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The aim of this paper is twofold: first, to introduce a neural field model motivated by a well-known neural mass
model; second, to showhow one can estimatemodel parameters pertaining to spatial (anatomical) properties of
neuronal sources based on EEG or LFP spectra using Bayesian inference. Specifically, we consider neural field
models of cortical activity as generative models in the context of dynamic causal modeling (DCM). This paper
considers the simplest case of a single cortical sourcemodeled by the spatiotemporal dynamics of hidden neuro-
nal states on a bounded cortical surface ormanifold.We build thismodel usingmultiple layers, corresponding to
cortical lamina in the real cortical manifold. These layers correspond to the populations considered in classical
(Jansen and Rit) neural mass models. This allows us to formulate a neural field model that can be reduced to a
neural mass model using appropriate constraints on its spatial parameters. In turn, this enables one to compare
and contrast the predicted responses from equivalent neural field andmassmodels respectively.We pursue this
using empirical LFP data from a single electrode to show that the parameters controlling the spatial dynamics of
cortical activity can be recovered, using DCM, even in the absence of explicit spatial information in observed data.
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Introduction

This paper is about estimating the spatiotemporal dynamics on corti-
cal manifolds that produce electrophysiological measurements. Its focus
is on recovering estimates of the underlying neuronal connectivity that
shapes the spatial scale of neuronal fluctuations subtending observed
data. In particular, we are interested in how changes in lateral or hori-
zontal connections might be expressed in the time domain, in terms of
spectral responses. There have been rapid advances in our ability to ob-
serve the spatiotemporal organization of cortical activity at amesoscopic
scale: modern two-dimensional multi-electrode arrays allow for the si-
multaneous recording of extracellular activity from a large number of
neurons. These arrays yield important information about pairwise and
higher order correlations, and have been used to study neural activity
in visual (Kelly et al., 2007) and motor cortex (Hochberg et al., 2006).
Similar samples of distributed neuronal activity have been obtained
with silicon probes (Buzsaki and Kandel, 1998). Voltage-sensitive optical
imaging also offers spatially resolved in vivomeasurements of distributed
neural activity over large areas of the cortex (Arieli et al., 1995; Zepeda
et al., 2004). Finally, optical imaging has been used in conjunction with
electrophysiological recordings to address the spatiotemporal organiza-
tion of cortical activity; such as thenature of the coupling between thefir-
ing of individual neurons and population dynamics.
Both high density electrophysiological recordings and voltage-
sensitive optical imaging furnish data with high spatial resolution;
however, the spatial features of the data are not always fully
exploited. For example, multi-electrode arrays are often used to iso-
late the action potentials of single neurons to focus on relevant
spike rates. In this paper, we consider observation or generative
models that include the spatial features of cortical dynamics that un-
derlie observed signals. Furthermore, we demonstrate that the spatial
aspects of cortical activity can be manifest, and therefore estimated
from, temporal responses that are not spatially resolved; for example,
spectra measured with a single electrode: this recovery of spatial pa-
rameters from purely temporal information has been established by
Robinson and colleagues (Robinson et al., 2004; van Albada et al.,
2007, 2010). This ill-posed inverse problem is here finessed with
the use of informed generative models of the sort used in dynamic
causal modeling. For simplicity, we restrict this paper to the analysis
of a single cortical source or local manifold. In future papers, we will
generalize the neural field model described here to provide a dynamic
causal model of multiple, distributed cortical sources that are coupled
via extrinsic connections.

Dynamic Causal Modeling (DCM) allows for the comparison and es-
timation of biophysically plausible models of fMRI, EEG, MEG and LFP
data (David et al., 2006; Friston et al., 2003; Penny et al., 2010). DCM
calls on an underlying generative model to predict important features
of observed data. To date, DCMs for electrophysiological data have
been based largely on neural mass models, which use point sources
(e.g., equivalent current dipoles) and preclude spatially extended dy-
namics. This means the spatiotemporal aspects of cortical activity are
not modeled explicitly. Here, we try to extend the DCM approach to

http://dx.doi.org/10.1016/j.neuroimage.2011.08.020
mailto:d.pinotsis@fil.ion.ucl.ac.uk
http://dx.doi.org/10.1016/j.neuroimage.2011.08.020
http://www.sciencedirect.com/science/journal/10538119


1262 D.A. Pinotsis et al. / NeuroImage 59 (2012) 1261–1274
endow the underlying model with spatial structure of the sort seen in
real cortical architectures. This entails the use of neural fields as gener-
ative models of cortical activity.

Neural mass and field models

Neural mass models are a particular case of neural fields, where
the states of populations of neurons are functions of time only. Such
models can generate temporal responses from one or several inter-
connected populations and have been used successfully to explain
empirical electrophysiological data from local field potentials (LFP)
and EEG/MEG (see e.g. Kiebel et al., 2009; Lopes da Silva et al.,
1974; Lumer et al., 1997; Liley et al., 1999; Moran et al., 2007; Riera
et al., 2007; Steriade and Deschenes, 1984; Valdes et al., 1999; van
Rotterdam et al., 1982). To date, neural mass models have been
based upon point sources and formulated using ordinary differential
equations (ODEs). A key challenge in this area is to model observed
signals as being generated by continuous and spatially distributed
neuronal activity, of the sort observed directly using high density
multi-electrode arrays and optical imaging. Here, we address this
challenge using neural field models.

Neural fields model current fluxes as continuous processes on the
cortical manifold, using partial differential equations (PDEs) (please see
Deco et al., 2008 for a review and also Atay and Hutt, 2006; Breakspear
et al., 2006; Bressloff, 1996,2001; Coombes et al., 2003, 2007; Coombes,
2005; Freeman, 2003,2005; Ghosh et al., 2008a,b; Golomb and Amitai,
1997; Jirsa and Haken, 1996; Jirsa and Kelso, 2000; Jirsa, 2009; Lopes
da Silva and Storm van Leeuwen, 1978; Liley et al., 2002; Nunez,
1995,1996; Nunez and Srinivasan, 2006; O'Connor and Robinson, 2005;
Qubbaj and Jirsa, 2009; Robinson et al., 2001, 2002, 2003, 2004, 2005;
Robinson, 2006; Rennie et al., 2000; Roberts and Robinson, 2008; Rowe
et al., 2004). The key advance that neuralfieldmodels offer, over conven-
tional neural mass models, is that they embody spatial parameters (like
the density and extent of lateral connections). This means, in principle,
one can infer the spatial parameters of cortical infrastructures generating
electrophysiological signals (and infer changes in those parameters over
different levels of an experimental factor) from empirical data. This rests
onmodeling responses not just in time but also over space. Clearly, to ex-
ploit this sort of model, one needs to measure the temporal dynamics of
observed cortical responses over different spatial scales; for example,
with high-density recordings, at the epidural or intracortical level. How-
ever, as we will see later, the impact of spatially extensive dynamics is
not restricted to expression over spacebut can also have profound effects
on temporal (e.g., spectral) responses at one point (or averaged locally
over the cortical surface). This means that neural field models may also
have a key role in the modeling of non-invasive electrophysiological
data that does not resolve spatial activity directly.

Neural field models and steady-state responses

Steady-state (or ongoing) activity spectra, associated with neural
fields, have been studied in the context of models of the whole cortex;
e.g.(Jirsa, 2009). Robinson and colleagues (Robinson, 2006) have de-
veloped a neurophysiologically grounded field model of corticothala-
mic activity, which has proven successful in reproducing several
properties of empirical EEG signals; such as the spectral peaks seen
in various sleep states and seizure activity. We pursue this approach
but focus on a local source (patch or manifold, e.g., a cytoarchitectonic
area), as opposed to the global dynamics of the corticothalamic sys-
tem. Technically, the spectra summarizing the response of cortical
sources to ergodic fluctuations can be defined in terms of transfer
functions that depend on spatial and temporal parameters of the un-
derlying cortical dynamics (Freeman, 1972; Nunez, 1995; Robinson,
2003; Robinson et al., 2001). In (Pinotsis and Friston, 2011), we de-
rived the transfer function for a source described by a neural field
equation (under an adiabatic approximation for fast postsynaptic
filtering). Here, we dispense with the adiabatic approximation and
derive the appropriate linear algebra for a cortical source that com-
prises multiple layers. In contrast to our earlier work, this allows us
to consider synaptic processing with time scales that correspond to
fluctuating inputs and propagation effects.

