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Abstract

Cluster size tests used in analyses of brain images can have more sensitivity compared to intensity based tests. The random field (RF)
theory has been widely used in implementation of such tests, however the behavior of such tests is not well understood, especially when
the RF assumptions are in doubt. In this paper, we carried out a simulation study of cluster size tests under varying smoothness, thresholds,
and degrees of freedom, comparing RF performance to that of the permutation test, which is known to be exact. For Gaussian images, we
find that the RF methods are generally conservative, especially for low smoothness and low threshold. For t images, the RF tests are found
to be conservative at lower thresholds and do not perform well unless the threshold is high and images are sufficiently smooth. The
permutation test performs well for any settings though the discreteness in cluster size must be accounted for. We make specific
recommendations on when permutation tests are to be preferred to RF tests.
© 2003 Elsevier Inc. All rights reserved.

Introduction

A central interest to neuroscientists is the detection of
changes in brain images obtained from PET (positron emis-
sion tomography) or MRI (magnetic resonance imaging).
Cluster size inference is one of the approaches used in such
investigation. A typical cluster size test consists of two
steps. First, clusters are defined as sets of contiguous voxels
whose intensity exceeds a preselected cluster defining
threshold uc, then the null hypothesis is tested by examining
whether or not the spatial extent of these clusters is unusu-
ally large by chance alone.

The cluster size test is known to have increased sensi-
tivity compared to tests based on voxel intensity when the
signal is spatially extended (Friston et al., 1996; Poline et
al., 1997). It is also known that, for signals with small
extent, the test becomes more powerful with a high cluster
defining threshold, and for signals with large extent, a low
threshold increases the power of the test. Friston et al.
(1996) suggest using cluster size inference when signals

have wider extent than the image smoothness, which is
often the case in fMRI studies, and using voxel intensity
tests for low resolution images such as those in PET studies.
However, the cluster size test has not been validated under
various conditions (smoothness, threshold, etc), in particu-
lar for t images. Furthermore, the sensitivity of this test
outside of ideal conditions is not understood either. In this
paper we seek to characterize under what condition cluster
size tests perform well. In addition, when these tests do not
perform well, we examine probable causes in detail.

The idea of cluster size inference was pioneered by
Poline and Mazoyer (1993) and Roland et al. (1993); they
generate the distribution of cluster sizes from simulated
images having the same characteristics, such as spatial au-
tocorrelation, as the observed data. This approach has been
further studied in fMRI by Forman et al. (1995) and in PET
by Ledberg et al. (1998). The most widely used methods,
however, are the ones based on the random field (RF) theory
(Friston et al., 1994; Cao and Worsley, 2001).

RF-based cluster size tests are derived from a distribu-
tion approximation of cluster sizes based upon various para-
metric distributions. Like any other parametric tests, several
assumptions are required, such as smooth images, a suffi-
ciently high threshold uc, and the uniform smoothness of
images (Worsley et al., 1992, 1996; Petersson et al., 1999).
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Despite such restrictions, there is only a vague guideline as
to how smooth images should be (Petersson et al., 1999).
Furthermore, though the choice of threshold is made by
investigators according to signals of interest (Poline et al.,
1997), there is virtually no consensus on how high the
threshold uc should be for the RF theory to work.

There have been some simulation based validations on
Gaussian RF results under reasonable smoothness and
threshold. Friston et al. (1994) validated their RF test and
found that, for sufficient smoothness and a high threshold,
the test performs well. Holmes (1994) carried out simula-
tions with different thresholds and found the RF test to be
conservative for low thresholds. However, this conserva-
tiveness was not observed in simulations by Poline et al.
(1997). Rather, they found that the RF test is anticonserva-
tive for low thresholds and becomes conservative for high
thresholds. In the same simulations, they also found that the
RF test becomes less conservative if images are smoother.
One common feature in these validations is that the RF test
was validated under ideal conditions, where images are
sufficiently smooth and thresholds are reasonably high. In
real data analyses, however, investigators prefer to use as
little smoothing as necessary to avoid focal signals being
blurred and various thresholds uc to identify signals of their
interest. Furthermore, the Gaussian RF results are inappro-
priate for low degrees of freedom t images. Under such
conditions, the behavior of the test has not been well-
characterized, especially for t images.

An alternative to the RF test is the permutation test (Holmes
et al., 1996; Nichols and Holmes, 2002; Bullmore et al., 1999).
Unlike the RF test, it requires almost no assumptions. The sole
assumption is null hypothesis exchangeability. Exchangeabil-
ity holds if permuting the group labels does not alter the
distribution of the test statistic. Given exchangeability, the test
proceeds by shuffling the data, computing a statistic image,
calculating cluster sizes, and recording the size of the largest
cluster. In this manner the permutation test generates the null
distribution from data itself, and no knowledge of the under-
lying distribution of image voxels is required. The test is exact
for the family-wise error (FWE) rate, which means that the
probability of one or more type I errors is the same as the
significance level of the test. However, because of a large
number of calculations required, the permutation test is more
computationally intensive than the RF test. Furthermore, while
the test is straightforward for simple designs, multicondition
designs or correlated data complicate the test (Bullmore et al.,
1996).

In this work, we compare these two approaches and
determine which is to be preferred under various conditions.
In particular, we simulate Gaussian random fields and t
random fields with different degrees of freedom and
smoothness, and compare the performance of an RF test
relative to the permutation test. We do not use a real data set
for validation because the uniform smoothness assumption
cannot be verified and is often questionable (Hayasaka and
Nichols, 2002). Under nonuniform smoothness, or nonsta-

tionarity, there are relatively smooth and rough regions
within the image which will alter the distribution of cluster
sizes locally, resulting in biased inference (Worsley et al.,
1999). Cluster size inference on nonstationary images will
be addressed in our future work.

