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A neural mass model of spectral responses in electrophysiology
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We present a neural mass model of steady-state membrane potentials
measured with local field potentials or electroencephalography in the
frequency domain. This model is an extended version of previous
dynamic causal models for investigating event-related potentials in the
time-domain. In this paper, we augment the previous formulation with
parameters that mediate spike-rate adaptation and recurrent intrinsic
inhibitory connections. We then use linear systems analysis to show
how the model's spectral response changes with its neurophysiological
parameters. We demonstrate that much of the interesting behaviour
depends on the non-linearity which couples mean membrane potential
to mean spiking rate. This non-linearity is analogous, at the population
level, to the firing rate–input curves often used to characterize single-
cell responses. This function depends on the model's gain and
adaptation currents which, neurobiologically, are influenced by the
activity of modulatory neurotransmitters. The key contribution of this
paper is to show how neuromodulatory effects can be modelled by
adding adaptation currents to a simple phenomenological model of
EEG. Critically, we show that these effects are expressed in a
systematic way in the spectral density of EEG recordings. Inversion
of the model, given such non-invasive recordings, should allow one to
quantify pharmacologically induced changes in adaptation currents. In
short, this work establishes a forward or generative model of
electrophysiological recordings for psychopharmacological studies.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Neural mass models of cortical neurons offer valuable insight
into the generation of the electroencephalogram (EEG) and
underlying local field potentials (LFPs), (Wendling et al., 2000;
Lopes da Silva et al., 1976). One particular neural mass model,
which is based on a biologically plausible parameterization of the
dynamic behaviour of the layered neocortex, has been successfully
used to generate signals akin to those observed experimentally,
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including small-signal harmonic components, such as the alpha
band, and larger, transient, event-related potentials (Jansen and Rit,
1995). Our previous treatment of this model has focused largely on
the time-domain, where numerical integration has been used to
produce predictions of observed EEG responses (David et al.,
2005) and to infer the posterior parameter densities using Bayesian
inversion (David et al., 2006a,b, Kiebel et al., 2006). In this paper,
we consider a treatment of an enhanced version of this model in the
frequency domain.

The goal of neural mass modelling is to understand the
neuronal architectures that generate electrophysiological data. This
usually proceeds under quasi-stationarity assumptions. Key model
parameters are sought, which explain observed changes in EEG
spectra, particularly under pathological conditions (e.g., Liley and
Bojak, 2005; Rowe et al., 2005). Recently, neural mass models
have been used as forward or generative models of EEG and MEG
data. Bayesian inversion of these models furnishes the conditional
or posterior density of the physiological parameters. This means
that real data can be used to address questions about functional
architectures in the brain and pathophysiological changes that are
framed in terms of physiological and synaptic mechanisms. In this
work, we focus on electrophysiological measures in the spectral
domain and ask which key parameters of the model determine the
spectral response. When we refer to spectral response, we do not
imply that there is some sensory or other event to which the
dynamics are responding; we use response to denote the models
response to endogenous stochastic input that is shaped by its
transfer function. This analytic treatment is a prelude to subsequent
papers, where we use the model described below as a probabilistic
generative model to make inferences about neuromodulatory
mechanisms using steady-state spectral responses.

There has been a considerable amount of work on neural field
models of EEG in the spectral domain (Robinson, 2005, Robinson
et al., 2001, 1997; Steyn-Ross et al., 1999; Wright and Liley,
1996). Here, we address the same issues using a neural mass
model. Neural field models treat the cortex as a spatial continuum
or field; conversely, neural mass models treat electrical generators
as point sources (cf., equivalent current dipoles in forward models
of EEG). We have used networks of these sources to model scalp
EEG responses in the time-domain (David et al., 2006a,b; Kiebel
et al., 2006; Garrido et al., 2007) and wanted to extend these
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Fig. 1. Synaptic impulse response function, convolved with firing rate to
produce a postsynaptic membrane potential, parameter values are presented
in Table 1.
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models to the frequency-domain. The advantage of neural mass
networks is that extrinsic coupling among the sources can be
parameterized explicitly and estimated easily. Moreover, these
networks can model remote cortical areas with different composi-
tions. For example, cortical areas can differ considerably with
regard to microcircuitry and the relative concentrations of
neurotransmitter receptors. Structural anisotropy implicit in
neural mass models can also be accommodated by neural field
approaches: neural field models have been used to measure the
effects of thalamocortical connectivity (extrinsic) anisotropies and
have demonstrated their role in alpha splitting of EEG spectra
(Robinson et al., 2003). However, a neural mass approach not
only accommodates intrinsic differences in cortical areas but also
enables laminar-specific cortico-cortical connections, which pre-
dominate in sensory systems (Felleman and Van Esses, 1991;
Maunsell and Van Essen, 1983; Rockland and Pandya, 1979).
This is particularly relevant for pharmacological investiga-
tions of, and interventions in, cognitive processing, where one
needs to establish which changes are due to local, area-specific
effects and which arise from long-range interactions (Stephan
et al., 2006).

