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Dynamic causal modelling (DCM) has been applied recently to event-
related responses (ERPs) measured with EEG/MEG. DCM attempts to
explain ERPs using a network of interacting cortical sources and
waveform differences in terms of coupling changes among sources. The
aim of this work was to establish the validity of DCM by assessing its
reproducibility across subjects. We used an oddball paradigm to elicit
mismatch responses. Sources of cortical activity were modelled as
equivalent current dipoles, using a biophysical informed spatiotemporal
forward model that included connections among neuronal subpopula-
tions in each source. Bayesian inversion provided estimates of changes in
coupling among sources and the marginal likelihood of each model. By
specifying different connectivity models we were able to evaluate three
different hypotheses: differences in the ERPs to rare and frequent events
are mediated by changes in forward connections (F-model), backward
connections (B-model) or both (FB-model).

The results were remarkably consistent over subjects. In all but one
subject, the forward model was better than the backward model. This
is an important result because these models have the same number of
parameters (i.e., the complexity). Furthermore, the FB-model was
significantly better than both, in 7 out of 11 subjects. This is another
important result because it shows that a more complex model (that can
fit the data more accurately) is not necessarily the most likely model.
At the group level the FB-model supervened. We discuss these findings
in terms of the validity and usefulness of DCM in characterising EEG/
MEG data and its ability to model ERPs in a mechanistic fashion.
© 2007 Elsevier Inc. All rights reserved.

Introduction

In dynamical causal modelling, one views the brain as a dynamic
network of interacting sources that produces observable responses.
This perspective furnishes spatiotemporal, generative or forward
models for evoked responses as measured with EEG/MEG (David et
al., 2005; Friston et al., 2003). In brief, DCM entails specification of
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a plausible model of electrodynamic responses. This model is
inverted by optimising a variational free energy bound on the model
evidence to provide the conditional density of the model parameters
and the models evidence for model comparison. This is an important
advance over conventional analyses of evoked responses because it
places natural constraints on the inversion; namely, activity in one
source has to be caused by activity in another. We have focused on
establishing the face-validity of DCM for ERPs (see David et al.,
2005, 2006; Kiebel et al., 2006). In this work, we address predictive-
validity in terms of the reproducibility of DCM over subjects. In
brief, if DCM discloses true underlying brain network, then the
results of model comparison in one subject should predict the results
in another (i.e., they should be consistent over subjects). To ensure
we engaged the same network in all subjects, we used a mismatch
negativity (MMN) paradigm. This represents one of the most well
studied and reproducible phenomena in ERP research (Näätänen
et al., 2001).

Dynamic causal modelling

Previous work suggests that event-related responses can be
modelled as perturbations of cortical networks (David et al., 2005;
Jansen and Rit, 1995). In particular, we have shown that dynamic
causal models (DCMs) can explain event-related potentials (ERPs)
and fields (ERFs) measured with electroencephalography (EEG)
and magnetoencephalography (MEG), respectively. Furthermore,
David et al. (2006) showed that differences in evoked responses
can be explained by changes in effective connectivity or coupling
among neuronal sources. DCM can be regarded as an elaboration
of conventional spatial forward models of EEG/MEG data, in
which the sources are coupled according to biological constraints.
The inversion of a DCM provides information about the underlying
cortical pathways and their causal architecture. In this work, we
accessed the reproducibility of DCM by testing hypotheses about
cortical networks suggested by a predictive coding view of novelty
or mismatch responses. Predictive coding is a formulation of
perceptual learning and inference that rests on hierarchical Bayes
(Rao and Ballard, 1999; Friston, 2003). Critically, by formulating
different implementations of perceptual learning in terms of

mailto:m.garrido@fil.ion.ucl.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2007.03.014


572 M.I. Garrido et al. / NeuroImage 36 (2007) 571–580
different DCMs we were able to adjudicate among competing
hypotheses using Bayesian model comparison. We were then able
to assess the reproducibility of model comparison over subjects.

Bayesian model comparison (Penny et al., 2004) selects the
model, among competing models, that best explains the data.
Given equal prior probabilities for the models considered, they are
compared using their marginal likelihood or evidence for each
model. In this work, we assessed the predictive validity of DCM by
testing its reproducibility in a multi-subject study, under an
auditory oddball paradigm. Specifically, we looked at reproduci-
bility, in terms of model comparison, from subject to subject. The
choice of the oddball paradigm was motivated by the large body of
work in this field and current interest in the mechanisms
underlying the generation of the MMN; in particular, the specific
hypotheses about these mechanisms furnished by theoretical
treatments (Winkler et al., 1996; Friston, 2005).