One of the novelties in this study is the validation of these
tests on t images, which is done with laborious t image simu-
lations, where a number of independent Gaussian images are
simulated to form a t statistic image (there is no algorithm to
directly generate smooth t random fields). While some authors
(Poline et al., 1997) use Fourier domain simulation to simulate
periodic images (where the left edge is continuous with the
right edge), we simulate images in the spatial domain to obtain
the most realistic results. In addition, we estimate smoothness
from the simulated data as done in real data analyses. This
estimation process introduces an additional source of variation
into the inference. Another notable aspect is that a permutation
test is carried out for each realization and its performance is
assessed as well.

This paper is structured as follow: Details regarding the
tests, as well as simulations are explained in the Methods
section. Results from the simulations are presented in the
Results section. Finally interpretation of findings from the
simulations and conclusions are presented in the Discussion
section. Appendices are included which summarize the RF
theory in a consistent notation and address important details
of the SPM2 and fmristat implementations as well as
smoothness estimation. An appendix on permutation theory
is also included.

Methods

Model

In a brain image analysis a linear model can be written as

Y�v� � X��v� � ��v���v�, (1)

where v � (x, y, z) � �3 is an index for voxels, Y(v) �
{Y1(v), Y2(v), . . . , Yn(v)}� is a vector of observed image
intensities at voxel v from n scans, X is a known n � p
design matrix, �(v) is a p-dimensional vector of unknown
parameters, �(v) is an unknown standard deviation at voxel
v, and �(v) � {�1(v), �2(v), . . . , �n(v)}� is a vector of un-
known random errors with unit variance. We denote images
by omitting the voxel index v (e.g., �i denotes the error
image from the ith scan).

Let �̂(v) be an unbiased estimate of �(v); then the resid-
uals are

e�v� � Y�v� � X�̂�v�

and an estimate of the residual variance is

�̂2�v� �
1

�
e�v��e�v�,

where � is the error degrees of freedom. If �i(v)’s are
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independent among scans and identically normally distrib-
uted, then the statistic image T is defined as

T�v� �
c�̂�v�

�c�X�X��1c� �̂�v�
, (2)

where c is a row vector contrast of interest and T is then used
to define clusters. Each cluster is formed as a set of contiguous
voxels with their T exceeding a fixed cluster defining threshold
uc and sharing at least one common edge. In a 3D data set, this
cluster formation method is known as the 18 connectivity
scheme. Two voxels are considered as connected when they
share a face or an edge, but not a vertex. In a 3 � 3 � 3 voxel
cube, all the voxels except the eight corner voxels are consid-
ered as connected to the voxel at the center.

Cluster size inference

Let the size of a cluster be S. The true null distribution of
S is unknown, but is approximated by various methods such
as the RF theory and permutations. The uncorrected P
value, or the P value of a single cluster size, is defined as the
probability of observing a certain cluster size or larger, and
can be calculated from the approximated distribution of S.
An uncorrected cluster P value is only appropriate when a
cluster can be uniquely defined a priori, independent of size.
For example, the nearest cluster to location (x, y, z) is
appropriate, but the largest cluster in the occipital pole is
inappropriate because it is vague and incorporates size.

Typically multiple clusters could occur at a given thresh-
old, all of which may be of interest, thus creating a multiple
comparisons problem among the clusters. To correct for this
problem, family-wise error (FWE) rate corrected inferences
are used. The FWE is the chance of any type I errors, or
false positives, over all the clusters collectively. Such cor-
rection yields P values known as corrected P values, P
values adjusted for multiple comparisons over all clusters in
the volume searched. When more clusters occur under the
null hypothesis, either due to low smoothness or a low
threshold, then more multiple comparisons need to be ac-
counted for in the corrected P values, reducing the sensi-
tivity.

The FWE correction is implemented by calculating P
values based on the null distribution of the largest cluster
size Smax. The rationale behind using the null distribution of
Smax is that the probability of observing Smax larger than s is
the same as the probability of at least one or more clusters
being greater than s, the event of a family-wise error. De-
tailed explanation of the FWE correction is found in Ap-
pendix A.

Once a cluster is rejected as significant, we can conclude
that one or more of the voxels within the cluster is active,
though we cannot assert which voxel.

RF test
There are several assumptions of the RF test, so we

outline them here. The assumptions of the RF test include:

● Lattice approximation: Images are realizations of a
smooth random field sampled at points on a regular
lattice. The theory is based on continuous RF, yet our
data is discretely sampled on a lattice.

● Smooth images: Images are smooth, that is, their
smoothness in terms of FWHM is relatively large
compared to the voxel size. This is to support the
lattice approximation.

● Stationarity: The smoothness of images is uniform
anywhere within the images, or stationary. This en-
sures that the null distribution of cluster size is homo-
geneous.

● High threshold: The cluster defining threshold uc is
sufficiently high. The RF theory is based on asymp-
totic results, that is, the cluster size distribution can be
approximated when uc is raised high (Nosko, 1969;
Friston et al., 1994; Cao, 1999).

Two versions of the RF method are considered in this
study. The one based on an assumption that S raised to a
power is exponentially distributed (Friston et al., 1994), as
implemented in the SPM2 package,1 and the other based on
an assumption that the distribution of S is approximated by
the product of a beta and �2 random variables (Cao and
Worsley, 2001) as implemented in the fmristat pack-
age.2 To correct for the FWE rate, the distribution of Smax

was used to obtain critical cluster sizes. Details on these
methods have been reported in a number of publications.
We collect them all in a consistent notation in Appendix A.
The distribution approximation of the SPM RF test is for
Gaussian images, whereas that of the fmristat RF test is
refined for t images. The fmristat package uses the same
cluster size distribution approximation as the SPM package
for Gaussian images, but some calculations are done differ-
ently (see Appendix B).

