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Abstract

The goal of this work is to establish the validity of neuroimaging models and inferences through diagnosis and exploratory data analysis.
While model diagnosis and exploration are integral parts of any statistical modeling enterprise, these aspects have been mostly neglected
in functional neuroimaging. We present methods that make diagnosis and exploration of neuroimaging data feasible. We use three- and
one-dimensional summaries that characterize the model fit and the four-dimensional residuals. The statistical tools are diagnostic summary
statistics with tractable null distributions and the dynamic graphical tools which allow the exploration of multiple summaries in both spatial
and temporal/interscan aspects, with the ability to quickly jump to spatiotemporal detail. We apply our methods to a fMRI data set,
demonstrating their ability to localize subtle artifacts and to discover systematic experimental variation not captured by the model.

© 2003 Elsevier Science (USA). All rights reserved.
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Introduction and meotivation

Neuroimaging analyses proceed by localizing brain re-
gions exhibiting experimental variation. A PET or fMRI
experiment yields a sequence of large three-dimensional
images of the subject’s brain, each containing as many as
100,000 volume elements or voxels. The typical analysis
strategy is marginal or “massively univariate” (Holmes,
1994), where data for each voxel are independently fit with
the same model (Friston et al., 1995). Images of test statis-
tics are used to make inference on the presence of an effect
at each voxel.

The main purpose of this work is to establish the validity
of inferences in neuroimaging through diagnosis of model
assumptions. Hypothesis tests and P values depend on as-
sumptions on the data, and inferences should not be trusted
unless assumptions are checked. Diagnosis is usually done
by the graphical analysis of residuals (Neter et al., 1996;
Draper and Smith, 1998). For example, one standard tool is
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a scatter plot of residuals versus fitted values, useful for
diagnosing nonconstant variance, curvature, and outliers.
This sort of graphical analysis is not practical since it is not
possible to evaluate 100,000 plots.

The other purpose of this work is to characterize signal
and artifacts through exploratory data analysis (EDA;
Tukey, 1977). EDA is an important step in any statistical
analysis, as it familiarizes the analyst with form of the
expected experimental variation, the presence of unex-
pected systematic variation, and the character of random
variation. As with model diagnosis, traditional EDA tools
are graphical and cannot be applied voxel-by-voxel exhaus-
tively. Fortunately EDA can also be accomplished by ex-
ploring the fit and the residuals (Hoaglin et al., 1983). A
model partitions data as the sum “Data = Fit + Residuals,”
and in neuroimaging data the fit and residuals are individ-
ually more amenable to exploration than the full data. The
fit is parameterized by the user and is readily interpretable,
while the residuals are homogeneous and unstructured if the
model fits. Interesting features in the residuals can be found
by use of statistics sensitive to structure or inhomogeneity;
for example, something as simple as outlier counts per scan
can quickly identify interesting scans. Diagnosis and EDA
are enmeshed: Diagnosis takes the form of exploration of
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diagnostic statistics, and exploration of residuals serves to
understand problems identified by diagnosis.

In this work we propose a collection of tools and explicit
procedures to check model assumptions and to explore fit
and residuals. The two key aspects of our work are (1)
images and one-dimensional summaries that characterize fit
and residuals and (2) dynamic visualization tools to explore
these summaries and to efficiently identify spatiotemporal
regions (or voxels and scans) of interest.

We use the term “model summaries” to refer to images
that assess fit or residuals at each voxel, and “scan summa-
ries” to refer to time series (fMRI) or one-dimensional (1-D)
vectors (PET, etc.) that assess fit or residuals over space. For
model summaries, we use both images of linear model
parameters and images of diagnostic statistics. For example,
we assess linear model assumptions like normality, ho-
moscedasticity (homogeneous variance), and independence
of errors with scalar diagnostic statistics; to view these
diverse measures on a common scale, we create images of
—log,, P values. For scan summaries, we use measures
which describe model fit and residuals over an image, as
well as preprocessing parameters. For example, global in-
tensity and outlier count per image both can capture tran-
sient acquisition problems, and in fMRI, head motion esti-
mates are useful for finding scans with motion artifacts.