The advantage of frequency-domain formulations is that the
spectral response is a compact and natural summary of steady-state
responses. Furthermore, generative modelling of these responses
allows one to assess the role of different parameters and specify
appropriate priors. Finally, an explicit model of spectral responses
eschews heuristics necessary to generate spectral predictions from
the models time-domain responses. In what follows, we will
assume that low-level parameters, such as active synaptic densities
or neurotransmitter levels, remain constant under a particular
experimental condition and mediate their influence when the
cortical micro-circuit is at steady state.

This paper comprises three sections. In the first, we review the
basic neural mass model, with a special focus on current
extensions. In the second section, we take a linear systems
perspective on the model and describe its various representations in
state-space and the coefficients of its transfer function. In the third
section, we use the transfer function to examine how steady-state
spectral response changes with the models parameters.

The neural mass model

The basic model, described in David and Friston (2003) has
been extended here to include recurrent inhibitory–inhibitory
interneuron connections and slow hyperpolarizing currents (e.g.
mediated by slow calcium-dependent potassium channels; Faber
and Sah, 2003) which are critical for spike-rate adaptation. In this
report, we focus on the input–output behaviour of a single
neuronal mass or source comprising three subpopulations. Transfer
function algebra allows our characterization to be extended easily
to a network of neuronal masses.

The Jansen model

A cortical source comprises several neuronal subpopulations. In
this section, we describe the mathematical model of one source,
which specifies the evolution of the dynamics of each subpopula-
tion. This evolution rests on two operators: The first transforms
u(t), the average density of presynaptic input arriving at the
population, into v(t), the average postsynaptic membrane potential
(PSP). This is modelled by convolving a parameterized impulse
response function he/i(t), illustrated in Fig. 1, with the arriving
input. The synapse operates as either inhibitory or excitatory, (e/i),
such that

vðtÞ ¼ he=iðtÞ � uðtÞ
he=iðtÞ ¼ He=ije=it exp �tje=i

� � ð1Þ

The parameter H tunes the maximum amplitude of PSPs and
κ=1/τ is a lumped representation of the sum of the rate constants
of passive membrane and other spatially distributed delays in the
dendritic tree. These synaptic junctions (in a population sense),
allow a standard expansion from the kernel representation to a
state-space formulation (David and Friston, 2003). The convolu-
tion leads to a second-order differential equation of the form

v��ðtÞ ¼ He=ije=iuðtÞ � 2je=i �vðtÞ � j2e=ivðtÞ

(Decomposed for state-space in normal form)

�vðtÞ ¼ xðtÞ
�xðtÞ ¼ He=ije=iuðtÞ � 2je=ixðtÞ � j2e=ivðtÞ ð2Þ

The second operator transforms the average membrane potential of
the population into the average rate of action potentials fired by the
neurons. This transformation is assumed to be instantaneous and is
described by the sigmoid function

S vð Þ ¼ 1
1þ exp �q1ðv� q2Þð Þ �

1
1þ exp q1q2ð Þ ð3Þ

Where ρ1 and ρ2 are parameters that determine its shape (cf.,
voltage sensitivity) and position respectively, illustrated in Fig. 2.
(Increasing ρ1 straightens the slope and increasing ρ2 shifts the
curve to the right.) It is this function that endows the model with
nonlinear behaviours that are critical for phenomena like phase-
resetting of the M/EEG. Its motivation comes from the population
or ensemble dynamics of many units and it embodies the
dispersion of thresholds over units. Alternatively, it can be
regarded as a firing rate–input curve for the ensemble average.
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Fig. 2. Non-linear sigmoid function for PSP to firing rate conversion,
parameter values are presented in Table 1.
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A single source comprises three subpopulations, each assigned to
three cortical layers (Fig. 3).1 Following David et al., 2006a,b, we
place an inhibitory subpopulation in the supragranular layer. This
receives inputs from (i) the excitatory deep pyramidal [output] cells
in an infra-granular layer, leading to excitatory postsynaptic
potentials (EPSPs) He mediated by the coupling strength between
pyramidal cells and inhibitory interneurons, γ3 and (ii) recurrent
connections from the inhibitory population itself, which give rise to
inhibitory postsynaptic potentials (IPSPs), Hi within the inhibitory
population that are mediated by the inhibitory–inhibitory coupling
parameter γ5. The pyramidal cells are driven by excitatory spiny
[input] cells in the granular layer producing EPSPs mediated by
coupling strength γ2, and inhibitory input from the interneurons
providing IPSPs mediated through parameter γ4. Input to the
macrocolumn, u, is through layer IV stellate cells, this population
also receives excitatory (EPSPs) from pyramidal cells via γ1 (Fig.
3). Since the synaptic dynamics in Eq. (1) are linear, subpopulations
aremodelled with linearly separable synaptic responses to excitatory
and inhibitory inputs. The state equations for these dynamics are

