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This paper presents a dynamic causal model based upon neural field models of the Amari type. We consider
the application of these models to non-invasive data, with a special focus on the mapping from source activity
on the cortical surface to a single channel. We introduce a neural field model based upon the canonical mi-
crocircuit (CMC), in which neuronal populations are assigned to different cortical layers. We show that
DCM can disambiguate between alternative (neural mass and field) models of cortical activity. However,
unlike neural mass models, DCM with neural fields can address questions about neuronal microcircuitry
and lateral interactions. This is because they are equipped with interlaminar connections and horizontal
intra-laminar connections that are patchy in nature. These horizontal or lateral connections can be regarded
as connecting macrocolumns with similar feature selectivity. Crucially, the spatial parameters governing hor-
izontal connectivity determine the separation (width) of cortical macrocolumns. Thus we can estimate the
width of macro columns, using non-invasive electromagnetic signals. We illustrate this estimation using dy-
namic causal models of steady-state or ongoing spectral activity measured using magnetoencephalography
(MEG) in human visual cortex. Specifically, we revisit the hypothesis that the size of a macrocolumn is a
key determinant of neuronal dynamics, particularly the peak gamma frequency. We are able to show a
correlation, over subjects, between columnar size and peak gamma frequency — that fits comfortably with
established correlations between peak gamma frequency and the size of visual cortex defined retinotopically.
We also considered cortical excitability and assessed its relative influence on observed gamma activity. This
example highlights the potential utility of dynamic causal modelling and neural fields in providing quantita-
tive characterisations of spatially extended dynamics on the cortical surface — that are parameterised in
terms of horizontal connections, implicit in the cortical micro-architecture and its synaptic parameters.

© 2012 Elsevier Inc. All rights reserved.
Introduction

This work combines neural field models— thatmodel the activity of
layers of cells in cortical patches — with a Bayesian framework for
optimising model parameters — known as Dynamic Causal Modelling
(DCM). This combination allows one to address questions about lateral
cortical interactions in terms of optimal models and model parameters.
DCM has been applied extensively to fMRI and electrophysiological
data (David et al., 2006; Friston et al., 2003; Penny et al., 2004) and
has been used recently to model spatiotemporal dynamics on the cor-
tical surface (Pinotsis et al., 2012). Combining generative models with
Bayesian optimisation techniques enables one to characterise the
functional architectures that generate empirical data. In this paper, we
show that DCM can disambiguate between alternative spatiotemporal
models of cortical activity — using Bayesian model comparison — and
furnish quantitative explanations of observed responses, in terms of
the biophysical properties of lateral cortical connections. This work fo-
cuses on two classes of biophysical models describing mesoscale brain
for Neuroimaging, Institute of
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activity: neural mass and field models. Neural field models describe
how hidden neuronal states (such as the average depolarisation of a
neural population or layer) evolve over both space and time. In
contrast, neural mass models only characterise dynamics over time,
under the assumption that all the neurons of a particular population
are located at (approximately) the same point.

In previous work (Pinotsis et al., 2012), we considered the rela-
tionship between neural mass and field models and showed that
field models can be reduced to neural masses by applying shrinkage
priors to spike propagation times — such that lateral interactions
were effectively instantaneous. We introduced a DCM that provides
an explicit model of spatially extended cortical activity that allows
one to make inferences about key parameters controlling the topo-
graphic distribution of cortical activity using LFP data, like the extent
of lateral cortical connections and the conduction velocity of spike
propagation. We were able to show that including spatial parameters
enables one to explain effects that other models — such as neural
mass models — attribute to variations in temporal parameters, like
synaptic rate constants. Dynamic causal models based on neural fields
enable one to characterise the propagation of activity on the cortex
and provide a formal understanding of the mechanisms generating
spatiotemporal responses. In our previous work above, we considered
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model optimisation under the assumption that one could measure local
signals (local field potentials) that are sensitive to all spatial frequencies.
In this paper, we consider neural field models of non-invasive (EEG or
MEG) data. This development allows one to make inferences about
the nature of lateral interactions in cortical sources, without spatially
resolved measurements.

Spectral responses of neural fields

The characterisation of electrophysiological signals depends upon
models of how they are generated in source space and how the
resulting (hidden) neuronal states are detected by sensors. At the
source level we consider a model based upon a canonical microcircuit
that allows one to separate the sources of forward and backward con-
nections in cortical hierarchies. In terms of the mapping from source
to sensor space — we use a conventional lead field formulation that
is expanded in terms of spatial basis functions. As in previous work,
we focus on the modelling of power spectra. There is a long history
of modelling steady-state (or ongoing) activity spectra, associated
with neural fields, usually in models of the whole cortex, e.g., (Jirsa,
2009). Robinson (2006)has developed a neurophysiologically grounded
model of corticothalamic activity, which reproduces many properties of
empirical EEG signals; such as the spectral peaks seen in various sleep
states and seizure activity. Technically, the spectra summarising the
response of cortical sources canbe defined in termsof transfer functions,
mapping endogenous neuronal fluctuations to observed responses
(Freeman, 1972; Nunez, 1995; Robinson et al., 2001; Robinson et
al., 2003). In Pinotsis and Friston (2011), we derived the transfer
function — and an expression for the spectral responses— for a source
described by a classical neural field equation, while in Pinotsis et al.
(2012) we extended our approach to a cortical source that comprises
multiple layers. This allowed us tomodel the spectral activity of cortical
fields asmeasured on the cortical surface. Here, we pursue a similar ap-
proach and generate the corresponding spectral responses, asmeasured
by non-invasive sensors. These predictions are generated in an efficient
manner that exploits the nature of themapping from sources to sensors
in EEG and MEG.

The resulting scheme can be regarded as inverting or fitting popula-
tion models of the Amari type, using real data and Bayesian model
inversion. Previous work in a similar vein includes the use of Kalman
filters to develop estimation schemes for both neural mass (Riera et
al., 2007; Valdes et al., 1999) and neural field models of a single
population (Galka et al., 2008; Schiff and Sauer, 2008). In a related ap-
proach, Daunizeau et al. (2009)) replaced the standard dipole source—
used in neural mass models — with the principal Fourier mode of a
neural field, for the particular case of exponentially decaying synaptic
density over the cortical surface. Finally (Markounikau et al. (2010)
used a combination of linear and nonlinear optimisation methods to
invert a two-layered neural field model of voltage-sensitive dye data,
describing inhibitory and excitatory populations (without conduction
delays). The neural field model considered here has four layers and is
based on canonical cortical microcircuitry that accounts for several as-
pects of local cortical computations in theoretical neurobiology. This
model provides an extension of the well known Jansen and Rit neural
mass model and incorporates conduction delays associated with the
propagation of neuronal spikes.

Lateral interactions and neural fields

Modelling lateral interactions with neural field models has a long
history. Pioneering work was introduced in papers by Amari, Wilson
and Cowan, Grossberg and colleagues (Amari and Arbib, 1977;
Amari and Takeuchi, 1978; Grossberg and Levine, 1975; Wilson and
Cowan, 1973). These developments can be traced back to the work of
physicists in the 19th century — such as Helmholtz and Mach — on
visual perception. The first neural field models considered spontaneous
pattern formation, by analysing the steady-state behaviour of underly-
ing field equations: for example, Wilson and Cowan developed a treat-
ment of Turing instabilities in the context of neural fields (Wilson and
Cowan, 1972). In a similar vein, Grossberg initiated a line of work on
shunting interactions— via nonlinearly coupled inputs— and considered
limits as the solutions approached steady state (Grossberg, 1973). At
about the same time, Amari proved that systems of neural fields typically
approach steady-state, in which some parts remain active, thus provid-
ing a metaphor for short-term memory.

