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Abstract

The goal of this work is to establish the validity of neuroimaging models and inferences through diagnosis and exploratory data analysis.
While model diagnosis and exploration are integral parts of any statistical modeling enterprise, these aspects have been mostly neglected
in functional neuroimaging. We present methods that make diagnosis and exploration of neuroimaging data feasible. We use three- and
one-dimensional summaries that characterize the model fit and the four-dimensional residuals. The statistical tools are diagnostic summary
statistics with tractable null distributions and the dynamic graphical tools which allow the exploration of multiple summaries in both spatial
and temporal/interscan aspects, with the ability to quickly jump to spatiotemporal detail. We apply our methods to a fMRI data set,
demonstrating their ability to localize subtle artifacts and to discover systematic experimental variation not captured by the model.
© 2003 Elsevier Science (USA). All rights reserved.
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Introduction and motivation

Neuroimaging analyses proceed by localizing brain re-
gions exhibiting experimental variation. A PET or fMRI
experiment yields a sequence of large three-dimensional
images of the subject’s brain, each containing as many as
100,000 volume elements or voxels. The typical analysis
strategy is marginal or “massively univariate” (Holmes,
1994), where data for each voxel are independently fit with
the same model (Friston et al., 1995). Images of test statis-
tics are used to make inference on the presence of an effect
at each voxel.

The main purpose of this work is to establish the validity
of inferences in neuroimaging through diagnosis of model
assumptions. Hypothesis tests and P values depend on as-
sumptions on the data, and inferences should not be trusted
unless assumptions are checked. Diagnosis is usually done
by the graphical analysis of residuals (Neter et al., 1996;
Draper and Smith, 1998). For example, one standard tool is

a scatter plot of residuals versus fitted values, useful for
diagnosing nonconstant variance, curvature, and outliers.
This sort of graphical analysis is not practical since it is not
possible to evaluate 100,000 plots.

The other purpose of this work is to characterize signal
and artifacts through exploratory data analysis (EDA;
Tukey, 1977). EDA is an important step in any statistical
analysis, as it familiarizes the analyst with form of the
expected experimental variation, the presence of unex-
pected systematic variation, and the character of random
variation. As with model diagnosis, traditional EDA tools
are graphical and cannot be applied voxel-by-voxel exhaus-
tively. Fortunately EDA can also be accomplished by ex-
ploring the fit and the residuals (Hoaglin et al., 1983). A
model partitions data as the sum “Data � Fit � Residuals,”
and in neuroimaging data the fit and residuals are individ-
ually more amenable to exploration than the full data. The
fit is parameterized by the user and is readily interpretable,
while the residuals are homogeneous and unstructured if the
model fits. Interesting features in the residuals can be found
by use of statistics sensitive to structure or inhomogeneity;
for example, something as simple as outlier counts per scan
can quickly identify interesting scans. Diagnosis and EDA
are enmeshed: Diagnosis takes the form of exploration of
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diagnostic statistics, and exploration of residuals serves to
understand problems identified by diagnosis.

In this work we propose a collection of tools and explicit
procedures to check model assumptions and to explore fit
and residuals. The two key aspects of our work are (1)
images and one-dimensional summaries that characterize fit
and residuals and (2) dynamic visualization tools to explore
these summaries and to efficiently identify spatiotemporal
regions (or voxels and scans) of interest.

We use the term “model summaries” to refer to images
that assess fit or residuals at each voxel, and “scan summa-
ries” to refer to time series (fMRI) or one-dimensional (1-D)
vectors (PET, etc.) that assess fit or residuals over space. For
model summaries, we use both images of linear model
parameters and images of diagnostic statistics. For example,
we assess linear model assumptions like normality, ho-
moscedasticity (homogeneous variance), and independence
of errors with scalar diagnostic statistics; to view these
diverse measures on a common scale, we create images of
�log10 P values. For scan summaries, we use measures
which describe model fit and residuals over an image, as
well as preprocessing parameters. For example, global in-
tensity and outlier count per image both can capture tran-
sient acquisition problems, and in fMRI, head motion esti-
mates are useful for finding scans with motion artifacts.

The dynamic visualization tools are used for simulta-
neously exploring multiple model and scan summaries and
for quickly jumping from these summary margins to the full
raw or residual data. We use linked orthogonal viewers to
explore the images of model summaries, and parallel plots
with linked cursors to study of plots of scan summaries.
From a model summary image the model detail for a spe-
cific voxel can be brought up, including plots of the raw
data, fitted model, residuals, and traditional diagnostic plots.
From a plot of scan summaries the scan detail for a specific
image can be displayed, consisting of images of studentized
re-
siduals. These tools have been implemented as statistical
parametric mapping diagnosis (SPMd, http://www.sph.
umich.edu/�nichols/SPMd), a toolbox for SPM (http://
www.fil.ion.ucl.ac.uk/spm).

In this article we assume independent errors at each
voxel. This assumption is suitable for data from PET,
SPECT, VBM (Ashburner and Friston, 2000), or simple
second-level fMRI models (Holmes and Friston, 1999) and
for single-subject fMRI models after decorrelation or whit-
ening. Our methods are also appropriate for fMRI covari-
ance model building: Since the appropriate model for the
signal must be found before fMRI noise can be modeled,
our methods can be applied with independence regarded as
a “working” autocorrelation model. Also, our autocorrela-
tion diagnostics will capture the form and spatial heteroge-
neity of autocorrelation, allowing the exploration of tempo-
ral dependency before it is modeled.

There has been little previous work in neuroimaging
model diagnosis (Razavi et al., 2001; Nichols and Luo,

2001). In EDA there are many data-driven tools that have
found use in fMRI, including clustering (Goutte et al., 1999;
Moser et al., 1999), independent components analysis (ICA
software can be found, for example, at http://www.fmrib.
ox.uk/fsl/melodic) (McKeown et al., 1998), and principal
components analysis (PCA software can be found, for ex-
ample, at http://www.madic.org/download) (Kherif et al.,
2002). Our work differs from these EDA tools in that we
individually explore fit and residuals, instead of raw data,
and that we support our EDA with statistical summaries and
P values to make inferences on the magnitude of discovered
patterns (relative to a putative model).

