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Striatal Prediction Error Modulates Cortical Coupling
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Both perceptual inference and motor responses are shaped by learned probabilities. For example, stimulus-induced responses in sensory
cortices and preparatory activity in premotor cortex reflect how (un)expected a stimulus is. This is in accordance with predictive coding
accounts of brain function, which posit a fundamental role of prediction errors for learning and adaptive behavior. We used functional
magnetic resonance imaging and recent advances in computational modeling to investigate how (failures of) learned predictions about
visual stimuli influence subsequent motor responses. Healthy volunteers discriminated visual stimuli that were differentially predicted
by auditory cues. Critically, the predictive strengths of cues varied over time, requiring subjects to continuously update estimates of
stimulus probabilities. This online inference, modeled using a hierarchical Bayesian learner, was reflected behaviorally: speed and
accuracy of motor responses increased significantly with predictability of the stimuli.

We used nonlinear dynamic causal modeling to demonstrate that striatal prediction errors are used to tune functional coupling in cortical
networks during learning. Specifically, the degree of striatal trial-by-trial prediction error activity controls the efficacy of visuomotor connec-
tions and thus the influence of surprising stimuli on premotor activity. This finding substantially advances our understanding of striatal function

and provides direct empirical evidence for formal learning theories that posit a central role for prediction error-dependent plasticity.

Introduction

One of the major reasons for the remarkable flexibility and adap-
tive repertoire of human behavior is that we construct and update
estimates of conditional probabilities that describe uncertain
causal relationships in the world. For example, human subjects
can infer changing conditional probabilities among sensory
events (Behrens et al., 2007; Brodersen et al., 2008), even when
these probabilities are not relevant for overt behavior (den Ouden et
al., 2009). Such learning of stimulus probabilities has been shown to
be reflected by activity changes in visual (Summerfield et al., 2008;
Summerfield and Koechlin, 2008), auditory (Pincze et al., 2002),
and somatosensory (Akatsuka et al., 2007; [annetti et al., 2008)
areas. The general principle that emerges from these studies is
that sensory responses increase with the size of prediction error,
i.e., the less expected (or more surprising) a stimulus, the greater
the response. This is in accordance with current theoretical
accounts of brain function, such as predictive coding and the
free-energy principle (Rao and Ballard, 1999; Friston, 2005;
Friston and Stephan, 2007; Friston and Kiebel, 2009), which
posit a fundamental role of prediction errors for adaptive be-
havior and learning.
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Efficient learning of probabilities can be used to form predictions
that guide motor behavior. For example, once the predictive
strength of a cue has been learned, the premotor cortex shows pre-
paratory activity (Tanji and Evarts, 1976; Wise and Mauritz, 1985;
Crammond and Kalaska, 2000) and reaction times (RT) decrease
(Requin and Granjon, 1969; Strange et al., 2005; Bestmann et al.,
2008).

However, the neurobiological mechanisms that underlie
adaptive changes in motor behavior when predictions fail are not
fully understood. According to the free-energy principle, any pre-
diction error should induce learning through synaptic plasticity,
reconfiguring connection strengths such that prediction error is
minimized at both sensory and motor levels, thus optimizing
perceptual inference and motor actions (Friston and Stephan,
2007). In line with this view, a recent electrophysiological study
by Bestmann et al. (2008) suggested that information about pre-
diction errorsis “. . . continuously channelled into motor regions
to control the excitability of expected motor outputs.” In this
study, we provide direct empirical evidence for this hypothesis,
exploiting recent advances in computational models of learning
(Behrens et al., 2007) and nonlinear dynamic causal models
(DCMs) of functional magnetic resonance imaging (fMRI) data
(Stephan et al., 2008). In particular, we link the physiological
mechanisms proposed by the free-energy principle (and other
formal theories of learning and decision making), i.e., prediction
error-dependent changes in connectivity, to a large body of liter-
ature that has described responses in the striatum correlated with
prediction error (McClure et al., 2003; O’Doherty et al., 2003,
2004; Corlett et al., 2004; Seymour et al., 2004; Jensen et al., 2007;
Menonetal., 2007). Specifically, we show that the observed learning-
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dependent changes in blood oxygenation level-dependent (BOLD)
activity are compatible with a mechanistic model in which the con-
nection strengths between visual and motor regions are modulated
by prediction error-related activity in the striatum.

Materials and Methods

Participants

Twenty healthy right-handed volunteers, 24.4 % 2.1 years of age (mean *
SD, 10 female) took part in this study. The participants had no history of
psychiatric or neurological disorders. Written informed consent was ob-
tained from all volunteers before participation. The study was approved by
the National Hospital for Neurology and Neurosurgery Ethics Committee.

Experimental design

Associative learning task. To investigate the mechanisms underlying
adaptive motor behavior and the role of striatal and sensory prediction
errors, we used a simple audiovisual associative learning task in which the
participants were presented with auditory cues (high or low beeps) that
differentially predicted upcoming visual target stimuli (Fig. 1A). To en-
sure attention and assess learning, participants were instructed to re-
spond as quickly as possible by button press (right middle and index
finger, counterbalanced across subjects), reporting whether the target
stimulus was a face (F) or a house (H). The associative contingencies of
the auditory and visual stimuli changed over the course of the experiment
(Fig. 1B). To ensure that participants’ responses were not biased by
learned expectations about the relative frequencies of the visual stimuli,
we designed the sequence of changes in probabilities such that the mar-
ginal probabilities of faces and houses were identical, as described in
more detail below. Subjects were instructed that the relation between
auditory and visual stimuli was probabilistic, that these probabilistic
relations would change unpredictably in time. They were not informed
about the nature of the probabilistic relations or about the temporal
intervals over which they changed.

