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Parametric study designs proved very useful in char-
acterizing the relationship between experimental pa-
rameters (e.g., word presentation rate) and regional
cerebral blood flow in positron emission tomography
studies. In a previous paper we presented a method
that fits nonlinear functions of stimulus or task param-
eters to hemodynamic responses, using second-order
polynomial expansions. Here we expand this approach
to model nonlinear relationships between BOLD re-
sponses and experimental parameters, using fMRI. We
present a framework that allows this technique to be
implemented in the context of the general linear model
employed by statistical parametric mapping (SPM).
Statistical inferences, in this instance, are based on F
statistics and in this respect we emphasize the use of
corrected P values for F fields (i.e., SPM5F 6). The ap-
proach is illustrated with a fMRI study that looked at
the effect of increasing auditory word-presentation
rate. Our parametric design allowed us to characterize
different forms of rate-dependent responses in three
critical regions: (i) bilateral frontal regions showed a
categorical response to the presence of words irrespec-
tive of rate, suggesting a role for this region in establish-
ing cognitive (e.g., attentional) set; (ii) in bilateral
occipitotemporal regions activations increased lin-
early with increasing word rate; and (iii) posterior
auditory association cortex exhibited a nonlinear (in-
verted U) relationship to word rate. r 1998 Academic Press
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INTRODUCTION

Based on the premise that hemodynamic responses
vary with the amount of cortical processing engaged by
an experimental task, parametric or correlational de-
signs can provide information about the relationship
between a stimulus parameter (e.g., word presentation
rate) or behavioral response (e.g., reaction time) and
the neurophysiological response elicited. The variable
being correlated can either be continuous (e.g., reaction
time) or discrete (e.g., word presentation rate). Ex-

amples include studies that have demonstrated correla-
tions between regional cerebral blood flow (rCBF) and
the performance of motor tracking tasks in the supple-
mentary motor area and thalamus (Grafton et al.,
1992). Price et al. (1992) investigated the correlation
between rCBF and frequency of aural word presenta-
tion in normal subjects. They found a linear relation-
ship between rCBF and word rate in the periauditory
regions. Responses in Wernicke’s area, however, were
not associated with increased word rate but with the
presence or absence of semantic content. That example
illustrates the ability of a parametric approach to
characterize and differentiate brain regions using their
response profile in relation to the task parameters.
Recently this method was used to differentiate cortical
areas involved in pain affect (Rainville et al., 1997). The
authors used hypnotic suggestion to alter the unpleas-
antness of noxious stimuli without changing the per-
ceived intensity. A parametric analysis revealed signifi-
cant changes in pain-evoked activity within the anterior
cingulate cortex, whereas primary somatosensory cor-
tex activation was unaltered.

In this respect functional magnetic resonance imag-
ing (fMRI) offers certain advantages over positron
emission tomography (PET). fMRI allows repeated
measurements on the same subject in one session
(Kwong et al., 1992), which makes it especially eligible
for parametric study designs. This is in contrast to PET
studies, in which the number of experimental condi-
tions is limited by radiation exposure. In the context of
parametric designs, fMRI allows one to study more,
and a finer gradation of, task or stimulus parameters.

As the form of the relationship between experimental
parameters and hemodynamic responses may vary
among different brain regions and is unknown in
advance, the a priori definition of a fit function for a
regression analysis (e.g., linear) might result in a
partial and misleading characterization of the data.

To overcome this restriction we presented a frame-
work (Büchel et al., 1996) that allows one to character-
ize brain responses as a linear combination of (basis)
functions of the experimental parameter (e.g., f (x) 5
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a 1 bx 1 cx2) , where x is word presentation rate) in
question. This approach has two advantages: (i) it can
model parsimoniously a range of responses, con-
strained only by the type and order of the basis
functions used and (ii) the form of the relationship
(determined by the coefficients of the basis functions,
e.g., a, b, and c) can be different for each voxel. This
approach models different responses in different brain
regions with a single model (i.e., single set of basis
functions for all voxels). Using nonlinear functions of
the task parameter (e.g., the quadratic term cx2) allows
nonlinear responses to be modeled in the context of a
general linear model.

