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Understanding the link between neurobiology and cognition requires
that neuroscience moves beyond mere structure–function correlations.
An explicit systems perspective is needed in which putative mechanisms
of how brain function is constrained by brain structure are mathema-
tically formalized and made accessible for experimental investigation.
Such a systems approach critically rests on a better understanding of
brain connectivity in its various forms. Since 2002, frontier topics of
connectivity and neural system analysis have been discussed in a
multidisciplinary annual meeting, the Brain Connectivity Workshop
(BCW), bringing together experimentalists and theorists from various
fields. This article summarizes some of the main discussions at the two
most recent workshops, 2006 at Sendai, Japan, and 2007 at Barcelona,
Spain: (i) investigation of cortical micro- andmacrocircuits, (ii) models
of neural dynamics at multiple scales, (iii) analysis of “resting state”
networks, and (iv) linking anatomical to functional connectivity.
Finally, we outline some central challenges and research trajectories in
computational systems neuroscience for the next years.
© 2008 Elsevier Inc. All rights reserved.
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1 Here, we refer to analysis as the process of splitting a complex
Introduction

Since the 19th century, many neuroscientific attempts towards
understanding the relation between structure and function in the
human brain have been focused on assigning particular cognitive
functions to distinct brain regions (see Marshall and Fink, 2003
for a review). These attempts, grounded epistemologically in
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analysis1, have been mostly based on post mortem lesion studies
and, more recently, functional neuroimaging and transcranial mag-
netic stimulation in vivo, creating a large database of isolated
structure–function correlations over the years. In contrast, ap-
proaches based on principles of synthesis, aiming for formal,
mechanistic descriptions of how the behaviour of neuronal systems
results from the interactions of their elements, have long played a
relatively minor role. This was partially due to lack of suitable
methodology, partially due to insufficient crosstalk between
experimental and theoretical neuroscientists. Over the last decade,
however, explicitly system-based approaches have become a very
important research agenda in neuroscience. It is now a widely held
notion that understanding structure–function relations requires
biologically informed models of neural system dynamics (Friston,
1994, 2002; Horwitz et al., 1999;McIntosh, 2000; Stephan, 2004). It
is interesting to note that a very similar change of perspective, away
from functional attributions to individual elements and towards
mechanistic models of their interactions, has occurred in molecular
biology and genetics (Kitano, 2002). “Systems biology” is the
current buzz word, a trend that revitalises old insights, dating back to
the 1940s (see VonBertalanffy, 1969), howmechanistic insights into
complex biological processes can be obtained, i.e. through formal
system modeling (Chong and Ray, 2002).

Models of neural system dynamics are very tightly linked to
brain connectivity in its various forms (Friston, 1994; Horwitz et al.,
1999; Stephan, 2004). Structural connectivity, i.e. the anatomical
layout of axons and synaptic connections, determines which neural
units can directly interact with each other and thus constrains the
phenomenon or system into small parts, each of which is studied in
isolation, ignoring interactions or interdependencies among the parts. In
contrast, synthesis explicitly considers the interactions amongst parts and
the resulting collective behaviour, striving for a more complete view of the
system.
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system's functional and effective connectivity (Zeki and Shipp,
1988). Functional connectivity subsumes non-mechanistic descrip-
tions of statistical dependencies between individual system
elements, e.g. correlations between time series from different brain
regions. In contrast, effective connectivity refers to causal effects, i.e.
the direct influences that system elements exert on another. Since
2002, frontier topics of connectivity and neural system analysis have
been discussed in an annual meeting, the Brain Connectivity
Workshop (BCW). To date, workshops have been held in Düsseldorf
2002 (organisers: Rolf Kötter and Karl Friston2), Cambridge 2003
(Ed Bullmore, Lee Harrison, Lucy Lee, Andrea Mechelli and Karl
Friston), Havana 2004 (Pedro Valdes-Sosa, Rolf Kotter and Karl
Friston), Boca Raton 2005 (Viktor Jirsa and Randy McIntosh),
Sendai 2006 (Jorge Riera and Karl Friston) and Barcelona 2007
(Gustavo Deco, Viktor Jirsa and Barry Horwitz). Covering a wide
spectrum of experimental and computational methods and following
a strongly discussion-oriented format, the BCW has established
itself as an important forum for multidisciplinary approaches to
neural system analysis. It has successfully stimulated international
collaborations amongst various laboratories from theoretical and
experimental disciplines. The results of this interdisciplinary
crosstalk are becoming increasingly visible in a number of high-
profile publications on joint work by workshop attendants from
different laboratories and countries (e.g. Breakspear et al., 2006a;
Honey et al., 2007; Lee et al., 2006; Sporns and Kötter, 2004).3