Timing and stimuli

On each trial, one of two auditory cue conditioned stimuli (CS, and CS,)
was followed by a visual target stimulus (Fig. 1 A). To prevent anticipa-
tory responses or guesses, both the intertrial interval (2000 * 650 ms)
and visual stimulus onset latency (150 * 50 ms) were jittered randomly
(Fig. 1A). Auditory stimuli were presented binaurally for 300 ms. The
auditory stimuli were matched for perceived loudness under scanning
conditions as described previously (den Ouden et al., 2009). The frequencies
of the auditory stimuli used in this experiment were 1125 and 500 Hz, and
the adapted volume of the high tone was 98 * 4.1% (mean * SD) with
respect to the low tone. The visual stimuli were presented centrally for 150
ms to prevent saccades, and subjects were required to fixate a central cross
throughout the experiment. The visual stimuli consisted of eight pictures of
neutral facial expressions drawn from the Ekman Series of Facial
Affect (Ekman and Friesen, 1976) and eight pictures of houses, matched for
overall luminance and presented on a gray background. Stimuli were pre-
sented using the software package Cogent (www.vislab.ucl.ac.uk/Cogent).

Cue—outcome contingencies
The two tones differentially predicted the identity of the visual target
stimulus, and these contingencies changed over the course of the task
(Fig. 1B). Because each CS was followed by one of two stimuli (F or H),
the probability of one visual stimulus, given a particular auditory CS, was
one minus the probability of the other visual stimulus:

p(FICS) = 1 - p(H|CS) [i € {1,2}]. (1)
To ensure that participants’ responses were not biased by learned expec-
tations (e.g., about the relative frequencies of the visual stimuli), the
marginal probabilities of faces and houses were identical at any point in
time. This was achieved because, first, the probability of one visual out-
come given CS; was the same as the probability of the other visual out-
come given CS, (compare with Fig. 1 B):

p(FICS)) = p(HICS,). )
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Figure 1. A, Timeline for a single trial. At trial onset, the auditory cue stimulus (CS) was

presented for 300 ms. The visual outcome stimulus (0S) lasted for 150 ms and was presented
150 = 50 ms after the CS. The intertrial interval lasted for 2000 == 650 ms on average. B,
Temporal evolution of the probability of a face occurring, p(F), given either CS. Note that the
probability of a house being presented is simply the mirror image of this sequence. (, The
posterior mean of p(F|CS) as estimated by the Bayesian leamer (dashed line) tracks the underlying
blocked probabilities (solid line). Note that the blocked probabilities are CS, zoomed in from B (trials
400600, session 3). Because blocks of stable probabilities are short, however, the estimated prob-
abilities never quite reach their true values during a given block. Note that the estimates change
rapidly at block transitions. When an unexpected stimulus occurs, the estimates briefly move toward
p = 0.5. Note that, for clarity, we only show a single session (session 3) here.

Second, each block contained equal numbers of randomly intermixed
CS, and CS, trials. With these two manipulations, we ensured that, on
any given trial, before the CS was presented, the a priori probability of a
face (or house) occurring was always 50%. Thus, any expectations about
the visual stimulus could depend only on the auditory stimulus.

Each subject completed five sessions of 200 trials each. In each session,
the predictive strengths of the two CS types changed pseudorandomly
over time, taking one of five different discrete levels of predictive associ-
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ation. Specifically, the cue could be (1) strongly predictive ( p = 0.9), (2)
predictive (p = 0.7), (3) nonpredictive (p = 0.5), (4) antipredictive
(p =0.3), and (5) strongly antipredictive ( p = 0.1) of the visual stimu-
lus. Each predictive level was presented as a block of stimuli once per
scanning session. Predictive block lengths varied between 14 and 20 trials
per CS type, so that participants could not predict exactly when a change
in contingencies would occur. Furthermore, to avoid instantaneous and
complete reversals of the contingencies, blocks containing predictive
cues alternated with short blocks (610 trials) containing nonpredictive
cues (i.e., p = 0.5) in order.

fMRI data acquisition

A 3 T head scanner (Allegra Magnetom; Siemens) was used to acquire a
T1-weighted fast-field echo structural image and multislice T2*-
weighted echo-planar volumes with BOLD contrast (repetition time,
2.73 s; echo time, 30 ms). Before the functional scans, a B, field map was
acquired using a gradient echo field map sequence. Functional data were
acquired in five scanning sessions lasting ~8 min each. One hundred
eighty-nine volumes were acquired per session (945 scans in total per
subject). The first six volumes of each session were discarded to allow for
T1 equilibrium effects. Each functional brain volume comprised 42 axial
slices with 2 mm thickness and a 1 mm interslice gap and an in-plane
resolution of 3 X 3 mm. The field of view was chosen to cover the whole
brain, except for the brainstem.

Data analysis

Behavioral data analysis

First, the data were screened for outliers in reaction times, and responses
faster than 150 ms were excluded. We then tested whether the distribu-
tions of RT and response speeds (RS) (i.e., inverse reaction times)
showed significant deviations from normality using a Kolmogorov—
Smirnov test. Because RS, but not RT, were well described by a Gaussian
distribution, the former were entered into a repeated-measures ANOVA
with outcome probability (five levels: 0.9, 0.7, 0.5, 0.3, and 0.1), CS type
(CS,, CS,), and outcome type (F, H) as within-subjects factors. The
Greenhouse—Geisser correction was used when significant nonsphericity
was detected. The analogous analysis was performed on error rates.