Inhibitory cells in supragranular layers
�v4 ¼ i4

�i4 ¼ jeHeg3S v6ð Þ � 2jei4 � j2ev4

�v5 ¼ i5

�i5 ¼ jiHig5S v7ð Þ � 2jii5 � j2i v5

�v7 ¼ i4 � i5
1 Pyramidal cells and inhibitory interneurons are found in both infra- and
supragranular layers in the cortex. However, note that the assignment of
neuronal populations to layers is only important for multi-area models with
connections that reflect the hierarchical position of the areas and thus have
layer-specific terminations (see David et al., 2006a,b). The specific choice
of which cell types should be represented in which layers does not make a
difference as long as one models the cell-type-specific targets of forward,
backward and lateral connections by appropriately constraining their origins
and targets (compare Fig. 3 in David et al., 2005 with Fig. 3 in David et al.,
2006a,b). Here, we have kept the assignment of cell types to layers as in
David et al. (2006a,b).
Excitatory spiny cells in granular layers
¼ i1

jeHe g1S v6 � að Þ þ uð Þ � 2jei1 � j2ev1

Excitatory pyramidal cells in infragranular layers

¼ i2

jeHeg2S v1ð Þ � 2jei2 � j2ev2

¼ i3
jiHig4S v7ð Þ � 2jii3 � j2i v3

¼ i2 � i3 ð4Þ

ere vi describe the membrane potentials of each subpopulation
ii, their currents. The pyramidal cell depolarization v6=v2−v3,
resents the mixture of potentials induced by excitatory and
ibitory currents, respectively, and is the measured local field
ential output.
inh
pot

These equations differ from our previous model (David et al.,
2003) in three ways: first, the nonlinear firing rate–input curve in
Eq. (3) has a richer parameterization, allowing for variations in its
gain. Second, the inhibitory subpopulation has recurrent self-
connections that induce the need for three further state variables
(i5, v5, v7). Their inclusion into the model is motivated by
experimental and theoretical evidence that such connections are
necessary for high-frequency oscillations in the gamma band
(40–70 Hz) (Vida et al., 2006; Traub et al., 1996; Wright et al.,
2003).

Finally, this model includes spike-rate adaptation, which is
an important mechanism mediating many slower neuronal
dynamics associated with short-term plasticity and modulatory
neurotransmitters (Faber and Sah, 2003; Benda and Herz,
2003).
Fig. 3. Source model, with layered architecture.
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Spike-frequency adaptation
The variable a in Eq. (4) represents adaptation; its dynamics

conform to the universal phenomenological model described in
Benda and Herz (2003, Eq. (3.1)).

�a ¼ jaðSðv; aÞ � aÞ

Sðv; aÞ ¼ Sðv� aÞ ð5Þ

Adaptation alters the firing of neurons and accounts for
physiological processes that occur during sustained activity.
Spike-frequency adaptation is a prominent feature of neural
dynamics. Various mechanisms can induce spike-rate adaptation
(see Benda and Herz 2003 for review). Prominent examples include
voltage-gated potassium currents (M-type currents), calcium-gated
potassium channels (BK channels) that induce medium and slow
after-hyperpolarization currents (Faber and Sah, 2003), and the slow
recovery from inactivation of the fast sodium current (due to a use
dependent removal of excitable sodium channels). The time
constants of these processes range from a few 100 ms to 1–2 s.
Adaptation is formulated in Eq. (5) as a shift in the firing rate–
input curve for two reasons; first, all three processes above can be
reduced to a single subtractive adaptation current. Second, the time
course of this adaptation is slow (see above), which means spike
generation and adaptation are un-coupled. Eq. (5) represents a
universal model for the firing-frequency dynamics of an adapting
neuron that is independent of the specific adaptation and spike-
generator processes.

Adaptation depends on, and decays toward, the firing rate
sigmoid function S at any given time: S(v,a) this is the steady state
adaptation rate beyond which the neuron does not fire. The
dynamics of adaptation is characterized by an intrinsic time constant
κa. Increasing a shifts the firing–input curve to the right (Fig. 4), so
that a greater depolarization is required to maintain the same firing
rate. Because this curve is nonlinear, the local gain or slope also
changes. In the model here, only the spiny cells receiving extrinsic
inputs show adaptation. This completes the description of the model
and its physiological motivation. In the next section, we look at how
this system can be represented and analysed in a linear setting.
Linear representations of the model

Following the extension of the Jansen model to include the effects of recurrent inhibitory connections and adaptation currents, there are
twelve states plus adaptation, whose dynamics can be summarized in state-space as
�x ¼ f ðxÞ þ Bu
y ¼ Cxþ Du ð6Þ
where y=v6 represents pyramidal cell depolarization, or observed electrophysiological output, and x includes all voltage and current
variables, v1–7 and i1–5. The function f(x) is nonlinear due to the input–pulse sigmoid curve (Fig. 2). The form of S(v) means that the mean
firing rate S(0)=0 when the membrane potential is zero. This means the states have resting values x0=0 of zero. Input to the stellate cell
population is assumed at baseline with u=0. A linear approximation treats the states as small perturbation about this expansion point, whose
dynamics depends on the slope of S(0). We refer to this as the sigmoid ‘gain’ g:

ASð0Þ
Av

¼ g ¼ q1exp q1q2ð Þ
1þ exp q1q2ð Þð Þ2 ð7Þ

Increasing ρ1 will increase the gain g=∂S/∂v in terms of firing as a function of depolarization.
In what follows we are only interested in steady-state responses. The influence of adaptation will be assessed by proxy, through its effect

on the gain. Above we noted that increasing adaptation shifts the sigmoid function to the right. Hence it effectively decreases the functional
gain, g, similar to a decrease in ρ1. This can be seen in Fig. 4 as a decreased slope of the tangent to the curve at v=0 (dotted lines).

