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Parametric study designs can reveal information
about the relationship between a study parameter
(e.g., word presentation rate) and regional cerebral
blood flow (rCBF) in functional imaging. The brain’s
responses in relation to study parameters might be
nonlinear, therefore the (linear) correlation coefficient
as often used in the analysis of parametric studies
might not be a proper characterization. We present a
noninteractive method, which fits nonlinear functions
of stimulus or task parameters to rCBF responses,
using second-order polynomial expansions. This tech-
nique is implemented in the context of the general
linear model and statistical parametric mapping. We
also consider the usefulness of statistical inferences,
based on F fields, about similarities and differences of
these nonlinear responses in different groups. This
approach is illustrated with a 12-run H2

15O PET activa-
tion study using an auditory paradigm of increasing
word presentation rates. A patient who had recovered
from severe aphasia and a normal control were stud-
ied. We demonstrate the ability of this new technique
to identify brain regions where rCBF is closely related
to increasing word presentation rate in both subjects
without constraining the nature of this relationship
and where these nonlinear responses differ.
r 1996Academic Press, Inc.

INTRODUCTION

Based on the premise that regional cerebral blood
flow (rCBF) varies with the amount of cortical process-
ing engaged by an experimental task, parametric or
correlational designs can reveal information about the
relationship between a study parameter (e.g., word
presentation rate), a behavioral response (e.g., reaction
time), and rCBF. The variable being correlated can
either be continuous (e.g., reaction time) or discrete
(e.g., word presentation rate). Examples are studies by
Grafton et al. (1992) who demonstrated correlations
between rCBF and the performance of a motor tracking
task in the supplementary motor area and thalamus.
Price et al. (1992) investigated the correlation between
rCBF and frequency of aural word presentation in

normal subjects. They found a linear relationship be-
tween rCBF and word rate in the periauditory regions.
rCBF in Wernicke’s area, however, was not associated
with increased word rate but with the presence or
absence of semantic content. This example illustrates
the ability of a parametrical approach to characterize
and differentiate brain regions by their rCBF response
slope in relation to the task parameters.
As the type of the relationship between parameters

and rCBF varies in different brain regions and is
unknown in advance, the a priori definition of a fit
function (e.g., a linear function used with the correla-
tion coefficient) might lead to an insufficient or partial
result.
We present an extension of the current analysis of

parametric studies to overcome this restriction. A non-
interactive method, which regresses nonlinear func-
tions of stimulus or task parameters on rCBF re-
sponses (using a multilinear regression with second-
order polynomial expansions) is introduced. The
proposed regression model is nonlinear in the explana-
tory variables but not in the unknown parameters. This
is different from ‘‘nonlinear regression’’ in the statistics
literature where unknown parameters are nonlinear.
In the first part of this paper we will show how this
approach is implemented in the context of the general
linearmodel and statistical parametricmapping (SPM).
The second aspect of this work is to introduce the

SPM5F6 as a useful tool in this context. We assess the
goodness of fit using spatially extended F statistics [i.e.,
SPM5F6 instead of SPM5Z6 (Friston et al., 1995)]. As
parametric studies might reveal differences and simi-
larities of rCBF response patterns in different groups,
we also consider statistical inferences about similari-
ties and differences of those nonlinear rCBF response
patterns in group studies. This new approach is demon-
strated and compared to a linear correlation with a
parametric H2

15O positron emission tomography (PET)
activation study.

METHODS

Digital signal processing utilizes different tech-
niques to characterize discrete signals by a combina-
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tion of a number of basis functions. Well-known ex-
amples are the Fourier expansion and the polynomial
expansion. We adapt this technique to characterize
rCBF responses in terms of a set of basis functions of a
given parameter (e.g., study parameter or response)
and show how rCBF responses can be approximated by
a small number of these basis functions.
In general the goodness of fit of the regression

depends on the type and number of the basis functions
chosen and on the number of data points to be approxi-
mated. We expect rCBF responses in cognitive activa-
tion studies to be smooth and monotonic. In the context
of this paper we restrict ourselves to a PET activation
study with 12 runs per subject, resulting in 12 data
points for regression. Given the smoothness and small
number of data points, a small set of basis functions is
appropriate to characterize the relationship.
The first two basis functions of the discrete cosine

