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The classical model of blood oxygen level-dependent (BOLD)
responses by Buxton et al. [Buxton, R.B., Wong, E.C., Frank, L.R.,
1998. Dynamics of blood flow and oxygenation changes during brain
activation: the Balloon model. Magn. Reson. Med. 39, 855–864] has
been very important in providing a biophysically plausible framework
for explaining different aspects of hemodynamic responses. It also
plays an important role in the hemodynamic forward model for
dynamic causal modeling (DCM) of fMRI data. A recent study by
Obata et al. [Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong,
E.C., Frank, L.R., Buxton, R.B., 2004. Discrepancies between BOLD
and flow dynamics in primary and supplementary motor areas:
application of the Balloon model to the interpretation of BOLD
transients. NeuroImage 21, 144–153] linearized the BOLD signal
equation and suggested a revised form for the model coefficients. In
this paper, we show that the classical and revised models are special
cases of a generalized model. The BOLD signal equation of this
generalized model can be reduced to that of the classical Buxton
model by simplifying the coefficients or can be linearized to give the
Obata model. Given the importance of hemodynamic models for
investigating BOLD responses and analyses of effective connectivity
with DCM, the question arises which formulation is the best model for
empirically measured BOLD responses. In this article, we address this
question by embedding different variants of the BOLD signal equation
in a well-established DCM of functional interactions among visual
areas. This allows us to compare the ensuing models using Bayesian
model selection. Our model comparison approach had a factorial
structure, comparing eight different hemodynamic models based on
(i) classical vs. revised forms for the coefficients, (ii) linear vs. non-
linear output equations, and (iii) fixed vs. free parameters, ε, for
region-specific ratios of intra- and extravascular signals. Using fMRI
data from a group of twelve subjects, we demonstrate that the best
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model is a non-linear model with a revised form for the coefficients, in
which ε is treated as a free parameter.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Dynamic causal modeling; Balloon model; Effective connectiv-
ity; BOLD signal; Bayesian model selection; System identification
Introduction

In many models of effective connectivity, like structural
equation modeling (Horwitz et al., 1999; McIntosh and Gonzalez-
Lima, 1994; Büchel and Friston, 1997), psychophysiological
interactions (Friston et al., 2007), or multivariate autoregression
(Harrison et al., 2003; Goebel et al., 2003), coupling parameters
are estimated directly from the measured time-series. However,
the causal system architecture one wishes to identify exists at the
level of neuronal dynamics. In modeling dependencies among
measured data, one implicitly assumes that neural activity can be
observed directly. This is tenable for single neuron recordings,
but not for non-invasive techniques like functional magnetic
resonance imaging (fMRI) or electroencephalography (EEG). For
example, in fMRI, the relationship between neural activity and
measured blood oxygen level dependent (BOLD) signals is
complicated and not fully understood (Attwell and Iadecola,
2002; Lauritzen, 2004; Logothetis et al., 2001; Logothetis and
Wandell, 2004). In short, the interpretation of models of effective
connectivity, which ignore the transformation from the neural
activity to the BOLD measurements, can be difficult (Gitelman
et al., 2003).

To enable valid inferences about connectivity at the neural
level, effective connectivity models have to combine a model of
neural dynamics with a biophysically plausible forward model that
describes the transformation from neural activity to measured
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Fig. 1. Schematic summary of the hemodynamic forward model in DCM. Experimentally controlled input functions u evoke neural responses x, modeled by a
bilinear differential state equation, which trigger a hemodynamic cascade, modeled by 4 state equations with 5 parameters. These hemodynamic parameters
comprise the rate constant of the vasodilatory signal decay (κ), the rate constant for autoregulatory feedback by blood flow (γ), transit time (τ), Grubb's vessel
stiffness exponent (α), and capillary resting net oxygen extraction (ρ). The so-called Balloon model consists of the two equations describing the dynamics of
blood volume (ν) and deoxyhemoglobin content (q) (light grey boxes). Integrating the state equations for a given set of inputs and parameters produces predicted
time-series for ν and q which enter a BOLD signal equation λ (dark grey box) to give a predicted BOLD response. Here, we show the equations of the RBMN(ε)
model from this paper. For parameter estimation, an observation model is used that treats the observed BOLD response as a function of inputs and parameters
plus some observation error (see main text).
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signals. The inversion of such models furnishes estimates of both
neural and forward model parameters (see Stephan et al., 2004
for review). Dynamic causal modeling (DCM) of fMRI data uses
a model that conforms to this principle (Friston et al., 2003).1

DCM uses a hemodynamic forward model that is based on work
by Buxton et al. (1998) and its extension by Friston et al. (2000).
This model consists of three parts (Fig. 1). The first describes the
link between neural activity and regional cerebral blood flow
(rCBF) and is based on linear differential equations modeling a
dampened oscillator: changes in neural activity elicit an
exponentially decaying vasodilatory signal that is subject to
feedback-regulation by the flow it induces (Friston et al., 2000).
The second part concerns the dependence of the BOLD signal on
1 Clearly the concept of models of distributed neural responses that
include both neural state equations and forward equations is not restricted to
any particular measurement modality. Indeed, DCM implementations other
than for fMRI have been developed, e.g. for event-related potentials
measured with EEG/MEG (David et al. 2006) or invasively measured local
field potentials (LFPs; Moran et al. 2007).
rCBF-induced changes of blood volume and deoxyhemoglobin
content. This so-called “Balloon model” (Buxton et al., 1998)
describes the behavior of the post-capillary venous compartment
by analogy to an inflated Balloon, postulating a non-linear
dependence of BOLD signal on blood volume ν and deoxyhe-
moglobin content q. Together, these two components represent
the hemodynamic state equations which have been the focus of
many empirical and theoretical investigations of the BOLD
response (e.g., Deneux and Faugeras, 2006; Riera et al., 2004,
2006; Robinson et al., 2006) and, as a core component of DCM,
find widespread use in analyses of effective connectivity (e.g.,
Bitan et al., 2005; Mechelli et al., 2004; Lee et al., 2006; Stephan
et al., 2007a). Finally, the output or BOLD signal change
equation λ(q,ν) links ν and q to BOLD signal change (Fig. 1).
This paper is only concerned with the last part of the overall
hemodynamic forward model; i.e., different variants of the BOLD
signal change equation. For brevity, we will refer to the BOLD
signal change equation as the “BOLD model” (BM) throughout
the paper.

Over the last years, a variety of extensions (and alternatives)
have been proposed for both the hemodynamic state equations



2 Using BMS, we directly compared BMs with the corrected coefficients
in Eq. (3) against the original coefficients in Eq. (2). Model comparison
showed that the correction in Eq. (3) yields a substantial improvement
(group Bayes factor N1011). The original coefficients from Eq. (2) are
therefore not further considered in this paper.
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and the BM (e.g., Aubert and Costalat, 2002; Davis et al., 1998;
Mandeville et al., 1999; Sotero and Trujillo-Barreto, 2007;
Uludag et al., 2004; Zheng et al., 2002). In particular, Buxton
et al. (2004) and Obata et al. (2004) suggested a revision of their
original formulation of the BM. Compared to the classical BM
(Buxton et al., 1998), Obata et al. (2004) assumed a linear
dependence of BOLD signal on blood volume v and deoxyhe-
moglobin content q. Furthermore, they offered revised definitions
of the coefficients, which were based on more recent experi-
mental data and depended explicitly on acquisition-specific
parameters like echo time (TE).

Given the importance of hemodynamic modeling for investiga-
tions of BOLD responses and analyses of effective connectivity
with DCM, the question arises: which formulation is a more
appropriate model of empirically measured BOLD responses? In
this article, we address this question by embedding different
variants of the BM in a well-established DCM of functional
interactions in the ventral stream of the visual cortex (Stephan et al.,
2007a), which is fitted to BOLD responses that were measured in a
group of twelve subjects (Stephan et al., 2003). We then compare
the DCMs with different BMs by means of Bayesian model selec-
tion (BMS; Penny et al., 2004a). Specifically, we addressed the
following questions:

- Is the more recent model by Obata et al. (2004) a better model
than the classical model by Buxton et al. (1998) for measured
BOLD responses?