This paper comprises four sections. In the first, we present an over-
view of neuralfieldmodels, starting from the basic principles of dynam-
ical systems. We introduce the underlying concepts, in particular the
role of spatially extended connectivity kernels and their associated
transfer functions. This section then turns to predicted responses
under steady-state assumptions; namely, the predicted cross-spectra
observed among channels. The key idea described in this section is
that one can summarize the mapping from fluctuating inputs (that
can be experimental or spontaneous) to observed responses with a
transfer function. Crucially, this transfer function depends upon the
connectivity kernels encoding lateral neuronal interactions among dif-
ferent cortical layers and associated synaptic dynamics. In the second
section, we turn to a particular example afforded by the Jansen and
Rit (1995) model of a cortical source. We convert this neural mass
model into a neural field model, using the framework established in
the previous section. We illustrate some of the basic properties of this
model before turning to its Bayesian formulation in the context of dy-
namic causal modeling, The third section reviews model inversion
with a special focus on inverting models of complex data features,
such as the complex cross-spectra predicted by the neural field models
of the previous sections. In the final section, we apply themodel to sim-
ulated and empirical LFP data acquired from the auditory cortex of rats.
Our special interest here is in establishing face validity (of the model
and its inversion) and comparing the predictions of neural field and ho-
mologous neural mass models; both in terms of the conditional esti-
mates of the underlying spatial and synaptic parameters; and how
changing these parameters affect the spectra predicted. We conclude
with a discussion of further work using; (i) multiple cortical sources
and (ii) multiple channels that sample a single source.

Neural field models

In this section, we develop the basic formalism for neural field
models that will be used in subsequent sections. We will start with
a simple model that has no spatial attributes and develop this
model into a neural field model. Our starting point is a dynamical for-
mulation of any system with hidden states: a dynamical system is
specified by two equations, namely, the state and observer equations
given (in our case) by

V̇ tð Þ ¼ f V ;U; θð Þ
Y tð Þ ¼ L V ; θð Þ

ð1Þ

where V tð Þ∈R andU tð Þ∈R are vectors of hidden state variables and in-
puts. Here, we use θ to denote the parameters of the model. Dynamical
systems of the kind described by Eq. (1) are used extensively in engi-
neering and applied sciences and are the basis of so-called state space
models (Valdes-Sosa et al., 2009). Such models are used in the analysis
of neuroimaging data, particularly in the context of Dynamic Causal
Modeling (DCM). Many generative models can be cast in the form of
Eq. (1) and include neural mass models, such as the Jansen and Rit
model (1995).

Neural mass models prescribe an appropriate vector-valued func-
tion f describing the dynamics (flow) of hidden neuronal states,
V tð Þ∈R. For example, in event-related potential (ERP) studies, these
states correspond to the average depolarization of neuronal popula-
tions; e.g., pyramidal neurons. The term ‘hidden’ follows from the fact
that neuronal states are not measured directly but are inferred from
the observed responses in sensor space: the hidden states are mapped
to sensor space through a spatial forward model (usually involving a



1 The existence of a steady-state follows from the theory of integral equations. A lin-
ear stability analysis can be carried out following the pioneering work of Wilson and
Cowan, 1973 (see also Coombes, 2005; Jirsa, 2009; Pinotsis and Friston, 2011) who
considered the neural field equation as a system exhibiting spontaneous pattern
formation.
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lead field) modeled by Y=L(V,θ) where Y(t) denotes observed data. In
EEG and MEG this mapping is usually linear Y=L⋅V and specified with
a gain matrix of lead-fields, L(φ) with unknown spatial parameters,
φ⊂θ, such as source location and orientation. Generally, this matrix
rests upon the solution of a well-posed electromagnetic forward
model. For invasive LFP recordings (that are obtained directly fromneu-
ronal sources) the gain matrix may simply encode electrode-specific
gains.

In Eq. (1), the vector-valued function V tð Þ∈R depends on time
only. In other words, the hidden states appearing in dynamic causal
models are usually only functions of time and do not depend on the
position on the cortical manifold. Although, neural mass models can
describe patterns in sensor space, the spatial attributes of these pat-
terns result from the coupling among states at different points in
source space and not from hidden states that are functions of the
source space itself. This means that neural mass models are not con-
strained by the local topography of lateral synaptic connections, in
particular the local patchy distribution of connections in the brain
that are a hallmark of functional specialization (Zeki, 1990). Function-
al specialization demands that cells with common functional proper-
ties are grouped together. This architectural constraint necessitates
both convergence and divergence of cortical connections, of the sort
that can be modeled with a neural field model. To model these spatial
aspects one needs partial differential or integrodifferential equations
that accommodate lateral interactions and model dynamics that
play out on a spatially extended cortical manifold: see (Deco et al.,
2008), for a review of mean-field, neural mass and field models.

In what follows, we assume that a cortical source can be approxi-
mated by n layers on a homogeneous Euclidean manifold, each point
of which can be determined by some coordinates x and t. In the context
of neural field theory, the n×1 vector V tð Þ∈R pertaining to the hidden
neuronal state of each layer is replaced by V x; tð Þ∈R; namely, a vector
depending on both time and space. The dynamics of cortical sources
now conform to integrodifferential equations, such as the Wilson–
Cowan or Amari equations. Systems of such equations can serve as gen-
erativemodels since they can be cast in the form of Eq. (1). In particular,
assuming synaptic filtering of the first-order (see next section), a sys-
temof neuralfield equations describing n interacting layers can bewrit-
ten in the following general form

V̇ ¼ −BV þ D⊗F∘V þ G∘U
Y ¼ L·V

V ¼
v1 x; tð Þ

⋮
vn x; tð Þ

24 35 ð2Þ

where V(x, t) is a vector of depolarizations and ⊗ denotes a spatiotem-
poral convolution operator

D⊗Q ¼ ∬D x−x′; t−t′ð Þ·Q x′; t′ð Þdx′dt′: ð3Þ

In the above equations, D(x, t) is a n×n smooth (analytic) matrix-
valued connectivity function or kernel, F : Rn→Rn is a nonlinear map-
ping from postsynaptic depolarization to presynaptic firing rates at
each point on the cortical manifold and B is a n×n matrix encoding
average synaptic decay rates. In short, Eq. (2) says that the rate of
change of voltage in each layer comprises three terms; the first is a
simple decay, the second is due to presynaptic inputs from other
parts of the cortical manifold and the final part is due to external in-
puts, where G : Rn→Rn maps the inputs to the motion of hidden
states. It is the second component, involving the convolution with
the connectivity kernel D(x, t) that embodies lateral interactions
over the cortical manifold. In terms of the observer function, the lin-
ear mapping from hidden states to observed signal now becomes a
m×n matrix function of source space L(x,φ) encoding the
contribution of the n hidden states to each of m sensors; such that
the response that the i-th electrode is yi(t)=∫Li(x,φ)⋅V(x, t)dx. This
means that we have to specify the gain matrix as a function of source
space. This will become relevant later when we derive expressions for
predicted responses in sensor or channel space.

In the next section, we will consider particular examples of the
equations above. In general, the integrodifferential nature of Eq. (2)
precludes a full analytical treatment. Therefore, one usually resorts
to suitable approximations to obtain solutions. Solutions of such
equations include spatially and temporally periodic patterns beyond
Turing instabilities; for example, localized regions of activity such as
bumps and travelling waves, see Pinto and Ermentrout (2001),
Coombes (2005), Laing and Troy (2003), Hutt et al. (2003), Atay
and Hutt (2006), Laing and Chow (2001) and Rubin and Troy
(2004). One well-known approach to solving Eq. (2) is to take its Fou-
rier transform. In this context, the spatiotemporal convolution in
Eq. (3) yields partial differential equations (PDEs) in the form of
wave equations; assuming that the Fourier transforms of the connec-
tivity kernels are rational and well-behaved (Jirsa and Haken, 1997).
For notational simplicity, we will retain the same name for variables
in the time and frequency domain and represent the Fourier trans-
form of a function implicitly through its arguments such that D(k,ω)
is the Fourier transform of D(x, t).