This article reviews key discussions at the two most recent
workshops in Sendai 2006 and Barcelona 2007. It focuses on four
topics of which the first two were discussed at Sendai and the latter
two were discussed at Barcelona: (i) investigation of cortical micro-
and macrocircuits, (ii) models of neural dynamics at multiple scales,
(iii) analysis of “resting state” networks, and (iv) linking anatomical
to functional connectivity. Please note that due to the large number
of different workshop sessions, this choice is necessarily subjective
and cannot cover the entire breadth of topics discussed at the two
workshops. Furthermore, given space constraints, we cannot
provide an exhaustive review of all presentations but are required
to focus on a few representative examples. Finally, we outline some
challenges and central research trajectories in computational
systems neuroscience for the future. For further details, the reader
is referred to a series of forthcoming review papers about the micro-
architecture of the cerebral cortex and its impact on functional
neuroimaging (Riera et al., 2008), and on dynamic systems theory
and its applications to neuroscience (Deco et al., in press).

Cortical micro- and macrocircuits

Understanding the statistics of cortical connections at different
spatial scales (e.g. long-range axonal connections and local micro-
circuits with their complicated laminar and columnar organization)
is a prerequisite for building realistic system models of neuronal
network dynamics. Following the pioneering study by Felleman and
Van Essen (1991), a series of database projects and large-scale
analyses have significantly enhanced our knowledge of the prin-
2 For reports on the inaugural meeting see Lee et al. 2003; Ramnani et al.
2002; Stone and Kötter 2002.
3 Additional important publications have resulted from these workshops:

a special issue in the journal Neuroinformatics (Bullmore et al. 2004), a
theme issue in the Philosophical Transations of the Royal Society (Valdés-
Sosa et al., 2005a), and a handbook on brain connectivity (Jirsa and
McIntosh 2007).
ciples underlying anatomical connectivity patterns. The challenge is
not simply a lack of data: for example, several large-scale databases
exist for connections in several species (e.g. human,monkey, rodent)
and at two different physical scales (i.e. microscopic and long-
distance connections) (e.g. Bota et al., 2005; Burns et al., 2006;
Scannell et al., 1999; Stephan et al., 2001; Muhammad and
Markram, 2005). Instead, the major problem is to understand the
organizational principles underlying the enormous complexity of
structural connectivity patterns, both at the level of microcircuitry,
i.e. connections linking different neuronal populations within a brain
region, and at the level of long-distance inter-regional connections.
How do we best analyze the available data, fill critical gaps in our
present knowledge by means of new experimental techniques, relate
intra-areal microcircuits to inter-areal connections and derive
functional implications from the connectional architecture of the
brain? These questions were addressed by several presenters at the
Sendai workshop.

Gilad Silberberg (Karolinska Institute, Sweden) presented
combined anatomical and electrophysiological analyses of cortical
layer V, elucidating one particular link between local microcircui-
try and long-distance inputs: Pyramidal cells activate neighboring
inhibitory Martinotti cells which, in return, target and reduce the
excitability of the distal parts of the pyramidal dendrites, which
receive a large proportion of glutamatergic long-distance inputs
from other cortical regions. Critically, this feedback inhibition is
frequency-dependent due to strong synaptic facilitation of the
pyramidal-to-Martinotti connections. This mechanism ensures tight
control over local excitatory–inhibitory balance and regulates to
what degree local columnar processing is influenced by long-
distance inputs (Silberberg and Markram, 2007).

Another mechanism for controlling the balance between
excitation and inhibition and for modulating oscillations in larger
networks might be based on electrical synapses via gap-junctions;
these could play an important role in promoting synchronous
activity between GABAergic interneurons (Gibson et al., 2005).
This mechanism was addressed by Roger Traub (State University of
New York, USA) who discussed the impact that gap junctions,
which have been found between axons and dendrites of different
neuronal cell types in the hippocampus (Hamzei-Sichani et al.,
2007), have on oscillatory network behaviour in the hippocampus,
particularly with regard to gamma frequency (30–80Hz) oscillations
and “ultrafast” (N80 Hz) oscillations (Traub et al., 2004). He
emphasized that our understanding of how gap junctions influence
network dynamics is still in its infancy and that further work will be
needed, both concerning experimental identification of gap junc-
tions in the cortex, and system models for understanding their
functional role. The experimental characterization of gap junctions
will require a combination of neuroanatomical methods (e.g.
electron microscopy) and physiological techniques.

The necessity of multi-methods approaches for understanding
neuronal circuits was also stressed by Kathleen Rockland (RIKEN
Brain Science Institute, Japan) who presented anatomical data from
single axon analyses in visual cortex based on tracing techniques
and light microscopy. She highlighted the complexity of long-
range axons and pointed out that we currently have very little data
on the geometry of axonal configurations and their postsynaptic
targets. Progress in these areas is urgently needed and requires
application of sophisticated anatomical tracing techniques com-
bined with physiological methods for neuron-specific manipula-
tions, for example genetically targeted optical control of neuron-
specific activity (Boyden et al., 2005).



