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Abstract

   We present a method for detecting significant and regionally specific correlations between

sensory input and the brain's physiological response, as measured with functional MRI.  The

method involves testing for correlations, between sensory input and the hemodynamic response,

after convolving the sensory input with an estimate of the hemodynamic response function.  This

estimate is obtained without reference to any assumed input.

   To lend the approach statistical validity, it is brought into the framework of statistical parametric

mapping by using a measure of cross-correlations, between sensory input and hemodynamic

response, that is valid in the presence of intrinsic autocorrelations.  These autocorrelations are

necessarily present, due to the hemodynamic response function or temporal point spread function.
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Introduction

   This article is about the analysis of functional MRI data obtained during activation studies of the

human brain.  The problem addressed is how to identify regionally specific and significant

correlations between a time-dependent sensorimotor or cognitive parameter and measured changes

in neurophysiology (Bandettini et al 1993a, Friston et al 1993a).   This problem has a number of

well established solutions in PET functional imaging, where activation studies are almost

universally analyzed using some form of statistical parametric mapping (Friston et al 1990).

However there are some special issues to be considered when dealing with MRI data.

   Statistical parametric maps (SPMs) are images whose voxel values are distributed, under the null

hypothesis, according to some known probability density function.  The null hypothesis is usually

that there are no significant activations, or correlations between sensorimotor parameters and

central physiology.   SPMs are treated as smooth multidimensional statistical processes and

thresholded such that the probability of getting an activated region by chance (over the entire SPM)

is suitably small (e.g. 0.05).  The methods for determining the appropriate threshold have only

recently been developed  (Friston et al 1991 and Worsley et al 1992).

   Two fundamental aspects of MRI data that bear directly on the detection of significant

correlations are: (i) The hemodynamic response to sensory input (evoked changes in neuronal

activity) is transient, delayed and dispersed in time.  (ii)  Because the sampling interval of some

MRI techniques is typically much shorter than the time-constants of hemodynamic changes, the

resulting time-series can show substantial autocorrelation.

Transient aspects of the hemodynamic response

   The transient nature of the hemodynamic response is usually attributed to a physiological

uncoupling of regional cerebral perfusion and oxygen metabolism (Fox et al 1988).  The result is a
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time-dependent (but uncharacterised) change in the relative amounts of venous oxy- and deoxy-

hemoglobin.  Due to the differential magnetic susceptibility of oxy- and deoxy-hemoglobin, a

transient change in intra-voxel dephasing is observed.  This change subtends the measured signal

(Kwong et al 1992, Ogawa et al 1992, Bandettini et al 1992).  The physiological mechanisms

which mediate between neuronal activity and physiology, at the level of perfusion and cerebral

metabolism, are known to have time-constants in the millisecond (ms) to seconds range.  In-vivo

optical imaging of microcirculatory events, in the visual cortex of monkeys, suggest the following

sequence of activity-dependent changes:  200-400 ms after the onset of neuronal activity, highly

localized oxygen delivery occurs, followed 300-400 ms later by an increase in blood volume.

After 1000 ms a substantial rise in oxyhemoglobin is seen (Frostig et al 1990).  MRI data concur

with this latter observation, suggesting a rise in relative oxyhemoglobin, that is maximal after 4 -

10 seconds (Bandettini 1993b).  The delay and dispersion associated with the hemodynamic

response, to the onset of neuronal activity, is therefore substantial when compared to the sampling

interval typical of fast (e.g. EPI) MRI times series (100 ms - 5 s).  This is important because the

correlations between evoked changes in neuronal activity and measured hemodynamics will be

displaced and dispersed (smeared) in time.  Simply correlating a sensory parameter (reflecting

input at a neuronal level) with the hemodynamic response, will miss significant cross-correlations

that are distributed in time according to the delay and dispersion of the hemodynamic response

function.  For example if the delay rendered a sinusoidal sensory input and the hemodynamic

response out of phase by π/2, the correlation would be zero.  The hemodynamic response function

can be thought of as a temporal point spread function which not only smooths sensory input, but

also applies a shift in time.  In other words these functions describe the physiological response to a

point (delta function or impulse) input, if one were able to present such a stimulus.  Clearly to

assess the true 'correlation', between a sensory parameter and hemodynamic response, the sensory

parameter must first be subject to the same delay and dispersion as that mediating between neuronal
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activity and hemodynamics.  More formally, the correlation of interest is between the MRI time-

series and the sensory input convolved with the hemodynamic response function.  This is the first

observation on which the proposed approach is predicated.

Stationary aspects of the hemodynamic response

  Due to the dispersive nature of the response function, the hemodynamics at any voxel will be

inherently smooth or auto-correlated in time.  This autocorrelation will be evident even in the

absence of evoked changes in neuronal activity.   One can think of hemodynamics as the result of

convolving a neuronal process with an effective hemodynamic response function, where the

neuronal process comprises evoked transients and intrinsic activity.  In mathematical terms this can

be modeled as:

x(t) = Λ{ ε(v)  +  z(t) } 1

Where x(t) is the observed signal at a particular time (t),  Λ{.} is a convolution operator modeling

the effect of the response function,  ε(v) is the evoked neuronal transient as a function of time from

stimulus onset (v) and z(t) is an uncorrelated neuronal process representing fast intrinsic neuronal

dynamics.  The reason for characterizing the intrinsic component in this way comes from the

observation that autocorrelations in neuronal dynamics are most substantial in the 10 - 100 ms

range (Aertsen and Preissl 1991, Nelson et al 1992) and are therefore very fast compared to

hemodynamics.  Clearly if neural dynamics showed slower autocorrelations, the effective

hemodynamic response would embody some elements attributable to these slow neuronal changes.

This model highlights the fact that observed autocorrelations have at least two components; (i) an

evoked component due to the convolved neuronal transient that is phase-locked to the stimulus or

task onset and (ii) intrinsic autocorrelations that result from intrinsic neuronal activity.
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   To the extent that the above model is true, the autocorrelations and response function are directly

related.   In particular when there are no evoked changes in neuronal activity (or any components

phase-locked to stimulus onset have been removed) the intrinsic autocorrelations can be used to

determine the response function.  The relationship (between intrinsic autocorrelations and the

effective response function) furnishes a way of estimating the response function directly from the

physiological data that eschews any assumptions about the input or evoked neuronal activity.  This

is the second tenet upon which the proposed approach is based and is important because it ensures

that there is no bias when testing these assumptions post hoc.

