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a b s t r a c t

This paper assumes that cortical circuits have evolved to enable inference about the causes of sensory
input received by the brain. This provides a principled specification of what neural circuits have to
achieve. Here, we attempt to address how the brain makes inferences by casting inference as an
optimisation problem. We look at how the ensuing recognition dynamics could be supported by directed
connections and message-passing among neuronal populations, given our knowledge of intrinsic and
extrinsic neuronal connections. We assume that the brain models the world as a dynamic system, which
imposes causal structure on the sensorium. Perception is equated with the optimisation or inversion
of this internal model, to explain sensory input. Given a model of how sensory data are generated, we
use a generic variational approach to model inversion to furnish equations that prescribe recognition;
i.e., the dynamics of neuronal activity that represents the causes of sensory input. Here, we focus on a
model whose hierarchical and dynamical structure enables simulated brains to recognise and predict
sequences of sensory states. We first review these models and their inversion under a variational free-
energy formulation. We then show that the brain has the necessary infrastructure to implement this
inversion and present stimulations using synthetic birds that generate and recognise birdsongs.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

This paper looks at the functional architecture of cortical
circuits from the point of view of perception; namely, the fitting or
inversion of internalmodels of sensory data by the brain. Critically,
the nature of this inversion lends itself to a relatively simple neural
network implementation that sharesmany formal similaritieswith
real cortical hierarchies in the brain. The basic idea that the brain
uses hierarchical inference has been described in a series of papers
(Friston, 2005; Friston, Kilner, & Harrison, 2006; Mumford, 1992;
Rao & Ballard, 1998). These papers suggest that the brain uses
empirical Bayes for inference about its sensory input, given the
hierarchical organisation of cortical systems. Here, we focus on
how neural networks could be configured to invert these models
and deconvolve sensory causes from sensory input.
This paper comprises three sections. In the first, we introduce

a free-energy formulation of model inversion or perception, which
is then applied to a specific class of models that we assume the
brain uses — hierarchical dynamic models. An important aspect
of these models is their formulation in generalised coordinates
of motion. This lends them a hierarchical form in both structure

∗ Corresponding address: TheWellcome Trust Centre for Neuroimaging, Institute
of Neurology, Queen Square, London,WC1N3BG, UnitedKingdom. Tel.: +44 207 833
7454; fax: +44 207 813 1445.
E-mail address: k.friston@fil.ion.ucl.ac.uk (K. Friston).

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.07.023
and dynamics, which can be exploited during inversion. In the
second section, we show how inversion can be formulated as a
simple gradient descent using neuronal networks and relate these
to cortical circuits in the brain. In the final section, we consider
how evoked brain responses might be understood in terms of
perceptual inference and categorisation, using the schemes of the
preceding section.

2. The free-energy formulation

This section considers the problem of inverting generative
models of sensory data and provides a summary of the mate-
rial in Friston (2008). This problem is addressed using ensem-
ble learning or Variational Bayes. These are generic approaches
to model inversion that provide an approximation to the condi-
tional density p(ϑ |ỹ) on some causes ϑ of generalised sensory in-
put, ỹ = [y, y′, y′′, . . .]T. Generalised input (e.g., the intensity of
photoreceptor stimulation) includes the input, its velocity, acceler-
ation, jerk, etc. Causes are quantities in the environment that gen-
erate sensory input (e.g., the orientation of an object in the visual
field). The approximation of the conditional density (i.e., the prob-
ability of a particular set of causes given sensory input) is achieved
by optimising a recognition density q(ϑ) with respect to a bound
on the surprise or negative log-evidence − ln p(ỹ) of the sensory
input, as we will see next (Feynman, 1972; Friston, 2005; Friston
et al., 2006; Hinton & von Cramp, 1993;MacKay, 1995; Neal & Hin-
ton, 1998). This bound is called free-energy
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F = C − ln p(ỹ)

C =
〈
ln
q(ϑ)
p(ϑ |ỹ)

〉
q
.

(1)

The free-energy comprises a cross-entropy or divergence term
C ≥ 0 and surprise. By Gibb’s inequality, the divergence is
greater than zero, with equality when q(ϑ) = p(ϑ |ỹ); i.e., when
the recognition density is the posterior or conditional density
on the causes of sensory input. The recognition density can be
optimised to minimise this bound and implicitly minimise the
divergence between the recognition density and the conditional
density we seek (Friston, 2005; Hinton & von Cramp, 1993;
MacKay, 1995; Neal & Hinton, 1998). In summary, the recognition
density, induces a free-energy bound, which converts a difficult
integration problem (inherent in computing the exact conditional
density) into an easier optimisation problem.
The bound can be evaluated easily because it is a function of

q(ϑ) and some generative model p(ỹ, ϑ) entailed by the brain

F =
〈
ln q(ϑ)− ln p(ϑ |ỹ)− ln p(ỹ)

〉
q

= 〈ln q(ϑ)〉q + 〈U(ϑ)〉q
U(ϑ) := − ln p(ỹ, ϑ).