Bayesian learning model

The linear model based on the true probabilities described above (hence-
forth referred to as the “categorical model”) explained a significant pro-
portion of variance in reaction times and errors and as such provided a
reasonable model of the behavioral data. However, it makes the unreal-
istic assumption that the participants have instantaneous and precise
knowledge of the true probabilities that generated the stimulus sequence.
In reality, the participants had to estimate these unknown probabilities
trial by trial from the observed stimulus sequence. Thus, we aimed to find
a more realistic model reflecting how subjects’ continuously updated
their estimates of the associations, based on past observations. Clearly,
there are numerous potential models of such a process (Dayan and Daw,
2008; Dayan and Niv, 2008). Here we focused on a generic Bayesian
learner model that accounts for both trial-by-trial updates of probability
estimates and learning about the volatility of the environment (Behrens
etal., 2007).

Previous studies have shown that many human perceptual and motor
processes approximate the behavior of an ideal Bayesian learner (Kersten
et al., 2004; Kording and Wolpert, 2006). Bayesian learners continually
update their estimates of hidden contingencies by combining previous
information from past experience with current observations in the
present. In standard Bayesian learner models, the learning rate, and thus
the relative influence of past versus current observations on the esti-
mates, is constant. This, however, is not optimal when the underlying
probabilistic associations are changing in an unknown and irregular
manner, as in the task used in this study. In such an environment, an
optimal learner would not only estimate the probabilities but also their
instability in time (i.e., volatility) and would increase the weight of cur-
rent observations, relative to past experience, with increasing volatility.
To model the ongoing estimation of associative cue—outcome relation-
ships based on observed outcomes, we used a hierarchical Bayesian learn-
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ing model developed by Behrens et al. (2007). Given a series of observed
events, this model estimates, at any given point in time, the posterior
probability density function (PDF) of both the probabilistic associations
and the volatility of the environment (see Fig. 2). Here, we adopted this
model (for details of our implementation, see supplemental data, avail-
able at www.jneurosci.org as supplemental material) and used the pos-
terior mean of the PDFs as estimates of the probability and volatility. To
verify that the probability estimates of this Bayesian model were better
linear predictors of the behavioral RS than the true probabilities from
which the stimulus sequence was generated, we used Bayesian model
selection (BMS) (see below). Given the clear superiority of probability
estimates from the Bayesian model in explaining the behavioral data (see
Results), they were used in the subsequent analyses of the f{MRI data.

Based on suggestions by our reviewers, we tested three additional
models that could potentially explain the behavioral data. First, we tested
a standard Rescorla—Wagner model; in the reinforcement learning liter-
ature, this is referred to as a “model-free” approach because it has no
knowledge about the environment or task structure. Furthermore, we
evaluated two variants of a hidden Markov model that explicitly reflected
task structure by representing transitions between the five different asso-
ciation levels (a “model-based” approach). Bayesian model comparison
showed that the Bayesian learner model proved to be superior to any of
these models. The main text of this manuscript therefore focuses on
comparing the Bayesian learner to the categorical model based on the
true probabilities. Details of the additional models and their comparison
are included in the supplemental data (available at www.jneurosci.org as
supplemental material). In particular, supplemental Figure S2 (available
at www.jneurosci.org as supplemental material) juxtaposes the predic-
tions from the different computational models about trial-by-trial esti-
mates of cue strength, and supplemental Table S1 (available at www.
jneurosci.org as supplemental material) lists the results of model
comparison.

Bayesian model selection
When comparing different models for observed data, it is critical that the
decision is not only based on the relative fit but also on the relative
complexity of the competing models (Pitt and Myung, 2002). BMS pro-
vides a principled foundation for comparing competing models of dif-
ferent complexity (Penny et al., 2004). We used a novel hierarchical
method for BMS that allows for group-level random-effects inference
about the relative goodness of multiple competing models (Stephan et
al., 2009). First, as described in the supplemental data (available at www.
jneurosci.org as supplemental material), for all models considered, we
computed the evidence p(y|m), i.e., the probability of the data y being
generated by model m, for each subject. The model evidence balances fit
and complexity, enabling one to compare non-nested models with dif-
ferent levels of complexity. For the linear models applied to the behav-
ioral data, there is an analytic expression for the model evidence (for
details, see supplemental data, available at www.jneurosci.org as supple-
mental material). For the nonlinear dynamic causal models of the fMRI
data described below, we used the negative free-energy approximation to
the log model evidence (Friston et al., 2007; Stephan et al., 2007b).
Subsequently, the models were compared at the group level, using
random-effects BMS (Stephan et al., 2009). This method has been shown
to be considerably more robust than either the conventional fixed-effects
analysis using the group Bayes factor (Stephan et al., 2007b) or frequen-
tist tests applied to model evidences, especially in the presence of outliers
(Stephan et al., 2009). It uses variational Bayes to infer the posterior
density of the models per se. One can then derive the exceedance proba-
bility, ¢y, i.e., the probability that a particular model k is more likely than
any other model considered, given the group data. Exceedance probabil-
ities are particularly intuitive when comparing two models, as in our
analysis of the behavioral data (see Fig. 2 D).

Functional neuroimaging analysis

fMRI data were analyzed using the SPM5 software package (Wellcome
Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/
spm). The 915 echo planar images from each subject were corrected for
geometric distortions caused by susceptibility-induced field inhomoge-
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neities. A combined approach was used that corrects for both static dis-
tortions and changes in these distortions attributable to head motion
(Andersson et al., 2001; Hutton et al., 2002). The static distortions were
calculated for each subject by acquiring a B, field map and processing it
using the FieldMap toolbox implemented in SPM5 (Hutton et al., 2004).
The images were then realigned unwarped, slice-time corrected, and
coregistered to the subject’s own structural scan. The structural image
was processed using a unified segmentation procedure combining seg-
mentation, bias correction, and spatial normalization (Ashburner and
Friston, 2005); the same normalization parameters were then used to
normalize the echo planar images. Finally, the echo planar images were
smoothed with a Gaussian kernel of 8 mm full-width half-maximum and
resampled to 3 X 3 X 3 mm voxels.