From an anatomical viewpoint, the functional specialisation of vi-
sual (and auditory) cortex is reflected in its patchy or modular orga-
nisation — in which local cortical structures share common response
properties. This organisation may be mediated by a patchy distribu-
tion of horizontal intrinsic connections that can extend up to 8 mm,
linking neurons with similar receptive fields: see, e.g., Angelucci and
Bressloff (2006), Burkhalter and Bernardo, (1989), and Wallace and
Bajwa (1991). The existence of patchy connections in different cortical
areas (and species) has been established with tracer studies in man, ma-
caque and cat: Burkhalter and Bernardo (1989), Stettler et al. (2002) and
(Wallace and Bajwa (1991), respectively. It has been shown that such
connections can have profound implications for neural field dynamics:
see Baker and Cowan (2009). The precise form of such connections
may be explained by self-organisation under functional and structural
constraints; for example, minimising the length of myelinated axons to
offset the cost of transmitting action potentials (Cherniak, 1994; Wen
and Chklovskii, 2008). Generic constraints of this sort have been used
to motivate general principles of connectivity; namely, that evolution
attempts to optimise a trade-off between metabolic cost and topo-
logical complexity (Bassett et al., 2010). In short, visual and auditory
cortices can be characterised by a patchy organisation that is con-
served over the cortex and which allows for both convergence and
divergence of cortical connections. Synaptic densities can then be
approximated by isotropic distributions with an exponential decay
over the cortical surface. In this work, we use a combination of
patchy and isotropic distributions, using connectivity kernels with
non-central peaks to model sparse intrinsic connections in cortical
circuits that mediate both local and non-local interactions. In
other words, we consider models in which neurons receive signals
both from their immediate neighbours and remote populations
that share the same functional selectivity (Pinotsis and Friston,
2011). We focus on the particular problem of identifying the parame-
ters of lateral connections within a bounded cortical patch or manifold,
as measured at a distance, with an array of non-invasive (MEG or EEG)
sensors.

This paper comprises three sections. The first reviews a canonical
neural mass model based on anatomical data and theoretical con-
straints from the theory of predictive coding. The second section de-
scribes a neural field model based upon this canonical microcircuitry.
Our focus here is on equipping the resulting neuronal model with an
electromagnetic forward model to predict responses in non-invasive
sensors. In the third section, we use Bayesian model comparison to ad-
judicate between various formulations of the ensuing neural field
model (DCM) and establish its construct validity by optimising param-
eters pertaining to GABAergic concentrations, that have been shown to
correlate with the peak gamma frequency of steady-state activity
(Muthukumaraswamy et al., 2009).
A canonical model of cortical activity

This section introduces the neuronal field model used in subse-
quent sections on dynamic causal modelling. The particular neuronal
model of source activity used here is based upon a refinement of con-
ventional (convolution–based) neuronal models that explicitly model
the neuronal sources of forward and backward connections in cortical
hierarchies — these are the superficial and deep pyramidal cell
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populations respectively. We develop the corresponding neural field
model from established neural mass models.

The canonical microcircuit

Recent work suggests that superficial layers of visual cortex oscillate
at gamma frequencies, while deep layers primarily oscillate at lower
frequencies (Buffalo et al., 2011). Since forward connections originate
predominately from superficial layers and backward connections
primarily originate in deep layers, these spectral asymmetries suggest
that forward connections use faster (gamma) temporal frequencies,
while backward connections may employ lower (alpha or beta)
frequencies — a suggestion that has experimental support (Roopun et
al., 2010). These asymmetries mandate something quite remarkable:
namely, a synthesis and segregation of forward and backward effer-
ents from afferent input. This segregation can only arise from local
non-linear neuronal computations that are structured and precisely
interconnected. Non-linear neuronal transformations are necessary
to account for the implicit coupling between different frequencies
and arise from both synaptic mechanisms (e.g. non-linear dendritic
integration) and population dynamics (e.g. sigmoid activation func-
tions). The canonical microcircuit is a detailed proposal for such a
laminar-specific intracortical architecture that describes how infor-
mation flows through the cortical column. This model is based on
findings in the primary visual cortex (Douglas and Martin, 1991)
but recent work (Lefort et al., 2009; Weiler et al., 2008) indicates that
similar microcircuits exist in other regions, such as somatosensory
and motor cortex.

Douglas and Martin recorded intracellular potentials from cells in
area 17 of the cat while they stimulated cortical afferents and noticed
a strong compartmentalisation of the superficial and deep cell
properties — reflected in slow superficial responses and fast input
layer responses. The authors created a conductance-based model
that reproduced the evolution of excitation and inhibition through
the cortical circuit with great precision. This model contained three
groups of cells: superficial and deep pyramidal cells, and a common
pool of inhibitory cells. All three pools of neurons receive thalamic
drive — although the thalamic drive to deep layer cells was weaker
than the others. All neuronal populations expressed significant
self-connectivity, and interconnected with the other populations.
This model reproduced the features observed in their electrophysio-
logical recordings — including the latency difference between super-
ficial and deep layer neurons — and has served to establish several
basic properties that are now believed to be replicated in other corti-
cal areas: first, although superficial and deep compartments are
strongly interconnected, their response properties are also strongly
segregated. Second, cortex is not under tonic inhibition, rather, both
excitation and inhibition are generated by afferent thalamic input
and both shape ongoing cortical responses. Third, the canonical
microcircuit can amplify thalamic inputs to generate self-sustaining
activity, while also maintaining a delicate balance between excitation
and inhibition — so as to prevent runaway excitation.

Previous computational modelling studies indicate that this circuit-
ry allows the cortex to optimally organise and integrate bottom-up, lat-
eral, and top-down information (Raizada and Grossberg, 2003).
Douglas andMartin suggest that the rich anatomical connectivity of su-
perficial layer (2/3) pyramidal cells allows them to collect information
from all relevant top-down, lateral, and bottom-up inputs, and —

through processing in the dendritic tree — select the most likely inter-
pretation of its subcortical inputs. For a relevant discussion and more
details on the canonical microcircuit and its potential role in predictive
coding we refer the reader to Bastos et al. (under review).

Haeusler and Maass used Hodgkin and Huxley neurons to build a
realistic microcircuit model and showed that a cortical column —

whose connectivity conforms to the canonical microcircuit — can
perform various computations efficiently, in relation to a column
with random connectivity (Haeusler and Maass, 2007). By collapsing
two pairs of cell types in the Haeusler and Maass model — while pre-
serving the topology of the connectivity — one obtains the canonical
microcircuit depicted in Fig. 1: this circuit comprises four popu-
lations: excitatory spiny stellate input cells (1), inhibitory interneu-
rons (2), deep excitatory output pyramidal cells (3) and superficial
excitatory pyramidal cells (4). In what follows, we describe a mathe-
matical model of how the neuronal states of this these populations
evolve over time. This model provides the basis of our dynamic causal
model:We first define the vector-valued function

V ¼ v1; v2; v3; v4ð ÞT ð1Þ

where va(t) denotes the expected depolarisation of the a-th popula-
tion (a=1,…,4) at time t. The dynamics of depolarisation are then
described by the following second-order differential equation:

€V þ 2B _V ¼ −B2V þ AB⋅F∘V þ GU ð2Þ

where U tð Þ∈R4 is a vector of external inputs (exogenous neuronal
fluctuations) and A and B are 4×4 matrices of synaptic parameters
controlling the maximum postsynaptic responses for excitatory (me)
and inhibitory (mi) populations and the rate-constants of postsynap-
tic filtering (κ1, …, κ4; c.f., decay):

A ¼ diag me;mi;me;með Þ
B ¼ diag κ1; κ2; κ3; κ4ð Þ ð3Þ

F : R4→R4 is a nonlinear mapping from postsynaptic depolarisation
to presynaptic firing rates and G : R4→R4 maps the inputs to the
motion of hidden neuronal states; namely

G ¼ κ1me;0;0;0ð ÞT ð4Þ

In summary, Eq. (2) expresses the rate of change of expected
depolarisation in each population as a sum of three terms; the first
is a simple decay, the second is due to presynaptic input from other
parts of the cortex and the final part is due to external inputs U(t).
Writing out Eq. (2) in component form, we have