Wewill return to Fourier transforms in the examples below; howev-
er, the approach we pursue starts with assuming that the system is at
steady-state1 and is perturbed by some exogenous input or fluctuations.
If the input is stationary (ergodic), then the ensuing activity corresponds
to steady-state activity. If the input is manipulated experimentally (e.g.,
a stimulus), then the solutions to Eq. (2) model induced or evoked re-
sponses about the steady-state solution. In either case, we can obtain
an expression for the transfer function of the system of neural fields de-
fined by Eq. (2) by linearizing around a steady-state. This allows us to
express the system's spectral responses in terms of its key architectural
parameters pertaining to postsynaptic filtering and the local connectiv-
ity patterns entailed byD(x, t). Thismeans one can, in principle, estimate
the temporal and spatial parameters of cortical sources, given observed
spectral responses. We now consider this in a bit more detail.

Spectral formulations

The input U(t) appearing in Eq. (1) can encompass designed ex-
perimental effects; namely, functions that encode experimental ma-
nipulations or context. In DCM for event-related potentials these
inputs are treated as known (or parameterized) functions of time
and estimates of parameters encoding the connectivity among
sources are based upon measuring the response of the system to
these inputs. This approach should be contrasted with other methods,
such as DCM for steady-state responses, structural equation modeling
and multivariate autoregressive modeling, which consider the inputs
as stationary random fluctuations with known (or parameterized) co-
variance. In DCM, connectivity is usually parameterized in terms of
coupling parameters D⊂θ and other physiological parameters, such
as those controlling firing rates and postsynaptic filtering. The cou-
pling parameters or effective connectivity are either intrinsic to each
(point) source or extrinsic (coupling different sources). In the case
of neural field models, the function U(t) is replaced by U(x, t). This
means the input is an explicit function of both space and time. Fur-
thermore, coupling is now parameterized by coupling kernels D(x, t)
that are functions of source space (both within and between sources).
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This means one can infer the spatial parameters of cortical infrastruc-
tures generating electrophysiological signals (and infer changes in
those parameters over different levels of an experimental factor)
from electrophysiological measurements.

We now focus on amathematical description of the effect of external
input or fluctuations driving a cortical source described by Eq. (2). As in
Pinotsis and Friston (2011) (see also Grindrod and Pinotsis, 2011), we
assume that the system is perturbed around a spatially homogeneous
steady-state V0, that satisfies f(V0)=0. In other words, we substitute

V x; tð Þ ¼ V0 þ P x; tð Þ ð4Þ

into Eq. (2) and expand F ∘V around V0 to obtain a first-order expression
for the perturbations P(x, t) around the fixed point

Ṗ ¼ −BP þ D⊗γP þ U

γ ¼ ∂F V0ð Þ=∂V :
ð5Þ

Here, γ is the Jacobian of the nonlinear mapping evaluated at V0

and can be thought of as the gain of some depolarization-firing func-
tion (see below). For simplicity, we have assumed

G∘U ¼ U ¼
u1
⋮
un

24 35: ð6Þ

Here, ui=ui(x, t) : i∈1,…,n are the external inputs to each source.
Taking the Fourier transform of Eq. (5), we obtain

Ṗ þ BP−D⊗γP ¼ U
⇒

iωIn þ B−D k;ωð Þγð Þ·P k;ωð Þ ¼ U k;ωð Þ
ð7Þ

where In is the n×n identity matrix and U(k,ω) is a n×1 vector con-
taining the two dimensional Fourier transforms of the input

Ui k;ωð Þ ¼ ∬Ui x; tð Þe−ikx−iωtdxdt: ð8Þ

The Fourier transforms P(k,ω) and D(k,ω) are n×1 and n×n ma-
trices containing the transforms of the perturbations P(x, t) and
(delay) kernels D(x, t) parameterizing the connectivity between
layers i and j, respectively. Eq. (7) implies that the matrix transfer
function of the system, namely the mapping from inputs to perturba-
tions of the hidden states is given by

T k;ωð Þ ¼ iωIn þ B−D k;ωð Þγð Þ−1
: ð9Þ

This transfer function allows us to express the perturbations in
terms of the inputs, namely

P x; tð Þ ¼ ∬T x−x′; t−t′
� �

U x′; t′
� �

dx′dt′

⇔

P k;ωð Þ ¼ T k;ωð ÞU k;ωð Þ:
ð10Þ

The ensuing cross-spectra can be derived easily from the transfer
function matrix T(k,ω). Crucially, under stationarity assumptions,
the temporal form of the inputs is not required to predict the cross-
spectra of the perturbations to hidden states: all we require is their
cross-spectrum gU(k,ω)=U(k,ω)U*(k,ω), where * denotes the com-
plex conjugatematrix transpose. Also, assuming that the inputs to dif-
ferent sources are independent, namely that ui(k,ω)uj*(k,ω)=0: i≠ j
the cross-spectrum of the inputs is a diagonal matrix with off diagonal
(cross-spectral density) entries of zero. Finally, the complex cross-
spectra, at a spatial frequency k and temporal frequency ω, of pertur-
bations in source and sensor space are given by

gP k;ωð Þ ¼ T k;ωð ÞgU k;ωð ÞT k;ωð Þ�

gY ω; θð Þ ¼ ∫L kð ÞgP k;ωð ÞL� kð Þdk: ð11Þ

Here, L(k)≜L(k,φ) is the (spatial) Fourier transform of the leadfields
that weights the contribution of each (k-th) spatial frequency to the ob-
served spectra. Eq. (11) reflects the fact that the lead fields act as spatial
filters, selectively sampling temporal frequencies that are expressed in
the range of spatial frequencies the lead field can see. An ideal sensor
would be sensitive to all frequencies therefore the integral in Eq. (11)
would weight contributions from all spatial frequencies equally, with
L(k)=1. However, a real sensor will only be sensitive to a certain
range of frequencies. For example, if the lead field has a narrow spatial
support (e.g., LFP electrodes), its Fourier transform will be broad and it
will be sensitive to a wide range of spatial frequencies. Conversely,
when the lead field is broad (e.g., non-invasive MEG sensors), only
low spatial frequencies will contribute to the observed cross-spectra.

Summary

In short, Eq. (11) couples the observed spectral responses of the sys-
tem to its spatial as well as its temporal properties (see e.g. Jirsa, 2009;
Nunez, 1995; Rennie et al., 2000; Robinson, 2006). These properties are
encoded in the transfer function T(k,ω), through the underlying con-
nectivity functions D(k,ω). We now unpack some of this general for-
malism and see how it can be used to model a cortical source
comprising three layers on a bounded manifold. It should be noted
that the three layer source used in this paper is one of many models
to which our approach can be applied: we focus on the Jansen and Rit
model for illustration purposes and because it is a widely used model
that has been biophysically validated.

The Jansen and Rit model

In this section, we provide a brief review of the well-known Jansen
and Rit neural mass model (Jansen and Rit, 1995) and transcribe it into
a neural field model using the equations of the previous section. In the
Jansen and Rit model, each cortical source is modeledwith three subpop-
ulations: excitatory spiny stellate input cells, inhibitory interneurons and
deep excitatory output pyramidal cells (for classical approaches tomodel-
ing such populations with neural fields, see e.g. Amari, 1977; Freeman,
1972; Nunez, 1995; Wilson and Cowan, 1973). For simplicity, in this
paper we consider a single source, noting that extensions to multiple
sources involve adding extrinsic (between-source) connections or ker-
nels (see discussion). The Jansen and Rit model is a particular instance
of Eq. (1). However, the postsynaptic convolution of presynaptic inputs
in the Jansen andRitmodel is second-order. In otherwords, it is described
by a second-order ODE or two first-order ODEs pertaining to voltage and
current. This means that the left hand side of Eq. (1) is augmented with
the second derivative of hidden (depolarization) states to give

V̈ þ 2BV̇ ¼ −B2V þ ABF∘V þ GU

Y ¼ L·V
ð12Þ

where A and B are the 3×3 matrices of synaptic parameters controlling
the maximum postsynaptic responses and the rate-constants of postsyn-
aptic filtering (cf, decay):

A ¼ diag me;mi;með Þ
B ¼ diag κe;κi;κeð Þ

G ¼
κeme
0
0

24 35: ð13Þ
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As aboveF : R→R is a nonlinearmapping fromdepolarization to fir-
ing andU tð Þ∈R is the external input to each population. Note that there
is only one input that enters the first (spiny stellate) population. Based
on a canonicalmicrocircuitry of intrinsic connections, the Jansen and Rit
model prescribes themappingF : R→R in terms of nonlinearfiring rate
functions of the depolarization in the three populations. Writing out
Eq. (12) in full we have

v̈1 þ 2κev̇1 þ κ2e v1 ¼ κeme d13·σ v3ð Þ þ Uð Þ
v̈2 þ 2κi v̇2 þ κ2i v2 ¼ κimid23·σ v3ð Þ
v̈3 þ 2κev̇3 þ κ2e v3 ¼ κeme d31·σ v1ð Þ−d32·σ v2ð Þð Þ

ð14Þ

where vi(t): i=1,2,3 denotes the expecteddepolarization in the i-th pop-
ulation (excitatory stellate, inhibitory population and excitatory pyrami-
dal respectively) and dij·σ(vj) is the presynaptic input to the i-th
population from the j-th. This is a sigmoid function σ(vj) of postsynaptic
depolarization in the j-th population, multiplied by intrinsic connection
strengths dij between the two populations (Jansen and Rit, 1995). See
Fig. 1 for a schematic of this model.