- Can the models be improved further by treating ε, the ratio of
intra- and extravascular signal, as a free parameter that is
estimated from the data?

- Can a non-linear variant of the revised model be derived by
requiring additional consistency in the approximations and
does this variant outperform other models?

Using fMRI data from a group of 12 subjects (Stephan et al.,
2003), we demonstrate that the best model is a non-linear model
with a revised form for the coefficients, in which ε is treated as a
free parameter. In what follows, we review the hemodynamic
model, dynamic causal modeling and Bayesian model selection.
We then consider the BM variants that are evaluated in the final
section.

Theory

In the treatment of the hemodynamic state variables below, we
follow Buxton et al. (1998) and Friston et al. (2000) in using
capital letters for specific dimensional values of a state variable and
lower case letters for normalized state variables (normalized to
their values at rest).

The classical BOLD signal model by Buxton et al. (1998)

In their pioneering work, Buxton et al. (1998) modeled the
BOLD signal at rest, S0, as a sum of intravascular (SI) and
extravascular (SE) signal, weighted by resting venous blood
volume fraction V0:

S0 ¼ ð1� V0ÞSE þ V0SI ð1Þ

Based on theoretical and empirical results, Buxton et al. (1998)
derived the following non-linear equation for BOLD signal change
ΔS during activation, relative to resting signal S0 (see lower part of
Fig. 1):

k q;vð Þ ¼ DS
S0

cV0 k1 1� qð Þ þ k2 1� q
v

� �
þ k3 1� vð Þ

h i
;

k1 ¼ 7E0;

k2 ¼ 2;

k3 ¼ 1� ec2E0 � 0:2 ð2Þ

In this BM, ν and q are the venous blood volume and
deoxyhemoglobin content (both normalized to their values at rest),
and E0 is the oxygen extraction fraction at rest. The coefficients
k1...k3 were estimated assuming a field strength of 1.5 T and a TE
of 40 ms. At first glance, the BOLD equation in Buxton et al.
(1998) does not seem to possess anything analogous to ε, the ratio
of intra- and extravascular signal. However, the derivation of this
equation in the appendix to Buxton et al. (1998) includes a
parameter β which is equivalent to ε, but is substituted in their final
equation by an approximation based on results by Boxerman et al.
(1995). Without this approximation, one obtains k3=1−ε. Buxton
et al. (1998) used fixed values E0=0.4 and ε=0.4 for which
k3=2E0−0.2=1−ε.

The coefficients k1...k3 in Eq. (2), as published in Buxton et al.
(1998) and used subsequently in many studies, can be improved in
two ways. The first improvement is to drop any assumptions about
TE and use the full expressions that Buxton and colleagues derived
initially and then simplified. The second improvement involves
correcting an error in the derivation of the coefficient k2. This error
was mentioned in the later article by Obata et al. (2004) but its
nature was not specified. Additionally, we use a more accurate
expression for k1 that does not rely on the assumption that V0 is
very small. Together, these improvements lead to the following
expressions for the coefficients:

k1 ¼ ð1� V0Þ4:3#0E0TE;

k2 ¼ 2E0;

k3 ¼ 1� e ð3Þ

Here, ϑ0=40.3 s
−1 is the frequency offset at the outer surface of the

magnetized vessel for fully deoxygenated blood at 1.5 T. In this
paper, any results for models based on the classical formulation by
Buxton et al. (1998) use this improved form of the coefficients as
shown in Eq. 3.2

The balloon model
The BM described above requires that one knows the evolution

of blood volume ν and deoxyhemoglobin content q. The Balloon
model by Buxton et al. (1998) proposed differential equations for ν
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and q, based on two main assumptions about the biophysical
mechanisms involved: (i) small post-capillary vessels react to an
increase in inflowing blood like an inflating balloon, and (ii)
oxygen extraction is tightly coupled to blood flow. The first
assumption means that changes in (normalized) venous blood
volume ν correspond to differences in inflow fin and outflow fout
with a time constant τ:

s
dv
dt

¼ fin tð Þ � fout vð Þ ð4Þ

Here, τ is the mean transit time of blood, i.e., the average time
blood takes to traverse the venous compartment, and corresponds
to the ratio of resting blood volume V0 to resting blood flow F0:
τ=V0/F0 . Following the results by Grubb et al. (1974)3, outflow is
modeled as a function of volume with a single parameter α that
represents the resistance of the venous balloon, i.e., vessel stiffness:

foutðvÞ ¼ v1=a ð5Þ
The second assumption above (i.e., that oxygen extraction is

tightly coupled to blood flow) determines the equation for
deoxyhemoglobin content q. Generally, the change in q corre-
sponds to the delivery of deoxyhemoglobin into the venous
compartment, minus that expelled. Assuming fully oxygenated
hemoglobin in pre-capillary blood, the delivery of deoxyhemoglo-
bin into the venous compartment corresponds to the product of
blood inflow and the oxygen extraction fraction E, whereas its
clearance is the product of outflow and deoxyhemoglobin
concentration q/ν:

s
dq
dt

¼ fin tð ÞEð fin;E0Þ
E0

� fout vð Þ qðtÞ
vðtÞ ð6Þ

Assuming that any extracted oxygen is metabolized immedi-
ately, thereby maintaining a tissue oxygen concentration of zero,
the oxygen gradient across the capillary wall and oxygen extraction
rate depends entirely on oxygen delivery, and thus on blood flow.
Buxton and Frank (1997) showed that a reasonable approximation
across a wide range of conditions is

Eð finÞ ¼ 1� ð1� E0Þ1=fin ð7Þ
Together, these considerations led Buxton et al. (1998) to

propose the following state equations for v and q (from now on,
blood inflow will simply be denoted as f ):

s
dv
dt

¼ f tð Þ � vðtÞ1=a

s
dq
dt

¼ f tð Þ 1� ð1� E0Þ1=f
E0

� vðtÞ1=a qðtÞ
vðtÞ ð8Þ
3 Subsequent work by Mandeville et al. (1999) indicated that this
approximation may not be perfect for transient BOLD responses, and
Buxton et al. (2004) offered a more complex formulation of viscoelastic
effects on blood outflow. In this study, we retained the original
approximation by Grubb et al. (1974). This is supported by recent results
based on BMS (Jacobsen et al., in press) which showed that the more
complex model by Buxton et al. (2004) showed inferior generalizability,
compared to the simpler model by Grubb et al. (1974).
Neurovascular state equations
Eq. (8) shows that the only state variable that ν and q, and thus

the BOLD signal, depend on is blood inflow f. The issue of how
blood flow depends on neural activity was addressed by Friston
et al. (2000). In their completion of the Buxton model, vascular
responses to neural activity correspond to a dampened oscillator:
changes in neural activity x elicit an exponentially decaying
vasodilatory signal s that is also subject to feedback regulation by
the flow f it induces (Fig. 1):

ds
dt

¼ x� js� γ f � 1ð Þ ð9Þ

df
dt

¼ s ð10Þ

Here, κ and γ are the rate constants of signal decay and feedback
regulation, respectively. Note that f is normalized flow with regard
to resting flow F0, and therefore the feedback regulation term ( f−1)
in Eq. (9) becomes zero during rest.