Here we extend this framework to accommodate
parametric fMRI experiments. After introducing the
special problems arising in fMRI, we will exemplify the
technique with an experiment investigating the effect
of rate of auditory word presentation.

THEORY

The key issue here is that one has model responses or
activations (as opposed to activity) as a nonlinear
function of the experimental parameter(s). This re-
duces to modeling an interaction between the param-
eter and the task or stimulus (as opposed to a simple
main effect of parameter). Digital signal processing
utilizes different techniques to characterize discrete
signals by a linear combination of basis functions.
Well-known examples are the Fourier expansion and
the polynomial expansion. We adapt this to character-
ize BOLD signal responses in fMRI in terms of a set of
basis functions of a given parameter (e.g., stimulus
parameter or response index) to show how BOLD
signals can be approximated by a small number of
these basis functions. The use of polynomials in the
context of the general linear model is the well-known
case of polynomial regression.

fMRI signals can be contaminated by low-frequency
components that might be caused by instrumentation
drifts or aliased higher frequency signals. These high-
frequency components like heart rate (1 Hz) and respi-
ration (0.1 Hz) are undersampled with typical TRs of 3
to 7 s and can, according to Nyquist’s theorem, be
expressed as low-frequency signal components. The
problem of low-frequency noise is typically solved in
fMRI by alternating task and control conditions at a
fairly high frequency (i.e., every 20–40 s). This allows
one to high-pass filter the fMRI time series, filtering out
low-frequency instrumentation and physiological noise,
while preserving the higher frequency (i.e., task-
related) components of the signal (Holmes et al., 1997).
A high-pass filter can be implemented easily within the
framework of the general linear model, using cosine
functions of time, modeling all frequencies lower than

the experimental frequency (see Holmes et al., 1997, for
details).

In contrast to PET, in which the expansion of the
stimulus or task parameter itself is used as a regressor,
in fMRI one has to expand the underlying stimulus or
activation function (e.g., boxcar or sine wave) that is
modulated by the parameter. Figure 1 (top) shows an
example of a second-order polynomial expansion of a
standard boxcar function using time as a parameter.
Intuitively this approach can be seen as expanding the
differences between activation and control conditions
or more formally as an interaction between condition
and parameter. The different amplitude of the boxcar
functions reflects the level of the task parameter for
that condition.

Instead of using simple linear and second-order
expansions as shown in Fig. 1 (top), we generally use
orthogonal basis functions (Fig. 1, bottom, and see
below). Orthogonal basis functions span the parameter
space in an efficient way and have the advantage that
the parameter estimates are independent of each other
under the null hypothesis. This is useful because linear
combinations (contrasts) of those parameter estimates
could be used to test for specific effects (e.g., presence of
a second-order component) using statistical parametric
maps (SPMs) of the t statistic.

In general the goodness of fit of the regression
depends on the type and number of basis functions
employed and on the number of data points approxi-
mated. One generally expects BOLD signal changes, in
cognitive activation studies, to be smooth and conform
to a monotonic function of task parameters or stimuli.
Using a hierarchical set of basis functions (e.g., polyno-
mials) voxel-specific model selection is straightforward
using the extra-sum-of-squares principle in the context
of the general linear model (Draper and Smith, 1981).
The strategy for a polynomial expansion is as follows:
Start with a basic model, comprising only the standard
boxcar (and confounds like global signal and cosines for
high-pass filter). At each step, consider adding a higher
order term to the model. Compute the (extra-sum-of-
squares) F statistic for the null hypothesis that the new
term is redundant, i.e., that the additional variance
explained is insignificant. In SPM this is achieved by
specifying the new term as a covariate of interest, with
all previous terms and confounds as covariates of no
interest. If there is evidence against the null hypoth-
esis, the term is included and the next higher order
term considered. If there is insufficient evidence against
the null hypothesis, model selection stops. This ap-
proach to model selection is known as forward model
selection in the statistical literature. Although possible,
the smoothness of the expected stimulus–response
function makes it unlikely that a higher order term
(e.g., fourth order) can explain a significant amount of
variance in the absence of any significant lower order
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terms (e.g., third order). An alternative approach to
model selection is to start with the most complex model
and work backward, toward more parsimonious mod-
els. We have chosen forward selection here for simplic-
ity.