A Jansen and Rit neural field model

In the following, we extend the Jansen and Rit model for spatially
extended sources on the cortical manifold. Our approach follows
standard treatments of neural field models (see e.g. Coombes et al.,
2007; Pelinovsky and Yakhno, 1996; Pinto et al., 1996; Robinson
et al., 2001, 2003, 2005; Wilson and Cowan, 1973) and focuses on a
model with realistic connection patterns among three neuronal popula-
tions. In doing this we hope to show how one can transcribe a neural
mass into a neural field model; where the former can be regarded as
the limiting case of the latter. To do this, we treat each of the three
Fig. 1. Equations of motion for a single source. This schematic summarizes the equations of m
single source. This model contains three populations, each loosely associated with a specific
(e.g., voltage) that subtend observed local field potentials or EEG signals. These differentia
postsynaptic depolarization. Average firing rates within each sub-population are then transfo
to other populations. These inputs are weighted by connection strengths.
populations above as a separate layer on the cortical manifold. This
means that depolarizationV x; tð Þ∈R3 nowbecomes a vector-field as op-
posed to a vector and the intrinsic connection strengths become connec-
tivity kernels, dij(x, t). The ensuing model can be written in the general
form

̈V þ 2BV̇ ¼ −B2V þ ABD⊗F∘V þ GU

Y ¼ L·V :

ð15Þ

Here, the spatiotemporal convolution term D⊗F includes the
(delayed) presynaptic input arriving from all layers in the cortical
manifold. Augmenting Eq. (14) with appropriate spatiotemporal con-
volutions, we obtain

v̈1 þ 2κev̇1 þ κ2ev1
� �

x; tð Þ ¼ κeme ∬d13 x−x′; t−t′ð Þσ v3 x′; t′ð Þð Þdx′dt′ þ U
� �

v̈2 þ 2κi v̇2 þ κ2i v2
� �

x; tð Þ ¼ κimi∬d23 x−x′; t−t′ð Þσðv3ðx′; t′ÞÞdx′dt′

v̈3 þ 2κev̇3 þ κ2ev3
� �

x; tð Þ ¼ κeme∬ðd31 x−x′; t−t′ð Þσ v1 x′; t′ð Þð Þ

−d32 x−x′; t−t′ð Þσ v2 x′; t′ð Þð ÞÞdx′dt′

ð16Þ

where we assume the sigmoid firing rate function is:

σ við Þ ¼ 1
1þ exp r η−við Þð Þ : ð17Þ

Here, r and η are parameters that determine the shape of this sig-
moid. In particular, r is synaptic gain and η is the postsynaptic
otion or state equations that specify a Jansen and Rit (1995) neural mass model of a
cortical layer. The second-order differential equations describe changes in hidden states
l equations effectively mediate a linear convolution of presynaptic activity to produce
rmed through a nonlinear (sigmoid) voltage-firing rate function σ(⋅) to provide inputs
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potential at which the half of the maximum firing rate is achieved.
Following the approach for the linearization of neural fields described
above, we assume a solution to Eq. (15) of the form

V x; tð Þ ¼
v1 x; tð Þ
v2 x; tð Þ
v3 x; tð Þ

24 35 ¼ V0 þ P x; tð Þ: ð18Þ

Taking the Fourier transform of Eq. (15) we obtain the frequency
formulation of the Jansen and Rit neural field model

̈V þ 2BV̇ ¼ −B2V þ ABD⊗F∘V þ GU
⇒

−ω2I3 þ 2iωBþ B2−J k;ωð Þ
� �

P k;ωð Þ ¼ GU k;ωð Þ
ð19Þ

where J(k,ω) is a 3×3 matrix incorporating the synaptic parameters,
connectivity parameters (kernels) and gain matrix:

J k;ωð Þ ¼ ABD k;ωð Þγ

D ¼
0 0 D13 k;ωð Þ
0 0 D23 k;ωð Þ

D31 k;ωð Þ −D32 k;ωð Þ 0

24 35
γ ¼ ∂σ V0ð Þ=∂V :

ð20Þ

Here Dij(k,ω) are the Fourier transforms of the connectivity kernels
dij(x, t). The matrix transfer function for the Jansen and Rit neural field
model is then given by

T k;ωð Þ ¼ 2iωBþ B2−ω2I3−J k;ωð Þ
� �−1

G
⇔

P k;ωð Þ ¼ T k;ωð ÞU k;ωð Þ:
ð21Þ

Combining Eqs. (21) and (11) we obtain the cross-spectra gener-
ated at the sensors by the Jansen and Rit neural fields described
above.

gY ω; θð Þ ¼ ∫L kð ÞT k;ωð ÞgU k;ωð ÞT k;ωð Þ�L kð Þ�dk

T k;ωð Þ ¼ 2iωBþ B2−ω2I3−J k;ωð Þ
� �−1

G:
ð22Þ

Note that for a single sensor, the cross-spectrum reduces to the
(real) spectral density. Next, we turn to the particular forms of neural
field models that are prescribed by the connectivity kernels.

Connectivity kernels

In essence, Eq. (15) defines a class of neural field models that con-
form to the same intrinsic connectivity rules incorporated in the neural
massmodel; see Fig. 1 and Eq. (20). To fully specify a particularmodel in
this class, we need to specify the functional form for the kernels, dij(x, t).
We will assume these kernels factorize into dij(x, t)=κij(|x|)δ(t−υij|x|),
where υij is a transit time or the inverse of the speed sijwithwhich neu-
ronalfiring propagates along connections. This form provides an explic-
it parameterization of conduction delays that will be exploited later,
when using the field model as an observation model. We now need to
specify the kernels κij(|x|), which describe the connectivity strength be-
tween layers i and j comprising the cortical source.

For each application, these kernels can be chosen to appropriately
describe the spatial features of the underlying cortical infrastructure
generating observed signals. Our aim here is to provide a link between
the existing neural field literature and DCM techniques for Bayesian in-
ference on cortical parameters based on observed spectra.We therefore
adopt a common choice in the literature, which accounts for local excit-
atory and inhibitory interactions (Coombes et al., 2003; Jirsa andHaken,
1996;Wilson and Cowan, 1973). In particular, we assume that the func-
tions κij∈K have an exponential form, where, for a single source:

2K ¼
0 0 α13e

−c13 xj j

0 0 α23e
−c23 xj j

α31e
−c31 xj j α32e

−c32 xj j 0

264
375: ð23Þ

The parameters αij and cij encode the strength (analogous to the
total number of synaptic connections) and extent (spatial precision)
of intrinsic connections between the cortical layers. In addition to
its simplicity, the above form for the connectivity kernel also has
the advantage that, by taking the Fourier transforms of both sides;
Eq. (16) can be expressed in a differential form (see also Jirsa and
Haken, 1996)

̈v1 þ 2κev̇1 þ κ2e v1 ¼ κeme μ1 þ Uð Þ
̈v2 þ 2κi v̇2 þ κ2i v2 ¼ κimiμ2

̈v3 þ 2κev̇3 þ κ2e v3 ¼ κemeμ3

̈μ 1 þ 2sc13 μ̇1−s2 μ1xx−c213μ1
� �

¼ α13 s2c13σ v3ð Þ þ sσ̇ v3ð Þ
� �

̈μ 2 þ 2sc23 μ̇2−s2 μ2xx−c223μ2
� �

¼ α23 s2c23σ v3ð Þ þ sσ̇ v3ð Þ
� �

̈μ 3 þ 2sc31 μ̇ 3−s2 μ3xx−c231μ3
� �

¼ α31 s2c31 σ v1ð Þ−σ v2ð Þð Þ þ s σ̇ v1ð Þ−σ̇ v2ð Þ� �� �
:

ð24Þ

In this form, the equations for presynaptic input μij have the form of
wave equations. For simplicity, we have assumed that the conduction
velocity is the same for all connections; namely, sij=s.We also assumed
that α31=α32 and c31=c32. Using PDE integration schemes (solvers),
Eq. (24) can provide explicit predictions of depolarization in response
to input, U x; tð Þ∈R. However, we will not pursue this here. Instead,
we will use the spectra given by Eq. (11) to provide a generative
model of observed cross-spectra generated by the underlying cortical
sources. In this context, the matrix J(k,ω) is given by Eq. (20), where
the connectivity transfer functions are (see Appendix)

Dij k;ωð Þ ¼
αij cij þ iυijω
� �

c2ij−υ2
ijω

2 þ 2iυijcijωþ k2
ð25Þ

and the gain matrix is

γij ¼
∂σ vi ¼ 0ð Þ

∂vj
¼

rerη

1þ erηð Þ2 i ¼ j

0 i≠j
:

8<: ð26Þ

Substituting these expressions into Eq. (20) allows us to express the
predicted cross-spectra over channels, in terms of the parameters of our
generative neural field model through Eq. (22). These parameters in-
clude the synaptic parameters associatedwith the Jansen and Rit neural
mass model θ⊂{mi,me,κi,κe,r,η} but now also include the spatial pa-
rameters θ⊂ αij; cij;υij; ‘

� �
that encode intrinsic connections among

the layers. In practice, to suppress redundancy in the parameterization
of these neural fieldmodels, we express the spatial extent of horizontal
connections and inverse velocity in terms of the radius of the cortical
patch. This means that, without loss of generality, ‘ ¼ 1 and the inverse
velocity becomes the (transit) time it takes for spikes to propagate from
the centre of the patch to its boundary. We will pursue the inversion of
thesemodels in the next section.We conclude this section by looking at
the typical spectra produced by a cortical source.
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Spectra of the Jansen and Rit neural field model

For purposes of illustration, we assume a single Jansen and Rit
neural field and a realistic observation filter with a Gaussian form,
which we parameterize in terms of its amplitude and width:

L x;φð Þ ¼ φ1 exp − x2

φ2

 !
: ð27Þ

In all the simulations and analyses below we used a small value of
φ2 ¼ 0:01� ‘, appropriate for a local field potentials electrode that
are sensitive to a large range of frequencies (recall that ‘ ¼ 1 is the
distance from the centre to the boundary of the cortical manifold).
We also assumed that only pyramidal cells contribute to the observed
signal. Under these assumptions, Eq. (22) implies

gY ω; θð Þ ¼ ∫L kð ÞT k;ωð ÞgU k;ωð ÞT k;ωð Þ�L kð Þ�dk

L kð Þ ¼ φ1 exp −φ2π
2k2

� �
T k;ωð Þ ¼ D31 k;ωð Þγκe2me

2 κi þ iωð Þ2R−1 k;ωð Þ

R k;ωð Þ ¼ κi þ iωð Þ2ðκe4 þ 4iκe
3ω−4iκeω

3 þω4−κe
2

× D13 k;ωð ÞD31 k;ωð Þγ2me
2 þ 6ω2

� �Þ
−D23 k;ωð ÞD32 k;ωð Þγ2κeκimemi κe þ iωð Þ2:

ð28Þ

Under periodic boundary conditions, cortical activity can be
viewed as a superposition of standing waves of various spatial fre-
quencies, which are integer multiples of the frequency π=‘. Under
these boundary conditions, Eq. (28) yields the following expression
for the predicted (cross) spectra (see Robinson, 2003)

gY ω; θð Þ≈π
‘
∑jL

jπ
‘

� 	
T

jπ
‘
;ω

� 	
gU

jπ
‘
;ω

� 	
T

jπ
‘
;ω

� 	�
L

jπ
‘

� 	�
: ð29Þ

Fig. 2A shows the form of this spectral density using the expres-
sion for connectivity in Eq. (25), and the parameters in Table 1 for
j=1,…,32 spatial frequencies. The crucial thing about this result is
the alpha peak that results from a finite conduction velocity (Nunez,
1995; Robinson et al., 2001). This form is quite distinct from the
equivalent spectrum using the neural mass model, which has a
much less structured profile: see Fig. 2B. We emulated a neural
mass prediction by setting the transit time υij to zero. This effectively
shrinks the cortical manifold to a point, because each layer sees dis-
tant inputs from other layers instantaneously. One can see this intui-
tively by noting that when the transit time is zero the temporal part
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Fig. 2. Power spectra for a single source. This figure shows the power spectra associated wit
upon Eq. (29) using the parameters described in the main text and Table 1. Panel A shows
predictions under a neural mass model: i.e. where the spectral prediction was obtained usin
conduction velocity or transit time was set to zero.
of the connectivity kernel dij(x, t)=κij(|x|)δ(t) does not depend
upon distance. This precludes propagation delays from contributing
to the dynamics.

The simulated spectral responses in Fig. 2 assumed spatially and
temporally white inputs or innovations. Generally, however, these in-
novations themselves have frequency profiles, which we may not
necessarily know. In the next section, we turn to a generative model
for empirically observed spectra that contains not just synaptic and
connectivity parameters but also parameters controlling the spectral
profile of neuronal innovations and channel noise.

Summary

In this section, we have reviewed neural field models that furnish
predicted spectral responses to exogenous input as tractable func-
tions of key synaptic and coupling parameters. We then considered
briefly the more structured spectral density of these predictions that
derives from considering spatial dynamics. The key observation here
is that by including spatial dynamics on cortical manifold, we can ac-
count for the structured frequency responses in observed spectra. The
example in Fig. 2 shows a fairly typical and simple form for realistic
parameter values. Wewill see below that neural field models can pro-
duce much more complicated and exotic spectral profiles, depending
upon the parameters chosen. It is this behavior that makes neural
field models a potentially more plausible generative model of empir-
ical observations, in relation to their neural mass homologues. In the
next section, we consider how to use the neural field model above as
an observation or generative model in dynamic causal modeling of
steady-state responses.

A neural-field DCM

In this section, we describe how the neural field model above can
be embedded in a probabilistic model of empirical data. This can be
regarded as an extension of dynamic causal modeling for steady-
state responses (Moran et al., 2007, 2009); where we replace the con-
ventional neural mass model with a neural field model. In this paper,
we will focus on the role of intrinsic connections and consider a DCM
of single-source data. As noted above, the equations of the previous
section provide an analytic expression for the cross-spectral density
between electrophysiological samples from a cortical source. These
cross-spectra are parameterized completely in terms of unknown bio-
physical parameters describing the synaptic kinetics and intrinsic
connectivity, given the input spectrum. In what follows, we describe
Neural mass
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h a single source, whose dynamics conform to Eq. (24). The generative model is based
the spectral response using the mean field model, while panel B shows the equivalent
g exactly the same equations as for the neural field predictions but where the inverse



Table 1
Prior expectations of model parameters.

Parameter Physiological interpretation Prior mean: P

me,mi Maximum postsynaptic depolarization 8, 32 (mV)a

κe,κi Postsynaptic time constants 1/4, 1/28 (ms−1)a

α13,α23,α31,α32 Amplitude of intrinsic connectivity kernels 2000, 8000, 2000,
1000

cij Intrinsic connectivity decay constant 0.32 (mm−1)b

r,η,g Sigmoid parameters (post synaptic firing
rate function)

0.54, 0, 0.135a

sij Conduction velocity 3 m/sb

‘ Radius of cortical source 50 (mm)b

In practice, these priors are scaled by log-scale parameters with a prior mean of zero
(and precisions of sixteen) to ensure positivity.

a Wendling, et al. (2000).
b Kandel, et al. (2000).
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how this mapping from free parameters to observed cross-spectra can
be used to create an observation model (i.e., a dynamic causal model)
of steady state responses. Although, in this paper, we deal only with
real auto-spectra from single channels, we describe the more general
procedure for inverting models of complex cross-spectra sampled by
multiple channels.