The biological and mean-field motivations for the state-equations have been discussed fully elsewhere (David and Friston, 2003; David
et al., 2004, 2006). Here, we focus on identification of the system they entail. To take advantage of linear systems theory, the system is
expanded around its equilibrium point x0. By design, the system has a stable fixed-point at x0=0⇒x ˙=0 (assuming baseline input and
adaptation is zero; u=a=0). This fixed point is found in a family of such points by solving the state equations x˙=0. Using a different
stable point from the family would amount to an increase or decrease in the DC output of the neural mass and so does not affect the
frequency spectra. We can now recast to the approximate linear system
�x ¼ Axþ Bu

y ¼ Cxþ Du

A ¼

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

�j2e 0 0 �2je 0 0 0 0 jeHeg1g 0 0 0
jeHeg2g �j2e 0 0 �2je 0 0 0 0 0 0 0

0 0 �j2i 0 0 �2ji 0 0 0 0 0 jiHig4g
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 �j2e �2je jeHeg3g 0 0 0
0 0 0 0 1 �1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 �j2i �2ji jiHig5g
0 0 0 0 0 0 0 1 0 0 �1 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

B ¼

0
0
0

jeHe

0
0
0
0
0
0
0
0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

CT ¼

0
0
0
0
0
0
0
0
1
0
0
0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA
ð8Þ



Fig. 4. Phenomenological model of adaptation: increasing the value of a in Eq. (5) shifts the firing rate curve to the right and lowers its gain (as approximated
linearly by a tangent to the curve at v=0).
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where D=0. This linearization gives state matrices A, B, C and D, where A=∂f(x0)/∂x is a linear coefficient matrix also known as the
system transfer matrix or Jacobian. Eq.(8) covers twelve states with parameters, θ=He,Hi,κe,κi,κa,γ1,γ2,γ3,γ4,γ5,g; representing synaptic
parameters, intrinsic connection strengths, and gain, g(ρ1,ρ2). Both variables ρ1 and ρ2 parameterize the sensitivity of the neural population
to input and ρ2 has the same effect as adaptation. Research using EEG time-series analysis (surrogate data testing) and data fitting have
shown that linear approximations are valid for similar neural mass models (Stam et al., 1999; Rowe et al., 2004). Seizure states, and their
generation, however, have been extricated analytically using non-linear neural mass model analysis (Rodrigues et al., 2006; Breakspear
et al., 2006). In this context, large excitation potentials and the role of inhibitory reticular thalamic neurons preclude the use of the model
described here; this is because many of the important pathophysiological phenomena are generated (after a bifurcation) explicitly by non-
linearity. For example, spike and slow-waves may rest on trajectories in phase-space that lie in the convex and concave part of a sigmoid
response function, respectively. Our model can be viewed as modelling small perturbations to spectral dynamics that do not engage
nonlinear mechanisms. Thus, the system can be analyzed using standard procedures, assuming time invariance or stationarity.

System transfer function

The general theory of linear systems can now be applied to the neural mass model. For an in-depth introduction, the reader is directed to
the text of Oppenheim et al. (1999). The frequency response and stability of systems like Eq. (8) can be characterized completely by taking
the Laplace transform of the state-space input–output relationship; i.e., Y(s)=H(s)U(s). This relationship rests on the transfer function of the
system, H(s), which is derived using the state matrices. This system transfer function, H(s) filters or shapes the frequency spectra of the input,
U(s) to produce the observed spectral response, Y(s). The Laplace transform

FðsÞ ¼ L f ðtÞf g ¼
Z l

0�
e�st f ðtÞdt ð9Þ

introduces the complex variable s=α+ iω to system analysis (as distinct to capital “S”, which in preceding sections denoted the sigmoid
firing rate), where the real part α says whether the amplitude of the output is increasing or decreasing with time. The imaginary part indicates
a periodic response at frequency of ω/2π. This is seen by examining the inverse Laplace transform, computed along a line, parallel to the
imaginary axis, with a constant real part.

y tð Þ ¼ L�1 Y ðsÞf g ¼ 1

2pi

Z aþil

a�il
Y sð Þe stds ð10Þ

This will consist of terms of the form y0e
αte jωt that represent exponentially decaying oscillations at ω rad−1. The Laplace transform of Eq.(8)

gives

sX ðsÞ ¼ AX ðsÞ þ BUðsÞ
Y ðsÞ ¼ CX ðsÞ þ DUðsÞ
Z

X ðsÞ ¼ ðsI � AÞ�1BUðsÞ
Y ðsÞ ¼ HðsÞUðsÞ

HðsÞ ¼ CðsI � AÞ�1Bþ D ð11Þ
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The transformation from Eq. (8) to Eq. (11) results from one of the most useful properties of this particular (Laplace) transform, in so far as
conversion to the Laplace domain from the time-domain enables differentiation to be recast as a multiplication by the domain parameter ‘s’.
The transfer function H(s) represents a normalized model of the system's input–output properties and embodies the steady-state behaviour of
the system. One computational benefit of the transform lies in its multiplicative equivalence to convolution in the time-domain; it therefore
reduces the complexity of the mathematical calculations required to analyze the system. In practice, one usually works with polynomial
coefficients that specify the transfer function. These are the poles and zeros of the system.