This linear model of the relation between neural activity and
rCBF concurs with several experimental results (Friston et al.
1998; Miller et al. 2001). In particular, the results of combined
perfusion and BOLD measurements by Miller et al. (2001) during
various stimulation conditions were “consistent with a model with
a non-linear step from stimulus to neural activity, a linear step from
neural activity to CBF change, and a non-linear step from CBF
change to BOLD signal change.” This is exactly what the
hemodynamic model represents. Note that neural activity x,
driving the vasodilatory signal in Eq. (9), is the output from the
neural state equation in DCM (see Fig. 1 and below). This provides
for a flexible model of the link between neural activity and rCBF
that can capture a large variety of transients, sustained responses,
and adaptation effects—in brief, any kind of neural dynamics that
can be modeled with bilinear differential equations as used in
DCM (see Fig. 1 in Penny et al. 2004b and Fig. 5 in Stephan et al.
2007b for examples).

Revised coefficients for the BOLD signal model

Buxton and colleagues (Obata et al. 2004) recently proposed a
revised form of the classical BM (Eq. (2)). The critical changes
they proposed were (i) a linear dependence of BOLD signal on
blood volume v and deoxyhemoglobin content q and (ii) new
coefficients k1...k3 which were computed on the basis of more
recent experimental data and which explicitly consider acquisi-
tion-specific TE and the ratio of intra- and extravascular signals
(ε):

DS

S0
cV0 k1 þ k2ð Þ 1� qð Þ þ k2 þ k3ð Þ 1� vð Þ½ �;

k1 ¼ 4:3#0E0TE;

k2 ¼ er0E0TE;

k3 ¼ e� 1 ð11Þ

According to Obata et al. (2004), for a field strength of 1.5 T,
r0=25 s− 1 is the slope of the relation between the intravascular
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relaxation rate R2I
* and oxygen saturation. Furthermore, they chose

fixed values for the resting oxygen extraction fraction (E0=0.4)
and for the ratio of intra- and extravascular signal (ε=1.43).

A generalized BOLD signal model

Both the classical BM by Buxton et al. (1998) and the more
recent version by Obata et al. (2004) can be regarded as special
cases of the following generalized BM:

DS
S0

cV0 k1 1� qð Þ þ k2 1� q
v

� �
þ k3 1� vð Þ

h i

k1 ¼ 4:3#0E0TE

k2 ¼ er0E0TE

k3 ¼ 1� e ð12Þ

This model is derived in Appendix B, starting from the same
point as Obata et al. (2004), but using more consistent
approximations. It retains the non-linear output equation in the
classical Buxton model and combines it with the revised
coefficients from the Obata model. It is more general than these
two models: its coefficients can be reduced to those of the
classical model, and its derivation can be simplified to yield the
Obata model (see Appendix B). This model is a useful starting
point to consider a number of BM variants that differ in terms
of (i) classical (Buxton) vs. revised (Obata) forms for the
coefficients, (ii) linear vs. non-linear output equations, and (iii)
fixed vs. free parameters, ε, for the ratio of intra- and
extravascular signals. These variants, all of which we fitted to
empirical data and compared using BMS, are described in the next
three sections. The nomenclature of these models is summarized
in Table 1.

Classical vs. revised forms for the coefficients
The classical model obtains by simplifying the revised

expressions for the coefficients in Eq. (12) through reduction: it
assumes a fixed TE of 40 ms and omits the dependence of k2 on ε,
the ratio of intra- and extravascular signals. In the following, all
models based on BMs with classical coefficients will be denoted as
“CBM” whereas all models based on BMs with revised
coefficients will be referred to as “RBM” (compare Table 1). In
Table 1
This table summarizes the nomenclature used to describe the eight different
models compared in this study

Model name Coefficients BOLD equation ε

CBMN Classical (Buxton et al., 1998) Non-linear Fixed
CBMN(ε) Classical (Buxton et al., 1998) Non-linear Free
CBML Classical (Buxton et al., 1998) Linear Fixed
CBML(ε) Classical (Buxton et al., 1998) Linear Free
RBMN Revised (Obata et al., 2004) Non-linear Fixed
RBMN(ε) Revised (Obata et al., 2004) Non-linear Free
RBML Revised (Obata et al., 2004) Linear Fixed
RBML(ε) Revised (Obata et al., 2004) Linear Free
short, the distinction between CBM and RBM rests on the
substitution:

k1 ¼ ð1� V0Þ4:3#0E0TE;
k2 ¼ 2E0;
k3 ¼ 1� e

k1 ¼ 4:3#0E0TE
Y k2 ¼ er0E0TE

k3 ¼ 1� e

Linear vs. non-linear BOLD equations
Over and above the non-linearities in the state equations for

blood volume and deoxyhemoglobin content (Eq. (8)), the Buxton
BM and our generalized BM have a non-linear form (Eqs. (2) and
(12)) whereas the Obata BM is linear (Eq. (11)). The Obata BM can
be regarded as a linearized version of the generalized BM which is
due to a simplified approximation to the exact signal change
equation (see Appendix B). Concerning the Buxton BM, the non-
linearity is introduced by the intravascular term: φ(q,ν)=1−q/ν. In
order to obtain a linearized version of it, it therefore suffices to
complement the reduction of the coefficients described above with a
linearization of this term around the resting state (q=ν=1), using the
first-order Taylor approximation; φ(q,ν)≈ν−q:

DS
S0

cV0 k1 1� qð Þ þ k2 1� q
v

� �
þ k3 1� vð Þ

h i
YV0 k1 þ k2ð Þ 1� qð Þ þ k3 � k2ð Þ 1� vð Þ½ � ð13Þ

Throughout this paper, linear and non-linear models are
distinguished by the subscripts “L” and “N”, respectively. For
example, the Obata model is referred to as “RBML”, whereas the
original Buxton model is referred to by “CBMN” (see Table 1).

Free vs. fixed parameterization of intra- and extravascular signals
A critical parameter in BM is ε, the ratio of intra- and

extravascular signals. This quantity is not well characterized
because it is difficult to disambiguate intra- and extravascular
BOLD signal experimentally. Obata et al. (2004) estimated ε=1.43
by assuming intra- and extravascular relaxation time constants of
T2I* =90 ms (corresponding to R2I

* =11.1 s−1) and T2E* =50 ms,
respectively, and equal spin-densities in intra- and extravascular
compartments. The exact basis of these assumptions is not quite
clear. For the T2I* value, Obata et al. (2004) referred to the study by
Li et al. (1998) who measured T2* values in large vessels of pigs.
However, in their paper, Li et al. (1998) state: “... the R2

* values of
arterial (Y≈93%) and venous (Y≈75%) blood measured in our pig
studies are approximately 4 and 6 s−1, respectively, whereas those
measured in human volunteers in our previous work are
approximately 5 and 10 s−1, respectively...” For their T2E* estimate,
Obata et al. (2004) did not give a reference.

Overall, there is considerable uncertainty about the value of ε in
the literature. In contrast to Obata et al. (2004), Buxton et al. (1998)
assumed that ε=0.4. Recent data from Lu and Van Zijl (2005),
obtained with a “vascular space occupancy” technique that nulls
intravascular contributions to the BOLD signal, suggest the
contribution of extravascular signal to the total change in R2

* during
activation is 47% at 1.5 T. This implies that in their measurements
ε≈1. Furthermore, the results of Silvennoinen et al. (2006) imply
that ε depends on complex interactions between TE and field
strength.

This suggests that instead of fixing the value of ε, it may be
more appropriate to acknowledge the uncertainty about it and make
it a free parameter of the BM. Additionally, because different brain
regions can differ in their vascularization and therefore in the
intravascular contribution to the measured BOLD signal, different



Fig. 2. This figure shows a log-normal probability density function (solid line) with a mean of 1 and a variance of 0.5. For comparison, a Gaussian probability
density function with identical mean and variance is shown (dashed line). Note that in contrast to the Gaussian, the support of the log-normal density is restricted
to positive numbers, as indicated by the dotted vertical line.
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values of ε for each brain area in the DCM may be appropriate. The
question remains however, how one should choose the prior
density of ε. Since ε is the ratio of intra- and extravascular BOLD
signal at rest, it is positive. This is assured with a log-normal prior
density (see Fig. 2). Furthermore, given our uncertainty, this prior
should be fairly flat. In our models, we used ε=με exp(ϑε), where
the scale-parameter ϑε had a prior mean of zero and a variance of
0.5. This allows for approximately an order of magnitude variation
about με; a range that is substantially larger than the estimates of ε
described above. Furthermore, we chose με=1 (i.e., equivalent
intra- and extravascular signal contributions at rest). This is a value
roughly in the middle of the ε estimates at 1.5 T reported so far (see
above).

