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Analyzing effective connectivity
with functional magnetic
resonance imaging
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Functional neuroimaging techniques are used widely in cognitive neuroscience
to investigate aspects of functional specialization and functional integration in
the human brain. Functional integration can be characterized in two ways,
functional connectivity and effective connectivity. While functional connectivity
describes statistical dependencies between data, effective connectivity rests on
a mechanistic model of the causal effects that generated the data. This review
addresses the conceptual and methodological basis of established techniques for
characterizing effective connectivity using functional magnetic resonance imaging
(fMRI) data. In particular, we focus on dynamic causal modeling (DCM) of fMRI
data and emphasize the importance of model selection procedures and nonlinear
mechanisms for context-dependent changes in connection strengths.  2010 John
Wiley & Sons, Ltd. WIREs Cogn Sci 2010 1 446–459

Functional integration in neuronal systems can be
quantified in two ways, functional connectivity

and effective connectivity.1–3 While functional connec-
tivity only describes statistical dependencies between
spatially segregated neuronal events, effective con-
nectivity rests on a mechanistic model of how the
data were caused. This article reviews established
techniques for characterizing effective connectivity
on the basis of functional magnetic resonance imag-
ing (fMRI) data, focusing on dynamic causal models
(DCMs).4,5

EFFECTIVE CONNECTIVITY

The term effective connectivity has been defined
by various authors in convergent ways. A general
definition is that effective connectivity describes the
causal influences that neural units exert over another.1

More specifically, other authors have proposed that
‘effective connectivity should be understood as the
experiment- and time-dependent, simplest possible
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circuit diagram that would replicate the observed
timing relationships between the recorded neurons’.6

Both definitions emphasize that determining effective
connectivity requires a causal model of the interactions
between the elements of the neural system of interest.

Such causal models can be defined within
the general mathematical framework provided by
dynamic systems theory.7–9 A system is characterized
by time-variant properties xi (1 ≤ i ≤ n) or state
variables, which interact with each other, i.e., the
evolution of each state variable depends on at
least one other state variable. For example, the
postsynaptic membrane potential depends on which
and how many ion channels are open; vice versa, the
probability of voltage-dependent ion channels opening
depends on the membrane potential. Such functional
dependencies can be expressed quite naturally by a
set of ordinary differential equations in which a set
of parameters θ determine the form and strength of
the causal influences between the state variables. In
neural systems, these parameters usually include time
constants or synaptic strengths of the connections
between the system elements. In addition, in the
case of non-autonomous systems (i.e., systems that
exchange matter, energy or information with their
environment) we need to consider the inputs into the
system, e.g., sensory information entering the brain.
Representing the set of all m known inputs by the
m-vector function u(t), one can define a general state
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equation for non-autonomous deterministic systems:

dx
dt

= F(x, u, θ) (1)

A model whose form follows this general state
equation provides a causal description of how system
dynamics results from system structure, because it
describes (1) when and where external inputs enter
the system and (2) how the state changes induced by
these inputs evolve in time depending on the system’s
structure. Given a particular temporal sequence of
inputs u(t) and an initial state x(0), one obtains a
complete description of how the dynamics of the
system (i.e., the trajectory of its state vector x in time)
results from its structure by integration of Eq. (1):

x(τ ) = x(0) +
∫ τ

0
F(x, u, θ)dt (2)

Equation (2) therefore provides a general form for
models of effective connectivity in neural systems.
(It assumes that all processes in the system are
deterministic and occur instantaneously, but can
easily be extended, e.g., by using stochastic and
delay differential equations, respectively.10,11) The
framework outlined here is concerned with dynamic
systems in continuous time and thus uses differential
equations. The same basic ideas, however, can also
be applied to dynamic systems in discrete time
(using difference equations), e.g., multivariate/vector
autoregressive models (MAR/VAR),12–14 as well
as to ‘static’ systems where the system is at
equilibrium at each point of observation. The
latter perspective applies to regression-based system
models for functional neuroimaging data, e.g.,
psychophysiological interactions (PPI),15 or structural
equation modeling (SEM).16–19 Readers interested in
these classical approaches are referred to the original
articles referenced above and to reviews that have
compared these approaches.7,20 Here, we focus on
that framework for inferring effective connectivity
from fMRI data that most closely follows Eq. (2), i.e.,
DCM.4,5