Poles, zeros and Lyapunov exponents

In general, transfer functions have a polynomial form,

H sð Þ ¼ ðs� 11Þðs� 12Þðs� 13Þ N
ðs� k1Þðs� k2Þðs� k3Þ N ð12Þ

The roots of the numerator and denominator polynomials of H(s) summarize the characteristics of any LTI (linear time-invariant) system. The
denominator is known as the characteristic polynomial, the roots of which known as the system's poles, the roots of the numerator are known
as the system's zeros. The poles are solutions to the characteristic equation sI−A=0 in Eq. (11); this means the poles λ are the Jacobian's
eigenvalues (such that λi=vi

−Avi, where {v1, v2, v3, …} are the eigenvectors of the Jacobian A, and v− denotes their generalized inverse). In
general non-linear settings, Lyapunov exponents, eλt, describe the stability of system trajectories; chaos arises when a large positive exponent
exists. Usually, the Lyapunov exponents are the expected exponents, over non-trivial orbits or trajectories. In our setting, we can view the
poles as complex Lyapunov exponents evaluated at the system's fixed point, where stability properties are prescribed by the real part, α of
s=α+ iω: for oscillatory dynamics not to diverge exponentially, the real part of the poles must be non-positive. The eigenvectors v satisfy;
Av=vλ and v− are their generalized inverse. We will use these eigenvectors below, when examining the structural stability of the model.

The poles λi and zeros ςi represent complex variables that make the transfer function infinite and zero, respectively; at each pole the
transfer function exhibits a singularity and goes to infinity as the denominator polynomial goes to zero. Poles and zeros are a useful
representation of the system because they enable the frequency filtering to be evaluated for any stationary input. A plot of the transfer
function in the s-plane provides an intuition for the frequency characteristics entailed; “cutting along” the jω axis at α=0 gives the frequency
response

ghðxÞ ¼ jHðjxÞj2
HðjxÞ ¼ jx� 11ð Þ jx� 12ð Þ jx� 13ð Þ N
jx� k1ð Þ jx� k2ð Þ jx� k3ð Þ N ð13Þ

An example of a simple two-pole and one-zero system is illustrated in Fig. 5.
Eq. (13) can be used to evaluate the system's modulation transfer function, gh(ω), given the poles and zeros. We will use this in the next

section to look at changes in spectral properties with the system parameters.2

The form of the transfer function encodes the dynamical repertoire available to a neuronal ensemble. The poles and zeros provide an
insight into how parameters influence the system's spectral filtering properties. For example, the state-space characterization above tells us
how many poles exist: This is determined by the Jacobian; since the transfer function is H(s)=D+C(sI−A)−1B, the inverse part produces the
transfer function's denominator. The order of the denominator polynomial is the rank of the Jacobian; here ten, this leaves two poles at the
origin. The number of zeros is determined by all four system matrices. The sparse nature of these matrices leads to only two zeros. The
transfer function for the neural model thus takes the form

H sð Þ ¼ s� 11ð Þ s� 12ð Þ
s2 s� k1ð Þ N s� k10ð Þ ð14Þ

A partial analytic characterization of the poles and zeros shows that excitatory and inhibitory rate constants determine the locations of
minimum and maximum frequency responses. Also one observes that inhibitory interneurons influence the location of the zeros. A complete
analytic solution would allow a sensitivity analysis of all contributing parameters. Those coefficients that have been identified analytically
include:

Zeros:

11 ¼
�exp q1q2ð Þ � 1
1þ exp q1q2ð Þsi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1siHig5exp q1q2ð Þp
1þ exp q1q2ð Þsi i

12 ¼
�exp q1q2ð Þ � 1
1þ exp q1q2ð Þsi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1siHig5exp q1q2ð Þp
1þ exp q1q2ð Þsi i ð15Þ
2 This equality also highlights the close connection between the Laplace transform and the Fourier transform that obtains when α=0.



Fig. 5. Example system’s frequency response on the complex s-plane, given two poles and one zero. The magnitude is represented by the height of the curve
along the imaginary axis.

Fig. 6. Sensitivity analysis: a pole depicted in the z-place (left) is characterized using eigenvector solutions (right) in terms of its sensitivity to changes in the
parameters.
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Poles:

k1 ¼ �je k2 ¼ �je k3 ¼ �ji k4 ¼ �ji ð16Þ
All these poles are real negative. This indicates that associated eigenvectors or modes will decay exponentially to zero. Not surprisingly,

the rate of this decay is proportional to the rate constants of synaptic dynamics. The remaining eigenvalues include four poles (two conjugate
pairs) with complex eigenvalues that determine the system's characteristic frequency responses. These complex conjugate pairs result from a
general property of polynomial equations; in so far as whenever the polynomial has real coefficients, only real and complex conjugate roots
can exist. Unfortunately, there is no closed-form solution for these. However, this is not a problem because we can determine how the
parameters change the poles by looking at the eigenvalues of the system's Jacobian. We will present this analysis in the next section. We can
also compute which parameters affect the poles using the eigenvector solutions, vi