The generative model

To complete our specification of a generative model, we assume the
observed cross-spectra gY(ω) (denoted by boldface) are a mixture of
predicted cross-spectra gY(ω,θ), channel-noise gN(ω,θ)and Gaussian
error ε(ω) (see (Moran et al., 2009) for details):

gY ωð Þ ¼ gY ω; θð Þ þ gN ω; θð Þ þ ε ωð Þ
gY ω; θð Þ ¼ ∑kL kð ÞT k;ωð ÞgU k;ωð ÞT k;ωð Þ�L kð Þ�

gN ω; θð Þ ¼ αN þ βN

ω

gU k;ωð Þ ¼ αU þ βU

ω

Re εð ÞeN 0;∑ ω;λð Þð Þ

Im εð ÞeN 0;∑ ω;λð Þð Þ:

ð30Þ

Note here that we have replaced the integral in Eq. (22) with a
summation over discrete spatial frequencies (c.f., Eq. (29)). The spec-
tra of channel noise gN(ω,θ), like those of the input gU(ω), are param-
eterized in terms of (unknown) white and pink components. We
have assumed here that the input is spatially white. This means that
the input spectrum does not depend upon spatial frequency.
Eq. (30) provides the basis for our generative model and calls on
extra free parameters controlling the spectra of the inputs and chan-
nel noise θ⊂{αN,αU,βN,βU}; and the amplitude of observation error
Σ(ω,λ). Gaussian assumptions about the observation error mean
that we have a probabilistic mapping from all unknown parameters
to observed data features. Inversion of this model means estimating,
probabilistically, the free parameters given data.

Inverting models of complex data-features

Almost universally, the fitting or inversion of Dynamic Causal
Models optimizes a free energy bound on the log-evidence for a
model m. This bound is optimized with respect to a variational densi-
ty q(θ) on the unknown model parameters. By construction, the free
energy bound ensures that when the variational density maximizes
free energy, it approximates the true posterior density over parame-
ters, q(θ)≈p(θ|y,m). At the same time, the free energy itself
F y; qð Þ≈ lnp yð jmÞ approximates the log-evidence (marginal likelihood)
of the data. The (approximate) conditional density and (approximate)
log-evidence are used for inference on parameters and models respec-
tively. In other words, one first compares different models (e.g., with
and without particular connections) using their log-evidence and then
turns to inferences on parameters, under the model selected.

One usually assumes the conditional density has a Gaussian form
q θð Þ ¼ N μ ;Cð Þ. This is known as the Laplace assumption. The condi-
tional density is quantified by the most likely value of the parameters,
μ and their conditional covariance C (inverse precision) that encodes
uncertainty about the estimates and their conditional dependencies.
To optimize the conditional mean and covariance, we need to express
the free energy in terms of (generally) complex data-features like ob-
served cross-spectra.

The free energy of complex data-features

The free energy is a quantity which, by construction, is always
greater than the log evidence above (by Gibbs inequality). It was in-
troduced by Richard Feynman in the context of path integral formula-
tions of quantum mechanics and has been used extensively in
machine learning to finesse the difficult problem of exact Bayesian in-
ference (by maximizing the free energy with respect to the parame-
ters). It is called free energy because it comprises two terms: the
first is an energy term, which is the log likelihood and prior of the
data and model parameters, expected under the variational density.
The second term is simply the entropy of the variational density.
The free energy is simply the average of the log-likelihood and log-
prior of the model, under the variational density and its entropy.
For nonlinear models, under Gaussian assumptions about the varia-
tional density and observation noise, the free energy has a very sim-
ple form:

F ¼ G μð Þ þ 1
2
ln j∂llGj

G ¼ −1
2
Re εð ÞTΣ−1Re εð Þ−1

2
Im εð ÞTΣ−1Im εð Þ−1

2
ρTΩ−1ρ−1

2
lnjΣj−1

2
lnjΩj

ε ¼ gY ω; μð Þ þ gN ω; μð Þ−gY ωð Þ

ρ ¼ μ−ϕ:

ð31Þ

Here, gY(ω,μ)+gN(ω,μ) are thepredictions of the data features gY(ω)
and ε(μ) are the corresponding prediction errors with covariance
Σ(ω,λ). Similarly,ρ μð Þ∈R are prediction errors on the parameters, in re-
lation to their prior density p θð jmÞ ¼ N ϕ;Ωð Þ. Model complexity in
Eq. (31) corresponds to the− 1

2ρ
TΩ−1ρ term: this reports the deviation

of the estimated parameters from their prior expectations and effectively
penalizes the free-energy objective function in proportion to the degrees
of freedom used to explain the data.

For complex data, we have to separate the real and imaginary
parts of the sum of the squared prediction error above. This is because
the sum of an absolute value is not the absolute value of a sum. Sim-
ilarly, the partial derivatives of the Gibb's energy G μð Þ, with respect to
the parameters are separated into real and imaginary parts:

∂μG ¼ −Re ∂με
� �T

Σ−1Re εð Þ−Im ∂με
� �T

Σ−1Im εð Þ−Ω−1ρ

∂μμG ¼ −Re ∂με
� �T

Σ−1Re ∂με
� �

−Im ∂με
� �T

Σ−1Im ∂με
� �

−Ω−1
:

ð32Þ

These gradients are used in a Gauss–Newton scheme to optimize
the conditional mean and covariance iteratively, until the free energy
has been maximized:

μ ¼ argmax
μ

F μ ;gY ωð Þð Þ

C ¼ −∂μμG μð Þ−1
:

ð33Þ

In practice, things are a little more complicated because one often
makes a mean-field assumption when estimating parameters of the



2 In taking the limit s→∞ in Eq. (24) the spatial derivatives vanish as the cortical
manifold shrinks (or the neural field stretches) and depolarization becomes spatially
homogeneous. In this limit, the corresponding electrophysiological predictions effec-
tively coincide with those generated by a neural mass model.
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Fig. 3. Sensitivity analyses of synthetic data. This figure shows the conditional estimates
of the inverse conduction speed parameter, υ. These estimates were obtained from
simulated data sets generated using υ as per Table 1, with a log-scaling from −1 to
1. We illustrate the agreement between the true parameter value (dotted line) and
its conditional estimate. The bars represent 90% conditional confidence intervals.
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model θ and the error covariance, Σ(ω,λ). In other words, the preci-
sion (inverse covariance) of the observation error is usually assumed
to be conditionally independent of the parameters. The gradient as-
cent then becomes a coordinate ascent that optimizes the conditional
expectations of the model and error covariance parameters λ respec-
tively. This is called Variational Laplace. A full description of these
schemes can be found in (Friston et al., 2007).

Summary

In this section, we have considered the central role of the free en-
ergy bound on log-evidence used in model selection and inversion.
The only thing we have to worry about, when dealing with complex
data, is to separate the real and imaginary parts of the data (and im-
plicitly prediction errors), when evaluating the free energy and its
gradients. Having done this, we can then use standard schemes to se-
lect among competingmodels to find the one that has the highest free
energy (log-evidence). One can then examine the conditional param-
eter estimates of the selected model. In this paper, we will not be
dealing with complex data because we will be considering the
(real) auto-spectra from single channels. However, in more general
applications, we have to consider the complex cross spectra among
different channels. We now illustrate the application of this scheme
and characterize the effects of key model parameters on predicted
spectral responses.

Model inversion and characterization

This section presents a statistical characterization of the model, in
terms of its identifiability and changes in spectral predictions, with
respect to key model parameters. In the context of DCM, similar ana-
lyses have been performed for various models of neural activity in
Chen et al. (2008), Friston et al. (2003) and Moran et al. (2007,
2008). We will here compare and contrast the predictions of the neu-
ral field formulation with its neural mass equivalent, to illustrate the
effects of spatial dynamics. We will use biophysically plausible priors
for which the neural mass model is known to have a stable fixed
point. Stability is guaranteed because the neural field model admits
a stable solution during model inversion. To establish face validity
and identifiability of the model, we used simulated data to ensure
the inversion scheme was able to recover veridical estimates; and to
ensure that model comparison using the log-evidence was able to
identify the correct model. If at any point during model inversion
we encountered a bifurcation from a stable fixed point, the inversion
scheme automatically reverts to the previous parameter estimate. To
quantify the effects of various parameters on the predictions, we ex-
amined the change in the spectral response with respect to each pa-
rameter. This can be regarded as a structural stability analysis,
expanding around a particular set of parameter values. These values
were obtained by inverting a neural field model using real LFP data.
We describe the synthetic and empirical data and then report the re-
sults of model comparison, conditional estimates of model parame-
ters and the effects of changing these parameters. For comparison,
the analyses are repeated for both the neural field and neural mass
formulations, where appropriate.