The dynamic visualization tools are used for simulta-
neously exploring multiple model and scan summaries and
for quickly jumping from these summary margins to the full
raw or residual data. We use linked orthogonal viewers to
explore the images of model summaries, and parallel plots
with linked cursors to study of plots of scan summaries.
From a model summary image the model detail for a spe-
cific voxel can be brought up, including plots of the raw
data, fitted model, residuals, and traditional diagnostic plots.
From a plot of scan summaries the scan detail for a specific
image can be displayed, consisting of images of studentized
re-
siduals. These tools have been implemented as statistical
parametric mapping diagnosis (SPMd, http://www.sph.
umich.edu/~nichols/SPMd), a toolbox for SPM (http://
www.fil.ion.ucl.ac.uk/spm).

In this article we assume independent errors at each
voxel. This assumption is suitable for data from PET,
SPECT, VBM (Ashburner and Friston, 2000), or simple
second-level fMRI models (Holmes and Friston, 1999) and
for single-subject fMRI models after decorrelation or whit-
ening. Our methods are also appropriate for fMRI covari-
ance model building: Since the appropriate model for the
signal must be found before fMRI noise can be modeled,
our methods can be applied with independence regarded as
a “working” autocorrelation model. Also, our autocorrela-
tion diagnostics will capture the form and spatial heteroge-
neity of autocorrelation, allowing the exploration of tempo-
ral dependency before it is modeled.

There has been little previous work in neuroimaging
model diagnosis (Razavi et al., 2001; Nichols and Luo,

2001). In EDA there are many data-driven tools that have
found use in fMRI, including clustering (Goutte et al., 1999;
Moser et al., 1999), independent components analysis (ICA
software can be found, for example, at http://www.fmrib.
ox.uk/fsl/melodic) (McKeown et al., 1998), and principal
components analysis (PCA software can be found, for ex-
ample, at http://www.madic.org/download) (Kherif et al.,
2002). Our work differs from these EDA tools in that we
individually explore fit and residuals, instead of raw data,
and that we support our EDA with statistical summaries and
P values to make inferences on the magnitude of discovered
patterns (relative to a putative model).

In the next section we introduce these summaries and
give specific strategies for model diagnosis. In the subse-
quent section we report on simulation studies that investi-
gate the performance of the diagnostic summaries with
respect to different correlation conditions. Finally, we dem-
onstrate our tools on a fMRI data set.

Methods

Consider a general linear model fit at each voxel. For a
given voxel we have

Y=XB + ¢,

where Y is a N-vector of responses, X is a N X p matrix of
p predictor variables, 3 is a p-vector of unknown parame-
ters, and € is a N-vector of unknown, random errors. This
general form captures almost all used models, including
ANOVA, t test, and complicated fMRI models; the predic-
tors may also include variables accounting the global signal
or, in fMRI, drift and the phase of the hemodynamic re-
sponse.

To make inferences at each voxel we must assume that &
is a vector of normal random variables with expectation O
and variance—covariance matrix V. In this work we as-
sume that V = I, which is appropriate for PET, SPECT,
MEG, VBM, or long-TR fMRI data. It is also appropriate
for any fMRI data when Y and X have been whitened based
on an estimated autocorrelation structure (Burock and Dale,
2000; Woolrich et al., 2001).

To make inferences corrected for multiple testing prob-
lem, additional assumptions may be needed. Gaussian ran-
dom field theory methods have several assumptions (Peters-
son et al., 1999) and a thorough assessment of them is
beyond the scope of this article. Briefly, the essential re-
quirements are univariate normality and sufficient smooth-
ness. Normality is easy to check with the tools below, and
the smoothness assumption requires the estimated FWHM
smoothness to be at least three times the voxel size. For
cluster size tests the other key assumption is stationary noise
covariance, which is addressed elsewhere (Hayasaka and
Nichols, manuscript in preparation).

