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Abstract

This article gives an overview of the different functional brain imaging methods, the kinds of questions these methods try to address and
some of the questions associated with functional neuroimaging data for which neural modeling must be employed to provide reasonable
answers.q 2000 Published by Elsevier Science Ltd.
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1. Introduction

This special issue of Neural Networks represents the first
effort at communicating a series of articles that employ
neural modeling techniques in the context of data obtained
using functional brain imaging methodologies. Functional
neuroimaging affords a new departure for computational
neuroscience, for until rather recently, the vast majority of
neural modeling studies focused on understanding electro-
physiological data acquired from microelectrode recordings
in nonhuman animals. As we hope the subsequent articles
demonstrate, functional brain imaging data are unique in a
number of respects, including their richness and complexity,
and understanding these types of data presents a formidable
challenge that only computation modeling can help over-
come.

This article provides a brief overview of the different
functional brain imaging methods, the kinds of questions
these methods attempt to address and some of the questions
associated with functional neuroimaging data for which
neural modeling must be employed to yield reasonable
answers.

As we proceed, a few important points ought to be kept in
mind. First, most functional neuroimaging studies are
performed on awake, human individuals who often are
engaged in some type of sensory, motor or cognitive task.
The ability to perform these types of studies has essentially

produced a conceptual revolution in the study of human
cognition. For the first time, we can quantify most of the
brain’s activity as specific behaviors are carried out in both
normal subjects and in neurological and psychiatric patients.
Second, until recently, almost everything we knew about the
neurobiological substrates of brain function came from
investigations of single neural entities. That is, the standard
approaches recorded data from a single brain region (or
neuron), or investigated the effects of a single lesion. As
we shall see, functional brain imaging data essentially are
collected simultaneously from much of the brain. This is
important, for it means that we are now in a position to
think about how networks of interacting brain regions func-
tion so that specific cognitive tasks can be carried out. It is
perhaps this feature of functional brain imaging data, more
than any other, that compels the need for neural modeling.

2. A brief overview of functional brain imaging

The various types of functional neuroimaging methods1

are based on two quite different kinds of modalities: (1)
hemodynamic–metabolic— included here are positron
emission tomography (PET), single photon emission tomo-
graphy (SPECT), functional magnetic resonance imaging
(fMRI), all primarily used in humans, and optical imaging
and the autoradiographic deoxyglucose method, used
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mostly in nonhuman animals;2 and (2) electric–magnetic
— included in this domain are electroencephalography
(EEG) and magnetoencephalography (MEG), both used
mostly with human subjects. These two major types of
imaging — hemodynamic and electric–magnetic — have
fundamentally different characteristics, the most prominent
of which are concerned with temporal resolution and the
amount and kind of spatial information each provides.

2.1. Hemodynamic–metabolic methods

The hemodynamic–metabolic methods are based on the
hypothesis advanced more than a century ago by Roy and
Sherrington (1890) that changes in neural activity lead to
changes in both cerebral blood flow and oxidative metabo-
lism. Although the exact cellular mechanisms by which
neural activity is coupled to blood flow and metabolism
remain uncertain (for reviews, see Jueptner & Weiller,
1995; Magistretti & Pellerin, 1999; Villringer & Dirnagl,
1995), it currently is thought (e.g. Magistretti & Pellerin,
1999) that synaptic activity leads to increased glucose meta-
bolism, primarily to restore ionic gradients. In turn, energy
metabolism and cerebral blood flow are linked during
normal physiology, even though decoupling may occur
under certain pharmacological interventions, or under
some pathophysiological conditions.

Whatever the mechanisms, the different hemodynamic–
metabolic techniques image various aspects of the blood
flow-energy metabolism spectrum, and use these measure-
ments to infer something about local neural activity. PET
commonly is used to measure either regional cerebral blood
flow (rCBF) or regional cerebral glucose metabolism
(rCMRglc), the latter also being the quantity imaged by
the autoradiographic deoxyglucose method; fMRI is sensi-
tive to the oxygenation state of blood, as is optical imaging.

2.1.1. Positron emission tomography
The autoradiographic method for measuring rCMRglc in

nonhuman animals, developed by Sokoloff et al. (1977),
determines the uptake of radioactive deoxyglucose. This
method was modified for use with PET where [18F]-fluor-
odeoxyglucose generally is employed as the radiotracer
(Phelps et al., 1979; Reivich et al., 1979). With PET, it is
also possible to measure rCBF (Herscovitch, Markham, &
Raichle, 1983; Raichle, Martin, Hercovitch, Mintun, &
Markham, 1983). Although some human cognitive studies
that evaluate rCMRglc have been performed (e.g. Gur et al.,
1983), most measure rCBF.