DYNAMIC CAUSAL MODELING

An important limitation of classical models of effective
connectivity like PPI, SEM, or VAR is that they
operate at the level of the measured signals. This
is a serious problem because the causal architecture
of the system that we would like to identify is located
at the neuronal level which cannot be investigated
directly using non-invasive techniques. In the case of

fMRI data, for example, PPI, SEM, and VAR are
fitted to measure time series which result from a
hemodynamic convolution of the underlying neuronal
activity. The absence of a forward model linking
neuronal activity to the measured hemodynamic data
can render analyses of inter-regional connectivity
problematic. For example, different brain regions
can exhibit marked differences in neurovascular
coupling. It has been shown that these inter-regional
differences can lead to false inference about effective
connectivity.21 A similar problem exists for EEG data
where changes in neural activity in different brain
regions lead to changes in electric potentials that
superimpose linearly. The scalp electrodes therefore
record a mixture, with unknown weightings, of
potentials generated by a number of different sources.

Therefore, to enable inferences about connec-
tivity between neural units we need models that
combine two things: (1) a parsimonious but neu-
robiologically plausible model of neural population
dynamics and (2) a biophysically plausible forward
model that describes the transformation from neural
activity to the measured signal.13,22 Such models make
it possible to fit jointly the parameters of the neural
and of the forward model such that the predicted
time series are optimally similar to the observed time
series. In principle, any of the models described above
could be combined with a modality-specific forward
model, and indeed, VAR models have previously been
combined with linear forward models to explain EEG
data.23 So far, however, DCM is the only approach
where the marriage between models of neural dynam-
ics and biophysical forward models is a mandatory
component.

Because its original inception for fMRI,4 a
variety of DCM implementations have been intro-
duced for additional data modalities, including event-
related potentials,11,24 induced responses,25,26 auto-
and cross-spectral densities27,28 and phase coupling29

as measured by local field potential recordings or
EEG/MEG. These models, all formulated under the
same theoretical framework, have enjoyed consider-
able success in the practical analysis of neuroimaging
data, resulting in more than 100 published studies (as
of August 2009). In this article, we focus on DCM
for fMRI as originally described4 and on some recent
nonlinear extensions of this model.30

DCM for fMRI uses a simple model of neural
dynamics in a system of n interacting brain regions
(see Figure 1 for a schematic summary). In its classical
form,4 it models the change of a neural state vector
x in time, with each region in the system being
represented by a single-state variable (representing
mean regional activity), using the following bilinear
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FIGURE 1 | Schematic summary of the conceptual basis of dynamic causal model. The dynamics in a system of interacting neuronal populations
(left lower panel), which are not directly observable by functional magnetic resonance imaging, is modeled using a bilinear state equation (right upper
panel). Integrating the state equation gives predicted neural dynamics (z) that enter a model of the hemodynamic response (λ) to give predicted BOLD
responses (y) (right lower panel). The parameters at both neural and hemodynamic levels are adjusted such that the differences between predicted
and measured BOLD series are minimized. Critically, the neural dynamics are determined by experimental manipulations. These enter the model in
the form of external inputs (left upper panel). Driving inputs (u1; e.g., sensory stimuli) elicit local responses directly which are propagated through the
system according to the intrinsic connections. The strengths of these connections can be changed by modulatory inputs (u2; e.g., changes in cognitive
set, attention, or learning). In this figure, the structure of the system and the scaling of the inputs are arbitrary. Note that state variables are denoted
by z in this figure (as opposed to the main text where state variables are referred to as x). (Reproduced with permission from Ref 36. Copyright 2005).

differential equation:

dx
dt

= F(x, u, θ (n))

=
(

A +
m∑

i=1

uiB(i)

)
x + Cu (3)

Note that this neural state equation follows the general
form for deterministic system models introduced
by Eq. (2), i.e., the modeled state changes are a
function of the system state itself, the inputs u,
and some parameters θ (n) that define the functional
architecture and interactions among brain regions at
a neuronal level. The neural state variables represent
a summary index of neural population dynamics in
the respective regions. The neural dynamics are driven
by experimentally controlled external inputs that can
enter the model in two different ways: they can elicit
responses through direct influences on specific regions

