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Functional integration in the brain rests on anatomical connectivity (the presence of axonal connections) and
effective connectivity (the causal influences mediated by these connections). The deployment of anatomical
connections provides important constraints on effective connectivity, but does not fully determine it, because
synaptic connections can be expressed functionally in a dynamic and context-dependent fashion. Although it
is generally assumed that anatomical connectivity data is important to guide the construction of
neurobiologically realistic models of effective connectivity; the degree to which these models actually
profit from anatomical constraints has not yet been formally investigated. Here, we use diffusion weighted
imaging and probabilistic tractography to specify anatomically informed priors for dynamic causal models
(DCMs) of fMRI data. We constructed 64 alternative DCMs, which embodied different mappings between the
probability of an anatomical connection and the prior variance of the corresponding of effective connectivity,
and fitted them to empirical fMRI data from 12 healthy subjects. Using Bayesian model selection, we show
that the best model is one in which anatomical probability increases the prior variance of effective
connectivity parameters in a nonlinear and monotonic (sigmoidal) fashion. This means that the higher the
likelihood that a given connection exists anatomically, the larger one should set the prior variance of the
corresponding coupling parameter; hence making it easier for the parameter to deviate from zero and
represent a strong effective connection. To our knowledge, this study provides the first formal evidence that
probabilistic knowledge of anatomical connectivity can improve models of functional integration.
© 2009 Elsevier Inc. All rights reserved.
Introduction

One of the key themes in biology is the characterisation of
structure–function relationships. For example, the range of functional
interactions a protein can engage in depends on its three-dimensional
structure. In the brain, a similar relationship exists betweenanatomical
and effective connectivity. The former denotes the presence of axonal
connections among neurons or neuronal populations and the latter
refers to the causal influences that are mediated by these connections
(Aertsen and Preißl, 1999; Friston, 1994). It is generally accepted that
anatomical connectivity provides important constraints on effective
connectivity. For example, it has been shown that the functional
repertoire of a cortical area (the “functional fingerprint”) is closely
related to the pattern of its anatomical connections (the “connectional
fingerprint”) (Passingham et al., 2002). Similarly, network analyses of
anatomical connectivity (Hilgetag et al., 2000) and functional inter-
actions in the Macaque cortex (Stephan et al., 2000) have revealed
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similar clustering in the cortical network and indicated that, both from
an anatomical and functional perspective, the Macaque cortex
possesses small world properties. Finally, a number of analytical and
simulation studies have recently started to explore howdifferent types
of structural network topologies are linked to different types of
neuronal dynamics (Bullmore and Sporns, 2009; Honey et al., 2007;
Sporns et al., 2002; Strogatz, 2001).

It is important to note that anatomical connectivity constrains but
does not determine effective connectivity. There are several reasons
for this. First, the function of a synapse depends on its recent history.
For example, in the absence of any structural changes of the synapse
per se, marked facilitation or depression of synaptic transmission
can occur at a timescale of milliseconds (Zucker and Regehr, 2002). A
second, and probably more important, reason why there is no one-to-
one mapping between anatomical and effective connectivity is that
the structural presence of a synaptic connection does not determine
whether it will be engaged during a particular process or not. Various
mechanisms exist by which synaptic connections can be enabled or
disabled in a dynamic fashion at the timescale of milliseconds. These
mechanisms include gating and gain control mechanisms, which
render synaptic transmission dependent on the current membrane
potential and the history of other synaptic inputs nearby (see
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Discussion). These transient and nonlinear effects are important for
explaining the dynamics of functional interactions among neuronal
populations (Friston et al., 1995; McIntosh, 2000; Salinas and
Sejnowski, 2001; Stephan et al., 2008a).

Major efforts have been made over the last decade to make
anatomical connectivity data available for constructing better models
of brain function, ranging from construction of large scale databases of
anatomical tract tracing data (Bota et al., 2005; Burns and Young,
2000; Scannell et al., 1999; Stephan et al., 2001) to analyses of human
brain connectivity by non-invasive diffusion weighted imaging
(Alexander, 2005; Behrens et al., 2003; Jones et al., 1999; Kaden et
al., 2008; Le Bihan, 2003; Mori and Zhang, 2006; Parker et al., 2002;
Tuch et al., 2005). So far, however, no study has formally investigated
to what degree models of effective connectivity profit from detailed
quantitative knowledge of anatomical connectivity. Here, we present
such an investigation by combining probabilistic tractography and
dynamic causal models (DCMs) (Friston et al., 2003) of fMRI data. Our
approach rests on a simple idea: we use an estimate of the probability
that a given anatomical connection exists, as provided by tractogra-
phy, to constrain the likely range of the effective connection strength.
More formally, the anatomical likelihood of a given connection is used
to inform the prior variance of the corresponding coupling parameter
in the DCM. Such anatomically informed priors can have different
forms. Themost intuitive notion is that the higher the likelihood that a
Fig. 1. This figure provides a schematic summary of the intuitive notion that a higher proba
associated with a larger prior variance of the corresponding effective connectivity parameter
and therefore represent a strong (negative or positive) effective connection.
given connection exists anatomically, the larger one should set the
prior variance of the corresponding effective connectivity, making it
easier for the parameter to deviate from its prior mean of zero and
therefore represent a strong (negative or positive) connection. This is
shown schematically by Fig. 1.