(2)

Here, we have expressed the free-energy in terms of the
negentropy of q(ϑ) and an expected Gibb’s energy — U(ϑ). This
energy is usually specified in terms of a likelihood and prior;
U(ϑ) = − ln p(ỹ|ϑ) − ln p(ϑ), which define a generative model.
This is important because it shows that we need a generative
model in order to evaluate free-energy. The likelihood model
just quantifies the probability of any sensations, given their
cause; while the prior model encodes prior beliefs about the
probability of those causes being present. It is fairly easy to show
that minimising free-energy corresponds to finding a recognition
density that predicts sensory input accurately, while suppressing
its complexity.
If we assume that the recognition density q(ϑ) = N(µ̃, Σ̃)

is Gaussian (the Laplace assumption), then we can express free-
energy in terms of its sufficient statistics (i.e., its mean and
covariance: µ̃, Σ̃)

F = U(µ̃)−
1
2
tr(Σ̃∇2U)−

1
2
ln |Σ̃ | −

n
2
ln 2πe. (3)

Here n is the number of unknown causes. We can now minimise
free-energy w.r.t. the conditional covariances by finding the value
that renders its gradient zero

FΣ = −
1
2
Π̃ −

1
2
∇
2U = 0⇒

Π̃ = ∇2U(µ̃)
(4)

where a subscript means differentiation; i.e., FΣ = ∂F/∂Σ is
the free-energy gradient w.r.t. the conditional covariance, Here,
the conditional precision Π̃ = Σ̃−1 is the inverse covariance.
Critically, the conditional precision is just a function of the mean
and does not have to be encoded explicitly. This means we
can simplify the expression for free-energy by eliminating the
curvatures ∇2U of Gibb’s energy

F = U(µ̃)−
1
2
ln |Σ̃ | −

n
2
ln 2π. (5)

Now, the only unknownquantities are the conditionalmeans of the
causes, which only have to minimise Gibb’s energy because this is
the only term that depends on them. In this paper, we will focus
on time-varying causes or states of the environment: ũ(t) ⊂ ϑ .
The values we seek are the solutions to the following differential
equations.

˙̃µ
u
= Dµ̃u − Uũ
⇔

µ̇u = µ′
u
− Uu

µ̇′
u
= µ′′

u
− U ′u

µ̇′′
u
= µ′′′

u
− U ′′u

....

(6)

This solution (which is stationary in a frame of reference that
moves with its generalised motion), minimises free-energy

˙̃µ
u
− Dµ̃u = 0⇒

Uũ = 0⇒ Fũ = 0.
(7)

This construction ensures that when Gibb’s energy is minimised
and Uũ = 0, the mean of the motion is the motion of the mean;
i.e., ˙̃µ

u
= Dµ̃u. Here D is a derivative matrix operator with identity

matrices along the first leading diagonal.
Eq. (7) prescribes recognition dynamics that track time-varying

causes or states of the world and can be thought of as a gradient
descent in a moving frame of reference. The recognition dynamics
for time-invariant causes (i.e., parameters θ ⊂ ϑ , like rate
constants) have a different form, because we know a priori their
generalised motion is zero. In this paper, we will assume the
parameters have already been learnt and focus on recognising
hidden states of the environment. In summary, we have derived
recognition dynamics for expected environmental states, which
cause sensations. The solution to these equations minimise Gibb’s
energy and (under the Laplace assumption) free-energy, which
is an upper bound on their surprise. Finding these solutions
corresponds to perceptual inference. The precise form of Eq. (7)
depends on the generative model that defines Gibb’s energy. Next,
we examine forms associated with hierarchical dynamic models.

2.1. Hierarchical dynamic models

This section introduces a general class of generative models
that the brain may use for perception. We will start with simple
dynamic models and then deal with hierarchical cases later.
Consider a state-space model that describes the evolution of states
in the world and how they map to sensory input

y = g(x, v)+ z
ẋ = f (x, v)+ w.

(8)

Here, the functions f and g are parameterised by θ ⊂ ϑ (which
are omitted from the following expressions for clarity). These
functions correspond to equations of motion and an observer
function, respectively. The states v ⊂ u are variously referred
to as sources or causal states. The hidden states x ⊂ u mediate
the influence of causal states on sensory data and endow the
system with memory. We assume the random fluctuations z
are analytic, such that the covariance of z̃ = [z, z ′, z ′′, . . .]T is
well defined; similarly for state noise, w(t), which represents
random fluctuations on the motion of the hidden states. Under
local linearity assumptions, the generalised motion of the data or
response ỹ = [y, y′, y′′, . . .]T is given by

y = g(x, v)+ z
y′ = gxx′ + gvv′ + z ′

y′′ = gxx′′ + gvv′′ + z ′′
...

ẋ = x′ = f (x, v)+ w
ẋ′ = x′′ = fxx′ + fvv′ + w′

ẋ′′ = x′′′ = fxx′′ + fvv′′ + w′′
....

