
Dynamic Changes in Effective Connectivity
Characterized by Variable Parameter Regression

and Kalman Filtering
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Abstract: Attention to visual motion can increase the responsiveness of the motion-selective cortical area
V5 and the posterior parietal cortex. We addressed attentional modulation of effective connectivity using
variable parameter regression and functional magnetic resonance imaging. We present data from a single
subject scanned under identical stimulus conditions (visual motion) while varying only the attentional
component of the task. Variable parameter regression of the influence of V5 on PP revealed increased
effective connectivity during attention to visual motion. With this dynamic measure of effective
connectivity we were able to make inferences about the source of modulation by looking for regions that
predicted the observed changes in connectivity. Using an ordinary regression analysis, we showed that
activity in the prefrontal cortex could explain these changes and was sufficient to account for these
modulatory influences on connections in the dorsal visual pathway. Hum. Brain Mapping 6:403–408,
1998. r 1998Wiley-Liss,Inc.
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INTRODUCTION

Functional neuroimaging has been extremely success-
ful in establishing functional segregation as a principle
of organization in the human brain. More recent
approaches have addressed the integration of function-
ally segregated areas through characterizing neuro-
physiological activations in terms of distributed
changes. These approaches have introduced a number
of concepts (e.g., functional and effective connectivity),
techniques (e.g., structural equation modelling [Büchel
and Friston, 1997; McIntosh and Gonzalez-Lima, 1994])

and their application to issues in imaging neuroscience
(e.g., changes in effective connectivity as a function of
attentional set or time, as seen in learning). Effective
connectivity is defined as the influence that one neural
system exerts over another [Friston et al., 1995b], either
at a synaptic (cf. synaptic efficacy) or a cortical level. A
simple way to characterize the effect area x has on y is
by standard regression analysis. Since a single regres-
sion coefficient obtains, this implicitly assumes that the
effective connectivity is constant over all observations.
This is clearly a limiting factor, because most experi-
ments aimed at assessing effective connectivity evoke
changes in connectivity as a function of time (i.e.,
learning), related experimental conditions, subjects’
responses, or regional brain activity (i.e., activity-
dependent changes in connectivity).

Here we demonstrate how an extension of ordinary
regression analysis, variable parameter regression, can
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overcome this limitation and be used to identify
nonlinear changes in effective connectivity. The opera-
tional equations used are special cases of Kalman
filtering [Garbade, 1977; Kalman, 1960]. To demon-
strate the approach, we used fMRI data from a single
subject, to assess changes in effective connectivity that
were related to attentional set. In the context of
attentional modulation, the question of site and source
of modulation is of special interest. In a second step,
we will show how variable parameter regression can
be used to find the site or origin of afferents that may
mediate attentional modulation.

METHODS

Variable parameter regression

Variable parameter regression assumes T ordered
scalar observations (y1, . . . yT) generated by the model:

yt 5 xtbt 1 ut, t 5 1, . . . , T, (1)

ut , N(0, s2) (2)

where xt is an n-dimensional row vector of known
regressors and bt is an n-dimensional column vector of
unknown coefficients that corresponds to estimates of
effective connectivity. ut is drawn from a Gaussian
distribution. All observations are expressed as devia-
tions from the mean. The dynamic evolution of b is
assumed to follow a random walk with zero drift over
time:

bt 5 bt21 1 pt, t 5 2, . . . , T, (3)

pt , N(0, s2P) (4)

where s2P is the stationary covariance matrix of the
innovation pt. If P 5 0, then variable parameter
regression reduces to the ordinary stationary coeffi-
cient linear regression problem. The variance term s2

of Eq. (4) is the same as that in Eq. (2) and is presented
explicitly for clarity. The innovations ut and pt are
uncorrelated. An innovation is simply an underlying
stochastic process or sequence of numbers. Other
models than a random walk for b are possible.