In the present study, we constructed 64 alternative DCMs, each of
which embodied a different mathematical mapping between the
anatomical probability of a given connection and the prior variance of
the corresponding coupling parameter. Some models embodied the
(intuitive) notion that the prior variance should increase with
anatomical likelihood; these models only differed with regard to the
mathematical relationship between anatomical connection likelihood
and prior variances in DCM. Other models represented the counter-
intuitive notion that the prior variance of coupling parameters in DCM
should decrease with increasing anatomical likelihood. As a reference,
we also used several naive models in which the prior variances of the
coupling parameters in DCM were independent of the anatomical
likelihood of the corresponding connections. Using Bayesian model
selection (Penny et al., 2004; Stephan et al., 2007b), we tested which
of these models best explained experimentally measured fMRI data in
a DCM of four visual areas (Stephan et al., 2007a), using data from a
group of twelve healthy volunteers. Our comparisons showed that the
best model (i.e., the model with the highest evidence) is one in which
anatomical probability increases the prior variance of DCM coupling
bility that a connection between two regions R1 and R2 exists anatomically should be
in DCM, hence making it easier for the parameter to deviate from its prior mean of zero
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parameters in a nonlinear and monotonic (sigmoidal) fashion. In
contrast, models that ignore anatomical connectivity have substan-
tially less evidence. To our knowledge, this study provides the first
empirical evidence that probabilistic knowledge of anatomical
connectivity can improve models of functional integration in the
brain.

This paper comprises three sections. In the first we review DCM,
with a special focus on the construction of anatomically informed
priors on the coupling parameters. In the second section, we describe
the data and how probabilistic tractography measures were derived.
In the final section, we present the results of Bayesian model
comparisons used to establish if and how anatomical constraints are
evident in functional data.

Theory

Dynamic causal modelling (DCM)

DCM for fMRI uses a bilinear model of neural dynamics in a system
of n distributed brain regions, where neural population activity in
each region is represented by a single state variable. DCM models the
change of this neural state vector x using the following differential
equation:

dx
dt

= A +
Xm

j=1

ujB
jð Þ

0
@

1
Ax + Cu: ð1Þ

Here, the A matrix represents the endogenous (context-independent
or fixed) strength of connections between the regions, and the
matrices B(j) represent the modulation of these connections (e.g. due
to learning, attention, etc.) induced by the jth input uj. Finally, the C
matrix represents the influence of direct (exogenous) inputs to the
system (e.g. sensory stimuli). Note that all parameters are rate
constants and are thus in units of s−1.

To explain regional BOLD responses, DCM for fMRI combines this
model of neural dynamics with a biophysically motivated hemody-
namic model; for details see Friston et al. (2000) and Stephan et al.
(2007b). Together, the neural and hemodynamic state equations
Fig. 2. This figure shows different Gaussian priors for coupling parameters in the DCM
shown by Fig. 3. The dotted black line represents the prior variance, v=0.0405, that
was originally suggested as a default value for a four-area DCM (Friston et al., 2003). The
solid grey lines represent connection-specific prior variances that result from
transforming the anatomical connection probabilities φij (Fig. 3) using Eq. (6) and
the hyperparameters of the optimal model m45 (with hyperparameters α=4, β=12;
see Fig. 4).
furnish a deterministic forward model with hidden biophysical states.
For any given combination of parameters θ and inputs u, the measured
BOLD response y is modelled as the predicted BOLD signal h(u,θ) plus
a linear mixture of confounds Xβ (e.g., signal drift) and Gaussian
observation error e:

y = h u; θð Þ + Xβ + e: ð2Þ

DCM uses a fully Bayesian approach to parameter estimation, with
empirical priors for the hemodynamic parameters and conservative
shrinkage priors for the coupling parameters; see Friston (2002) and
Friston et al. (2003) for details. Briefly, the posterior moments are
updated iteratively using variational Bayes, under a fixed-form Laplace
(i.e., Gaussian) approximation, q(θ), to the conditional density p(θ |y).
This uses gradient ascent on a free-energy bound on the log-marginal
likelihood, ln p(y |m), for a particular model, m. This optimises the
maximum a posteriori (MAP) estimates of the parameters in the E-
step of an EM algorithm, whereas the M-step optimises hyperpara-
meters λ that control the covariance components of the observation
error e.

Of particular interest are the Gaussian shrinkage priors p(θ |m)
that constrain the estimates of the coupling matrices (i.e. the A and B
matrices in Eq. (1)). They are called shrinkage priors because they
have a prior mean of zero and a small prior variance (i.e. high prior
precision) and thus shrink the posterior estimates of coupling
parameters in DCM towards zero. The choice of shrinkage priors in
DCM was motivated by two reasons: (i) they enforce conservative
parameter estimation, and (ii) ensure the system is dissipative.2 These
considerations led to a quantitative heuristic for the prior variance of
coupling parameters, which depends on the number of areas in the
system (Friston et al., 2003). For example, for a four-area model as in
the present study, the prior variance of coupling parameters is set to
0.0405. Fig. 2 shows this default prior (bold dotted line) and contrasts
it with anatomically informed priors (specifically, those which were
found to be optimal by our model selection procedure described
below).

Critically, the higher the prior variance of coupling parameters, the
easier it is for posterior estimates to deviate, in either direction, from
the prior mean of zero. In DCM, the shrinkage priors on the coupling
parameters are identical for all connections in the system, regardless
of whether they are anatomically likely or not. In the next section, we
motivate a scheme by which anatomical measures from probabilistic
tractography can be used to define the prior variance for individual
connection strengths and thus constrain dynamic causal models
anatomically.