(e.g., evoked responses in early sensory cortices; the C
matrix) or they can modulate the coupling among
regions (e.g., during learning or attention; the B
matrices). Note that Eq. (3) does not account for
conduction delays in either inputs or inter-regional
influences. This is not necessary because, due to the
large regional variability in hemodynamic response
latencies, fMRI data do not possess enough temporal
information to enable estimation of inter-regional
axonal conduction delays which are typically in the
order of 10–20 ms (note that the differential latencies
of the hemodynamic response are accommodated
by region-specific biophysical parameters in the
hemodynamic model described below). This was
verified by Friston et al.4 who showed in simulations
that DCM parameter estimates were not affected by
introducing artificial delays of up to ±1 s. In contrast,
conduction delays are an important part of DCM for
event-related potentials.11
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Given the bilinear state equation [Eq. (3)], the
neural parameters θ (n) = {A, B, C} can be expressed as
partial derivatives of F:

A = ∂F
∂x

∣∣∣∣
u=0

B(i) = ∂2F
∂x∂ui

C = ∂F
∂u

∣∣∣∣
x=0

(4)

As can be seen from these equations, the matrix A
represents the endogenous (fixed) connectivity among
the regions in the absence of input, the matrices B(i)

encode the change in connectivity induced by the ith
input ui, and C embodies the strength of exogenous
(direct) influences of inputs on neuronal activity. In
most instances, the parameters of primary interest are
the modulatory ones (i.e., the matrices B(i)) since they
encode how experimentally controlled manipulations
change the connection strengths in the system.

DCM for fMRI combines this model of
neural dynamics with an experimentally validated
hemodynamic model that describes the transformation
of neuronal activity into a BOLD response. This
hemodynamic model, which builds on the so-called
‘Balloon model’,31 consists of a set of differential
equations that describe, using a set of parameters θ (h),
how changes in neural activity elicit changes in a
vasodilatory signal, blood flow, blood volume, and
deoxyhemoglobin content.32 The predicted BOLD
signal is a nonlinear function of blood volume and
deoxyhemoglobin content.33 The most recent version
of this hemodynamic model is summarized in Figure 2
and described in detail by Stephan et al.33

The combined neural and hemodynamic param-
eter set θ = {θ (n), θ (h)} is estimated from the measured
BOLD data, using a fully Bayesian approach with
empirical priors for the hemodynamic parameters and
conservative shrinkage priors for the coupling param-
eters. Details of the parameter estimation scheme,
which rests on a fixed-form variational Bayesian algo-
rithm, using a Laplace (i.e., Gaussian) approximation
to the true posterior, can be found elsewhere.4,34,35

INFERENCE ABOUT NEURONAL
MECHANISMS WITH DCM

Once the parameters of a DCM have been estimated
from measured BOLD data, the posterior distributions
of the parameter estimates can be used to test
hypotheses about connection strengths. Owing to the
Laplace approximation, the posterior distributions

are defined by their maximum a posteriori (MAP)
estimate and their posterior covariance. Usually, the
hypotheses to be tested concern context-dependent
changes in coupling [i.e., the matrices B(i) in Eq. (3)].
An example, originally reported in Ref 36, is given
in Figure 3. Here, DCM was applied to fMRI
data from a single subject, testing the hypothesis
that in the ventral stream of the visual system
a letter decision task increased the strength of
interhemispheric connections, but only when the word
stimuli were presented in the left visual field and
were thus initially received by the non-dominant
right hemisphere, necessitating transfer of stimulus
information to the specialized left hemisphere. This
hypothesis was tested by constructing a four-area
model of ventral stream areas, comprising the lingual
and fusiform gyri in both hemispheres [Figure 3(a)],
and comparing the modulatory influences of task,
conditional on the visual field of stimulus presentation,
for interhemispheric connections in both directions.
This comparison, based on the MAP estimates and the
posterior covariances of the modulatory parameters,
indicated that for this particular subject and for the
connections between left and right lingual gyrus, the
hypothesized asymmetry in interhemispheric transfer
existed with a probability of 98.7% [Figure 3(b)].
Other examples of single-subject analyses can be
found in Refs 4, 20, 30, and 37.