  Finally temporal smoothness or autocorrelations are important from the point of view of detecting

significant correlations between the input and observed response.  Even if no neuronal response is

evoked, the presence of intrinsic autocorrelations will increase the probability of a spurious and

high correlation coefficient.  This follows from the fact that the effective degrees of freedom

associated with a measured correlation will be smaller than the number of time points or scans.  In

simple terms, for two time-series of fixed length, the probability of obtaining a high correlation

coefficient, by chance, increases with smoothness.  When assessing the significance of cross-

correlations between two time-series it is therefore necessary to explicitly account for the

autocorrelations expected under the null hypothesis (in this case the intrinsic autocorrelations).

This is the third tenet of our approach.

   The stationariness of the intrinsic autocorrelations (and implicitly the response function) referred

to above are in time.  Stationariness in time does not imply stationariness in space.  In other words

it is possible for the response function and the autocorrelative behaviour of hemodynamics to vary

from region to region, or voxel to voxel.

   The relationship between intrinsic autocorrelations (both spatial and temporal) and the effective

degrees of freedom is a very general one and affects the analysis of all functional imaging data,
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using any form of statistical parametric mapping.   In what follows this theme occurs twice (i) in

deriving a statistical quotient which tests for significant temporal cross-correlations in the presence

of intrinsic autocorrelations and (ii) thresholding the resulting statistical parametric maps, which are

spatially auto-correlated.

   We present below (i) the theoretical aspects of assessing the significance of correlations between

sensory (cognitive or motor) parameters and hemodynamic responses measured with MRI, (ii) an

application to real data and (iii) an evaluation of the hemodynamic response function used in the

preceding two sections.
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Theory

   The objective, of the described approach, is to produce a statistical parametric map which can be

thresholded to identify significant correlations between a given input parameter and regional

hemodynamics.  This requires; (i) a statistical parameter that tests the significance of the above

correlation and (ii) a technique for thresholding the SPM which renders the probability of

identifying a significant region by chance suitably small (e.g. 0.05).  The latter techniques have

already been established in the context of functional imaging, using the theory of stationary

Gaussian processes with known or measurable autocorrelation (Friston et al 1991).  The problem

therefore reduces to defining a statistic that tests for the presence of significant cross-correlations in

the presence of intrinsic autocorrelations.

   The following relies on the theory of stationary stochastic processes and, in particular, their

representation in the frequency domain.  The interested reader will find an excellent review of the

important standard results (a number of which are used below) in Cox and Miller (1980, pages 309

- 337).  Covariance refers to the average or expectation of the product of two processes x and y

(E{x(t).y(t)}), after normalization to zero mean.  Correlations refer to the same thing but when the

processes are normalized to unit variance.  Correlations can be thought of as normalized

covariances.  Cross-correlation ρxy(τ) and cross-covariance functions γxy(τ) are functions which

represent the magnitude of correlation or covariance, as a function of the temporal displacement τ

(lag) between the processes x(t) and y(t) (E{x(t).y(t + τ)}).  Autocorrelation and auto-covariance

functions, ρxx(τ) and γxx(τ) are simply the correlations or covariances of a process with itself at

some time τ later (E{x(t).x(t + τ)}).   Clearly γxx(0) is the variance of x(t).

The hemodynamic response function

     In what follows the expressions are in continuous time and assume that real fMRI time-series

are reasonably approximated by continuous space-time processes.  Let the observed MRI time-
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series, at any point in the brain, be modeled by a function of time x(t) and let a time-dependent

sensorimotor or cognitive parameter of interest be similarly modeled by c(t).  We will refer to this

parameter as the contrast.  In analyses of (co-)variance the 'contrast' is used to test for a specific

profile of time-dependent changes.   Both here and in general the contrast has zero mean and unit

variance.  The effects of delay and dispersion of the hemodynamic response are modeled by a

convolution operator Λ{.}.  e.g:

Λ{c(t)} = ∫ c(t - τ).h{τ} dτ 2

The function h{τ} is the (impulse) response function and has an equivalent representation in

frequency space (ω = 2πf where f is frequency) called the transfer function H(ω):  The transfer

function is simply the Fourier transform of the response function h{τ}.  The particular form of

h{τ} reflects our assumptions (or knowledge) about the effective hemodynamic response function.

It is a function of delay τ.  The average or expected delay is simply the expectation associated with

h{τ}.  Similarly the dispersion is the variance of h{τ}.  In what follows we assume a Poisson

form for h{τ}:

h{τ} =      λτ e-λ/τ!  3

   The Poisson distribution is a parsimonious choice because its mean and variance are equal and

are defined by a single parameter λ.  It should be born in mind that the values of τ in eqn(3) are

real positive integers.  In what follows τ has units of seconds (if the repeat time is not an integer

valued number of seconds than eqn(3) could be replaced with a gamma distribution with

appropriate moments).   It is of course possible to use forms of h{τ} that do not assume a
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relationship between delay and dispersion (see discussion).  We validate the choice of a Poisson

form in a subsequent section.

   To account for the effects of delay and dispersion on the cross-correlations between x(t) and c(t)

we apply Λ{.} to c(t) and examine the correlation between x(t) and Λ{c(t)}.  The contrast c(t)

convolved with the hemodynamic response function h{τ} represents a new contrast, that has been

corrected for delay and dispersive effects, and will be referred to as y(t).  It should be noted that

the (power) spectral density of y(t) [gy(ω)] is simply related to the spectral density of c(t) [gc(ω)]

and the transfer function H(ω) (Cox and Miller 1980):

gy(ω) = | H(ω) |2 gc(ω) 4

Testing for significant cross-correlations in the presence of intrinsic autocorrelations

     In this section we observe that γxy(0), the covariance of interest has, approximately, a Gaussian

distribution.  The variance of this distribution (over many realizations at one voxel or many voxels

in one realization) is the same as the variance of γxy(τ) over time τ.  The variance of γxy(τ) is its

spectral density, integrated over frequencies.  Because γxy(τ) is effectively the contrast, convolved

with the response function,  convolved with the MRI time-series, its spectral density, under the

null hypothesis, is simply the three way product of the spectral densities of  c(t), h(τ) and x(t).