Anatomically informed priors

Anatomical measures
Imagine that we are given some (probabilistic) measure φij

⁎ of
anatomical connectivity between regions i and j in the DCM. Generally,
these will describe a probability density; for example, the probability
of a streamline from a seed region to reach a target region. Because
these measures are densities their absolute values depend on their
units of measurement (e.g., per voxel). We can resolve this depen-
dency by working with the relative probabilities on n connections

uij =
u4
ijP

ij u
4
ij

: ð3Þ

This ensures that ∑φij=1 and furnishes a measure of anatomical
strength for any one connection, relative to all others. In Fig. 3B,φij and
2 In DCM as implemented in SPM5/SPM8, stability of the system is guaranteed by
using lognormal priors on the negative self-connections; see the discussion on stability
in Stephan et al. (2008).
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φij⁎ are shown alongside the connections of the DCM considered in this
study.We now have to consider how this relativemeasuremight enter
a probabilistic model of effective connectivity like a DCM.

Anatomically informed priors
In DCM, priors on the effective connectivity θij between regions i

and j are Gaussian shrinkage priors (see above)

pðθijÞ~ exp 1
2

Y
ijθ

2
ij

� �
ð4Þ

whereΠij is the prior precision of the connection. When the precision
is large, the connections are constrained to be small; i.e., they shrink to
their prior expectation of zero. This form allows us to specify
anatomically informed priors p(θij)→p(θij |φij), which change mono-
tonically as a function of the anatomical connection strength, by
making the precisions a function of φij:

Πij = Π0 + expðα − βuijÞ: ð5Þ

If βN0, as the relative strength φij increases, the precision will
decrease toward a lower bound Π0. In other words, if the anatomical
measure suggests that a given connection is more probable than other
connections, then the prior precision will be small, relaxing the
shrinkage on the posterior estimates which, consequently, can take
large values in either positive or negative direction. The relative effects
of anatomical constraints will be less and less pronounced as β
approaches zero. At β=0, the anatomical measures play no role, and
Fig. 3. (A) Summary of the DCM used in this evaluation study; for details see (Stephan et al., 2
fusiform gyrus (FG) in both hemispheres (black solid lines). Non-foveal visual stimuli (word
stimulus onset asynchrony between 1.5 and 2.5 s during 24 s blocks; these were modelled
instruction periods, bilateral visual field (BVF) input was provided for 6 s; this was modelled
stimulus properties (grey dotted lines). Intra-hemispheric LG→FG connections were allowe
hemispheric connections were modulated by task conditional on the visual field (LD|LVF a
connection, its probability φij

⁎ was computed using each participating region as a seed regio
were then averaged across all 42 subjects. For all connections the standard error across subje
SE(φ13)=1.08×10−3, SE(φ24)=2.90×10−3 and SE(φ12)=7.68×10−4. φij represent norma
we are dealing with “anatomically uninformed” priors. Here, the
degree of shrinkage is the same for all connections and is determined
entirely by exp(α)≥0. Finally, for βb0, the prior precision increases
with the anatomical likelihood of a given connection, resulting in
counterintuitive priors that shrink the posterior estimates more
strongly for probable connections than for improbable ones. In
summary, one can regard the hyperparameters α and β as controlling
generic and anatomical constraints, respectively. Because these
hyperparameters are unknown, they have to be optimised with
respect to the model evidence, as described below.

Prior variances
Usually, priors are specified not in terms of precisions but in terms

of variances
∑ij=Πij

−1. In the case of anatomically informed priors we have

Σij =
1

Π0 + expðα − βuijÞ
=

Σ0

1 + Σ0 expðα − βuijÞ
: ð6Þ

This is simply a logistic sigmoid function of φij. Here, the sigmoid is
bounded by the upper limit on variance ∑0 (e.g., imposed by
dynamical stability priors), where ∑0 is the inverse of Π0 in Eq. (5).
The point of inflection (i.e., shift) is determined by α, while β controls
the slope (i.e., gain) of the sigmoid. Most importantly, the prior
variance; (i) increases monotonically with φij if βN0, (ii) is unaffected
by anatomical information if β=0, and (iii) decreases monotonically
with φij if βb0. This perspective on anatomically informed priors
p(θij |φij) highlights its flexibility and form (see also Fig. 4).
007a). This four-area model included the reciprocally connected lingual gyrus (LG) and
s) were presented in either the right (RVF) or left (LVF) visual field with a randomized
as individual events driving contralateral LG activity (black dashed lines). During the
as a box-car input to LG, in both hemispheres. Connections were modulated by task and
d to vary during a letter decision (LD) task, regardless of visual field. In contrast, inter-
nd LD|RVF). (B) Mean anatomical connection probabilities at the group level. For each
n once and then computing the average. This was done for each subject and the results
cts was considerably smaller than the mean connection strength: SE(φ12)=3.18×10−3,
lised connection probabilities (c.f. Eq. (3)).



Fig. 4. Thisfigure summarises all 64models testedby showing theirmapping functions (specifiedbyhyperparametersα andβ; seeEq. (6)) that converted anatomical connectionprobabilities intoprior variances of effective connectivity parameters in the
DCM. Red stars represent the prior variances that result from transforming the anatomical connection probabilitiesφij shown in Fig. 3. The plot in the right lower corner shows the prior variances for twomodels,m63 (red triangles) andm64 (red circles).
The top 5models, as established byBayesianmodel selection (see Fig. 5 for details), are shownwith a grey background. Note that thesewere the onlymodelswith anon-negligible posterior probability (larger than 10−4; compare Fig. 5C). The bestmodel,
m45, is highlighted by a dark grey background; its prior variances for the effective connectivity parameters are shown in Fig. 2.
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Are anatomically informed priors useful for DCM?