The distinction between treating ε as fixed or free parameter
induces the final variant of the BMs we considered in this study.
In this paper, a model in which ε is treated as a free parameter
for each area is indicated by the suffix “(ε)”, whereas a model
in which ε is a fixed parameter does not have a suffix (see
Table 1).

Methods

Dynamic casual modeling (DCM)

DCM for fMRI uses a simple model of neural dynamics in a
system of n interacting brain regions where neural population
activity of each region is represented by a single state variable. It
models the change of this neural state vector x in time as a bilinear
differential equation:

dx
dt

¼ Aþ
Xm
j¼1

ujB
ðjÞ

 !
xþ Cu ð14Þ
Here, the A matrix represents the fixed (context-independent or
endogenous) strength of connections between the modeled
regions, and the matrices B(j) represent the modulation of these
connections (e.g., due to learning, attention, etc.) induced by the
jth input uj as an additive change. Finally, the C matrix represents
the influence of direct (exogenous) inputs to the system (e.g.,
sensory stimuli). Note that all parameters are rate constants and are
thus in units of s− 1.

To explain regional BOLD responses, DCM for fMRI combines
this model of neural dynamics with the hemodynamic model
described above. Together, the neural and hemodynamic state
equations yield a deterministic forward model with hidden states.
For any given combination of parameters θ and inputs u, the
measured BOLD response y is modeled as the predicted BOLD
signal h(u,θ) plus a linear mixture of confounds Xβ (e.g., signal
drift) and observation error e:

y ¼ hðu;hÞ þ Xbþ e ð15Þ

DCM uses a fully Bayesian approach to parameter estima-
tion, with empirical priors for the hemodynamic parameters and
conservative shrinkage priors for the coupling parameters (see
Friston, 2002 and Friston et al. 2003 for details). Briefly, the
posterior moments are updated iteratively using variational
Bayes under a fixed-form Laplace (i.e., Gaussian) approxima-
tion, q(θ), to the conditional density p(θ|y). This includes a
gradient ascent on a variational free-energy bound on the
marginal likelihood to optimize the maximum a posteriori (MAP)
estimate of the parameters in the E-step of an EM algorithm,
whereas the M-step is concerned with optimizing hyperpara-
meters λ that control the covariance components of observation
error.
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Bayesian model selection (BMS)

Given some observed data, which of several alternative models
is optimal? The decision cannot be made solely by comparing the
relative fit of competing models. One also needs to account for
differences in complexity; i.e., the number of free parameters and
the functional form of the generative model (Pitt and Myung,
2002). This is important because as model complexity increases, fit
increases monotonically, but at some point the model will start
fitting noise that is specific to the particular data (i.e., “over-
fitting”) and thus becomes less generalizable across multiple
realizations of the same underlying generative process. Therefore,
the question “What is the optimal model?” can be reformulated as
“What is the model that represents the best balance between fit and
complexity?” This is the model that maximizes the model
evidence:4

pðyjmÞ ¼
Z

pðyjh;mÞpðhjmÞdh ð16Þ

Here, the numbers of free parameters (as well as the functional
form) are subsumed by the integration. Unfortunately, this integral
cannot usually be solved analytically; therefore an approximation
to the model evidence is used. This is usually the free-energy
bound on the log-evidence (Friston et al., 2007). In DCM, the
negative free energy F is the objective function for inversion:

F ¼ lnpðyjmÞ � KL½qðhÞ;pðhjy;mÞ� ð17Þ

Here, KL denotes the Kullback–Leibler divergence between
the approximating posterior density q(θ) and the true posterior
p(θ|y,m) (Friston et al., 2007). After convergence of the estimation
scheme, the KL term is minimized and F≈ ln p(y|m). Rewriting
Eq. (17) as

F ¼ hlogpðyjh;mÞiq � KLðqðhÞ;pðhÞÞ ð18Þ

adds a useful perspective, The two terms in Eq. (18) can be
understood as encoding the two opposing requirements of a good
model: that it explains the data and is as simple as possible (i.e.,
uses minimal number of parameters that deviate minimally from
their priors). Eqs. (17) and (18) are derived in Appendix A.

To quantify the relative goodness of two models mi and mj, the
differences in their log-evidences can be transformed into a Bayes
factor (BF):

BFij ¼ pðyjmiÞ
pðyjmjÞcexp Fi � Fj

� � ð19Þ

The group Bayes factor (GBF) for any given model mi, relative
to mj, is

GBFij ¼ exp
X
k

Fi � Fj

 !
¼ j

k
BFkij ð20Þ
4 Model comparison based on the evidence is appropriate if all models
have identical a priori probabilities. If this is the case, as in the present
study, the model evidence p(y|m) is identical to the posterior probability of
the model, p(m|y).
where k indexes subjects. As detailed in Stephan and Penny
(2007), the GBF is equivalent to the product of the subject-specific
Bayes factors for a given model comparison. It rests on the
assumption that model evidences are independent across subjects;
this is tenable if the subjects are statistically independent samples
from the population. Furthermore, given a flat prior on the model,
the product of model evidences is equivalent to multiplying the
posterior probabilities of all models.

Just as conventions have developed for using p-values in
frequentist statistics, there are conventions for Bayes factors. For
example, Raftery (1995) suggests an interpretation of Bayes
factors as providing weak (BFb3), positive (3≤BFb20), strong
(20≤BFb150), or very strong (BF≥150) evidence of one model
over another. A complementary index to the GBF is the positive
evidence ratio (PER; Stephan and Penny, 2007), i.e., the number of
subjects where there is positive (or stronger) evidence for model mi

divided by the number of subjects with positive (or stronger)
evidence for model mj

PERij ¼
jk : BFk

ijN3j
jk : BFk

jiN3j
ð21Þ

where k=1,…,N and ∣·∣ denotes set size. The GBF is sensitive to
outliers, whereas the PER is not. In contrast, the PER is insensitive
to the magnitude of the differences across subjects while the GBF
is not. Therefore, the GBF and the PER can be used as com-
plementary measures: the GBF gives a quantitative account of the
difference, pooling over all data (i.e., subjects) but ignoring inter-
subject variability, whereas the PER describes the qualitative
reproducibility of model comparison over subjects.

Using DCM and BMS to evaluate different hemodynamic models

We compared the variants of hemodynamic models described
above by placing them in a DCM and comparing the resulting
models using BMS. We used a well-characterized DCM of
interacting visual areas as a vehicle for this comparison. This
DCM is the four-area ventral stream model described by
Stephan et al. (2007a), which had emerged as the optimal
model from a systematic comparison of sixteen alternatives.
Fig. 3A shows the structure of this model. The fMRI data are
from the study by Stephan et al. (2003) and were obtained at
1.5 T and a TE of 66 ms. The advantage of using a full DCM
(instead of modeling a single area as in Friston, 2002) is
twofold: first, the resulting inference does not depend on the
choice of a particular region, and second, the neural state equa-
tion in DCM can model a wide range of neuronal transients,
sustained responses, and adaptation effects and thus affords much
higher realism than other hemodynamic models (see Discussion).
Furthermore, our comparisons were performed separately for each
of 12 subjects, to avoid conclusions that were specific to a parti-
cular individual.