(9)
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We can write this generalised state-space model more compactly
as

ỹ = g̃ + z̃

Dx̃ = f̃ + w̃
(10)

where the predicted response g̃ = [g, g ′, g ′′, . . .]T and motion
f̃ = [f , f ′, f ′′, . . .]T are

g = g(x, v)
g ′ = gxx′ + gvv′

g ′′ = gxx′′ + gvv′′
...

f = f (x, v)
f ′ = fxx′ + fvv′

f ′′ = fxx′′ + fvv′′
....

(11)

Gaussian assumptions about the fluctuations p(z̃) = N(z̃ : 0, Σ̃ z)
provide the form of the likelihood, p(ỹ|x̃, ṽ). Similarly, Gaussian
assumptions about state noise p(w̃) = N(w̃ : 0, Σ̃w) specify
empirical priors, p(x̃|ṽ) in terms of predicted motion

p
(
ỹ, x̃, ṽ

)
= p(ỹ|x̃, ṽ)p(x̃, ṽ)

p
(
x̃, ṽ

)
= p(x̃|ṽ)p(ṽ)

p
(
ỹ|x̃, ṽ

)
= N(ỹ : g̃, Σ̃ z)

p
(
x̃|ṽ
)
= N(Dx̃ : f̃ , Σ̃w).

(12)

The covariances Σ̃ z and Σ̃w or precisions Π̃ z(λ) and Π̃w(λ)
are functions of precision parameters, λ ⊂ ϑ , which control
the amplitude and smoothness of random fluctuations. Generally,
these covariances factorise; Σ̃ · = Σ ·⊗R· into a covariance proper
and a matrix of correlations R· among generalised motion that
encodes an autocorrelation function.

2.1.1. Hierarchical forms
Hierarchical dynamic models with m levels have the following

form, which generalises them = 1 model above

y = g(x(1), v(1))+ z(1)

ẋ(1) = f (x(1), v(1))+ w(1)
...

v(i−1) = g(x(i), v(i))+ z(i)

ẋ(i) = f (x(i), v(i))+ w(i)
...

v(m) = z(m+1).

(13)

Again, f (i) = f (x(i), v(i)) and g(i) = g(x(i), v(i)) are continuous
nonlinear functions of the states. The innovations z(i) and w(i) are
conditionally independent fluctuations that enter each level of the
hierarchy. These play the role of observation error or noise at the
first level and induce random fluctuations in the states at higher
levels. The causal states v = [v(1), . . . , v(m)]T link levels, whereas
the hidden states x = [x(1), . . . , x(m)]T link dynamics over time. In
hierarchical form, the output of one level acts as an input to the
next. Inputs from higher levels can enter nonlinearly into the state
equations and can be regarded as changing its control parameters
to produce quite complicated generalised convolutions with deep
(i.e., hierarchical) structure.
In summary, hierarchical dynamic models are about as

complicated as one could imagine; they comprise causal and
hidden states, whose dynamics can be coupled with arbitrary
(analytic) nonlinear functions. Furthermore, these states can
have random fluctuations with unknown amplitude and arbitrary
(analytic) autocorrelation functions. A key aspect of these models
is their hierarchical form, which induces empirical priors on
the causal states. See Kass and Steffey (1989) for a discussion
of approximate Bayesian inference in conditionally independent
hierarchical models of static data.
2.1.2. Energy functions
We can now write down Gibb’s energy for these generative

models, which has a simple quadratic form (ignoring constants)

U = ln p
(
ỹ, x̃, ṽ, θ, λ

)
=
1
2
ln |Π̃ | −

1
2
ε̃TΠ̃ ε̃

Π̃ =

[
Π̃ z 0
0 Π̃w

]
ε̃ =

[
ε̃v = ỹ− g̃
ε̃x = Dx̃− f̃

]
.

(14)

The auxiliary variables ε̃(t) comprise prediction errors for the
generalised response and motion of hidden states, where g̃(t) and
f̃ (t) are the respective predictions, whose precision is encoded by
Π̃(λ). These prediction errors provide a compact way to express
Gibb’s energy and, as we will see below, lead to very simple
recognition schemes. For hierarchical models, the prediction error
on the response is supplemented with prediction errors on the
causal states

εv =


y
v(1)

...

v(m)

−

g(1)

g(2)
...
0

 . (15)

Note that the data enter the prediction error at the lowest level.
At intermediate levels, the prediction errors, v(i−1) − g(i) mediate
empirical priors on the causal states.

2.2. Summary

In this section, we have seen how the inversion of dynamic
models can be formulated as an optimisation of free-energy. By
assuming a Gaussian (Laplace) approximation to the conditional
density, one can reduce optimisation to finding the conditional
means of the unknown causes of sensory data. This can be
formulated as a gradient ascent in a frame of reference that moves
along the path encoded in generalised coordinates (Eq. (6)). The
only thing needed to implement this recognition scheme is Gibb’s
energy, which is specified by a generative model. We have looked
at hierarchical dynamic models, whose form provides empirical
priors or constraints on inference at both a structural and dynamic
level (Eq. (14)). The structural priors arise from coupling different
levels of the hierarchy with causal states and the dynamic priors
emerge by coupling different levels of generalised motion of the
hidden states. We can now look at the recognition dynamics
entailed by these models, in the context of neuronal processes in
the brain.