The critical issue is, of course, whether DCMs with anatomically
informed priors are better than DCMs which discount anatomical
connectivity. This can be addressed by comparing the model evidence
of DCMs with different hyperparameters {α, β, ∑0}, using Bayesian
model selection (Penny et al., 2004; Stephan et al., 2007b). In
particular, the value ofβwhich optimises themodel evidence indicates
whether and how anatomically informed priors improve the model.

In this study, we compared different anatomically informed and
uninformed priors using an established four-region DCM of visual
responses measured during a paradigm requiring letter decisions and
spatial decisions about identical word stimuli (Stephan et al., 2007a);
here, we focus on the modulation of connectivity induced by letter
decisions. The fMRI data came from a group of twelve healthy
volunteers (all male and right-handed, mean age 24.9 years, SD 3.4).

Using this DCM, we fixed the upper bound hyperparameter ∑0 to
unity and optimised the remaining hyperparameters with respect to
themodel evidence by searching overmodel space; where eachmodel
had different values of α and β. Specifically, both these hyperpara-
meters were varied in steps of 4 over the range [−32, 32], resulting in
289 different models. For each of these models, we computed the
associated prior covariance matrix according to Eq. (6), based on
anatomical connectivity estimates which are described in the next
section and summarised by Fig. 3B. In a subsequent pruning step, we
Fig. 5. The log-evidence (pooled over subjects) for all 64 models, in relation to the worst mo
best model at a glance, the graph is redrawn in subplot B and thresholded such that only the
Furthermore, comparing this result with Fig. 4, it becomes apparent that 7 out of the 10 best
prior variance should increase with the probability or strength of an anatomical connection
compared these matrices and removed those showing only small
differences (i.e., where the maximal difference between correspond-
ing elements in the covariance matrices was less than 10−2). This
resulted in 62 sets of hyperparameters and associated models, which
will be referred to asm1⋯m62. These DCMs were distinguished only by
different anatomically informed (β≠0) or anatomically uninformed
(β=0) priors. As additional controls, we considered two further
models with anatomically uninformed priors: one model, m63, used
the default shrinkage priors in DCM (i.e. a prior variance of 0.0405 for
each connection; see red circles in Fig. 4). The second, m64 was
constructed by assuming that each connection was equally likely (i.e.,
φij=25%), resulting in the same prior covariance for each connection
(i.e. 0.2689; see red triangles in Fig. 4). All 64models were fitted to the
fMRI data from each of the 12 subjects and subsequently evaluated
using Bayesian model selection (BMS), as described next.

Bayesian model selection (BMS)

A decision about which of several competing models is optimal
cannot be based only on the relative fit to the data (i.e., accuracy) but
also needs to take into account differences in model complexity (i.e.,
the number of free parameters and the functional form of the
generative model, Pitt and Myung, 2002). Penalizing for model
complexity is important because while accuracy increases mono-
tonically with complexity, at some point the model will start fitting
del (m41), are shown in subplot A. Because the scaling makes it difficult to recognize the
top 10 models are plotted. It can now be seen easily that the best model is model m45.
models possess anatomically informed priors that accord with the intuitive notion that
. The posterior probabilities of all models are shown by subplot C.
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noise that is specific to the particular data (i.e., “over-fitting”).
Therefore, models that are too complex show poor generalisability.
Given that all models are equally likely a priori, the question “which is
the optimal model?” can be reformulated as “which model represents
the best balance between fit and complexity?” This is the model that
maximizes the marginal likelihood or model evidence:

p y jmð Þ = R
p y jθ;mð Þp θ jmð Þdθ: ð7Þ

Here, the integration subsumes the number and conditional depen-
dencies among model parameters θ (Friston et al., 2007; Penny et al.,
2004). In this study, we approximate the log-evidence with the same
free-energy bound, F, that is used to optimise the parameters above
(Friston et al., 2007; Mac Kay, 2003; Neal and Hinton, 1998). As
detailed elsewhere (Stephan et al., 2009), the advantage of F
over other approximations (like the Akaike or Bayesian Information
Criteria), is that it accounts properly for conditional dependencies
among the parameter estimates. The derivation of F and its
mathematical interpretation with regard to model accuracy and
complexity have been described in detail in previous publications
(Friston et al., 2007; Penny et al., 2004; Stephan et al., 2007b).

To quantify the relative evidence for two models mi and mj at the
group level, we report differences in their log-evidence summed
across subjects (c.f. Fig. 5); this is equivalent to using log group Bayes
factors (Stephan et al., 2007b)

ln
Y
n

BF nð Þ
ij = ln

Y
n

pðyn jmiÞ
pðyn jmjÞ

≈
X
n

F nð Þ
i −F nð Þ

j ð8Þ

where n is an index over subjects. A difference in log-evidence (free-
energy) of three or more is generally considered to be strong evidence
for one model over another (Kass and Raftery, 1995). It is worth
mentioning that although random-effects procedures for group-level
BMS are available (Stephan et al., 2009), the fixed-effects BMS implicit
in Eq. (8) is more appropriate here. This is because we are
characterising a basic relationship between anatomical and effective
connectivity that is fixed over subjects.

When each model is equally likely a priori (i.e. flat priors on
models) the posterior probability of each model is proportional to the
model evidence: p(mi |y)∝p(y |mi). This means one can normalise the
evidence for each model by dividing by the sum of evidences across
models to give its posterior probability. The posterior probabilities for
all models tested are shown in Fig. 5C.

