1 1]. Another
example is pooling across conditions when several trial types
are to be treated as one. In this case there is an option to
weight the contrast coefficients by the number of replications
in each trial type. In principle, any contrast that can be
formulated in the GLM framework can be applied to the
data. This can be useful for a “localisation of contrast”
approach to source reconstruction.

D.6. Copy. This function makes it possible to make a copy of
a dataset. Note that one cannot just copy and rename the files
in the usual way because the name of the data file is stored in
the header file and this should be updated. The user will be
asked to specify the new dataset name.

D.7. Sort Conditions. In many cases in SPM, the order of
the conditions in the file is important (e.g., in 3D source
reconstruction and in DCM). This function makes it possible
to change the specification of the order (without actually
changing the data file). Subsequently, every time the order
of the conditions is called, the order thereby specified will
be used. For instance, if one sorts conditions in an epoched
file and then averages it, the conditions in the average file
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will be ordered as specified. If trials were originally defined
by selecting events from a list, then the order in which the
selection was made will be preserved.

D.8. Remove Bad Trials. This function physically removes
trials marked as bad from a dataset. This can be useful, for
instance, before time-frequency computation, as processing
bad trials entails an unnecessary overhead. Also, when it is
necessary to remove trials from a dataset (e.g., to remove
unused conditions), these trials can be first marked as bad
and then removed using this function.

D.9. Crop. This function makes it possible to trim the time
axis and/or frequency axis (if available). This is useful when
computing time-frequency decompositions and padding the
trials with extra data to prevent edge effects. The padding can
then be removed using the crop functionality.

E. Script Generation

Data pre-processing in SPM can be automated with MAT-
LAB scripts. Furthermore, these scripts can be generated
automatically. To do this, one dataset needs to be analyzed
first, using the GUI or batch system. Whenever a pre-
processing function is called, all the input arguments, once
they have been assembled by the GUI, are stored in the
dataset’s “history”. This history can then be accessed via
the reviewing tool to not only see which functions have
operated on a dataset, but also to generate a script that
reproduces the same operations. The big difference is that,
this time, no more GUI interactions are necessary because
the script already has all the input arguments, which were
provided during the first run. Since the script is automatically
generated, it might not be as concise and elegant as a
script written by a programmer. For instance, automatically
generated scripts sometimes include specification of large
montage matrices or long lists of channel labels. But with a
basic understanding of MATLAB programming, such scripts
can be shortened and simplified.

Automatically generated scripts can be used not only
to repeat an analysis, but can also be treated as a template
for other analyses. For instance, file names appearing in the
script can be changed to preprocess a different subject or
(with some adjustments) automatically generated code can
be placed in a loop to cycle over a large number of subjects.
Modifying automatically generated scripts is an easy way to
get started with programming in SPM for M/EEG.

F. Example Datasets

We provide several example datasets on which SPM
methods can be tested. The full list of datasets with
links can be found under http://www.fil.ion.ucl.ac.uk/spm/
data/. Detailed instructions for analysing these datasets are
available in the SPM manual (http://www.fil.ion.ucl.ac.uk/
spm/doc/spm8 manual.pdf).

G. Toolboxes and Contributing to SPM

We try to maintain SPM for M/EEG as generic, well-
structured, and fully documented code. This is important to
ensure stability and facilitate future development. However,
this can make it more difficult for users to contribute their
own tools to SPM. Therefore, SPM includes a protocol for
the users to add their own code as toolboxes. These toolboxes
are detected automatically and added to the “Toolbox” menu
in the main SPM window. The complete list of toolboxes can
be found at http://www.fil.ion.ucl.ac.uk/spm/ext/.

Presently, there are two toolboxes for SPM for M/EEG
included in the SPM distribution.

G.1. MEEGtools Toolbox. This toolbox includes some useful
functions contributed by SPM developers and power users.
Many of these functions combine SPM and FieldTrip func-
tionality. Other functions solve system-specific problems that
cannot be handled by the main SPM code. For example, there
is a set of functions for topography-based artefact correction
that have been found to work well for eye blinks [69] and
transcranial magnetic stimulation artefact in the EEG [70].

G.2. Beamforming Toolbox. Functions in this toolbox make
it possible to perform source reconstruction using beam-
forming methods in the time [71] and frequency [72]
domains and extract source activity using beamformer
spatial filters. They make use of SPM-generated forward
models (see “Source reconstruction”) and (where relevant)
generate images that can be entered into the SPM statistics
pipeline. Some of these functions are based on FieldTrip code
and others are being developed by one of the authors (G.
Barnes). In the future, this code is likely to be reorganised
with some of the functionality transferred to SPM 3D source
reconstruction interface and some integrated into FieldTrip.

We welcome code contributions from SPM users. Single
general-use functions can be contributed to MEEGtools.
Users who develop useful sets of functions may consider
maintaining and distributing them as an external SPM
toolbox. Active external developers, who are sufficiently
familiar with the code, can be granted write access to our
version control system and contribute to development and
improvement of the code.
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