The least squares estimator of Bis B = (X' X)"'XTY. A
contrast vector c is a length-p row vector defining an effect
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Table 1

Model summaries

Statistic Assesses Null Dist” Reference

Contrast estimates Signal I Appendix A

Standard deviation/PCT® Artifacts See text

Durbin—Watson Cor(e;, g; + 1) =0 Beta Durbin and Watson (1950, 1951)

Cumulative periodogram with BLUS residuals Var(e) = o°l Uniform Diggle (1990), Schlittgen (1989), Smirnov (1948), Stephens
(1970), Theil (1971)

Cook—Weisberg score test Var(e,) = o° X Casella (2001), Cook and Weisberg (1983)

Shapiro-Wilk Normality Normal® Royston (1982), Shapiro et al. (1968), Stephens (1974)

Outlier count Artifacts Binomial Neter et al. (1996), Ryan (1997)

* After standardization.
® Percent change threshold.
¢ After transformation.

of interest, or contrast, cfu’. Central to exploration and diag-
nosis are the residuals

e=Y-V=Y-XB,

where ¥ = Xﬁ are the fitted values. Note that even when the
errors are homogeneous and independent, the residuals are
heteroscedastic and dependent, as per Cov(e) = (I — H)o?,
where H = X(X"X) 'X". To visualize residuals with ho-
mogeneous variance we use studentized residuals, r; =
e,/ diag(I — H)6*. When the dependence of the residuals
is problematic we use Best Linear Unbiased residuals with
a Scalar (diagonal) covariance matrix or BLUS residuals
(Theil, 1971). BLUS residuals are unbiased in the sense that
their expectation is zero and they are best in that their
distance from the true errors is minimized in expectation.

After model fitting and calculating residuals we can
compute the diagnostic statistics and summary measures.
The two main components of our work are the model and
scan summaries of the data and the interactive visualization
tools to explore those summaries.

Model summaries

Our model summaries are images of model parameters,
to represent fit, and residual summaries, to assess lack-of-fit
and model assumptions (see Table 1). To provide a consis-
tent metric for visualizing the diagnostic measures we create
images of —log,, P values.

Exploratory summaries
Contrasts and statistic images. We prefer images of signal
that are maximally interpretable, and hence use percent
change contrast images in addition to ¢ images. Note that
while ¢ imgges are scale-invariant and unitless, a contrast
estimate ¢f3 has units determined by the predictors and the
contrast vector, and hs:nce a linear model with interpretable
units is required for ¢3/ X 100% to be percent change (see
Appendix A).

We use F images to summarize nonscalar effects, such
as a subject/block effect or a hemodynamic response pa-

rameterized with a finite impulse response model. For an
anatomical reference we create a grand mean image; while
other high resolution images may be available, there are
often misalignment problems owing to head motion or sus-
ceptibility artifacts.

Standard deviation and percent change threshold. While
residual standard deviation is a key summary measure, it
lacks concrete units that, say, a contrast image has (response
magnitude, all other effects hold constant). To increase
interpretability, we characterize residual uncertainty with
the (I — a)% confidence margin of error for an effect of
interest. The margin of error is the half-width of a (1 — @)%
confidence interval (either corrected or uncorrected). If an
effect is expressed in units of percent change, we call this
quantity the percent change threshold (PCT), as it is the
minimum percent change needed to reach level a signifi-
cance.

Another reason to use PCT is that it intuitively expresses
the impact of standard deviation on power. For example, in
a fMRI data set, say that a region with a PCT of 10% is
found; the immediate interpretation is that no fMRI signal
will be detected in that region, since BOLD signal change
rarely exceeds 5% (for 1.5 T, Moonen and Bandettini, 2000)
(see http://www.sph.umich.edu/~nichols/PCT for more de-
tail). Of course, collecting more data or more subjects into
a fixed effects analysis will reduce PCT.