transformation and a second-order polynomial expan-
sion were studied. Comparison of the goodness of fit for
both approaches showed no marked difference. Cosine
basis functions revealed slightly better results in mod-
eling ceiling or floor effects (see Figs. 1 and 2). However,
the second-order polynomial expansions were chosen
because the coefficients are easier to interpret. Concern-
ing the number of basis functions, additional tests
showed that increasing the order of the polynomials
beyond 2 did not increase the goodness of fit dramati-
cally, but lowered the degrees of freedom for available
statistical inference. In general the issue of an optimal
number and type of basis functions is the domain of
model selection and this will be the topic of a subse-
quent paper.
SPMs (Friston et al., 1995) can be considered spa-

tially extended statistical processes. In general SPM
uses the general linear model to build t statistics. In the
special case of parametric studies it is used to make
statistical inferences about the correlation of rCBF and
a study parameter.
The basic equation of the general linear model is

xij 5 gi1b1 j 1 ··· gikbkj 1 eij . (1)

Here bkj are k unknown parameters for each voxel j.
The coefficients g are explanatory or modeled variables
under which the observation (i.e., scan) was made.
Comparing a standard polynomial expansion,

p(x) 5 plxn 1 p2xn21 1 · · · pnx 1 pn11 , (2)

to (1), it is evident that this is another representation of
the general linear model.
Equation (1) can be written in matrix format:

X 5 Gb 1 e . (3)

G is the design matrix, which has one row for every
scan and one column for every modeled (i.e., ‘‘de-
signed’’) effect, b is the parameter matrix which has one
row for each column of G and one column for every
voxel in the volume, and e is the matrix of error terms.
For different explanatory variables the matrixG can be
partitioned into several matrices or column vectors of
interest G1 G2 and noninterest H G 5 [G1G2H] each
with a unique parameter in b (b 5 [b1b2g]).
In our case the polynomial basis functions are the

explanatory variables used to model rCBF responses at
different voxels. As we restricted our analysis to a
second-order polynomial expansion, the column vector
G1 contains the explanatory variable itself and G2

contains the squared values of this variable. The least-
squares solutions b1 and b2 of b1 and b2 (b 5 [b1b2g])
are the coefficients p 5 [p1p2] of a second-order polyno-
mial [see Eq. (2)] that best models the relation between
rCBF and the variable in question. As mentioned
above, the design matrix also contains a partition of
confounding effectsH where effects of no interest, such
as global blood flow and block effects, are modeled.
To test the overall significance of the effects of

interest we test the null hypothesis that their introduc-
tion does not significantly reduce the error variance,
which is equivalent to testing the hypothesis that both
b1 and b2 are 0. Thus the error sum of squares, after
discounting the effects of interest (G) are given by

R (V0) 5 (X 2 H g)T (X 2 H g) , (4)

where g is the parameter estimate of g. The alternative
hypothesis includes the effects of interest. The error
sum of squares and products under the alternative
hypothesis is therefore given by

R(V) 5 (X 2 G b)T (X 2 G b) , (5)

and the F statistic for voxel i is given by

Fi 5
r

r0 2 r
?
Ri(V0) 2 Ri(V)

Ri(V)
, (6)

where F has the F distribution with r0 2 r and r degrees
of freedom. In general r0 5 N 2 rank(H) and r 5 N 2

rank(G) whereN is the total number of scans.
In our special case the F statistic reflects the good-

ness of the regression. An image of the F statistic at
every voxel constitutes a SPM5F6. The SPM5F6 can be
interpreted as an image of the significance of the
variance explained by the parameters of interest (i.e.,
the polynomials inG) relative to error.
Due to the extremely large number of nonindepen-