Mismatch responses

Small changes in the acoustic environment initiate involuntary
attentional capture, which may be engaged automatically by an
auditory change detection mechanism indexed by the MMN. It has
been proposed that a temporo-prefrontal network generates the
MMN by comparing sensory input with the memory trace of
previous stimuli. Novel events (oddballs) embedded in a stream of
repeated or familiar events (standards) produce a distinct response
that can be recorded non-invasively with electrophysiological
techniques such as EEG and MEG. The MMN is the negative
component of the waveform obtained by subtracting the event-
related response to a standard from the response to an oddball, also
called a deviant in the literature. This pre-attentive response, to
sudden changes in stimulation, peaks at ≈100–200 ms from change
onset; with the greatest intensity located over the frontal region
(channels Fz and FCz). Given its automatic nature, the MMN has
been associated with pre-attentive cognitive operations in audition
and has, for this reason, been proposed as a reflection of ‘primitive
intelligence’ in the auditory cortex (Näätänen et al., 2001).

There have been several compelling mechanistic accounts of
how the MMN might arise, many focussing on plasticity or
adaptation at a synaptic and neuronal level (e.g. May et al., 1999).
Winkler et al. (1996) suggested that the MMN might arise from a
model-adjustment process, whereby the auditory system adjusts its
perceptual model to adapt to the stimuli encountered. A similar
conclusion was reached from a theoretical treatment of perceptual
inference and learning based on hierarchical Bayes (Friston, 2005).
In this framework, evoked responses correspond to prediction error
that is explained away (within trial) by self-organising neuronal
dynamics during perception and is suppressed (between trials) by
changes in synaptic efficacy during learning. The suppression of
evoked responses, to a repeated event, is a ubiquitous phenomenon
in neuroscience. It is seen at the level of single-unit responses
(where it is referred to as repetition suppression; Desimone, 1996)
and is a long-standing observation in human neuroimaging (where
it is often referred to as adaptation, e.g., cerebellar adaptation
during motor repetitions; Friston et al., 1992 or repetition effects in
visual studies; Henson et al., 2003).

In the present context, changes in synaptic connections, during
the repeated presentation of standards may render suppression of
prediction error more efficient. This would lead to a reduction in
evoked responses and the emergence of a mismatch response,
when an unlearned stimulus is presented. In the theoretical
accounts this differential response is mediated by differences in
effective connectivity or coupling between cortical levels. In short,
mechanistic theories about the MMN posit changes in synaptic
efficacy that, in a hierarchical setting, may involve forward and/or
backward extrinsic (between cortical sources) connections or
intrinsic (local) connectivity. In what follows, we use DCM and
model comparison to ask whether differences in ERPs to frequent
and rare events are better explained by changes in forward
connections, backward connections or both.

Materials and methods

Dynamic causal modelling

Most approaches to connectivity in the MEG/EEG literature use
functional connectivity measures, such as phase-synchronisation,
temporal correlations or coherence, to establish statistical depen-
dencies between activities in two sources. Although functional
connectivity can be used to establish a statistical dependency it
does not provide information about the causal architecture of the
interactions. DCM uses the concept of effective connectivity, as
opposed to functional connectivity. Effective connectivity refers
explicitly to the influence one neuronal system exerts over another.
This influence is parameterised in a causal model, which can then
be estimated using model inversion. In DCM, the brain is regarded
as a deterministic nonlinear dynamic system that is subject to
inputs and produces outputs (Friston et al., 2003). Effective
connectivity is estimated by perturbing the system and measuring
the response using Bayesian model inversion. DCM provides an
account of the interactions among cortical regions and allows one
to make inferences about system parameters and investigate how
these parameters are influenced by experimental factors. Further-
more, by taking the marginal likelihood over the conditional
density of the model parameters, one can estimate the probability
of the data, given a particular model. This is known as the marginal
likelihood or evidence and can be used to compare different
models.