Permutation test
Since being proposed by Holmes et al. (1996), the per-

mutation test for brain image analyses has been further
studied (Bullmore et al., 1999; Nichols and Holmes, 2002)
and implemented in the SPM package as the SnPM toolbox.3

Unlike the RF test mentioned before, this test does not
require any distributional assumption, and produces valid P
values even when the distribution of the image voxel is
unknown. One of the few assumptions and the rationale for
this test is the exchangeability assumption; that is, under the
null hypothesis, scan labels can be permuted without alter-
ing the joint distribution of cluster sizes. This approach is
suitable for second level PET or fMRI analyses based on
summary statistics (Holmes and Friston, 1999). Note that to
apply the permutation test directly on BOLD fMRI time

1 Wellcome Department of Imaging Neuroscience, University College
London. http://www.fil.ion.ucl.ac.uk/spm.

2 Keith J. Worsley. http://www.math.mcgill.ca/keith/fmristat.
3 Andrew Holmes and Tom Nichols. http://www.fil.ion.ucl.ac.uk/spm/snpm.
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series, the temporal autocorrelation must be accounted for
(Bullmore et al., 1996, 2001). In our test, we focus on the
distribution of Smax in order to correct the FWE rate. Sta-
tionarity is not assumed in the permutation test, though
variable smoothness will result in non-uniform sensitivity.

The implementation of this test is explained in detail in
Nichols and Holmes (2002). In this study, the permutation
test is used as implemented in the SnPM toolbox.

Simulation

We carry out Gaussian and t image simulations to vali-
date two RF tests, as implemented in the SPM2 package and
in the fmristat package, and the permutation test as
implemented in the SnPM toolbox. For each simulation,
rejection rates are recorded and their 95% confidence inter-
vals (CIs) are calculated by normal approximation of a
binomial proportion

p̂ 	 1.96� p̂�1 � p̂�

np
,

where p̂ is the observed rejection rate and np is the number
of realizations. The width of the CIs depends on values of p̂.
For example, at p̂ � 0.05 and np � 3,000, the width of the
CI is p̂ � 0.008. Because the significance level of all the
tests is set to 0.05, on average, 95% of all the CIs should
cover 0.05. We essentially examine many CIs, so as many
as 5% of them may not cover 0.05 by chance alone. How-
ever, it is impossible to compute the expected number of CIs
not covering 0.05 by chance alone, because the results are
correlated due to the same white noise image used in each
realization of the simulations.

If the simulated rejection rate is smaller than 0.05, then
the test is conservative but is still considered valid. On the
other hand, if the rejection rate is greater than 0.05, then the
test is anticonservative, or liberal, and is no longer consid-
ered as valid.

Gaussian image simulation
We generate each smooth Gaussian image in three steps.

First, a single 104 � 104 � 104 white noise image is
generated for each realization, which is then smoothed with
a 3D Gaussian kernel with different full-width at half-
maximum (FWHM) (1.5, 3, 6, and 12 voxels). Finally the
outer 36 voxels from the smoothed images are truncated in
order to avoid nonuniform smoothness at the edge, yielding
a 32 � 32 � 32 image. The resulting image is then thresh-
olded with thresholds uc’s with upper tail Gaussian proba-
bilities of 0.01, 0.001, and 0.0001.

Three thousand realizations of Gaussian images are gen-
erated. The two RF tests are applied to the simulated data at
0.05 significance level. The permutation test is not applied
because there is only one Gaussian image generated in each
realization, which yields nothing to permute. In the RF test,
the known smoothing kernel width is used instead of esti-

mating smoothness from a single image in each realization,
because there are no residuals from which to estimate
smoothness.

t image simulation
We generate each t image by calculating a t-statistic

image (2) from a set of Gaussian images. In our simulation,
for each realization, a set of 10, 20, or 30 32 � 32 � 32
Gaussian images are generated by the method described
above, with smoothing kernel FWHM 0 (no smoothing),
1.5, 3, 6, and 12 voxels. Then a t image is calculated based
on a model, either a one-sample t test or a two-sample t test
with equal sample sizes. The degrees of freedom for the t
image is 9, 19, or 29 for the one-sample test, or 8, 18, or 28
for the two-sample test corresponding to group sizes of 5
and 5, 10 and 10, and 15 and 15. Our use of a two-sample
t statistic image was motivated by our collaborators’ data of
comparing controls and schizophrenics (Taylor et al., 2002),
and the results should be similar to that of a one-sample test
with the same degrees of freedom. The generated t image is
thresholded at the quantiles of a t-random variable with
appropriate degrees of freedom with the upper tail proba-
bilities of 0.01, 0.001, and 0.0001, and clusters are defined.

The image smoothness is estimated from each realized
data set. Details regarding smoothness estimation are found
in Appendix D.

For each sample size, 3000 sets of Gaussian images
are simulated to generate t images, and both SPM and
fmristat RF tests and the permutation test with 100
permutations are applied at 0.05 significance level.

Quality of Gaussian images simulated
Gaussian images, both for the Gaussian simulation and

the t simulation in this study, are generated by convolving a
white noise image with a Gaussian smoothing kernel (Wors-
ley et al., 1992; Worsley, 1996). However, with decreasing
smoothness, the Gaussian kernel is more coarsely sampled
and it is unclear whether the nature of the dependence is
affected by this. To investigate the quality of Gaussian
images simulated, we carry out two additional simulations.
In the first simulation, images of size 96 � 96 � 96 voxels
(after truncation), smoothed with a kernel of FWHM nine
voxels, are generated. Then they are down-sampled at every
third voxel so that the resulting image should be 32 � 32 �
32 with FWHM 3 voxels (down-sized simulation). The
other simulation is done in the same manner as the down-
sized simulation, except that images are not down-sampled.
Thus the simulated image size and its smoothness are three
times that of the first simulation (oversized simulation). For
each simulation, 3,000 realizations of two-sample (5 and 5)
t images are generated, and a comparison is made on the
95th percentiles of the peak intensity and the largest cluster
size at 0.001 threshold, among the down-sized and over-
sized simulations, as well as the conventional method.

Note that in this comparison, cluster sizes are measured
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in terms of RESELs (RESolution ELements), volume mea-
sured in units of smoothness:

RESELs �
# voxels

FWHM3 .

We use RESELs, instead of voxels, because the search
volumes in the three simulations in terms of RESELs are the
same even though the search volumes in terms of voxels are
different.