In the case of polynomials, the first- and second-order
effects have an intuitive interpretation in terms of
linear and nonlinear (i.e., quadratic) effects. This is the
reason for using a polynomial expansion in our ex-
ample. However, it should be noted that any basis set
(e.g., wavelets, Fourier sets) can be used within the
same framework described here.

Statistical parametric maps (Friston et al., 1995b)
can be considered spatially extended statistical pro-
cesses. In general SPM uses the general linear model to
build F- or t-statistic fields (i.e., SPM5F 6 or SPM5t 6). In
the special case of parametric studies SPM5F 6s are used

to make inferences about the regression of BOLD
signal on a study parameter (or the expansion of a
study parameter).

The basic equation of the general linear model is

xi j 5 gi1b1 j 1 · · · 1 gikbkj 1 ei j. (1)

Here bkj are k unknown parameters for each voxel j.
The coefficients g are explanatory or modeled variables
under which the observation (i.e., scan) was made.
Comparing a standard polynomial expansion,

p(x) 5 p1xn 1 p2xn21 1 · · · 1 pnx 1 pn11, (2)

to Eq. (1), it is evident that this is simply a general
linear model.

FIG. 1. A simple example to introduce the concept of a polynomial expansion in terms of the boxcar function typically used in fMRI. The
first graph shows the standard boxcar function. The second and third show the first- and second-order terms, respectively. These are simply
the element-wise product of a linear (or quadratic) term and the boxcar function. The lower graphs show the first- and second-order terms after
orthogonalization.
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Standard procedures have been developed for apply-
ing the general linear model to serially correlated
imaging time series, which provide voxel-specific param-
eter estimates (e.g., basis function coefficients) and
statistics (F or t) assessing the significance of the
explanatory effects designated interesting. Uninterest-
ing effects are designated confounds. Images of the
voxel-specific F statistics (SPM5F 6) are used to make
inferences that can be corrected for the volume ana-
lyzed using the theory of Gaussian random fields
(Friston et al., 1995b; Worsley, 1994).

AN EMPIRICAL EXAMPLE

It is known from PET studies that the rCBF in
temporal regions shows a positive correlation with
presentation rate of spoken words (Price et al., 1992).
As an example, we present data from a similar study
using fMRI. We used five different presentation rates:
10, 15, 30, 60, and 90 words per minute. The order of
blocked presentations was randomized. Between each
word condition there was a period of silence for 34 s,
equivalent to 20 scans.

Imaging was performed using a Siemens Magnetom
Vision scanner (Siemens, Erlangen) operating at 2 T
and equipped for echoplanar imaging. A gradient-echo
echoplanar sequence was used to acquire 16 slices of
thickness 3 mm and in-plane resolution of 3 3 3 mm
(TR/TE 1700 ms/40 ms). The scanning session com-
prised 608 image volumes, starting with 8 dummy
scans to allow for equilibration of T1 saturation effects
followed by 600 images for which baseline (no stimuli
presented) alternated with activation (auditory stimuli
presented) every 20 vol (34 s). Figure 2 shows the
scanning procedure graphically. The first and last
baseline conditions used 10 instead of 20 scans.