Hierarchical MEG/EEG neural mass models
DCMs for MEG/EEG use neural mass models (David and

Friston, 2003) to explain source activity in terms of the ensemble
dynamics of the interacting inhibitory and excitatory subpopula-
tions of neurons, based on the model of Jansen and Rit (1995). This
model emulates the activity of a source using three neural
subpopulations, each assigned to one of three cortical layers; an
excitatory subpopulation in the granular layer, an inhibitory
subpopulation in the supra-granular layer and a population of
deep pyramidal cells in the infra-granular layer. The excitatory
pyramidal cells receive excitatory and inhibitory input from local
interneurons (via intrinsic connections, confined to the cortical
sheet), and send excitatory outputs to remote cortical areas via
extrinsic connections. David et al. (2005) describe a hierarchical
model using extrinsic connections among multiple sources that
conform to the connectivity rules described in (Felleman and Van
Essen, 1991). These rules allow one to build a network of coupled
sources linked by extrinsic connections. Within this model,
bottom-up or forward connections originate in the infra-granular
layers and terminate in the granular layer; top-down or backward
connections link agranular layers and lateral connections originate
in infra-granular layers and target all layers. All these extrinsic
cortico-cortical connections are excitatory and are mediated
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through the axons of pyramidal cells. Exogenous inputs to the
model have the same characteristics as forward connections and
deliver exogenous (i.e., sensory) input, u, to the granular layer.

The DCM is specified in terms of some state equations that
summarise the average synaptic dynamics in terms of spike-rate-
dependent current and voltage changes, for each subpopulation

dx ¼ f ðx; u; hÞ ð1Þ

This means that the evolution of the neuronal state x is a
function (parameterised by θ) of the state and the input. An output
equation couples specific states (the average depolarisation of
pyramidal cells in each source), x0, to the MEG/EEG signals, y,
using a conventional linear electromagnetic forward model.

y ¼ LðhÞx0 þ e ð2Þ

Eq. (1) summarises the state equations specifying the rate of
change of the potentials as a function of the current and how
currents change as a function of the currents and the potentials (see
David et al., 2005, 2006; David and Friston, 2003 for details). The
state equations embody the connection rules described above,
where θ includes the parameters for forward, backward and lateral
connections and their modulation. These are the parameters we
want to estimate. Eq. (2) links the neuronal states to observed
channel data. In this application, the lead field L(θ) was
parameterised in terms of the location and orientation of each
source as described in Kiebel et al. (2006).

Bayesian model comparison
Inversion of a specific DCM, m, corresponds to approximating

the posterior probability on the parameters, which is proportional
to the probability of the data (the likelihood) conditioned upon the
model and its parameters, times the prior probability on the
parameters

pðhjy;mÞ~pðyjh;mÞpðhjmÞ ð3Þ

This approximation uses variational Bayes that is formally
identical to Expectation–Maximisation (EM), as described in
Friston (2002). The EM can be formulated in analogy to statistical
mechanics as a gradient descent on the free energy, F, of a system.
The aim is to minimise the free energy with respect to a variational
density q(θ). When the free energy is minimised q(θ)= p(θ|y,m),
the free energy F=− ln p(y|m) is the negative marginal log-
likelihood or negative log-evidence. After convergence and
minimisation of the free energy, the variational density is used
as an approximation to the desired conditional density and the
log-evidence is used for model comparison.

One often wants to compare different models and select the best
before making statistical inferences on the basis of the conditional
density. The best model, given the data, is the one with highest log-
evidence ln p(y|m) (assuming a uniform prior over models). Given
two models m1 and m2 one can compare them by computing their
Bayes factor (Penny et al., 2004) or, equivalently, the difference in
their log-evidences ln p(y|m1)− ln p(y|m2). If this difference is greater
than about three (i.e., their relative likelihood is more then 20:1) then
one asserts there is strong evidence in favour of the first model.

The formalism described above is suitable for comparing
different models of a given data set, for instance data acquired from
a single subject. However, one may wish to select the model that
best explains multiple data sets, i.e., the best model at the group
level. Assuming each data set is independent of the others (i.e., all
subjects are independent of each other), we can simply multiply the
marginal likelihoods, or, equivalently, add the log-evidences from
each subject

ln pðy1; N ; ynjmiÞ ¼
Xn

j¼1

ln pðyjjmiÞ ð4Þ

to obtain the log-evidence for the ith model across all n subjects.

Parameter estimation at the group level
Bayes’ theorem updates our belief about a parameter in the light

of new evidence from the data. Bayesian inference can be
particularly useful at the second (between-subject) level of
statistical analysis (Neumann and Lohmann, 2003). In particular,
it is easy to combine the conditional densities from several subjects
to obtain a single conditional density for the group. The conditional
probability of the parameters given data from all subjects is

pðhjy1; N ; ynÞ~pðy1; N ; ynjhÞpðhÞ ð5Þ
If the conditional densities for each subject p(θj|yj)=N(μj,Σj)

have a Gaussian form, the mean μ and the precision Λ=Σ−1 of the
conditional density of the parameters at the group level can be
calculated from the individual mean μj and precision matrices
Λj=Σj

−1.

