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Abstract—We describe a method for computing a continuous  Snyder [2] developed a list-mode expectation-maximization
time estimate of tracer density using list-mode positron emission (EM) maximum-likelihood (ML) method for estimation of
_torr1nography data.PThe rate function '%ea‘:h vtoxcfal IS tr_nodeled gs an gynamic PET images using inhomogeneous Poisson processes.
Irgsgrr?tggegg(r)]gsa éﬂls)?g ré_psrpt))”c:g sb;vsg.s_?_hrg reatgr}ﬁrl](():rt\iocnasn arg Les'?Each voxel has an a.\ssociat.ed time-varying tracer density tha_lt is
timated by maximizing the likelihood of the arrival times of de- Modeled using basis functions that are based on assumptions
tected photon pairs over the control vertices of the spline, modi- about the physiological processes generating the data, e.g.,
fied by quadratic spatial and temporal smoothness penalties and blood activity curves convolved with a basis of exponentials.

a penalty term to enforce nonnegativity. Randoms rate functions The opserved list-mode PET data are modeled as inhomo-
are estimated by assuming independence between the spatial and

temporal randoms distributions. Similarly, scatter rate functions gene(.)us.Pmsson processgs whose rate fungt!ons are linear
are estimated by assuming spatiotemporal independence and that C0OmMbinations of the dynamic voxel tracer densities. Here, we
the temporal distribution of the scatter is proportional to the tem-  follow a similar approach but instead work with rate functions
poral distribution of the trues. A quantitative evaluation was per- formed as a linear combination of known basis functions
formed using simulat_edﬂata and the method is also demonstrated agtimated with a conjugate gradient penalized ML approach.
in @ human study using™* C-raclopride. Not only does the linearity of the model lend itself to efficient
computation of the estimates, but also we can better represent
the dynamic activity seen in experimental data that is not
well modeled by more restrictive physiological models. We
|. INTRODUCTION demonstrate this greater flexibility in Section VI-B, where we
YNAMIC positron emission tomography (PET) imagingdiscover nonmonqtonic behavio_r thC-raclopride data that is
usually involves a sequence of contiguous acquisitiorrl]é)t accounted for in a physiological model.
each of which can range in duration from 10 s to over 20 min. A second advantage of using list-mode data arises in cases
Data from each of the frames is independently reconstructéfere the number of detected photon pairs in a particular study
to form a set of images which can be visualized and used ifofar less than the total number of detector pairs. This is often
estimate physiological parameters [1]. This approach involvi case in modern three-dimensional (3-D) PET systems which
selection of the set of acquisition times, where one must chodi have in excess of 1@inogram elements in a single frame.
between collecting longer scans with good counting statisti¢8 reduce this number to manageable proportions, the data are
but poor temporal resolution, or shorter scans that are noisy Bffen rebinned by aggregating nearby elements. Alternatively,
preserve temporal resolution. the raw list-mode data can be stored and the need for rebin-
List-mode data acquisitions provide extremely high tempor8ing is avoided. Barrett al. [3], [4] describe a list-mode ML
resolution with full spatial resolution. List-mode data can b@ethod for estimation of a temporally stationary image. While
binned into sinograms, allowing frame durations to be detehis method will often reduce storage costs and avoid the need
mined after acquisition. Alternatively, the problem of tempordPr rebinning, the random spatial ordering of the detected events
binning can be avoided entirely by directly using the arrivad the list-mode data does not lend itself to fast forward and
times in the list-mode data to estimate a dynamic image. Suddckprojection and exploitation of the many symmetries in 3-D
an approach is the focus of this paper. projection matrices [5], [6]. To avoid this problem we use a hy-
brid of the sinogram and list-mode formats that allows the re-