In the next section we introduce these summaries and
give specific strategies for model diagnosis. In the subse-
quent section we report on simulation studies that investi-
gate the performance of the diagnostic summaries with
respect to different correlation conditions. Finally, we dem-
onstrate our tools on a fMRI data set.

Methods

Consider a general linear model fit at each voxel. For a
given voxel we have

Y � X� � �,

where Y is a N-vector of responses, X is a N � p matrix of
p predictor variables, � is a p-vector of unknown parame-
ters, and � is a N-vector of unknown, random errors. This
general form captures almost all used models, including
ANOVA, t test, and complicated fMRI models; the predic-
tors may also include variables accounting the global signal
or, in fMRI, drift and the phase of the hemodynamic re-
sponse.

To make inferences at each voxel we must assume that �
is a vector of normal random variables with expectation 0
and variance–covariance matrix �2V. In this work we as-
sume that V � I, which is appropriate for PET, SPECT,
MEG, VBM, or long-TR fMRI data. It is also appropriate
for any fMRI data when Y and X have been whitened based
on an estimated autocorrelation structure (Burock and Dale,
2000; Woolrich et al., 2001).

To make inferences corrected for multiple testing prob-
lem, additional assumptions may be needed. Gaussian ran-
dom field theory methods have several assumptions (Peters-
son et al., 1999) and a thorough assessment of them is
beyond the scope of this article. Briefly, the essential re-
quirements are univariate normality and sufficient smooth-
ness. Normality is easy to check with the tools below, and
the smoothness assumption requires the estimated FWHM
smoothness to be at least three times the voxel size. For
cluster size tests the other key assumption is stationary noise
covariance, which is addressed elsewhere (Hayasaka and
Nichols, manuscript in preparation).

The least squares estimator of � is �̂ � (X�X)�1X�Y. A
contrast vector c is a length-p row vector defining an effect
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of interest, or contrast, c�̂. Central to exploration and diag-
nosis are the residuals

e � Y � Ŷ � Y � X�̂,

where Ŷ � X�̂ are the fitted values. Note that even when the
errors are homogeneous and independent, the residuals are
heteroscedastic and dependent, as per Cov(e) � (I � H)�2,
where H � X(X�X)�1X�. To visualize residuals with ho-
mogeneous variance we use studentized residuals, ri �
ei/�diag(I � H)�̂2. When the dependence of the residuals
is problematic we use Best Linear Unbiased residuals with
a Scalar (diagonal) covariance matrix or BLUS residuals
(Theil, 1971). BLUS residuals are unbiased in the sense that
their expectation is zero and they are best in that their
distance from the true errors is minimized in expectation.

After model fitting and calculating residuals we can
compute the diagnostic statistics and summary measures.
The two main components of our work are the model and
scan summaries of the data and the interactive visualization
tools to explore those summaries.

Model summaries

Our model summaries are images of model parameters,
to represent fit, and residual summaries, to assess lack-of-fit
and model assumptions (see Table 1). To provide a consis-
tent metric for visualizing the diagnostic measures we create
images of �log10 P values.

Exploratory summaries
Contrasts and statistic images. We prefer images of signal
that are maximally interpretable, and hence use percent
change contrast images in addition to t images. Note that
while t images are scale-invariant and unitless, a contrast
estimate c�̂ has units determined by the predictors and the
contrast vector, and hence a linear model with interpretable
units is required for c�̂/� � 100% to be percent change (see
Appendix A).

We use F images to summarize nonscalar effects, such
as a subject/block effect or a hemodynamic response pa-

rameterized with a finite impulse response model. For an
anatomical reference we create a grand mean image; while
other high resolution images may be available, there are
often misalignment problems owing to head motion or sus-
ceptibility artifacts.

Standard deviation and percent change threshold. While
residual standard deviation is a key summary measure, it
lacks concrete units that, say, a contrast image has (response
magnitude, all other effects hold constant). To increase
interpretability, we characterize residual uncertainty with
the (1 � �)% confidence margin of error for an effect of
interest. The margin of error is the half-width of a (1 � �)%
confidence interval (either corrected or uncorrected). If an
effect is expressed in units of percent change, we call this
quantity the percent change threshold (PCT), as it is the
minimum percent change needed to reach level � signifi-
cance.

Another reason to use PCT is that it intuitively expresses
the impact of standard deviation on power. For example, in
a fMRI data set, say that a region with a PCT of 10% is
found; the immediate interpretation is that no fMRI signal
will be detected in that region, since BOLD signal change
rarely exceeds 5% (for 1.5 T, Moonen and Bandettini, 2000)
(see http://www.sph.umich.edu/�nichols/PCT for more de-
tail). Of course, collecting more data or more subjects into
a fixed effects analysis will reduce PCT.

Diagnostic summaries
From a detailed review the linear model diagnostics

literature we selected the most appropriate measures for
neuroimaging data (Table 1). The key diagnostic statistics
are the Cook–Weisberg score test for homoscedasticity,
Shapiro–Wilk test for normality, and Durbin–Watson sta-
tistic and cumulative periodogram test with BLUS residuals
for independence. (Raw fMRI residuals have no energy in
low frequencies due to drift modeling, causing the cumula-
tive periodogram tests to falsely reject; the use of BLUS
residuals corrects this.) We also use an image of outlier
counts per voxel. For detailed definition of the statistics,

Table 1
Model summaries

Statistic Assesses Null Distn Reference

Contrast estimates Signal ta Appendix A
Standard deviation/PCTb Artifacts See text
Durbin–Watson Cor(�i, �i � 1) � 0 Beta Durbin and Watson (1950, 1951)
Cumulative periodogram with BLUS residuals Var(�) � �2I Uniform Diggle (1990), Schlittgen (1989), Smirnov (1948), Stephens

(1970), Theil (1971)
Cook–Weisberg score test Var(�i) � �2 	2 Casella (2001), Cook and Weisberg (1983)
Shapiro–Wilk Normality Normalc Royston (1982), Shapiro et al. (1968), Stephens (1974)
Outlier count Artifacts Binomial Neter et al. (1996), Ryan (1997)

a After standardization.
b Percent change threshold.
c After transformation.
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their distribution under a null hypothesis of model fit, and
how to assess them, please refer to Luo and Nichols (2002)
and respective references.