Synthetic data and validation

We first examined the conditional mean of the transit time when
the true log-scaling deviates from its prior expectation (of zero). This
reveals how our model inversion operates in regions of parameter
space that are remote from prior assumptions. We focused on the
transit time because this parameter determines the contribution of
spatially extended dynamics to observed temporal frequencies. In-
deed, as we have seen above, in the limiting case that the transit
time tends to zero (conduction speed tends to infinity), the neural
field model reduces to a neural mass model.2 Furthermore, inferring
axonal conduction speeds using single channel data illustrates our
point in the introduction that suitably informed models enable one
to access the spatial attributes of neuronal infrastructures, even in
the absence of spatially resolved data.

We synthesized observed spectra by setting the values of the pa-
rameters equal to their prior, with the exception of transit time,
which was varied over a log-scaling range of −1 to 1 (i.e. 36% to
272%). The synthetic data were generated according to Eq. (30) and
inverted by optimizing the conditional mean and covariance as de-
scribed in the previous section using Eq. (33). The resulting condi-
tional estimates are shown in terms of the conditional mean and
90% confidence intervals in Fig. 3. One can see that there is a remark-
able agreement between the conditional mean and true values and
that the (relatively precise) confidence intervals include the true
value (with the exception of the most extreme deviations). This is
an interesting result that establishes the identifiability of the model,
at least in relation to conduction speed. Clearly this only establishes
face validity (the inversion does what it is meant to) and does not
speak to the physiological validity of the model, which has to be
addressed using empirical data (see below). Having said this, this
sort of validation speaks to the possibility of estimating small differ-
ences in conduction velocity that might be elicited experimentally
through pharmacological or other manipulations.

We then turned to inference on models and asked whether Bayes-
ian model selection (Penny et al., 2010) could disambiguate between
data generated by neural mass and neural field models. To do this, we
simulated data using prior parameter values under neural field (tran-
sit time of 3 s per meter) and mass (a transit time of zero) assump-
tions and inverted both datasets using neural field and mass
models. Table 2 shows the relative log-evidence of the four model in-
versions; as expected, we see that the neural field model is a better
explanation for the data generated by neural fields, while the neural
mass data would be better explained by neural mass models. The dif-
ference in log-evidence reflects the identifiability of the models: it can
be seen from Table 1 that there are profound differences between the
two models and of both data types in the direction anticipated. Inter-
estingly, when the data were generated under neural field assump-
tions, the neural field model had much greater evidence than the
corresponding neural mass model (with a log-evidence difference of



Table 2
Log-evidence of neural models.

Model Neural field model Neural mass model

Neural field data 167.39 −35.21
Neural mass data 160.51 170.82

This table presents the log-evidence for neural field and mass models, using synthetic
data generated by the respective models (at the prior expectations of their parameters
in Table 1).
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over 100). Conversely, when the data were generated under neural
mass assumptions, the log-evidence difference was only about 10.
This suggests that the neural field model can explain spectra, even
when spatial dynamics are suppressed. This is intuitively sensible, be-
cause the neural mass model is a special case of the neural field
model. Generally, a log-evidence difference of three or more can be
taken as strong evidence for onemodel over another (Kass and Raftery,
1995). Quantitatively, these sorts of validations are important when it
comes to interpreting model comparisons using empirical data, which
we turn to next.
Empirical LFP data

Local field potentials were recorded from primary (A1) and sec-
ondary (A2) auditory cortex in the Lister hooded rat, following the
application of the anesthetic agent Isoflurane; 1.4 mg (see Moran et
al., 2011 for details). In brief, we used a telemetric recording system
(TSE Systems) with chronically implanted epidural Silverball elec-
trodes above the auditory cortex. During data acquisition, acoustic
white noise stimuli at a level of 83 dB (sampling rate 25 kHz) and
were delivered by an RX6 processor and two free field magnetic
A
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Fig. 4. Model inversion using spectra from rat auditory cortex. A: Upper panel: real data (dashe
seen under anesthesia. The lower panel shows the conditional estimates (90% confidence i
recording of auditory responses in the rat. The estimates lie close to the prior values (a lo
Rit, 1995). B: Neural mass model estimates of the same data exhibit a similar fit (upper pa
speakers (Tucker Davis Technologies, TDT) that were placed with a
distance of 15 cm, on both sides of the rat's head.

Telemetric LFP recordings were acquired using DasyLab (Version
9.0, 2005, National Instruments) at a sampling rate of 2 kHz. Filtering
was applied online, integrated into the telemetry system (0.6–60 Hz).
Ten minutes of recordings were extracted from the continuous time
domain data and down-sampled to a sampling rate of 125 Hz. Fre-
quency domain data-features gY(ω) were obtained from this epoch
using a vector autoregression model of order eight (using the SPM
Spectral Toolbox: http://www.fil.ion.ucl.ac.uk, (Roberts and Penny,
2002)). Here, we focus on the spectral response in A1.

DCM and model inversion

There exists a vast literature on comparing neural field predictions
with spectra (see e.g. Atay and Hutt, 2006; Breakspear et al., 2006;
Freeman, 2003,2005; Golomb and Amitai, 1997; Jirsa, 2009; Liley et
al., 2002; Nunez, 1995; Robinson et al., 2001, 2002, 2003, 2004,
2005; Robinson, 2006). Here, there is only one data channel and
therefore our electromagnetic forward model reduces to a lead field
over the assumed cortical source. We parameterized the lead field
in terms of its amplitude and width, assuming that it had a Gaussian
form as in Eq. (27). We then optimized the parameters of the neural
field model using the Variational Laplace scheme described above.
This model inversion used the prior expectations on the parameters
in Table 1. We then repeated the model inversion but setting the in-
verse conduction velocity to zero. As above, this furnishes parameter
estimates under a neural mass model that discounts the contribution
of spatial dynamics.

The observed and predicted auto-spectra for the neural field and
mass models are shown in the upper panels of Fig. 4. These model
predictions illustrate nicely the difference between the field and
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mass models: one can see that the neural field model has approximat-
ed the preponderance of low frequencies more accurately than the
neural mass model. This is because it has extra degrees of freedom;
namely conduction velocity and the extent of lateral connections.
These extend the repertoire of predictions to include those afforded
by spatial dynamics. Crucially, the log-evidence for the neural field
model was 1271 above the log-evidence for the neural mass model.
This suggests that there is a very strong evidence for spatial dynamics
over the cortical manifold in these auditory cortex data.

The conditional estimates of the log-scaling of the model parame-
ters are shown in the lower panels of Fig. 4. Fig. 4A shows the condi-
tional expectations of the neural field model parameters and their
90% confidence intervals (bars). Note that most of the confidence in-
tervals include a log-scaling of zero. This is not surprising because the
prior values that are scaled were chosen carefully to reproduce spec-
tra that are typical of this recording setup. The two exceptions were
transit time and gain that increased by 160 and 120% over their
prior values respectively. The corresponding conditional estimates
for the neural mass model are shown in Fig. 4B. These illustrate the
similarities and differences between the inferred synaptic parameters
and intrinsic connection strengths between the neural field and mass
models: most parameter estimates concur between the two formula-
tions, with the exception of the synaptic strengths between interneu-
rons and pyramidal cells and the extent of lateral connections. Notice
that the spatial extent parameter can still be estimated with a degree
of precision under the neural mass model. This is because it is an in-
tegral part of the strength of intrinsic connections (see Eq. (25)).

Obtaining parameter estimates from observed spectra is an impor-
tant endeavor and several authors have suggested relevant schemes
using both neural field and neural mass models (Daunizeau et al.,
2009; Galka et al., 2008; Riera et al., 2007; Rowe et al., 2004; Schiff
and Sauer, 2008; Valdes et al., 1999; van Albada et al., 2010). It is in-
teresting to note that we have here formulated a neural mass model
as a limiting case of a neural field model by simply applying very
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Fig. 5. Sensitivity of model predictions. This figure shows semilog plots of the changes in the
intrinsic connectivity, excitatory synaptic time constant and the strength of intrinsic conne
2.5 (i.e. 8% to 1200% from top to the bottom). We include the values of the parameters in t
precise shrinkage priors to the conduction velocity. This provides a
useful perspective on the relationship between these two models, in
terms of the implicit assumptions we make when modeling observed
data. A pragmatic advantage of emulating neural mass models with a
transit time of zero is that we can simply apply precise shrinkage
priors (to transit time) to facilitate model comparison. In other
words, it provides a simple means of comparing models with and
without spatial dynamics. The inversions above are simply intended
to demonstrate the face validity of the approach: namely that veridi-
cal models and plausible parameter estimates can be recovered.
Clearly, we are assuming here that the cortical dynamics recorded
by our local field potential electrode are due to activity on a cortical
manifold. In future work, we will address whether model selection
and parameter estimates concur with independent manipulations of
synaptic and spatial parameters.