dent univariate analyses, the probability that a region

61NONLINEAR REGRESSION IN ACTIVATION STUDIES



reaches an uncorrected threshold by chance is very
high. On the basis of the theory of Gaussian fields we
characterize a local excursion of the SPM by its maxi-
mal F value. This simple characterization has a certain
probability of chance occurrence. The probability of
getting one or more voxel with a certain F value in a
given SPM5F6 is the same as the probability that the
largest F value of the SPM5F6 is greater than this F
value. At high thresholds this probability equals the
expected number of maxima. Therefore the problem of
calculating a corrected P value can be reduced to
finding the expected number of maxima at or above this
threshold.
In a theoretical paper Worsley (1994) derived an

equation for the probability that the largest F value of
the SPM5F6 is greater than a threshold f on the basis of
the smoothness of the underlying Gaussian component

processes. The result in three dimensions is

P(Fmax $ f ) <
l(C) det (L)12G 112 (m 1 n 2 3)2

(2p)322
1
2G 1m2 2 G 1n22

? 1nfm 2
1/2(n23)

11 1
nf

m 2
21/2(m1n22)

3 5(m 2 1)(m 2 2)

? 1nfm 2
2

2 (2mn 2 m 2 n 21)
nf

m
1 (n 2 1)(n 2 2)6 ,

(7)

where f is the threshold, n and m are the degrees of
freedom of the F statistic, l(C) is the Lebesguemeasure
of region C (here the number of voxels in the volume),
and L is the variance–covariance matrix of the first
derivate of the underlying Gaussian component pro-

FIG. 1. SPM5F6 for linear regression in the patient who had
recovered from an ischemic infarction in the territory of the left
middle cerebral artery. Voxels over a threshold of F 5 15 are shown.
The plot shows adjusted activity in relation to word rate. The voxel
investigated has the coordinates x 5 54, y 5 218, and z 5 4 mm in
respect to the standard space defined by Talairach and Tournoux
(1988). F 5 75; df 1, 9; P , 0.0001 (uncorrected).

FIG. 2. SPM5F6 for nonlinear regression using polynomials. Vox-
els over a threshold of F 5 15 are shown. The regression for a voxel in
a left frontal region (x 5 234, y 5 40, and z 5 24 mm) that was not
apparent in the linear regression is shown. F 5 20; df 2, 8; P , 0.001
(uncorrected).
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cesses. P(Fmax $ f ) therefore corresponds to a corrected
P value for a voxel with f 5 F.
This general approach to parametric studies can also

be extended to compare the nonlinear responses of
different groups. This can be subdivided into statistical
inferences on similarities and differences between
groups. To test for differences, the polynomials appear
twice in the design matrix. In the first partition the
functions are replicated in both groups, whereas in the
second partition the polynomials are inverted for the
second group. This mirror-like appearance of the poly-
nomial basis functions models differential responses in
that case. The second, mirror part of the design matrix
is the one of interest, whereas the first, symmetrical is
a confounding covariate. Therefore the SPM5F6 is an
image of the significance of the differences of rCBF
responses in both groups. Defining the similarities as a
confounding covariate in this case is necessary to make

specific inferences about different rCBF responses in
the two subjects.
To test for similarities, the symmetric polynomials

(replicated for both groups) are covariates of interest
and the SPM5F6 highlights where rCBF responses are
similar in both groups.

AN EXAMPLE

The single case and comparison are illustrated with a
12-run H2

15O PET activation study using an auditory
paradigm of increasing word presentation rates from 0
to 90 words per minute. The data were obtained with a
CTI PET camera (Model 935B; CTI, Knoxville, TN). A
patient, who had recovered from severe aphasia after
an infarction largely confined to the left temporal lobe
and involving the whole of the superior temporal gyrus,
was studied. To illustrate the comparison of regression
between different subjects, a normal volunteer was

FIG. 3. As for Fig. 1 but using cosine basis functions instead of
the linear regression. The regression for the same voxel as in Fig. 1 is
plotted. F 5 63; df 2, 8; P , 0.0001 (uncorrected). Note the ability of
the cosine basis functions to better model floor and ceiling effects. The
first two columns of the design matrix show the cosine basis
functions.