€v1 þ 2κe _v1 þ κ2
e v1 ¼ κ1me −d14·σ v4ð Þ þ d11·σ v1ð Þ−d12·σ v2ð Þ þ Uð Þ

€v2 þ 2κ i _v2 þ κ2
i v2 ¼ κ2mi d21·σ v1ð Þ þ d22·σ v2ð Þ þ d23·σ v3ð Þð Þ

€v3 þ 2κe _v3 þ κ2
e v3 ¼ κ3me −d32·σ v2ð Þ þ d33·σ v3ð Þð Þ

€v4 þ 2κe _v4 þ κ2
e v4 ¼ κ4me d41·σ v1ð Þ þ d44·σ v4ð Þð Þ ð5Þ

where the sigmoid firing rate function is

σ vað Þ ¼ 1
1þ exp r η−vað Þð Þ ð6Þ

Here, r and η are parameters that determine the shape of this sig-
moid activation function. In particular, r is synaptic gain and η is the
postsynaptic potential at which the half of the maximum firing rate
is elicited. In Eq. (5), dab⋅σ(vb) is (endogenous) presynaptic input
to the a-th population from the b-th and corresponds to the mapping
F ∘V. This is a sigmoid function σ(vb) of postsynaptic depolarisation in
the b-th population, multiplied by the intrinsic connection strength
dab between the two populations (Jansen and Rit, 1995). See Fig. 1
for a schematic of this model.

A canonical microcircuit field model and its transfer function

In the case of neural field models, we consider spatially extended
sources occupying bounded manifolds (patches) in different layers
that lie beneath the cortical surface. In this setting, each population



Fig. 1. The Canonical Microcircuit (CMC) neural mass model. This figure shows the evolution equations that specify a CMC mass model of a single source. This model contains four
populations occupying different cortical layers: the pyramidal cell population of the JR model is here split into two subpopulations allowing a separation of the sources of forward
and backward connections in cortical hierarchies. As with the JR model, second-order differential equations mediate a linear convolution of presynaptic activity to produce
postsynaptic depolarisation. This depolarisation gives rise to firing rates within each sub-population that provide inputs to other populations.
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now becomes a layer in the cortical sheet. Here, the input U(x,t) is an
explicit function of both space and time. Furthermore, the 4×1 vector
V tð Þ∈R4 pertaining to the hidden neuronal states of each layer is re-
placed by V x; tð Þ∈R4; a vector field depending on both time and
space. The dynamics of cortical sources now conform to
integrodifferential equations, such as the Wilson-Cowan or Amari
equations, where coupling is parameterised by matrix-valued cou-
pling kernels — namely, smooth (analytic) connectivity matrices
that also depend on time and space. These spatial generalisations
can be summarised in the following equation, which is the analogue
of Eq. (2) for neural field models:

€V ¼ −2B _V−B2V þ AB∬D x−x′; t−t′
� �

⋅F∘V x′; t′
� �

dx′dt′ þ G∘U ð7Þ

where the elements of the connectivity matrix D(x,t) are dab(x,t)=
kab(x)δ(t− |x|υ). This spatiotemporal matrix corresponds to the
first-order approximation to the composition of the spatial kernels
K(x) defined below and the temporarily delayed firing rates.
Eq. (7) can be written as

€V þ 2B _V þ B2V
� �

x; tð Þ ¼ AB∫K x−x0
� �

F∘V x0; t− x−x0
�� ��υ� �

dx0 þ G∘U ð7’Þ

where υ is the inverse speed with which spikes propagate along
connections and interactions among populations — within and
across macrocolumns — are described by the connectivity kernel
K=K(i)+K(e). One can see that in the infinite speed limit υ=
0 the spatial convolution in the above Equation disappears (to with-
in a scaling constant) and we recover the neural mass eq. (5). In this
limit, the corresponding electrophysiological predictions effectively
coincide with those generated by a neural mass model. We will
use prior constraints on the propagation speed below to compare
field and mass variants of the canonical microcircuit (for a fuller
discussion, see Pinotsis et al., 2012). The intrinsic part K(i) is an
exponentially decaying kernel commonly used in the literature to
account for excitatory and inhibitory interactions (see e.g. Pinotsis
et al., 2012), while the extrinsic part of the kernel K(e) was intro-
duced in Grindrod and Pinotsis, (2011) and Pinotsis and Friston
(2011) to model patchy lateral connections. This kernel is
characterised by non-central peaks allowing for differences in (and
estimation of) the range and dispersion of lateral connections,
summarised in terms of the parameters ha and caa respectively,
namely

K ið Þ ¼
k ið Þ
11 k ið Þ

12 0 k ið Þ
14

k ið Þ
21 k ið Þ

22 k ið Þ
23 0

0 k ið Þ
32 k ið Þ

33 0
k ið Þ
41 0 0 k ið Þ

44

266664
377775

K eð Þ ¼
k eð Þ
11 0 0 0
0 k eð Þ

22 0 0
0 0 k eð Þ

33 0
0 0 0 k eð Þ

44

266664
377775

k ið Þ
ab ¼ 1

2aabe
−cab xj j

k eð Þ
aa ¼ 1

2caa e−caa x−haj j þ e−caa xþhaj j
� �

ð8Þ

Here, the parameters aab and cab encode the strength (analogous
to the number of synaptic connections) and extent of intrinsic
connections between cortical layers. The intrinsic connections can
be regarded as interlaminar connections within a macrocolumn,
while the extrinsic (between macrocolumn) connections correspond
to horizontal connections and connect layers of the same type at a
distance ha. Later, we will use the extent parameter cab as a measure
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Fig. 3. Three neighbouring macrocolumns. Each macrocolumn consists of the four sub-
populations of Fig. 1 connected to each other with intralaminar (within macrocolumn)
and interlaminar (between macrocolumns) connections. We later assume that the
visual cortex is tiled with replications of this cortical circuitry and that individual
differences in neuroanatomy are reflected in gamma frequency activity that can be
attributed to a variable columnar size (the c parameter of Fig. 2).
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of the size of cortical macrocolumns: see Fig. 2 for an illustration
of the spatial parameters and Fig. 3 for a distinction between
interlaminar and horizontal intra-laminar connections.

On comparing Eqs. (2) and (7) we notice that presynaptic input to
the a-th population from the b-th is now expressed in terms of a
spatiotemporal convolution as opposed to the simple nonlinear
(sigmoid) mapping of neural mass models. For connectivity kernels
modelling homogeneous (local) interactions, this convolution gives
rise to wave equations describing propagation of the presynaptic
input on the cortical manifold. In essence, Eq. (7) with connectivity
defined by Eq. (8) defines a class of neural field models that can
accommodate the intrinsic connectivity rules prescribed by the
canonical microcircuit.