3. Hierarchical models in the brain

A key architectural principle of the brain is its hierarchical or-
ganisation (Felleman & Van Essen, 1991; Maunsell & van Essen,
1983; Zeki & Shipp, 1988). This has been established most thor-
oughly in the visual system, where lower (primary) areas receive
sensory input and higher areas adopt a multimodal or associa-
tional role. The neurobiological notion of a hierarchy rests upon
the distinction between forward and backward connections (An-
gelucci et al., 2002; Felleman & Van Essen, 1991; Murphy & Sil-
lito, 1987; Rockland & Pandya, 1979; Sherman & Guillery, 1998).
This distinction is based upon the specificity of cortical layers
that are the predominant sources and origins of extrinsic con-
nections. Forward connections arise largely in superficial pyrami-
dal cells, in supra-granular layers and terminate on spiny stel-
late cells of layer four in higher cortical areas (DeFelipe, Alonso-
Nanclares, & Arellano, 2002; Felleman & Van Essen, 1991). Con-
versely, backward connections arise largely from deep pyrami-
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Message passing in neuronal hierarchies

Forward prediction error

Backward predictions

SG

L4

IG

Fig. 1. Schematic detailing the neuronal architectures that encode a recognition density on the states of a hierarchical model. This schematic shows the speculative cells of
origin of forward driving connections that convey prediction error from a lower area to a higher area and the backward connections that are used to construct predictions.
These predictions try to explain away input from lower areas by suppressing prediction error. In this scheme, the sources of forward connections are superficial pyramidal
cell populations and the sources of backward connections are deep pyramidal cell populations. The differential equations relate to the optimisation scheme detailed in the
main text. The state-units and their efferents are in black and the error-units in red, with causal states on the right and hidden states on the left. For simplicity, we have
assumed the output of each level is a function of, and only of, the hidden states. This induces a hierarchy over levels and, within each level, a hierarchical relationship
between states, where causal states predict hidden states. This schematic shows how the neuronal populations may be deployed hierarchically within three cortical areas
(or macro-columns). Within each area the cells are shown in relation to the laminar structure of the cortex that includes supra-granular (SG) granular (L4) and infra-granular
(IG) layers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
dal cells in infra-granular layers and target cells in the infra- and
supra-granular layers of lower cortical areas. Intrinsic connec-
tions mediate lateral interactions between neurons that are a few
millimetres away. There is a key functional asymmetry between
forward and backward connections that renders backward con-
nections more modulatory or nonlinear in their effects on neu-
ronal responses (Sherman & Guillery, 1998; see also Hupe et al.,
1998). This is consistent with the deployment of voltage-sensitive
NMDA receptors in supra-granular layers that are targetedbyback-
ward connections (Rosier, Arckens, Orban, & Vandesande, 1993).
Typically, the synaptic dynamics of backward connections have
slower time constants. This has led to the notion that forward con-
nections are driving and illicit an obligatory response in higher
levels, whereas backward connections have both driving andmod-
ulatory effects and operate over larger spatial and temporal scales.
This hierarchical aspect of the brain’s functional anatomy speaks
to hierarchical models of sensory input.We now consider how this
functional architecture can be understood under the inversion of
hierarchical models by the brain.

3.1. Perceptual inference

If we assume that the activity of neurons encode the conditional
mean of external states causing sensory data, then Eq. (6) specifies
the neuronal dynamics entailed by recognising states of the world
from sensory data. Using Gibb’s energy in Eq. (14) we have

˙̃µ
u
= Dµ̃u − Uũ
= Dµ̃u − ε̃Tuξ

ξ = Π̃ ε̃ = ε̃ −Λξ

Π̃ =

[
Π̃ z

Π̃w

]
.

(16)
Eq. (16) describes how neuronal states self-organise, when
exposed to sensory input. Its form is quite revealing and suggests
two distinct populations of neurons; causal or hidden state-units
whose activity encodes µ̃u := µ̃(t) and error-units encoding
precision-weighted prediction error ξ = Π̃ ε̃, with one error-
unit for each state. Furthermore, the activities of error-units are a
function of the states and the dynamics of state-units are a function
of prediction error. This means the two populations pass messages
to each other and to themselves. The messages passed within the
states, Dµ̃ mediate empirical priors on their motion, while −Λξ
mediates precision-dependent modulation of prediction errors.
The matrix Λ = Σ̃ − 1 can be thought of encoding self-
inhibition, which is modulated by precision (where precision
might be encoded by neuromodulatory neurotransmitters like
dopamine and acetylcholine).