The spectral density of x(t), under the null hypothesis of no evoked neuronal activity, is specified

by the intrinsic autocorrelations.  Given that these spectral densities are either known or can be

estimated the distribution of γxy(τ), under the null hypothesis, can be determined.  These arguments

are now presented more formally:

   The cross-covariance between the MRI time-series x(t) and the convolved contrast y{t} will itself

be a stationary stochastic process with zero mean.  Furthermore because γxy(τ) is obtained by
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convolving x(t) with y(t),  γxy(τ) represents a weighted sum of x(t) and, by central limit theorem,

will tend to a Gaussian distribution  [this assumption is only strictly true when c(t) has non-zero

values over an interval which is large compared to the width of γxx(τ)]. The variance of  γxy(τ) is:

var{γxy(τ)} = ∫−∞

∞

 gxy(ω) dω 5

where  gxy(ω) is the cross-spectral density of processes x(t) and y(t) (Cox and Miller 1980).  gxy(ω)

can be interpreted as the second order probabilistic characteristics (variance) of the orthogonal

process sxy(ω), in the frequency domain, that is equivalent to γxy(τ) in the time domain, where (c.f.

Parseval's Theorem):

gxy(ω) = E{sxy(ω)sxy(ω)*}

and sxy(ω) = sx(ω)sy(ω) 6

* denotes complex conjugate and sx(ω) and sy(ω) are the spectral representations of processes x(t)

and y(t).  Let [u] = u.u*.   Now if sx(ω) and sy(ω) are independent (equivalently if x(t) and y(t) are

independent):

gxy(ω)   =   E{[sxy(ω)]}   =   E{[sx(ω)]}.E{[sy(ω)]}   =   gx(ω).gy(ω) 7

(c.f. Theorem 6F in Grimmett & Welsh 1986).  Eqn(7) expresses the fact that the cross-spectral

density is the product of the densities of the two underlying processes, given that they are

independent (i.e. there is no systematic phase relationship).  Combining eqn(5) and eqn(7):

  var{γxy(τ)} = ∫−∞

∞

  gx(ω).gy(ω).dω 8
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   Eqn(8) expresses the variance of the cross-covariance function as an integral (sum) over all

frequencies.  The variance at each frequency, under the null hypothesis, is the product of the

variances (spectral densities) of the underlying processes.

    The stationariness of γxy(τ) implies that the variance of γxy(τ) is not a function of time and

therefore V{γxy(0)} (over multiple realizations) = V{γxy(τ)} (over time).   So the quotient ζ(0)

ζ(0) = γxy(0).  var{γxy(τ)}-1/2

= ρxy(0). gx (ω )dω . gy (ω )dω∫∫
gx (ω )gy (ω )dω∫











1/ 2

 

= ρxy(0). ν 1/2 9

will, under the null hypothesis, have (roughly) a Gaussian distribution of unit variance and zero

mean.  This is also called the z-score and a statistical parametric map of ζ(0) is referred to as a

SPM{z}.   ζ(0) can be thought of as the correlation between x(t) and y(t) times the square root of

the effective degrees of freedom (ν).

   In order to compute ν one needs to estimate gy(ω) and gx(ω).  The estimation of gy(ω) is

straightforward, however the estimation of gx(ω) due to intrinsic autocorrelations (gx(ω) under the

null hypothesis) requires a little more thought:

Estimating  gy(ω),  gx(ω) and the hemodynamic response function h(τ)

   Clearly if c(t) and h(τ) were sufficiently well behaved gy(ω) could be determined analytically as

in eqn(4) [using gc(ω) and H(ω)].  However in practice it is considerably easier to simply compute

the spectral density of y(t) [after convolving c(t) with h(τ)] using fast Fourier transforms and

thereby estimate gy(ω) directly.
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   The estimation of gx(ω), the spectral density of the MRI time-series, under the null hypothesis, is

more problematic, given (i) the short and noisy time-series that are typically available and (ii) the

null hypothesis is (hopefully) seldom true and the autocorrelations (and spectral densities) of x(t)

will contain both evoked and intrinsic components.  To obtain an estimate gx(ω) under the null

hypothesis it is necessary to discount evoked contributions.  This is simply achieved by removing

components that are phase-locked to the stimulus onset.  In our work this is done by analyzing the

time-series from one stimulus-cycle minus the time-series from another, namely the phase-shifted

differences.  A related device, called the 'shift predictor', is found in the analysis of separable

neuronal spike-trains  recorded with multi-unit electrodes.  The shift predictor is used to remove

the confounding effect of stimulus-locked firing, when assessing the cross-correlations between

two units.  In the present case we wish to remove confounding stimulus-locked effects on

estimated autocorrelations.  In what follows xp(t) will refer to the difference in (p) phase-shifted

MRI time-series.  From eqn(1) and eqn(2):

xp(t) = x(t)  -  x(t + q.p) = Λ{z(t) - z(t + q.p)} 10

where q is the stimulus or task period (or cycle length) and p is an integer greater than 0.  Because

z(t) is modeled as an uncorrelated stochastic process (innovation) the spectral and auto-correlative

properties of xp(t) correspond to those of x(t) in the absence of evoked transients.  Equivalently,

under the null hypothesis ρxx(h)  =  ρxpxp(h) and  gx(ω)/var{x(t)}  =  gxp(ω)/var{xp(t)}.

   Although it is possible to estimate gxp(ω) by subjecting xp(t) to Fourier transformation, we use

the following expedient method.  If one assumes that the intrinsic autocorrelations [ρxpxp(h)] can be

modeled by a Gaussian autocorrelation function of the form:

ρxx(τ)  =  ρxpxp(τ) = e-τ2 / 4σt2
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then: gx(ω)  ∝   gxp(ω). ∝ e-ω2σt2 11

(Cox and Miller 1980).  The constants of proportionality implicit in eqn(11), cancel in eqn(9) and

do not affect ν.   The parameter σt  reflects the intrinsic smoothness of x(t) and is estimated in a

computationally efficient way using the equality:

σt ≈ var{xp(t)}.[ 2 var{dxp/dt} ]-1/2 1 2

   This relationship follows from eqn(11) and the standard result: V{dx/dt} =  - γxx″(0)  (Cox and

Miller 1980).   See Friston et al (1991) for a fuller discussion.  It should be noted that whatever

phase-shifting strategy is employed xp(t) will always be shorter than x(t).  From a practical point of

view this means that the low frequency components of gx(ω) cannot be estimated directly.

Modeling gx(ω) with a Gaussian (or any other) distribution provides for an estimate of these low

components.