The data were then modeled voxelwise, using the general linear model
(GLM) for each of the 20 participants. In the GLM, correct and error
trials were modeled as separate events. For correct trials, face and house
trials were modeled as the two main conditions of interest. These were
collapsed across the two different CS types (high and low tones), because
the predictive strengths of the two CSs were counterbalanced over time
and thus no differential effects were to be expected (this was confirmed
by analysis of the behavioral data). Condition-specific effects were mod-
eled in an event-related manner, convolving a sequence of delta func-
tions with a canonical hemodynamic response function. The probability
estimates from the Bayesian learner as well as the subject-specific re-
sponse speeds were included as first-order parametric modulators of face
and house trials such that the delta functions representing the presence of
a face were modulated by the trial-specific probability estimate that a face
should have occurred on this trial (equivalently for house trials). We also
included the volatility estimates from the Bayesian learner as parametric
modulators (orthogonalized with respect to the probability estimates).
Finally, the six motion parameter vectors from the realignment proce-
dure were included as regressors of no interest to account for variance
caused by head motion.

After computing subject-specific contrast images of interest, random-
effects group analyses across all 20 subjects were performed (Friston et
al.,2005), using one-sided one-sample ¢ tests and testing for both positive
and negative BOLD responses. We report any responses that survived
whole-brain correction at the cluster level ( p < 0.05), with a voxel-level
threshold of p < 0.001. For anatomically constrained a priori hypotheses
concerning fusiform face area (FFA) and parahippocampal place area
(PPA) (for stimulus-specific effects), putamen (for prediction errors),
and anterior cingulate cortex (ACC) (for volatility; see supplemental
material, available at www.jneurosci.org), we report activations that sur-
vived correction at the cluster level ( p < 0.05; with p < 0.001 voxel-level
threshold) within the region of interest. For the putamen and ACC,
search volumes were generated using the PickAtlas toolbox using the
AAL atlas (Maldjian et al., 2003); for stimulus-specific visual areas, we
used in-built localizer contrasts that were orthogonal to the other con-
trasts of interest (see below).

First, we assessed the main effect of probability, that is, in which in
brain regions the hemodynamic response reflected the probability of the
stimulus occurring, independently of which stimulus it was. We tested
for both BOLD responses that increased with the likelihood of the out-
come and responses that increased the less likely (or more surprising) the
outcome was. In other words, these contrasts tested for stimulus-
independent responses that reflected predicted or surprising outcomes,
respectively. Given the results from our previous study (den Ouden et al.,
2009), our a priori hypothesis was that the response in the putamen
would correlate positively with prediction error, i.e., negatively with the
probability of the observed outcome.

Second, we tested for stimulus X probability interactions, that is, pre-
diction error-dependent responses that differed between faces and
houses. Our a priori hypothesis was that responses in stimulus-specific
areas would scale inversely with the probability of the presented stimulus
(cf. Friston, 2005; Summerfield et al., 2008). In other words, responses of
the FFA to face stimuli should decrease when they were more probable,
and responses of the PPA to houses should decrease with the probability
of a house being presented. This can be regarded equivalently as testing
for prediction error-dependent increases in the response of category-
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Table 1. Montreal Neurological Institute coordinates and Z scores for significantly
activated regions

Region X y z Zscore
Prediction error effects: negative
correlation with p(F) and p(H)
Motor areas
Left precentral gyrus (dorsal —18 —18 60 413
premotor cortex)*
Right intraparietal sulcus* 42 —33 39 4.02
Right superior parietal gyrus* 15 —60 63 4.16
Striatum
Right putamen™* 27 3 6 3.42
Left putamen®* —24 15 3 339

Probability effects: positive
correlation with p(F) and p(H)
No significant activations

*p << 0.05, cluster-level corrected across the whole brain; **p << 0.05, cluster-level corrected for a priori region of
interest.

specific areas. To accommodate intersubject variability in the exact loca-
tion of FFA and PPA, we identified these regions for each subject
separately, using an embedded orthogonal localizer contrast (i.e., the
main effect of faces versus houses and vice versa) (Friston et al., 2006).
We verified, using the whitened design matrix, that localizing and test
contrasts were indeed orthogonal (cf. Kriegeskorte et al., 2009). In each
subject, the individual maximum within 8 mm of the group maximum of
face- and house-specific responses (Table 1) was determined. Subse-
quently, given these voxels with individually maximal stimulus specific-
ity, we tested for (orthogonal) stimulus X probability interactions by
entering the parameter estimates of regressors encoding trial-by-trial
stimulus probability estimates into two-tailed paired-sample # tests. In
other words, this procedure tested whether face- and house-specific re-
sponses in FFA and PPA, respectively, were modulated by the trial-by-
trial probability estimate of a face or a house occurring.