4 A generative model is a model which describes explicitly how observed
data are assumed to have been generated. In a Bayesian framework, for
example, a generative model supplies the mathematical form of the
likelihood function (including the probability densities of error terms) and
the prior densities of the parameters. This enables one to create artificial
data by randomly sampling from these densities.

3K.E. Stephan et al. / NeuroImage 42 (2008) 1–9
David Van Essen (Washington University, St Louis, USA)
shifted the focus to the level of inter-areal connections. He presented
several neuroinformatics developments, e.g. the PALS-B12 human
cortical atlas (Van Essen and Dierker, 2007), which enable a wide
range of analyses of anatomical and functional connectivity data. As
an example, he showed neuroinformatics-based analyses that imply
a relation between sulcal abnormalities in Williams' syndrome and
abnormal inter-areal connectivity (Van Essen et al., 2006). This
finding is in accordance with the hypothesis that cortical folding is
shaped by the tension induced by axonal long-range connections
during neurodevelopment (Van Essen, 1997; Hilgetag and Barbas,
2006).

Three other speakers pursued the theme of inter-areal con-
nectivity, focusing on the relation between structural connectivity
patterns and functional principles. Randy McIntosh (Rotman
Institute, Toronto, Canada) used PET data from a sensory learning
paradigm (McIntosh et al., 2003) to define functional networks in
subjects who were aware or unaware of the learning process,
respectively. These networks were then evaluated with regard to
specific computational properties. For this purpose, he used
anatomical macaque connectivity data from the CoCoMac database
(Stephan et al., 2001), mapped these data to putatively correspond-
ing regions in the human brain (Kötter and Wanke, 2005) and then,
for each network element, computed network participation indices
(NPIs). NPIs are graph-theoretical indices describing how network
structure constrains the capacity of each network node for infor-
mation processing (Kötter and Stephan, 2003). His analyses resulted
in hypotheses about which inter-areal interactions are critical in this
paradigm for becoming aware of the learning process. These
hypotheses can be tested experimentally, e.g. using a combination of
neuroimaging and transcranial magnetic stimulation (TMS).

Rolf Kötter (University of Nijmegen, The Netherlands) pre-
sented another integrated structural–functional analysis. He applied
a linear network model to local field potentials (LFPs) that had
been recorded from 15 different cortical areas of the macaque
monkey during a visual go/no-go task (Bressler et al., 1993). Using
stochastic parameter estimation techniques (simulated annealing),
he estimated the weights and delays of inter-areal connections in
this network and compared the results against anatomical data from
the CoCoMac database. Again, this approach resulted in a number
of directly testable hypotheses, e.g. which of the currently non-
investigated anatomical connections are likely to exist and which
of the connections in the network are critical for late components in
the LFPs that differentiate “go” and “no-go” conditions.

Olaf Sporns (Indiana University, USA) extended this theme of
how to link structural connectivity patterns to specific neurophysio-
logical or cognitive processes one step further. He showed how
evolutionary optimization techniques can be used to find structural
connectivity patterns that would optimize a range of information-
theoretical and computational properties of neurobiological networks
(Sporns et al., 2002). An exciting practical application of these
techniques is that they can be used to optimize the behavior of robots
that interact with their environment (Lungarella and Sporns, 2006).
Mitsuo Kawato (ATR Computational Neuroscience Laboratories,
Japan) presented a complimentary approach to this issue, showing
how one might achieve real time control of robots by online decoding
of measurements of human brain activity. This approach is based on
hierarchical Bayesian models for decoding information contained in
neuroimaging data of different modalities (e.g. fMRI and MEG).

Functional investigation of cortical circuits in the living human
brain can only be performed through non-invasive neuroimaging
techniques; currently, functional MRI, PET, EEG, MEG and some
optical imaging techniques are most widely used. Importantly, these
techniques measure neuronal responses only indirectly. For
example, fMRI provides hemodynamic signals that represent an
indirect index of synaptic activity in neuronal populations but are
also influenced by various non-neuronal factors. We must therefore
consider more than just the activity of interconnected neurons when
trying to infer the function of cortical circuits from neuroimaging
measurements. Other cell types (e.g. glia cells, endothelial cells,
smooth muscle cells) contribute to the generation of hemodynamic
neuroimaging data. Understanding their role is therefore important
when formulating generative models4 of neuroimaging data that can
be inverted to infer the neuronal processes that underlie hemody-
namic measurements. David Attwell (University College London,
UK) discussed experimental evidence that hemodynamic responses
do not simply reflect the local metabolic demands of activated
neuronal tissue in a “feedback” fashion (Attwell and Iadecola,
2002). Instead, they may be better understood as resulting from a
“feedforward” system in which glutamate-evoked calcium influx in
postsynaptic neurons activates the production and release of
vasodilatory agents, including nitric oxide, adenosine and arachi-
donic acid metabolites (Lauritzen, 2005). Together with results from
theoretical models indicating that most brain energy is used to power
glutamate-induced postsynaptic currents rather than presynaptic or
glial activity (Attwell and Laughlin, 2001), he suggested that the
BOLD signal most likely reflects the neuronal processing occurring
within a brain area (including subthreshold postsynaptic events),
rather than the output from or input to that area.