Diagnostic summaries

From a detailed review the linear model diagnostics
literature we selected the most appropriate measures for
neuroimaging data (Table 1). The key diagnostic statistics
are the Cook—Weisberg score test for homoscedasticity,
Shapiro-Wilk test for normality, and Durbin—Watson sta-
tistic and cumulative periodogram test with BLUS residuals
for independence. (Raw fMRI residuals have no energy in
low frequencies due to drift modeling, causing the cumula-
tive periodogram tests to falsely reject; the use of BLUS
residuals corrects this.) We also use an image of outlier
counts per voxel. For detailed definition of the statistics,
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Table 2
Scan summaries

Summary Definition

Function

Experimental predictors

Global signal

Scan outlier count

Image preprocessing parameters

Predictors from the design matrix
Average of intracerebral voxels
Sum of outliers over each scan

Registration shift and rotation movement parameters

Provide reference to other plots.

Assess possible global confound, bad scans
Detect transient acquisition problems, bad subjects
Capture aspects of artifacts or anomalies

their distribution under a null hypothesis of model fit, and
how to assess them, please refer to Luo and Nichols (2002)
and respective references.

Scan summaries

Our scan summaries are vectors where each element
assesses a single image (see Table 2). Since we do not have
an explicit spatial model to evaluate, our scan summaries
use more ad hoc measures. We use the experimental pre-
dictors, outlier count per scan, global signal, and some
image preprocessing parameters such as registration shift
and rotation movement parameters. These measures capture
motion, physiological, scanner artifacts or possible con-
founding variables; for multisubject studies they may iden-
tify anomalous subjects. While inference is not feasible on
scan summaries, we do compute reference values under the
null hypothesis when possible. For example, the expected
outlier count is easy to compute as the number of voxels
times the Gaussian tail area of the outlier cutoffs.

Diagnosis strategies

A dozen summary images and plots are an improvement
over looking at every diagnostic plot and residual image, but
these summary measures are of limited use if just examined
one-by-one and not linked to the full data. Hence we use a
dynamic graphical tool to simultaneously view several sum-
maries, linked to residual plots and images. Specifically we
use four viewers (Fig. 1) to efficiently explore the summa-
ries and, as guided by the summaries, the fit and residuals.

It is not immediately clear, however, in what order these
summaries should be examined, how the tools should be
used with the summaries, and how the results of investiga-
tions should be applied to the final analysis of the data. In
this section we give an outline of strategies to simulta-
neously (1) check assumptions, (2) explore expected and
unexpected variability, and (3) address problems found (see
Table 3). In short, we move from summaries to detail and
perform exploration and diagnosis of noise before explora-
tion of signal.

Step 1: explore plots of scan summaries

We use parallel plots of scan summaries to find scans
affected by artifacts and acquisition problems (Fig. 1a). We
first check for systemic problems. For example, whether the

global signal is related to experimental effects or if there is
excessive movement. Second, we check for transient prob-
lems, like the jumps or spikes in the global signal, the
outlier count per scan, and the motion parameters. Usually,
these jumps correspond to head movements and acquisition
artifacts. Third, we check the relationships between differ-
ent scan summaries, for instance, whether movement jumps
and outlier spikes coincide or if global spikes coincide with
outliers or movements. From this information, we note
which scans are possibly corrupted or may be influential to
the data analysis. The origin of the spikes can be investi-
gated in detail in Step 4.

Step 2: explore images of model summaries

Model summaries are displayed next with linked orthog-
onal slice viewers (Fig. 1b) to do both diagnosis and explo-
ration. In the diagnostic model summaries we pay special
attention to regions with both significant diagnostic statis-
tics and anticipated experimental effects.