As in our earlier work (Pinotsis and Friston, 2011; Pinotsis et al.,
2012), we assume that the neural field defined by Eq. (7) is perturbed
around a spatially homogeneous steady-state V0 (attained in the
absence of external or exogenous perturbations)

V0 ¼ B−1A⋅F V0ð Þ∫K xð Þdx ð9Þ

Using linear systems analysis, we now define the transfer function
of the field model described above by the following relation

T k;ωð Þ ¼ P k;ωð Þ
U k;ωð Þ ð10Þ
Patchy lateral connections in V1

Intrinsic and extrinsic connectivity kernels

Distance between columns (h)

(1/c)

Intrinsic (interlaminar – within column)

Extrinsic (intralaminar – between column)

C
on

ne
ct

iv
ity

 k
er

ne
l

Distance (x)

(1/c)

(b)

(a)

Fig. 2. Connectivity kernel. This kernel describes a combination of patchy but isotropic
distributions by using connectivity kernels with non-central peaks. It models sparse in-
trinsic connections in cortical circuits that mediate both local (within macrocolumn)
and non-local (between macrocolumn) interactions. In other words, neurons talk
both to their immediate neighbours and receive input from remote populations who
share the same functional selectivity; see Eq. (8). The insert is a modified from www.
ini.uzh.ch/node/23776.
where U(k,ω) is the two-dimensional Fourier transform of external
input:

U k;ωð Þ ¼ FT U x; tð Þð Þ
¼ ∬U x; tð Þe−ikxþiωtdtdx

ð11Þ

and P(k,ω) is the Fourier transform of the perturbations around the
steady-state solution. Given the transfer function, we can characterise
the spectral response of the system to any external input, in terms of
the underlying connectivity kernel, propagation velocities and
post-synaptic response function. By analogy to a single population,
substituting V(x,t)=V0+P(x,t) into Eq. (7) and expanding F ∘V
around V0, we obtain a second-order expression for the perturbations
P(x,t)

€P þ 2B _P ¼ −B2P þ AB·Dγ⊗ P þ GU

γ ¼ ∂F=∂V
ð12Þ

Here, γ is the gain of the nonlinear mapping between depolarisation
and firing rate:

γab ¼ ∂σ va ¼ 0ð Þ
∂vb

¼
rerη

1þ erηð Þ2 a ¼ b

0 a≠b

8<: ð13Þ

Eqs. (10) and (12) provide the transfer function of our canonical
microcircuit neural field model. Taking the Fourier transform of
Eq. (12) and substituting into Eq. (10) gives:

T k;ωð Þ ¼ −ω2I4−2iωBþ B2−J k;ωð Þ
� �−1

G

J k;ωð Þ ¼ ABD k;ωð Þγ
ð14Þ

where J(k,ω) is a 4×4 matrix incorporating the synaptic parameters,
connectivity parameters and gain matrix and D(k,ω) is the Fourier
transform of the spatiotemporal connectivity. In summary, Eq. (14)
provides a mathematical model or transfer function mapping from
exogenous inputs or fluctuations acting upon each neuronal layer
and the resulting spatiotemporal response in source space. This
transfer function is specified completely by synaptic and connectivity
parameters implicit in the neural field model. We next consider the
mapping from source space to sensor space that completes the
forward or generative model.

http://www.ini.uzh.ch/node/23776
http://www.ini.uzh.ch/node/23776
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A neural field DCM

A generative model for power spectra

In what follows, we describe the generative or forward mapping
from external inputs (exogenous fluctuations) to observed spectral
responses. This allows one to compare the predictions of our model
with real data and requires a mapping of neuronal states (the
depolarisation fields above) to sensors. This mapping is called the
lead field. The lead field allows one to infer hidden parameters
characterising the deployment of sources on the cortical surface,
even when there is no explicit spatial information in the data, see
also Robinson et al. (2004). The lead field samples particular spatio-
temporal frequencies, depending on the sensitivity profile of the sen-
sors used. For example, if the lead field has a narrow spatial support
(e.g., when using LFP electrodes), its spatial Fourier transform will
be broad and it will be sensitive to a wide range of spatial frequencies.
Conversely, when the lead field sees a large part of the cortical surface
(e.g., non-invasive EEG sensors), the spatial Fourier transform will be
narrow and only fluctuations in low spatial frequencies will contrib-
ute to the observed cross-spectra.

In the illustrative examples below we used an adaptive spatial
filter or beamformer (Van Veen et al., 1997) to obtain estimates of
ongoing neuronal activity in primary visual cortex (Schwarzkopf et
al., 2012). This provides an estimate of electrical cortical activity
based on a weighted combination of sensors — sometimes referred
to as a virtual electrode. In other words, we will consider a single
(virtual) sensor — so that the lead field maps from hidden neuronal
states to a single data channel. We first describe the lead field and
its parameterisation in terms of a Fourier basis set and coefficients
that scale the contribution of neuronal states in each layer. We then
describe how the predicted spectral response at the sensor depends
upon the (Fourier transforms) of the lead field and the transfer
function T(k,ω) above that maps external inputs to neuronal states.
Given the particular form of the lead field, we can simplify the expres-
sions for the resulting transfer function from external inputs to spec-
tral responses. This transfer function provides the basis of our
probabilistic model. In detail:The lead field is parameterised by φ as
a continuous gain function L(x,φ) over the cortical patch that is ap-
plied to a mixture of neuronal (depolarisation) states at each point
on the patch. This mixture is determined by four coefficients
Q̃ ¼ q̃1 q̃2 q̃3 q̃4

� �
, while the gain function is parameterised in terms

of the coefficients L(k,φ) of a spatial Fourier basis set:

L x;φð Þ ¼ ∑
k
L k;φð Þeikx ð15Þ

The predicted response at the virtual electrode — for a given set of
all the neural and lead field parameters θ — is obtained by integrating
over the cortical patch

y t; θð Þ ¼ ∫L x;φð Þ Q̃ ⋅V x; tð Þ� �
dx ð16Þ

which leads to a spectral response of the form

Y ω; θð Þ ¼ ∑
k
L k;φð Þ Q̃ ⋅T k;ωð ÞU k;ωð Þ� � ð17Þ

The predicted spectral responsemeasured by the sensor is therefore

g ω; θð Þ ¼ Y ω; θð ÞY� ω; θð Þ
¼ ∑

k
L k;φð Þ 2

Q̃ T k;ωð Þgu k;ωð ÞT k;ωð Þ�Q̃ T
������ ð18Þ

where gu(k,ω)=|U(k,ω)|2 is the auto-power spectrum of external
input. We will consider a gain function with a simple Gaussian form,
which we parameterise in terms of its dispersion φ such that
L x;φð Þ ¼ e−x2=2φ2

, noting that the amplitude is fixed to avoid redun-
dancy with the parameters Q̃ ¼ q̃1 q̃2 q̃3 q̃4

� �
. This leads to Fourier

coefficients of the form L k;φð Þ ¼ e−2π2φ2k2 and Eq. (19) becomes

g ω; θð Þ ¼ ∑
k

e−2π2φ2k2
��� ���2Q̃ T k;ωð Þgu k;ωð ÞT k;ωð Þ�Q̃ T

¼ ∑
a;k

q̃aWa k;ωð Þ
ð19Þ

The second equality follows by substituting the transfer function
T(k,ω) in Eq. (14) into Eq. (19), to express the prediction as a mixture
of contributions from each population weighted by q̃a:

Wa k;ωð Þ ¼ e−2π2φ2k2κ1meSa k;ωð ÞR−1 k;ωð Þ
��� ���2gu k;ωð Þ ð20Þ

The term Sa(k,ω)R−1(k,ω) in (20) expresses the relative contribu-
tion of each population to the predictions at source level and depends
upon the particular form of the connections among these populations.
It can be seen from Eq. (8), that this ratio depends upon the (Fourier
transforms of) intrinsic and extrinsic connectivity (see also, Pinotsis
and Friston, 2011; Pinotsis et al., 2012);

D ið Þ
ab k;ωð Þ ¼ aab cab−iυωð Þ

c2ab−υ2
abω

2−2iυcabω þ k2

D eð Þ
aa k;ωð Þ ¼ caa

2
e−hacaa c−−eiυhaω−2hacaa c−α þ βð Þ

4k2π2 þ c−c−
þ eiυhaωcþα−e−hacaa cþ þ eiυhaω−hacaaβ

4k2π2 þ cþcþ

" #
α ¼ cos 2hakπð Þ; β ¼ 2kπ sin 2hakπð Þ
cþ ¼ caa þ iυω; c− ¼ caa−iυω

(21)
In particular, R(k,ω) and Sa(k,ω) are given by

R k;ωð Þ ¼ −V14 k;ωð Þ −V23 k;ωð Þ þ Q2 k;ωð ÞQ3 k;ωð Þð Þ
þ Q4 k;ωð Þ −V23 k;ωð ÞQ1 k;ωð Þ þ Q3 k;ωð Þ −V12 k;ωð Þ þ Q1 k;ωð ÞQ2 k;ωð Þð Þ½ �

S1 k;ωð Þ ¼ −Q4 k;ωð Þ −V23 k;ωð Þ þ Q2 k;ωð ÞQ3 k;ωð Þð Þ
S2 k;ωð Þ ¼ D ið Þ

21 k;ωð Þγκ2miQ3 k;ωð ÞQ4 k;ωð Þ
S3 k;ωð Þ ¼ −D ið Þ

21 k;ωð ÞD ið Þ
32 k;ωð Þγ2κ2κ3memiQ4 k;ωð Þ

S4 k;ωð Þ ¼ D ið Þ
41 k;ωð Þγκ4me −V23 k;ωð Þ þ Q2 k;ωð ÞQ3 k;ωð Þð Þ

ð22Þ

where the functions Qa(k,ω) and Vab(k,ω) depend on the Fourier
transforms Dab

(i)(k,ω) and Daa
(e)(k,ω) as follows:

Qa k;ωð Þ ¼ −κa
2 þ γ D ið Þ

aa k;ωð Þ þ D eð Þ
aa k;ωð Þ

� �
κama þ 2iκaω þω2

Vab k;ωð Þ ¼ D ið Þ
ab k;ωð ÞD ið Þ

ba k;ωð Þγ2κaκbmamb

ð23Þ

These expressions may look complicated but can be obtained in a
fairly straightforward way from Eq. (19). In summary, the predicted
spectral response at the sensor is given by:

g ω; θð Þ ¼ ∑
k

e−2π2φ2k2κ1me∑aq̃aSa k;ωð ÞR−1 k;ωð Þ
��� ���2gu k;ωð Þ ð24Þ

Eq. (24) reflects the fact that the predicted spectral responses of
the system are coupled to its spatial as well as its temporal properties;
these properties are encoded in the transfer functions Sa(k,ω) and
R(k,ω) through the underlying connectivity functions Dab(k,ω). In
turn, these are specified by the synaptic parameters associated with
the canonical microcircuit θ⊂{mi,me,κi,κe,r,η} and the spatial parame-
ters θ⊂{aab,cab,ha,υab} that encode intrinsic and extrinsic connections
among different layers and neighbouring columns or points on the
cortical manifold.



Table 1
Prior expectations of model parameters (The spatial parameters assume the cortical
patch has a diameter of 25 mm).

Parameter Physiological interpretation Prior mean

me, mi Maximum postsynaptic
depolarisation

8, 32 (mV) a

κ1, κ2, κ3, κ4 Postsynaptic rate constants 1/2, 1/2, 1/16, 1/28 (ms−1) a

a22, a33, a41
a12, a44, a23, a32
a11, a14, a21

Amplitude of intrinsic
connectivity kernels

3200
800,800,1600,1600
9600,4000,4800

cab Spatial decay of connectivity
kernels 0:6 a≠b

2 a ¼ b

	
(mm−1) b

ha Separation between columns 4.5 (mm)b

r, η Parameters of the postsynaptic
firing rate function

0.54, 0a

υ Inverse conduction speed 0.6 s/mb

ϕ Dispersion of the lead field
ffiffiffi
2

p
=20

q̃1; q̃2; q̃3; q̃4 Relative layer contributions 10, 0,10,80

a Wendling et al., 2000.
b Kandel et al., 2000.

569D.A. Pinotsis et al. / NeuroImage 66 (2013) 563–576
To complete our specification of a generative model, we assume
that the observed cross-spectra gy are a mixture of predicted spectra,
channel and Gaussian observation noise

gy ωð Þ ¼ g ω; θð Þ þ gn ω; θð Þ þ ε

gu ω; θð Þ ¼ αu þ
βu

ω

gn ω; θð Þ ¼ αn þ
βn

ω
;

Re εð ÞeN 0;Σ ω;λð Þð Þ
Im εð ÞeN 0;Σ ω;λð Þð Þ

ð25Þ

The spectra of the neuronal fluctuations or input gu(ω,θ) are as-
sumed to be spatially white; namely, they do not depend on spatial
frequency. However both input and noise spectra are modelled as a
mixture of white and coloured fluctuations over time. In completing
the model, we have introduced extra free parameters θ⊂{αn,αu,βn,βu}
controlling the spectra of the inputs and channel noise. Eq. (30) pro-
vides the basis for our generative model and entails free parameters
controlling the spectra of the inputs and channel noise as well as
the amplitude of observation error. Gaussian assumptions about the
observation error mean that we have a probabilistic mapping from
all unknown (free) parameters to observed (spectral) data features.
Inversion of this model means estimating, probabilistically, the free
parameters given data.
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Fig. 4. Observed MEG spectra from a selection of subjects with different V1 surface
area. Schwarzkopf et al., 2012 found a strong positive correlation between gamma
peak frequency (marked with arrows) and V1 surface area. We used a biophysical
model to investigate whether individual differences in macroscopic gamma frequency
may reflect inter-individual variability in the architecture of visual cortex.
Model inversion and fitting

Having prescribed the generative model of our DCM, we can now
turn to its optimisation via Bayesian techniques. Almost universally,
the fitting or inversion of Dynamic Causal Models optimises variational
free-energy. Variational free-energy serves as a bound approximation
to the log-evidence ln p(gy|M) for a model M. This optimisation is car-
ried out with respect to a variational density q(θ) on the unknown
model parameters. By construction, the free-energy bound ensures
that when the variational density maximises free-energy, it approxi-
mates the true posterior density over parameters, q(θ)≈p(θ|gy, M).
At the same time, the free-energy approximates the log-evidence
(log-marginal likelihood of the data). The (approximate) conditional
density and (approximate) log-evidence are used for inference on
parameters and models respectively. In other words, one first
compares different models (e.g., with and without particular connec-
tions) using their log-evidence and then turns to inferences on param-
eters, under the model selected. One usually assumes the conditional
density has a Gaussian form q θð Þ ¼ N μ;Cð Þ. This is known as the
Laplace assumption. The conditional density is summarised by the
most likely value of the parameters, μ and their conditional covariance
C that encodes uncertainty about the estimates and their conditional
dependencies. A full description of the resulting Variational Laplace
scheme can be found in Friston et al. (2007).

The underlying generative model generally admits a unique solution
during model inversion; this follows from the use of biophysically plau-
sible priors over the biophysical parameters. Table 1 describes the priors
over synaptic parameters (that are also used in the classical Jansen and
Rit model) as well as parameters pertaining to the spatial structure of
cortical sources. These priors are based on the modelling literature.
Others come from the experimental literature; e.g. the prior for the
conduction velocity is assumed to be 1.5 m/s (Kandel et al., 2000;
Steriade et al., 1997). In general, priors are chosen to restrict parameter
estimates in a physiologically meaningful range. However, it should be
noted that the precise values of the priors are not important: the inver-
sion scheme has the latitude to accommodate deviations from these
values to optimise model evidence.
Results — an empirical illustration and validation

In previous work (Schwarzkopf et al., 2012), we recorded visually
induced gamma oscillations in a group of healthy human subjects
using magnetoencephalography (MEG) and used functional magnetic
resonance imaging (fMRI) to measure the surface area of central
primary visual cortex (V1) with standard retinotopic mapping
techniques (Dale et al., 1999; Sereno et al., 1995). We showed that
the retinotopically defined surface areas of central V1 and V2 are
correlated with the peak frequency of visually induced oscillations
in the MEG gamma band. This led to the proposal that individual dif-
ferences in macroscopic gamma frequency may be attributed to
inter-individual variability in the microscopic architecture of visual
cortex (Schwarzkopf et al., 2012). In this section, we use the neural
field model of the previous section to address this proposal.