Methods

Probabilistic tractography

Subjects
42 healthy volunteers (21 male) took part in the diffusion data

acquisition, which was carried out at the Max Planck Institute for
Human Cognitive and Brain Sciences at Leipzig, Germany. Subjects
were on average 26.5 years old (range: 22–34; standard deviation:
2.8 years) and no subject had a history of neurological, psychiatric, or
other major medical disorder. The study was approved by the local
ethics committee of the University of Leipzig (Leipzig, Germany), and
participants gave written informed consent. Data were handled
anonymously.

Data acquisition and pre-processing
Diffusionweighted data and high-resolution three-dimensional T1

and T2 weighted images were acquired on a Siemens 3 T Trio scanner
with an 8-channel array head coil and maximum gradient strength of
40 mT/m. The diffusion weighted data were acquired using twice-
refocused spin-echo echo planar imaging (Reese et al., 2003)
(TR=12 s, TE=100 ms, 72 axial slices, resolution 1.72×1.72×
1.7 mm). We used a GRAPPA technique (with a reduction factor of
2.0) for parallel imaging. Diffusion weighting was isotropically
distributed along 60 directions (Jones et al., 1999) with a b-value of
1000 s/mm2. The high angular resolution of the diffusion weighting
directions improves the robustness of probability density estimation
by increasing the signal-to-noise ratio and reducing directional bias.
Additionally, seven data sets with no diffusion weighting (b0) were
acquired initially and interleaved after each block of 10 diffusion
weighted images as anatomical reference for motion correction. To
further increase signal-to-noise, we acquired three consecutive scans,
which were subsequently averaged together. The entire data acquisi-
tion protocol lasted approximately 45 min. Motion correction for the
diffusion weighted images was applied to all images using 7-
parameter global re-scale registration (Jenkinson et al., 2002) as
implemented in the FSL software (FMRIB Software Library, University
of Oxford, http://www.fmrib.ox.ac.uk/fsl). All baseline b0 images
were aligned to a reference b0 image and the resulting linear
transformation matrices were then applied to the diffusion weighted
images following each baseline b0 image. The gradient direction for
each volume was corrected using the rotation parameters. Then, the
three scan repetitions were averaged to improve the signal-to-noise
ratio.

Tractography
We applied the tractography approach as described by Kaden et al.

(2007, 2008). This approach, which is based on the local fibre
orientation density, computed by spherical deconvolution of the
diffusion weighted signal, yields an estimate of the spatial probability
distribution of connectivity from given seed regions. This approach is
particularly useful for studies interested in anatomical connectivity
between larger brain regions, which may not be adequately
represented by single voxels (Koch et al., 2002) or single points
(e.g. the centre of voxels; Behrens et al., 2003; Parker and Alexander,
2003). Instead, the concept of Kaden et al. extends the idea of
connectivity to arbitrarily defined areas or volumes and defines
anatomical connectivity as the proportion of fibre pathways originat-
ing in a specific source region that intersect a target region (Kaden
et al., 2007). If the area or volume of the source region approaches a
point, this measure reduces to the existence formulation proposed by
Behrens et al. (Behrens et al., 2003), which only takes values on the
discrete subset {0, 1}. It should be noted that none of the available
tractography approaches makes it possible to determine the direc-
tionality of synaptic transmission along a given fibre tract; this is
a general limitation of any connectivity metric based on diffusion
weighted MRI.

Seed regions
Tractography was performed for each subject individually in his/

her native (non-normalised) space. The resulting connectivity maps
were then warped into a standard space (using the MNI 1 mm
isotropic brain as a reference) for cross-subject averaging and
comparison. To create seed masks for each subject, MNI coordinates
were normalised to each subject's native space, using the inverse of
the normalisation parameters. All resulting images were visually
inspected to ensure that normalisation was successful and that each
image was acceptable for analysis (e.g., in the correct orientation and
not distorted).

To ensure that the computed tractogramswere dominated by long-
range connections, seed points were placed at the grey matter/white
matter interface (white matter: fractional anisotropy; FAN0.1). As the
regional coordinates of fMRI time series used for the DCMs were
located at the cortical surface, these coordinates were projected to the
grey/white matter interface following the shortest (geodesic) path.
Subsequently a seed region was defined by all points on the white
matter surface within a radial distance of 3 voxels from the projected
coordinates.

http://www.fmrib.ox.ac.uk/fsl
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Connectivity measure
Considering all fibres originating in a given source region S, its

structural connectivity with a given target region T can be defined in
terms of the proportion of those fibres that intersect T while running
within the brain white matter, yielding a number in the interval
between zero (no fibres intercept T) and one (all fibres starting in S
reach T) (Kaden et al., 2007). This quantity gives no information about
the absolute number of connections between two regions, but reflects
the degree of connectedness or relative connection density. It can be
considered as a measure of the likelihood of a connection in the sense
that it can be interpreted as the frequency at which one would reach T
by randomly seeding a fibre starting within S. In our framework, the
notions of anatomical connection strength and anatomical connection
likelihood are therefore interchangeable.

One should note, however, that this connectivity metric may differ
depending on whether S or T is chosen as the source region for fibre
tracking (noting that this does not reflect the directionality of synaptic
transmission along the pathways). For any given connection, one can
remove this dependency on the seed region by computing the
connectivity metric using each region as a seed region once and then
averaging the result. Following this procedure, anatomical connectiv-
ity was estimated in each subject for all of the connections in the DCM
(Stephan et al., 2007a) above and shown in Fig. 3. The subject-specific
anatomical connection probabilities were then averaged across
subjects; the resulting group values are reported alongside the
corresponding connections in Fig. 3B. Note that the anatomical
connection probabilities φij

⁎ resulting from our procedure are fairly
small, as each region ismost likely connected tomanymore brain areas
than those included in the DCM. Fig. 3B also shows the normalised
connection probabilities φij for each connection (c.f. Eq. (3)).