For exploratory purposes we search images of signal
and noise, focusing on the noise first, principally with a
PCT image. We window the PCT image such that the
modal PCT value is half the maximal intensity (see Ap-
pendix B); this gives middle gray the interpretation of
typical sensitivity and white that of less than one-half
typical sensitivity. Regions with large PCT are noted as
possible sites of Type II errors. We next check ¢ or F
images of nuisance effects, such as drift; with use of the
model detail, interesting features in the image of drift
magnitude can often lead to discovery of artifacts. Finally
we explore the expected signal, as measured with per-
centage change, t or F' images. We localize interesting
activations and note any broad patterns. In particular,
extensive positive or negative regions indicate a subtle
signal (or artifact) that would not be evident in a thresh-
olded statistic image. For any notable region discovered,
by diagnosis or exploration, we check its model detail.

Step 3: explore model detail

For a given voxel we examine the model detail plots
(Fig. 1c), doing so interactively with images of model sum-
maries to characterize the sources of the significant exper-
imental or diagnostic statistics. From the plots of data with
fit and residuals, we can not only assess the goodness-of-fit
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Fig. 1. We use a dynamic graphical tool to efficiently navigate through the various diagnostic measures. We use plots of scan summaries (a) and images of

model summaries (b) to find individual voxels and scans of interest; a single voxel is studied with plots of model detail (c) and a series of residual images
are viewed in scan detail (d).

60
time (TRy)

of the model to the intrinsic signal (important for fMRI thermore, we use the diagnostic residual plots to check the
BOLD data), but also identify unmodeled signals, that is, specificity of the significant diagnostic statistics. For exam-
any systematic variation not captured by the model. Also, ple, if a voxel is large in the image of Cook—Weisberg
from the plot of residuals, we note possible outlier scans. homogeneous variance statistic, we use a residual plot ver-
We reference these with the outlier count per scan and sus predictor variable to verify that system heteroscedastic-

characterize their spatial extent with the scan detail. Fur- ity and not a single outlier is responsible.
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Fig. 2. Plots of scan summaries for the full 129-scan data set. Plots show, from top to bottom, experimental predictor, global signal, outlier count, translational

head movements, and rotational head movements.

Step 4: explore scan detail

As guided by the model detail or plots of scan summa-
ries, we use a sequence of studentized residual images (Fig.
1d) to spatially localize problems identified in previous
steps. Fixed and spinning maximum intensity projection
(MIP) images are helpful to give an overall indication of the
problems. When examining the series of residual images,
we note the spatial and temporal/interscan extent of the
problem. For example, in fMRI, an artifact confined to a
single slice in a single volume suggests shot noise, while an
extended artifact may be due to physiological sources or
model deficiencies.

Step 5: remediation

Several approaches can be applied to address problems
identified by previous steps. For the problem scans discov-
ered in Step 1, we may possibly remove them from the
analysis. We are very judicious on removing scans; we only
discard an observation if we are convinced that there are

deterministic measurement or execution errors (Barnett and
Lewis, 1994), like gross movements or spike noise. Another
approach to outliers is Windzorization (Wilcox, 1998), the
shrinkage of outliers to the outlier threshold. In our expe-
rience, outliers indicate corrupted data, and we prefer to
eliminate such data rather than retaining them in modified
form. Corresponding scans and design matrix rows must be
deleted together; the design matrix should then be checked
that it is not exactly nor nearly rank deficient. In addition to
omitting scans, we may find problem voxels in Step 2.
These voxels can simply noted and ignored or explicitly
masked from the analysis.

The other approach is to modify the model. For example,
if we find incorrectly modeled experimental variation from
the model detail, we may consider adding other variables to
the model to improve the fit. In contrast, if the global signal
is found to be significantly correlated with the experimental
paradigm, it may be preferable to omit this confound as a
covariate entirely (Aguirre et al., 1998).
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Table 3
Diagnosis strategies

Step Action

1. Explore scan summaries Check for systemic problems.
Check for transient problems.
Check for relationships between

summaries.

2. Explore model summaries Check for violations of assumptions.
Explore noise, nuisance variability.
Explore experimental signal.