Scan summaries

Our scan summaries are vectors where each element
assesses a single image (see Table 2). Since we do not have
an explicit spatial model to evaluate, our scan summaries
use more ad hoc measures. We use the experimental pre-
dictors, outlier count per scan, global signal, and some
image preprocessing parameters such as registration shift
and rotation movement parameters. These measures capture
motion, physiological, scanner artifacts or possible con-
founding variables; for multisubject studies they may iden-
tify anomalous subjects. While inference is not feasible on
scan summaries, we do compute reference values under the
null hypothesis when possible. For example, the expected
outlier count is easy to compute as the number of voxels
times the Gaussian tail area of the outlier cutoffs.

Diagnosis strategies

A dozen summary images and plots are an improvement
over looking at every diagnostic plot and residual image, but
these summary measures are of limited use if just examined
one-by-one and not linked to the full data. Hence we use a
dynamic graphical tool to simultaneously view several sum-
maries, linked to residual plots and images. Specifically we
use four viewers (Fig. 1) to efficiently explore the summa-
ries and, as guided by the summaries, the fit and residuals.

It is not immediately clear, however, in what order these
summaries should be examined, how the tools should be
used with the summaries, and how the results of investiga-
tions should be applied to the final analysis of the data. In
this section we give an outline of strategies to simulta-
neously (1) check assumptions, (2) explore expected and
unexpected variability, and (3) address problems found (see
Table 3). In short, we move from summaries to detail and
perform exploration and diagnosis of noise before explora-
tion of signal.

Step 1: explore plots of scan summaries
We use parallel plots of scan summaries to find scans

affected by artifacts and acquisition problems (Fig. 1a). We
first check for systemic problems. For example, whether the

global signal is related to experimental effects or if there is
excessive movement. Second, we check for transient prob-
lems, like the jumps or spikes in the global signal, the
outlier count per scan, and the motion parameters. Usually,
these jumps correspond to head movements and acquisition
artifacts. Third, we check the relationships between differ-
ent scan summaries, for instance, whether movement jumps
and outlier spikes coincide or if global spikes coincide with
outliers or movements. From this information, we note
which scans are possibly corrupted or may be influential to
the data analysis. The origin of the spikes can be investi-
gated in detail in Step 4.

Step 2: explore images of model summaries
Model summaries are displayed next with linked orthog-

onal slice viewers (Fig. 1b) to do both diagnosis and explo-
ration. In the diagnostic model summaries we pay special
attention to regions with both significant diagnostic statis-
tics and anticipated experimental effects.

For exploratory purposes we search images of signal
and noise, focusing on the noise first, principally with a
PCT image. We window the PCT image such that the
modal PCT value is half the maximal intensity (see Ap-
pendix B); this gives middle gray the interpretation of
typical sensitivity and white that of less than one-half
typical sensitivity. Regions with large PCT are noted as
possible sites of Type II errors. We next check t or F
images of nuisance effects, such as drift; with use of the
model detail, interesting features in the image of drift
magnitude can often lead to discovery of artifacts. Finally
we explore the expected signal, as measured with per-
centage change, t or F images. We localize interesting
activations and note any broad patterns. In particular,
extensive positive or negative regions indicate a subtle
signal (or artifact) that would not be evident in a thresh-
olded statistic image. For any notable region discovered,
by diagnosis or exploration, we check its model detail.

Step 3: explore model detail
For a given voxel we examine the model detail plots

(Fig. 1c), doing so interactively with images of model sum-
maries to characterize the sources of the significant exper-
imental or diagnostic statistics. From the plots of data with
fit and residuals, we can not only assess the goodness-of-fit

Table 2
Scan summaries

Summary Definition Function

Experimental predictors Predictors from the design matrix Provide reference to other plots.
Global signal Average of intracerebral voxels Assess possible global confound, bad scans
Scan outlier count Sum of outliers over each scan Detect transient acquisition problems, bad subjects
Image preprocessing parameters Registration shift and rotation movement parameters Capture aspects of artifacts or anomalies
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of the model to the intrinsic signal (important for fMRI
BOLD data), but also identify unmodeled signals, that is,
any systematic variation not captured by the model. Also,
from the plot of residuals, we note possible outlier scans.
We reference these with the outlier count per scan and
characterize their spatial extent with the scan detail. Fur-

thermore, we use the diagnostic residual plots to check the
specificity of the significant diagnostic statistics. For exam-
ple, if a voxel is large in the image of Cook–Weisberg
homogeneous variance statistic, we use a residual plot ver-
sus predictor variable to verify that system heteroscedastic-
ity and not a single outlier is responsible.

Fig. 1. We use a dynamic graphical tool to efficiently navigate through the various diagnostic measures. We use plots of scan summaries (a) and images of
model summaries (b) to find individual voxels and scans of interest; a single voxel is studied with plots of model detail (c) and a series of residual images
are viewed in scan detail (d).
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Step 4: explore scan detail
As guided by the model detail or plots of scan summa-

ries, we use a sequence of studentized residual images (Fig.
1d) to spatially localize problems identified in previous
steps. Fixed and spinning maximum intensity projection
(MIP) images are helpful to give an overall indication of the
problems. When examining the series of residual images,
we note the spatial and temporal/interscan extent of the
problem. For example, in fMRI, an artifact confined to a
single slice in a single volume suggests shot noise, while an
extended artifact may be due to physiological sources or
model deficiencies.

Step 5: remediation
Several approaches can be applied to address problems

identified by previous steps. For the problem scans discov-
ered in Step 1, we may possibly remove them from the
analysis. We are very judicious on removing scans; we only
discard an observation if we are convinced that there are

deterministic measurement or execution errors (Barnett and
Lewis, 1994), like gross movements or spike noise. Another
approach to outliers is Windzorization (Wilcox, 1998), the
shrinkage of outliers to the outlier threshold. In our expe-
rience, outliers indicate corrupted data, and we prefer to
eliminate such data rather than retaining them in modified
form. Corresponding scans and design matrix rows must be
deleted together; the design matrix should then be checked
that it is not exactly nor nearly rank deficient. In addition to
omitting scans, we may find problem voxels in Step 2.
These voxels can simply noted and ignored or explicitly
masked from the analysis.

The other approach is to modify the model. For example,
if we find incorrectly modeled experimental variation from
the model detail, we may consider adding other variables to
the model to improve the fit. In contrast, if the global signal
is found to be significantly correlated with the experimental
paradigm, it may be preferable to omit this confound as a
covariate entirely (Aguirre et al., 1998).