PET dominated the field of functional neuroanatomy
from the early 1980s until the mid-1990s. The method

works by detecting the coincident gamma rays produced
by the annihilation of positron–electrons pairs. PET has
greater spatial and temporal resolution, as well as greater
sensitivity, than does SPECT (which detects single gamma
rays produced by gamma emitting radioligands; SPECT has
the virtue, however, that an on-site cyclotron is not needed
because radioligands can be purchased commercially).
Detecting the coincident gamma rays allows one to deter-
mine the line along which the radioactive decay occurred.
Following the administration of a positron-emitting radio-
nuclide, an image of the distribution of radioactivity in the
organ of interest (e.g. brain) is generated by combining the
coincidence detection of the annihilation gamma rays with
the reconstruction algorithms of computed tomography. The
spatial resolution of PET generally is between 5 and 10 mm.

One method commonly used for measuring rCBF with
PET involves the bolus injection of H2

15O. Because15O
has a half-life of 123 s, multiple scans (e.g. 6–12), each
representing a different cognitive condition, can be
performed in the same scanning session. Thus, the subject
can act as his own control, and because the time between
injections for rCBF is about 10–15 min, the subject can
remain fixed in the scanner, allowing comparisons between
scans to be made on a voxel-by-voxel basis (e.g. Fox,
Mintun, Reiman, & Raichle, 1988; Friston, Frith, Liddle,
& Frackowiak, 1991; Friston et al., 1995). Another advan-
tage of PET using H2

15O to measure rCBF concerns the time
interval over which data are collected. These imaging tech-
niques assume that rCBF or rCMRglc is in a relative
“steady-state” during the scanning session, and what is
observed is the time-integrated activation of a set of neural
circuits over the period of the study. For rCBF, the time
interval is about 20 s–1 min, depending upon the precise
technique used, whereas for rCMRglc, it is about 30 min.

2.1.2. Functional MRI
In the past 5 years fMRI has developed into the most

prominent method used for functional brain imaging.3 The
signal most commonly measured is the change in blood
oxygenation and blood volume resulting from altered neural
activity; this technique is called BOLD — blood oxygena-
tion level-dependent contrast (Kwong et al., 1992; Ogawa et
al., 1992). Deoxygenated hemoglobin acts as an endogenous
paramagnetic contrast agent. Increased blood flow reduces
the local concentration of deoxygenated hemoglobin
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2 The distinction we make between those techniques performed on
humans and those used with nonhumans has become increasing blurred
in the last few years; all the techniques used in humans also have started
to be employed in primates and other mammalian preparations; likewise,
imaging of intrinsic optical signals has been used on human subjects under-
going neurosurgical procedures.

3 The use of PET to image human cognition retains somewhat of an
advantage over fMRI in certain situations. Subject movement in the scanner
can be a greater problem for fMRI than for PET. Thus, it can be more
difficult to study some patient groups using fMRI than using PET. The
same is the case for language production studies. Because the gradient
coils used with fMRI can be quite noisy, auditory studies also are more
difficult with fMRI than with PET. Moreover, some parts of the brain,
particularly the ventral portions of the temporal and frontal lobes, are
affected by large magnetic susceptibility artifacts, resulting in a loss of
fMRI signal. Finding ways to work around these problems is an active
area of research (Howseman & Bowtell, 1999).



causing an increase in the MR signal on a T2p-weighted
image (Ogawa et al., 1993; for reviews, see Howseman &
Bowtell, 1999; Turner, 1995). These signals, which require
no injections of contrast media, can be detected using
conventional MRI scanners, although special hardware
(i.e. fast gradient coils) are needed. fMRI has a spatio-
temporal scale of about 1–3 mm and one or more seconds.
The lower limits on theeffective resolutionof fMRI are
physiological, being imposed by the spatio-temporal orga-
nization of evoked hemodynamic responses (2–5 mm and
5–8 s). To a first approximation one can think of the
observed hemodynamic response as a smoothed version of
the underlying neural activity.