construction algorithm to exploit the same matrix symmetries
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of control vertex “images” where the control vertices are the cbasis function. The problem of reconstructing the dynamic PET
efficients for the spline basis. Tomographic projections of thesaage is then reduced to estimating the control vertices for each
control vertices produce the control vertices for the rate funcexel.
tions of the inhomogeneous Poisson processes representing cive denote by, ; the probability of detecting at detector pair
incidence detections between each detector pair. An ML estia photon pair produced by emission of a positron from voxel
mate of the control vertices for each voxel can then be com-The probabilitieg;,; are identical to those used in static PET
puted using the standard likelihood function forinhomogeneoiraaging. Here we use the factored matrix forms developed in
Poisson processes [2], [7]. The final result is a temporally cofé]. Assuming that the detection probabilities are independent
tinuous representation of the PET image that utilizes the teamnd time invariant, it follows that coincidence detection at de-
poral resolution of list-mode data. Preliminary investigations ector pair: is also an inhomogeneous Poisson process with rate
this approach are described in our earlier conference articles f8lction
[9].

Our parameterization of the inhomogeneous Poisson rate
functior? is applicable to any linear c%mbination of basis () = Zpii ZwiéBé(t) = Z Zp”'wﬂ B(t)
functions. This form encompasses the parametric imaging work J ¢ t\J 1)

(;:ixl\t/lu?zh;\gj eﬁo.}% élgtll(laiz:\ﬁy[l%]l ]Winglssonr?c?tir tr[gt ?)rl]l(lj ng;e here the right-most term demonstrates that the rate functions
' gr the data are also B-splines.

[13] used list-mode data to reconstruct rate functions as h The Poi b d he d . d
tograms with adaptive bin sizes; our work could be viewed as e Poisson process observed at the detectors is corrupte
O%Frandom and scatter components that can also be modeled as

a continuous-time extension of this. For this paper we consi Poi Combining the th
only cubic B-splines. The key advantage to B-splines are tHgf1omogeneous roisson processes. L.ombining the three com-

they have systematic compact support. In particular, for aR}gnents, we have the model
point on a cubic spline only four basis functions are nonzero.

Also, simple closed forms exist for all derivatives and integrals

of a polynomial spline. wherer;(-) and s;(-) are the randoms and scatter rate func-

~ Since inhomogeneous Poisson rate functions are unnormalas tor detector paié and A#(t) is the rate function for the
ized densities, we note that the density estimation literatyre) .o cq actually observed at detector pain estimating the

ate function parametets;,, we will assume that the rate func-

&8s for the random and scatter components have been deter-

splines. While these implicitly constrain the rate function tg... 4 through a calibration procedure and can be treated as
be positive, they cannot be represented with a linear baﬁiﬁown processes

As there are substantial computational savings to having a-,. . poisson process with rate functioit), with N

common linear basis for all voxels and projections, we did NQlents observed from tim&, to T; and event arrival times
pursue these approaches.

. . . o...,ak,...,an, the likelihood function [7] is
The paper is organized as follows. We describe the modél o an [7]

AL () = Xilt) +ri(t) + si(?)

and ML method in Sections Il and Ill, respectively. Methods N

for selecting the spline knot points and methods for randorBgay, ..., ak, ..., an|A(t)) = <H A (ak)>

and scatter correction are included in Section IV. Computational k=1

considerations including re-sorting data into a timogram format T

and the details of the algorithm used for computing the ML es- - exp {—/T )\(u)du} - (@
o0

timate are given in Section V. In Section VI, we demonstrate the
performance of the method with quantitative simulations studigg, nv — o the product is defined as unity.
andin vivo human data. For the set of independent events recorded in the list-mode
data the log likelihood is given by
Il. DYNAMIC MODELING USING INHOMOGENEOUSPOISSON

PROCESSES LDW) =3 > log A} (aix) — Z/)\f(u)du

We model the positron emissions from each voxel in the
volume as an inhomogeneous Poisson process. The rate

function for the voxel represents, to within a scalar calibratiqnere D denotes the list-mode data antl the set of pa-
factor, the time varying PET tracer density. We parameteriggmeters for the rate functions. We represent the data as