Fig. 2. Plots of scan summaries for the full 129-scan data set. Plots show, from top to bottom, experimental predictor, global signal, outlier count, translational
head movements, and rotational head movements.
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After removing possible outliers and/or modifying the
model, we refit the model and repeat the above processes
again until we are satisfied that experimental inferences are
valid and that gross artifactual variation has been omitted or
at least characterized.

Step 6: resolution
After all the analyses and diagnoses are done, we sum-

marize the results of diagnosis and exploration. We declare
each significant region as valid, questionable or artifactual.
A valid activation has assumptions clearly satisfied, while a
questionable region has some significant diagnostics but
exploration of the fit and residuals has shown the activation
to be believable. Artifactual activation is clearly due to
outliers or acquisition artifacts which could not be reme-
died. In brain volumes with no significant activation, it is
also important to report on regions with significant diagnos-
tic statistics. The source of these significant diagnostics may
be related to the unmodeled signal or artifactual variation
and may be the source of new neuroscientific hypotheses, a
new type of physiological signal, or simply problems for
physicists to solve.

Simulation studies

In this section we examine the performance of the model
summary diagnostic statistics using simulated data sets. All

of our model summary statistics have been well studied
under the null hypothesis of model fit (see respective ref-
erences), so extensive simulations under the null are not in
order. Extensive evaluations under alternatives, on the other
hand, are problematic because the space of the alternatives
is very large, consisting of all combinations of possible
types model lack of fit: autocorrelation, outliers, model
misspecification, heteroscedasticity, etc. Some evaluations
under alternatives can be found in the references (for ex-
ample, in Shapiro et al. (1968), they investigate the perfor-
mance of Shapiro–Wilk under alternative distributions and
different sample size and show that the Shapiro–Wilk test
exhibits sensitivity to nonnormality over a wide range of
alternative distributions.). Hence we only investigate the
alternative of greatest concern, that of autocorrelation. We
do this in part to demonstrate the sensitivity of our depen-
dency statistics (Durbin–Watson and cumulative perio-
dogram), but primarily to characterize the specificity of the
other measures under the violation of their independence
assumption.

Simulation methods

Time series data were simulated from an 84-observation
model, corresponding to a publicly available data set (http://
www.fil.ion.ucl.ac.uk/spm/data), single-subject epoch audi-
tory fMRI activation data; we used such a short-length time
series to characterize the small-sample limitations of our
diagnostic statistics. The simulated data were composed of
the sum of two series: One was the fixed response effect
including nine covariates corresponding to intercept, a ex-
perimental condition, and seven drift terms; the other series
was the random error, which was either white noise, a
first-order autoregressive processes with different degree of
correlation (0.1–0.5), or an order-12 autoregressive process.
The parameters of these covariates and the 12 AR parame-
ters were obtained from a real data set. A linear regression
model was fit to the simulated data and residuals were
created; we computed six diagnostic statistics, Durbin–Wat-
son (DW), cumulative periodogram (CP) with BLUS resid-
uals (Theil, 1971), Shapiro–Wilk (SW), outliers, and two
Cook–Weisberg score tests, with respect to global signal
(CW-G) and predicted values (CW-P). We also calculated a
cumulative periodogram with ordinary residuals (CP*), in-
stead of BLUS residuals.

For each type of random noise structure, we created
10,000 realizations; for each realization the diagnostic sta-
tistics and corresponding P values were calculated. The
performance of the statistics were measured with two cri-
teria. First, the percentages of rejection under null hypoth-
esis at three rejection levels (0.05, 0.01, and 0.001) under
various correlation conditions are computed. Second, Q–Q
plots of the logarithm of the P values were created and
helpful to examine the behavior over a range of �’s.

Table 3
Diagnosis strategies

Step Action

1. Explore scan summaries Check for systemic problems.
Check for transient problems.
Check for relationships between
summaries.

2. Explore model summaries Check for violations of assumptions.
Explore noise, nuisance variability.
Explore experimental signal.

3. Explore model detail Check for unmodeled, systematic
variation.
Note possible problem scans.
Check specificity of significant diagnostic
statistics.

4. Explore scan detail Check temporal/inter-scan extent of
problem.
Check spatial extent of problem.

5. Remediation Remove problem scans.
Modify model.
Mask out problem regions.

6. Resolution Declare significant activation valid, or
Declare significant activation as
questionable.
Describe unmodeled and artifactual
variation.
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Simulation results

Table 4 shows the estimated rejection rates of the diag-
nostics. The Monte Carlo standard deviations of the rejec-
tion rates are 2.18 � 10�3, 9.95 � 10�4, and 3.16 � 10�4

for the 0.05, 0.01, and 0.001 � levels, respectively. The
Q–Q plots of P values do not reveal any behavior not
captured in Table 4 and hence are omitted.

Comparisons of the autocorrelation diagnostics
The white noise results show that estimated Type I error

rates are close to nominal. Under AR(1) noise processes, as
expected, the percentage of rejection increases as the cor-
relation coefficient increases for both test statistics, except
for one case (
 � 0.1 for CP). Furthermore, the percentages

of rejection are larger for DW statistic than that for cumu-
lative periodogram test, which is consistent with the opti-
mality of the DW statistic within the class of AR(1) noise.
However, the cumulative periodogram test is superior to the
DW test for detecting high-order autoregressive processes,
as indicated in last rows of Table 4.

Performance of other diagnostics
The other purpose of the simulation study is to examine

the specificity of the statistics under white noise and differ-
ent error processes. Under different correlation structures,
the results of SW statistic for normality are similar and most
of them are within two standard deviations of the nominal �
levels.