Our model comparison adopted a factorial approach: we
compared (i) classical vs. revised forms for the coefficients, (ii)
linear vs. non-linear BMs, and (iii) fixed vs. free ε. All combi-
nations were tested so that we could establish the relative
importance of the three model attributes. This resulted in eight
DCMs per subject. As an additional reference model for
displaying the log-evidences, we chose the model of Obata et al.
(2004) in its original implementation, where both ε and resting



Fig. 3. (A) Summary of the DCM used in this evaluation study (see Stephan et al., 2007a for details). This is a four-area model, comprising reciprocally connected
lingual gyrus (LG) and fusiform gyrus (FG) in both hemispheres. Non-foveal visual stimuli (words) were presented in either the right (RVF) or left (LVF) visual
field with a randomized stimulus onset asynchrony between 1.5 and 2.5 s during 24 s blocks; these were modeled as individual events driving contralateral LG
activity. During the instruction periods, bilateral visual field (BVF) input was provided for 6 s; this was modeled as a box-car input to LG, in both hemispheres.
Connections were modulated by task and stimulus properties (grey dotted lines). Intra-hemispheric LG→FG connections were allowed to vary during a letter
decision (LD) task, regardless of visual field. In contrast, inter-hemispheric connections were modulated by task conditional on the visual field (LD|LVF and LD|
RVF). (B) This figure provides an anecdotal example of how two different models (red solid line: RBMN(ε); blue dashed line: RBML) fit measured BOLD data
(black solid line). For this example, we chose the first 160 scans from the left fusiform gyrus in a single subject from this study. The x-axis denotes seconds, y-axis
denotes percent signal change.
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oxygen extraction fraction, E0 have a fixed value. In our experi-
ence, treating E0 as a free parameter typically improves the
evidence of hemodynamic models. Therefore, all of our eight
Fig. 4. Summary of the model comparison results. This graph compares the eight
revised coefficients, linear vs. non-linear BOLD equations, fixed ε vs. free ε) again
fixed values for E0 and ε.). The figure shows the log of the group Bayes factor (
summed log-evidence for the reference model). Except for the reference model, al
model names.
models treated E0 as a free parameter. Indeed, model comparison
showed that all eight models were superior to the reference model
(see Fig. 4).
DCMs resulting from the factorial structure of our comparison (classical vs.
st a reference model (the original revised model by Obata et al., 2004, with
i.e., the log model evidence summed across the twelve subjects, minus the
l models treated E0 as a free parameter. See Table 1 for interpretation of the



Table 3
This table shows the individual Bayes factors, for each of the twelve subjects
in the group studied, for selected comparisons of the non-linear RBMN

model

Subjects RBMN vs. RBML RBMN vs. CBMN RBMN(ε) vs. RBML(ε)

1 8.34E−01 7.23E−02 9.76E−01
2 3.19E+00 2.44E−03 1.96E+00
3 2.08E+00 4.50E−03 1.59E+00
4 4.02E+00 5.01E−04 2.18E+00
5 1.73E+00 2.61E−03 1.42E+00
6 3.82E+00 5.82E−04 2.32E+00
7 2.04E+00 1.08E−01 1.67E+00
8 1.36E+00 2.31E−03 1.17E+00
9 1.69E+00 1.97E−01 1.48E+00
10 1.38E+00 3.38E−01 1.21E+00
11 1.28E+00 2.89E−02 1.19E+00
12 2.98E+00 1.49E−01 2.12E+00
Group BF 3.63E+03 4.32E−23 1.92E+02
PER 3:0 0:11 0:0

BF=Bayes factor, PER=positive evidence ratio.
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Results

The same DCM, equipped with different BOLD output
equations, was fitted to the empirical fMRI data from each subject.
Fig. 4 summarizes the results of all model comparisons. For each
model, it shows the log of the GBF; i.e., the sum of its log-evidences
across the group minus the summed log-evidence for the reference
model (cf. Eq. (20)). It can be seen that the best of all models is the
non-linear model with revised coefficients and free ε, i.e., RBMN(ε).
In the following, we describe the individual comparisons in more
detail. We first report the direct comparison between the classical
Buxton model (CBMN) and the Obata model (RBML). These two
models differ in terms of both reduction (of the coefficients) and
linearization; therefore we then investigate whether any differences
depend on treating ε as a free or a fixed parameter. Finally, we
examine the role of non-linear vs. linear BOLD models.

Comparing the Buxton model (CBM) vs. the
Obata model (linear RBM)

First, we investigated the effect of freeing E0 in the Obata model.
Our implementation, which treated E0 as a free parameter (i.e.,
RBML), was slightly superior to the original formulation by Obata
et al. (2004) in which E0 had a fixed value (GBF=3.49×102;
PER=1:0; second column of Table 2). Note that the latter is used as a
reference model for plotting the results in Fig. 4. In a next step, we
compared the linear RBMwith the classical Buxton model (CBMN).
This comparison indicated that CBMN was superior in each and
every subject (PER=12:0), giving a GBF of 8.41×1025 (Table 2,
third column). We next investigated the two possible reasons why
RBML performed worse than CBMN: (i) a suboptimal value of ε,
and/or (ii) the failure to model non-linearities in the BOLD equation.

Fixed vs. free ε

For the linear RBML, freeing ε dramatically improved the model
evidence: RBMLwas clearly inferior to RBML(ε) (GBF=2.12×10

−30;
PER=0:12; Table 2, fourth column). RBML(ε) also performed better,
albeit only slightly, than CBMN (GBF=5.60×103, PER=2:1).
Table 2
This table shows the individual Bayes factors, for each of the twelve subjects
in the group studied, for selected comparisons of the RBML model against
other model variants

Subjects RBML vs. reference RBML vs. CBMN RBML vs. RBML(ε)

1 3.78E+00 8.66E−02 4.34E−02
2 1.35E+00 7.63E−04 3.25E−03
3 1.33E+00 2.17E−03 3.62E−03
4 1.65E+00 1.25E−04 1.04E−08
5 1.14E+00 1.51E−03 1.48E−03
6 1.05E+00 1.52E−04 1.52E−04
7 1.62E+00 5.28E−02 8.77E−02
8 1.43E+00 1.70E−03 3.39E−04
9 2.38E+00 1.16E−01 1.27E−01
10 1.79E+00 2.46E−01 2.49E−01
11 1.47E+00 2.26E−02 1.59E−02
12 1.80E+00 5.01E−02 1.19E−01
Group BF 3.49E+02 1.19E−26 2.12E−30
PER 1:0 0:12 0:12

BF=Bayes factor, PER=positive evidence ratio.
In contrast, for CBMN, freeing ε did not improve it and actually
slightly decreased its log-evidence: CBMN(ε) performed worse
than the original CBMN with fixed ε (GBF=5.24×10− 2,
PER=1:3). These comparisons illustrate that å plays a different
role within the linear RBML(ε) and the non-linear CBMN(ε),
respectively: in the latter, including ε as an additional free
parameter per region led to an increase in model complexity (by
increasing the overall number of model parameters and changing
how other parameters had to deviate from their priors) that
outweighed the improvement in data fit, whereas in the former it
did not. Would the same results also hold for the linear CBML(ε)
and the non-linear RBMN(ε)?

The influence of non-linearities in the BOLD equation

Fitting the linear CBML to the data and evaluating its log-evidence
showed that it performed worse than the other CBM variants
described above (see Fig. 4).With fixed ε, although it was still clearly
superior to the linear RBML (GBF=1.57×1021, PER=12:0), it was
not as good as the original CBMN (GBF=1.87×10−5, PER=0:3),
and the linear RBML(ε) (GBF=3.34×10

−9, PER=0:3). Freeing ε
further decreased its log-evidence: the linear CBML(ε) turned out to
be the worst of all CBM variants tested here (see Fig. 4).