SLAN(E) >0Vt 3)

the rate functions using a cubic B-spline basis D = {x,a1,...,a,...,ar}, Wherez = (zy,....x,...,21)
are the sinogram count data a@d= (a1, ..., Gk, - - -, Gix, ),
() = . . the z; event arrival times at detector pair For the B-spline
n;(t) = wieBe(t), n;(t) > 0Vt Li
(%) z[: 5eBe(®), mi(¢) basis W = {w; ¢ = 1,...,L,5 = 1,...,J} are the set

of basis coefficients. While: is a function ofe and, hence,
wheren;(-) is the rate function for voxel, w,. is thefth basis redundant, we use the sinogram counts to index the arrival
weight (control vertex) for voxef, and B,(t) is thefth spline times, as described in Section V-A.
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[ll. PENALIZED ML ESTIMATION for which the spline is negative are penalized with the square of

We estimate the image control vertex values that define otL'Pre spline value, resulting in the penalty

dynamic image using penalized ML. The objective function of )
the statistical model is modified with three regularizing terms yW) =3 min [0, wieBe (2m)
i m ¢

LA (DIW) = LOVID) = ap(W) = B(W) —yv(W). (4)  1pis approach does not necessarily ensure that the spline is
The termsp(W) and ¢(WV) regularize temporal and spatialnonnegative everywhere. However, we have found that when
roughness, respectively;()V) penalizes negativity of the used in combination with the temporal roughness penalty, the
image rate functionsy, 3, and~y are the tuning parameters. Weresulting estimates do not become negative, except possibly in
now describe each of these terms. the intervals just preceding a large increase in activity.

We employ a temporal smoothing term to control the rough- It is straightforward to show that each of the four terms in
ness of the spline rate functions [16]. The form of the roughne$® penalized likelihood is concave and, hence, the conjugate
penalty is the integrated squared curvature. For vpxkis is  gradient method should converge to a global maximum of the

/ { 92 2 cost function.
S} du
ou?

Fortunately, for cubic splines this quantity has a simple expres- ) )
sion, a quadratic form of the control vertices [16, pg. 238]. W&~ Selection of Knot Spacing
denote the symmetric, banded matrix of this quadratic f@'m A cubic B-spline basis is defined by knot locations, =
Thus, the temporal roughness penalty is given by (u1,...,ur14), WhereL > 4 is the number of basis elements
W) = ws W and the first and last four knots are identical, to allow discon-
pOV) ;;% it Qut Wit tinuity at the end points. Uniformly spaced knots will not be
. : . . _efficient for most PET tracers since early changes in concen-
We regularize the estimates of the control vertices using a,. ) .
) . . . S gPranon are much greater than those later in the study. While we
spatial smoothing function equivalent to the pair-wise quadrafic

. . . . do not attempt to adaptively place the knots, in a modest at-
penalty used previously in penalized ML [17] and Bayesian es- e
L . . empt to optimize knot placement, we use the head curve to de-
timation [6] of static PET images

fine knots that produce approximately equal arc lengths, as sug-

PpW) = Z Z Z K (wie — wj’é)2 . gested in [16]. The head curve is a temporal histogram using all
£ § JeEN; 5 of the list-mode data and it serves as an estimate of the average

where/\; denotes a set of neighbors of voyendx is the re- rate function. Once the knot locations are determined, the actual