Empirical data and validation

Here, we usedMEG data and beamforming to summarise the spectral
expression of endogenous activity in the visual cortex of 16 subjects, see
Fig. 4 and Schwarzkopf et al. (2012). Each participant was stimulated in
both left and right visual fields — so we characterised separate sources
in right and left hemispheres, resulting in 32 data sets. Subjects were
seated in a MEG system and viewed the stimulus on a projection screen
in front of them. During the entire recording run, they were required to
maintain fixation on a small red dot in the centre of the screen. The
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stimulus was a static, high-contrast, square-wave, vertical grating, which
measured 4°×4° of visual angle and had a spatial frequency of 3 cycles
per degree. The grating was presented on a mean luminance uniform
gray background in the lower visual field, such that the corner closest to
the centre of gaze was horizontally and vertically displaced from the fix-
ation spot by 0.5°. Therewere 180 trials; on half the gratingwas shown in
the lower right quadrant; on the other half, it was shown in the lower left.
We recordedMEGdata using awhole-head CTF axial gradiometer system
with 275 channels, sampled at 600 Hz. Three electrical coils were placed
at fiducial locations and used to monitor subject head movement.
Data were analysed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm).
Recordings were divided into epochs from 1.5 s before stimulus onset
until 1.5 s after stimulus onset (i.e., the earliest time for stimulus offset
that preceded the participant's behavioural response). Employing a
beamforming approach, we estimated induced MEG responses to a
visual stimulus in a virtual electrode placed in the medial occipital
cortex, in a location consistent with primary visual cortex. We used an
LCMV beamformer algorithm (Van Veen et al., 1997) implemented in
SPM8 to quantify source power in the time window between 0.5 and
1.5 s after stimulus onset relative to baseline power over one second pre-
ceding stimulus onset. Source orientation at each voxel was determined
using the method of Sekihara et al. (2004). We located peak gamma
activity in the medial occipital cortex, and at this peak location we used
the beamformerweights to extract the time series of the virtual electrode.
Power spectra for frequencies between 30 and 80 Hz during the stimu-
lation and the baseline were calculated using a multitaper spectral
estimate (Thomson, 1982) using seven discrete prolate spheroidal
sequences as data tapers. To summarise the peak gamma frequency —

and the amplitude and bandwidth of the gamma response —we fitted a
Gaussian function to the percentage power change in each frequency
bin. A full description of the paradigm, recording and processing can be
found in Schwarzkopf et al. (2012).

We modelled these spectral data— using DCM— to address the fol-
lowing questions: (i) Are neural masses or fields more appropriate for
explaining these data? (ii) Can differences in the width of cortical col-
umns explain the intersubject differences in gamma frequency?
(iii) How does cortical excitability relate to the peak gamma frequen-
cy? And (iv) what are the important determinants of spectral gamma
activity? The first question illustrates the use of Bayesian model com-
parison to compare DCMs based on neural fields and neural masses.
We will see below that— for the MEG data and generative models con-
sidered here — the evidence for neural field models is relatively weak,
which itself is interesting in relation to previous results. However, our
primary aim was to show how DCM can answer anatomical questions
about brain topography and architecture; by appealing to neural field
models that embody plausible assumptions about source deployment
and microcircuitry. We illustrate this point using subject-specific
estimates of intrinsic connections from DCM and establish their predic-
tive validity in terms of their ability to predict inter-subject varia-
tions in the size of V1 and gamma activity. We consider that the
visual cortex is tiled with (overlapping) macrocolumns and assume
that the major influences on each macrocolumn come from its nearest
neighbours. We also assume rotational symmetry so that the spatial
organisation of macro columns can be modelled by the field model
described in the previous section (see Figs. 2 and 3). These connections
are characterised by parameters describing local synaptic arbours
(like the strength aab and extent 1/cab of intralaminar connections)
and the range of horizontal connections (ha). Our objective was to pro-
vide a mechanistic link between observed cross-spectral densities and
local microstructure: we used the spatial decay rate of horizontal
interlaminar connections cab as an estimate of column width.

Neural masses or fields?

Clearly, the choice of an appropriate model depends upon the ques-
tion of interest; in particular, neural fields are appropriate for
addressing questions about the deployment of sources on the cortical
surface and induced spatial dynamics. However, neural field models
might still be more appropriate from a Bayesian perspective, even if
the spatial parameters of a neuronal model are not the focus of
study: In the context of our Bayesian scheme, each model is scored
using a free energy bound on model-evidence, where better models
have a higher free energy (assuming free energy is a good approxima-
tion to model evidence). The model with the highest evidence implies
the model has an optimal balance between accuracy and complexity —

in the sense that the model provides an accurate explanation for the
data in the simplest way. In our earlier work, we showed that Bayesian
model selection can distinguish between neural mass and field variants
of the same microcircuitry; where — for LFP data from the rat auditory
cortex — the neural field variant had more evidence. This could be
explained by the fact that neural field models provide an augmented
repertoire of predictions for dynamics resulting from the propagation
of activity on the cortical surface. In short, our earlier model compari-
sons showed that the neural field model yields a better fit to the LFP
data — while accounting for the complexity cost due to its extra free
parameters.

Here, we performed a similar analysis, by computing the relative
log-evidence (using the free energy approximation) for the canonical
microcircuit model, comparing field and mass variants at the group
level. Synaptic (κ1, me, aab) spatial (υ, cab) and sigmoid (r, η) param-
eters were optimised, while the remaining parameters in Table 1 in-
cluding the horizontal distance ha were fixed to physiologically
plausible values. As with our previous model comparison, the neural
mass model was formulated as a special (and limiting) case of the
neural field model by shrinking the propagation delays (conduction
times) times to zero. See Fig. 5 for an example of a model fit to a
single subject's response, using the neural field and mass variants.
Contrary to our earlier result, we found inconsistent evidence in
favour of the neural mass model (the log-evidence for the neural
mass model was on average 2.37 greater than that of the field
model): see Fig. 6 (top panel). In relation to our previousmodel com-
parisons, this result highlights the fact that the best model depends
upon the data analysed. It also underlines the importance of com-
bining a neuronal model with a spatial forward model: although
both auditory and visual cortices are thought to conform to the
local homogeneity constraints implicit in neural field models, the
loss of spatial frequency resolution — with non-invasive data —

might render neural field models unnecessary, in relation to neural
mass models. In brief, model evidence depends crucially upon both
the chosen models and the particular dataset used for their com-
parison. Our failure to establish a greater evidence for neural field
models, in the present model comparison, is intuitively sensible
because non-invasive MEG data have much lower spatial resolution
than the LFP data we used in the previous model comparison. This
observation speaks to the potential importance of using spatially
resolved data to take full advantage of neural field models: data
with high signal to noise ratio and wide brain coverage — such as
those afforded by ECoG sensors or multi-array grids — can, in princi-
ple, disclose a full spectrum of spatiotemporal dynamics at different
scales. This may be important for an informed (efficient) estimate of
spatial parameters in neural field models. We will illustrate this
point further in future work.

To assess conditional dependencies among parameter estimates,
we computed the mean of posterior correlation matrices across all
subjects, see Fig. 6 (right) and considered a correlation between a
particular pair of parameters (one spatial and one neuronal —

bottom left): the key thing to notice here are the relatively weak
correlations between posterior estimates of columnar width and
a23 (the strength of connections from deep pyramidal cells to inhib-
itory interneurons). We will focus on this connection later when
assessing the importance of spatial and synaptic parameters in
predicting peak gamma frequency.

http://www.fil.ion.ucl.ac.uk/spm
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Fig. 5. Example of DCM fits for a single participant. Real data (dashed line) and model predictions (full line) for spectra in the gamma band obtained from the human visual cortex
during visual stimulation (Schwarzkopf et al., 2012). We observe that the fits of both the field and mass models are equally good with no manifest differences.
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Finally, we characterised the variations in spectral profile pro-
duced by changes in these two parameters about their posterior esti-
mates. Our aim here was not to provide a systematic characterisation
of the neural field model; for this we refer the reader to earlier work
(Nunez, 1995; Robinson et al., 2001, 2003, 2004; Valdes et al., 1999).
We just wanted to provide a demonstration of the complicated but
smooth contribution to spectral responses made by various parame-
ters. It is this contribution that enables us to obtain informed
estimates of underlying microcircuitry. Note that increasing both
the spatial and neuronal parameters increases peak gamma frequen-
cy. In other words, increasing the spatial extent of local horizontal
connections and increasing the excitatory drive to inhibitory inter-
neurons increases peak gamma frequency. However, these parame-
ters show (weak) negative conditional correlations. This means it is
an open question as to which parameter is best able to account for
changes in peak gamma frequency over subjects.
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Fig. 6. (Top panel) Bar chart of relative log evidence for neural mass and field models over su
considered insufficient for disambiguating between models: only a relative evidence of thre
tion for the data. Note that in 6 out of 16 individuals evidence in favour of the mass mode
between columnar width and the connection strength between deep pyramidal cells and
subjects of the posterior cross–correlation matrices for all parameters in our neural field m
Can individual differences in peak gamma frequency be attributed to
wider columns?