Our numerical implementation for computing the above connec-
tivity measures was identical to that described in Kaden et al. (2007).
Streamline tractography was run from 100 randomly sampled starting
points per voxel in the seed region; i.e. about 2400 times on average. A
distribution of the connectivity value was then obtained by repeating
this procedure 1000 times with different realizations of the local
model, sampled using the Metropolis–Hastings algorithm. This means
about 2.4 million fibres were computed for each connectivity value.

Results

Fig. 4 shows the relationship between the anatomical connection
probability and prior variance of coupling parameters in DCM for all
64 models tested (note that the anatomically uninformed modelsm63

and m64 are shown in the same subplot). The log-evidences for all 64
models, in relation to theworst model (m41) are shown in Figs. 5A and
B. Fig. 5C shows the corresponding posterior probabilities for all
models. It can be seen that the best model is modelm45. In this model,
the DCM priors are anatomically informed, such that the prior
variance of a coupling parameter in DCM increases monotonically
with the anatomical likelihood of the connection. This result is
pleasing because it confirms the intuitive notion that (i) probabilistic
knowledge of anatomical connectivity should inform coupling
strengths in dynamic models, and, more specifically, (ii) the more
likely the anatomical connection, the easier it should be for the
corresponding coupling to be expressed functionally and take large
values.

Comparing Fig. 5B with Fig. 4, it is apparent that the next 6 best
models, m44 and m46–m50, use anatomically informed priors with a
similar form to the optimal model, i.e. priors that relax shrinkage
when the strength of an anatomical connection increases. It is also
worth noting that only the five best models, m44–m48, show a non-
negligible posterior probability (i.e. larger than 10−4; see Fig. 5C).
These models are highlighted with a grey background in Fig. 4.

Two of the top 10 models,m10 andm30, possessed counterintuitive
priors (where anatomical likelihood decreased prior variance). When
comparing model m45 to model m30, the best counterintuitive model,
the difference in log-evidence was 12.89 in favour of m45. This means
that the group fMRI data are exp(12.89)≈4×105 times more likely
under model m45 than under model m30.

Several of the models tested had anatomically uninformed priors,
with the same prior variance for all coupling parameters, regardless of
the anatomical likelihood of the respective connection. These models
either (i) resulted from our systematic search over model space (for
β=0 or for large values of α that shifted the sigmoid such that all
probabilities came to lie on the asymptote), (ii) were included as an
additional control case (m63, assuming that each connection was
equally likely, i.e. φij=25%), or (iii) used the default prior variances as
originally defined for DCM (m64). Notably, the corresponding
uninformed prior covariances varied considerably across models,
ranging fromvery high (e.g. 1 inm1) to very low (e.g. 0.018 inm42). As
shown by Fig. 5, m45 performed considerably better than all models
with uninformed priors, regardless of whether these used coupling
parameters with high, intermediate or low prior variances. Specifi-
cally, when comparing model m45 to model m32 (the best of all
models with anatomically uninformed priors), the relative log-
evidence was 21.83 in favour of m45. This difference means that the
observed group fMRI data are exp(21.83)≈3×109 times more likely
under model m45 than under model m32.

Discussion

In this study, we used probabilistic tractography based on diffusion
weighted imaging data to obtain a measure of the anatomical
likelihood of connections among visual areas. We then instilled
these measures into an established dynamic causal model of
interacting visual areas by making the prior variance of the DCM
coupling parameters a function of the anatomical likelihood. A series
of competing dynamic causal models was constructed and compared,
using Bayesian model selection, to identify the most likely mapping
between anatomical estimates of connectivity and prior variances in
the DCM. In particular, we compared DCMs with anatomically
informed and anatomically uninformed priors. Our results showed
that the best DCM used anatomically informed priors where the prior
variances of coupling parameters increased as a monotonic nonlinear
function of anatomical likelihood.

This study is novel in two ways. To our knowledge, this is the first
formal demonstration that knowing anatomical connectivity
improves inference about effective connectivity. Although we cannot
generalise to other data or paradigms, these results provide a suffi-
ciency proof that anatomical information is useful in the context of
modelling functional integration. Secondly, this study shows how
anatomical and functional data can be integrated and analysed within
the same inference framework for dynamic systems. In this context,
we have demonstrated a generic model selection procedure that
allows one to quantify the evidence for anatomical constraints in other
settings. In the following, we discuss these two issues in detail.