ciprocal of the Euclidean distance between vgxahd;’. Other basis functions are computed using recurrence relations as de-
possible choices of the penalty function include the discrete &$ribed in [16] and [21].
proximation of the thin plate spline bending energy [18] or a
nonquadratic edge preserving function such as that describe®in
[19]. In this two-dimensional (2-D) work, we use a second-order To apply the penalized likelihood estimation procedure de-
neighboorhood, where each voxel has eight neighbors. scribed above, we first apply calibration procedures to account
We note that because the spatial smoothness penalty is fioothe presence of scattered and random events in the list-mode
linear, our regularization of the spline coefficient images is nofata. Randoms and scatter correction are essential in extracting
equivalent to penalizing the rate function images. This is priaccurate quantitative dynamic information from our results. We
cipally motivated by computational concerns, but is justified biyote that the simple randoms subtraction method that is used in
the use of a B-spline basis. The B-spline basis is well conditatic imaging is not applicable here.
tioned [16], meaning that small changes in the control verticesThe spatio-temporal randoms distribution is a function of the
produce small changes in the spline function. Hence, if we washfnamic tracer distribution. We assume no interaction between
two rate functions to be similar, then it is sufficient to constraithe temporal and spatial distribution and scale a fixed spatial
their control vertices to be similar. estimate over time. While this is a rather crude approximation,
The optimization method must account for the nonnegativityyis reasonably accurate due to the very smooth nature of the
of the image rate functiong;(t). We use unconstrained opti-randoms contribution to the sinogram.
mization with a penalty function [20]. The problem is compli- The list-mode data produced by ECAT HRand ECAT
cated somewhat in that the control vertices themselves are HRR++ PET scanners (CTl Systems, Knoxville, TN) contain
necessarily nonnegative; instead we need to ensure that the both prompt (on-time) and delayed events. Ligt denote
responding spline does not become negative. The local extretfma total number of delayed events detected at:theline
of a cubic spline have a closed form, so we initially tried penabf response during the entire acquisition period g be
izing negative local minima. This approach complicated the gran estimate of the dynamic variation in randoms. We com-
dient and Hessian and made their evaluation prohibitively slopute g(¢) from a spline fit to the delayed-event head-curve,
Instead we simply penalize negative values computed at adit) = >, g.B(t); the control verticesg,, are obtained
nite number of time points. The vectercontains the locations as least squares estimates of the head-curve of the delayed
at which we enforce positivity. It is constructed by uniformlyevents using the same B-spline basis as we use to represent the
spacingd. points in each interknot interval. Any elementsz0f dynamics of the emission source distribution. We constrain the

IV. CALIBRATION PROCEDURES

Randoms and Scatter Rate Functions
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least square estimate to be positive and normalize the resulthie raw list-mode data will always take more space than the
integrate to unity. The estimated randoms rate function is, theghogram-timogram, even if no coincidences are detected!
The sinogram-timogram format will also be more space effi-
ri(t) = Rig(t) = Ri ZgéBé(t) cient than a multiframe sinogram when the space required to
) [ ) o store the event arrival times in the timogram is less than the
We compute the scatter contribution in a similar manner to thg - ong througith sinograms. For example, an 11-frame ac-
randoms, that is we model the scatter rate for each detector Qﬁjfsition is ten frames larger{ 200 MB larger) than a sino-
using an inhomogeneous Poisson process assuming Spaﬂo@r@m-timogram with no events; only after 200 MB-worth of

poral independence. . _ _ events, or 100 million counts are stored will the sinogram-tim-
The total, time-integrated sinogram is used to estimate tB@ram be less space efficient.

spatial scatter distribution using the simulation method in [22]. e sinogram-timogram format could be made even more
Let S; denote the estimated scatter contribution atit_hdlne _ compact by storing interarrival times and then performing en-
of response. Next, we calculate a Ieast-squgres spline es“'ﬁl%ﬁy-based compression [23]. The motivation for this is that
of the overall trues head-curve (prompts minus delays) usifiges of response with high activity will tend to have short inter-

the same B-spline basis as we use to represent the dynamicg q| times, hence, will have many high bits consistently zero,
of the emission source distribution. We normalize the result EPproperty that compression can exploit.

integrate to unity. Denote this estimate/gg) = >, hyB(t)
whereh, are the control vertices of the trues head-curve spli® pPreconditioned Conjugate Gradient (PCG)-Based

fit. The estimated scatter rate function is then Reconstruction
si(t) = S;h(t) = 5, Z heBe(t) A PCG method was used to maximize the objective function.
¢ The particular method closely follows our previous work on
static reconstructions [6], [24], so we only describe the method
V. COMPUTATIONAL CONSIDERATIONS AND IMAGE br|8ﬂy here. We use the fO”OWing preconditioned Polak-Ri-
ESTIMATION biere form of the conjugate gradient method:
A. The “Timogram” WD =W 4 o5
The raw list-mode data is in a form that is inconvenient for s =d" 4 gDt h
computing the gradient of the penalized likelihood function. d™ =c g
The list-mode events arrive in random spatial order and, hence, (g(n) _ g(nfl))/ 4
require random rather than sequential access to the projection B =