3. Explore model detail Check for unmodeled, systematic
variation.

Note possible problem scans.

Check specificity of significant diagnostic
statistics.

4. Explore scan detail Check temporal/inter-scan extent of
problem.

Check spatial extent of problem.

5. Remediation Remove problem scans.
Modify model.

Mask out problem regions.

6. Resolution Declare significant activation valid, or
Declare significant activation as
questionable.

Describe unmodeled and artifactual

variation.

After removing possible outliers and/or modifying the
model, we refit the model and repeat the above processes
again until we are satisfied that experimental inferences are
valid and that gross artifactual variation has been omitted or
at least characterized.

Step 6: resolution

After all the analyses and diagnoses are done, we sum-
marize the results of diagnosis and exploration. We declare
each significant region as valid, questionable or artifactual.
A valid activation has assumptions clearly satisfied, while a
questionable region has some significant diagnostics but
exploration of the fit and residuals has shown the activation
to be believable. Artifactual activation is clearly due to
outliers or acquisition artifacts which could not be reme-
died. In brain volumes with no significant activation, it is
also important to report on regions with significant diagnos-
tic statistics. The source of these significant diagnostics may
be related to the unmodeled signal or artifactual variation
and may be the source of new neuroscientific hypotheses, a
new type of physiological signal, or simply problems for
physicists to solve.

Simulation studies

In this section we examine the performance of the model
summary diagnostic statistics using simulated data sets. All

of our model summary statistics have been well studied
under the null hypothesis of model fit (see respective ref-
erences), so extensive simulations under the null are not in
order. Extensive evaluations under alternatives, on the other
hand, are problematic because the space of the alternatives
is very large, consisting of all combinations of possible
types model lack of fit: autocorrelation, outliers, model
misspecification, heteroscedasticity, etc. Some evaluations
under alternatives can be found in the references (for ex-
ample, in Shapiro et al. (1968), they investigate the perfor-
mance of Shapiro—Wilk under alternative distributions and
different sample size and show that the Shapiro—Wilk test
exhibits sensitivity to nonnormality over a wide range of
alternative distributions.). Hence we only investigate the
alternative of greatest concern, that of autocorrelation. We
do this in part to demonstrate the sensitivity of our depen-
dency statistics (Durbin—-Watson and cumulative perio-
dogram), but primarily to characterize the specificity of the
other measures under the violation of their independence
assumption.

Simulation methods

Time series data were simulated from an 84-observation
model, corresponding to a publicly available data set (http://
www.fil.ion.ucl.ac.uk/spm/data), single-subject epoch audi-
tory fMRI activation data; we used such a short-length time
series to characterize the small-sample limitations of our
diagnostic statistics. The simulated data were composed of
the sum of two series: One was the fixed response effect
including nine covariates corresponding to intercept, a ex-
perimental condition, and seven drift terms; the other series
was the random error, which was either white noise, a
first-order autoregressive processes with different degree of
correlation (0.1-0.5), or an order-12 autoregressive process.
The parameters of these covariates and the 12 AR parame-
ters were obtained from a real data set. A linear regression
model was fit to the simulated data and residuals were
created; we computed six diagnostic statistics, Durbin—Wat-
son (DW), cumulative periodogram (CP) with BLUS resid-
uals (Theil, 1971), Shapiro—Wilk (SW), outliers, and two
Cook—Weisberg score tests, with respect to global signal
(CW-G) and predicted values (CW-P). We also calculated a
cumulative periodogram with ordinary residuals (CP¥), in-
stead of BLUS residuals.