   A process with auto-covariance given by eqn(11) is obtained by convolving a random

uncorrelated process with a Gaussian point spread function of parameter σt.  If one were to assume

[see eqn(10)] that the MRI time-series was a result of convolving an unknown but uncorrelated

underlying neuronal process with the temporal point spread function h(τ), then the estimate of σt

also specifies λ (the delay or dispersion).  This follows from the fact that the Gaussian and

Poisson functions are very similar for large values of λ (they are identical in the limit) where:

λ ≈ σt2 13
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   The empirically derived value of σt, based on the data set described below, was 0.92 scans.  This

corresponds to a delay and dispersion (λ) of 7.69 seconds, which falls comfortably in the reported

ranges (Bandettini 1993b).  It should be noted that there is no direct information about delay (as

opposed to dispersion) in σt, the reason that our hemodynamic response function can be entirely

specified by σt depends on the Poisson assumption implicit in eqn(3).

   To summarise this section; a single parameter σt can be estimated from the ratio of the variances

of the time-series and its derivative.  This parameter (temporal smoothness) not only provides a

very efficient and complete estimate of the spectral density of the time-series (assuming the density

is Gaussian) but it can also be used to fix the parameter of the response function (assuming the

function is Poisson).  This single parameter is all that one needs to estimate, in calculating the

effective degrees of freedom (ν) for the correlation of interest.

Thresholding the SPM{z}

   The final stage of analysis involves identifying a threshold which protects against experiment-

wise false positives.  The key thing to note here is that due to the spatial autocorrelations in the

SPM{z} the number of voxels that are expected to be above a threshold (u) is far more than the

number of regions, (or maxima) above threshold.   As we are concerned with activated regions

(connected subsets of the total excursion set ≡ ζ(0) ≥ u) and not voxels, a Bonferroni correction is

not appropriate (a Bonferroni correction is based on the expected number of voxels).  Current

approaches (Friston et al 1991; Worsley et al 1992) use the fact that the relationship between the

probability of getting at least one region above u (P) and the expected number of regions (or

maxima) (µ), tends to equality as u gets very big.  The expected number of maxima depends on the

threshold (u), smoothness (σs) and size of the SPM  (S).  For an SPM{z} of D dimensions:

P ≤ µ   ≈   S (2)-(D+1)/2  (2σs2)-D/2  uD-1   e-u2/2 14
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(Hasofer 1978, Adler 1981).  σs is the spatial smoothness of the SPM and is estimated according to

eqn(12) but using partial derivatives in space over rows and columns.  The appropriate threshold is

chosen such that P ≈ 0.05.  See Friston et al (1991) for a derivation of an equivalent equation

(directly in terms of regions) in the context of functional imaging.  A related approach based on the

Euler characteristic has also been devised (Worsley et 1992).  It is of course acceptable to present

SPMs thresholded without this correction for multiple non-independent comparisons.  In this case

the SPM is referred to as 'descriptive' and an uncorrected one-tailed threshold of p=0.001 is

usually recommended (i.e. 3.09 for SPM{z}).  It should be noted that the thresholding and

interpretation of SPMs is a branch of spatial statistics that is receiving a lot of attention.  The

thresholding described in this paper represents a simple and established approach, but is not

necessarily the most powerful.  See Friston et al (submitted) for further a more current analysis.

   The theories presented above used processes in continuous time and relied on a number of

approximations (usually exact in the limit).  In order to assess the robustness of the expressions

presented here we applied the results to a simulated MRI data set.

Validation using simulated data

   The parameters of the simulated data were chosen to correspond to the real MRI data analyzed in

the next section.  60 images of 32 x 32 voxels were created by convolving an uncorrelated random

number field with a 3-dimensional Gaussian kernel of parameter 1.4 voxels, within the images,

and 0.9 over time.   The data where phase-shifted and subtracted, assuming a stimulus-cycle

period of 20 scans.   In the example presented here, and in those below, the differences between all

possible pairs of stimulus-cycles were analyzed and the results averaged over all pairs.  According

to eqn(12) the estimate of temporal smoothness was 0.905 scans and compares well with the
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expected value of 0.9.   Assuming a repeat time of 3 seconds, these simulated data would have a

temporal smoothness (σt)  of 2.71 seconds.  This degree of smoothness would be produced by a

temporal point spread function of Poisson parameter 7.37 seconds.  ζ(τ) was computed, according

to eqn(9), for all voxels, using a square wave contrast c(t) of period 20 scans (10 scans 'on' and

10 scans 'off') and a Poisson response function with λ = 7.37 seconds.  The resulting distribution

of ζ(τ) was determined by pooling across voxels and lag (τ).  This simulated distribution was

compared to the theoretically predicted Gaussian distribution.

   The results of this simulation are shown in figure 1.  The response function is shown (top left)

with the resulting contrast before [c(t)] and after [y(t)] convolution with h(τ) (top right).  The

agreement between the empirical and theoretical distributions of ζ(τ) is clearly evident (lower left).

The corresponding SPM{z} of ζ(0) is shown on the lower right.  The highest value of ζ(0)

obtained in this realization was 3.57.   The time-series from the corresponding voxel is displayed

with the contrasts (dotted line - top right).   It is important to note that these high values (and

apparent 'following' of the contrast) can easily occur by chance and should not be over-interpreted

in real data.  No value exceeded the corrected threshold (broken vertical line - bottom left), which

was 3.79 according to eqn(14) and the post hoc estimate of spatial smoothness [eqn(12)].   This

estimated spatial smoothness (averaged over both dimensions) was 1.45 voxels and compares

favourably with the expected value of 1.4 voxels.



18 Friston et al

Analysis of MRI time-series

Data Acquisition

   The data used to illustrate the method were a times series of 64 gradient-echo EPI single coronal

slices (5mm thick, 64x64 voxels) through the calcarine sulcus and extrastriate areas.  Images were

obtained every 3 seconds from a single subject using a 4.0T whole body system, fitted with a

small (27cm diameter) z-gradient coil (TE 25ms, acquisition time 41ms).  Photic stimulation (at 16

Hz) was provided by goggles fitted with light emitting diodes.  The stimulation was off for the first

10 scans (30 seconds), on for the second 10, off for the third, and so on.  Images were

reconstructed without phase correction.  The data were interpolated from 64x64 voxels to 128x128

voxels.  Each voxel thus represented 1.25 x 1.25 x 5 mm of cerebral tissue.