For statistical inference at the group level,
various options exist. One commonly used approach,
corresponding to a random effects analysis, is to
enter the conditional estimates of interest into a
classical second-level analysis, e.g., a t-test on the MAP
estimates of a particular parameter across subjects (for
examples, see Refs 38–41). An alternative approach
is to use Bayesian statistics at the group level as well.
This can be done by computing, for a given parameter,
one joint posterior density across all subjects, treating
the posterior of one subject as the prior for the next.42

This approach can be more sensitive; its disadvantage,
however, is that it corresponds to a fixed effect analysis
and thus does not allow for inference beyond the
particular group studied.

BAYESIAN MODEL SELECTION
Model comparison and selection is central to
the scientific process, in that it allows one to
evaluate different hypotheses about the way data
are caused.43,44 Nearly all scientific reporting rests
upon some form of model comparison, which
represents a probabilistic statement about the beliefs
in one hypothesis relative to some other(s), given
some observations or data. In other words: Given
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FIGURE 2 | Schematic summary of
the neural state equation and the
hemodynamic forward model in dynamic
causal model; Experimentally controlled
input functions u evoke neural responses
x, modeled by a bilinear differential state
equation, which trigger a hemodynamic
cascade, modeled by four state
equations with five parameters. These
hemodynamic parameters comprise the
rate constant of the vasodilatory signal
decay (κ), the rate constant for
auto-regulatory feedback by blood flow
(γ ), transit time (τ ), Grubb’s vessel
stiffness exponent (α), and capillary
resting net oxygen extraction (ρ). The
so-called Balloon model consists of the
two equations describing the dynamics
of blood volume (v) and
deoxyhemoglobin content (q) (light gray
boxes). Integrating the state equations
for a given set of inputs and parameters
produces predicted time series for v and
q which enter a BOLD signal equation λ

(dark gray box) to give a predicted BOLD
response. (Reproduced with permission
from Ref 33. Copyright 2007).

some observed data, which of several alternative
models is optimal? The decision cannot be made
solely by comparing the relative fit of competing
models. One also needs to account for differences
in complexity; i.e., the number of free parameters and
the degree of their interdependency. This is important
because as model complexity increases, fit increases
monotonically, but at some point the model will start
fitting noise that is specific to the particular data
(i.e., ‘over-fitting’) and thus becomes less generalizable
across multiple realizations of the same underlying
generative process. Therefore, the question ‘What is
the optimal model?’ can be reformulated as ‘What is
the model that represents the best balance between fit
and complexity?’ This is the model that maximizes the
model evidence:

p(y|m) =
∫

p(y|θ , m)p(θ |m)dθ (5)

Here, the numbers of free parameters (as well as
the functional form of the generative model that
determines their interdependencies) are subsumed
by the integration. Unfortunately, this integral
cannot usually be solved analytically; therefore an
approximation to the (log of the) model evidence is
used instead. This approximation is usually a free
energy bound on the log evidence;35 alternatively,
simpler criteria like the Akaike information criterion45

or the Bayesian information criterion46 can be used
that are blind to parameter interdependencies (see
Ref 47 for a detailed discussion). Given any of these
approximations to the log evidence of two models
mi and mj, the difference in log evidence can be
transformed into a Bayes factor (BF):

BFij = p(y|mi)
p(y|mj)

≈ exp(Fi − Fj) (6)

450  2010 John Wiley & Sons, L td. Volume 1, May/June 2010



WIREs Cognitive Science Analyzing effective connectivity with fMRI

RVF
stim.

LVF
stim.