μ ¼ K�1
Xn

j¼1

Kj μj

K ¼
Xn

j¼1

Kj ð6Þ

This provides a useful way to summarise the results of several
DCMs from different subjects.

Experimental design

Subjects
We studied a group of 13 healthy volunteers aged 24–35 (5

female). Each subject gave signed informed consent before the
study, which proceeded under local ethical committee guidelines.

Task
Subjects sat on a comfortable chair in front of a desk in a dimly

illuminated room. Electroencephalographic activity was measured
during an auditory ‘oddball’ paradigm, in which subjects heard of
“standard” (1000 Hz) and “deviant” tones (2000 Hz), occurring
80% (480 trials) and 20% (120 trials) of the time, respectively, in a
pseudo-random sequence. The stimuli were presented binaurally
via headphones for 15 min every 2 s. The duration of each tone
was 70 ms with 5 ms rise and fall times. The subjects were
instructed not to move, to keep their eyes closed and to count the
deviant tones.

Data acquisition and processing

EEG was recorded with a Biosemi system with 128 scalp
electrodes. Data were recorded at a sampling rate of 512 Hz.
Vertical and horizontal eye movements were monitored using EOG
(electro-oculograms) electrodes. The data were epoched offline,



Table 1
Prior coordinates for the locations of the equivalent current dipoles in MNI
space (mm)

Left primary auditory cortex (lA1) −42, −22, 7
Right primary auditory cortex (rA1) 46, −14, 8
Left superior temporal gyrus (lSTG) −61, −32, 8
Right superior temporal gyrus (rSTG) 59, −25, 8
Right inferior frontal gyrus (rIFG) 46, 20, 8
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with a peri-stimulus window of −100 to 400 ms, down-sampled to
200 Hz, band-pass filtered between 0.5 and 40 Hz and re-referenced
to the average of the right and left ear lobes. Trials in which the
absolute amplitude of the signal exceeded 100 μV were excluded.
Two subjects were eliminated from further analysis due to excessive
trials containing artefacts. In the remaining subjects, an average 18%
of trials were excluded. For computational expediency the
dimensionality of the data was reduced to three channel mixtures
or spatial modes. These were the principal modes of a singular value
decomposition of the channel data between 0 and 250 ms, from both
trial types. The use of three principal eigenvariates preserved more
than 73% of the variance in all subjects.

DCM specification

In this section we specify three plausible models defined by a
given architecture and dynamics, which we use here to test the
validity of DCM.
Fig. 1. Model specification. The sources comprising the network are connected wit
shown. A1: primary auditory cortex, STG: superior temporal gyrus, IFG: inferior tem
(a–c), allowing for learning-related changes in forward F, backward B and forwar
connections we allowed to change. Sources of activity, modelled as dipoles (esti
standard brain in MNI space (d).
The network architecture was motivated by recent electrophy-
siological and neuroimaging studies looking at the sources under-
lying theMMN (Opitz et al., 2002; Doeller et al., 2003).We assumed
five sources, modelled as equivalent current dipoles (ECDs), over
left and right primary auditory cortices (A1), left and right superior
temporal gyrus (STG) and right inferior frontal gyrus (IFG). Our
mechanistic model attempts to explain the generation of each
individual response (i.e., responses to standards and responses to
deviants). Therefore, left and right A1 were chosen as cortical input
stations for processing the auditory information. Opitz et al. (2002)
identified sources for the differential response, with fMRI and EEG
measures, in both left and right STG, and right IFG. Here we employ
the coordinates reported by Opitz et al. (2002) (for left and right STG
and right IFG) and Rademacher et al. (2001) (for left and right A1) as
prior source location means, with a prior variance of 32 mm. We
converted these coordinates, given in the literature in Talairach
space, toMNI space using the algorithm described in http://imaging.
mrc-cbu.cam.ac.uk/imaging/MniTalairach. The moment parameters
had prior mean of 0 and a variance of 8 in each direction. We have
used these parameters as priors to estimate, for each individual
subject, the posterior locations and moments of the ECDs (Table 1).