−Avi=λi. This rests on evaluating

Aki
Ahj

¼ tr
Aki
AA

AA
Ahj

¼ v�i
AA
Ahj

vi ð17Þ

Here ∂λi/∂λj encodes how the i-th pole changes with small perturbations of the j-th parameter (see Fig. 6 for an example).
Structural stability refers to how much the system changes with perturbations to the parameters. These changes are assessed in terms of

stability in the face of perturbations of the system's states. The stable fixed point is lost if the parameters change too much. This is the basis of
the zero-pole analysis that can be regarded as a phase-diagram. Eq. (4) can loose the stability of its fixed point, next, we look at how the
Laplace transform can be used to establish the constraints on this system stability.
Stability analysis in the s- and z-planes

In addition to providing a compact summary of frequency-domain properties, the Laplace transform enables one to see whether the system
is stable. The location of the poles in the complex s-plane show whether the system is stable because, for oscillations to decay to zero, the
poles must lie in the left-half plane (i.e., have negative real parts). Conventionally, in linear systems analysis the poles of a digital system are
not plotted in the s-plane but in the z-plane. The z-plane is used for digital systems analysis since information regarding small variations in
sampling schemes can be observed on the plots (some warping of frequencies occurs in analog-to-digital frequency conversion). It is used
here because this is the support necessary for the analysis of real data for which the scheme is intended; i.e. discretely sampled LFP time
series.

The z-transform derives from the Laplace transform by replacing the integral in Eq. (9) with a summation. The variable z is defined as
z=exp(sT), where T corresponds to the sampling interval. This function maps the (stable) left-half s-plane to the inside of the unit circle in the
z-plane. The circumference of the unit circle is a (warped) mapping of the imaginary axis and outside the unit circle represents the (unstable)
right-half s-plane. There are many conformal mappings from the complex plane to the z-plane for analogue to digital conversion. We used
the bilinear transform since it is suitable for low sampling frequencies, where z=exp(sT) leads to the approximation

s ¼ 2
T
z� 1
zþ 1

ð18Þ

The z-transform is useful because it enables a stability analysis at a glance; critically stable poles must lie within the unit circle on the z-
plane. We will use this in the analyses of the Jansen model described in the next section.
Parameterized spectral output

In this section, we assess the spectral input–output properties of the model, and its stability, as a function of the parameters. In brief, we
varied each parameter over a suitable range and computed the system's modulation transfer function, gh(ω) according to Eq. (13). These
frequency domain responses can be regarded as the response to an input of stationary white noise; gy(ω)=gh(ω)gu(ω), when gu(ω) is a
constant. To assess stability we tracked the trajectory of the poles, in the z-plane, as each parameter changed.

Each parameter was scaled between one quarter and four times its prior expectation. In fact, this scaling speaks to the underling
parameterization of neural mass models. Because all the parameters θ are positive variables and rate constants, we re-parameterize with
θi=μiexp(ϑi), where μi is the prior expectation (see Table 1) and ϑi is its log-scaling. This allows us to use Gaussian shrinkage priors on ϑi
Table 1
Prior expectations of parameters

Parameter Physiological interpretation Standard prior mean

He/i Maximum post synaptic potentials 4 mV, 32 mV
τe/i=1/κe/i Average dendritic and membrane rate constant 4 ms, 16 ms
τa=1/κa Adaptation rate constant 512 ms
γ1,2,3,4,5 Average number of synaptic contacts among populations 128, 128, 64, 64, 16
ρ1, ρ2 Parameterized gain function g 2, 1
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during model inversion. In this paper, we are concerned only with the phenomenology of the model and the domains of parameter space that
are dynamically stable. However, we will still explore the space of ϑi because this automatically precludes inadmissible [negative] values of
θi.

The following simulations are intended to convey general trends in frequency response that result from changes in parameter values.
Using standard parameter values employed in the SPM Neural Mass Model toolbox (http://www.fil.ion.ucl/spm), the system poles are stable
and confined to the unit circle (Fig. 6). It can be seen that there are only two conjugate poles that have imaginary parts. These correspond to
characteristic frequencies at about 16 Hz and 32 Hz.

In Figs. 7a–i; the left panels present a section of the modulation transfer functions, gh(ω) (viewed along the x-axis) as parameter scaling
increases (moving back along the y-axis). The right figures present the movement of the poles and zeros to as the parameter increases from
one quarter (small x/o) to four times (large X/O) its prior expectation (Figures may be viewed in colour on the web publication). For example,
Fig. 7a shows how an increase in the excitatory lumped rate-constant, τe causes the poles nearest the unit circle to move even closer to it,
increasing the magnitude of the transfer function. All parameters are set to prior values (Table 1) except that under test. Stability trends are
disclosed with the accompanying z-plane plots.

Inspection of the poles and their sensitivity to changing the parameters is quite revealing. The first thing to note is that, for the majority of
parameters, the system's stability and spectral behaviour are robust to changes in its parameters. There are two exceptions; the excitatory
synaptic parameters (the time constant τe and maximum depolarization He, in Figs. 7a and c, respectively). Increasing τe causes, as one might
expect a slowing of the dynamics, with an excess of power at lower frequencies. Increasing He causes a marked increase and sharpening of the
spectral mass of the lower-frequency mode. However, as with most of the parameters controlling the linear synaptic dynamics, there is no great
change in the spectral composition of the steady-state response. This is in contrast to the effect of changing the gain (i.e., sigmoid non-linearity).