Decades of anatomical and physiological work have shown that
anatomical connectivity provides critical constraints on effective
connectivity. In particular, the construction of large scale databases
of neuroanatomical data over the last decade have made it possible to
establish global relations between anatomical connectivity and brain
function (Bota et al., 2005; Burns and Young, 2000; Hilgetag et al.,
1996, 2000; Honey et al., 2007; Kötter and Stephan, 2003; Kötter et al.,
2001; Passingham et al., 2002; Scannell et al., 1999; Sporns et al.,
2000; Stephan et al., 2001; Young, 1992). However, it is equally clear
that effective connectivity is only constrained, and not fully deter-
mined, by anatomical connections. There are numerous reasons for
this, which are largely related to short-term synaptic plasticity and
neuromodulation. For example, synapses can alter their transmission
properties depending on the recent history of presynaptic and
postsynaptic events. These phenomena include synaptic facilitation
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and depression and a variety of NMDA receptor-dependent mechan-
isms that change postsynaptic responsiveness at very short time-
scales, ranging from milliseconds to minutes (Bagal et al., 2005; Citri
and Malenka, 2008; Montgomery and Madison, 2004; Passafaro et al.,
2001; Zucker and Regehr, 2002). Short-term synaptic plasticity also
has structural correlates at the level of synaptic proteins (which may
be altered by very fast processes like phosphorylation), the number of
membrane-bound NMDA and AMPA receptors, andmolecular changes
in intracellular signal transduction cascades. However, these struc-
tural changes live at a much smaller spatial scale than axonal
connections per se. In other words, anatomical connectivity is usually
described at a cellular scale, whereas neuronal communication and
synaptic efficacy lie at the subcellular andmolecular scale. An example
of changes in synaptic efficacy is the phenomenon that a synaptic
connection can dramatically alter its strength due to nonlinear
dendritic integration of multiple synaptic inputs. For example, in the
presence of non-inactivating dendritic sodium conductances
(Schwindt and Crill, 1995) or dendritic calcium conductances
activated by back-propagating action potentials (Larkum et al.,
2004) the postsynaptic response at a given dendritic synapse can
depend strongly on the temporal and spatial distribution of other
synaptic inputs. The fact that synaptic efficacy and effective
connectivity are highly context-dependent has been described
numerous times in the context of gain control (Salinas and Sejnowski,
2001), theories of neural context (McIntosh, 2000), functional
integration (Friston, 2002b) and nonlinear gating of connections
among neuronal populations (Stephan et al., 2008a).

For these reasons and others, it has been clear for a long time that
even a perfect knowledge of the anatomical layout of brain
connections would not enable us to predict the brain's functional
integration or context-dependent dynamics (see also Ghosh et al.,
2008). It seems equally clear, however, that although anatomical
connectivity does not predict effective connectivity, it might provide
an important constraint (Stephan et al., 2008b). Driven by this notion,
a variety of studies have recently started to use empirical data sets of
anatomical connectivity data as a basis for large scale simulations of
brain function (Honey et al., 2007; Jirsa, 2004; Sporns et al., 2000;
Tagamets and Horwitz, 1998) or have investigated what types of
network structures give rise to certain types of neuronal dynamics
(Strogatz, 2001). Also, since their first application (McIntosh and
Gonzalez-Lima,1991), models for inferring effective connectivity from
neuroimaging data have exploited existing knowledge of anatomical
connectivity to specify model structure. This assumed that model
quality should be improved by incorporating anatomical knowledge.
While this notion is plausible, it has not been tested formally. The
present study has provided evidence in favour of this assumption.

A variety of attempts have beenmade over the last few years to use
estimates of anatomical connectivity as derived from diffusion
weighted imaging, to constrain or refine analyses of fMRI data. For
example, some studies have shown that specific brain areas can be
delineated on the basis of their anatomical connectivity pattern
(Anwander et al., 2007; Tomassini et al., 2007), and that this
delineation is well matched by fMRI activity in tasks that activate
the area in question (Behrens et al., 2006; Friederici et al., 2006;
Johansen-Berg et al., 2004, 2005; Klein et al., 2007). Some work has
also addressed joint analyses of anatomical and functional connectiv-
ity. For example, Koch et al. (2002) correlated the results from
functional connectivity analyses of fMRI data and tractography based
on diffusion weighted imaging data. They found that the relation
between anatomical and functional connectivity did not follow a
simple rule but varied considerably across regions. More recently, it
has been suggested that anatomical and functional connectivity, as
inferred from fMRI data, could be analysed within a single mathema-
tical framework (Jbabdi et al., 2007). Our study extends these efforts
by linking anatomical connectivity estimates to inferences about
effective connectivity. The proposed use of anatomically informed
priors in dynamic causal models represents a simple approach that
may prove useful in other contexts.

Clearly, there are many ways that anatomically informed priors in
DCMs could be formulated mathematically. Nevertheless, even in this
initial study, we investigated a relatively large range of different
models, using a generic formulation that was able tomodel a variety of
different relationships between the anatomical likelihood of a
connection and the prior variance of the associated DCM coupling
parameter. Notably, this set of 64 models included DCMs in which the
prior variance increased with anatomical likelihood (as one would
expect intuitively), DCMs in which the prior variance decreased with
anatomical likelihood (i.e. counterintuitive models), and models in
which the anatomical probability did not inform the priors (i.e., all
connections were treated equally). All models were then compared
using Bayesian model selection, a technique that takes into account
not only the fit, but also the relative complexity of competing models.
Differences in model complexity arise not only by inclusion of
additional parameters, but also through differences in their prior
variance. Simply speaking, increasing the prior variance of parameters
endows a model with more effective degrees of freedom to fit the data
and therefore renders it more complex (formally speaking, model
complexity increases with the Kullback-Leibler divergence between
the posterior density and the prior density; for details, see Stephan
et al., 2009).

Figs. 4 and 5 summarise the results of our model comparison
procedure. It is striking that the seven best models, m44–m50, use
anatomically informed priors of an intuitive sort, i.e. priors that relax
shrinkage when the strength of an anatomical connection increases.
One may wonder why these particular anatomically informed priors
fared better than formally similar priors. One explanation may be that
optimal models tended to preclude very low prior variances, whereas
in other models with priors of a similar form the less likely
connections (i.e. left LG↔ left FG and left FG↔right FG) had very
low prior variances (compare Fig. 4). Low prior variances have
opposing effects on model evidence (c.f. the appendix to Stephan
et al., 2009): on one hand, as mentioned above, low prior variance
increases model evidence by reducing the effective degrees of
freedom and thus model complexity. On the other hand, because
any difference between the posterior and priormeans also contributes
to model complexity, low prior variance means that any deviation of
posterior estimates from zero will incur a higher cost (higher model
complexity) than in models with high prior variance. These opposing
effects on model complexity prohibit trivial strategies for choosing
priors, such as generally minimising or maximising prior variance for
all connections, and illustrate the necessity of establishing procedures
for defining connection-specific prior variances, as suggested in this
paper. In the present study, our BMS results imply that explaining the
observed data required that connections with comparatively small
anatomical likelihood nevertheless possessed non-negligible effective
strengths.