For the Cook–Weisberg homogeneous variance test, un-

Table 4
Simulation results

� Level DW CP CW-G CW-P SW Outlier CP*

White noise

0.05 0.0614 0.0644 0.0562 0.0508 0.0509 0.2876 0.1259
0.01 0.0146 0.0133 0.0100 0.0114 0.0104 0.0243 0.0373
0.001 0.0013 0.0016 0.0009 0.0016 0.0019 0.0005 0.0043

AR(1) process: 
 � 0.1

0.05 0.2222 0.0535 0.0557 0.0524 0.0495 0.2820 0.0540
0.01 0.0763 0.0116 0.0127 0.0113 0.0112 0.0255 0.0100
0.001 0.0151 0.0006 0.0017 0.0013 0.0012 0.0009 0.0005

AR(1) process: 
 � 0.2

0.05 0.5002 0.1466 0.0583 0.0532 0.0512 0.2778 0.1072
0.01 0.2588 0.0475 0.0138 0.0107 0.0107 0.0243 0.0311
0.001 0.0811 0.0082 0.0015 0.0010 0.0008 0.0011 0.0044

AR(1) process: 
 � 0.3

0.05 0.7745 0.3473 0.0669 0.0588 0.0506 0.2770 0.2980
0.01 0.5345 0.1531 0.0166 0.0130 0.0105 0.0244 0.1369
0.001 0.2651 0.0391 0.0026 0.0016 0.0007 0.0009 0.0356

AR(1) process: 
 � 0.4

0.05 0.9199 0.6090 0.0748 0.0605 0.0512 0.2769 0.5577
0.01 0.7905 0.3740 0.0162 0.0123 0.0113 0.0252 0.3236
0.001 0.5436 0.1507 0.0033 0.0020 0.0015 0.0006 0.1285

AR(1) process: 
 � 0.5

0.05 0.9782 0.8114 0.0862 0.0606 0.0558 0.2610 0.7813
0.01 0.9253 0.6161 0.0251 0.0135 0.0131 0.0206 0.5835
0.001 0.7846 0.3489 0.0036 0.0019 0.0016 0.0008 0.3159

AR(12) process

0.05 0.0498 0.0862 0.0634 0.0545 0.0527 0.2819 0.1194
0.01 0.0100 0.0217 0.0143 0.0122 0.0106 0.0249 0.0321
0.001 0.0014 0.0030 0.0011 0.0020 0.0009 0.0008 0.0031
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Fig. 3. Characterization of spiral artifact and identification of a problem scan. Model summaries reveal a distinct spiral pattern, here shown in the diagnostics
for homogeneous variance with respect to global signal (a, CW-G), and normality (b, SW). Note that the CW-G detects problems across the volume, while
SW only detected artifacts in one plane. Model detail of the fit and studentized residuals (c) for the indicated voxel shows a prominent outlier at scan 105.
Note that diagnostic statistic images in this and other figures have units of �log10 P values for consistent visualization.
Fig. 4. Scan detail around scan 105; the studentized residual images for scans 104–106. The increased intensity of scan 105’s residuals indicates a decreased
intensity in the data. The spiral pattern in this scan also corresponds to that found in the CW-G and SW images (see Fig. 3).
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der the white noise, the rejection rates are nominal for all �
levels. For the AR(1) noise processes, both CW-G and
CW-P tend to give estimated Type I errors that are higher
than the nominal � level. As the AR(1) process correlation
increases, the CW-G shows increasing Type I error at the
three nominal � levels, while CW-P is better, not showing
appreciable anticonservativeness until 
 � 0.3. Under the
AR(12) process, the Type I errors are all slightly greater
than the � levels.

Due to the discreteness of the outlier count, the rejection
rates are far from the nominal � � 0.05 and � � 0.01.
However, comparison of the rejection rates across noise
processes shows that the rejection rates are quite stable,

suggesting that the outlier count is quite resilient with re-
spect to autocorrelation.

The rejection rates for CP* under the white noise shows
the problem with using ordinary residuals with the cumu-
lative periodogram test: For all three � levels, the CP*
rejection rates are about twice the CP rates. Moreover, for
almost all dependent noise simulations, the CP rejection
rates exceeded the CP* rates. Hence these results suggest
that the cumulative periodogram test using BLUS residual is
both more specific and more sensitive than using ordinary
residuals.

In summary, these simulation results argue that our au-
tocorrelation diagnostics are specific and sensitive, that our

Fig. 5. Scan summary of the outlier count without global scaling. All other scan summaries are the same as before (see Fig. 2).
Fig. 6. Acquisition artifacts reveals in the studentized residuals (scan detail). These scans are identified as having large numbers of outliers.
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normality and outlier statistics retain specificity under au-
tocorrelation. The Cook–Weisberg score tests for heterosce-
dasticity show some excess false positives when autocorre-
lation is strong. We conclude that if a CW statistic is large
when strong autocorrelation is detected, an appropriate re-
sidual plot should be checked to confirm the presence het-
erogeneous variance.

Real data analysis

In this section, we demonstrate our methods and their
ability to localize subtle artifacts and to understand their
causes. We use data from a study of new motion correction
methods, where the subject was asked to speak aloud.

Experiment

The study employed a block design of a word generation
task. The stimulation paradigm consisted of six cycles of
rest/active, with a final rest condition; there were 20 scans
per cycle. During the active condition, the subject was asked
to generate a word that starts with each letter of the alphabet
starting from “A.” Functional data were acquired on a 1.5-T
GE Signa magnet. A sequence of 130 EPI images was
collected with a TR of 3000 ms and a TE of 40 ms. Images
consisted of 128 � 128 � 20 voxels, with voxel dimensions
of 1.88 � 1.88 � 7 mm. The first scan was discarded to
allow for T1 stabilization.

Images were corrected for slice timing effects and sub-
ject head motion using SPM99 (http://www.fil.ion.ucl.
ac.uk/spm). While some recommend against the use of the
global signal (R. Henson, personal communication), we
used the conventional scaling approach. After global scal-
ing, the data at each each voxel were fitted with a general
linear model; covariates consisted of the convolution of
design box-cars with a canonical hemodynamic response
function and a six-element discrete cosine transform basis
set to account for drift. Summary statistics described above
were computed for diagnosis, including a t image based on
rest and activation contrast and a grand mean image for
comparison and localization. We evaluated the data and
model as outlined previously.

Results

We start with scan and model summaries and then ex-
plore model and scan detail as guided by the summaries.
Inspection of the scan summaries reveals no systemic prob-
lems (Fig. 2), and in particular there is no significant cor-
relation between the global signal and experimental condi-
tion (P � 0.7181). The global signal has a general
downward trend and has several negative dips. The outlier
count has several spikes, scan 105 in particular having over
70% outliers (0.03% is nominal). Significantly, the dips in
the global signal correspond to spikes in the outlier count.

The movement parameters display some transient move-
ments, but these do not correspond with outlier or global
events; the magnitude of estimated movement is modest.