Parameter estimation

Given the observations y1, . . . , yT, we are interested
in the trajectory of the bt coefficients. Assume P and s2

are known. Let b̂t(s) be the estimate of bt based on

the observations (y1, . . . , ys), let s2Rt be the estimated
covariance matrix of b̂t(t 2 1), and let s2St be the
estimated covariance matrix of b̂t(s). The first step in
Kalman filtering is to obtain the prediction that up-
dates b̂t21(t 2 1) and its covariance matrix for the
passage of time from t 2 1 to t:

b̂t(t 2 1) 5 b̂t21(t 2 1) (5)

Rt 5 St 2 1 1 P. (6)

The filter step revises this estimate of bt by adding the
new information contained in the observation yt:

b̂t(t) 5 b̂t(t 2 1) 1 Ktet (7)

where et 5 yt 2 xtb̂t(t 2 1)

and Kt 5 Rtx8tEt
21,

and Et 5 xtRtx8t 1 1 (8)

St 5 Rt 2 KtxtRt. (9)

From Equations (5–7) it is obvious that Kalman
filtering is a recursive process, where new information
is added as it arrives. Estimates from early time steps
are therefore less reliable than those from later ones. To
circumvent this problem, a third step, called smooth-
ing, can add the information that arrived after time t to
the estimate of bt. Let s2Vt be the estimation covariance
of the smoothed estimate b̂t(T). The smoothed esti-
mates are computed as:

b̂t(T) 5 b̂t(t) 1 Gt[b̂t11(T) 2 b̂t(t)] (10)

where Gt 5 St[St 1 P]21, (11)

Vt 5 St 1 Gt[Vt11 2 Rt11]G8t, (12)

VT 5 ST. (13)

So far, we have assumed that covariance matrix P
and variance scalar s2 are known. However, these are
exactly the parameters that we are interested in. In the
next step we show how P and s2 can be estimated by
maximum likelihood. The log-likelihood function of P
and s2 is

L 5 2
1

2 o
t5n11

T

ln (s2Et ) 2
1

2 o
t5n11

T

5 et
2

s2Et
6 . (14)
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An estimate of s2, for given P, is available by analytic
maximization of Eq. (14):

ŝ2 5 o
t5n11

T

5 et
2

(T 2 n)Et
6 . (15)

The concentrated log-likelihood function is then:

L*(P) 5 2(T 2 n) ln (ŝ) 2
1

2 o
t5n11

T

ln (Et) (16)

where both ŝ and Et are implicit functions of P. L* is
thus a complicated nonlinear function of P. Therefore,
numerical optimization is necessary to maximize L* as
a function of the unknown elements in matrix P. Since
estimates of P that are not nonnegative definite are
meaningless, maximization of the likelihood function
should be restricted to the set of positive definite
matrices.

Statistical inference

Whether the maximum likelihood estimate P̂ is
significantly different from a hypothesized value P0

can, in some circumstances, be tested with the likeli-
hood statistic:

22 ln (l) 5 22[L*(P0) 2 L*(P̂)]. (17)

If the parameter vector has dimension n 5 1, so that P
is a scalar (i.e., variance of the innovation term pt in Eq.
4), it has been shown that for P0 . 0, the likelihood
statistic will (asymptotically) have a chi-square distri-
bution with one degree of freedom under the null
hypothesis [Cooley and Prescott, 1976]. However, it
has been shown that for the most interesting null
hypothesis P0 5 0 (i.e., no change of bt over time), the
likelihood statistic will be biased towards zero [Gar-
bade, 1977]. Hence, using a chi-square distribution to
determine the critical value of 22 ln (l) will lead to a
conservative test of the stability of the bt coefficients.
However, simulations have shown that this test per-
forms quite well in models where parameter variation
was modeled as (1) a random walk with drift, (2)
discrete jump, and (3) a stable Markov process. It has
also been shown that the power of the variable param-
eter regression likelihood test in rejecting the null
hypothesis increases as a function of sample size and
instability of coefficients [Garbade, 1977].

The smoothed estimates of the varying regression
coefficient, b̂t(T)’s, allow the graphical presentation of

the changes of regression coefficients and implicitly
effective connectivity. Furthermore, the square roots of
the diagonal elements of s2Vt provide the standard
error of these estimates.