Cognitive studies employing fMRI can be performed in two
ways: (1) in block designs, which are analogous to the way
PET studies are performed, either epochs of related stimuli are
presented, or else a continuous task is performed during the
scan; the ensuing signal is interpreted as a brain-state depen-
dent measure; (2) in event-related designs, responses to a
single type of stimulus can be measured by averaging the
responses to multiple presentations, analogously to evoked
potentials in electrophysiology (see below) (for reviews, see
D’Esposito, Zarahn, & Aguirre, 1999; Josephs & Henson,
1999; Rosen, Buckner, & Dale, 1998).

An example of a typical block design study is presented
in Fig. 1. Shown are fMRI data acquired from a single
subject using echo planar imaging (EPI)4 (Friston, 1997c).
A single brain volume was obtained every 1.7 s. In one
block, the subject listened to words presented at the rate of
60 words per minute (wpm) for 34 s, while in another 34 s
duration block, the words were presented at the rate of 30
wpm. Blocks were separated by periods of rest. Fig. 1
(left) shows the adjusted data (dots) and the fitted
responses to each condition (30 and 60 wpm) in left
peri-auditory cortex, demonstrating that there is more
neural activity for the higher stimulus presentation
rate. An event-related design is shown in Fig. 1
(right), where the fMRI data were acquired from the
same subject while listening to single words presented
once every 34 s. Fig. 1 (top) shows a map of the statis-
tically significant event-related responses displayed on a
T1-weighted structural MRI slice; a strong activation is
seen in the left peri-auditory region.
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Fig. 1. Examples of block and event-related fMRI designs. (Left) Block design. Subject, during separate 34 s fMRI scans (one volume acquired every 1.7s),
listened to words presented at the rates of either 60 (green) or 30 wpm (red). The fitted peri-auditory responses (lines) and adjusted data (dots) are shown. The
solid bar denotes when words were presented. Results show greater activity for the higher presentation rate. (Right) Event-related design. Same subject as in
the block design listened to single words presented once every 34 s (small black bar at bottom shows when the word was presented). Shown are the adjusted
fMRI data and the fitted response. Shown at the top is a map of the statistically significant event-related responses displayed on a T1-weighted structural MRI
slice. A strong activation in the left peri-auditory area is visible. (Adapted from Friston, 1997c.)

4 One of the significant technical developments that made fMRI possible
for cognitive studies was EPI (Mansfield, 1977), which allowed one to
collect fMRI signals very quickly; with this technique, data from a single
slice can be acquired in about 50 ms (Howseman & Bowtell, 1999).



2.2. Electric–magnetic methods

The second major type of functional brain imaging
measures either the electric or magnetic fields associated
with neural activity (for reviews, see Gevins, Smith,
McEvoy, Leong, & Le, 1999; Picton, Lins, & Scherg,
1995; Rugg, 1999). The oldest functional neuroimaging
methods applied to humans were those that recorded elec-
trical activity from the scalp. Included in this category are
EEG, which are continuous recordings lasting tens of
seconds to minutes, and event-related potentials (ERPs),
the electrical responses to specific cognitive stimuli; ERPs
typically correspond to about a second’s worth of neural
activity. Researchers also have been able to record the
magnetic fields generated by the electric current flows
related to neural activity, giving rise to the use of magne-
toencephalography (MEG) to study cognitive function (for
detailed reviews of these methods, see Gevins et al., 1999;
Hamalainen, Hari, Ilmoniemi, Knuutila, & Lounasmaa,
1993; Hari, 1996; Roberts et al., 1998; Taylor, Ioannides,
& Mueller-Gaertner, 1999; Wikswo, Gevins, & Williamson,
1993). These techniques produce signals with a temporal
resolution in the millisecond range, which is comparable
to that at the neuronal level.

Many ERP studies have used a standard set of scalp elec-
trodes (standard in the sense of number, 19 (called the 10–
20 system), and location on the scalp). Sources of electrical
activity spread by volume conduction in the brain, skull and
other tissues to these scalp electrodes, resulting in an elec-
tric potential at a skull location that is summed from widely
distributed electrical sources in the brain. In the last few
years, there has been increased use of larger electrode arrays
(e.g. 122 channels: Gevins, Le, Brickett, Reutter, &
Desmond, 1991) and spatial signal enhancing algorithms,
leading to much less spatial blurring.

The electrical activity associated with neuronal function
results in the generation of very small magnetic fields that
can be measured using detectors such as superconducting
quantum interference devices (SQUIDs). Current MEG
whole-head machines may employ 148 or more measuring
coils.