n—1)! g(n—1)
domain rate functions. We have, therefore, developed a means gnvd

to store list-mode data in sinogram form while preserving thghereg(™ is the gradient vector of the penalized likelihood (4)
temporal information. This is achieved using a single standaathV = W), C™ is a preconditioner, and the step size)
sinogram, which contains all detected events, augmented big found using a Newton-Raphson line search; prithdgnotes
second file listing the arrival times of all events sorted in pronatrix transpose.

jection order. We call this second file the “timogram.” The sino- In this study,C™ was chosen analogously to the static PET
gram is required to indicate how many arrival times to read foeconstruction [25] as

each bin. The resulting pair of files can be substantially smaller ‘ (n)

. . . . ; wi | +6
than either the original list-mode data file or the set of sinograms o — diag J
that would be stored in a conventional dynamic study. We note 2 i bisAe

that Ollinger [13] also resorted list-mode data prior to recon-
struction, though his format did not completely eliminate thesheres is a small positive number to ensure tig4t" is posi-
random spatial order. tive definite andd, = [ B(t)dt, the area of each basis element.
ECAT HR+ list-mode data consists of a sequence of 4-bytdere, we seb equal to 0.0hnale{wﬁzl)}. Note that the stan-
event words, each either a coincident event or a timing evedard static preconditioner only has thé, p;; term in the de-
The coincident events record the sinogram bin, optionabminator, which is the (spatial) sensitivity of voxelwe have
gating information and are identified as “prompt” or “delay.’Included A, since it is a measure of themporalsensitivity of
The timing events are inserted in the list-mode stream evdrgsis elememt While ad hog we found that this preconditioner
millisecond and they also record time with a 27-bit integer. Blyad a profound impact on convergence rate (Fig. 1).
re-encoding the arrival time of each coincidence event usingThe algorithm was initialized with a constant image for which
16 bits, we can retain a temporal resolution of 256 ms andtee forward projected rate function matches the average rate
maximum acquisition time of 4.6 hours. Using this format wef the data after subtracting scatters and randoms. The search
need only 2 bytes/event in the timogram. Thus, we can discafektor is initialized by setting(® = d®. At each iteration
all of the timing events in the list-mode data and save a factee test whether the search vector is an ascent direction, i.e.,
of two in the space required to store the remaining coincideng®) s(*) > 0. If not, then we reinitialize the PCG algorithm
arrival times. The space savings from discarding the timingith s = d™. To ensure reliable convergence we used a
events are significant. For example, in a 90-min scan, the timinge-sided Newton-Raphson line search: a prospective step size
events take more space than a 3-D sinogram set and, hemce/as rejected if the sign of the line-search derivative changed.
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Iteration (Agvent) SO that we do not push the rate negative at that point.

Fig. 1. Convergence of a randomly selected simulation study with and without o )
the use of a preconditioner. This rule can be shown to minimi2e, (d>s™ — d;¢)? subject to

the constraind _, Bg(zm)d‘;g’m = 0. We check each,, in order
Specifically, the slope of the objective at our current estimate #d immediately update the direction each time (7) is satisfied.

the direction of the line search is This issue of how to choose the penalty parameters and
/ ~is difficult. In static maximuna posteriori(MAP) reconstruc-
VL (W(")) s (5) tion, parameters for the smoothing priors can be chosen using