A major challenge for the future is to construct models which
combine insights into physiological mechanisms of hemodynamic
signal generation with mechanisms linking cortical micro- and
macrocircuits to activity patterns. One important development in this
direction was introduced by Jorge Riera (Tohoku University, Japan).
He presented a stochastic dynamicmodel for describing the time course
of neuronal and vascular mesoscopic variables, as well as their
interactions, within a basic cortical unit (Riera et al., 2006). The model
was formulated using a state space formalism (Riera et al. 2004),
enabling the use of classical strategies for state-filtering and parameter
estimation from measured data; the feasibility of this approach was
demonstrated using concurrent fMRI and EEG recordings (Riera et al.,
2007). Overall, this model incorporates data about both the
microcircuitry in primary visual cortex and about the physiological
mechanisms that underlie vascular responses to changes in neural
activity (as discussed above). It thus provides an important convergence
of analyses of structural connectivity and physiological mechanisms.

Neural dynamics at multiple scales

Given the overwhelming complexity of the brain, it is mandatory
for any neural system model to find a sufficiently parsimonious, and
yet neurobiologically plausible, conceptual framework for investi-
gating neuronal dynamics. How can we optimally investigate the
functional coupling between neuronal populations, derive the
mechanisms underlying synchronization of oscillatory activity and
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understand interactions across multiple spatial and temporal scales?
These questions, which were elegantly summarized in the opening
speeches by the honorary presidents of the Sendai workshop, Ryuta
Kawashima and Shun-ichi Amari, are at the heart of systems
neuroscience. They can be addressed by three complementary
approaches that currently constitute a very active area of research.
The first approach focuses on the temporal relationships of
oscillatory activity in different brain regions as expressed, for
example, in terms of coherence or synchronization. The motivation
for this approach is that the connectivity between different neuronal
populations may critically rely on coherence: Oscillations of average
membrane potential do not only affect the output of the population,
but also its sensitivity to input, and therefore only coherently
oscillating neuronal groups may be able to interact effectively (Fries,
2005). Despite its intuitive appeal, this mechanistic idea is still quite
general and is usually tested by applying time-frequency analyses
directly to measured signals, e.g. from individual EEG/MEG
sensors. In order to test specific instantiations of this idea, one
may want to use a parameterized model that represents distinct
neurophysiological processes from lower scales that are not directly
measured. This is possible with a second approach, neural mass
models (NMMs; Freeman, 1972), which operate at a mesoscopic
spatial scale roughly corresponding to cortical macrocolumns.
NMMs represent neuronal populations by the modes of statistical
distributions of their relevant neurophysiological properties, e.g.
average membrane potential and average firing rate. This approach
offers a parsimonious way of parameterizing and scrutinizing the
neurophysiology of interacting populations, for example, in terms
of the roles of neuronal cell types (pyramidal cells, inhibitory
interneurons, etc.) and the properties of their connections (e.g.
conduction delays, synaptic weights). Critically, if NMMs are
combined with an appropriate forward model of how neural activity
is expressed at the level of scalp electrodes, these parameters can
even be estimated from empirical data and assessed statistically,
using Bayesian inversion (Kiebel et al., 2006) or filtering techniques
(Riera et al., 2007). However, other important questions are not
easily addressed directly by NMMs. For example, it is not trivial
(albeit feasible in an indirect way, see below) to model the effects of
neuromodulatory transmitters since the necessary anatomical
infrastructure (e.g. transmitter-specific receptors) is below the
spatial scale which is represented in NMMs. Questions like these
are usually the domain of a third approach that uses large sets of
individually modeled neurons which interact. Usually, these are
compartmental models of neurons (e.g. integrate-and-fire neurons)
which allow one to model quite detailed aspects of neuronal
dynamics, e.g. the effect that transmitter-specific ion channels or
connections with different synaptic sites in the dendritic tree have on
the population dynamics. However, due to the very large number of
parameters involved and the strong dependencies between them, it is
usually not possible to invert these models (i.e. fit them to empirical
data and get meaningful parameter estimates). Instead, they can be
used for simulations to generate predictions about the system's
behavior in different domains of the parameter space (see, for
example, Husain et al., 2004; Deco et al., 2004).