FIG. 4. SPM5F6 for nonlinear regression using polynomials in the
control subject. Note the cluster of voxels in the left temporal region,
absent in the patient. The plot for the same voxel as in Figs. 1 and 3 in
the right superior temporal region is shown. F 5 37; df 2, 8; P ,

0.0001 (uncorrected).
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investigated using the same paradigm. This paper
emphasizes the implementation of this technique. Full
results and neurobiological implications will be pre-
sented separately.
Figure 1 illustrates the standard linear approach and

shows the SPM5F6 in a maximum intensity projection,
the corresponding design matrix in image format, and
the regression plot for the patient. The SPM5F6 shows
voxels over a threshold of F 5 15. Significant regions
include the right perisylvian area and parts of the
anterior temporal lobe. The linear regression of a voxel
(x 5 54, y 5 218, and z 5 4 mm; F 5 75; df 1, 9;
P , 0.0001 [uncorrected]) in the periauditory cortex is
shown. Comparing the nonlinear approach shown in
Fig. 2 to this SPM5F6, an additional area in the left
frontal region reaches significance at the same thresh-
old. As expected, the regression of this voxel (x:234,
y:40, z:24 mm) shows a highly nonlinear (‘‘U-shaped’’)
rCBF response in relation to word-rate (Fig. 2, bottom).
As described above, the F values represent the signifi-
cance of the variance introduced by the parameters of

interest. In our case the F values directly reflect the
goodness of fit. The solid line is the graphical representa-
tion of the regression and demonstrates the ability of the
technique to approximate nonlinear rCBF responses.
Figure 3 shows the SPM5F6 and regression plot of the

same voxel as in Fig. 1 using cosine basis functions. The
design matrix contains the two cosine basis functions
and the values of global blood flow, defined as a
covariate of no interest. Cosine basis functions are able
to model floor and ceiling effects slightly better than the
polynomials: F 5 63 for the cosine and F 5 43 for the
polynomials (regression not shown), both df 2, 8. The
higher F value (F 5 75) for the linear regression at this
voxel compared to the nonlinear techniques (polynomi-
als F 5 43, cosine basis functions F 5 63) is related to
fewer degrees of freedom by introducing a second
covariate of interest in the nonlinear case. When the
regressions of Figs. 1 and 3 are compared visually, the
better fit through the cosine basis functions is evident.
Figure 4 shows a corresponding plot at the same

voxel as in Figs. 1 and 3 for the normal subject. Note the

FIG. 5. SPM5F6, regression plot, and design matrix for the comparison of patient and control subject. Voxels over a threshold of F 5 15 are
shown. The regression for similar rCBF responses at a voxel x:62, y:222, and z:12 mm are shown. F 5 49; df 2, 19; P , 0.0001 (uncorrected).
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similar rCBF response in the right temporal region.
The control subject also shows a significant area in the
left temporal region (an area that was involved by
infarction in the patient).
SPM5F6 for similarities and plots of word rate against

rCBF at a voxel in the right temporal region [x:62,
y:222, z:12 mm with respect to the standard space
defined by Talairach and Tournoux (1988)] for both
subjects and the design matrix in image format are
shown in Fig. 5. The analysis shown reveals areas
where rCBF responses to the study parameter are
similar in the patient and in the control subject. The
first two columns of the design matrix are the covari-
ates of interest (i.e., commonalities). Confounding co-
variates are global blood flow (column 5) and block
effects (columns 3 and 4). Since the patient did not
show any significant regression in the left temporal
region (see Fig. 1), the significant similarities are
restricted to the right superior temporal region as
shown in Fig. 5.

Figure 6 demonstrates the statistical inference about
differences of rCBF responses to parameter for differ-
ent groups. The first two columns of the design matrix
are the covariates of interest (i.e., differences). Con-
founding covariates are the commonalities (columns 3
and 4), global blood flow (column 7), and block effects
(column 5 and 6). There are two maxima apparent in
the maximum intensity projection of the SPM5F6. To
demonstrate the nonlinear regression we have chosen a
voxel in the left hippocampus (x:218, y:226, z:212
mm). Note the decrease of rCBF in relation to increas-
ing word rates in the control subject, whereas the
patient shows an increase in rCBF.