Using these sources and prior knowledge about the functional
anatomy we constructed the following DCM: An extrinsic input
entered bilaterally to primary auditory cortex (A1), which were
connected to their ipsilateral STG. Right STG was connected with
the right IFG. Inter-hemispheric (lateral) connections were placed
between left and right STG. All connections were reciprocal (i.e.,
h forward (dark grey), backward (grey) or lateral (light grey) connections as
poral gyrus. Three different models were tested within the same architecture

d and backward FB connections, respectively. The broken lines indicate the
mated posterior moments and locations), are superimposed in an MRI of a

http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
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connected with forward and backward connections or with bilateral
connections).

Given this connectivity graph, specified in terms of its nodes
and connections, we tested three models. These models differed in
the connections which could show putative learning-related
changes, i.e., differences between listening to standard or deviant
tones. Models F, B and FB allowed changes in forward, backward
and both forward and backward connections, respectively (Fig. 1).
All three models were compared against a baseline or null model.
The null model had the same architecture described above but
precluded any coupling changes between standard and deviant
trials.

Results

Event-related potentials

The difference between the ERPs evoked by the standard and
deviant tones revealed a standard MMN (Fig. 2). This negativity
was present from 90–190 ms (Figs. 2a–c) and had a broad spatial
pattern, encompassing electrodes previously associated with
auditory and frontal areas (Fig. 2d).
Fig. 2. Grand mean ERPs, i.e., averaged over all subjects. (a) ERP responses to
electrodes. (b) ERP responses to the standard and deviant tones at channel C21 (fr
average ERP to standards from ERP to deviants, at channel C21. (d) grand mean M
200] ms interpolated for a 3D scalp topography.
Model selection

Four different DCMs, forward only (F-model), backward only
(B-model), forward and backward (FB-model) and the null were
inverted for each subject. Fig. 3 illustrates the model comparison
based on the increase in log-evidence over the null model, for all
subjects. Fig. 3a shows the log-evidence for the three models,
relative to the null model, for each subject, revealing that the three
models were significantly better than the null in all subjects. The
diamond attributed to each subject identifies the best model on the
basis of the highest log-evidence. The FB-model was significantly
better in 7 out of 11 subjects. The F-model was better in four subjects
but only significantly so in three (for one of these subjects [subject
6], model comparison revealed only weak evidence in favour of the
F-model over the FB-model, though still very strong evidence over
the B-model. In all but one subject, the F and FB-models were better
than the B-model. Fig. 3b shows the log-evidences for the three
models at the group level (i.e., using. Eq. (4)). Both F and FB are
clearly more likely than B and, over subjects, there is very strong
evidence in favour of model FB over model F.

Fig. 4a shows, for the best model FB, the predicted responses at
each node of the network for each trial type (i.e., standard or deviant)
the standard and deviant tones overlaid on a whole scalp map of 128 EEG
onto-central). (c) MMN, the difference wave obtained by subtracting grand-
MN response averaged across subjects and over the time window of [100,



Fig. 3. Bayesian model selection among DCMs for the three models, F, B and FB, expressed relative to a DCM in which no connections were allowed to change
(null model). The graphs show the free energy approximation to the log-evidence. (a) Log-evidence for models F, B and FB for each subject (relative to the null
model). The diamond attributed to each subject identifies the best model on the basis of the subject's highest log-evidence. (b) Log-evidence at the group level,
i.e., pooled over subjects, for the three models.
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for a single subject (subject 9). The coupling gains and the
conditional probability of the gains being greater or smaller than one
are shown for each connection in the network. The values on each
connection represent a scaling effect, for example, a coupling
change of 2.04 from lA1 to lSTG in model means that the effective
connectivity increased 104% for rare events relative to frequent
events. The response, in measurement space, of the three principal
spatial modes is shown on the right (Fig. 4b). This figure shows a
remarkable agreement between predicted (solid) and observed
(dotted) responses.