In practice, the fact that the approaches briefly summarized
above operate on different spatial scales of neuronal dynamics5
5 Note that this classification is not meant to be a rigid one. For example,
analyses of oscillatory activity and coherence can also be performed at the
microscopic scale, e.g. when applied to local field potentials from single- or
multi-unit recordings.
means that the choice amongst them depends on the specific
scientific question asked. The most interesting challenge perhaps is
to find ways of conceptually linking these approaches and bridging
the scales, a challenge which was addressed by several presentations
at both the Sendai and Barcelona workshop and which we will
discuss further in the final section of this paper. For example, at
Sendai, Olivier Bertrand (INSERM U280, Lyon, France) reported
results from studies which compared the dynamics of oscillatory
networks in humans that were measured at different spatial scales,
i.e. by means of intracranial EEG and scalp EEG, respectively
(Bertrand and Tallon-Baudry, 2000). In intracranial recordings of
brain responses to visual and auditory stimuli, he found clear
evidence for separate oscillatory processes in the beta and gamma
bands. Specifically, in his experiments, beta oscillations tended to
show desynchronization when evoked responses and gamma
oscillations were emerging, sometimes followed by a rebound of
activity after gamma oscillations had returned to baseline. In contrast
to the intracranial data, detection of these oscillations was much
more difficult in scalp recordings with EEG and MEG. This could
have been due to the existence of multiple oscillatory generators in
the beta and gamma ranges: it may be that only during those periods
when the generators are phase-synchronized, a measurable oscilla-
tory signal is found at the scalp level.

Karl Friston (Wellcome Trust Centre for Neuroimaging, London)
presented recent developments in Dynamic CausalModeling (DCM),
a general framework for making inferences about processes at the
neural level given measured imaging data (see Friston et al., 2003 for
the first paper on DCM and Stephan et al., 2007a for a recent review).
For EEG/MEG data, for example, DCM is based on a nonlinear
NMM of interacting cortical columns consisting of pyramidal cells,
inhibitory interneurons and spiny stellate cells (David et al., 2006).
This model can be used for investigating a wide range of questions at
different spatial and temporal scales. For example, one can probe the
role of different neuron types and their connections for oscillatory
activity and coherence (David and Friston, 2003), the impact of time
constants or inter-regional conduction delays on steady-state fre-
quency spectra (Moran et al., 2007) or the magnitude of synaptic
strengths and spike-frequency adaptation during pathophysiological
processes (Moran et al., 2008). By enabling statistical inference about
(unobserved) neural processes at small spatial scales, DCM can thus
provide mechanistic accounts of spatially large-scale phenomena,
measured at the sensor level.

Regardless of the spatio-temporal scale of interest, a central
aspect of all models of effective connectivity is the question how
causal relationships amongst neuronal populations are best inferred
mathematically. For example, DCM uses deterministic delay
differential equations whose parameters are estimated from
measured data using variational Bayesian inversion (Friston et al.,
2007). Two other speakers presented alternative approaches for
characterizing effective connectivity. Tohru Ozaki (Institute of
Statistical Mathematics, Japan) proposed to use innovation methods
to explore causal relations based on a voxel-wise searching strategy.
He presented this method in the general context of heteroscedastic
state space modelling and filtering techniques. Pedro Valdes-Sosa
(Cuban Neuroscience Center, Havana) presented a methodology
that involved the use of Granger causality on spatial manifolds. He
proposed a multivariate autoregressive model for EEG/fMRI data
and based its parameter estimation on a maximization–minorization
(MM) algorithm (Valdés-Sosa et al., 2005b), using a combination of
different penalty functions to ensure a balance between sparseness
and smoothness of cortical connectivity.
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Michael Breakspear (University of New South Wales, Sydney,
Australia) presented a neural field model6 for multiscale spatio-
temporal analyses of human epilepsy data. In the spatial domain,
he explored the influence of global (between-population) coupling
on local (within-population) dynamics. In the temporal domain, he
compared modeling results to EEG data from patients with primary
generalized seizures and demonstrated, using bifurcation analysis
of the model, how cortical activity at different temporal scales was
coupled in a nonlinear and dynamic fashion, leading to potential
instabilities and seizures (Breakspear et al., 2006b).

Gustavo Deco (University of Barcelona, Spain) presented a
model of interacting cortical areas each of which consisted of
multiple populations of biophysically realistic integrate-and-fire
neurons. Using two complementary analytical approaches, he
investigated the neurophysiological mechanisms underlying biased
competition during attention (Deco and Rolls, 2005) and decision-
making (Deco et al., 2007). In an analysis of stationary dynamics, he
used a mean-field reduction, effectively treating the model as a
NMM, to investigate how different operational regimes of the
network depended on the values of various model parameters.
Additionally, he investigated the nonstationary dynamic behavior of
the neuronal spiking rates, using the full integrate-and-fire model
(i.e. numerical integration without any mean-field reduction).
Together, these two approaches enabled him to draw some rather
fine-grained conclusions. For example, with regard to attention, the
model explained why backward connections between cortical areas
should be about 2.5 times weaker in strength than the corresponding
forward connections. Furthermore, this analysis showed that top–
down attentional effects can be explained in terms of shifting the
neurons' nonlinear activation function (i.e. firing rate as a function of
input current). Thus, the model offered new insights into possible
mechanisms of attention, going beyond the classical “biased
competition” hypothesis, and showed that attention can be seen as
a dynamical process that emerges implicitly from a neuronal multi-
attractor network.