Data Pre-processing

   Image manipulations and data analysis was performed in Matlab (MathWorks Inc. Sherborn MD,

USA).  The first 4 scans were removed to eschew magnetic saturation effects.  The scans were

corrected for (slight) subject movement using nonlinear minimisation and a computationally

efficient cubic interpolation algorithm (Keys 1981).  Images were translated and rotated to

minimize the sum of squares between each of the 64 images and their average (both scaled to the

same mean intensity) using the Levenberg-Marquardt method (More 1977).  Only the 36 x 60

voxel subpartitions (of the original images) containing the brain were subject to further analysis.

All the time-series, for each voxel, were normalized to a mean of zero and convolved, in the time

domain, with a Gaussian filter (FWHM = 1.5 voxels) to suppress thermal noise.

Computing ζ(0)
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    The real data were treated in an identical fashion to the simulated data. The temporal smoothness

(στ) was estimated using eqn(12) to be 0.92 as mentioned above.  This estimate was the mean over

all intracerebral voxels and corresponds to a value of 7.69 seconds for λ, the parameter of our

assumed Poisson response function h(τ).   In order to demonstrate that modeling intrinsic

autocorrelations with a Gaussian form is reasonable, the empirical intrinsic autocorrelation

functions and corresponding spectral density [gx(ω)] are shown in Figure 2.  These functions were

obtained by averaging estimates over the differences between all pairs of 20 scan stimulation

periods (phase-shifted differences).  The data were windowed with a Hanning function before

being subject to Fourier transform.  The solid lines in Figure 2 correspond to the autocorrelations

(and spectral density) that would be obtained by convolving an uncorrelated innovation with a

Poisson function of parameter 7.69 seconds.  It should be noted that the determination of the

appropriate Poisson parameter does not require computation of either the autocorrelation function

or spectral density, but uses the variance of the first derivatives as in eqn(12).  These data are

presented only to validate the Gaussian approximation for gx(ω).

   The contrast c(t) used in this example was, again, a square wave which was positive during

photic stimulation and negative otherwise.  c(t) had zero mean and unit variance.  The measured

correlation between y(t) and the MRI time-series x(t) was computed for all voxels and scaled by √ν

according to eqn(9) to give ζ(0).   √ν was 4.58, corresponding to 21 effective degrees of freedom.

In other words one accrues  a 'degree of freedom' every 2.85 scans.   The reason ν is the same for

all voxels is that we assumed the response function and intrinsic autocorrelations (and spectral

density) were the same everywhere.  Clearly one does not have to assume this (see discussion).

   The results of this analysis are seen in figure 3.  The hemodynamic response function, based on

the empirically  determined 'smoothness' of the time-series is displayed to the left of the contrast

before and after convolution.  The dotted line in the top right graph is the response of the voxel

showing the greatest correlation.   The distribution of ζ(0) (bottom left) is dramatically skewed,
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with almost all voxels showing a marked positive correlation with the convolved contrast.  The

highest value of ζ(0) was 4.44. The corresponding SPM{z} is displayed on the bottom right.

Thresholding the SPM

    The spatial smoothness (σs) was computed according to eqn(12) over all the rows and columns

of the SPM{z}.  The means of these estimates was 1.46 voxels or 1.81 mm.  With a search

volume (S) of 2160 voxels, and a P value of 0.05, the threshold according to eqn(14) was 3.97.

Figure 4 shows the results of this thresholding.  The picture on the left makes the point that the

number of voxels above threshold far exceeds the number of regions.  The reason for this, is of

course, spatial smoothness in the underlying process.  This discrepancy between the expected

number of supra-threshold voxels and the expected number of regions, in the excursion set, means

that a Bonferroni correction based on voxel expectation is not appropriate.  This follows from the

fact that one requires the expected number of regions to be 0.05.   The striate and extra-striate

regions constituting the excursion set can all be considered significant in a strict statistical sense.

They include V1 bilaterally and (on the right) V2 dorsal to the calcarine fissure.  Extrastriate

regions in the fusiform, lingual and dorsolateral cortices are also evident.

A null analysis

   In order to demonstrate the specificity of the approach we repeated an identical analysis but

changed the period of the contrast c(t) from 20 scans to 16 scans.  This simple manipulation

eliminated all the significant voxels.  In fact the highest value of ζ(0) was only 2.719.  The results

of this analysis are shown in figure 5 using the same format as figures 1 and 3.
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Validation of the hemodynamic response function 

Validation in the time Domain

   Thus far it has been assumed that the hemodynamic response function h(τ) is reasonably

'correct' and we have proceeded to assess the ability of the contrast c(t) to explain the observed

changes.  One can take the completely opposite approach and estimate h(τ) by assuming c(t) is

correct.   In previous sections we have assumed a Poisson form for h(τ) and have used the

empirically determined temporal smoothness to specify an appropriate parameter.  In this section

we present a post hoc validation of h(τ) by computing it directly; using the contrast c(t) as the input

function and the brain's response as the output function.  Although this could be done at each

voxel, a more robust estimate is obtained if some global response is used.  This global or

distributed output function was the response of the first spatial mode (principal component or

eigenimage) based on the between voxel covariances.

   The first spatial mode or eigenimage is defined by the first eigenvector of the covariance matrix

of the MRI time-series.  If x corresponds to a matrix with 60 rows (one for each scan) and 2160

columns (one for each voxel) of the time-series for each voxel then the eigenvector solution e is

simply computed using singular value decomposition (Golub and Van Loan 1991) such that:

x Tx.e = e.Ω 15

  

where T denotes transposition and Ω is a diagonal matrix of eigenvalues.  The column of e

corresponding to the largest eigenvalue is the first spatial mode or eigenimage e1.  This mode

constitutes a distributed brain system with high intra-covariance or functional connectivity.  See

Friston et al (1993b) for a full discussion.   The response of e1  is given by:
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r = x.e 1 16

where r is a column vector of length 60.  Using least squares deconvolution one can directly

estimate the response function that best transforms the input c(t) to output r.  The results of this

deconvolution are shown in figure 6, where the 'memory' of the convolution has been restricted to

10 scans.  The first eigenimage or mode (top left) reveals high loadings in the same areas identified

by the more conventional (hypothesis led) analysis of the previous sections.  The corresponding

response is shown with the contrast (top right).  The results of the least squares deconvolution

(dots) agree remarkably with the hemodynamic response function based only on the temporal

autocorrelations (broken line).  The predicted and actual responses of the first mode are compared

on the lower right.  The predicted time courses are simply the contrast convolved with h(τ) (broken

line) and the empirically determined response function (solid line).  It is apparent that the empirical

response function has a slightly more protracted tail with some hint of biphasic structure.  One

might conjecture that this feature may reflect macrovascular effects as remote regions are drained.