For each type of random noise structure, we created
10,000 realizations; for each realization the diagnostic sta-
tistics and corresponding P values were calculated. The
performance of the statistics were measured with two cri-
teria. First, the percentages of rejection under null hypoth-
esis at three rejection levels (0.05, 0.01, and 0.001) under
various correlation conditions are computed. Second, 0—Q
plots of the logarithm of the P values were created and
helpful to examine the behavior over a range of o’s.
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Table 4

Simulation results

a Level DwW CP CW-G CW-P SW Outlier CpP*

White noise

0.05 0.0614 0.0644 0.0562 0.0508 0.0509 0.2876 0.1259

0.01 0.0146 0.0133 0.0100 0.0114 0.0104 0.0243 0.0373

0.001 0.0013 0.0016 0.0009 0.0016 0.0019 0.0005 0.0043
AR(1) process: p = 0.1

0.05 0.2222 0.0535 0.0557 0.0524 0.0495 0.2820 0.0540

0.01 0.0763 0.0116 0.0127 0.0113 0.0112 0.0255 0.0100

0.001 0.0151 0.0006 0.0017 0.0013 0.0012 0.0009 0.0005
AR(1) process: p = 0.2

0.05 0.5002 0.1466 0.0583 0.0532 0.0512 0.2778 0.1072

0.01 0.2588 0.0475 0.0138 0.0107 0.0107 0.0243 0.0311

0.001 0.0811 0.0082 0.0015 0.0010 0.0008 0.0011 0.0044
AR(1) process: p = 0.3

0.05 0.7745 0.3473 0.0669 0.0588 0.0506 0.2770 0.2980

0.01 0.5345 0.1531 0.0166 0.0130 0.0105 0.0244 0.1369

0.001 0.2651 0.0391 0.0026 0.0016 0.0007 0.0009 0.0356
AR(1) process: p = 0.4

0.05 0.9199 0.6090 0.0748 0.0605 0.0512 0.2769 0.5577

0.01 0.7905 0.3740 0.0162 0.0123 0.0113 0.0252 0.3236

0.001 0.5436 0.1507 0.0033 0.0020 0.0015 0.0006 0.1285
AR(1) process: p = 0.5

0.05 0.9782 0.8114 0.0862 0.0606 0.0558 0.2610 0.7813

0.01 0.9253 0.6161 0.0251 0.0135 0.0131 0.0206 0.5835

0.001 0.7846 0.3489 0.0036 0.0019 0.0016 0.0008 0.3159

AR(12) process

0.05 0.0498 0.0862 0.0634 0.0545 0.0527 0.2819 0.1194

0.01 0.0100 0.0217 0.0143 0.0122 0.0106 0.0249 0.0321

0.001 0.0014 0.0030 0.0011 0.0020 0.0009 0.0008 0.0031

Simulation results

Table 4 shows the estimated rejection rates of the diag-
nostics. The Monte Carlo standard deviations of the rejec-
tion rates are 2.18 X 1072, 9.95 X 107, and 3.16 X 10~*
for the 0.05, 0.01, and 0.001 « levels, respectively. The
0-0 plots of P values do not reveal any behavior not
captured in Table 4 and hence are omitted.

Comparisons of the autocorrelation diagnostics

The white noise results show that estimated Type I error
rates are close to nominal. Under AR(1) noise processes, as
expected, the percentage of rejection increases as the cor-
relation coefficient increases for both test statistics, except
for one case (p = 0.1 for CP). Furthermore, the percentages

of rejection are larger for DW statistic than that for cumu-
lative periodogram test, which is consistent with the opti-
mality of the DW statistic within the class of AR(1) noise.
However, the cumulative periodogram test is superior to the
DW test for detecting high-order autoregressive processes,
as indicated in last rows of Table 4.

Performance of other diagnostics

The other purpose of the simulation study is to examine
the specificity of the statistics under white noise and differ-
ent error processes. Under different correlation structures,
the results of SW statistic for normality are similar and most
of them are within two standard deviations of the nominal «
levels.

For the Cook—Weisberg homogeneous variance test, un-
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a. Cook-Weisberg Global (CW-G) b. Shapiro-Wilk (SW)
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Fig. 3. Characterization of spiral artifact and identification of a problem scan. Model summaries reveal a distinct spiral pattern, here shown in the diagnostics
for homogeneous varian