B L i i ML principles by interpreting the smoothing terms as the Gibbs
Whe_reL (-) is the Obje_Ct'V_e function; the slope in the same dlénergy functions of a Markov random field model [27] or can be
rection for a prospective is chosen to achieve a given resolution [28]. These approaches can
VLt (W(n) 1 as(n))’s(n). ©) be extended to include the temporal smoothing parameters, but
this is beyond the scope of this paper. We have adjusted the spa-
If the sign of this second slope disagrees with the original slogél and temporal parameters to obtain resolution typical of that
thena is cut in half. used in clinical PET studies. Objective methods for selecting the
The logarithm in the likelihood function requires that the lin&veighting of the nonnegativity constraint are needed.
search in (5) is performed with the hard constraint that the for-
yvard projected rate function at any arrival time is nonnegativeVI' SIMULATION STUDIES AND PERFORMANCEEVALUATION
ie.,
We evaluated our method with simulated and real data. We
Ai (an) >0, Vi, k. simulated a blood flow data set using a single slice of the
Hoffman brain phantom. We evaluated the simulated data on
The negativity penalty in (4) is soft, allowing small negativgnhe basis of temporally averaged rate accuracy as described
values. The hard constraint can be satisfied by altering the siflow. We also applied our approach to real data from a
size in the update step of the PCG algorithm. In essence, we 8f€-raclopride study; our subjective evaluations focused on

using a bent, rather than truncated, line search [26]. The b@gbues that are known to have distinctly different dynamics
line search is illustrated in Fig. 2: At a given voxel there argith this tracer.

time intervals when the rate function may be essentially zero

bu'_[ the sgarch diregtion is negative. To prevent Fhis i_nterval frpm Simulation Study

being driven negative we “bend” the search direction, altering ] S

it such that it is no longer negative where the rate function is 1he Simulated data were based on a simplified model of the
zero. There are many possible alterations that could affect sgifiamics of a bolus injection of O-water using tissue time

a change, but we choose the one which causes the smflesClivity curves generated by the Kety autoradiographic model

norm change in the direction control vertices. (Fig. 3, cf. [29, Fig. 33]). We chose two extreme curves, one cor-
More precisely, consider a particular voxewe check each responding to very high blood flow, one to very low blood flow.
point z,,, to see if White matter voxels were assigned to have low blood flow, gray
matter voxels to have high blood flow; cerebral spinal fluid was
nj (Zm) = Z By (zm) wje <e and assigned the white matter curve at 20% magnitude. Within the
4 circular support of the reconstruction, the proportion of voxel
ZBZ (2m) dje <O (7) types were as follows: White matter 15%, gray matter 21%,
1] cerebral spinal fluid 4%, and the remainder background. We

used an 11-element B-spline basis with support from 0 s to 140
s; the spacing of the knot locations was determined by dividing a
medium blood flow curve into eight equal arc-lengths. We used
seven negativity penalty pointg.() in each knot interval. 50
dPent — g, — 2o Be (zm) dje ¢ (2m) @) realizations each with approximately 500 000 counts were gen-
3t Y (Be (zm))? " erated. No scatter or randoms were added or estimated and the