Fig. 5 summarises the conditional densities of the coupling
parameters for the F-model (Fig. 5a) and FB-model (Fig. 5b). The
coupling gains and the conditional probability of the gains being
greater or smaller than one, pooled over subjects, are shown for each
connection in the network (i.e., using Eq. (6)). For the F-model the
effective connectivity has increased in all connections with a
conditional probability of 100%. For the FB-model the effective
connectivity has changed in all forward and backward connections
with a probability of 100%. Equivalently, and in accord with
theoretical predictions, all extrinsic connections (i.e., influences)
were modulated for rare events as compared to frequent events.
Discussion

This study evaluated the predictive validity of DCM by looking
at its reproducibility over subjects in the context of theMMN. To this
end we used DCM to explain differences in ERPs in terms of
changes in effective connectivity. For each subject we used three
models of connectivity, within the same underlying cortical
architecture but differing in modulations of specific types of
connections. There was a very reproducible pattern of results across
subjects. Model comparison revealed that conjoint changes in
forward and backward connections (FB-model), relative to changes
in forward (F-model) or backward connections alone (B-model) are
consistently better across subjects. In every subject, these models
were better than a null model that precluded any coupling changes.
The evidences for models F and FB were, overall, much bigger than
the model evidence for B. A similar consistency was observed
quantitatively, in terms of the conditional densities of each
connection; as predicted, the coupling estimates change between
the two event types, i.e., standards and deviants.

In all but one subject the F-model was better than the B-model.
This is an important result because both of these models had the
same number of parameters. This means that any difference in the
model evidences can only be explained by their ability to predict the
observed response. The probability that 10 out of 11 comparisons
would select the same model, by chance is exceedingly small. This
suggests the DCM is sensitive to a systematic difference in ERPs to
oddballs and standards and that difference, formally, lies in the
network architectures used to model the observed responses.
Furthermore, the FB-model was significantly better than both, in 7
out of 11 subjects. This is another important result because it shows
that a more complex model (that can fit the data more accurately) is
not necessarily the most likely model.
Choice of paradigm

We have deliberately chosen a paradigm that evokes two
responses exhibiting a large difference over peri-stimulus time.
Note that this is not a classical oddball paradigm, as employed in the
MMN literature. The large pitch difference between responses to
standards and deviants elicits large differences for both N1 and
MMN components, which cannot be disentangled. In this sense, this
paradigm is not necessarily appropriate for modelling the MMN
alone, but suitable for assessing the reproducibility of DCM:DCM is
a model of dynamic responses or transients that are continuous in
time. This means that the DCM is not an explanation for a particular
response component (e.g., the MMN) but the compound response



Fig. 4. DCM results for a single subject [subject 9] (FB model). (a) Reconstructed responses for each source and changes in coupling adjacent to the connections
during oddball processing relative to standards. The mismatch response is expressed in nearly every source. (b) Predicted (solid) and observed (broken) responses
in measurement space, which result from a projection of the scalp data onto their first three spatial modes.
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over all peristimulus times; it is likely that our paradigm induced N1
effects (due to the large different in standard and oddball tones) and,
at least phenomenologically, a P300-like component (although the
analysis presented here only went up to 250 ms). However, all these
components could be explained by differences in a simple network
model of interacting neuronal populations. It will be interesting to
assess the ontological status of response components (e.g., N1,
MMN, and P300) in the light of mechanistic models like DCM (see
below).

Choice of model

DCM is not an exploratory technique; it does not explore all
possible models: DCM tests specific models of connectivity and,
through model selection, can provide evidence in favour of one
model relative to others. The results of a DCM analysis depend
explicitly upon the models evaluated, which are generally
motivated by mechanistic hypotheses. This means there may exist
other equally or more plausible models with different architectures
(in respect of the areas and connections involved). The network we
chose for our DCMs was motivated by the results of previous
MMN (Opitz et al., 2002; Doeller et al., 2003). It has been shown
that the generators of the MMN lie bilaterally on the temporal
cortex. In addition, some studies have shown bilateral generators
on the frontal cortex, which are activated later than the auditory
cortex generators (Rinne et al., 2000). Recent studies showed a
double peak over frontal scalp locations suggesting the existence of
two sub-components for the MMN (Opitz et al., 2002 and Doeller
et al., 2003). The early component is reported to peak around 90–
120 ms and can be modelled with sources located bilaterally in the
superior temporal gyrus (STG). Components within peaking
around 140–170 ms have been shown to be modelled effectively
with dipoles in both left and right inferior frontal gyrus (IFG) that
are usually stronger in the right hemisphere. Moreover, the right
IFG is reported more consistently as in the literature than the
homologous source on the left. This is why we used a unilateral
right IFG. The inclusion of both left and right primary auditory
cortices was necessary because DCM attempts to explain each ERP
individually and any differences (in this case, responses to
standards and deviants and the implicit mismatch). Therefore, left
and right A1 were chosen as the cortical targets of thalamic input,
for processing the auditory information.