Nonlinear dynamic causal models
Numerous studies have demonstrated previously that hemodynamic re-
sponses in the striatum reflect prediction errors (McClure et al., 2003;
O’Doherty et al., 2004; Pessiglione et al., 2006; Jensen et al., 2007; den
Ouden et al., 2009). According to theoretical models of learning, the size
of prediction errors should control the strength of synaptic connections
encoding stimulus—stimulus and stimulus-response links (McLaren et
al., 1989; Schultz and Dickinson, 2000; Friston, 2005). In this study, we
tested this notion directly by modeling how activity in the putamen gated
the influence of visual areas onto the dorsal premotor cortex (PMd) (see
Fig. 5). We expected that increased BOLD responses in the putamen,
induced by a surprising face, should increase the strength of the FFA —
PMd connection, thus enhancing the influence of face information on
PMd activity and facilitating an update of the motor plan. This type of
analysis, which requires the assessment of modulatory (second-order)
effects on connectivity, has become possible with the recent introduction
of nonlinear DCMs (Stephan et al., 2008).

In nonlinear DCMs, the hidden neural dynamics (i.e., not directly
observed by fMRI) are modeled by the following equation:

dj = (A + uw,BY + zx-DU))x + Cu. (3)
dt = =
Here, u are the experimentally controlled inputs, the A matrix represents
the endogenous (context-independent or fixed) connection strengths
between the modeled regions, the matrices B represent the modulation
of these connections induced by the ith input u; as an additive change,
and the C matrix represents the influence of direct (exogenous) inputs to
the system. Finally, the DY) matrices encode how connection strengths
are modulated or gated by activity in area j (for details, see Stephan et al.,
2008).

DCM specification. Based on our SPM results, we constructed a non-
linear DCM including the right putamen, PPA and FFA, and the left
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PMd. As shown in Figure 3 and Table 1, several other areas showed a
prediction error-dependent response and may also be involved in the
visuomotor information transfer. Therefore, the model we chose, includ-
ing the above four regions, should be regarded as the most parsimonious
model that enabled us to test whether prediction error activity in the
putamen gated visuomotor connections. Although putamen, FFA, and
PPA showed peak activations in the right hemisphere, we included the
left premotor cortex because participants responded with their right
hand.

We constructed and compared several alternative models. The basic
architecture, shown in Figure 4 A, included connections from FFA and
PPA to the PMd and modulations of these connections by activity in the
putamen, which was driven by the trial-by-trial probability estimates
provided by the Bayesian learning model. The connectivity layout of our
basic model was guided by anatomical and physiological data. For exam-
ple, in the Macaque monkey, both ventral and dorsal parts of the lateral
premotor cortex contain substantial numbers of neurons that respond to
visual stimuli (Fogassi et al., 1999), including symbolic action-selection
cues (Yamagata et al., 2009). These responses may be mediated by direct
anatomical connections from inferotemporal to ventral premotor cortex
(Webster et al., 1994; Gerbella et al., 2010) or by polysynaptic connec-
tions from various visual areas to dorsal premotor cortex, which are
relayed via parietal and temporal areas (Matelli et al., 1998; Luppino et
al., 2001; Tanné-Gariépy et al., 2002; Gamberini et al., 2009). The con-
nectivity structure of this DCM was subsequently optimized systemati-
cally by BMS; the optimal model was found to include reciprocal
connections between FFA, PPA, and PMd (for a graphical representation
of all models tested, see supplemental Fig. S1, available at www.jneurosci.
org as supplemental material).

After the endogenous connections had been optimized, we conducted
afinal and critical model comparison. Because the putamen and the PMd
showed similar prediction error-related responses (see Fig. 3), we wanted
to establish the specificity of our model and demonstrate that putamen
activity gated visuomotor connections, instead of PMd gating connec-
tions between visual areas and putamen. We therefore compared our
model with one in which the roles of the PMd and the putamen were
reversed (see Fig. 4C).

Time series extraction. Because the exact locations of activation max-
ima varied across participants, we used subject-specific anatomical and
functional constraints in selecting regional time series (cf. Stephan et al.,
2007a). In brief, a regional time series was extracted if (1) it passed a
threshold of p < 0.05 (uncorrected) in the respective contrast of the GLM
analysis and if (2) it was located within a certain distance from the group
maximum. For FFA and PPA (identified by the contrast testing for main
effect of faces vs houses, F > H and H > F, respectively), the individual
maxima were required to be within 8 mm of the group maximum. For the
putamen and PMd (identified by the contrast testing for a negative main
effect of probability), the individual maxima were required to be within
16 mm of the group maximum (PMd) and within the putamen as defined
by the participant’s own anatomical scan. To summarize the regional
time series, we computed the first eigenvector across all suprathreshold
voxels within 4 mm of the selected maximum. After this procedure, we
were able to extract time series for all four areas in 15 of 20 participants.
We could not obtain a putamen time series in three participants and a
PMd time series in two participants because of failure to meet the ana-
tomical and functional criteria above. Because we could not specify the
complete model in these participants, they were excluded from the DCM
analysis.

Results
Behavioral data
Subjects responded correctly on 91 * 0.8% (mean = SE) of trials,
on 5% of the trials they gave the wrong response or pressed mul-
tiple buttons, and on the remaining 4% of trials they did not
respond before the end of the trial.