We demonstrate the analysis of this experiment
using an orthogonal polynomial expansion, up to sec-
ond order. The terms modeled represent an interaction

between presentation rate r and a boxcar stimulus
function box. The linear term is simply lin 5 r · box and
the second-order term is sec 5 r2 · box. In general the
nth-order term is given by rn · box. The orthogonaliza-
tion of the first-order term with respect to the zeroth-
order term was effected according to (Büchel and
Friston, 1997)

lin0 5 lin 2 box(boxTbox)21boxTlin, (3)

where lin0 is the orthogonalized linear term lin. The
orthogonalization of the second-order term with respect
to the zeroth- and first-order terms is performed in a
similar fashion,

sec0 5 sec

2 [lin0box ]([lin0box ]T[lin0box ])21[lin0box ]Tsec,
(4)

where sec0 is the orthogonalized second-order term sec,
with respect to the first- (i.e., lin0) and zeroth-order
effect (i.e., box). This serial orthogonalization can be
applied up to any order, using any basis functions.

Since the order of different presentation rates was
counterbalanced, the convolved boxcar (Fig. 3) looks
different from the example in Fig. 1 (top). Figure 3
shows all three covariates (i.e., explanatory variables
gi): the standard boxcar function (i.e., zeroth order), the
linear (i.e., first order) term, and the quadratic (i.e.,
second order) term. Note that prior to model fitting,
these covariates are convolved with a hemodynamic
response function (Friston et al., 1995a). The first
analysis used the simple boxcar, modeling the differ-
ence between word presentation and the silent baseline
condition, irrespective of word rate. The design matrix
is shown in Fig. 4 (right). This figure also shows the
SPM5F 6 thresholded at P , 0.05 (corrected). Significant
areas include the periauditory regions, bilateral frontal
regions, and regions at the occipitotemporal junction.

FIG. 2. The experimental design of the study. The different word rates were presented in random order and intercalated with a silent
baseline condition.
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In a second step we extended the analysis to allow for
a linear relationship between word rate and BOLD
signal changes. The design matrix is shown in Fig. 5.
The only covariate of interest is the linear term (second
graph in Fig. 3), the remaining columns (confounds or
covariates of no interest) represent the zeroth-order
term (standard boxcar—first graph in Fig. 3) and the
cosine terms of the high-pass filter. The SPM5F 6 for this
model is shown in Fig. 5. The definition of the zeroth-
order term as a confound is necessary as we are now
interested only in those voxels for which the introduc-
tion of the first-order term can explain a significant

amount of variance. Significant regions were again
found in primary and secondary auditory cortices bilat-
erally and at the occipitotemporal junction. Note that
bilateral frontal regions are not significant anymore.
This is due to the fact that responses were sufficiently
accounted for by the boxcar model. The introduction of
a more comprehensive model (i.e., the first-order term)
did not lead to a significant improvement in fit.

In the third step we tested whether the addition of a
second-order term gave a better characterization of the
relationship between BOLD signal and word rate. The
design matrix for this second order model is shown in

FIG. 3. The different regressors (zero-, first-, and second-order expansion of presentation rate) used in the model described in the text.
Note the difference between the first-order term (middle) and that in Fig. 2. This is due to the fact that this first-order expansion is orthogonal
to the boxcar function (top). The bottom shows the second-order (quadratic) term, again orthogonalized with respect to the other covariates.
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Fig. 6. Note that the only covariate of interest is the
second-order or quadratic term. The linear term has
now been moved to the confound partition of the design
matrix. This allows us to assess the significance of the
additional explanatory power of the nonlinear effect in
the presence of the linear and zeroth-order terms.

Figure 6 (left) shows the SPM5F 6 thresholded at P ,
0.05 (corrected). The significant voxels in this SPM5F 6
are confined to bilateral posterior auditory association
cortex at the temporoparietal junction.