LG
right

LDLD
0.29
± 0.14

−0.08
± 0.16

0.01
± 0.17

0.44
± 0.14

0.13
± 0.19

0.34
± 0.14

FG
right

LG
left

FG
left

LD RVF

LD LVF

0

p = 98.7%

Contrast:
Modulation of right LG→left LG by LD LVF

Modulation of left LG→right LG by LD RVF
Versus

−0.5 0 0.5 1 1.5

0.5

1

1.5

2

(a) (b)

FIGURE 3 | This figure shows an example of a single-subject dynamic causal model that was used to study asymmetries in interhemispheric
connections during a letter decision task. LG, lingual gyrus; FG, fusiform gyrus; LD, letter decisions; LD|VF, letter decisions conditional on the visual
field of stimulus presentation. (a) The values denote the maximum a posteriori (MAP) estimates of the parameters (± square root of the posterior
variances; units: 1/s = Hz). For clarity, only the parameters of interest, i.e., the modulatory parameters of inter- and intra-hemispheric connections, are
shown. (b) Asymmetry of callosal connections with regard to contextual modulation. The plots show the probability (98.7%) that the modulation of
the right LG → left LG connection is stronger than the modulation of the left LG → right LG connection. (Adapted with permission from
Ref 36.Copyright 2005).

Bayesian model selection (BMS) can be applied both
to single subjects and whole groups. When the
optimal model structure is expected to vary across
subjects (e.g., subject-specific cognitive strategies
or different pathophysiological mechanisms in a
group of patients), random effects BMS is required.
This method rests on a hierarchical model which
is optimized to furnish a probability density on
the models themselves, using variational Bayes.47

Specifically, it estimates the parameters of a Dirichlet
distribution describing the probabilities for all
models considered. These probabilities then define a
multinomial distribution over model space, allowing
one to compute how likely it is that a specific model
generated the data of a randomly chosen subject as
well as the exceedance probability of one model being
more likely than any other model.

BMS plays a central role for DCM. It is used
routinely to select the most likely model among a set of
alternatives before making inferences about particular
parameters, e.g., Refs 33, 38, 42, and 48–54. An
alternative use of model selection is to decide about
the nature of particular mechanisms without the
need for any further inference about particular

parameters. For example, BMS has been used to
compare DCMs with nonlinear versus linear BOLD
equations in the hemodynamic forward model33,47 or
to disambiguate between different possibilities how
anatomical connection strength constrains effective
connection strength.55 A particularly interesting
approach is to go beyond the comparison of specific
models and compare two (or more) partitions of
model space.47 These partitions would typically
reflect those components of model structure that
one seeks inference about, e.g., whether a specific
connection should be included in the model or not,
whether a particular connection is modulated by one
experimental condition or another, or whether certain
effects are linear or nonlinear. The advantage of this
method is that arbitrarily large sets of models can
be considered together, allowing one to integrate out
uncertainty over any aspect of model structure other
than the component of interest.

NONLINEAR DCM FOR fMRI
Since its first description,4 DCM for fMRI has been
extended in several ways. For example, an extension
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of the observation equation takes into account
the slice-specific sampling times in multislice MRI
acquisitions.56 This enables DCM to be applied to
fMRI data from any data acquisition scheme. Another
variant represents each region in the model by two
state variables and distinguishes between population
activity of excitatory and inhibitory neurons.57 Other
work has augmented DCM with a spatial model of
the regional time series to which the model is fitted.58

Here, we focus on what we consider to be
a particularly important extension of DCM for
fMRI, namely the inclusion of nonlinear modulatory
effects.30 This extension was motivated by two limita-
tions of the original bilinear neuronal state equation
in DCM. First, the neuronal origin of the modulatory
influence is not specified. Second, the bilinear frame-
work may not be the most appropriate choice for
modeling fast changes in effective connectivity, which
are mediated by nonlinear effects at the level of single
neurons. These mechanisms are instances of ‘short-
term synaptic plasticity’ (STP), an umbrella term for
a range of processes which alter synaptic strengths
with time constants in the range of milliseconds to
minutes; e.g., NMDA-controlled rapid trafficking or
phosphorylation of AMPA receptors, synaptic depres-
sion/facilitation or ‘early LTP’. All these processes are
driven by the history of prior synaptic activity and are
thus nonlinear.59

A particularly interesting mechanism, which
relies on STP, is ‘neuronal gain control’. Neuronal
gain, i.e., the response of a given neuron N1 to
presynaptic input from a second neuron N2, depends
on the history of inputs that N1 receives from other
neurons, e.g., a third neuron N3. Such a nonlinear
modulation or ‘gating’ of the N2 → N1 connection by
N3 has been shown to have the same mathematical
form across a large number of experiments (for review,
see Ref 60): the change in the gain of N1 results from
a multiplicative interaction among the synaptic inputs
from N2 and N3, i.e., a second-order nonlinear effect.
Biophysically, neuronal gain control can arise through
various mechanisms that mediate interactions among
synaptic inputs occurring close in time (see Ref 30 for
a discussion of these mechanisms).