Validation in the frequency domain

   The hemodynamic response function 'behaves essentially as a low pass filter in the detection of

neuronal firing' (Bandettini 1993b).  In other words higher frequency inputs are more severely

attenuated than low frequency inputs.  The dependency of output variance on input frequency is

captured by the (squared) transfer function  | H(ω) |2   seen in Figure 7 (left).  This example is for a

Poisson parameter of 5 seconds and demonstrates the downwards modulation of output variance

with increasing frequency of a periodic input.  For example the variance of a periodic input at 0.1

cycles per second (a stimulus cycle length of 10 seconds) is attenuated to about 20%.  The

hemodynamic response function can provide quite a powerful prediction of the brain's capacity to

follow a periodic stimulus when presented at increasing frequencies.  Bandettini et al have
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examined this phenomenon using fast self-paced sequential finger-thumb opposition at different

on-off switching frequencies, ranging from period lengths of 50 (e.g. 25 seconds of finger

opposition and 25 at rest) to 2 seconds.   The data reported in Bandettini (1993b) are in terms of

relative activation or amplitude of response.   These data are in excellent agreement with theoretical

predictions based on a Poisson hemodynamic response function (Figure 7 - left).  The theoretical

values were derived by simply convolving a square wave contrast, of appropriate frequency, with

a Poisson response function (parameter 5 seconds) and taking the maximum amplitude difference.

The Poisson parameter used here (5 seconds) is smaller than that calculated on the basis of our

photic stimulation data and may reflect a number of differences, including: (i) differences in the

neuronal response to varying task conditions (ii) differences due to relative microvascular and

macrovascular contributions to the hemodynamic response (secondary to different acquisition

parameters) or (ii) differences in motor, versus visual cortex, hemodynamic response.

Validation in terms of phase shifts

    A simple and powerful way to estimate the delay associated with the hemodynamic response is

to compute the phase shifts of the largest Fourier component of the input sequence at each voxel.

The results of this analysis are shown in Figure 8, as a distribution of phase differences between

the contrast [c(t)] and the signal [x(t)], over all intracranial voxels.  It is seen that distribution is

broad, but centered on the delay estimated on the basis of temporal smoothness alone.

Anecdotally, it appears that the longer delays (greater phase-differences) are characteristic of

regions that would be more subject to macrovascular effects (see next section).

The effects of changing λ

   In this final section we present a brief analysis of the effects of changing λ .  To assess the

sensitivity, of detecting significant correlations, to changes in the parameter λ, we repeated the
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analysis based on ζ(0) while systematically increasing λ from 0 to 16 seconds in 0.1 second steps.

We used the 'exceedence proportion' as an index of the overall or 'omnibus' sensitivity to

significant correlations.  The exceedence proportion is the proportion of voxels in the SPM{z} that

are above threshold.  This exceedence proportion has been used for some years as a rough guide to

the omnibus significance of SPMs (Friston et al 1990) and has recently been the subject of some

rigourous statistical analysis (Worsley & Vandal - submitted).

    The results of this analysis are presented in figure 9 (top).  The first thing to note is that the

greatest exceedence proportion is obtained for values of λ in the range 6 - 8 seconds.  The value of

used in previous section (7.69) is marginally suboptimal (the best value was 6.6 seconds).  One

explanation for this was found in a closer analysis of these results:

   If the optimal value of λ is computed for each voxel, one observes a systematic and spatially

ordered change as one moves from striate cortex to extrastriate cortex, with the extrastriate cortices

preferring a shorter delay and dispersion.  In other words some regions of occipital cortex respond

in a more acute and phasic way, to the same sensory input, than do others.  Figure 8 (lower right)

shows these voxel-specific optimal values of λ, for all voxels that showed a reasonable correlation

with the convolved contrast (non corrected threshold of p = 0.001 - lower left).  This result is not

surprising given the reported evidence for phase shifts in response profiles (of several seconds) in

MRI data (Bandettini 1993b).  What is surprising here, is that the extrastriate regions appear to

respond before primary visual cortex does.  There are obviously many potential neuronal and

hemodynamic explanations for this (e.g. slice reentrant large draining vessels), however one

interesting possibility is that V1 responses are modulated by reentrant connections (Edelman 1978)

from extrastriate regions.  This particular aspect of inter-regional dynamics will be addressed in a

subsequent paper.

   In conclusion, based on the exceedence proportion, the approach appears robust as long as λ is

within a second or so of the real delay and dispersion.
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Discussion

   We  have described what we consider to be a reasonable characterization of MRI time-series in

terms of regionally specific correlations between a sensorimotor or cognitive input and the

hemodynamic response.  The approach  is based on the correlations between the MRI signal and

the input sequence convolved with an estimate of the hemodynamic response function.  The

hemodynamic response function (in this paper) was assumed to be Poisson and was determined

using the observed autocorrelations in the physiological data (having removed stimulus locked

components).  In order to give this approach statistical validity it was brought into the framework

of statistical parametric mapping by (i) using a statistical parameter that tests for significant cross-

correlations (between sensory input and physiological response) in the presence of intrinsic

autocorrelations and (ii) using established thresholding techniques to render the probability of

finding a significant region, by chance, suitably small (0.05).  In particular the proposed statistic

ζ(0) has a Gaussian distribution under the null hypothesis and the resulting map of ζ(0) constitutes

a SPM{z}.  ζ(0) is simply the correlation between convolved sensory input and hemodynamic

response, scaled by a factor which can be thought of as the square root of the effective degrees of

freedom ν. ν is a function of the distribution and overlap of the two processes in frequency space.

   One important aspect of this work is that the hemodynamic response function, or temporal point

spread function, is estimated without reference to any assumed input (it is estimated using intrinsic

autocorrelations in the physiological data only).  Any estimation based on the sensory input would

clearly result in a rather circular exercise, in that the technique would be biased towards the input

function used.