This work by Deco and colleagues demonstrates that there are
important points of contact between NMMs operating on a
mesoscopic scale and biophysically more detailed and fine-grained
models, like ensembles of Hodgkin–Huxley or integrate-and-fire
neurons. First, as in the example above, NMMs can be derived from
a mean field reduction of ensemble activity on a microscopic scale
(c.f. Deco and Rolls, 2005; Loh et al., 2007). Second, given a careful
parameterization of the model and suitable experimental manipula-
tion, NMMs can be capable of indirectly assessing certain aspects of
neuronal dynamics whose structural support is located at a
microscopic scale. As an example, Liljenström and Hasselmo
(1995) andMoran et al. (2008) have shown how NMMs can be used
to indirectly investigate processes at a microscopic level, e.g. how
specific changes in neurotransmission alters spike frequency
adaptation of neurons. Third, models consisting of large ensembles
of biophysically realistic neurons can be used to establish the
construct validity of NMMs. For example, Lee et al. (2006) used the
detailed biophysical model of Tagamets and Horwitz (1998) to
generate synthetic fMRI data; subsequently, they verified that a
simple NMM (i.e. DCM) was able to recover the mechanisms by
which the data were generated. And finally, as pointed out in the
presentation byKarl Fristonmentioned above, one of the goals of the
6 Neural field models are a specific type of NMMs in which the brain is
not treated as consisting of discrete units but as a spatial continuum (c.f.
Robinson et al., 1997).
ongoing development of DCM is to construct models that bridge
mesoscopic and microscopic scales. For example, such models
could be based on a simplified variant of the biophysically grounded
parameterization of Hodgkin–Huxley or integrate-and-fire models.
One of the main challenges will be to find a suitable set of prior
densities that eschew problems with parameter interdependencies
and model inversion.

Analysis of “resting state” networks

A particular type of network analysis that has become quite
fashionable in recent years is to study so-called “resting state”
networks by means of fMRI: subjects are instructed to close their
eyes and “ think of nothing ” while whole brain BOLD images are
acquired over an extended period. The resulting time series are
then low-pass filtered (typically using a threshold of 0.1 Hz) and
subjected to various kinds of functional connectivity analyses (e.g.
Greicius et al., 2003), ranging from simple seed voxel correlation
analyses to eigenimage analysis (using principal component
analysis, singular value decomposition or partial least squares) and
independent component analysis (ICA). One of the sessions at the
Barcelona 2007 workshop was dedicated to resting state fMRI and
contrasted this approach with models of effective connectivity that
infer causal relationships within a priori defined networks that are
perturbed experimentally.

In an introductory talk to the topic, the pioneer of resting state
fMRI, Bharat Biswal (Dept of Radiology, University of New Jersey,
USA), provided an overview of what insights into the structure and
function, respectively, of brain networks might be gained by resting
state fMRI. His initial fMRI study on resting state functional con-
nectivity (Biswal et al., 1995) renewed a previous line of research
from PET that investigated inter-regional correlations during rest
(Horwitz et al., 1984). Following Biswal's study, numerous resting
state fMRI studies have been conducted in both healthy volunteers
and patients and resulted in two main findings. First, in many cases,
the spatial pattern of correlations in low-frequency BOLD signal
fluctuations between two cortical regions appears to be similar to the
structural connectivity pattern as known from tract tracing work in
primates (e.g. Biswal et al., 1995; Vincent et al., 2007). Second,
networks defined by application of eigenimage analysis or ICA
to resting state data often resemble networks that one typically
observes during specific cognitive, sensory or motor tasks (e.g.
Damoiseaux et al., 2006). In other words, they look as if they
“recapitulate the functional architecture of responses evoked by
experimentally administered tasks” (Vincent et al., 2007). These two
topics, the possible relevance of resting state fMRI data for inferring
structural and function principles of brain organization, were
addressed by two further speakers in this session. With regard to
structural insights, Ed Bullmore (Cambridge University, UK)
focused on topological features of cortical networks defined by
resting state fMRI data (Achard et al., 2006). Applying a discrete
wavelet transform to resting state fMRI data and using the results for
graph-theoretical analyses, he showed that resting state networks
possess a “small world” topology at different temporal scales,
expressed most saliently in the low-frequency interval 0.03–
0.06 Hz. Following the definition by Watts and Strogatz (1998),
networks are said to have “small world” properties if they combine a
high clustering index (i.e. high proportion of locally connected
clusters) with a short characteristic path length (i.e. the average
distance between any two network nodes is low). Such network
types support efficient parallel information processing at relatively



7 It should be noted that many tests derived from frequentist statistics, like
t-tests or ANOVA, evaluate the likelihood ratio of two nested models.
Therefore, they represent a specific class of model selection which, in
contrast to Bayes factors, does not take into account uncertainty about the
parameters and their interdependencies.
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low connection cost. Since this type of network architecture has
previously been demonstrated using anatomical connectivity data in
various species (e.g. Hilgetag et al., 2000; Sakata et al., 2005; Sporns
and Zwi, 2004), Bullmore concluded that the correlated, low-
frequency oscillations in human fMRI may reflect the underlying
anatomical connectivity of the cortex.