Critically, the bilinear framework precludes
a representation, at the neuronal level, of the
mechanisms described above. As stated in the original
DCM paper,4 in order to model processes like
neuronal gain control and synaptic plasticity properly,
one needs ‘to go beyond bilinear approximations
to allow for interactions among the states. This
is important when trying to model modulatory or
nonlinear connections such as those mediated by
backward afferents that terminate predominantly in

the supragranular layers and possibly on NMDA
receptors’.

Therefore, to enable a realistic representation
of how neuronal populations modulate the gains
of other populations, one needs to model nonlinear
interactions among the n states of a given DCM. For
this purpose, one can use a two-dimensional Taylor
series which is of second order in the states:30

f (x, u) = dx
dt

≈ f (0, 0) + ∂f
∂x

x + ∂f
∂u

u + ∂2f
∂x∂u

xu + ∂2f
∂x2

x2

2
(7)

Setting D(j) = (1/2)(∂2f/∂x2
j )|u=0(1 ≤ j ≤ n)

makes Eq. (7) equivalent to:

f (x, u) = dx
dt

=

A +

m∑
i=1

uiB(i) +
n∑

j=1

xjD(j)


 x + Cu

(8)

Here, the D(j) matrices encode which of the n regions
gate which connections in the system. Specifically,
any non-zero entry D(j)

kl indicates that responses of
region k to inputs from region l depend on activity
in region j. Figure 4 shows a simple example, with
synthetic data generated by a nonlinear DCM. This
illustrates the sort of dynamics, both at the neuronal
and hemodynamic levels which this sort of model
exhibits.

The nonlinear extension enhances the kind of
dynamics that DCM can capture and enables the
user to implement additional types of models. Beyond
modeling how connection strengths are modulated by
external inputs, one can now model how connection
strengths are gated by the activity of one or several
neuronal populations. This ability is critical for
various applications, e.g., for marrying reinforcement
learning models with DCM,7 but also for mechanistic
accounts of the effects of attention. For example,
nonlinear DCM was applied to a single-subject data
set from a blocked fMRI study of attention to visual
motion.17 Four different models were compared,30

each of which embodied a different explanation for the
empirical finding that V5 responses increased during
attention to motion, compared with unattended
motion. The most likely model was one in which
the gain of the V1 →V5 connection depended on the
activity in the posterior parietal cortex (PPC), a region
on which attention exerted a direct effect (this could
result, for example, from cholinergic inputs from
the brainstem61). Analysis of the posterior density
of the modulatory parameter in this model indicated
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FIGURE 4 | An example of the neuronal and hemodynamic parameters that can be accounted for by nonlinear dynamic causal models (DCMs). The
right panel shows synthetic neuronal and BOLD time series that were generated using the nonlinear DCM shown on the left. In this model, neuronal
population activity x1 (blue) is driven by irregularly spaced random events (delta-functions). Activity in x2 (green) is driven through a connection from
x1; critically, the strength of this connection depends on activity in a third population, x3 (red), which receives a connection from x2 but also receives
a direct input from a box-car input. The effect of nonlinear modulation can be seen easily: responses of x2 to x1 become negligible when x3 activity is
low. Conversely, x2 responds vigorously to x1 inputs when the x1 → x2 connection is gated by x3 activity. Strengths of connections are indicated by
symbols (–: negative; +: weakly positive; + + +: strongly positive). (Reproduced with permission from Ref 30. Copyright 2008).

that nonlinear gating of the V1 →V5 connection by
attention could be inferred with 99.1% confidence
(see Figure 5). Figure 6 shows the observed and fitted
time series of all areas and highlights the attentional
gating effect on V5 activity, such that V5 activity was
higher when subjects attended the moving stimuli.