Experimental design

The subject was scanned during three conditions,
‘‘fixation,’’ ‘‘attention,’’ and ‘‘no attention.’’ During the
‘‘attention’’ and ‘‘no attention’’ condition, the subject
fixated centrally while white dots emerged radially
from the fixation point to the edge of the screen.
During ‘‘fixation,’’ the screen was dark with only the
fixation dot visible. The difference between the optic-
flow conditions lay in the explicit instructions given to
the subject. In the ‘‘attention’’ condition, the instruc-
tion was to ‘‘detect changes’’ in speed, and during the
‘‘nonattention’’ condition, the subject was instructed to
‘‘just look.’’ Psychophysical tests prior to scanning
induced the anticipation of speed changes during the
attention conditions. However, the physical stimulus
characteristics for ‘‘attention’’ and ‘‘no attention’’ con-
ditions were identical during scanning (i.e., no speed
changes).

Data acquisition and analysis

The experiment was performed on a 2 Tesla Mag-
netom VISION (Siemens, Erlangen, Germany) whole-
body MRI system equipped with a head volume coil.
Contiguous multislice T2*-weighted fMRI images
(TE 5 40 msec; 90 msec/image; 64 3 64 pixels
(19.2 3 19.2 cm)) were obtained with echo-planar imag-
ing (EPI) using an axial slice orientation. A T2*-
weighted sequence was chosen to enhance blood
oxygenation level-dependent (BOLD) contrast. The
volume acquired covered the whole brain except for
the lower half of the cerebellum and the inferiormost
part of the temporal lobes (32 slices; slice thickness, 3
mm, giving a 9.6-cm vertical field of view). The
effective repetition time was 3.22 sec. All volumes were
realigned to the first volume, coregistered with the
subject’s T1 structural MRI, normalized to a standard
template, and smoothed using an 8-mm FWHM Gauss-
ian kernel using SPM97 [Friston et al., 1995a].

RESULTS

The regions of interest for the analysis of effective
connectivity were identified using the maxima in a
standard Statistical Parametric Mapping (SPM) analy-
sis of the condition-specific effects [Büchel and Friston,
1997]. We concentrate here on the effect of attention on
the connection between the motion-sensitive area V5
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and the posterior parietal cortex (PP) in the right
hemisphere. In a previous analysis, using structural
equation modeling, we demonstrated that it is princi-
pally this connection in the dorsal visual stream that is
modulated by attention to visual motion. We further
demonstrated that nonlinear modulatory effects ex-
erted by the dorsolateral prefrontal cortex could ac-
count for this effect. In the current analysis we were
interested in whether variable parameter regression
was capable of reproducing these findings. We there-
fore assessed the effective connectivity bt by regressing
PP on V5. An alternate direction search, i.e., numerical
optimization, gave a chi-square statistic of 56.4. We
therefore had to reject the null hypothesis of no
variation at the 5% level. P was estimated to be 0.074
and s2 was 0.23. The ordinary regression coefficient b
for the model y 5 xb 1 u was estimated at 0.73. Figure
1a,b shows the trajectories of the smoothed and filtered
estimates b̂t(T), together with the associated standard
errors. It is clearly evident that b̂t is higher during the
‘‘attention’’ conditions relative to the ‘‘no attention’’
conditions. Figure 1c relates our technique to an
ordinary regression. In this analysis, we constrained
the variance term P to zero and reestimated bt. The
trajectory of b̂t now converges to b, the ordinary
regression coefficient of the model y 5 xb 1 u. As
expected, the smoothed estimates are simply a con-
stant (i.e., b 5 0.73).

We interpret b̂t as an index of effective connectivity
between area V5 and the posterior parietal cortex. In
our example, the connection between V5 and PP
resembles the site of attention modulation. This leads
to an interesting extension, where one might hypoth-
esize that a third region is responsible for the observed
variation in effective connectivity indicated by the
trajectory of b̂t(T). In other words, after specifying the
site and nature of attentional modulation, we now
want to know the location of the source. We addressed
this by using b̂t(T) as an explanatory variable in an
ordinary regression analysis to identify voxels that
covaried with this measure of effective connectivity.
Figure 1d shows the results of this analysis. Among
areas with statistically significant (P , 0.001, uncor-
rected) positive covariation was the dorsolateral pre-
frontal cortex and the anterior cingulate cortex. This
confirms the putative modulatory role of the dorsolat-
eral prefrontal cortex in attention to visual motion, as
suggested in Büchel and Friston [1997].