When the non-linear RBMN was evaluated using BMS, using a
fixed ε, it was superior to the linear RBML with fixed ε
(GBF=3.63 × 103; PER=3:0), but inferior to the CBMN

(GBF=4.32×10−23; PER=0:11) (see Table 3). However, when ε
was treated as a free parameter in RBMN, it became superior to all
other models (see Fig. 4). It even performed slightly better than
the previously best model, the linear RBML(ε) (GBF=1.92×10

2).
However, examination of the subject-specific BFs in Table 3
(rightmost column) shows that this improvement is fairly subtle:
the individual BFs are only in the range 0.97 to 2.32. This
indicates that the differences are very small at the level of
individual subjects. However, given the consistent direction of the
individual BFs over the group, the GBF reflects clear evidence in
favor of the non-linear RBMN(ε). In summary, freeing ε decreased
the goodness of both linear and non-linear CBMs, but improved
both linear and non-linear RBMs, with the non-linear RBMN(ε)
emerging as the best model from our comparisons.



5 This is also true for first-level Bayesian tests since these take into account
the conditional dependencies among the parameters (cf., Friston et al. 2003).

Fig. 5. This figure demonstrates the effect that changing the resting oxygen extraction fraction, E0, and the ratio of intra- to extravascular BOLD signal at rest, ε,
has on the shape and amplitude of the hemodynamic impulse response as generated by the RBMN (solid lines) and CBMN (dotted lines) models. Colors indicate
different values of ε (see legend). Vertical lines indicate the position of the response maximum.
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Analysis of posterior covariances and robustness of connectivity
estimates

An interesting issue is whether estimates of the new parameter ε
allow for straightforward interpretation, or whether this parameter
exhibits conditional dependencies with other parameters. The
region-specific parameter estimates for ε, averaged across subjects,
were 0.63±0.43 (left lingual gyrus, LG), 0.58±0.36 (right LG),
1.98±0.45 (left fusiform gyrus, FG), and 1.38±0.46 (right FG). It
is striking that for the regions receiving direct inputs (left and right
LG; compare Fig. 3A) the estimates are lower than the prior mean
of ε. In contrast, for the regions not receiving direct inputs (left and
right FG), they are higher.

As demonstrated in Fig. 5, increasing ε increases the amplitude
of the evoked BOLD response (although note that the effect of
changing å depends on the value of E0). This effect is similar to
that achieved by increasing the driving inputs (C in Eq. (14)). In
order to fit a given BOLD response, any change in ε or C,
respectively, would therefore have to be compensated, to some
degree, by changing the other parameter in the opposite direction.
This means that the two parameters are likely to show inverse
conditional correlations. This was confirmed by an analysis of the
estimated posterior covariances of the parameters in the RBMN(ε)
model. Since covariance matrices are difficult to interpret visually,
we normalized the posterior covariance matrix from each subject to
provide a posterior correlation matrix. Fig. 6 shows the average
posterior correlation matrix over subjects. The rectangles in this
figure highlight three results: first, ε shows a fairly strong negative
correlation with the input parameters to the system, C (see rε,C in
Fig. 6). As expected, this posterior correlation was particularly
pronounced (up to −0.61) for the ε’s in the regions that received
driving inputs (i.e., left and right lingual gyrus, LG). Second, ε also
shows a negative correlation (up to −0.53) with the fixed strengths
(A in Eq. (14)) of those connections that convey activity elicited in
input areas (left and right LG) to those areas not receiving direct
inputs (left and right FG). These connections play a similar role in
determining the amplitude of the BOLD response in left and right
FG as do the driving inputs for left and right LG. Most importantly,
however, ε is not strongly correlated with the main parameters of
interest within DCM, that is, with the parameters encoding the
context-dependent modulation of connection strengths (B in Eq.
(14)). These correlations did not go beyond −0.29 and were mostly
close to zero (see rε,B in Fig. 6).

Tables 4 and 5 show how a change in the hemodynamic model
affects the average neuronal parameter estimates and their standard
error across subjects. It can be seen that in models with free ε the
conditional dependencies between ε and the neuronal parameters
described above have only modest effects on the parameter
estimates. As expected, the changes are most profound for the C
parameters (Table 5), which are usually not of interest. Concerning
the A/B parameters (Table 4), in no case were differences induced
by freeing ε large enough to affect second-level statistical inference
about the parameter estimates5. Finally, as can be seen in the tables,
other changes in the hemodynamic model affect the parameter
estimates even less than freeing ε.

Discussion

In this study, we implemented a variety of different BOLD signal
models within the hemodynamic forward model of DCM. We chose



Fig. 6. Posterior correlation matrix for the RBMN(ε), averaged across all twelve subjects. Three correlations are of particular interest (see black rectangles). ε
shows negative correlations (up to −0.61; rε,C) with the input parameters, C. A small subset of the A parameters (fixed connection strengths) also correlate
negatively with ε (up to −0.53; rε,A). Importantly, ε is not strongly correlated with the parameters of main interest within DCM, i.e., with the parameters of the
context-dependent modulation of connections, B. These correlations were mostly close to zero and maximally −0.29 (rε,B). θ

h=hemodynamic parameters
(except ε).
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an established four-area DCM of the visual cortex (Stephan et al.
2007a) which was fitted to empirical fMRI data from 12 subjects.
The relative goodness of the different BOLD signal models was
assessed by means of BMS. This comparison gave three main
results. First, we showed that, in its original formulation, the linear
Table 4
This table shows the mean parameter estimates across subjects (±standard error) fo
(B), from all eight hemodynamic models

LGl→LGr LGl→FGl LGr→LGl LGr→FG

Fixed connection strengths (A)
CBMN 0.25±0.05 0.31±0.05 0.18±0.07 0.25±0.0
CBMN(ε) 0.25±0.05 0.32±0.04 0.19±0.07 0.24±0.0
CBML 0.25±0.05 0.32±0.05 0.18±0.07 0.25±0.0
CBML(ε) 0.25±0.05 0.30±0.04 0.18±0.07 0.24±0.0
RBMN 0.27±0.05 0.33±0.05 0.21±0.07 0.26±0.0
RBMN(ε) 0.23±0.06 0.24±0.03 0.19±0.06 0.21±0.0
RBML 0.27±0.05 0.33±0.05 0.21±0.07 0.26±0.0
RBML(ε) 0.23±0.06 0.25±0.04 0.19±0.06 0.21±0.0

Context-dependent modulations (B)
CBMN 0.03±0.02 0.35±0.06 0.25±0.04 0.17±0.0
CBMN(ε) 0.04±0.03 0.33±0.05 0.25±0.04 0.16±0.0
CBML 0.03±0.02 0.35±0.06 0.25±0.04 0.17±0.0
CBML(ε) 0.03±0.03 0.33±0.06 0.25±0.04 0.17±0.0
RBMN 0.03±0.02 0.35±0.06 0.24±0.04 0.17±0.0
RBMN(ε) 0.05±0.03 0.32±0.04 0.26±0.04 0.15±0.0
RBML 0.03±0.03 0.35±0.06 0.24±0.04 0.17±0.0
RBML(ε) 0.05±0.03 0.32±0.04 0.26±0.04 0.15±0.0

It can be seen that the parameter estimates are fairly stable across models. Abbrev
fusiform gyrus; FGr=right fusiform gyrus. NA=non-applicable. See Fig. 3A for t
RBML (which was recently introduced by Obata et al., 2004) is not
superior to the CBMN (the classical BM by Buxton et al., 1998).
Second, we have demonstrated that RBML can be made to
outperform the CBMN if ε, the ratio between intra- and extravascular
signal components, is allowed to vary as a free parameter. Third, we
r the fixed connection strengths (A) and their context-dependent modulation

r FGl→LGl FGl→FGr FGr→LGr FGr→FGl

3 0.24±0.06 0.10±0.04 0.12±0.04 0.07±0.07
3 0.25±0.07 0.08±0.04 0.10±0.04 0.07±0.07
3 0.24±0.06 0.10±0.03 0.12±0.04 0.07±0.07
3 0.25±0.07 0.08±0.04 0.11±0.04 0.07±0.07
3 0.24±0.06 0.09±0.04 0.11±0.04 0.07±0.07
3 0.23±0.07 0.06±0.04 0.09±0.04 0.05±0.06
3 0.24±0.06 0.10±0.04 0.12±0.04 0.07±0.07
3 0.23±0.07 0.06±0.04 0.09±0.04 0.05±0.06

5 NA 0.02±0.02 NA 0.12±0.03
5 NA 0.02±0.02 NA 0.10±0.03
5 NA 0.02±0.02 NA 0.13±0.03
5 NA 0.02±0.02 NA 0.11±0.03
5 NA 0.02±0.02 NA 0.12±0.03
5 NA 0.02±0.02 NA 0.09±0.03
5 NA 0.02±0.02 NA 0.12±0.03
5 NA 0.02±0.02 NA 0.09±0.03

iations of areas: LGl= left lingual gyrus; LGr=right lingual gyrus; FGl=left
he structure of the DCM.