   There are a number of alternative approaches to the problem of detecting significant cross-

correlations, some of which we have evaluated.  One obvious approach is to use the maximum

cross-correlation between c(t) and x(t) over some reasonable interval γcx(τ)max.  This is simply
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achieved by computing γcx(τ) and thresholding in space and time according to eqn(14).  For slice

data the SPM{γcx(τ)} represents a three dimensional process and for volume MRI data the

corresponding SPM would be four dimensional.  We have tried this approach and found it to be

less sensitive and less robust than the one we have presented.   Another test for significant cross-

correlations would be to integrate γcx(τ) over some reasonable interval, or more generally take a

weighted sum over an interval.  In fact the method described in this paper is exactly equivalent to

taking a weighted sum of γcx(τ), where the weighting is defined by the hemodynamic response

function h(τ).  This can be seen by noting that the weighted sum of the cross-covariance function is

obtained by the three-way convolution [ c(t) ⊗  x(t) ] ⊗  h(τ ).  By the commutivity of the

convolution operator (⊗ ) this is equal to [ c(t) ⊗   h(τ) ] ⊗  x(t).  The latter expression represents

the cross-correlation between the convolved contrast and x(t), which is precisely what has been

used.

   The choice of a Poisson form for the hemodynamic response function means that delay and

dispersion are totally confounded.  We have examined the effects of varying the assumed delay and

dispersion separately, using the exceedence proportion as an measure of omnibus sensitivity.  In

these analyzes we used the gamma distribution, which has two parameters and allows the

independent manipulation of mean and variance.  We do not report the results of this analysis

because they did not contribute any significant insight.  In general the exceedence proportion

showed exactly the same dependence on delay as for the Poisson form.  The dependence on

dispersion was much less marked.  We could have used a Gaussian response function and set the

delay equal to dispersion (for large values of λ this and the Poisson function are the same).  The

aesthetic advantage of the Poisson function is that it only exists for positive lag (τ).

  There are obviously many variants on the details we have presented here.  The central tenets of

the approach are: (i) The assessment of regional specific associations between neuronal activity and
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a stimulus or task parameter in terms of correlations.  (ii) The appropriate correlation is between the

observed hemodynamic response and the hypothesized input which has been convolved with a

response function.  (ii) The response function is specified without reference to an assumed input.

(iv) Care is taken to ensure that, in the absence of any response, intrinsic temporal and spatial

autocorrelations do not subtend spurious correlations (i.e. the experiment-wise false positive rate is

maintained at a suitably low level).  Within these constraints there are a number of variants which

deserve mention.  First, in the analysis above, it was assumed that the response function and

intrinsic autocorrelations were the same for all voxels.  An identical analysis performed, in parallel

for each voxel, would allow for regional variation in the response function.  Our analyses (see last

section) suggest these regional variations can be substantial.  This extension would certainly

increase sensitivity but would require long time-series, to ensure robust estimates of the intrinsic

spectral density gx(ω).   A second variant would involve estimating the response function on the

basis of independent data; for example a second study or by splitting the same study into two

halves and using the SVD or PCA approach and least squares deconvolution - Jim Haxby

(personal communication).

   Although we used temporal smoothness to estimate both the intrinsic spectral density of the MRI

signal and the response function, it is important to note that the first application is mandatary, the

second is not:  Any response function will, under the null hypothesis, render the distribution of

ζ(0) Gaussian.  Despite the fact that sensitivity to real change will be optimized when the

dispersion or variance of the response function 'matches' the intrinsic autocorrelations, there is no

statistical requirement for this matching to be implemented.  In other words one is free to choose

whatever response function one likes.  Complicated biphasic response functions are attractive in

the sense they are capable of modeling the 'undershoot' effect.  However the data did not suggest

that this extension was justified in the examples above.
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   One particular constraint imposed by a Poisson form is that delay and dispersion are yoked.  This

may be an inappropriate for some data and this constraint should not be considered a cornerstone

of the proposed method.  One particular fallacy of linking the delay and dispersion is revealed

when considering the effect of temporal smoothing of the data to increase signal to noise.  Here the

underlying response function will be subject to this smoothing and its effective dispersion will

increase.  This would be correctly detected and modeled by post hoc  estimates of smoothness.

However the 'correct' delay will not have changed.  In some instances it may be best to fix the

response function to some appropriate delay and allow its variance to be dictated by σt2 (e.g. using

the gamma distribution).

   In the method presented the impact of thermal noise was suppressed by temporal smoothing at a

data pre-processing stage.  With longer time-series it may be possible to adopt a more formal

approach, by segregating the data into an uncorrelated white (or Raleigh) noise and a physiological

autocorrelated process.  Many linear devices exist for this sort of analysis (e.g. auto-regressive and

moving average models), however they are usually not considered in the context of very short

time-series.

Correlations or categories ?

   The principle of correlating sensorial or behavioural parameters with cerebral excitation has a

long history in neuroscience, from the days of Goltz and Ferrier (e.g. Ferrier 1875, Goltz 1881,

Phillips 1984) to modern day approaches which use exogenous stimulation; e.g. magneto-

simulation or endogenous activity (PET and MRI).  Correlations in micro-electrode recording and

functional imaging data have received special attention recently, as they are a possible index of

functional and effective connectivity (Gerstein et al 1969, Friston 1993b).

   Although there is a fundamental equivalence between testing for specific time-dependent changes

with contrasts in analysis of (co-)variance of PET data and correlating a time-dependent parameter
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with MRI data (see Friston et al 1993a for a concrete illustration of this point), it is important to

acknowledge the differences:  MRI data represent time-series that lend themselves directly to signal

processing.  For example in this paper, using a few standard results from the theory of stochastic

processes, one can solve the problem of detecting cross-correlations in the presence of

autocorrelations and avoid what could have been a discursive and dense statistical analysis.

    This paper has focused exclusively on correlations as a means of detecting significant

activations.  An alternative, found in the recent functional MRI literature, is to categorize the MRI

time-series into activation and baseline scans and express the mean difference in some form.  There

have been profound reservations about this approach related to the observation that the residual

MRI signal, around the mean for each stimulus-cycle, is not normally distributed (John Baker -

personal communication).  The analysis presented in this paper concurs with these reservations:

While the residual variability about the convolved contrast y(t) is normally distributed, the

probability that it will be similarly distributed about a horizontal line running from stimulus onset to

offset is low.  The MRI time-series reflects a true dynamic response to an input, characterized by

its response function.  To pretend that this response, following stimulus onset, constitutes a single

category is not really tenable.  The proper way to conceptually categorize these time-series, is in

terms of offset from stimulus onset.  For example the set of first scans after stimulus onset is a

different category from the set of second scans following stimulus onset.  The residuals about the

means of these categories will be normally distributed.  Note that the convolved contrast implicitly

assumes the latter form of categorisation because only these scans have the same values of y(t).