This sigmoid function (Fig. 2) transforms the membrane potential of each subpopulation into firing rate, which is the input to other
sources in network models. The efficacy of presynaptic ensemble input can be regarded as the steepness or gain of this sigmoid. We
examined the effects of gain as a proxy for the underlying changes in the non-linearity (and adaptation). The transfer function plots in Fig. 8b
correspond to making the sigmoid steeper (from the left to the right panels in Fig. 8a). There is a remarkable change in the spectral response
as the gain is increased, with an increase in the characteristic frequency and its power. However, these effects are not monotonically related to
the gain; when the gain becomes very large, stable band-pass properties are lost. A replication of the full system's time-domain response is
shown in Fig. 8b (insert); comparing the modulation transfer function with the Fast Fourier Transform of the system's first-order (non-
analytic) kernel, which represents the linear part of the entire output when a noise input is passed through the nonlinear system (see Friston et
al., 2000).

In short, gain is clearly an important parameter for the spectral properties of a neural mass. We will pursue its implications in the
Discussion.

In summary, the neural mass model is stable under changes in the parameters of the synaptic kernel and gain, showing steady-state
dynamics, with a dominant high-alpha/low-beta rhythm. However, changes in gain have a more marked effect on the spectral properties of
steady-state dynamics; increasing gain causes an increase in frequencies and a broadening of the power spectrum, of the sort associated with
desynchronization or activation in the EEG. It should be noted that we have explored a somewhat limited parameter space in this paper.
Profound increases in the recurrent inhibitory connections and gain can lead to much faster dynamics in the gamma range. Simulations (not
shown) produced gamma frequency oscillations when the system was driven with very large inhibitory–inhibitory connection parameter, λ5.
In this state, the pole placement revealed that the system was unstable. In this paper, however, our focus is on steady-state outputs elicited
from ‘typical’ domains of parameter space, and does not elicit this gamma output.
Discussion

We have presented a neural mass model for steady-state spectral
responses as measured with local field potentials or electroence-
phalography. Themodel is an extended version of themodel used for
event-related potentials in the time-domain (Jansen and Rit, 1995;
David et al., 2004, 2005, 2006a,b). We employed linear systems
analysis to show how its spectral response depends on its
neurophysiological parameters. Our aim was to find an accurate
but parsimonious description of neuronal dynamics and their causes,
with emphasis on the role of neuromodulatory perturbations. In this
context, the model above will be used to parameterize the effects of
drugs. This will enable different hypotheses about the site of action
of pharmacological interventions to be tested with Bayesian model
comparison, across different priors (Penny et al., 2004). Our model
assumes stationarity at two levels. First, the data features generated
Fig. 7. (a) The effect of variable excitatory time constant τe. (b) The effect of
excitatory postsynaptic potential He. (d) The effect of variable maximum inhibitor
connection strength γ1. (f) The effect of variable stellate–pyramidal connection
connection strength γ3. (h) The effect of variable inhibitory interneurons–pyram
connection strength γ5.
by the model (i.e., spectral power) are assumed to be stationary in
time. Furthermore, the parameters of the model preclude time-
dependent changes in dynamics or the spatial deployment of
sources. This means we are restricted to modelling paradigms that
have clear steady-state electrophysiological correlates (e.g., phar-
macological modulation of resting EEG). However, there are some
situations where local stationarity assumptions hold and may be
amenable to modeling using the above techniques; for example,
theta rhythms of up to 10 s have been recorded from intracranial
human EEG during a visual working memory task (Radhavachari et
al., 2001). Furthermore, there is no principal reason why the current
model could not be inverted using spectra from a time–frequency
analysis of induced responses, under the assumption of local
stationarity over a few hundred milliseconds. This speaks to the
interesting notion of using our linearized model in the context of a
Bayesian smoother or updated scheme, to analyse the evolution of
variable inhibitory time constant τi. (c) The effect of variable maximum
y postsynaptic potential Hi. (e) The effect of variable pyramidal–pyramidal
strength γ2. (g) The effect of variable pyramidal–inhibitory interneurons
idal connection strength γ4. (i) The effect of variable inhibitory–inhibitory

http://www.fil.ion.ucl/spm
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Fig. 7 (continued).
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Fig. 8. (a) Changing the gain through (left ρi =1.25, right ρ1=4). (b) The effect of varying gain (inset: fft first-order non-analytic kernel using time-domain
equation output).
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spectral density over time. The next paper on this model will deal
with its Bayesian inversion using empirical EEG and LFP data.

Typical 1/f type EEG spectra are not as pronounced in our
model as in many empirical spectra. The 1/f spectral profile, where
the log of the spectral magnitude decreases linearly with the log of
the frequency, is characteristic of steady-state EEG recordings in
many cognitive states; and can be viewed as a result of damped
wave propagation in a closed medium (Barlow, 1993; Jirsa and
Haken, 1996; Robinson, 2005). This spectral profile has been
shown to be insensitive to pre- and post-sensory excitation
differences (Barrie et al., 1996), and represents non-specific
desynchronization within the neural population (Lopez da Silva,
1991; Accardo et al., 1997). The parameters chosen to illustrate our
model in this paper produce a well-defined frequency maximum in
the beta range, which predominates over any 1/f profile. This
reflects the fact that our model is of a single source and does not
model damped field potentials, propagating over the cortex (cf.,
Jirsa and Haken, 1996; Robinson, 2005). Second, we have
deliberately chosen parameters that emphasize an activated
[synchronized] EEG with prominent power in the higher [beta]
frequencies to demonstrate the effects of non-linearities in our
model. Adjusting the model parameters would place the maximum
frequency in a different band (David et al., 2005); e.g., the alpha
band to model EEG dynamics in the resting state.