Indeed there may be other plausible models. So, why not
include more sources in the model, for example left IFG? This is an



Fig. 5. Coupling gains and their conditional probability estimated over subjects for each connection in the network for models F (a) and FB (b). There are
widespread learning-related changes in all connections, expressed as modulations of coupling for deviants relative to standards.
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important question that has a principled answer. Each model is
defined by its number of sources and their connectivity. Given a
particular model, DCM will optimise the parameters of that model.
To explore the space of models, one uses the marginal likelihood or
log-evidence to compare one model with another. This enables one
to adjudicate between different models with different number of
sources. This is potentially an important application of DCM in the
context of model selection. In this paper, we focussed on
reproducibility of different connectivity architectures. In our next
paper, we will present an exploration of model space.

Mechanisms of ERP generation

The mechanism of MMN generation is unknown. Two sorts of
hypotheses have been suggested. Traditionally, this response is
thought to be associated with an automatic cortical change-
detection process, which detects a difference between the current
and the preceding input. It has been proposed that the MMN would
reflect modifications to existing parts of a model of the acoustic
environment. This model adjustment hypothesis discusses the
existence of a dynamic system of change detection which updates
its model of sensory input as the changes occur (Winkler et al.,
1996; Sussman and Winkler, 2001). Doeller et al. (2003) suggested
that the prefrontal cortex is involved in a top-down modulation of
the deviance detection system in the temporal cortices. The
traditional interpretation has been criticised by Jääskeläinen et al.
(2004) who proposed that the MMN results from an adaptation
mechanism (see also May et al., 1999) and is erroneously
interpreted as a separate component generated by change-specific
neurons. The N1 response to standard (or ‘non-novel’) sounds is
thought to be delayed and suppressed (or attenuated) as a function
of its similarity to the preceding auditory events, reflecting short-
lived adaptation of auditory cortex neurons. Under this hypothesis,
the response termed as MMN, would therefore be a product of an
N1 differential wave emerging in the subtraction of the standards
from the deviant’s ERP. Recently, the MMN has been framed
within a predictive coding scheme, interpreted as a failure to
suppress prediction error, which can be explained quantitatively in
terms of coupling changes among cortical regions (Friston, 2005).
This predicts the adjustment of a generative model of current
stimulus trains (cf., the model adjustment hypothesis) using plastic
changes in synaptic connections (cf. the adaptation hypothesis).

Frequently asked questions

In presenting this work to our colleagues and for peer review a
number of key questions arose. In what follows, we summarise
these questions and attempt to answer them briefly.

What is the relationship between “inverting” a DCM and
inverting a classical electromagnetic forward model to locate
intra-cranial source locations? Model inversion is used in exactly
the same way in both contexts. In fact, inverting a DCM subsumes
the inversion of a conventional forward model. This is because
DCM has two components; a neural-mass model of the interactions
among a small number of dipole sources and a classical
electromagnetic forward model that links these sources to extra-
cranial measurements. Inverting the DCM implicitly optimises the
location and orientation of the sources. Indeed, if we removed the
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neuronal part of the model, DCM would reduce to a conventional
forward model. The current implementation of DCM for ERPs uses
the electromagnetic forward model solutions encoded in the
fieldtrip software (http://www2.ru.nl/fcdonders/fieldtrip).

In this paper we used informative priors on source locations.How
important are prior source locations in DCM? Not very important;
in other words, changing the location priors would not change the
results very much. This is because there is very little information in
the EEG or MEG measurements about the spatial location of
sources. In contrast, there is an enormous amount of information
about their orientation. A usual heuristic is to imagine that one is
trying to infer the location and orientation of a pen-torch that is
illuminating the inside of a balloon. When looking at the balloon
from outside, a small change in the position of the torch will have
only a small effect on the pattern of illumination. Conversely,
changing its orientation will have a large impact. In brief, location is
not an important quantity, whereas orientation is. For this reason, we
put relatively informative priors on location but leave the orientation
parameters free. It is relatively straightforward to assess the impact
of different location priors using model selection.

Here we used three eigenmodes to invert the DCM. Does DCM
deal only with three channel data? No, DCM will fit any number
of channels or modes. For computational reasons, the channel data
are projected onto their principal eigenmodes to reduce the size of
the matrices the inversion scheme has to handle. Generally, one
would use the same number of modes as there are sources. This is
because data generated by an n-source model can only span an n-
dimensional subspace of sensor space. Provided the signal is large,
relative to noise, the first n principal eigenvariates should capture
the majority of signal.