whered;, is the/th control vertex of theith voxel ind™ and
¢ = 10~2%. For each,,, for which this condition holds, we alter
the direction as follows
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Fig. 4 shows average voxel-wise bias-variance curves for the
three time points considered. The left plot shows performance as
: : : temporal resolution is varied, the right plot shows performance
GM : : as spatial resolution is varied. In each plot there are three sets
: : : of curves shown, one for each time point (23, 45, and 100 s).
Note that for each time point, for a given variance, the spline
C o : , , reconstruction has lower bias.
WM For the left plot showing the varying temporal resolution,
A : : : : each spline result (solid lines) shows the performance over
CSF E different temporal penalty parameters, while each static result
(dashed lines) shows the performance over different length
temporal intervals (1, 2, 4, 10, and 20 s). Note that there are a
Fig. 3. Three temporal functions defining truth in the simulation study. Grag@ir of nearly-overlapping spline results for each time point:
matter (GM) has highest peak and quick wash out, white matter (WM) has slgyhile we have a spline result for each of the five temporal
_rise_ and cerebral s_pinal fluid (CSF) has neglible activity. Dotted vertical "”‘?ﬁterval lengths, we only show those for 1 and 20 s; the 1-s
indicate knot locations. . .
result is above and to the right of the 20-s result. Observe
that the static results have nearly constant bias, which is to
simulations used the same system model as the reconstructisnexpected since the spatial resolution is fixed on this plot.
Each realization was reconstructed using 100 iterations.  Also note that, with decreasing temporal resolution, the static
We evaluated the method’s ability to estimate average ratrd spline estimates will eventually converge, as both will
over time intervals centered about three tintes, 23, 45, and essentially estimate a single static image based on all counts.
100 s. As a comparison, we estimated average rate using statithe right plot shows the results over different spatial resolu-
MAP reconstructions based on events arriving in the same timéns. On this plot, both the spline and static results show the
intervals; the MAP reconstruction method was based on theual bias-variance tradeoffs.
same system model and spatial prior and is the base from whiclfFig. 5 shows ROI bias-variance curves for 23 s, the time
the spline reconstruction code was developed. With our methetthe mode of the high flow curve. The top two plots are for the
we have two means to adjust temporal resolution: via the tegaudate ROIs, the bottom two are for the putamen ROIs. The
poral regularization parametarand by adjusting the length of jeft plots show performance as temporal resolution is varied,
the time interval; we did both. We considered 1-, 2-, 4-, 10the right plots show performance as spatial resolution is varied.
and 20-s intervals. We also varied spatial resolution in bofthe plots show a similar performance to the voxelwise averaged
our method and the static method by adjusting thparam- results: Varying temporal resolution, both 1- and 20-s interval
eter. The parameter ranges in the two different methods wesgeraged spline results are superior to the static results, which
chosen to approximately match noise and resolution propertiaave near-constant bias; for both spatial and temporal results,
Since measuring the spatial resolution of the spline methodfés a given variance, the spline reconstruction has lower bias.
not straightforward, we measured the point spread function of
the static reconstruction for the 20-s interval about 23; we B. Human Studies
found this to be 9.2-mm full-width at half-maximum for the™
second of three spatial resolutions considered. The!lC-raclopride study was performed using data from the
We considered voxel-wise squared bias and variance avECGAT HR + 4 scanner. We used a 15-element B-spline basis
aged over the whole image and region of interest (ROI) squangfih support over the whole acquisition duration of 95 min and
bias and variance. Four ROIs were defined based on the lafiot spacing was determined by equal spacing of 11 points
and right caudate and putamen, the two structures comprisiigng the head-curve. Single slice rebinning was used to create
the striatum; note that these bilateral regions are not symme®® 2-D list-mode data sets that were each independently recon-
in the Hoffman phantom. In addition to their neurological relstructed to form the final four-dimensional (4-D) image. Fig. 6
evance, these structures were chosen because they were shaws one slice of the tracer distribution for A€ study after
rounded by white matter and cerebral spinal fluid and, hen@ iterations. On a 450-MHz Sun Ultra workstation this took
susceptible to bias from limited spatial resolution. approximately 2 min/iteration/slice, or about one hour/image
While variance has a well known unbiased estimator, the nédr 30 iterations. Increased specific binding '0C-raclopride
ural estimator of squared bias is, itself, biased. With an assunip-the striatum is seen from 150 to 1200 s in Figs. 6(c) and
tion of Gaussian noise of magnitudé, we show in Appendix A 6(d). Fig. 6(b) shows three time activity curves for uptake in
that the expected value of squared bias estimated from 50 Mottte scalp, cortex and striatum for the regions of interest marked
Carlo realizations is positively biased by /50. Sinceo? itself  in Fig. 6(a). Note the faster rise in the sinus, reflecting the early
is unknown, correcting this bias with an estimated variance farrival of the tracer in the blood relative to brain tissue. These
each voxel or small ROIs is not useful, since the correction willvo observations demonstrate the ability of our method to retain
increase variability of the squared bias estimator, even leadispatialand temporal contrast.
to negative estimates! But for image averages and large ROIsWe were concerned that the nonmonotonic decrease in tracer
we found this correction to be useful and we have applied it tensity in striatum and cortex after peak uptake (approximately
the results below. 700 s) was artifactual. We reconstructed this data using different