Robustness to smoothness outliers
The robustness of the permutation test against a violation

in the exchangeability assumption is examined. In particu-
lar, in a two-sample t test setting, we investigate by simu-
lations the effect of a single image with different smooth-
ness (smoothness outlier), and also the effect of a systematic
smoothness difference between two groups (smoothness
difference).

For the smoothness outlier simulation, 19 images with
the same smoothness (FWHM 0, 1.5, 6, or 12 voxels) and
one image with a different smoothness (FWHM 12, 6, 1.5,
or 0 voxels, respectively) are generated for each realization
and a t image for a two-sample test is calculated. For the
smoothness difference simulation, two groups of 10 images
having different smoothness, FWHM 6 or 12 voxels for one
group and FWHM 1.5 or 0 voxels for the other group,
respectively, are generated for each realization and a t image
for a two-sample test is calculated.

For both simulations, 3000 realizations are generated and
the SPM and fmristat RF tests and the permutation test
with 100 permutations are applied.

Computing environment

Each simulation is divided into segments of 200 to 1000
realizations to be run on several different computers sepa-
rately, and the results are merged once all the segments are
done. The random number generator was reset in each
segment using the seed generated from a computer’s inter-
nal clock. The fastest computer used in this study was a Dell
PC with dual 2.4 GHz Xeon processors and 2 GB of RAM,
on a Linux platform, with MATLAB version 6.5 (Math-
Works Inc., Natick, MA). It took this computer 12 days to
compute the t image simulation with df � 28, using both
processors. Note that these simulation times are due to
random number generation, smoothing, and repeated per-
mutation tests. A single permutation test with 100 permu-
tations on a given realization took 20–30 s on average.

Results

Gaussian image simulation

Results from the Gaussian simulation are shown in Fig.
1. The plots show that the RF tests are conservative in most
settings. The tests are especially conservative when the
threshold is low, uc corresponding to 
 � 0.01 or 0.001. It
is also found that the tests are conservative for low smooth-
ness, and for high smoothness, the fmristat RF test
becomes less conservative, while the significance level does
not change dramatically for the SPM RF test. Both tests are
unable to calculate a critical cluster size as a real number at
0.0001 threshold with smoothness 12 voxels FWHM. As
explained in Eq. (10) in Appendix A, the critical cluster size
cannot be calculated for certain combinations of uc and
smoothness.

t image simulation

Because our one-sample and two-sample simulations
produced similar results, we only present the results from
the two-sample simulation.

RF test
With a widely used threshold of 0.01, the RF tests seem

generally conservative, especially for low smoothness. Fig.
2 shows the rejection rates of the RF tests from t image
simulation. The rejection rates do not approach to 0.05
unless the threshold is extremely high (0.0001) and images
are smooth. In some cases, at a high threshold and low
smoothness, the RF tests are extremely anticonservative.
For low thresholds, rejection rates decrease with increasing
df. While it is unusual for performance to worsen with

Fig. 1. Results from the Gaussian simulation. Rejection rates of the
RF tests when thresholded at upper-tail probabilities 0.01, 0.001,
and 0.0001 (from bottom to top), along with their 95% confidence
intervals. Fine solid lines indicate the desired type I error rate (0.05) of
the test.
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increasing df, the high df results do appear to converge to
the Gaussian results (see Figs. 1 and 2, right column).

It is found that the fmristat RF test is more conser-
vative in low smoothness and less conservative in high
smoothness, compared to the SPM approach.

Permutation test
The permutation test in general works well for suffi-

ciently smooth images at any threshold or any df (see Fig.
2). However, for low smoothness (FWHM 	 3 voxels), the
test is generally conservative, and it worsens as images
become less smooth. This conservativeness is related to the
discreteness in the Smax distribution, and in terms of P
values, the method remains accurate. We return to this in
detail in the Discussion section below.

Quality of Gaussian images simulated
Table 1 displays the results (95th percentiles) from the

down-sized and oversized simulations, along with the re-
sults from the conventional simulation method with appro-
priate parameters. The percentiles are the FWE-controlling
intensity and cluster size thresholds. It can be seen that the
conventional simulation and the down-sized simulation pro-
duce very similar results, indicating that discretization of the
Gaussian kernel had little impact, at least for 3 voxel
FWHM smoothness. Thus we believe that our simulation of
t images was appropriately done.

In contrast, the oversized simulation with equivalent RE-
SEL volume has an appreciably larger intensity threshold
and a 10% larger cluster size threshold. Such discrepancies
indicate that 96 � 96 � 96 images are a better approxima-
tion of a smooth random field, compared to 32 � 32 � 32
images, and suggest that the lattice approximation is poor
even for 3 voxel FWHM smoothness (for df � 8).

Robustness to smoothness outliers
Table 2 shows the rejection rates of the two RF tests and

the permutation test when a smoothness outlier is present
for a two-sample (10 and 10) t simulation thresholded at
0.01. While the results from the permutation test is some-

Fig. 2. Results from the t image simulation. Rejection rates of the RF tests and the permutation test for different sample sizes (5 and 5, 10 and 10, and 15
and 15, from left to right) when thresholded at upper-tail probabilities 0.01, 0.001, and 0.0001 (from bottom to top), along with their 95% confidence intervals.
Fine solid lines indicate the desired type I error rate (0.05) of the test.

Table 1
Comparison of the 95th percentiles of the peak intensity and the largest
cluster at 0.001 threshold from the conventional method, the down-sized
simulation, and the oversized simulation for a two-sample t8 image

Image size 95th percentile
peak intensity

95th percentile
cluster size
[RESELs]

32 � 32 � 32 (conventional method) 11.4727 0.6138
32 � 32 � 32 (down-sized) 11.7513 0.6601
96 � 96 � 96 (oversized) 16.5730 0.7425

Note. All have the same RESEL volume but discrepancies between 323

and 963 volumes suggest that the lattice approximation does not hold for 3
voxel FWHM.
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what close to the case of no smoothness outliers, the RF test
results become highly anticonservative, especially for high
smoothness images with a rough outlier, possibly due to
underestimation of smoothness.