Challenging the view that resting state fMRI signals may be
simply a by-product of the system's anatomical connectivity structure,
Michelle Hampson (Yale University) examined the strength of func-
tional connections across a range of different conditions (e.g. during
different cognitive tasks and during rest) and then correlated, across
subjects, the ensuing measures of functional connectivity with
behavioural measures. For example, during both a working memory
task and at rest, she investigated the functional connectivity between
the posterior cingulate cortex and the medial frontal gyrus and ventral
anterior cingulate cortex, respectively. She found that working
memory performance and functional connectivity, both during the
task and at rest, were strongly correlated across subjects (Hampson
et al., 2006a). Similarly, she found that the functional connectivity
between the angular gyrus and the left inferior frontal gyrus measured
during reading and at rest, respectively, was correlated to behavioral
measures of reading ability (Hampson et al., 2006b). These findings
suggest that individual differences in functional coupling between
brain regions at rest might predict differences in cognitive abilities for
which these brain regions are important.

In the general discussion on resting state fMRI, a number of
workshop participants expressed their concerns about the role of
physiological artifacts and problems of interpreting resting state
data. One issue raised was that, due to the lack of controlled
experimental manipulations, the interpretation of resting state
fMRI results is fairly unconstrained: while one typically obtains
complex patterns that can be associated with various functional
interpretations, there are few, if any criteria, for deciding between
these interpretations. Another concern is that there are a number of
physiological rhythms which have been shown to influence resting
state fMRI signals but tend to be ignored by a large majority of
ongoing studies. These potential confounds are either in the low
frequency domain of interest (e.g. cyclic vasomotion) or have been
shown to be aliased into low-frequency bands (e.g. cardiac and
breathing rhythms; Lowe et al., 1998; Shmueli et al., 2007),
particularly for the moderate to slow sampling rates required by
multi-slice acquisitions. Characterizing and controlling for these
potential confounds is an important challenge for forthcoming
resting state fMRI studies.

Linking anatomical to functional connectivity

Another session at the Barcelona workshop focused on new
approaches for linking anatomical to functional connectivity. Viktor
Jirsa (Theoretical Neuroscience Group, CNRS, Marseille) used
methods from non-linear dynamics systems theory to challenge the
common view that cognitive processes can be considered as a se-
quence of discrete states, with each state possessing a discrete repre-
sentation in terms of neuronal population activity. As an alternative,
he suggested mathematical descriptions of cognitive processes as a
structured flow on a low-dimensional manifold. He emphasized that
within this framework the connectivity amongst neuronal populations
makes it possible that a given cognitive process could have multiple
representations in terms of functional coupling patterns.

Steven Bressler (Center for Complex Systems and Brain Sciences,
Florida Atlantic University) reviewed results of large-scale analyses of
functional and effective connectivity (Bressler and Tognoli, 2006).
These connectivity measures were obtained from local field potential
data of recordings from primate cortex, using a large number of
electrodes covering multiple cortical regions. His analyses demon-
strated that the functional strength of a given anatomical pathway can
switch rapidly, at themillisecond scale, depending on the requirements
of the cognitive processes. In line with other proposals (McIntosh,
2000), he suggested that this transient coupling of distributed neuronal
ensembles and the ensuing formation of large-scale neuronal
configurations (or “neuronal context”) represents a fundamental
principle of how the static infrastructure provided by anatomical brain
connectivity patterns can flexibly support a wide range of functions.

One widespread physiological mechanism for achieving this
transient and context-dependent change in coupling strength amongst
neuronal populations is gain control (Salinas and Sejnowski, 2001).
This mechanism relies on non-linear interactions amongst synaptic
inputs to the same neuron, e.g. by means of voltage-sensitive ion
channels, and represents a critical mechanism for various neurobio-
logical processes, including top–down (attentional) modulation,
learning and effects by modulatory transmitters. Klaas Enno Stephan
(Wellcome Trust Centre for Neuroimaging, London) presented a non-
linear extension of dynamic causal modeling (DCM) which can be
applied to measured fMRI data (Stephan et al., in press). This model
allows one to make statistical inference about whether the data reflect
gain control processes, i.e. how the connection between two neural
populations is enabled or gated by activity in other neural populations.
Simulations and empirical results demonstrated the face validity and
practical usefulness of this model. This nonlinear extension of DCM
enhances the biological plausibility of DCM and enables more
sophisticated inferences about dynamic changes of neuronal
connectivity that underlie measured fMRI data.