Because a single ERP/MEG response has a small magni-
tude compared to the background EEG/MEG noise, signal
averaging techniques are used to increase the signal-to-
noise ratio. The net effect is that an ERP/MEG waveform
represents the average over a number of trials (often
between 20 and 50) (Picton et al., 1995). As mentioned
above, this event-related approach has recently been applied
to fMRI data.

A number of techniques exist that attempt to use the
distribution of scalp-recorded electrical or magnetic activity
to infer the location of the sources (often represented as
simple electric or magnetic dipoles) that give rise to this
activity. This effort is nontrivial because of what is called
the inverse problem: there is no mathematically unique
solution to the problem of determining the number and loca-

tion of dipoles that could produce the measured surface
distribution of activity (Nunez, 1990). Furthermore, except
for the simplest paradigms, multiple sources need to be
located because complex cognitive tasks are likely to be
mediated by networks of interacting brain regions. In the
last few years, research has focused on using anatomic and
physiologic constraints, some obtained by PET or fMRI, to
aid in dipole localization (e.g. Dale et al., 2000; Heinze et
al., 1994; Toro, Wang, Zeffiro, Thatcher, & Hallett, 1994),
although there are a variety of problems that make this
difficult to do (for a discussion, see Rugg, 1999). Nonethe-
less, at present the electric–magnetic functional imaging
methods yield, at best, high temporal resolution data at a
few well-defined brain locations, whereas the hemody-
namic–metabolic methods produce low temporal resolution
data simultaneously everywhere in the brain, but with a
spatial resolution of a few millimeters. One of the main
challenges in functional brain imaging is to bridge the infor-
mation provided by these two methodologies, and this is
certainly one area where computational neuroscience may
play a central role (Horwitz & Sporns, 1994; Taylor,
Krause, Shah, Horwitz, & Mueller-Gaertner, 2000).

2.3. Functional brain imaging: what are the questions
usually asked?

The major questions usually asked of the hemodynamic
methods center on identification of the brain regions
involved in mediating a specific brain function. The elec-
tric–magnetic methods have excellent temporal resolution,
but since their ability to provide good spatial information is
poor, the major questions they used to address concern the
temporal dynamics of different sensory, motor and cognitive
functions.

2.3.1. Data analysis paradigms for the hemodynamic
methods

Two fundamental assumptions, each of which leads to a
different data analysis strategy, govern how functional brain
imaging data are used to make inferences about which brain
regions are involved in particular cognitive and sensorimo-
tor functions. The first, which leads to what has been called
the subtraction paradigm (Horwitz, 1994) hypothesizes that
different brain regions are engaged in different functions
(i.e. computations). This notion, called functional speciali-
zation (Friston, 1997c; Zeki, 1990), is the predominant
assumption used by most working neuroscientists today.
In PET/fMRI studies, this assumption is implemented by
comparing the functional signals between two (in its most
simple formulation) scans, each representing a different
experimental condition (Posner, Petersen, Fox, & Raichle,
1988). The loci of the large differences in signal between the
two presumably delineate the brain regions differentially
involved in the two conditions. An example of this approach
was given by the block design fMRI study illustrated in
Fig. 1 (Friston, 1997c). There the tasks of interest were
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listening to words at two different presentation rates (60 and
30 wpm, respectively). The results demonstrated that left
peri-auditory cortex had greater activity for the higher
presentation rate than for the lower, and that both resulted
in higher activity in this region when compared to rest.

Quite sophisticated experimental designs can be handled,
especially using fMRI. Their analysis requires a number of
steps involving image processing and statistical evaluation.
One commonly used method, Statistical Parametric
Mapping (Friston, 1997a) consists of modules for: (1)
executing various image preprocessing steps (e.g. correcting
for head movement); (2) mapping individual images into a
common anatomical space (usually referred to as Talairach
space, since it is based on the stereotactic atlas of Talairach
and Tournoux (1988)), thus allowing intersubject averaging
on a voxel-by-voxel basis; (3) using the general linear
model to perform univariate statistical tests at each brain
voxel; and finally (4) making statistical inferences about the
observed responses using distributional approximations
from the theory of Gaussian fields (Friston et al., 1995;
Worsley, 1994).