Subjects responded faster (Fig. 2A) and more accurately (Fig.
2B) to more likely stimuli, indicating that they successfully
tracked the changing contingencies. The difference in average
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Figure2. RTs(A)and percentage of errors as a function of outcome probability (B) (mean =+
SE). Correct trials were averaged within each level of probability and collapsed across CS and
visual outcome type (F/H). Subjects speed up and make fewer errors the higher the probability
of the outcome. C, Subject-specific differences in log model evidence (LME) for using the trial-
by-trial probability estimates from the Bayesian model versus the true probabilities as linear
predictors for behavioral measured response speeds. In all but two subjects, there is far greater
evidence for the Bayesian model. D, The Dirichlet density describing the probability of model m,
(based on the probability estimates from the Bayesian learning model) relative to the alterna-
tive model m, (based on the true, blocked probabilities), given the measured response speeds
across the group. The shaded area represents the exceedance probability of m, being a more
likely model than m,. This exceedance probability of ¢, = 100.0% was strongly favoring m, as
amore likely model than m,.

reaction time between unexpected ( p = 0.1) and expected ( p =
0.9) outcomes across subjects was 32 ms (Fig. 2A). For formal
hypothesis testing, we used inverse reaction times, i.e., RS, be-
cause these were more normally distributed than reaction times
(cf. Carpenter and Williams, 1995). Repeated-measures ANOVA
showed a significant relationship between both RS (F, 4 45.4) =
43.9; p < 0.001) and error rates (F(; 53340y = 12.52; p < 0.001)
and stimulus probability.

As discussed in Materials and Methods, this ANOVA, al-
though explaining a significant amount of variance, cannot be a
realistic representation of the subjects’ estimates of cue—outcome
association strengths. We therefore used a hierarchical Bayesian
learning model that estimates, from the observed cue—outcome
combinations, the probabilistic associations given a series of ob-
served events (Fig. 1C), and we tested whether the estimates of
this Bayesian model were better linear predictors of the behav-
ioral RS than the true probabilities from which the stimulus se-
quence was generated. The distribution of the log evidences
across subjects (Fig. 2C) and random-effects BMS at the group
level showed that the Bayesian learning model was unmistakably
superior: the exceedance probability that the Bayesian learning
model was the more likely model was almost 100% (Fig. 2 D).

Following suggestions by our reviewers, we also compared the
Bayesian learning model to a Rescorla—Wagner learning model
and to two variants of a hidden Markov model reflecting the
underlying task structure. The Bayesian model was found to be
clearly superior to each of these additional models (for details, see
supplemental data, available at www.jneurosci.org as supple-
mental material). Given this result, the trial-by-trial estimates
from the Bayesian model were used in the subsequent analyses of
the fMRI data.
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Figure 3.  All parameter estimates show mean = SE across all subjects, and all activations

are displayed on the average anatomical scan. B and D—F show the results of a whole-brain
analysis, and 4, C, G, and H show the results from region-of-interest analyses. A, Effect of
prediction error in the anterior putamen bilaterally. €, Parameter estimates from the putamen
showing the negative dependency on both p(F) and the p(H). B, Effects of prediction error in
PMd and the parietal cortex. a.u., Arbitrary units. D, Parameter estimates for the left PMd,
showing the same prediction error-dependent effect as the putamen. E, Main effect of F > Hin
the right FFA, also showing the left FFA activation (see supplemental data, available at www.
jneurosci.org as supplemental material). F, Main effect of H > F in the bilateral PPA. G, Param-
eter estimates of the modulatory effect of stimulus probabilities (from the individual maxima
for the orthogonal F > H contrast in the FFA). There was a pronounced negative modulation of
FFA responses to faces by the trial-by-trial probability estimates for faces (8 = —2.05 =
0.52). In contrast, the modulation of FFA responses to houses by the trial-by-trial probability
estimates for houses was marginal (3 = —0.09 = 0.78). This difference was significant
(*p = 0.037). H, Parameter estimates of the modulatory effect of stimulus probabilities across
subjects (from the individual maxima for the orthogonal H > F contrast in the PPA). PPA
responses to houses showed a strongly negative modulation by the trial-by-trial probability
estimates for houses (3 = —2.29 = 0.54). In contrast, PPA responses to faces were positively
modulated by the trial-by-trial probability estimates for faces (8 = 1.91 = 0.67). This differ-
ence was significant (¥ p = 0.00005).

fMRI data
The main results of our SPM analysis are summarized graphically
in Figure 3.

Regional responses reflecting stimulus-independent

prediction error

Responses in the bilateral putamen were negatively correlated
with the probability of the visual stimulus, regardless whether this
stimulus was a face or a house (Table 1; Fig. 3A,C). In other
words, the BOLD response in the putamen increased the more
surprising the outcome was. Other areas that showed this type of
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response included the left PMd, right intraparietal sulcus, and
right superior parietal gyrus (Table 1; Fig. 3B, D).

Prediction error-related responses in stimulus-specific areas

The factorial design provided an in-built localizer contrast for
defining the FFA and PPA functionally in each participant (see
Materials and Methods). The individual peak voxels in right FFA
and right PPA that showed maximally selective face and house
responses, respectively, also showed an (orthogonal) stimulus X
probability interaction: in the FFA, there was a pronounced
negative modulation of response to faces by the trial-by-trial
probability estimates for faces (8 = —2.05 = 0.52, mean = SE).
In other words, FFA responses to faces increased when the occur-
rence of a face was surprising (i.e., a large prediction error). In
contrast, the modulation of FFA responses to houses by the trial-
by-trial probability estimates for houses was negligible ( =
—0.09 * 0.78) (Fig. 3G). The difference in regression slopes
between the two conditions (i.e., the interaction) was significant
(g = 2.25; p = 0.037).

The response in the PPA in response to houses showed a
strongly negative modulation by the trial-by-trial probability es-
timates for houses (B = —2.29 * 0.54) (Fig. 3H), that is, in
analogy to the FFA results, PPA responses to houses increased the
higher the prediction error, i.e., the more surprising the presentation
of a house was. However, unlike the FFA analysis, PPA responses to
faces were positively modulated by the trial-by-trial probability esti-
mates for faces (8 = 1.91 = 0.67); this corresponds to a decrease in
activity the more surprising the presentation of a face was. As for
FFA, this interaction was significant (f.,9) = 5.22; p = 0.00005).