3.2. Hierarchical message-passing

Ifwe unpack these equations,we can see the hierarchical nature
of the implicit message-passing

˙̃µ
(i)v
= Dµ̃(i)v − ε̃(i)Tv ξ (i) − ξ (i+1)v

˙̃µ
(i)x
= Dµ̃(i)x − ε̃(i)Tx ξ (i)

ξ (i)v = µ̃(i−1)v − g̃(µ̃(i))−Λ(i)zξ (i)v

ξ (i)x = Dµ̃(i)x − f̃ (µ̃(i))−Λ(i)wξ (i)x.

(17)

This shows that error-units receivemessages from the states in the
same level and the level above, whereas states are driven by error-
units in the same level and the level below (see Fig. 1). Critically,
inference requires only the prediction error from the lower level
ξ (i) and the level in question, ξ (i+1). These provide bottom-
up and lateral messages that drive conditional expectations µ̃(i)
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Neuronal hierarchy
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Fig. 2. Schematic showing the construction of the generative model for birdsongs. This comprises two Lorenz attractors where the higher attractor delivers two control
parameters (grey circles) to a lower-level attractor, which, in turn, delivers two control parameters to a synthetic syrinx to produce amplitude and frequency modulated
stimuli. This stimulus is represented as a sonogram in the right panel. The equations represent the hierarchical dynamic model in the form of Eq. (13).
towards a better prediction, to explain away the prediction
error in the level below. These top-down and lateral predictions
correspond to g̃(i) and f̃ (i). This is the essence of recurrentmessage-
passing between hierarchical levels to optimise free-energy or
suppress prediction error; i.e., recognition dynamics. In summary,
all connections between error- and state-units are reciprocal but
the only connections that link levels are forward connections
conveying prediction error to state-units and reciprocal backward
connections that mediate predictions. This sort of scheme is
referred to as predictive coding (Rao & Ballard, 1998).
We can identify error-units with superficial pyramidal cells,

because the only messages that pass up the hierarchy are
prediction errors and superficial pyramidal cells originate forward
connections in the brain. This is useful because it is these
cells that are primarily responsible for electroencephalographic
(EEG) signals that can be measured non-invasively. Similarly,
the only messages that are passed down the hierarchy are
the predictions from state-units that are necessary to form
prediction errors in lower levels. The sources of extrinsic backward
connections are deep pyramidal cells; suggesting that these
encode the expected causes of sensory states (see Mumford,
1992 and Fig. 1). Critically, the motion of each state-unit is
a linear mixture of bottom-up prediction error (see Eq. (17)).
This is exactly what is observed physiologically; bottom-up
driving inputs elicit obligatory responses that do not depend
on other bottom-up inputs. The prediction error itself is formed
by predictions conveyed by backward and lateral connections.
These influences embody the nonlinearities implicit in g̃(i) and f̃ (i).
Again, this is entirely consistent with the nonlinear or modulatory
characteristics of backward connections.
It has been shown recently that hierarchical architectures (cf,

Fig. 1) can be reformulated as a specific type of biased competition,
where state-units receive messages from lower-level error-units
and direct inputs from higher-level state-units (replacing lateral
inputs from error-units in the original predictive coding scheme
based on Kalman filtering; Rao & Ballard, 1998). It has been
argued that this architecture provides a more realistic model of
backward connections in cortex (Spratling, 2008a, 2008b) and
usefully connects predictive coding, Kalman filtering and biased
competition.
A related Bayesian algorithm called belief-propagation (Dean,

2006; Hinton, Osindero, & Teh, 2006; Lee & Mumford, 2003;
Rao, 2006) also rests on message-passing. In these schemes, the
messages are not prediction errors but, like prediction errors, are
defined self-consistently, in terms of likelihoods and empirical
priors. Critically, the belief-propagation algorithm can be derived
by minimising free-energy (Yedidia, Freeman, & Weiss, 2005); for
example, it can be shown that the Kalman filter is a special case
of belief-propagation. This speaks to formal similarities between
predictive coding, Bayesian filtering and belief-propagation, which
could be implemented by recursive message-passing in the brain
and understood in terms of free-energy optimisation.

3.3. Summary

In summary, we have seen how the inversion of a generic
hierarchical and dynamical model of sensory inputs can be
transcribed onto neuronal quantities that optimise a free-energy
bound on surprise. This optimisation corresponds, under some
simplifying assumptions, to suppression of prediction error at
all levels in a cortical hierarchy. This suppression rests upon
a balance between bottom-up (prediction error) and top-down
(empirical prior) influences. In the final section, we use this
scheme to simulate neuronal responses. Specifically, we look at the
electrophysiological correlates of prediction error and askwhether
we can understand some common phenomena in event-related
potential (ERP) research in terms of the free-energy formulation
and message-passing in the brain.