A potential issue here is that inverting the model with real data,
displaying an underlying 1/f spectrum could lead to erroneous
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estimates of the parameters of interest, if the model tried to
generate more low frequencies to fit the spectral data. However,
this can be resolved by including a non-specific 1/f component as a
confound, modelling non-specific components arising from
distributed dynamics above and beyond the contribution of the
source per se. Using Bayesian inversion, confounds like this can
be parameterized and fitted in parallel with the parameters above,
as fixed effects (Friston, 2002). Although the present paper is not
concerned with model inversion, a forthcoming paper will
introduce an inversion scheme which models the 1/f spectral
component explicitly; this allows the model to focus on fitting
deviations from the 1/f profile that are assumed to reflect the
contribution of the source being modelled (Moran et al., submitted
for publication). Furthermore, the inversion scheme allows priors
on oscillations in particular frequency bands to be adjusted. This
can be mediated through priors on specific parameters, e.g. τe/i,
that have been shown to modify resonant frequencies (David et al.,
2005).

The present paper considers a single area but can be generalized
to many areas, incorporating different narrow-band properties.
Coupling among dynamics would allow a wide range of EEG
spectra to be accommodated (David et al., 2003).

We have augmented a dynamic causal model that has been
used previously to explain EEG data (David et al., 2006a,b) with
spike-rate adaptation and recurrent intrinsic inhibitory connec-
tions. These additions increase the model's biological plausibility.
Recurrent inhibitory connections have been previously investi-
gated in spike-level models and have been shown to produce fast
dynamics in the gamma band (32–64 Hz) (Traub et al., 1996).
Similar conclusions were reached in the in vitro analysis of Vida
et al. (2006), where populations of hippocampal rat neurons are
investigated as an isolated circuit. In the present paper our focus
was on the role of the sigmoid non-linearity (recast in a linear
setting) linking population depolarization to spiking. We showed
that much of the interesting spectral behaviour depends on this
non-linearity, which depends on its gain and adaptation currents.
This is important because, phenomenologically, adaptation
currents depend on the activity of modulatory neurotransmitters:
For example, the effects of dopamine on the slow Ca-dependent
K-current and spike-frequency adaptation have been studied by
whole-cell voltage-clamp and sharp microelectrode current-clamp
recordings in rat CA1 pyramidal neurons in rat hippocampal
slices (Pedarzani and Storm, 1995). Dopamine suppressed
adaptation (after-hyperpolarization) currents in a dose-dependent
manner and inhibited spike-frequency adaptation. These authors
concluded that dopamine increases hippocampal neuron excit-
ability, like other monoamine neurotransmitters, by suppressing
after-hyperpolarization currents and spike-frequency adaptation,
via cAMP and protein kinase A. Phenomenologically, this would
be modelled by a change in ρ2, through implicit changes in gain
associated with a shift of the sigmoid function to the left. The
effect of dopamine on calcium-activated potassium channels is
just one specific example (critically, these channels form the
target for a range of modulatory neurotransmitters and have been
implicated in the pathogenesis of many neurological and
psychiatric disorders, see Faber and Sah, 2003 for review).
Acetylcholine is known to also play a dominant role in
controlling spike-frequency adaptation and oscillatory dynamics
(Liljenstrom and Hasselmo, 1995), for example due to activation
of muscarinergic receptors which induce a G-protein-mediated
and cGMP-dependent reduction in the conductance of calcium-
dependent potassium channels and thus prevent the elicitation of
the slow after-hyperpolarization currents that underlie spike-
frequency adaptation (Constanti and Sim, 1987; Krause and
Pedarzani, 2006).

The key contribution of this paper is to show how activation of
these slow potassium channels can be modelled by adding
adaptation currents to a simple phenomenological model of EEG.
Furthermore, using linear systems theory, we have shown that
these changes are expressed in a systematic way in the spectral
density of EEG recordings. Critically, inversion of the model,
given such non-invasive recordings, should allow one to quantify
pharmacologically induced changes in adaptation currents. This is
the focus of our next paper (Moran et al., submitted for
publication).

Limitations of this neural mass model include no formal
mapping to conventional integrate-and-fire models in computa-
tional neuroscience. This is problematic because there is no explicit
representation of currents that can be gated selectively by different
receptor subtypes. On the other hand, the model partitions the
linear and nonlinear effects neatly into (linear) synaptic responses
to presynaptic firing and (nonlinear) firing responses to post-
synaptic potentials. This furnishes a simple parameterization of the
system's non-linearities and context-dependent responses. In
summary, context-dependent responses are mediated largely
though changes in the sigmoid non-linearity. Interestingly, these
cover the effects of adaptation and changes in gain that have such a
profound effect on steady-state dynamics. This is especially
important for models of pharmacological intervention, particularly
those involving classical neuromodulatory transmitter systems.
These systems typically affect calcium-dependent mechanisms,
such as adaptation and other non-linear (voltage-sensitive) cellular
signalling processes implicated in gain.
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