In summary, responses of PPA and FFA to their preferred
stimuli were strongly modulated by prediction error, and this
modulation was significantly higher than for their nonpreferred
stimuli.

Nonlinear DCMs

In line with numerous previous studies (McClure et al., 2003;
O’Doherty et al., 2004; Pessiglione et al., 2006; Jensen et al., 2007;
den Ouden et al., 2009), the BOLD response in the putamen
reflected prediction errors. According to theoretical models of
learning, the size of prediction errors should control the strength
of stimulus—stimulus and stimulus—response links and thus con-
nection strength (McLaren et al., 1989; Montague et al., 1996,
2004; Schultz and Dickinson, 2000; Friston, 2005). We tested this
notion directly by modeling how activity in the putamen gated
the information flow from visual areas to the PMd (Fig. 4). First,
the fixed connections were optimized; the optimal model in-
cluded full reciprocal connectivity between PPA, FFA, and PMd
but no direct connections from either visual areas or PMd to the
putamen (Fig. 4B). The exceedance probability for this model
was ¢, = 0.44, surpassing the exceedance probabilities of the
other tested models (which ranged from 0.01 to 0.28) (for details,
see supplemental data, available at www.jneurosci.org as supple-
mental material).

Once the most likely pattern of connections among the areas
was established, we constructed a model to verify the specificity of
the modulatory influence exerted by the putamen, given that the
putamen and the PMd showed similar prediction error-related
responses (Fig. 3C,D). BMS showed that the model in which the
roles of the putamen and premotor cortex were reversed (1,,,,
with PMd as source of modulatory effects) was clearly inferior to
the original model (1,,, with the putamen as source of modula-
tory effects), with an exceedance probability of 99% in favor of the
latter (Fig. 4 D). In the optimal model 1, (Fig. 4 B), the parameter
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men activity on visuomotor connections p(H)
were consistently positive and significant
across subjects [PPA — PMd: d = 0.01 =

estimates reflecting gating effects of puta- A v
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Il p(F) p(H)
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P( F)

0.003 (mean * SE), £, = 2.97, p = 0.010;
FFA — PMd: d = 0.011 = 0.004, .., =
2.71, p = 0.017]. Therefore, in accordance
with our initial hypothesis, prediction error-
related activity in the putamen significantly
modulated the strength of visuomotor

connections.
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In this fMRI study, we used an audiovisual
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tor responses increased significantly with
trial-by-trial predictability of visual stim-

1 - 0 L ]
8 (] 0.2 0.4 0.6 0.8 1

K

uli (Fig. 2). Analysis of the fMRI data  Figure4. A, Abasic DCM for investigating modulation of visuomotor connections by prediction error-related activity in the
showed that responses in FFA and PPA  putamen. B, The optimal DCM (model m,,), resulting from a systematic model search procedure, included full connectivity be-
reflected trial-by-trial prediction errors tween the PMd, PPA, and FFA. Activity in the putamen significantly enhanced the connections from the PPA/FFA to the premotor

that were specific for their preferred stim-

cortex (p = 0.010and p = 0.017, respectively). C, Alternative DCM (model m,,,,) in which the roles of the putamen and the PMd

ulus (Fig. 3C,D). In contrast, both the were swapped. D, The Dirichlet density describing the probability of the “putamen " model m,, relative to the alternative “premo-

putamen and dorsal premotor cortex
represented stimulus-independent pre-
diction errors (Fig. 3A,B). Using nonlin-
ear DCMs, we found that prediction error
responses in the putamen modulated the strength of connections
from FFA and PPA to premotor cortex.

Our fMRI data analysis showed a double dissociation of re-
sponses in the FFA and PPA. For both areas, responses to their
preferred stimuli were strongly modulated by trial-by-trial predic-
tion errors about these stimuli; moreover, this modulation was sig-
nificantly higher than for their nonpreferred stimuli (Fig. 3C-F).
This finding is consistent with predictive coding theories (Friston,
2005) and extends previous reports of enhanced FFA responses to
surprising faces (Summerfield et al., 2008). In contrast, the bi-
lateral putamen, left dorsal premotor cortex, right intraparietal sul-
cus, and superior parietal gyrus showed prediction error-related
responses independent of whether the presented stimulus was a face
or a house (Fig. 3A, B). In the present DCM analysis, we focused on
the roles of the putamen and the premotor cortex. The prediction
error-related responses of the latter likely reflects the updating of
the motor plan that is necessary when the prediction evoked by the
auditory cue is wrong (Mars et al., 2007b; Nakayama et al., 2008). In
contrast, increased responses in the parietal areas more likely reflects
an attentional updating process after unexpected visual stimuli.
These areas have been studied extensively in attentional paradigms
[e.g., using the Posner paradigm (Posner, 1980)] in which they show

thanm,,,,.

tor " model m,,,,, given the measured fMRI data across the group. The shaded area represents the exceedance probability of m,,
being a more likely model than m,,,. This exceedance probability of ¢; = 99.1% was strongly favoring m, as amore likely model

increased activation for unexpected stimuli, reflecting attentional
changes in response to violations of previous expectations (Giessing
et al., 2004; Thiel et al., 2004).