Some central research questions for the future

There is a broad consensus in the neurosciences that mathematical
system models are extremely helpful, if not indispensable, for a
mechanistic understanding of neural systems. As outlined in this
article, major progress is currently being made in mathematical
modeling of neurophysiological and cognitive processes. A central
question, however, concerns the validity of such models. This
question has many different aspects, only some of which will be
briefly touched on here.A first aspect concernsmodel comparison and
model selection: given several alternative hypotheses, and thus
multiple competingmodels, about themechanisms underlying a given
system, how canwe decide which of thesemodels is best? The critical
point is that competing models cannot be compared on the basis of
relative fit alone; instead, their relative complexitymust be considered
as well (Pitt and Myung, 2002). From a Bayesian perspective, the
ideal approach to model comparison, assuming that all models have
equal a priori probability, is the so-called model evidence: the prob-
ability of observing the data given a specific model (Bishop, 2006;
MacKay, 2003). In this framework, two models can be compared by
computing their evidence ratio or Bayes factor (Kass and Raftery,
1995).7 Importantly, the model evidence provides a principled way to
assess the balance between model fit and model complexity as well as
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the generalizability of the model, eschewing the need for computa-
tionally expensive methods like cross-validation. Despite these
advantages, suitable approximations to this measure are so far rarely
used in evaluating dynamic models of neural systems, with the
notable exception of DCM (c.f. Penny et al., 2004; Stephan et al.,
2007b). Model development and validation would benefit from a
more widespread use of Bayesian model comparison or correspond-
ing techniques. Having said this, it is usually impossible to explore the
space of all plausible models for a given data set, and there is no
guarantee that the model identified as optimal by a Bayesian (or any
other) selection procedure is a “good” model and not just somewhat
better than other “bad” models. Model selection should therefore not
be viewed as an automatic procedure for uncovering the “true”model
but should be used in conjunction with other validation methods.

A second aspect of model validity concerns the relation be-
tween specific model parameters and specific neurophysiological
processes or properties. In other words, does fitting of the model to
data yield parameter estimates which are veridical representations
of the neurophysiological processes which we want to infer from
the measured data? For example, the interpretability of parameter
estimates may be impaired due to problems with system
identifiability (e.g. dependencies amongst parameters that prevent
unique estimates). This is a very important problem for biological
system models in general (c.f. Gutenkunst et al., 2007), which is
only starting to be addressed in the context of neural system
models applied to neurophysiological measurements (e.g. Deneux
and Faugeras, 2006; Stephan et al., 2007b). Alternatively, even in
the absence of identifiability problems, model parameter estimates
might be difficult to interpret because they reflect some mixture of
effects. Generally, empirical studies are urgently needed which use
well-controlled manipulations of neural systems to generate sharp
predictions about the expected behavior of specific model
parameters. For this kind of validation, close collaboration between
theorists and experimentalists will be critical.

One aspect of neural system models that is likely to receive an
increasing amount of attention in the future is the role of “noise”.
Many models that are currently used for understanding neurophysio-
logical data are deterministic and do not account for stochastic events
at the neuronal level (but see Harrison et al., 2005). However, there is
considerable evidence for probabilistic components in neuronal
dynamics (e.g. Gluckman et al., 1998; Moss et al., 2004) and a major
challenge is to clarify whether this “noise” is just some epiphenome-
non of certain aspects of neuronal processing, or whether it plays an
important role for brain functions. Some neuronal computations may
be facilitated by stochastic dynamical effects, for example, noise may
enable probabilistic jumps across barriers in the energy landscape
describing the flow of dynamics in attractor networks. Such
probabilistic effects might be crucial for decision-making processes
and prevent deadlocks in symmetric situations where the available
choices are equally valuable (Deco et al., 2007).

Finally, we would like to point out that the ultimate test of how
well system models help us to understand brain mechanisms is their
application to clinical questions. The hope is that, given a neuro-
physiologically plausible and validated model, parameter estimates
can be used for objective and precise diagnostic classification of
individual patients (c.f. Stephan et al., 2006). Additionally, if their
parameters are interpretable in neurophysiological terms, suchmodels
could provide predictions about optimized therapeutic approaches
for individual patients. For example, a model in which specific
parameters represent the functional status of specific neuromodula-
tory transmitter systemsmight be useful in predictingwhich particular
combination of drugs should be used for an individual patient. This
predictive power distinguishes model-based approaches from blind
classification techniques; although the latter may be useful for clinical
decision-making (e.g. Azari et al., 1993), they are mechanistically
uninformative and neither provide insight into the pathophysiology
nor generate predictions about new treatment strategies. Other fields,
e.g. cardiovascular research, are currently making promising progress
towards mechanistic models that are clinically useful for individual
patient assessment and treatment (Zenker et al., 2007). The breadth
and depth of research presented at the Brain Connectivity Workshops
at Sendai 2006 and Barcelona 2007 justify an optimistic view
that computational systems neuroscience may be making simi-
lar contributions to clinical problem-solving in the not too distant
future.
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