4. Birdsong and attractors

In this section, we examine a system that uses hierarchical
dynamics as a generative model of sensory input. The aim of
this section is to provide some face-validity for the functional
deconstruction of extrinsic and intrinsic circuits in the previous
section. To do this, we try to show how empirical measures of
neuronal processes can be reproduced using simulations based on
the theoretical analysis above. The example we use is birdsong and
the empirical measures we focus on are local field potentials (LFP)
or evoked (ERP) responses that canbe recordednon-invasively. The
material in section is based on the simulations described in Friston
and Kiebel (2009).
We first describe our model of birdsong and demonstrate

the nature and form of this model through simulated lesion
experiments. We then use simplified versions of this model to
showhow attractors can be used to categorise sequences of stimuli
quickly and efficiently. Throughout this section, wewill exploit the
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Fig. 3. Results of an inversion or deconvolution of the sonogram shown in the previous figure. (a) Upper panels show the time courses of hidden and causal states. Upper
left: These are the true and predicted states driving the syrinx and are simple mappings from two of the three hidden states of the first-level attractor. The coloured lines
respond to the conditional mean and the dotted lines to the true values. The discrepancy is the prediction error and is shown as a broken red line. Upper right: The true
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detailing the expression of different frequencies generated over peristimulus time. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
fact that superficial pyramidal cells are the major contributors to
observed LFP and ERP signals. This means we can ascribe these
signals to prediction error; because the superficial pyramidal cells
are the source of bottom-up messages in the brain (see Fig. 1).

4.1. Attractors in the brain

The basic idea here is that the environment unfolds as an
ordered sequence of spatiotemporal dynamics (George &Hawkins,
2005; Kiebel, Daunizeau, & Friston, 2008), whose equations of
motion entail attractormanifolds that contain sensory trajectories.
Critically, the shape of the manifold generating sensory data is
itself changed by other dynamical systems that could have their
own attractors. If we consider the brain has a generative model
of these coupled dynamical systems, then we would expect to see
attractors in neuronal dynamics that are trying to predict sensory
input. In a hierarchical setting, the states of a high-level attractor
enter the equations ofmotion of a low-level attractor in a nonlinear
way, to change the shape of its manifold. This form of generative
model has some key characteristics:
First, any level in the model can generate and therefore encode

structured sequences of events, as the states flow over different
parts of the manifold. These sequences can be simple, such as the
quasi-periodic attractors of central pattern generators (McCrea &
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Fig. 4. Results of simulated lesion studies using the birdsong model of the previous figure. The left panels show the percept in terms of the predicted sonograms and the
right panels show the corresponding prediction error (at the both levels); these are the differences between the incoming sensory information and the prediction and the
discrepancy between the conditional expectation of the second level cause and that predicted by the second-level hidden states. Top row: the recognition dynamics in the
intact bird. Middle row: the percept and corresponding prediction errors when the connections between the hidden states at the second level and their corresponding causes
are removed. This effectively removes structural priors on the evolution of the attractormanifold prescribing the sensory dynamics at the first level. Lower panels: the effects
of retaining the structural priors but removing the dynamical priors by cutting the connections that mediate inversion in generalised coordinates. These results suggest that
both structural and dynamical priors are necessary for veridical perception.
Rybak, 2008) or can exhibit complicated sequences of the sort
associated with chaotic and itinerant dynamics (e.g., Breakspear &
Stam, 2005; Canolty et al., 2006; Friston, 1997;Haken, Kelso, Fuchs,
& Pandya, 1990; Jirsa, Fuchs, & Kelso, 1998; Kopell, Ermentrout,
Whittington, & Traub, 2000; Rabinovich, Huerta, & Laurent, 2008).
The notion of attractors as the basis of generative models extends
the notion of encoding trajectories in terms of generalised motion,
to families of trajectories that lie on the attractor manifold.
Hierarchically deployed attractors enable the brain to generate and
therefore predict or represent different categories of sequences.
This is because any low-level attractor encodes a family of
trajectories that correspond to a structured sequence. Theneuronal
activity representing the trajectory at any one time determines
where the current dynamics are within the sequence, while the
shape of the attractor manifold determines which sequence is
currently being expressed.
Secondly, if the states in a higher attractor change the manifold

of a subordinate attractor, then the states of the higher attractor
come to encode the category of the sequence represented by the
lower attractor. This means it is possible to generate and represent
sequences of sequences and, by induction sequences of sequences
of sequences etc. This rests upon the states of neuronal attractors
at any cortical level providing control parameters for attractors
below. This necessarily entails a nonlinear interaction between
the top-down effects of the higher attractor and the states of the
lower attractor. Again, this is entirely consistentwith the nonlinear
effects of top-down connections in the real brain.
Finally, this particular model has implications for the temporal

structure of perception. Put simply, the dynamics of high-level
representations unfold more slowly than the dynamics of lower-
level representations. This is because the state of a higher attractor
prescribes a manifold that guides the flow of lower states, which
could change quite rapidly. We will see an example of this
below when considering the perceptual categorisation of different
sequences of chirps subtending birdsongs. This suggests that
neuronal representations in the brain will change more slowly at
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higher levels (Kiebel et al., 2008; see also Botvinick, 2007; Hasson,
Yang, Vallines, Heeger, & Rubin, 2008). One can turn this argument
on its head and use the fact thatwe are able to recognise sequences
of sequences (e.g., Chait, Poeppel, de Cheveigné, & Simon, 2007)
as an existence proof for this sort of generative model. In the
examples below, we will try to show how autonomous dynamics
furnish generative models of sensory input, which behave much
like real brains, when measured electrophysiologically.