Table 5
This table shows the mean estimates across subjects (±standard error) for the
input parameters (C), from all eight hemodynamic models

LVF→LGr RVF→LGl BVF→LGl BVF→LGr

CBMN 0.15±0.03 0.15±0.04 0.19±0.03 0.17±0.02
CBMN(ε) 0.13±0.03 0.14±0.04 0.17±0.02 0.16±0.02
CBML 0.14±0.02 0.14±0.04 0.18±0.02 0.16±0.02
CBML(ε) 0.13±0.02 0.13±0.04 0.16±0.02 0.15±0.02
RBMN 0.10±0.02 0.10±0.03 0.13±0.02 0.11±0.01
RBMN(ε) 0.15±0.03 0.15±0.04 0.18±0.02 0.18±0.02
RBML 0.10±0.02 0.10±0.03 0.12±0.01 0.10±0.01
RBML(ε) 0.15±0.03 0.14±0.04 0.18±0.02 0.18±0.02

Proportionately, these estimates vary more strongly than those of the A/B
parameters in Table 4. Abbreviations of inputs: LVF=left visual field input;
RVF=right visual field input; BVF=bilateral visual field input. Abbrevia-
tions of areas: LGl= left lingual gyrus; LGr=right lingual gyrus; FGl= left
fusiform gyrus; FGr=right fusiform gyrus. See Fig. 3A for the structure of
the DCM.
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have derived a generalized non-linear BM with revised coefficients
that outperforms any other model tested, when ε is treated as a free
parameter (the RBMN(ε) variant in this study). This model was
founded on the previous observation (Friston et al., 2000) that a non-
linear output equation improves modeling of the BOLD signal.
Because of its superior performance in this study, this hemodynamic
model will replace the CBM in the next update of the DCM routines
in the open source software package SPM5 (http://www.fil.ion.ucl.
ac.uk/spm). The other hemodynamic models tested here will be
included as options, allowing users to compare alternatives and find
the most appropriate hemodynamic model for their particular
experimental set-up.

The posterior covariances among parameters suggest that most
parameters of interest in aDCM, i.e., the connectivity among regions
and particularly its context-dependent modulation (A and Bmatrices
in Eq. (14)), are not strongly correlated with the hemodynamic
parameters, including the new parameter ε (Fig. 6). This relative
independence of the neuronal and hemodynamic parameters is an
important feature of DCM, which largely results from normalizing
the coupling parameters with regard to the system’s dampening rate-
constant (i.e., the diagonal of the A matrix; see Friston et al., 2003
for details). This renders them less dependent on the amplitude of the
hemodynamic response and the neuronal input parameters (C in Eq.
(14)). If the two sets of parameters were strongly coupled, it could be
difficult to disambiguate the influence of neuronal connectivity from
neurovascular coupling mechanisms on the resulting BOLD
response. Tables 4 and 5 lists all mean parameter estimates in our
model and their standard error across subjects for each of the
hemodynamic models tested in this study. It can be seen that in no
case changes in coupling parameters were large enough that the
nature of statistical inference (as obtained by a second-level t-test)
would have changed.

From a broader perspective, these results suggest that the
particular form of the hemodynamic model is not terribly important
for inference about the underlying neuronal dynamics and how
they were caused. Although one might have intuited this from the
rather simple form of empirically derived hemodynamic impulse
response functions, it is reassuring to see that the specific
parameterizations employed by the biophysical models in DCM
provide inference on neuronal parameters that are robust to
changes or misspecification of the hemodynamic model. Although
the nature of the hemodynamic model may not affect inferences at
the neuronal level, it is clearly important for inference on the
hemodynamic parameters that may be of interest when studying
regional variations in physiology or pathophysiology per se.

Our characterization of conditional dependencies among the
parameters is related to measures of system identifiability.
Identifiability can be addressed from various angles. For example,
sensitivity analyses investigate the partial derivatives of model
output with regard to the parameters. A system is not identifiable if,
for any change of a given parameter, an identical effect on model
output can be achieved by changing one or several other parameters.
In Bayesian approaches to system identification, conventional
sensitivity analyses and analyses of posterior covariances have a
close relationship. An example of this was given by Deneux and
Faugeras (2006) who performed a sensitivity analysis for the
hemodynamic model of Buxton et al. (1998), deriving a sensitivity
factor that was proportional to the inverse of the posterior covariance
of the parameters (under the Laplace approximation this inverse is
also known as Fishers Information matrix). We used the conditional
covariances directly (after normalizing them to form conditional
correlation matrices). These matrices encode the degree of
interdependence between the parameters (see Fig. 6).

Several considerations should be kept in mind when interpret-
ing the results of this study. First, the results were obtained using a
particular data set and BOLD time-series from visual cortex. Even
though we used four different visual areas and replicated the results
in twelve subjects, we cannot ensure that the optimal model is
invariant across brain regions and data sets.

Second, the various hemodynamic models in this study were
investigated as an integral part of DCM, a causal model that links
experimentally designed manipulations (e.g., presentation of
sensory stimuli) via predicted neural and vascular dynamics to
observed BOLD responses of discrete brain areas. Although this
model is fairly abstract at the neural level, representing neuronal
population activity by a single state variable for each region, it
allows for a much more flexible representation of neural responses
to external perturbations than other hemodynamic models avail-
able. For example, it is not constrained to adaptation effects of a
particular form as in Buxton et al. (2004), but can represent any
kind of neural dynamics that can be modeled with bilinear
differential equations. This comprises a wide range of transients,
sustained responses and adaptation effects (see Fig. 1 in Penny
et al., 2004b and Fig. 5 in Stephan et al., 2007b for examples).

Third, the mathematical form of the dependence of the BOLD
signal on deoxyhemoglobin content q and blood volume v remains
an interesting research question. Several previous studies sug-
gested that the CBF–BOLD relation has significant non-linear
components (Birn et al., 2001; Deneux and Faugeras, 2006; Friston
et al., 2000; Miller et al., 2001; Vazquez and Noll, 1998; Wager
et al., 2005), and the work presented here supports this view. These
non-linearities could enter the system at various levels of the
biophysical process. In fact, the state equations for both q and ν are
non-linear (although, given the typical range of values for q and ν,
these non-linearities are rather weak). Thus, even a model with a
linear BOLD equation as, for example, the model by Obata et al.
(2004) can show a non-linear CBF–BOLD relationship. However,
in agreement with Friston et al. (2000), the present results suggest
that the output non-linearity of the Balloon model is important,
over and above the non-linearity of the state equations for q and ν.
The reason for this is that the estimation scheme in DCM uses a
bilinear approximation to the states while retaining the output non-
linearity (cf. Friston et al. 2003).