What does DCM actually operate on, the channel data or some
estimate of source dynamics? DCM operates on the channel data in
the same way as sources are reconstructed in a conventional setting.
In both cases, one needs to specify the number of sources and how
their activity is expressed in sensor space. The only difference is that,
with DCM, one also has to specify the connections among the
sources and which sources receive sensorimotor input.

How is the significance of the difference between models
evaluated at the between-subject level? For a single subject, a
difference in log-evidence of about three is considered strong
evidence in favour of the more likely model. This is because a
difference of three means the evidence for the more likely model is
about 20 times the evidence for the other. This can be compared to
the use of p=0.05=1/20 in classical inference. When pooling log-
evidences from several subjects, one adds the evidences and,
implicitly the differences. This is because adding logs is the same as
multiplying probabilities and the probability of getting two
independent sets of data is simply the product of the probabilities
of getting each alone. It can be seen that one will quickly reach a
threshold of three if, and only if, the difference in log-evidences is
consistent over subjects.

How does one reconcile different results from different DCMs?
In this paper, we have looked at the reproducibility of DCMs in
terms of consistency over subjects in model space. Although not
the focus of this paper, it is also interesting to address the
consistency of the model parameters. Inference on the parameters
of a particular DCM is conditional upon the specific model and
data used. Clearly, one could get very different conclusions by
changing the model, as we find here for F and FB models (see Fig.
5). One may be very confident about contradictory results from
two different models. This contradiction is resolved by considering
the relative likelihoods of the two models. Generally, one only
considers inference on the parameters of the best model. It is
possible to use Bayesian model averaging; however, this is most
useful when the models have roughly the same probability. If the
results change under the same model with different datasets, then
this speaks to inter-subject variability that may be real. Clearly, it
would be re-assuring to see that the parameters estimates from each
model were also consistent over subjects. This can be addressed
with a second, between-subject analysis of the parameter estimates.
To illustrate the consistency of DCM inversion in terms of model
parameters, we used a classical multivariate statistical analysis
(MANOVA) of subject-specific parameter estimates, from the best
model (FB). In this analysis, we summarised the interesting DCM
parameters using: the average coupling changes for the forward
connections and the average changes for backward connections.
Using just two dependent summary variables ensured we had
sufficient (i.e., nine) degrees of freedom to infer the group averages
where significantly different from zero. The resulting F-value
(based on Wilk's lambda; df 2,9) was 4.725 corresponding to a
p-value of 0.04. This implies a systematic and consistent pattern of
changes over forward and backward connections, over subjects.
The average change in forward connections was 80% and the
average change in backward connections was 57%. This is in
conformity with the average change in forward and backward
connections for the DCM analysis of grand mean data, which was
42% and 52% respectively. A more informed way of addressing this
issue would involve a hierarchical Bayesian model that includes
random effects from each subject. Thus will be focus of future work.

Conclusion

In this paper, we have looked at possible mechanisms
underlying the generation of the MMN at the level of coupling
among sources, and the extent to which the ensuing inferences
generalise over subjects. Our specific model comparison addressed
hierarchical implementations of predictive coding, in terms of
extrinsic forward and backward connections. Testing the adapta-
tion hypothesis would require modulations of intrinsic connections
(i.e., among neural subpopulations within cortical units). In a
subsequent paper we will look at the relative roles of extrinsic and
intrinsic connectivity changes (Kiebel et al., 2007).

In summary, this study suggests that the emergence of the MMN
can be explained by repetition-dependent change in forward and
backward connections. This was found consistently across the
group of subjects studied. Changes in forward connections might be
associated with the construction of higher-level representations of
sensory data. This is consistent with our conjecture that the MMN
reflects perceptual learning of standards, using predictive coding.
Prediction error, defined as the difference between the input
observed and that predicted by a generative model and inferred
causes, is minimised in predictive coding schemes. Under this
framework, forward connections provide feedback by conveying
prediction error to higher levels and backward connections provide
contextual guidance to lower levels. Hence, the MMN could
represent a failure to predict bottom-up input and consequently a
failure to suppress prediction error. This might be expressed as
apparent increases in bottom-up influences when stimuli are
unpredicted or deviant. Here we have shown that DCM for ERPs/
ERFs behaves consistently across subjects and presented the first
attempt to invert a mechanistic model for the MMN using empirical
data.

http://www2.ru.nl/fcdonders/fieldtrip
http://dx.doi.org/doi:10.1016/j.neuroimage.2007.02.046
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