Table 3 shows the rejection rates when there is a sys-
tematic smoothness difference between two groups of 10
images in a two-sample test setting, thresholded at 0.01.
Such smoothness difference influences the permutation test
to be slightly anticonservative. However, compared to the
RF tests which are highly anticonservative, the permutation
is more robust when its null hypothesis exchangeability
assumption is violated.

Discussion

We have simulated Gaussian images and t images and
have applied three different cluster size tests to the simu-
lated images, two RF tests, and the permutation test. Their
performances at different thresholds, smoothness, and dfs
are recorded, which enable us to assess the specificity and
robustness of these tests.

Comparison with other Gaussian simulation results

There have been some simulation-based validations of
the RF test on Gaussian images, comparable to our Gaussian
image simulation. Friston et al. (1994) validated the RF test
on 10,000 simulated images with size 32 � 32 � 64 with
FWHM 5.7 voxels thresholded at 2.8 (upper-tail probability
0.0026). In this simulation, the cluster size distribution from
the RF test is very close to the simulated cluster size dis-
tribution. These results are different from ours, where the
RF test is found to be conservative. Some possible expla-
nations for these discrepancies include: their use of esti-
mated FWHM, their larger search volume, and their possi-
ble nonuniform smoothness at edges of simulated images.

Holmes (1994) simulated 10,000 images of 65 � 87 � 26
masked in the shape of a brain (72,410 voxels), smoothed with
a nonisotropic Gaussian filter of FWHM 5 � 5 � 2.5 voxels
and thresholded at upper-tail probabilities P � 0.01, 0.001, and

0.0001. His filter is also nonstationary, in that he truncates and
renormalizes the kernel when it contacts the mask. The RF test
is done based on both known kernel FWHM and estimated
FWHM. To be consistent with our results, we focus on the one
with known FWHM. The results from Holmes’ simulation are
somewhat consistent with our results, except at threshold P �
0.01 where the results are less conservative compared to ours.
Some possible explanations for this discrepancy include a
brain-shaped search volume which reduces the chance of clus-
ters touching the boundary (as a brain being more spherical
than a box) and being truncated, and a larger search volume.

Poline et al. (1997) simulated 3000 Gaussian images of
size 64 � 64 � 32 with smoothing kernels FWHM 4.7 �
4.7 � 3.9, 7.05 � 7.05 � 5.9, and 9.4 � 9.4 � 7.85 voxels,
thresholded at 2.0, 2.5, 3.0, and 3.5 (upper-tail probabilities
0.023, 0.006, 0.0013, and 0.00023, respectively). Their re-
sults indicate that the higher the smoothness, the less con-
servative the test becomes, which is consistent with our
results in Gaussian simulation. However, contrary to our
simulation, for lower thresholds (2.0 and 2.5), they find that
the test is actually anticonservative, and as the threshold is
raised to 3.0, the test becomes conservative, approaching to
the true significance level at threshold 3.5. A possible ex-
planation for this discrepancy is the fact that they simulate
images in a periodic manner, so that clusters are not trun-
cated by the edge.

In general other authors have found that the RF test
performs better at high thresholds in smooth images, which
is consistent with our results.

t simulation results

RF theory
The RF cluster size tests rely on a number of approxi-

mations. In an RF cluster size test, the expected value (or
the mean) of S is obtained from the expected values of the
suprathreshold volume N and the number of clusters L,
based on the relationship

E
S� �
E
N�

E
L�
.

Table 3
Familywise rejection rates and smoothness estimates from the
smoothness difference simulation (the no difference case, 3 and 3 is
provided for reference)

Smoothness FWHM
Group 1 3 6 12
Group 2 3 1.5 0

Smoothness estimate 3.04 2.24 1.65
Rejection rates
SPM 0.025 0.571 0.612
fmristat 0.021 0.486 0.571
Permutation 0.051 0.077 0.066

Note. Two groups of 10 Gaussian images with different smoothness are
used to generate a t18 image and cluster size tests are applied at the 0.01
threshold.

Table 2
Familywise rejection rates of the two RF tests (SPM and fmristat)
and the permutation test when a smoothness outlier is present for a two-
sample t18 simulation thresholded at 0.01 (the no outlier case, 3 and 3 is
provided for reference)

Smoothness 0 1.5 3 6 12
Outlier smoothness 12 6 3 1.5 0
Smoothness estimate 1.21 1.69 3.04 4.66 4.77
Rejection rates
SPM 0.000 0.005 0.025 0.120 0.330
fmristat 0.000 0.001 0.021 0.112 0.323
Permutation 0.030 0.039 0.051 0.052 0.047

Note. Smoothness estimates are also shown, which are highly underestimated
for smooth images, which explain the anticonservativeness in the RF tests.
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Details on the derivation of the expected values above are
presented in Appendix A. Because each voxel in a statistic
image is a t or Z statistic, the distribution of N can be easily
approximated. We examine the estimation of the other
quantities, namely E[L] and E[S], to better understand the
shortcomings of the RF tests.

The distribution of L is approximated by a Poisson dis-
tribution in the RF theory. As seen in Fig. 3, the observed
distribution (solid lines) of L can be well-approximated by
a Poisson distribution having the same mean (dashed lines).
However, in practice, the mean of this distribution is un-
known, thus estimated based on the RF theory which uses
topological features of the suprathreshold volume (Worsley
et al., 1996). When the RF theory estimate is used, the mean
is grossly overestimated, and the resulting approximated
distribution (dotted lines) deviates from the observed. The
left panel in Fig. 4 shows the bias in the estimated E[L],
which is substantial for low smoothness. A possible expla-
nation for this overestimation is that the RF theory expects
subvoxel clusters (i.e., clusters whose volume is less than a
voxel) to occur which cannot be observed in a real statistic
image. Such subvoxel clusters could occur more in low
smoothness where lattice approximation is crude, resulting
in a substantial overestimation seen in Fig. 4.