As a second example for the practical utility of
nonlinear DCMs, we show the results from a single-
subject analysis of fMRI data set acquired during an
event-related binocular rivalry paradigm.30 Although
there is no clear consensus about the mechanisms that
underlie binocular rivalry, it has been suggested that
it (1) depends on nonlinear mechanisms and (2) may
arise from modulation of connections among neuronal
representations of the competing stimuli by feedback
connections from higher areas.62

The fMRI data were acquired during a factorial
paradigm in which face and house stimuli were

presented either during binocular rivalry or during
a matched non-rivalry (i.e., replay) condition. For
the subject studied here, the conventional SPM
analysis showed a rivalry × percept interaction in
both the right fusiform face area (FFA) and the
right parahippocampal place area (PPA): in FFA,
the face versus house contrast was higher during
non-rivalry than during rivalry; conversely, in PPA
the house versus face contrast was higher during
non-rivalry than during rivalry (both p < 0.05, small-
volume corrected). In addition, testing for a main
effect of rivalry, we replicated previous findings
that the right middle frontal gyrus (MFG) showed
higher activity during rivalry than during non-rivalry
conditions.63

These SPM results motivated a nonlinear
DCM in which the connections between FFA and
PPA were modulated by the activity in the MFG
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FIGURE 5 | Application of nonlinear dynamic causal model to single-subject functional magnetic resonance imaging data from an attention to
motion paradigm.17 (a) Maximum a posteriori estimates of all parameters. PPC, posterior parietal cortex. (b) Posterior density of the estimate for the
nonlinear modulation parameter for the V1 →V5 connection. Given the mean and variance of this posterior density, we have 99.1% confidence that
the true parameter value is larger than zero or, in other words, that there is an increase in gain of V5 responses to V1 inputs that is mediated by PPC
activity. (Reproduced with permission from Ref 30. Copyright 2008).
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FIGURE 6 | Fit of the nonlinear model to
the attention to motion data in Figure 5.
Dotted lines represent the observed data,
solid lines the responses predicted by the
nonlinear dynamic causal model. The increase
in the gain of V5 responses to V1 inputs
during attention is clearly visible. (Reproduced
with permission from Ref 30. Copyright 2008).

(Figure 7). First, the fixed (endogenous) connection
strengths between FFA and PPA were negative
in both directions, i.e., FFA and PPA exerted a
mutual negative influence on each other; this could
be regarded as a ‘tonic’ or ‘baseline’ reciprocal
inhibition. More important, however, was that during
the presentation of visual stimuli this competitive
interaction between FFA and PPA was modulated
by the activity in MFG, which showed higher activity
during rivalry versus non-rivalry conditions. As shown
in Figure 7, our confidence about the presence of this
nonlinear modulation was very high (99.9%) for both
connections.

According to this model, activity levels in the
MFG determine the activity in FFA and PPA by
controlling the influence that face-elicited activations
and house-elicited deactivations of FFA have on
PPA (and vice versa). For example, the positive
nonlinear modulation of the FFA →PPA connection
by MFG activity (see Figure 7) means that during
face perception under rivalry conditions (which elicit
positive activity in the FFA and MFG, respectively)
there is a positive influence of FFA on PPA, overriding
the ‘baseline’ inhibition. This means that during
binocular rivalry, FFA and PPA become more tightly
coupled which destroys their stimulus selectivity: their
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FIGURE 7 | Application of nonlinear dynamic causal model (DCM) to single-subject functional magnetic resonance imaging data from a binocular
rivalry paradigm. (a) The structure of the nonlinear DCM fitted to the binocular rivalry data, along with the maximum a posteriori estimates of all
parameters. The intrinsic connections between fusiform face area (FFA) and parahippocampal place area (PPA) are negative in both directions; i.e.,
FFA and PPA mutually inhibited each other. This may be seen as an expression, at the neurophysiological level, of the perceptual competition
between the face and house stimuli. This competitive interaction between FFA and PPA is modulated nonlinearly by the activity in middle frontal
gyrus (MFG), which showed higher activity during rivalry versus non-rivalry conditions. (b) Our confidence about the presence of this nonlinear
modulation is very high (99.9%), for both connections. (Reproduced with permission from Ref 30. Copyright 2008).