   Implicit in phase-shifting (as a tool to estimate intrinsic autocorrelations) is the requirement that

stimulus cycles are repeated over and over again.  There is a fundamental point to be made here:  If

one wants to implement intra-subject signal averaging in its broadest sense, then multiple

presentations of the same stimulus-cycle are obligatory (the more the better).  This places

significant constraints on experimental design.  The key theme is, again, that the object which is
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averaged is a complete stimulus-cycle not repeated scans within a cycle.  A failure to recognize this

will sacrifice all the rich nonlinear information, about an evoked neuronal and hemodynamic

transient, for the apparent ease of simple categorical comparisons.  Ironically this nonlinearity

invalidates a parametric approach to averaging scans from the same stimulus-cycle (see above).

   In the context of MRI data, correlational approaches offer a number advantages over alternative

approaches.  One key issue is that the correlation between sensory input and hemodynamics will

not be sensitive to any artifact that is orthogonal (independent) to the input.  These artifacts  include

movement artifacts and low frequency aliasing artifacts due to an interaction between the repeat

time and cardiac, respiratory and heart rate variability (HRV) cycles.   The proposed approach has

one interesting feature with regard to movement artifacts; because the effect of movement on signal

is not subject to delay or dispersion (whereas the effect of evoked neuronal activity is), convolving

the contrast with a hemodynamic response function will render the correlations insensitive to

movement associated with changing stimuli or tasks.

  In conclusion we hope to have presented some reasonable solutions to a relatively simple

problem, namely how to identify regionally specific correlations between sensory, cognitive or

behavioural parameters and cerebral physiology measured with functional MRI.
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Legends for Figures

Figure 1 The analysis of a simulated data set

   Top left:  The assumed hemodynamic response function h(τ) which has a Poisson distribution

with parameter 7.37 seconds.  Top right: The original square wave contrast [broken line - c(t)],

the contrast convolved with assumed response function [solid line - y(t)] and the response of the

simulated voxel data x(t) that best correlated with the convolved contrast (dotted line).   Bottom

left:  The distribution (over voxels and time) of ζ(τ) calculated according to eqn(9) (dotted line).

This distribution is indistinguishable from that predicted theoretically (solid line).  The broken

vertical line is the threshold that any value would have to reach to be considered significant at p =

0.05 according to eqn(14).  Bottom right:  The corresponding SPM(z), a statistical parametric map

of ζ(0).  The gray scale is arbitrary and has been scaled to the maximum and minimum of the

SPM.

Figure 2 Actual and assumed intrinsic autocorrelation and spectral densities

   Empirical estimates of the intrinsic autocorrelation function and spectral density compared with

those based on temporal smoothness.  Left:  The autocorrelation function of the difference between

the MRI time-series from one stimulus cycle and another (phase-shifted differences), averaged

over all voxels and all pairs of cycles (broken line).  The autocorrelation function obtained by

convolving an uncorrelated innovation with a Poisson function based on the measured temporal

smoothness is also shown (solid line).  Right:  The corresponding empirical (dots) and assumed

(solid line) spectral densities of the phase-shifted differences.

Figure 3 The analysis of a real data set
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   As for Figure 1 but using real data.  In this case the distribution (lower left) is for ζ(0) (dotted

line) and is dramatically skewed with respect to the distribution predicted under the null  hypothesis

(solid line).

Figure 4 Thresholding the SPM{z}

   Left:  The SPM{z} from Figure 3 is presented as a surface rendering, with the corrected

threshold [correlated for multiple non-independent comparisons according to eqn(14)].  The

resulting 'excursion set'  is highlighted on the right and includes V1 and several extrastriate regions

according to the atlas of Talairach and Tournoux (1988).

Figure 5 A null analysis of real data

   Exactly as for Figure 3 but with a change to the contrast (the 'on-off'' cycle period has been

reduced from 20 scans to 16 scans).  The impact on the distribution of ζ(0) (lower left) is clearly

evident.

Figure 6 Estimating the response function directly

   Top left:  The first spatial mode or eigenimage of the real data.  The gray scale is arbitrary and

has been scaled to the image maximum.  Darker means a higher loading.  Only positive loadings

are shown.  Note the correspondence between this profile and the significantly 'activated' regions

in figure 3.   Top right: The assumed input c(t) (solid line) and the response of the first mode or

eigenimage (dots).  Lower left: The response function based only on the intrinsic temporal

smoothness (a function of the variance of the first derivative) of the MRI data (broken line) and the

response function obtained by least squares deconvolution (dots), based on an assumed input c(t)

and the first mode's response.   Lower right: The actual response (dots) and the response predicted
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using the Poisson response function (broken line) and the least squares deconvolution estimate

(solid line).

Figure 7 Transfer functions

   Left:  The modulation transfer function expressed as the square of the frequency representation of

a hemodynamic response function.  Right:  Relative activation expressed as a function of 'on-off'

cycle length.  The data are copied from the graphical data in Bandettini (1993b) and the solid line

represents that predicted with a hemodynamic response function of Poisson form and parameter 5

seconds.

Figure 8 Phase differences and delay

   The distribution of phase differences between the contrast and the response at each voxel.  The

phase difference was computed for the largest Fourier component of the contrast (input).  The

vertical broken line is the delay estimated on the basis of temporal smoothness.

Figure 9 The effects of changing the response function

  Upper left:  The exceedence proportion (number of voxels above threshold p = 0.001) as a

function of  λ.  Lower left:  The SPM{z} thresholded at a descriptive (non-corrected) level of p =

0.001 (one tailed).  In this instance the voxel values are the largest ζ(0) obtained over a range of λ .

Lower right:  The optimal value of λ  for all voxels surviving a p = 0.001 threshold (voxels

highlighted on the Lower left).   The optimal value of λ is defined as that which gives the greatest

ζ(0).  The gray scale is arbitrary with small values of λ (quicker and more acute responses) being

brighter.  Note that V1 (centro-medial dark areas) appear to be subject to the greatest delay and

dispersion.  



39 Friston et al