The distribution of S in an RF test is approximated either
by Eq. (7) for SPM or Eq. (8) for fmristat. Fig. 5 shows
the observed cluster size distribution and approximated
cluster size distributions used in SPM. Each plot shows the
cumulative probability, which can be interpreted as a plot of
percentiles. The point where the cumulative probability is
0.95 is the 95th percentile, or the uncorrected 0.05 critical
cluster size. The bottom row shows magnified cumulative
probability plots around 0.95. Even when having the same
mean as the observed distribution (solid lines), the theoret-
ical distribution (dashed lines) does not approximate the
observed distribution well unless images are very smooth.
When the mean of the theoretical distribution is derived
solely using the RF theory (dotted lines), this deviation from
the observed worsens for high smoothness, yet corrects for
conservativeness for low smoothness. For low smoothness,

the observed distribution is discrete, with the majority of
cluster sizes being 1 or 2 voxels, whereas the theoretical
distribution is continuous. Therefore the RF test can only be
either extremely conservative or anticonservative, depend-
ing on where the majority of such small clusters lie relative
to the theoretical critical cluster size.

Because E[L] is overestimated, one might expect under-
estimation of E[S]. However, such underestimation only
occurs for low smoothness (see Fig. 4 right panel). For high
smoothness, E[S] is actually overestimated possibly be-
cause the bias in E[L] is small and at the same time some
parts of clusters are truncated by the boundary of the search
volume, yielding smaller clusters than expected by the RF
theory (see Fig. 6 for an illustration). As it can be seen in the
plots of cluster truncation rates in Fig. 7, clusters are more
likely to be truncated at low thresholds and in smooth
images. Though the SPM method incorporates small volume
correction using the unified approach (Worsley et al., 1996),
the RF theory does not account for such cluster truncation,
resulting in overestimation of E[S] and ultimately conser-
vativeness of RF tests. It may seem that such cluster trun-
cation is due to the small image size in our simulations;
however, we have verified the performance of the RF tests
on Gaussian, t8, and t18 images of size 48 � 48 � 48 voxels
and found that the performance of the RF tests is similar to
that of 32 � 32 � 32 voxel images. Cluster truncations
could occur at any image sizes, and neither the RF nor the
permutation test is equipped to correct for such truncations.
The permutation test is able to produce correct P values at
low thresholds, but it is possible that the permutation test
may have reduced sensitivity at the boundaries because of
such cluster truncations. This problem of cluster truncation
is a shortcoming for any stationary cluster size test.

In summary, the RF tests should not be used at low
smoothness where the lattice approximation assumption
fails and the cluster size distribution approximation is inac-
curate. Even if images are sufficiently smooth, say FWHM
� 3 voxels, then clusters being truncated at the edge could
lead to conservativeness, which is particularly of concern at
low thresholds.

Fig. 4. Bias in estimating the expected number of clusters (left) and the
expected cluster size (right) by the RF theory compared to the observed
values for two-sample t18 images thresholded at different thresholds.

Fig. 3. The distribution of the number of clusters at 0.01 threshold for
two-sample t18 images (solid lines). The Poisson distribution having the same
mean as that of the observed distribution (dashed lines) approximates the
observed distribution quite well. However, the Poisson distribution with the
mean based on the RF theory (dotted lines, off the plots for 0 and 1.5 FWHM)
does not approach the observed distribution unless images are very smooth.
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Fig. 5. The distribution of cluster sizes at 0.01 threshold for two-sample t18 images (solid lines). The shape of the distribution based on the theory (SPM) does
not approximate the observed distribution well unless images are smooth, even when the theoretical distribution is set to have the same mean as that of the
observed distribution (dashed lines). The RF theory (dotted lines) is biased relative to the theoretical distribution with the observed mean, but happens to be
close to the observed distribution for low smoothness. The top row shows the overall shape of the distributions from the 40th to 100th percentiles, while the
bottom row shows the shape of the distributions around the 95th percentiles, the uncorrected critical cluster sizes.

Fig. 6. A 2D illustration of clusters truncated by the edges. The raw image (a) is thresholded at different thresholds: 0.1 (b), 0.05 (c), and 0.01 (d). The edges
(white box) truncate large parts of some clusters in (b) and (c), but not much in (d).
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Permutation test
For sufficient smoothness (FWHM � 3 voxels), the

permutation test seems to perform well for any thresholds
and dfs. Fig. 8 shows the observed Smax distribution (solid
lines), along with approximated Smax distributions from the
three tests examined, for two-sample (10 and 10) t images at
0.01 threshold. From the figure, it can be seen that the
distribution from a single permutation test (dash–dot lines)
is close to the observed distribution for any smoothness
despite a small number (100) of permutations, while the
SPM RF test (dashed lines) and the fmristat RF test
(dotted lines) are conservative for some smoothness.

The conservativeness of the permutation test rejection
rates under low smoothness is due to the discreteness in the
Smax distribution. Because of this discreteness, the 95th

percentile in the observed distribution cannot be uniquely
defined. Thus it is impossible to attain the rejection rate of
0.05, even when the approximated distribution is close to
the observed distribution. Nevertheless, the permutation test
produces accurate P values even under such circumstances;
for example, with no smoothing, for a cluster of size 5
voxels in a t image with df � 28 at 0.01 threshold, P values
are 0.045 for the truth, where as the average P values from
3,000 realizations are 0.048 for the permutation, and 0.756
for SPM.

In summary, the permutation test performs well in all
settings considered. Even when discreteness of cluster size
distribution is an issue for low smoothness, the test yields
accurate P values.

Conclusions

In this study we carried out simulations to validate two
cluster size inference methods, the RF test and the permu-
tation test, in Gaussian images and t images. It was found
that the RF tests do not perform well in some settings when
theoretical approximations are not accurate. On the other
hand, the permutation test works well for any threshold
smoothness, and df, and showed great robustness when
assumptions are violated. Thus, when possible, the permu-
tation test should be used. If the permutation test cannot be
used or the RF test is chosen, then the smoothness and the
threshold should be chosen wisely.