DISCUSSION

The application of a general nonlinear fitting tech-
nique allows detection of rCBF responses in brain
regions which might not have been so evident using
simple (i.e., linear) correlation coefficients. The general
approach using polynomial expansions avoids pre-
defined fit–functions and is able to model a variety of
nonlinear rCBF responses without specifying the form
of the expected regression.
Using this technique different brain areas can show

differential responses to a study parameter, which can
then be used to characterize each area involved in this
task. On the other hand this technique may also
improve the discrimination of different, but spatially
nearby, areas, which are active in the same task but
with different rCBF responses. A clinical application in
this respect could be the investigation of cortical reorga-
nization after cerebral injury (e.g., trauma or stroke) as
well as physiologic correlates of learning. A possible study
design could look for different responses in anatomically
defined language areas (e.g., Broca’s and Wernicke’s area)
in normal controls and compare those findings with
data from patients suffering from different types of
aphasia after a stroke, as shown in our example.
Although we have restricted our model to a second-

order polynomial regression, other basis functions could
be used. The use of cosine basis functions has some
advantages inmodeling ceiling or floor effects; however,
the interpretation of polynomial coefficients is more
intuitive than interpreting coefficients of cosine basis
functions (i.e., a decomposition into linear and nonlin-
ear effects). This may be important in experimental
analysis where the introduction of nonlinearity (second-
order polynomial) considerably improves the fit. In
general the question of number and type of basis
functions is an issue of model selection.
Statistical inferences on basis of the SPM5F6 reported

here are uncorrected for multiple comparison. In those
circumstances where a precise a priori anatomical

FIG. 6. SPM5F6, regression plot, and design matrix for the
differences of rCBF responses in the patient and the control subject.
Voxels over a threshold of F 5 10 are shown. Regression for
differential rCBF responses at a voxel x:218, y:226, and z:212 mm
are shown. F 5 17; df 2, 17; P , 0.0005 (uncorrected).
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hypothesis exists, the correction of P values for mul-
tiple comparisons is not necessary. However, in cases
where it is impossible to predict the spatial localization
of the activation or in the case of activation outside the
hypothesized area, reporting uncorrected P values is
not statistically appropriate. Based on the equation
given by Worsley (1994), it should be possible to esti-
mate corrected P values on the basis of the theory of
Gaussian fields. This depends on estimating the smooth-
ness of the components of the F field and will be the
subject of a subsequent article.
We have demonstrated nonlinear regression in the

context of a PET activation study. Another major
application is functional magnetic resonance imaging
or magnetencephalography. Those imaging techniques
allow repeated measurements on the same subject over
a short period of time, which make them especially
eligible for correlational or parametric designs. In
general the technique presented here can be applied to
those large data sets but the number and type of basic
functions might have to be adjusted according to the
nature of the rCBF response.
In conclusion, we hope that this novel approach will

provide a richer characterization of nonlinear brain
responses to stimulus or task parameters.

ACKNOWLEDGMENTS

We thank Keith Worsley for his comments on this manuscript.
R.J.S.W., K.J.F., and C.B. were funded by the Wellcome Trust. C.J.M.
was funded by the Medical Research Council and J.B.P. was funded
by the European Community.

REFERENCES

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D.,
and Frackowiak, R. S. J. 1995. Statistical parametric maps in
functional imaging: A general linear approach. Hum. Brain Map.
2:189–210.

Grafton, S., Mazziota, J., Presty, S., Friston, K. J., Frackowiak, R. S.
J., and Phelps, M. 1992. Functional anatomy of human procedural
learning determined with regional cerebral blood flow and PET. J.
Neurosci. 12:2542–2548.

Price, C., Wise, R. J. S., Ramsay, S., Friston, K. J., Howard, D.,
Patterson, K., and Frackowiak, R. S. J. 1992. Regional response
differences within the human auditory cortex when listening to
words.Neurosci. Lett. 146:179–182.

Talairach, P., and Tournoux, P. 1988. Co-planar Stereotactic Atlas of
the Human Brain: 3-Dimensional Proportional System: An Ap-
proach to Cerebral Imaging. Thieme Verlag, Stuttgart/NewYork.

Worsley, K. J. 1994. Local maxima and the expected euler character-
istic of excursion sets of x2, F and t fields. Adv. Appl. Probl.
26:13–42.
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