4.2. A synthetic avian brain

The toy example used here deals with the generation and
recognition of birdsongs (Laje & Mindlin, 2002). We imagine that
birdsongs are produced by two time-varying causal states that
control the frequency and amplitude of vibrations of the syrinx of a
songbird (see Fig. 2). There has been an extensive modelling effort
using attractor models at the biomechanical level to understand
the generation of birdsong (e.g., Laje, Gardner, & Mindlin, 2002).
Herewe use the attractors at a higher level to provide time-varying
control over the resulting sonograms.Wedrive the syrinxwith two
states of a Lorenz attractor, one controlling the frequency (between
two to five kHz) and the other (after rectification) controlling the
amplitude or volume. The parameters of the Lorenz attractor were
chosen to generate a short sequence of chirps every second or so.
To endow the generative model with a hierarchical structure, we
placed a second Lorenz attractor, whose dynamicswere an order of
magnitude slower, over the first. The states of the slower attractor
entered as control parameters (the Raleigh and Prandtl number)
to control the dynamics exhibited by the first. These dynamics
could range from a fixed-point attractor, where the states of the
first are all zero; through to quasi-periodic and chaotic behaviour,
when the value of the Raleigh number exceeds an appropriate
threshold (about twenty four) and induces a bifurcation. Because
higher states evolve more slowly, they switch the lower attractor
on and off, generating distinct songs, where each song comprises a
series of distinct chirps (see Fig. 3).
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v
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relatively high conditional precision. However, it takes about 50 iterations (about 600 ms) before they stabilise. In other words, the sensory sequence has been mapped
correctly to a point in perceptual space after the occurrence of the second chirp. This song corresponds to song C in the next figure.
4.3. Song recognition

This model generates spontaneous sequences of songs using
autonomous dynamics.We generated a single song, corresponding
roughly to a cycle of the higher attractor and then inverted the
ensuing sonogram (summarised as peak amplitude and volume)
using the message-passing scheme described in the previous
section. The results are shown in Fig. 3 and demonstrate that,
after several hundred milliseconds, the veridical hidden states
and supraordinate causal states can be recovered. Interestingly,
the third chirp is not perceived, in that the first-level prediction
error was not sufficient to overcome the dynamical and structural
priors of the model. However, once the subsequent chirp had
been predicted correctly the following sequence of chirps was
recognised with a high degree of conditional confidence. Note
that when the second and third chirps in the sequence are not
recognised, first-level prediction error is high and the conditional
confidence about the causal states at the second level is low
(reflected in the wide 90% confidence intervals). Heuristically,
this means that the synthetic bird listening to the song did not
know which song was being emitted and was unable to predict
subsequent chirps.

4.3.1. Structural and dynamic priors
This example provides a nice opportunity to illustrate the

relative roles of structural and dynamic priors. Structural priors
are provided by the top-down inputs that reshape the manifold
of the low-level attractor. However, this attractor itself contains
an abundance of dynamical priors that unfold in generalised
coordinates. Both provide important constraints on the evolution
of sensory states, which facilitate recognition. We can selectively
destroy these priors by lesioning the top-down connections to
remove structural priors or by cutting the intrinsic connections
that mediate dynamic priors. The latter involves cutting the self-
connections in Fig. 1, among the causal and state-units. The results
of these two simulated lesion experiments are shown in Fig. 4.
The top panel shows the percept as in the previous panel, in
terms of the predicted sonogram and prediction error at the
first and second level. The subsequent two panels show exactly
the same things but without structural (middle) and dynamic
(lower) priors. In both cases, the synthetic bird fails to recognise
the sequence with a corresponding inflation of prediction error,
particularly at the sensory level. Interestingly, the removal of
structural priors has a less marked effect on recognition than
removing the dynamical priors. Without dynamical priors there
is a failure to segment the sensory stream and, although there
is a preservation of frequency tracking, the dynamics per se have
completely lost their tempo. Although it is interesting to compare
and contrast the relative roles of structural and dynamics priors;
the important message here is that both are necessary for veridical
perception and that destruction of either leads to suboptimal
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inference. Both of these empirical priors prescribe dynamicswhich
enable the synthetic bird to predict what will be heard next. This
leads to the question ‘what would happen if the song terminated
prematurely?’