As a practical guideline for users of cluster size tests, we
only recommend using the RF test for very smooth images

Fig. 7. The proportion the clusters touching the boundary and being
truncated by the boundary for different thresholds on two-sample t18

images. Cluster truncation is most frequent for low thresholds and high
smoothness.

Fig. 8. The observed distributions of the maximum cluster size for the two-sample t18 images thresholded at 0.01 (solid lines), along with its approximations
based on the SPM RF test (dashed lines), the fmristat RF test (dotted lines), and a single permutation test with 100 permutations (dash–dot lines). The
top row shows the overall shape of the distributions from the 0th to 100th percentiles, while the bottom row shows the shape of the distributions around the
95th percentiles, the 0.05 FWE corrected critical cluster sizes (the permutation test overlaps the FWHM 0.0 case).

2352 S. Hayasaka, T.E. Nichols / NeuroImage 20 (2003) 2343–2356



with high df only. Though the permutation test is exact, as
df increases, the computational burden associated of the
permutation test increases as well, and the test may not be
very practical. For large df, 0.001 threshold is typically used
and at this threshold, though conservative, the RF test is
stable for smooth images (FWHM � 3) as seen in the t28

and Gaussian simulations, thus perhaps more desirable.
When df is small, 0.01 threshold is often used, and at this
threshold, the RF test is overly conservative; thus, the per-
mutation test is preferred. For low smoothness, often the RF
test is unstable, or either extremely conservative or anticon-
servative, depending on the threshold, thus, we recommend
using the permutation test for any df for images with low
smoothness. Because the choice of threshold does not in-
fluence the permutation test much, 0.01 may be useful as it
picks up more clusters. Fig. 9 summarizes the above rec-
ommendations.

In this study we did not simulate signals, so we are
unable to make detailed comments on the power of these
tests, except that a conservative test will generally be less
sensitive than an exact test.
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Appendix A: RF cluster size test

Under the RF theory, the distribution of the cluster size
S is obtained based on the distribution of the suprathreshold
volume N, the number of clusters in the search volume L,
and the identity

E
S� �
E
N�

E
L�
. (3)

The expected value of N is

E
N� � V�1 � F�uc��, (4)

where V is the search volume and F(·) is the cumulative
distribution function (cdf) of an appropriate random vari-
able. If the image is assumed to be a Gaussian random
field, then F(·) is the cdf of a Gaussian random variable,
and if the image is considered as a t-random field with
degrees of freedom �, then F(·) is the cdf of a t-random
variable with v degrees of freedom. If the image is D
dimensional (typically D � 3), then the expected value of
L is

E
L� � �
d�0

D

Rd�d�uc�, (5)

where Rds are d dimensional RESEL counts and �ds are
d-dimensional resel densities. Rds and �ds depend on the
underlying random field (see Worsley et al. 1995, 1996).

It is known that, for a Gaussian RF with a large uc,S
2/D

is approximately distributed as an exponential random vari-
able (Nosko, 1969; Friston et al., 1994) with mean 1/,
where

 � ��D/ 2 � 1�E
L�

E
N� � 2/D

. (6)

The distribution of S can then be approximated by

Pr�S � s� � exp��s2/D�. (7)

Strictly, Eq. (7) is valid only for Gaussian images. A more
refined approximation of the cluster size distribution in t RF
was found by Cao (1999) and Cao and Worsley (2001); they
find S is approximately distributed as

S � cB1/ 2� U0
D

�b�1
D Ub

� 1/ 2

, (8)

where B is a Beta random variable with parameters (1, (� �
D)/2), U0 is a �2 random variable with degrees of freedom
� � 1 � D, and Ubs (b � 1, 2, . . . , D) are independent �2

random variables with degrees of freedom � � 2 � b. c is
a constant chosen so that Eq. (3) is satisfied.

Once the distribution of each cluster is found, either
from Eq. (7) or (8), then the critical cluster size is to be
found, adjusted for a desired family-wise error rate
(FWER), or the probability of false rejections controlling
for multiple comparisons among clusters. In this case,
clusters are assumed to be independent (Adler, 1980;
Friston et al., 1994), and the number of clusters whose
size exceeds s, say Ls, can be approximated by a Poisson
distribution with the mean E[L] · Pr(S � s). Using this
result, the FWER can be found as the probability of at
least one cluster exceeding s, or 1 minus the probability
that no cluster exceeding s, which is

Pr�Ls � 1� � 1 � exp��E
L� · Pr�S � s��.

Note that the probability of at least one cluster exceeding s
is equivalent to the probability that the largest cluster ex-
ceeding s. Thus, in the test, the largest cluster size Smax is

Fig. 9. Recommended usage of the RF and permutation cluster size tests.
For high df and high smoothness, the RF test with 0.001 threshold is
recommended. Otherwise the permutation test is more reliable.
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used as the test statistic, instead of all the cluster sizes, and
its distribution is expressed as

Pr�Smax � s� � 1 � exp��E
L� · Pr�S � s��, (9)

which is the FWE corrected P value of a cluster of size s.
The critical cluster size is obtained as the cluster size at
which Eq. (9) yields the desired significance level.

If the distribution of S is assumed to be Eq. (7), then the
FWER adjusted critical cluster size k
 at a desired signifi-
cance level 
 can be easily calculated by

k
 � 	 ln� �E
L�

ln�1 � 
��




D/ 2

. (10)

Note that if the ratio (�E[L])/(ln(1 � 
)) is less than 1, then
the natural log of the ratio becomes negative and k
 cannot
be calculated. Such instances could occur when the ex-
pected number of clusters E[L] is too small due to an
unrealistic combination of threshold uc and the smoothness,
or when 
 is extremely large.

Appendix B: t RF cluster size test implementations

In different software programs, theories described in
Appendix A are implemented differently. In the SPM2
package, the cluster size distribution for t images is assumed
to be in the form of Eq. (7), whereas in the fmristat
package, the distribution is assumed to be Eq. (8). Another
difference between these packages is in the calculation of
E[L]. Though E[L] should be calculated with D different
dimensional terms, in practice, if the search volume is large,
the lower dimensional terms are often negligible. In the
SPM2 package, E[L] in Eq. (9) is calculated using all the
dimensional terms, while the E[L] in the  parameter in Eq.
(6) is calculated only with the highest dimensional term
Rd�d(uc), thus the  parameter becomes

 � ��D/ 2 � 1�QD�D�uc�

E
N� � .