DISCUSSION

We have addressed attentional modulation of effec-
tive connectivity using variable parameter regression

and functional magnetic resonance imaging. Variable
parameter regression of the influence of V5 on PP
revealed increased effective connectivity during atten-
tion to visual motion. Using an ordinary regression
analysis, we showed that activity in the prefrontal
cortex could explain these changes and was sufficient
to account for these modulatory influences on connec-
tions in the dorsal visual pathway.

Alternative approaches

The variable parameter regression employed above
used a very simple model for the innovation of bt. An
alternative approach would be to consider b as a
function of exogenous variables (i.e., time-dependent
explanatory variable). In the experiment above we
could treat the task as an exogenous variable.
One would simply code attention as a dummy variable,
taking the value 21 for ‘‘no attention’’ and 11
for ‘‘attention,’’ and zero for the baseline scans.
Let A be this task variable. The hypothesis concern-
ing attentional modulation of the connection between
V5 and PP could then be formulated in a simple
model:

y 5 xbt 1 diag (x)Ab21 Ab3 1 u (18)

where diag (x) is a diagonal matrix whose leading
diagonal contains the elements of x.

The question of interest is now whether the interac-
tion term diag (x)A can explain a significant amount of
variance of y in addition to the two main effects (i.e., x
and A). This can be tested using the general linear
model in a standard SPM analysis. This approach has
been described as testing for a psychophysiological
interaction [Friston et al., 1997]. When the form of the
changes in effective connectivity can be anticipated,
this provides a very powerful tool to assess the site and
significance of changes in effective connectivity. In
cases where less is known about the expected form of
variation of b, one could expand b using a set of basis
functions, to model any arbitrary but constrained
time-varying b. This would be achieved by A in Eq.
(18) with a matrix whose columns contained some
suitable basis functions of time (e.g., a discrete cosine
set). The ensuing parameter estimates b2 can then be
tested with a SPM5F6 in the usual way [Büchel et al.,
1996]. We will compare these regression approaches to
Kalman filtering in a subsequent paper.

The approach demonstrated in this paper, however,
is the least constrained, since the only assumption
made is that changes in b are smooth and can be
modeled by a random walk. This allowed us to assess
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changes in effective connectivity with minimal a priori
assumptions. Note that a linear combination of basis
functions is not, in general, able to model random
walks.

CONCLUSIONS

We have demonstrated how variable parameter
regression can be used to assess dynamic changes in

effective connectivity. We have demonstrated that
this technique reliably assessed these changes in
effective connectivity as a function of attentional
set. Moreover, it allowed us to search for candid-
ate sources of attentional modulation with a stand-
ard SPM analysis by treating the time-dependent
measure of effective connectivity as an explana-
tory variable in all other potentially modulatory
voxels.

Figure 1.
a and b: Trajectory of the smoothed and filtered estimates b̂t(T),
together with the associated standard errors for the variable
parameter estimation of effective connectivity between V5 and PP.
It is evident that b̂t (i.e., the dynamic regression coefficient) is
higher during the ‘‘attention’’ conditions relative to the ‘‘no
attention’’ conditions. c: Relationship between our technique and
an ordinary regression analysis. In this analysis, the variance term P
was set to zero (i.e., fixed regression model). The trajectory of b̂t

now converges to b (50.73), the regression coefficient of the
model y 5 xb 1 u. d: Areas that significantly covaried with the

time-dependent measure of effective connectivity between V5 and
PP (i.e., b̂t(T)). SPM5Z6 thresholded at P , 0.001 (uncorrected)
overlaid on coronal and axial slices of the subject’s structural MRI.
The maximum under the cross-hairs was at 45, 21, and 39 mm, Z 5
4.3. e: Time courses of V5 and PP as used in the VPR analysis. f:
Correlation coefficients between regions identified in the SPM (d)
(anterior cingulate (ac) and prefrontal cortex (pfc)) and the original
variables (v5, pp) and the smoothed estimate of the variable
parameter regression (vpr).

r Kalman Filtering in Effective Connectivity r

r 407 r



REFERENCES
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