0 20 40 60 80 100 120 140
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Fig. 4. \Voxel-wise average results of average rate estimation simulations, for 23, 45, and 100 s; solid lines are spline estimates, dasheitrestiaratss.
For each spatial and temporal resolution, 50 Monte Carlo realizations were created to produce images of squared bias and variance; the aeénzagesfithes
plotted. There are two ways to vary temporal resolution with the spline estimates and, hence, two curves for each spline result in the left drapdy tiosgly
overlap for the 45- and 100-s results. The lower curve is for averaging over a 20-s interval, the upper curve is for a 1-s interval.
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Fig. 5. ROI results of average rate estimation simulations, for time point 23 s; solid lines are spline estimates, dashed lines are static lestimatks; p
(+) indicate left ROIs, circleso right ROIs. For each spatial and temporal resolution, ROI squared bias and variance were calcuated based on 50 Monte Carlo

realizations. Each plot shows the left and right ROIs. There are two curves for each spline result in the left two graphs; the lower curve is fpozee@gbrs
interval, the upper curve is for a 1-s interval.
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Fig. 6. ''C-raclopride study from EXACT HR- +. (a) A 2-D transaxial section through striatum showing activity integrated over the full 5700-s acquisition.
(b) Decay-corrected time activity curves averaged over 25-voxel ROls for scalp (lower curve), cortex (middle curve), and striatum (upperesmepththines

are from the spline reconstruction, the jagged lines are from the static reconstructions. Sample images of the continuous time reconstinetidryssalotpling

the B-spline curves at each voxel at (c) time= 150 s and (d} = 1200 s.

knot locations and different numbers of knots. We found little We believe that direct estimation of 4-D spatiotemporal tracer
change in the estimated activity. This appears to indicate thths$tributions based on list-mode is an important direction for
the effect was not due to our curve parameterization. We alB&T. Many of the central issues in image reconstruction will
binned the data into 300-s static datasets with 25-s shifts (ileave to be revisited (e.g., scatter and randoms) and updated to
275-s overlap) and reconstructed each independently; while #tezount for the lack of temporal stationarity. We have intro-
time courses extracted from these images were much noisderced only basic solutions for these problems, but have demon-
the nonmonotonicity was again evident. This decrease coulddigated that continuous-time image reconstruction is a tractable
due to head motion or an unexpected physiological effect. problem and that it can offer superior performance relative to
static methods.

VII. DIScUssION ANDCONCLUSION APPENDIX

We have presented an approach and preliminary results for es- BIAS OF SQUARED BIAS ESTIMATOR

timating continuous time dynamic PET images from list-mode Here, we show that the natural estimator for squared bias is,
PET data. We modeled the dynamic tracer density as an inhoritself, biased. Letf be the true rate at a given voxel or ROI.
geneous Poisson process and parameterized the rate functi@nsf; be the rate estimate at voxefrom realizationk, & €
with a B-spline basis. We introduced the timogram as a me&{1s . .., K }. Letw,, be the error at voxelassociated with thith
to compactly represent the temporal information of list-modealization. We assume that this error is normally distributed,
data. The B-spline basis and the timogram’s spatial orderinogntered ab with variances?2. That is, the bias of the recon-
both contribute to an efficient implementation that makes tigruction method i$ and its variance s>
creation of continuous time reconstructions feasible. P

We have described and implemented approaches to scatter Je=J+wn

p pp 2

and randoms correction based on spatiotemporal independence, wi ~N (b7 o ) ’
though have left dead time for future work. We have presentedWe are interested in the variance and squared bias. We first
basic performance analysis with arbitrarily chosen tuning peensider variance; the unbiased estimator is

rameters for spatial and temporal regularization. For the con- -5 1 . N2
sidered range, our method out-performs a comparable static es- =K1 Z (fk - f-)
timate. While our method is 2-D, generalization to three dimen- k

sions is straight forward and simply involves use of 3-D systevyheref. is the average of the Monte Carlo realizations, that is
matricies (f;,)) instead of the 2-D ones we used here. fo=1/K)>, fr
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Now consider the squared bias

z??:(f.—f)Q.

To work out the expecation, first note

Then
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