In the fmristat package, E[L] is always calculated with
the highest dimensional term Rd�d(uc) only.

For Gaussian images, both SPM2 and fmristat ap-
proximate the cluster size distribution with Eq. (7), though
as mentioned above, they calculate E[L] differently.

Appendix C: Theory of the permutation test

In this appendix we outline the theory of the permutation
test, using a two-sample test setting as an example. More
detail and the case of one-sample and more complicated
cases are considered in Pesarin (2001).

Consider a two-sample t test where there is one obser-

vation per subject. For groups of size n1 and n2, n � n1 �
n2, the data can be represented in vector Y � {Y1, . . . , Yn1,
Yn1�1, . . . , Yn}�. Let the distribution of group j be Fj, so
thatYi � F1 for i � 1, . . . , n1, and Yi � F2 for i � n1 �
1, . . . , n. Under the null hypothesis of no group effect F1 �
F2 � F. Consider a univariate statistic of interest T(Y) which
summarizes evidence for a group difference. For example, T
could measure the mean difference between the groups, or
compute a two-sample t statistic.

Let S be an n � n permutation matrix, a matrix of zeros
and ones such that SY shuffles the order of the elements of
Y. Let � � {Sk} be the set of all permutation matrices

corresponding to N � � n
n1
� possible unique group assign-

ments. Let S1 � I, the identity corresponding to the unper-
muted data.

Given the null hypothesis, the group labels are irrelevant
and, given exchangeability, every possible permutation of
the data SkY, k � 1, . . . , N, has the same distribution. Thus,
T(SkY) has the same distribution for all possible k. Given
particular observed data set y, the permutation distribution is
defined by

� � �T�Sky�:k � 1, . . . , N �. (11)

Because of exchangeability, the distribution of � is uni-
form, with probability 1/N that T(Sky) takes on any partic-
ular value in �. The P value is the probability of obtaining
a statistic as large or larger than T(y); conditioning on all
possible permutations of the data, we have

Pr�T�Y� � T� y���0, �� �
1

N
�
k�1

N

I�T�Sky��T� y��. (12)

An 
-level threshold can be found as the statistic value
corresponding to the largest P value less than or equal to 
.

While the permutation test is conditional on the data
observed (and all �0-equivalent data sets), if the standard
assumptions of random sampling from a population are
made, the test is also unconditionally valid (see Pesarin
(2001), pp. 61–63). Thus, for the data set at hand the
validity of the permutation test relies on almost no assump-
tions (exchangeability only). However, if the investigator
wishes to assume that their data are randomly drawn from a
common population under the null hypothesis, as done
parametrically, the test has the same validity and interpre-
tation as any parametric test.

Appendix D: Smoothness estimation

In neuroimage analyses, there exist different ways to
estimate image smoothness. Widely used methods are
Kiebel et al. (1999) and Forman et al. (1995). Jenkinson
(2000) explains both methods in detail. In our simulation,
we use the approach by Kiebel et al., the one used in the
SPM2 package.
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The smoothness of images are estimated in terms of
FWHM from the variance–covariance matrix of partial de-
rivatives of residual images. The variance–covariance ma-
trix of spatial partial derivatives of a random field G is
defined as

� � Var� �G

�� x, y, z��

� �
Var��G

� x� Cov��G

� x
,

�G

� y� Cov��G

� x
,

�G

� z �
Cov��G

� y
,

�G

� x� Var��G

� y� Cov��G

� y
,

�G

� z �
Cov��G

� z
,

�G

� x� Cov��G

� z
,

�G

� y� Var��G

� z � 
� �

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz
 . (13)

In real data, the � matrix is estimated based on standardized
residual images u, which is defined at each voxel v as

u�v� �
e�v�

�1

�
e�v��e�v�� 1/ 2 �

e�v�

�̂�v�
,

where � is the error degrees of freedom. Partial derivatives
of u is calculated by taking the difference between u(v) and
adjacent voxels in x, y, and z directions and dividing it by
the voxel dimension. Denote this by

�u�v� � ��u�v�

�x
,

�u�v�

�y
,

�u�v�

�z � .

Then an estimate of ���, ��̂�, is given by

��̂� �
1

V
�

v
�1

�
�u�v���u�v�� , (14)

where V is the number of voxels. This expression can be
seen as an averaging of determinants over space, and �1/�
�u(v)��u(v)� as an averaging of matrices over observations.
Note that Eq. (14) differs slightly from Kiebel et al., 1999
because we write it in terms of standardized residuals and
not normalized residuals (u(v)/��).

FWHM is expressed in terms of ��� by

FWHM � �4 ln 2�1/ 2����1/ 2D (15)

(Worsley, 2002). Unfortunately the obvious estimate of
FWHM, replacing ����1/2D with ��̂��1/2D results in a biased
estimator. Worsley (2002) shows that ��̂��1/2D, needs to be
divided by a bias correction which is a function of the
degrees of freedom. In our case, the estimate of FWHM is
to be used in the RF test in the form 1/FWHMD, instead of
FWHM as it is (Worsley et al., 1996). It turns out the
correction factor for ��̂� in 1/FWHMD is 1 (Worsley, 2002),

so FWHM̂ can be obtained from Eq. (15) with �̂ substituted
for �:

FWHM̂ � �4 ln 2�1/ 2��̂��1/ 2D.

For the calculation of Eq. (14), the SPM2 package as-
sumes the off-diagonal elements of �̂ to be zero and calcu-

lates FWHM̂ accordingly. In this simulation, we calculated

the FWHM̂ in that manner. However, if the off-diagonals
are assumed to be zero, then the bias correction factor is no
longer 1. The multistat.m function in the fmristat
package calculates an appropriate bias correction factor
according to the df and the dimensionality of the search
space.
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