Of the model summaries, the homoscedasticity Cook–
Weisberg score tests (CW) and the normality Shapiro–Wilk
(SW) test are the most notable, with a dramatic spiral
pattern (Figs. 3a and b). This pattern is limited to one slice
on the CW score test computed with respect to the experi-
mental predictor (CW-E) and the SW test, but extends over
the whole brain for the CW score test computed with respect
to the global signal (CW-G). We examine the model detail
for a voxel (�11, �30, �20) in the slice with this artifact
(Fig. 3c) and find that the data are nominal except for an
outlier at scan 105. This leads us to view the scan detail
about scan 105 (Fig. 4). There is an global hyperintensity
exhibited in the residuals at scan 105, with the spiral artifact
clearly evident.

Having identified this corrupted observation, one course
of action would be to remove scan 105. However, we are
more concerned of this as an artifact of global normaliza-
tion. Standardizing by global intensity presumes that per-
turbations captured by the global are common to all voxels.
However, the large residuals all over scan 105 and local
spiral pattern are consistent with a single-plane hypointen-
sity artifact: A local reduction in T2* magnitude causes a
dip in global intensity, which results in the whole volume
being overscaled. Hence instead of omitting a scan, we alter
the model by removing the global scaling.

Global scaling eliminated
The scan summaries are the same after removing the

global scaling, except for the outlier count (Fig. 5). The
outlier plot is improved, but many scans have considerably
more than the expected outlier rate of 0.03% or 145 per
scan. Checking the scan detail (studentized residuals) for
scan 105 reveals that the volume as a whole is nominal,
while one plane is, as before, corrupted. In fact, the scan
detail for most outlier-spike images shows similar acquisi-
tion artifacts either confined to a single plane or to every
other plane (see Fig. 6 for examples.) In general these
dramatic artifacts are not evident by inspection of the raw
images. However, examination of temporally differenced
raw images does reveal similar patterns, implying that these
patterns are not attributable to the particular model we use.

The model summaries still reveal problems. The DW and
CP images detect regions with periodic variation corre-
sponding to about one-quarter cycle off from the experi-
mental paradigm (Fig. 7). The regions exhibiting this tem-
poral pattern are principally in the primary visual cortex and
in the cerebellum, though this pattern is also found through-
out the posterior surface of the brain and even in third
ventricle. Hence we note this temporal pattern as artifactual
and probably vocalization-related.

The CW-E image has a pronounced hyperintensity in the
frontal pole (Fig. 8a). Exploration of model detail localizes
the heterogeneous variance to the last epoch (Fig. 8c), and
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residuals for one of these scans (109) reveals a pattern of
signal loss also in the frontal pole (Fig. 6d).

The SW image identifies bilateral regions as non-normal
(Fig. 9a). The diagnostic plot (Fig. 9b) and fit and residual
plots in the model detail viewer (Fig. 9c) reveal this as a
problem of negative outliers. The outliers tend to fall at the
end of each epoch and are perhaps related to swallowing.

The artifacts identified in the CW-E and SW images are
troubling and we want to remedy these problems by remov-
ing corrupted scans. One possibility would be to investigate
the scan detail of each outlier spike and to establish whether
an artifact is responsible; scans with artifacts would be
removed. However, a less labor-intensive solution is to
simply remove scans with large numbers of outliers. We
remove all scans with more than four times the number of
outliers expected under the null hypothesis (1.1% or 530
voxels) and those belonging to the last epoch (due to the
problem in the frontal pole, see Fig. 8c). The 34 scans that
meet this criterion include almost all of the artifactual scans
detected above.

Corrupted scans removed
The 95-scan analysis has much improved diagnostics.

The outlier plots are reduced in magnitude and only have
one notable spike. Maximum intensity projections of the
model summaries before and after problem scans are re-
moved are shown in Fig. 10. The CW and SW images are
now mostly uniform, while the DW image and CP image
(not shown) exhibit hyperintensities only in vascular and
edge voxels. In fact, based on a 0.05-FDR-thresholded im-
ages (not shown), the autocorrelation is only significant in
gray matter voxels. This suggests a physiological source of
autocorrelation that should be addressed in the final mod-
eling of this data set.

The problems in the frontal pole and bilateral frontal
regions are much reduced. Inspection of model detail at the
few hyperintensities in the SW image (Fig. 9b) identifies
about six additional scans with artifacts. As none of these
artifacts are as severe as those previously identified, and
since any removal of outliers invariably leads to creation of
new outliers, we chose not to remove any other scans.

With a largely artifact-free data set, we continue our
exploration of the model summaries of nuisance variability
and noise. The F image of the drift basis coefficients reveals
no unusual patterns (not shown) and mainly identifies slow
monotonic drifts at the posterior surface of the brain. The
PCT image has a mode of 0.47% (for � � 0.05 FDR-
corrected, or a mode of 0.30% for � � 0.05 uncorrected),
meaning that in a typical voxel changes as small as 0.47%
can be detected. Of concern is the increased PCT in the
bilateral motor and left dorsal lateral frontal areas (Fig.
11a), the very regions of expected activation. Inspection of
model detail suggests that, while a few scans are affected by
acquisition artifacts, no problems are severe. Instead, we
note that voxels in these regions all exhibit experimental
variation that rises early relative to the model, by about

one-eighth of a cycle (Fig. 11c). This could be due to
experimental timing errors or simply poor fit of the canon-
ical hemodynamic response for this subject. Hence the in-
creased variability in these regions is likely due to model
misspecification.

We next examine images of model summaries of the
signal with percent change and t images. There are focal
changes in the bilateral sensory–motor cortices, bilateral
auditory cortices, and bilateral cerebellum and diffuse
changes in left prefrontal regions (Fig. 12). The signals are
of expected change magnitude, the local maxima ranging
between 3 and 5.5%. By examining the model detail for
each foci (not shown), we confirm that artifactual sources
are not responsible for the effects; however, for each voxel
examined the one-eighth-cycle phase error is evident (Fig.
11c). The spatial extent of voxels with this phase error is
consistent with the overlap between regions of activation
and regions of hypervariability in the PCT, suggesting that
lack of fit is responsible for the increased residual variabil-
ity.

Finally, there are broad patterns of positive and negative
changes about orbitofrontal regions (Fig. 12a). While this is
easily identified as susceptibility-related, it is a demonstra-
tion of the merit of examining unthresholded images of
estimated signal.