activity becomes very similar, regardless of whether
a face or a house is being perceived. In contrast,
deactivation of MFG during non-rivalry conditions
decreases the influence that FFA has on PPA during
house perception; therefore, responses in FFA and
PPA become less coupled and their relative selectivity
for face and house percepts is restored. This dynamic
coupling and uncoupling, leading to less selectivity
of FFA and PPA during rivalry and higher selectivity
during non-rivalry, is clearly visible in Figure 8 in
which the observed and fitted responses of all three
areas are plotted. Here, the short black arrows indicate
blocks with binocular rivalry (when FFA and PPA
show very similar time courses) and the long gray
arrows denote non-rivalry blocks (when FFA and
PPA activities evolve more independently). These

changes in effective connectivity over time, which are
controlled by the activity level in MFG, provide a nice
explanation for the rivalry × percept interaction in
FFA and PPA that was identified by the SPM analysis.

CONCLUSIONS
In this short review, we have outlined how effective
connectivity can be inferred from fMRI data using
DCM. We expect that two application domains
for DCM will prove to be particularly exciting
and fruitful in the near future. The first domain
is the integration of the neurophysiological and
computational aspects of learning and decision
making. For example, according to theoretical models
of learning, the size of prediction errors should
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the entire time series. The lower panel zooms
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depends on the activity level in middle frontal
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and their activities evolve more
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control synaptic plasticity, i.e., changes in the strength
of synaptic connections, encoding stimulus–stimulus
and stimulus–response links.64–66 In other words, the
necessity of reconfiguring neuronal circuits during
learning should be inversely proportional to how
well those neuronal circuits are capable of predicting
sensory stimuli or outcomes of actions. This notion
can be tested formally by embedding prediction errors
provided by computational models of learning (such
as Rescorla-Wagner or temporal difference learning
models) into DCMs. A first demonstration of this
approach was given by a recent study which combined
DCM with a Rescorla-Wagner model and showed that
during incidental audio-visual associative learning
the plasticity of connections from auditory to visual
cortex depended on trial-by-trial prediction errors.67

A subsequent study extended this finding: combining
nonlinear DCM and a hierarchical Bayesian learner,
it showed that the degree of trial-by-trial prediction
error activity in the putamen controlled the efficacy
of visuomotor connections, thus gating the transfer
of sensory information depending on how unexpected
this information was (den Ouden et al., submitted).

The second application domain concerns the
development of DCMs with clinical utility, for exam-
ple, as diagnostic tools. Although DCM has already
been applied to some clinical questions (e.g., Refs 39,
68, and 69), the critical challenge for the future will be
to develop DCMs whose parameter estimates have suf-
ficient sensitivity and specificity to delineate subgroups
of patients that are characterized by different patho-
physiological mechanisms. This generic framework
of model-based inference about pathophysiological
processes that cannot be measured directly is likely
to be particularly helpful for vaguely defined spec-
trum diseases. For example, our own work focuses on
schizophrenia, trying to establish DCMs, in conjunc-
tion with pharmacological challenges and learning
paradigms, that can detect specific abnormalities in
the regulation of NMDA-dependent synaptic plastic-
ity by neuromodulatory transmitters like dopamine or
acetylcholine.70 Hopefully, neurocomputational mod-
els of specific learning and decision-making processes
(such as the work by den Ouden et al. described
above) can be established whose parameters map onto
well-defined physiological mechanisms of synaptic
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plasticity and neuromodulation. These models are not
restricted to fMRI, but will also exploit electrophys-
iological measurements. Careful validation of these
models is crucial and will require pharmacological
and invasive recording studies in animals. For exam-
ple, a recent rodent study demonstrated that DCM
can correctly infer experimentally induced changes in
spike frequency adaptation and postsynaptic efficacy
of glutamatergic synapses.27

Importantly, however, model-based inference on
pathophysiology and disease status can not only pro-
ceed on the basis of neurophysiologically interpretable
parameter estimates, but could also employ BMS to
compare entire models embodying different putative
disease mechanisms. This inference on model structure
could be particularly useful when disease subgroups
differ along more than one pathophysiological dimen-
sion.
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