Our conventional analyses (Schwarzkopf et al., 2012), showed a
strong positive correlation between gamma peak frequency and V1
surface area. This implies that individual differences in V1 area
might reflect differences in cortical architecture. A larger cortex
could either comprise a similar number of wider columns or simply
contain a greater number of columns of constant width, which
would be consistent with the explanation offered by the model of
Prothero, (1997). Anatomical evidence suggests that the micro-
architecture of V1 in humans resembles a scaled version of macaque
V1, implying that column width increases with V1 size across
species (Adams et al., 2007). However, across individuals of the
same species both the width and number of columns can be highly
variable (Horton and Hocking, 1996). Crucially, we can resolve this
-0.5

0

0.5

1

1/ke me α 11 α 14 α 12 α 22 α 21 α 23α 33α 41α 32 α 44v 1/cab

bjects. The average relative log evidence was 2.37 in favour of the mass models, which is
e (dashed line) constitutes strong evidence a particular model offers a better explana-
l was greater than three. (Bottom panel) Left: Bar chart of posterior cross-correlations
inhibitory interneurons. The average cross-correlation was −0.176. Right: Mean over
odel.
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issue directly given the parameterisation of the intrinsic connectivi-
ty within the neural field model. In our model, the width of a
macrocolumn, corresponds to the dispersion of horizontal synaptic
connections 1/cab.

We found a correlation between columnar width and peak gamma
frequency that reached trend significance (see top panel of Fig. 8).
Given our previous empirical finding (that peak gamma frequency
and V1 surface area are positively correlated) we considered a
one-tailed test and found Pearson r=0.271, p=0.06, (d.f. 30). This
correlation implies that variability in the observed spectral responses
in the gamma range can be attributed to individual differences in co-
lumnar width. This finding is more than simply noting that increasing
the size of a column increases peak gamma frequency under the neu-
ral field model (see Fig. 7). This is because all the other free parame-
ters of the model were optimised in a subject-specific fashion. In
short, the hypothesis that intersubject variations in columnar width
are associated with peak gamma frequencies was confirmed thereby
providing a microscopic explanation for the correlation between
peak gamma frequency and macroscopic (retinotopic) measurements
of visual cortex anatomy — an explanation based purely on non-
invasive MEG data.

We also found a significant positive correlation between columnar
width and V1 size as measured with retinotopic mapping (see bottom
panel of Fig. 8, where Pearson r=0.36, p=0.02, 30 d.f., — one-tailed
test). This suggests that subjects with a larger V1 have wider as opposed
to more macrocolumns. The results in Fig. 8 are consistent with our
previous empirical finding of a significant correlation between observed
gamma peak and size of the visual cortex (Schwarzkopf et al., 2012);
however, the mediation of this correlation can now be associated with
the organisation underlying cortical circuitry. This highlights the use of
a generative (mechanistic model) to characterise cortical microstructure
that would otherwise be hard or impossible to disclose.
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Fig. 7. Contribution analysis of particular parameters. This figure shows changes in
spectral responses elicited by varying the lateral extent of intrinsic connectivity and
the strength of intrinsic connections between interneurons and deep pyramidal cells
(over a log-scaling range).
Is gamma activity related to GABAergic connections?

We next considered the relation of individual differences in
GABA concentration and peak gamma frequency (Gaetz et al., 2011;
Muthukumaraswamy et al., 2009,2010) in terms of parameters de-
scribing synaptic transmission: Muthukumaraswamy and colleagues
showed that individual differences in gamma oscillation frequency
are positively correlated with resting GABA concentration in visual cor-
tex — as measured with magnetic resonance spectroscopy. Further-
more, they showed that fMRI responses are inversely correlated with
resting GABA and that gamma oscillation frequency is strongly inverse-
ly correlated with the magnitude of the BOLD response. These results
were taken to suggest that the excitation/inhibition balance in visual
cortex is reflected in peak gamma frequencies at rest. We address
this hypothesis by looking for correlations involving the connections
to inhibitory interneurons. We found that posterior estimates of the ex-
citatory connections between deep pyramidal cells and inhibitory in-
terneurons correlated negatively with gamma peak using both the
neural field model (Pearson r=−0.37, p=0.02, 30 d.f, two-tailed
test) and the neural mass model (Pearson r=−0.36, p=0.04, 30 d.f,
two-tailed test), see Fig. 9. This confirms the hypothesis that inter-
subject variation in inhibitory drive in visual cortex is associated with
characteristic changes in the peak frequency of gamma oscillations —

and provides a mechanistic link from a synaptic level description to
spectral behaviour that can be measured noninvasively. In summary,
significant correlations were found between a23 and peak gamma
frequency and columnar width and V1 size. Also, trend significance
was observed for gamma peak to width correlations.

What are the important determinants of gamma peak frequency?

Previous studies suggested two possible causes for the inter-subject
variability in gamma peak frequency. Muthukumaraswamy et al.
(2009) suggested that peak gamma frequency is determined by the
level of inhibition in V1 as described by resting GABA concentration
measured with MR spectroscopy. In our previous study (Schwarzkopf
et al., 2012), we found a correlation between V1 size and peak gamma
frequency and suggested that the size of V1 and associated differences
in microanatomy could be true determinants of peak gamma frequency.
This suggests that both GABA concentration and V1 size can influence
gamma frequency; however they these factors may or may not be
causally linked.

Biophysical parameters estimated using DCMprovide an opportuni-
ty to investigate alternative explanations of phenotypic differences, like
gamma peak frequency: our contribution analysis above (Fig. 7) shows
that the excitatory drive to inhibitory neurons (a23) and macrocolumn
width could mediate differences in peak gamma frequency. We there-
fore looked at the correlations over subjects between peak gamma
frequency (f), V1 surface area and the posterior estimates of these
parameters. These correlations are summarised in Table 2:

Interestingly, the partial correlation between a23 and gamma peak
remained significant when controlling for V1 size and width 1/cab
(r=−0.332, p=0.037). This suggests that the correlation between
gamma peak and V1 inhibition cannot be accounted for completely
by the spatial parameters (at the microscopic or macroscopic level).
To elucidate the relationship between key model parameters and
the phenotypes of V1 size and peak gamma frequency, we used Struc-
tural Equation Modelling (SEM) as implemented in SPSS Amos soft-
ware (IBM). Each candidate model corresponded to a particular
hypothesis about the causal relationships between peak gamma
frequency and other variables. The Akaike Information Criterion
(AIC) was used to compare models, while accounting for differences
in model complexity.