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Fourth, the hemodynamic models in the present study assumed a
field strength of 1.5 T. The finding that the neuronal connectivity
parameters are fairly robust to changes in the hemodynamic output
equation (Table 4), suggests that the current implementation of
DCM can also be used in situations for which the coefficients in the
hemodynamic model are not optimized (e.g., field strengths higher
than 1.5 T). It should also be possible in the future, however, to
adapt the model to higher field strengths since most constants in Eq.
(12) are known or can be computed for higher field strengths. The
main problem is ε for which, to our knowledge, there is a lack of
reliable empirical estimates, particularly at high field strengths.
However, the present study demonstrated that one can treat ε as a
free parameter, and using a flat prior for this parameter properly
accommodates the uncertainty about its value.

Finally, the importance of non-linearity in the BOLD output
equation depends on the exact stimulation conditions; in particular
it is likely to increase with shorter stimulus-onset asynchronies
(SOA) than the ones used in this study (1.5–2.5 s) and to decrease
with longer SOAs (Friston et al., 1998). In any case, the procedure
we introduced here (and the code that will be made available in
SPM5) enables the user to examine this question for her or his
specific data, by comparing different hemodynamic models.
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Appendix A. Negative free energy as a lower bound on the log
model evidence

The relation of the negative free energy F to the log model
evidence, log p(y|m), can be derived by using an (arbitrary)
approximating posterior density q(θ) to decompose p(y|m) into two
components, i.e., F and the Kullback–Leibler divergence (KL)
between the true posterior p(y|m) and the approximating posteriorq(Θ):

logpðyjmÞ ¼
Z

qðhÞlogpðyjmÞdh

¼
Z

q hð Þlog pðy;hjmÞqðhÞ
pðhjy;mÞqðhÞ dh

¼
Z

q hð Þlog pðy;hjmÞ
qðhÞ dh

þ
Z

q hð Þlog qðhÞ
pðhjy;mÞ dh

¼ F þ KL½qðhÞ;pðhjy;mÞ� ðA1Þ
The KL divergence is an asymmetric measure of the differences
between two probability densities (Kullback and Leibler, 1951). If
the approximating posterior matches the true posterior density
precisely, then KL[q(θ),p(θ|y,m)]=0. This demonstrates that the
negative free energy F is a lower bound on the log-evidence and
can therefore be used as a criterion for model comparison. This
makes the assumption that the KL divergence term is not
drastically different across models (i.e., the tightness of the bound
is similar under different models). For models like ours, with
informed priors that lead to well-behaved posterior densities, this
assumption is unlikely to be a strong one.

F itself can be decomposed into two components:

F ¼
Z

q hð Þlog pðy;hjmÞ
qðhÞ dh

¼
Z

q hð Þlog pðyjh;mÞpðhjmÞ
qðhÞ dh

¼
Z

q hð Þlogp yjh;mð Þdh

þ
Z

q hð Þ pðhjmÞ
qðhÞ dh

¼ hlogpðyjh;mÞiq � KL½qðhÞ;pðhÞ� ðA2Þ

Here, the first term denotes the expected log likelihood (with
regard to q) and thus describes the accuracy of the model in
fitting the data (i.e., the goodness of fit). The second term
describes how much the approximating posterior diverges from
the prior density. This term is sensitive to the number of
parameters and the form of the densities and can be regarded as a
measure of model complexity. Together, this illustrates that F has
properties that are required for model selection (see Pitt and
Myung, 2002).

Appendix B. Derivation of a non-linear BOLD equation with
revised coefficients

The revision of the Balloon model as suggested by Obata et al.
(2004) led to a linear BOLD equation. This linear form results from
several approximations during its derivation (see the appendix in
Obata et al., 2004). Here, we start from the same point as in Obata
et al. (2004) but use a first-order approximation to the exact BOLD
signal equation without prior simplifications. This consistent
approach to linearizing the model eventually preserves the non-
linearity of the intravascular term.

Following Obata et al. (2004), we start by modeling the BOLD
signal at rest, S0, as a volume-weighted sum of extra- and
intravascular BOLD signals, SE and SI (V0 is the resting venous
blood volume fraction):

S0 ¼ ð1� V0ÞSE þ V0SI ðB1Þ

Given effective spin densities SI0 and SE0 and resting transverse
relaxation rate constants R2I

* and R2E
* for the intra- and extravascular

spaces, the two signal components can be modeled as:

SE ¼ SE0expð�R*2ETEÞ

SI ¼ SI0expð�R*2ITEÞ ðB2Þ

With activation, the rate constants are changed by additive amounts
ΔR2I

* and ΔR2E
* , resulting in a BOLD signal S:

S ¼ ð1� V ÞSE0exp½�ðR*2E þ DR*2EÞTE�
þ VSI0exp½�ðR*2I þ DR*2IÞTE�

¼ ð1� V ÞSEexpð�DR*2ETEÞ þ VSIexpð�DR*2ITEÞ ðB3Þ
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Using the relation V=vV0, where v is the venous blood
volume fraction normalized with regard to rest, we can rewrite
Eq. (B3) as:

S ¼ ð1� vV0ÞSEexpð�DR*2ETEÞ þ vV0SIexpð�DR*2ITEÞ ðB4Þ

This is an exact expression for the BOLD signal S at activation. One
can see that for a given TE and V0, it is a function of three quantities:
ΔR2E

* , ΔR2I
* ,ν. We now approximate the change in BOLD signal

from rest to activation, ΔS, by a first-order Taylor expansion around
the resting state (i.e., ΔR2E

* =0,ΔR2I
* =0,ν=1; note that S0 is a

constant and thus disappears during differentiation):

DS ¼ S � S0

DSc v� 1ð ÞBS
Bv

þ DR*2E
BS

BDR*2E
þ DR*2I

BS

BDR*2I

¼ ðv� 1Þð�SEV0 þ V0SIÞ � DR*2Eð1� V0ÞSETE
� DR*2IV0SITE ðB5Þ

This is a consistent first-order approximation to the exact equation
of BOLD signal change.

Noting that ε=SI/SE and
1� V0

V0
c

1
V0

for a small venous blood

volume fraction V0, one obtains:

DScðv� 1Þ½V0ðSI � SEÞ� � DR*2Eð1� V0ÞSETE � DR*2IV0SITE;

cV0SE v� 1ð Þ e� 1ð Þ � DR*2ETE
V0

� eDR*2ITE

" #
;

¼ SE½ðV � V0Þðe� 1Þ � DR*2ETE � V0eDR
*
2ITE� ðB6Þ

Dividing by S0 (as defined in Eq. (B1)), we obtain

DS
S0

¼ SE
ð1� V0ÞSE þ V0SI

V0�Vð Þ 1� eð Þ�DR*2ETE�V0eDR
*
2ITE

h i

¼ 1

1� V0 þ V0e
V0 � Vð Þ 1� eð Þ � DR*2ETE � V0eDR

*
2ITE

h i
ðB7Þ

For small V0, the initial factor is close to one and can therefore be
eliminated. This gives us an expression for BOLD signal change
that is very similar to Eq. (B5) in Obata et al. (2004) except that the
volume factor differs in the intravascular term:

DS
S0

c� DR*2ETE � V0eDR
*
2ITE þ V0 � Vð Þ 1� eð Þ ðB8Þ

We now use the approximations ΔR2E
* =4.3ϑ0V0E0(q−1) and

DR*2I ¼ r0E0
q
v � 1
� �

provided by Obata et al. (2004) in their Eqs.
(A8) and (A11). After substitution of these approximations into Eq.
(B8), we obtain our final equation:

DS
S0

cV0 k1 1� qð Þ þ k2 1� q
v

� �
þ k3 1� vð Þ

h i

k1 ¼ 4:3#0E0TE

k2 ¼ er0E0TE

k3 ¼ 1� e ðB9Þ

This equation retains the functional non-linear form of the
classical model but uses expressions for the coefficients as
provided in Obata et al. (2004).
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