4.4. Omission-related responses

We repeated the above simulation but terminated the song
after the fifth chirp. The corresponding sonograms and percepts
are shown with their prediction errors in Fig. 5. The left panels
show the stimulus and percept as in Fig. 4, while the right panels
show the stimulus and responses to omission of the last syllables.
These results illustrate two important phenomena. First, there is a
vigorous expression of prediction error after the song terminates
prematurely. This reflects the dynamical nature of the recognition
process because, at this point, there is no sensory input to predict.
In other words, the prediction error is generated entirely by the
predictions afforded by the dynamic model of sensory input. It can
be seen that this prediction error (with a percept but no stimulus)
is almost as large as the prediction error associated with the third
and fourth stimuli that are not perceived (stimulus but no percept).
Second, it can be seen that there is a transient percept, when the
omitted chirp should have occurred. Its frequency is slightly too
low but its timing is preserved, in relation to the expected stimulus
train. This is an interesting stimulation from the point of view
of ERP studies of omission-related responses. These simulations
and related empirical studies (e.g., Nordby, Hammerborg, Roth, &
Hugdahl, 1994; Yabe, Tervaniemi, Reinikainen, & Näätänen, 1997)
provide clear evidence for the predictive capacity of the brain. In
this example, prediction rests upon the internal construction of
an attractor manifold that defines a family of trajectories, each
corresponding to the realisation of a particular song. In the last
simulation we look more closely at perceptual categorisation of
these songs.
4.5. Perceptual categorisation

In the previous simulations, we saw that a song corresponds
to a sequence of chirps that are preordained by the shape of an
attractor manifold that is controlled by top-down inputs. This
means that for every point in the state-space of the higher attractor
there is a corresponding manifold or category of song. In other
words, recognising or categorising a particular song corresponds
to finding a fixed location in the higher state-space. This provides a
nicemetaphor for perceptual categorisation; because the neuronal
states of the higher attractor represent, implicitly, a category of
song. Inverting the generative model means that, probabilistically,
we can map from a sequence of sensory events to a point
in some perceptual space; where this mapping corresponds to
perceptual recognition or categorisation. This can be demonstrated
in our synthetic songbird by ignoring the dynamics of the second-
level attractor and exposing the bird to a song and letting the
states at the second level optimise their location in perceptual
space. To illustrate this, we generated three songs by fixing the
Raleigh and Prandtl variables to three distinct values. We then
placed uninformative priors on the second-level causal states (that
were previously driven by the hidden states of the second-level
attractor) and inverted the model in the usual way. Fig. 6 shows
the results of this simulation for a single song. This song comprises
a series of relatively low-frequency chirps emitted every 250 ms
or so. The causal states of this song (song C in the next figure) are
recovered after the second chirp, with relatively tight confidence
intervals (the blue and green lines in the lower left panel). We then
repeated this exercise for three songs. The results are shown in
Fig. 7. The songs are portrayed in sonogram format in the toppanels
and the inferred perceptual causal states in the bottom panels. The
left panel shows the evolution of the causal states for all three
songs as a function of peristimulus time and the right panel shows
the corresponding conditional density in the causal or perceptual
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space of these two states after convergence. It can be seen that for
all three songs, the 90% confidence interval encompasses the true
values (red dots). Furthermore, there is very little overlap between
the conditional densities (grey regions), which means that the
precision of the perceptual categorisation is almost 100%. This is
a simple but nice example of perceptual categorisation, where
sequences of sensory events with extended temporal support can
be mapped to locations in perceptual space, through Bayesian
deconvolution of the sort entailed by the free-energy formulation.

5. Conclusion

This paper has suggested that the architecture of cortical
circuits speaks to hierarchical generative models in the brain.
The estimation or inversion of these models corresponds to a
generalised deconvolution of sensory inputs to disclose their
causes. This deconvolution could be implemented in a neuronally
plausible fashion, where neuronal dynamics self-organise when
exposed to inputs to suppress free-energy. The focus of this
paper has been on the nature of the hierarchical models
and, in particular, how one can understand message-passing
among neuronal populations in terms of perception. We have
tried to demonstrate their plausibility, in relation to empirical
observations, by interpreting the prediction error, associated with
model inversion, with observed electrophysiological responses.
The ideas reviewed in this paper have a long history, starting

with the notion of neuronal energy (Helmholtz, 1860/1962);
covering ideas like efficient coding and analysis by synthesis
(Barlow, 1961; Neisser, 1967) tomore recent formulations in terms
of Bayesian inversion and Predictive coding (e.g., Ballard, Hinton, &
Sejnowski, 1983; Dayan, Hinton, & Neal, 1995; Kawato, Hayakawa,
& Inui, 1993; Mumford, 1992; Rao & Ballard, 1998). This work
has also tried to provide support for the notion that the brain
uses dynamics to represent and predict causes in the sensorium
(Byrne, Becker, & Burgess, 2007; Deco & Rolls, 2003; Freeman,
1987; Tsodyks, 1999).
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Software note
All the schemes described in this paper are available in Matlab

code as academic freeware (http://www.fil.ion.ucl.ac.uk/spm). The
simulation figures in this paper can be reproduced from a graphical
user interface called from the DEM toolbox.
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