Fig. 10 shows models tested and the associated AIC values. To sim-
plify the model space, we assumed that V1 size is determined genet-
ically (or epigenetically) and is not influenced by peak gamma
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Fig. 8. (Top panel): We found a correlation between the log scaling of the posterior estimate of columnar width and peak gamma frequency (Pearson r=0.271, p=0.06, 30 d.f.,
one-tailed test). This suggests that increases in peak gamma frequency across subjects can be attributed to a greater columnar width. (Bottom panel) Correlation between the
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our use of an underlying generative (mechanistic) model, offers insight into local cortical microstructure that would be hard (or impossible) to disclose otherwise. Confidence in-
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frequency or microscopic parameters. Furthermore, we assumed that
the peak gamma frequency is determined by the microscopic or
macroscopic anatomy. Although one could argue that these are
assumptions are too simplistic — given the circular causality implied
by experienced dependent plasticity — they are sufficient for our
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illustrative purposes. The key question here is whether peak gamma
frequency is determined by (macroscopic on microscopic) spatial
parameters, connectivity parameters or both.

It can be seen immediately from Fig. 10 that models without the
a23→ f link (the top row) all have lower evidence (higher AIC) than
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lls and inhibitory interneurons for the neural field (Pearson r=−0.37, p=0.02, 30 d.f.,
test). Confidence intervals are plotted as dotted lines.



Table 2
Correlations between keymodel parameters, V1 size and peak gamma frequency (N=32).

Width V1 size a23 f

Width Pearson correlation
Significance

1

V1 size Pearson correlation
Significance

.364

.02
1

a23 Pearson correlation
Significance

− .32
.037

− .099
.295

1

f Pearson correlation
Significance

.271

.06
.286
.056

− .379
.016

1

Table 3
Predicted and observed correlations (in parentheses) obtained by Structural Equation
Modelling.

V1 size Width a23 f

V1 size
Width .36 (.36)
a23 − .12 (− .1) − .32 (− .32)
f .29 (.29) .2 (.27) − .38 (− .38)
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models in which peak gamma frequency depends upon the drive to
inhibitory cells. This is consistent with the significant partial correla-
tions we found between a23 and f above. The best model (Model 8)
captured the correlation structure between the variables very well,
as can be seen from Table 3 showing the predicted and observed cor-
relations (in parentheses).

In this model, the correlation between V1 size and peak gamma fre-
quency is mediated by a direct path (reflecting the influences of V1 size
on peak gamma frequency that can be attributed to variables not con-
sidered in these models) and an indirect path through columnar width
and excitatory connections. In other words, peak gamma frequency is
mediated proximately by excitatory drive to inhibitory (GABAergic)
interneurons and the strength of this drive is determined, in part, by
the size of macrocolumns. In turn, the size of the macro columns is
V1
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Fig. 10. Model space for structural equation modelling. In the winning model — model 8 —

involving posterior estimates of columnar width and connection strength.
constrained by the macroscopic (retinotopic) size of V1. This structural
equation modelling suggests a causal link between wider macro-
columns and an increase in inhibitory drive — a hypothesis which we
will come back to in the discussion.
Discussion and conclusions

By exploiting a combination of neural field modelling and Bayesian
inference, we have shown that dynamic causal modelling can answer
the following sorts of questions: which is the best biophysical model
for explaining electrophysiological data? What are the important
determinants of gamma peak frequency— in terms of synaptic param-
eters and horizontal interactions? Can MEG beamformed data help us
access local cortical microstructure? And how can we distinguish
between competing hypotheses about structure-function relation-
ships? We have focused on two classes of biophysical models of brain
f

V1
size

1/cab f

f

V1
size
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f

V1
size
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the correlation between V1 size and peak gamma frequency is mediated by three links
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activity; so-called neural field and mass models and have considered
their application to modelling empirical MEG data. Bayesian model
comparison — using a variational free energy approximation to model
evidence — suggests neural field models provide a better explanation
of empirical data if, and only if, there is sufficient spatial frequency in-
formation in the data. In other words, we found greater evidence for
neural field models in previous analyses of LFP data but failed to find
more evidence for neural field models, relative to neural mass models,
in the current study of MEG (virtual electrode) data. The key distinc-
tion between these different modalities is that the LFP data is sensitive
to a wide range of spatial frequencies and the temporal fluctuations
that these frequencies contain. In contrast, the lead fields inherent
in non-invasive electromagnetic recordings are necessarily broader
and suppress temporal dynamics that are expressed in high spatial
frequencies.

However, the use of neural field models may be necessary when
testing hypotheses that are framed in terms of the spatial parameters
of neural fields— like lateral or horizontal connections: we illustrated
this using a neural field DCM to explain inter-subject variations in
spectral activity in terms of synaptic and connectivity parameters.
We showed that the posterior estimates of cortical anatomy— in par-
ticular columnar width — are associated with the spectral peak in the
gamma range. Indeed, the estimates of column width made from a
single time-series estimate in the foveal portion of V1 correlates
directly with size of V1 as estimate from retinotopic mapping. This
constitutes a compelling illustration of how non-invasive data can
provide quantitative estimates of the spatial properties of neural
sources and explain systematic variations in the dynamics those
sources generate. We also found correlations, over subjects, between
the peak gamma frequency and cortical inhibition as parameterised
by the excitatory drive to inhibitory cell populations. This correlation
was motivated by previous studies looking at the three way relation-
ship between resting GABA concentrations in visual cortex, character-
istic gamma activity and excitability — as measured with evoked
responses using fMRI (Muthukumaraswamy et al., 2009).

Implications for visual perception

While visually induced gamma oscillations have received increasing
attention and appear to play a role in visual perception (Herrmann et
al., 2010), it remains unclear what determines the spectral properties
of an individual's gamma response, and how it relates to underlying
visual cortex microcircuitry. Characterising individual differences in
cortical micro-architecture may have important implications for
research on visual processing. A few studies have claimed to directly
visualise columnar architecture in human visual cortex (Goodyear
and Menon, 2001; Goodyear et al., 2002; Yacoub et al., 2008). These
studies rely on ultra-high field fMRI and are technically challenging
and therefore not available for widespread use. Furthermore, while
the spatial resolution of these experiments may be sufficient to identify
cortical columns it may be unable to reliably resolve individual differ-
ences in the column width. This limits such investigations to invasive
optical imaging of intrinsic signals or voltage-sensitive dyes in animal
models; yet typically animal studies do not focus on individual differ-
ences across large groups. A reliable biomarker of columnar architec-
ture — readily measurable with non-invasive techniques — may
therefore be very useful for investigating individual differences in cor-
tical micro-architecture in human subjects.

Previous research shows that macroscopic measures of V1 size
predict visual perceptual ability such as Vernier discrimination
(Duncan and Boynton, 2003). We recently showed that the size of
V1 is negatively correlated with the strength of visual illusions,
where the conscious perception of a visual stimulus is modified by
the spatial context in which it is presented (Schwarzkopf et al.,
2011a, 2011b). We interpreted these results as evidence that local
contextual interactions in V1 are weaker in individuals with a large
V1 area — because they have to be transmitted laterally over greater
distances. Furthermore, the size of population receptive fields (pRF)
— which reflect a combination of the size and positional scatter of
the receptive fields of single neurons — as well as the extent of con-
textual interactions beyond the classical receptive field — are smaller
in subjects with a large V1 (Harvey and Dumoulin, 2011). This implies
a greater tendency to favour local processing in a large V1. Consistent
with this, orientation discrimination is also superior in individuals
with a large V1 (Schwarzkopf et al., 2011a). Our results imply that
better orientation discrimination could be explained by both wider
cortical columns and stronger lateral inhibition. This hypothesis is
also supported by the empirical work of (Edden et al., 2009) who
found that GABA concentration correlates with both gamma peak fre-
quency and orientation discrimination ability; we will focus on this
issue in future work.

In summary, individuals with larger retinotopic visual cortices
might have weaker contextual interactions and more extended spa-
tial processing. Both these findings are consistent with a greater dis-
persion of horizontal connections, inferred on the basis of our DCM
results. Interestingly, gamma oscillation frequency is also correlated
with orientation discrimination ability, which suggests that orienta-
tion discrimination, V1 size, pRF size, GABA concentration and
gamma oscillations are all inter-related. We hope to have shown
how Dynamic Causal Modelling with neural fields may provide a
quantitative and mechanistic approach to such correlations among
cortical structure and function.
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