In summary, the application of our diagnostic tools finds
violation of the independence assumption, owing to physi-
ology and out-of-phase experimental variation, and viola-
tion of homoscedasticity assumption, owing largely to arti-
facts. We remedy these problems by eliminating global
scaling and removing scans with serious artifacts. The re-
sulting reduced data set is satisfactory, except for typical
fMRI autocorrelation in gray matter and vascular regions. In
regions of activation we find no extensive violations of
assumptions, aside from model misspecification owing to a
phase error in the predictor. The reduced dataset is now
ready for a final model fitting, in particular, with a model
that uses a shorter hemodynamic delay (or one that allows
for variable delay) and one that accounts for intrinsic tem-
poral autocorrelation.

There are several limitations and qualifications to this
demonstration. First, this analysis does not constitute a
study of global scaling. Rather we have demonstrated how
careful study of the data can lead to selecting an appropriate
model. Also, we do not advocate a routine deletion of scans
based on outlier counts. The origin of outlier spikes should
be explored and understood; we have only removed scans
when an obvious acquisition artifact is identified. Further,
removing scans is just one possible remediation, and we
could have instead Windzorized. Finally, we note that vo-
calization can create a confounding of signal and artifact
(Birn et al., 1998), a situation that is to be avoided and that
troubles the interpretation of this data even after thorough
diagnosis and exploration.
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Discussion

While it is straightforward to apply the general linear
model to neuroimaging data, and seemingly easy to make
inferences on activations, the validity of statistical inference
depends on model assumptions. One can have no confi-
dence about their inferences unless these assumptions have
been checked. Further, systematic exploration of the data is
essential to understand the form of expected and unexpected
variation. However, both diagnosis and exploration are for-
midable tasks when a single data set consists of 1,000
images and 100,000 voxels.

We have proposed methods for evaluating assumptions
on massively univariate linear models and exploring neuro-

imaging data. The key aspects are model and scan summa-
ries sensitive to anticipated effects and model violations,
and interactive visualization tools that allow efficient explo-
ration of the 3-D parameter images and 4-D residuals. We
have demonstrated how these tools can be used to rapidly
identify rare anomalies in over 107 elements of data.

Diagnostic tools have two important usages. First, the
diagnostic methods can be used to suggest appropriate re-
medial action to the analysis of the model. Second, they
may result in the recognition of important phenomena that
might otherwise be unnoticed. The study of our fMRI data
set illustrates both of these roles: On the first point, we
found it necessary to eliminate global scaling and a collec-
tion of bad scans; on the second, we found one-quarter-

Fig. 7. Out-of-phase variation found with autocorrelation model summaries. Diagnostics for both zero autocorrelation (a, DW) and white noise (CP, not
shown) indicate problems in posterior regions. The lag-1 residual plot (b) confirms the autocorrelation found by DW, and model detail (c) identifies the cause
of the dependence, a one-quarter-cycle out-of-phase signal.
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cycle out-of-phase variability distributed throughout the
brain and one-eighth-cycle out-of-phase activations in re-
gions of anticipated activation. Thus, we have improved the
quality of our model and learned about a shift in this subject’s
hemodynamic response, neither of which could have been
accomplished solely with inspection of thresholded t images.

While we only considered a single-subject fMRI exam-
ple in this work, these tools and statistical summaries are
equally relevant PET, VBM, and second-level fMRI. The
essential differences are the reduced power of diagnostic
statistics, owing to smaller sample size and a lessened con-
cern about autocorrelation.

The principal contributions of this work are both statis-
tical and computational–graphical. We have identified and
characterized diagnostic statistics relevant for linear mod-
eling of neuroimaging data, focusing in particular on impact
of autocorrelation. Computationally, we have specified and
created a system for the efficient exploration of massive
data sets. Using linked, dynamic viewers, all the various
summary measures can be rapidly compared and under-

stood. Finally, we have given practical recommendations on
how to diagnose and explore neuroimaging data sets.

The principal direction for future work is the exploration of
temporal dependence, models of spatial dependence, and mul-
tivariate exploration of the residuals. A temporal convariance
model is needed to decorrelate fMRI data; in future work we
will address how one selects such a model for temporal de-
pendence. Gaussian random field methods make assumptions
on the spatial dependence, and we are developing methods to
assess these assumptions, stationarity in particular. Finally, our
approach using spatial and temporal residual summaries may
miss extended spatiotemporal patterns. Methods such as PCA
or ICA applied to the studentized or BLUS residuals may
provide valuable tools for this purpose.

Conclusion

In this work, we have developed a general framework for
the diagnosis of linear models fit to fMRI data. Using model

Fig. 8. Transient artifacts found with homoscedasticity model summary. The diagnostic image for homogeneous variance with respect to the experimental
predictor (a, CW-E) has a hyperintensity in the frontal region. The residual versus predictor plot (b) shows this is due to a few outliers during an active
condition. The model detail (c) identifies the last epoch as the source of the problem. A residual image from this epoch, shown in Fig. 6d, shows signal loss
in the same frontal region.
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and scan summaries and dynamic linked viewers, we have
shown how to swiftly localize rare anomalies and artifacts
in large 4-D data sets.
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Appendix A

Percent change and interpretable linear models

This appendix shows how to create interpretable linear
models, from which it is easy to create percent change
contrast images. Neuroimaging linear models are tradition-

ally not constructed to yield maximally interpretable param-
eters. For example, the standard two-sample t test, imple-
mented with a zero–one design matrix and c � [�1 1],
yields a c� with half-magnitude units. Here we show how to
scale X and c such that c� has the same units as the data and
that c�/� � 100 has percent change units; if the data are
intensity normalized, c� can approximate percent change.

The two key requirements are that (1) each column, Xj

corresponding to an experimental effect represent a unit
change in the data and (2) contrasts have absolute sum of unity.
Condition 1 ensures that a unit change in �j corresponds to a
unit change in Ŷ, and condition 2 ensures that these units are
preserved. While condition 2 is easy to enforce in software,
condition 1 requires care while constructing predictors.