Comparing Figs. 4, 5, and 6 it is evident that the
significant clusters for each analysis overlap. With

FIG. 4. SPM5F 6 of the simple zeroth order model. The design matrix (right) shows the covariates used in this model. The first column
models the difference between word presentation and baseline irrespective of word rate. Columns 2 to 10 represent the confound partition and
include a constant (2) and cosine terms, modeling the high-pass filter. The SPM5F 6 is shown as a maximum-intensity projection. The brain
(left) is shown from right, top, and back. The map is thresholded at P , 0.05 (corrected). Significant regions include auditory and periauditory
cortices, bilateral frontal areas, and areas at the occipitotemporal junction, bilaterally.

FIG. 5. SPM5F 6 of the first-order (linear) model. The first column models the linear response to word rate. Columns 2 to 11 represent the
confound partition and include a constant (2), the zeroth-order term (3), and cosine terms, modeling the high-pass filter. The SPM5F 6 is
thresholded at P , 0.05 (corrected). Significant regions include auditory and periauditory cortices and areas at the occipitotemporal junction
bilaterally. Note that, in comparison to the zeroth-order model in Fig. 4, the frontal areas are no longer significant.
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increasing the order of the model the regions of signifi-
cant activation get smaller. Part of this effect is due to a
reduction of sensitivity as the higher order terms ‘‘use
up’’ degrees of freedom. It is also evident that some
regions are significant in the zeroth-order model, but
are not significant in the first- or second-order model.
This indicates that the inclusion of a first or second
term in the model does not account significantly for
more of the variance in these voxels. Similarly other
regions (e.g., the occipitotemporal regions) may show
linear rate dependency but no nonlinear effects. Figure
7 shows the BOLD signal of three different regions
plotted against word presentation rate to illustrate
response profiles that show no rate dependency (prefron-
tal), linear dependency (occipitotemporal), and nonlin-
ear dependency (posterior periauditory). Comparing
the plots for the right frontal area with the region at the
occipitotemporal region, or the peri-auditory region,
suggests a reduced rate dependency. A further differ-
ence is evident between the curves from the periaudi-
tory region and the region at the occipitotemporal
junction. Comparing Figs. 5 and 6 it is evident that the
only region in which the introduction of a second-order
term led to a significantly better fit is in bilateral
posterior periauditory regions, but not in the occipito-
temporal region.

In supplementary analyses differential response pro-
files among these regions could be tested for by looking
for a region-by-condition interaction. However, this
would be beyond the scope of voxel-specific inferences
implicit in SPM.

DISCUSSION

The use of nonlinear basis functions in conjunction
with the general linear model facilitates the detection
of BOLD responses in brain regions that might not
have been so evident using simple (i.e., linear) regres-
sion. The general approach using polynomial expan-
sions can model a variety of nonlinear hemodynamic
responses without prespecifying the exact form of the
expected regression. Here we have extended this ap-
proach to fMRI, in which experimental and statistical
model design, accounting for low-frequency compo-
nents of the signal, required us to look for an interac-
tion between the expansion and a boxcar function.

This technique may improve the discrimination of
different regions that are active in the same task but
with a different response. An example in our study is
the dissociation of regions at the occipitotemporal
junction, showing a linear relationship between BOLD
signal and word presentation rate and periauditory
regions that show an inverted U relationship between
word rate and BOLD responses. This nonlinear effect in
posterior periauditory cortex might be related to the
fact that at a presentation rate of more than 60 wpm,
implicit word processing becomes impossible and there-
fore the signal decreases again. A more physiological
explanation relates to a hemodynamic or neural refrac-
tiveness as characterized in Friston et al. (1998). A
nonlinear relationship between BOLD signal and the
presentation rate of syllables has been previously re-
ported (Binder et al., 1994). The nonlinearity of the
response was similar to the inverted U form presented

FIG. 6. SPM5F 6 of the second-order model. The first column of the design matrix reflects the second-order (quadratic) term modeling a
nonlinear relationship between word-presentation rate and BOLD responses. Columns 2 to 12 represent the confound partition and include a
constant (2), the zeroth-order (boxcar) term (4), the linear term (3), and the cosine terms, modeling the high-pass filter. The SPM5F 6 is
thresholded at P , 0.05 (corrected). Significant regions are reduced to bilateral posterior periauditory regions. Note that in comparison to the
linear model in Fig. 5 the regions at the occipitotemporal junction are no longer significant.
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above. However, the form of their response showed an
asymptotic effect at higher frequencies (120–150 syl-
lables per minute), whereas in our study a decrease in
activation between 60 to 90 words per minute is noted.
This difference could be due to a shorter processing

time for syllables relative to words, given their lack of
meaning and the shorter duration.