Previous neurophysiological and neuroimaging investiga-
tions of associative learning have primarily focused on region-
specific prediction error responses, e.g., in the ventral tegmental
area (Hollerman and Schultz, 1998; Yacubian et al., 2006;
D’Ardenne et al., 2008) or the striatum (Schultz and Dickinson,
2000; McClure et al., 2003; O’Doherty et al., 2003, 2004; Corlett et
al., 2004; Seymour et al., 2004; Tobler et al., 2006; Jensen et al.,
2007; Menon et al., 2007). In contrast, to date, there has been only
one empirical study examining effects of prediction errors on
connectivity (den Ouden et al., 2009). This previous study of
audiovisual associative learning found prediction error-related
responses in the visual cortex and putamen, as well as a modula-
tion of effective connectivity from auditory to visual cortex by
prediction error. However, the source of this modulation re-
mained anatomically uninformed. Furthermore, our previous
study lacked behavioral evidence for learning (as a result of using
anincidental learning paradigm), used nonspecific visual stimuli,
and restricted learning to stationary probabilities. All of these
limitations were overcome in the present study.
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Prediction error-related responses in both dorsal and ventral
parts of the striatum have been reported by numerous studies on
very different types of learning. These results suggest that the
striatum is sensitive to violations of learned contingencies, re-
gardless of whether these contingencies signal reinforcement
(McClure et al., 2003; O’Doherty et al., 2003, 2004; Seymour et
al., 2004; Jensen et al., 2007; Menon et al., 2007), guide decision
making (Corlett et al., 2004), or predict target stimuli (as in the
current study), and even when these contingencies are not behav-
iorally relevant (den Ouden et al., 2009). Other fMRI studies
showed that the striatum responds to nonrewarding, unexpected
stimuli proportional to the salience of the stimulus (Zink et al.,
2006), as well as to novel stimuli (Wittmann et al., 2007, 2008).
These results suggest that the striatum may have a general role in
processing unexpected events per se. One of the proposed func-
tions of this striatal response is to reallocate processing resources
to unexpected stimuli in both reward and nonreward contexts
(Zink et al., 2006). Our results, showing that prediction error
responses in the putamen indeed modulates information transfer
from visual to motor areas, are consistent with such a gating role
of the striatum.

Together, our results suggest that the increase of premotor
activity for surprising visual outcomes is partially driven by
stimulus-specific visual inputs that are gated by the degree of
prediction error encoded by the putamen. In other words, the
strength of effective connections from FFA and PPA to premotor
cortex, which provide information about the appropriateness of
the planned action, might change from trial to trial, depending
on the mismatch between predicted and observed visual out-
come, signaled by the putamen. This gating mechanism is con-
sistent with anatomical studies that have reported indirect
connections from the putamen to the premotor cortex via the
ventrolateral thalamus (Alexander and Crutcher, 1990; Schultz,
2000). One possibility is that this increased input from sensory
areas attributable to striatal gating serves to overcome the lower
corticospinal excitability in trials with unexpected outcomes and
to facilitate the execution of unprepared actions. Motor prepara-
tion increases the excitability of corticospinal projections (Mars
et al., 2007a; van Elswijk et al., 2007), and, during probabilistic
learning, motor output is biased according to contextual proba-
bilities (Bestmann et al., 2008). Furthermore, there is increasing
evidence suggesting that the striatum is involved in task switching
and selection of motor programs (Mink, 1996; Cools et al., 2004,
2006; O’Reilly and Frank, 2006). Our finding that the striatum
gates sensory information transfer to the premotor cortex sug-
gests one mechanism by which the striatum could influence mo-
tor selection.

In a wider context, our results provide additional evidence for
current theoretical accounts of brain function, such as predictive
coding and the free-energy principle (Rao and Ballard, 1999; Friston,
2005), which posit a fundamental role of prediction errors for
adaptive behavior and learning. A central notion of these ac-
counts is the key role of prediction error-dependent synaptic
plasticity in driving learning; this concept is also critical for other
formal learning theories (Montague et al., 1996; Schultz et al.,
1997; Schultz and Dickinson, 2000). In other words, the necessity
of reconfiguring neuronal circuits during learning should be in-
versely proportional to how well those neuronal circuits are ca-
pable of predicting sensory stimuli. Although there is a vast
literature on neuronal prediction error responses, only sparse
direct evidence exists so far that synaptic plasticity (i.e., changes
in effective connectivity) scales with the degree of prediction error
(cf. den Ouden et al., 2009). The present study provides additional
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empirical evidence for this mechanism. Moreover, by identifying the
putamen as a source of this prediction error-dependent modulation
of connectivity, this study links the physiological mechanisms pro-
posed by predictive coding and free-energy accounts of brain
function to a large body of literature on prediction error-related
responses in the striatum (McClure et al., 2003; O’Doherty et al.,
2003, 2004; Corlett et al., 2004; Seymour et al., 2004; Jensen et al.,
2007; Menon et al., 2007).

In summary, we used a combination of fMRI, computational
(Bayesian) learning models, and DCMs to demonstrate paramet-
ric modulation of visuomotor coupling according to prediction
error responses in the putamen. To our knowledge, this study is
the first to demonstrate that trial-by-trial prediction error re-
sponses in a specific region modulate the coupling among other
regions. Several neurobiological mechanisms for this type of plas-
ticity have been suggested, including NMDA receptor-dependent
short-term plasticity (for review, see Stephan et al., 2008), and it
will be an important goal for future studies to identify which of
these mechanisms is at work. The combination of computational
models of learning and neurophysiological models of connectiv-
ity presented in this study represents a novel approach to model-
based inference about synaptic plasticity during learning. This
general approach may become useful in clinical studies, given the
pathophysiological importance of synaptic plasticity for many
brain diseases and our lack of other non-invasive methods for
investigating it. Ultimately, this approach may help to establish
neurophysiologically grounded diagnostic classifications of spec-
trum diseases, such as schizophrenia (Stephan et al., 2006).
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