Characterizing the effect of changes in model parameters

In our final analysis, we characterized the variations in spectral
profile produced by changes in the parameters about the conditional
means from the empirical data above. This analysis recovers some of
the results relating model parameters to low-pass cutoffs in the spec-
trum that have been obtained in systematic earlier work (Nunez,
1995; Nunez and Srinivasan, 2006; Robinson et al., 2001, 2002,
2003; Valdes-Sosa et al., 2009) and is here given for illustration pur-
poses only: Fig. 5 shows the change in predicted spectra, as a function
of frequency, while varying the transit time, connectivity extent, ex-
citatory synaptic time constant and intrinsic synaptic coupling
strength between interneurons and pyramidal cells over a log-scaling
range of−2.5 to 2.5 (i.e. 8% to 1200%). The key thing to notice here is
that the changes show a complicated frequency dependency. This is
the latitude that neural field models have, over neural mass models,
when fitting empirical spectra. Furthermore, we observe quantita-
tively different behaviors for different parameter regimes: when
 connectivity
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decreasing the velocity, new spectral peaks appear and lower fre-
quencies predominate. Conversely, when transit time is small (veloc-
ity increases) the spectra exhibit the simple 1/ω profile characteristic
of the neural mass model. Similarly, the field spectra resemble those
of a neural mass when decreasing the range of lateral connections
(increasing c). As expected, an increase of the excitatory synaptic
time constant (decrease in the constant κe) enhances low frequency
alpha peaks in the spectra with a progressive shift towards beta fre-
quencies. The effect of increasing the strength of intrinsic connections
between the inhibitory interneurons and pyramidal cells a13 is similar
to the effect of decreasing their extent: the high frequency structure
of neuronal dynamics is lost and the peaked shape of the spectra dis-
appears so that it resembles a neural mass model.

Summary

In summary, we have illustrated model inversion using a multilay-
ered neural field model describing a single cortical manifold or
source. Conceptually, this analysis demonstrates that conventional
neural mass models can be regarded as a special case of a more gen-
eral neural field formulation. This special case obtains when we pre-
clude spatial dynamics by imposing prior beliefs on the spatial
parameters (conduction velocity is infinite and the transit time be-
comes vanishingly small in relation to the timescale of neural activi-
ty). The second key point to be taken from this section is that we
were able to obtain fairly precise estimates of spatial parameters
like conduction velocity, despite the fact we only have a single elec-
trode (see also Rowe et al., 2004; Robinson et al., 2004; van Albada
et al., 2010). This speaks to the fact that using informed and plausible
generative models of data can sometimes help access hidden states
and parameters that are not observed directly. In this case, our prior
assumptions about the spatial form of cortical activity allowed us to
make quantitative inferences about the speed of lateral cortical inter-
actions, despite having no spatial information in the data. Finally, we
have provided proof of principle that Bayesian model selection can
distinguish between neural field and mass formulations of cortical
dynamics and have presented a simple example suggesting that
field models provide better explanations of empirical data.

Conclusion

In recent years, several people have promoted the use of neural
models to characterize neuronal dynamics. For example, neural
mass models have been inverted explicitly using appropriate Kalman
filters; e.g. (Riera et al., 2007; Valdes et al., 1999). Furthermore, the
inverse problem for a single population described by a neural field
equation has been addressed in Daunizeau et al. (2009), Galka et al.
(2008), Schiff and Sauer (2008). Daunizeau et al. replaced the stan-
dard dipole source used in neural mass models with the principal
Fourier mode of a neural field model with exponentially decaying
synaptic density; this corresponds to a standing wave with temporal
dynamics identical to those of neural mass models. Schiff and Sauer
also estimated spatiotemporal neuronal activity via the elegant appli-
cation of an unscented Kalman filter, while Galka et al. used a similar
maximum likelihood framework to invert neural field models of EEG
data. In this paper, we hope to have further demonstrated the useful-
ness of neural field models in the context of dynamic causal modeling.
We conclude by considering the next steps in elaborating neural field
models of distributed cortical responses.

Models of multiple sources

In this introductory paper, we consider only the spectrum from a
single cortical source as observed, through local field potentials. In a
subsequent paper, we will extend the model to cover not just intrinsic
connections, but also extrinsic connections among cortical sources.
This becomes a bit more complicated because the extrinsic connectiv-
ity kernels (and associated transfer functions) no longer have the
same form used for intrinsic connectivity. This is because there is a
long and finite delay associated with extrinsic connections that does
not depend upon the position within the manifold associated with
each source (Brackley and Turner, 2009; Jirsa and Kelso, 2000; Qubbaj
and Jirsa, 2009; Robinson et al., 2002). In this context, we have to
make a distinction between extrinsic and intrinsic connectivity ker-
nels dij

(ab)
(x, t) within and between sources. Here dij

(ab)(x, t) denotes
the connectivity kernels from the j-th layer of source b to the i-the
layer of source a; where

d abð Þ
ij x; tð Þ ¼

κ abð Þ
ij jxjð Þδ t−υijjxj

� �
a ¼ b

κ abð Þ
ij jxjð Þδ t−Δabð Þ a≠b:

8><>: ð34Þ

Here,Δab is the conduction delay between two distinct sources. Note
that this model of extrinsic connectivity still accounts for the spatial lo-
cation of coupling between sources and allows for divergence of extrin-
sic connections in the sameway that intrinsic connections have a lateral
dispersion. However, the conduction delay of extrinsic connections is
fixed and does not depend on the location within the layers of each
source. We will develop this model in a subsequent paper and consider
it in the context of non-invasive EEG and MEG.

Modeling invasive data

The second application, that we hope to pursue, concerns spatially
resolved electrophysiological measurements. The idea here would be
to use a generative model that considers a single cortical manifold but
exploit the fact that the dynamics on this manifold are sampled by mul-
tiple electrophysiological or optical sensors. This calls for amore detailed
consideration of the lead fields associated with each sensor and theway
that electrodes sample local electromagnetic responses over space. This
represents an intriguing inverse problem that can, in principle, be solved
by inverting an appropriate DCM of the sort described above. In this set-
ting, itmay be the case that theparameters governing not just the spatial
aspects of cortical microcircuitry but also the spatial characteristics of
the lead fields (i.e., sensitivity profiles) have to be estimated.
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Appendix

Here, we show that Eqs. (16) and (25) imply Eq. (24). Let us define

μ1 ¼ ∬d13 x−x′; t−t′ð Þσ v3 x′; t′ð Þð Þdx′dt′

μ2 ¼ ∬d23 x−x′; t−t′ð Þσ v3 x′; t′ð Þð Þdx′dt′

μ3 ¼ ∬ d31 x−x′; t−t′ð Þσ v1 x′; t′ð Þð Þ−d32 x−x′; t−t′ð Þσ v2 x′; t′ð Þð Þð Þdx′dt′:
ðA1Þ

Then taking the Fourier transforms of both sides of the above
equations, we find

M1 k;ωð Þ ¼ D13 k;ωð ÞΣ v3ð Þ k;ωð Þ
M2 k;ωð Þ ¼ D23 k;ωð ÞΣ v3ð Þ k;ωð Þ
M3 k;ωð Þ ¼ D31 k;ωð ÞΣ v3ð Þ k;ωð Þ−D32 k;ωð ÞΣ v2ð Þ k;ωð Þ:

ðA2Þ
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We now focus on Eq. (A2c) (the remaining two equations can be
treated similarly). Substituting

D31 k;ωð Þ ¼ D32 k;ωð Þ ¼ α31 c31 þ iυωð Þ
c231−υ2ω2 þ 2iυc31ωþ k2 ðA3Þ

in Eq. (A2c) we obtain

c231−υ2ω2 þ 2iυc31ωþ k2
� �

M3 k;ωð Þ ¼ α31 c31 þ iυωð Þ ∑ v1ð Þ−∑ v3ð Þð Þ k;ωð Þ:
ðA4Þ

Taking the inverse Fourier transform of the above equation and
multiplying the resulting equation by s2, we find Eq. (24f). Similarly
for Eq. (24d,e).
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