Categorical predictors will satisfy condition 1 when the
“off” to “on” difference is unity, such as coding dummy
variables with 0 and 1 (but not -1 and 1). In block-design
fMRI, this requires the that baseline-to-activation be scaled
to unity, and in event-related fMRI with isolated or equally
spaced events, the baseline to peak height can be scaled to

Fig. 9. Periodic artifacts found with the normality model summary. The normality diagnostic (a, SW) is mostly nominal, except in in bilateral frontal regions.
The Q–Q plot of one of these nonnormal voxels (b) shows that many negative outliers are responsible, and the model detail (c) shows these outliers are
regularly spaced with roughly the experimental periodicity.
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one. Jittered event-related fMRI predictors are more prob-
lematic since there is no unique baseline-to-peak range. As
a practical solution we recommend scaling to unity the
range or trimmed range (e.g., 5th to 95th percentile) of

predictor values. See the related technical report (http://
www.sph.umich.edu/�nichols/PCT) for more detail.

For c� to approximate c�/� � 100, � must be approx-
imately 100. When it is reasonable to approximate the

Fig. 10. Comparisons of maximum intensity projections of DW, CW-E, and SW in full data analysis (A) and in reduced data analysis (B). The images from
reduced data are much more uniform than those from the full data.
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Fig. 11. Results of exploring the PCT image. The standard deviation, as visualized with the minimum significant percent change (a, PCT), is much higher
in the bilateral motor and left dorsal lateral frontal areas. The model detail (c) suggests that the source of this inflated variance due to experimental signal
which is one-eighth of a cycle out of phase. This phase error induced some autocorrelation in the residuals (b) but not enough to stand out in either the DW
or CP image (not shown).
Fig. 12. Results of exploring percent change images of activation. (a) Bilateral, though mostly right cerebellum, and artifactual orbitofrontal changes; (b)
bilateral, though mostly right auditory cortex; (c) bilateral motor cortices and left dorsolateral prefrontal cortices.
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baseline (grand mean) image with a constant (e.g., in fMRI),
all data are scaled such that the baseline images’ “global”
intensity is 100. But we find that the usual global estimate,
the arithmetic mean of all intracerebral voxels, is unsatis-
factory. The mean is sensitive to hyperintensity outliers and
the segmentation of brain from nonbrain. If a simple inten-
sity threshold is used to segment brain and the threshold is
set too low, the global average can be far below typical
brain intensities. We propose that the mode is a more ac-
curate global measure than the mean, as the mode is very
robust with respect to brain threshold. In Appendix B we
give a method to estimate the intracerebral mode.

To summarize, we assert that models should be con-
structed to be as interpretable as possible. The rewards of
this endeavor are that, if the voxel grand means are around
100, the predictors have unit scaling, and the contrast vector
has an absolute sum of unity, then the contrast image will
have approximate interpretation of percent change. Ratioing
such a contrast image with a grand mean image will produce
percent change exactly.

Appendix B

Estimation of the intracerebral modal intensity

This appendix describes the estimation of the mode of
intracerebral voxel intensities. This method consists of es-
timating a brain–nonbrain threshold and then estimating the
mode of the distribution of brain voxel intensities. While
there is an extensive literature on mode estimation using
kernel density estimation (see, e.g., Scott, 1992), we simply
use a histogram estimate with appropriate bin widths for a
consistent estimator1 of the mode. Our approach uses no
topological operations on the image data and is easily coded
and quickly computed.

Estimating brain–nonbrain threshold with the antimode
We estimate a brain–nonbrain threshold using the distri-

bution of all voxel intensities. Our threshold is the location
of minimum density between the background and gray mat-
ter modes; call this the antimode. Let f(x) be the distribution
of intensities in the brain image. Hartigan (1977) shows that
a consistent estimator of the antimode is the location of the
maximally separated order statistic between modes. Since
we do not know the location of modes, we instead just
search over the whole density excluding the tails; the tails
must be excluded as the global minimum of f(x) will be
found there. A crude overestimate of the tails is sufficient,
since the antimode estimate will only be perturbed if we
include tails with less density than the antimode or exclude
the actual location of the antimode. We have found the 10th

and 90th percentiles to work on all images we have consid-
ered. Our threshold estimate is thus

T � �1

2
� x�k�1� � x�k�� : k � argmax

0.1n	i	0.9n

� x�i�1� � x�i��� ,

(1)

where n is the number of voxels in the image and x(k) is the
k-th order statistic. If k is not unique, we take an average of
the locations.

While this works well on continuous-valued image (e.g.,
a floating point mean image), it does not work with a
discrete-valued image (e.g., an integer T2* image). The
problem is that the distance between order statistics will be
0 or 1 except at the very extreme tails. Hence if the image
is discrete we then revert to a simpler histogram method.
We construct a histogram based on all nontail data (10th to
90th percentile) and use the location of the minimum bin as
the antimode estimate. To construct the histogram we use
the bin width rule for the mode (described below). We have
found that this serves as a robust estimate of a brain–
nonbrain threshold.

Whether through the inter-order-statistic distance or the

1 With more and more data, a consistent estimator converges to the true
value in probability.

Fig. 13. Our mode estimate compared to SPM99 and SPM2’s mean
estimate. Top plot shows the distribution of intensities of the baseline
image of the data set in this paper. The mean is determined by SPM, where
all voxels greater than one-eighth of mean image intensity are considered.
The bottom figure shows how the antimode is determined: the differences
of order statistics are plotted versus the order statistics; the location of the
greatest gap between order statistics is the estimate of the antimode.
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histogram approach, this antimode estimate is only used to
eliminate the lower mode of background voxels and hence
does not need to be highly accurate.

Estimating global brain intensity with the mode
We estimate the mode of the brain voxel intensities using

a type of histogram estimate for simplicity and computa-
tional efficiency. The optimal (and consistent) histogram
bin width for estimating the mode is order n1/5; we use bin
widths equal to 1.595 � IQRn�1/5 (Scott, 1992, p100),
where IQR is the interquartile range of the brain voxels.
While this rule is based on independent normal data, it has
performed quite well on many PET and fMRI data sets. The
mode estimate is the location of the maximal histogram bin.

While we do not argue that this mode estimate is optimal in
the sense of mean squared error, we have found it to be robust
and sufficiently accurate for the purposes of this work. In
particular, we have found it more accurate than the simple esti-
mator used in SPM (see Fig. 13). Matlab code for this method is
available at http://www.sph.umich.edu/�nichols/PCT.
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