Another example is the bilateral frontal activations
that show only a weak dependency on word-presenta-
tion rate. These regions are activated during the word

FIG. 7. Examples of different regressions for different brain regions. The top shows the relationship between word rate and hemodynamic
responses in a right frontal area. A second-order polynomial fit (solid line) and the raw data (s) are shown. To demonstrate the nonsignificant
difference with a zeroth-order fit (regression line parallel to the x axis), the zeroth-order fit is also plotted (dashed line). The middle shows the
same plots for a region at the occipitotemporal junction, this time on the left. The difference between the dashed and the solid line clearly
indicates the significant (Figs. 4 and 5) linear relationship between word rate and BOLD signal changes in this region. The bottom shows the
regression of word rate on response for the periauditory region with a significant nonlinear response (Fig. 6). The inverted U shape shows a
peak at about 60 wpm.
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conditions relative to the silent baseline condition. The
rate independence, in this prefrontal region, suggests
some form of categorical (e.g., present–absent) re-
sponse to the presentation of words, which might be
linked to attentional processing or other discrete
changes in cognitive set. Using a similar idea, Rees et
al. (1997) dissociated different (phasic and tonic) atten-
tional effects by manipulating stimulus presentation
rate. It should be noted, however, that a region that is
significant in the analysis using only a zeroth- and
first-order term (Fig. 5) and a region that is significant
with the full model (i.e., zeroth-, first-, and second-order
terms —Fig. 6) may not be significantly different when
compared directly (i.e., no significant region by effect
interaction).

Although we have restricted our model to a second-
order polynomial regression, other basis functions could
be used. However, the interpretation of polynomial
coefficients is more intuitive than coefficients of some
other basis functions (e.g., cosines, exponentials). This
may be important in an analysis in which the introduc-
tion of nonlinearity (i.e., second-order terms) improves
the fit considerably, as has been demonstrated in this
study. In general, questions about the number and type
of basis functions are issues of model selection. We have
demonstrated a simple approach to model selection in
the case of hierarchical (orthogonal) polynomial models
that involves sequential generation of SPM5F 6s. Note
that this approach allows the most appropriate model
to be selected for each voxel.

In our example we used orthogonal basis functions.
However, the technique presented here is perfectly
valid if the basis functions are nonorthogonal. Although
not dealt with explicitly, orthogonal basis functions
allow a simpler analysis using t tests for the signifi-
cance of each polynomial term. In this case the two-
sided t test for the significance of a parameter estimate
would be equivalent to the F test described above. We
have chosen to illustrate the more general approach
because it is not restricted to orthogonal basis functions
and embodies a simple form of model selection.

CONCLUSION

We have presented a framework within which to
analyze parametric activation studies using fMRI. We
have dealt with fMRI-specific confounds by modeling
effects of an experimental parameter on differences
between baseline and activation instead of the signal
per se. Using this analysis we are able to distinguish
between three different types of responses to increasing
word-presentation rate: (i) a categorical on–off re-
sponse irrespective of word rate in bilateral prefrontal
cortex, (ii) a linear relationship between activations
and word rate at the occipitotemporal junction, and (iii)
a nonlinear, inverted U relationship between word rate
and hemodynamic responses in the posterior periaudi-

tory cortex. This demonstrates the strength of the
approach, namely the facility to characterize different
cortical regions by their response to task parameters.
In conclusion we hope that this approach will provide a
richer characterization of nonlinear brain responses to
stimulus or task parameters using fMRI.
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