After the seven best models, the next-best three models exhibited
either anatomically informed but counterintuitive priors (in which
anatomical likelihood decreased the prior variance) or anatomically
uninformed priors, with the same prior variance for all coupling
parameters, regardless of the anatomical likelihood of the respective
connection (Fig. 5). Why these particular models were better than
some models with anatomically informed and intuitive priors is not
clear. However, on the whole, the relative evidence for these models
was very low. They were considerably worse than the best model
(with group Bayes factors of 105–109 in favour of the latter).
Additionally, without exception, their posterior probabilities were
very close to zero (i.e. below 10−4; see Fig. 5C), while the posterior
probability of the best model was 63%.

The present study has a number of limitations. First, the functional
and structural data were not obtained from the same subjects. The
diffusionweighted MRI datawere acquired from a group of 42 healthy
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volunteers, and the tractography values used in this study represent
averages across this population. Anatomical connection probabilities
were estimated for regions defined by fMRI activations in a second
population of 12 subjects (Stephan et al., 2007a); these functional
data were used to fit the DCMs. It is possible that our model selection
approach might have given different hyperparameter estimates if we
had used structural and functional data from the same subjects.We do
not think a potential difference is likely to be substantial, because we
averaged the tractography results across a relatively large group of 42
volunteers, thus diminishing any impact of inter-individual variation.
We will revisit this issue in future studies that obtain structural and
functional data from the same subjects. Concerning the present study,
we would like to stress that its purpose was not to obtain exact
hyperparameter estimates. We wanted to see whether tractography-
informed priors improved the model evidence; and if so, what form
the mapping from anatomical probability to prior constraint might
take.

A second limitation, as in all modelling studies, is that only a
limited number of models could be tested. We addressed this issue by
defining a relatively large model space (defined by two parameters in
the sigmoidal mapping) and systematically searching this model
space. A third limitation, shared by all studies that rely on diffusion
weighted imaging, is that our estimates of anatomical connectivity are
non-directional. That is, having established (probabilistically) that
there is a connection between region S and region T, we do not know
whether the direction of synaptic transmission is from S to T, from T to
S, or in both ways. In our study, this constraint is only relevant in that
the prior variances for a pair of reciprocal connections are the same; in
contrast, our DCMs allow for separate estimates of effective
connectivity in the two directions.

Third, a general problem of many probabilistic tractography
procedures, as with the one used in this study, is that the measure
of connectivity between two regions is influenced by their spatial
distance. This is due to the accumulation of errors over space when
deriving connectivity measures from sequential tractography. In the
network examined in this study, the distances traversed by intra-
hemispheric connections are shorter than for inter-hemispheric
connections. It is thus possible that the anatomical connectivity
measures for the latter are underestimated relative to the former.
However, for highly coherent fibre bundles, like the corpus callosum,
this effect may not be critical: although no formal analysis exists, this
was demonstrated anecdotally in previous work using the same
tractography method (c.f. Figs. 7 and 8 in Kaden et al., 2007). This
issue is a potential confound that could be addressed in future studies
by including a distance hyperparameter in the prior covariance model
and evaluating its contribution using Bayesian model comparison as
above.

Finally, it should be noted that our proposed method is only useful
when dealing with a network of more than two regions. This is
because of the non-directional nature of diffusion data (see above)
and because we are dealing with relative probabilities; where
φij=100% for a two-area network (c.f. Eq. (3)). This is not a severe
limitation because most applications of DCM concern networks with
more than two areas.

Our approach could be extended to overcome some of the
limitations mentioned above. In this paper, we optimised hyperpara-
meters controlling the way tractography measures provide prior
constraints on effective connectivity. This optimisation was with
respect to a free-energy bound on the ensuing log model evidence,
using a systematic search of hyperparameter space. In principle, this
optimisation could be part of a hierarchically extended model that
included the hyperparameters as unknown quantities. This would
entail formulating priors on these hyperparameters (i.e., a prior on a
prior or hyperprior) and extending the model inversion scheme to
accommodate covariance functions that are nonlinear in the hyper-
parameters. Then, the explicit search over hyperparameters used in
this paper could be replaced by optimisation of a single model. An
additional advantage of this procedure would be that wewould have a
posterior density on the hyperparameters themselves, allowing us to
quantify how certain one was about the contribution of anatomical
constraints. As noted by one of our reviewers, another advantage of
such hierarchically extended models is that they would allow for
different priors on the two directions of a reciprocal connection. The
latter is not possible within the present framework because the non-
directional nature of tractography data enforces the same anatomical
connection probability for both directions, giving identical prior
variances. However, if we used the anatomical connection probability
to specify a hyperprior, the prior variances could change adaptively, in
a direction-specific fashion. This would account, for example, for
possible asymmetries in forward and backward connections.

In summary, using a combination of probabilistic tractography,
dynamic causal modelling and Bayesian model selection, we have
demonstrated that probabilistic estimates of anatomical connection
strengths can be used to improve models of effective connectivity. We
expect that this type of approach will prove useful in future studies of
functional integration that have access to both fMRI and diffusion
weighted imaging data.
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