The second assumption leads to what has been termed the
covariance paradigm (Horwitz, 1994) and rests on the
notion of functional integration (Friston, Frith, Liddle, &
Frackowiak, 1993; Gerstein, 1970). The assertion here is
that the task represented by an experimental condition is
mediated by a network of interacting brain regions, and
that different tasks correspond to different functional
networks. Thus, by examining the covariance in brain activ-
ity between different brain areas, one can infer something
about which areas are important nodes in the network under
study, and how these nodes are functionally connected.
Because functional neuroimaging methods generally obtain
data simultaneously from multiple brain regions, they are
ideal and essentially unique for use with the covariance
paradigm. These two ways of looking at functional neuroi-
maging data complement one another; both are necessary to
thoroughly understand the functional imaging data resulting
from any experiment.

In PET/fMRI studies, the quantity that is determined
using the covariance paradigm is called the functional
connectivity (Friston, 1994), and it corresponds to the inter-
regional covariance or correlation in functional activity
within a specific cognitive task (Horwitz et al., 1992a)
(note: because PET and fMRI generally are spatially
smoothed, we can think of a single voxel as representing a
region, since it represents the activity in a local area around
it). Fig. 2 shows an example of the use of the covariance
paradigm to evaluate the functional connectivity between
rCBF in a single reference voxel and rCBF in all the other
voxels in the brain. The data shown come from a PET/rCBF
study (Horwitz, Rumsey, & Donohue, 1998) in which 17
normal subjects (in the task under consideration)
pronounced pseudowords while being scanned. The refer-
ence voxel is located in the left angular gyrus. In agreement
with the classic neurologic model for reading, which is

based on studies of patients with acquired reading disorders
(i.e. alexia), rCBF in the left angular gyrus shows strong
functional connectivity with rCBF in visual association
areas in occipital and temporal cortex, and with rCBF in
language areas in superior temporal and inferior frontal
cortex. In contrast, these strong functional connections are
absent in subjects with developmental dyslexia, which led to
the conclusion that dyslexia is characterized by a functional
disconnection of the angular gyrus that mirrors the anato-
mical disconnection seen in alexia.

The example just given shows the functional connectivity
between a single reference voxel and all other brain voxels.
Of course, one is often interested in the correlational struc-
tures that characterize the functional connectivity amongst
all brain voxels for multiple cognitive conditions. A number
of ways for obtaining these have been developed, including
principal components analysis (e.g. Friston et al., 1993;
Lagreze et al., 1993), multidimensional scaling (e.g. Friston,
1994), and the method of partial least squares (McIntosh,
Bookstein, Maxby, & Grady, 1996). A discussion of these
methods for characterizing distributed functional
systems in PET/fMRI data can be found in Friston
(1997b).

2.3.2. Analysis of EEG/MEG data
As stated before, the high temporal resolution of EEG/

MEG data leads naturally to using these techniques to
answer questions about the timing of cognitive processes.
Moreover, the amplitude of a specific waveform may differ
between experimental conditions or groups, suggesting that
the condition or groups utilize different cognitive processes.
Both timing differences and amplitude differences can refer
either to the scalp recorded fields, or to dipole sources that
have been localized to specific brain locations.

We shall use three language studies to illustrate these
points. Hagoort, Brown, and Osterhout (1999) review the
various ERP components that are related to how sentences
are parsed by the human brain. One such component is the
N400, a negative potential that peaks about 400 ms follow-
ing the presentation of certain stimuli, whose amplitude is
increased when the semantics of the word eliciting it is
inappropriate for the context of the sentence (Kutas & Hill-
yard, 1980). For example, the last word of the sentence “I
eat peas using a feather” would generate an N400, whereas
the last word of the sentence “I eat peas using a fork” would
not. Some have interpreted the N400 as representing the
manipulation of the semantic fit between the word and the
sentence in which it is found. The N400 generally is largest
for the scalp electrodes over posterior brain locations.

Differences in latency of a waveform, not amplitude, can
distinguish the processing of different types of word. As
Hagoort et al. (1999) show, closed-class words (e.g.
nouns, adjectives, verbs) elicit a slightly earlier N280 (a
negative ERP peaking about 280 ms after word presenta-
tion) than do open-class words (e.g. prepositions, conjunc-
tions, articles). The effect is largest over left anterior
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electrode locations. The interpretation of what this latency
difference means is still at issue, although the results do
suggest it may be attributable to differences in how open
and closed-class words are processed syntactically.

We now discuss an MEG study of visual word processing
by Salmelin, Service, Kiesila, Uutela, and Salonen (1996) in
which normal and dyslexic readers passively viewed single
words while being scanned with a whole-head MEG system
that employed 122 SQUID sensors. The magnetic signals
were used to determine the brain locations, orientations and
magnitudes of dipole current sources. A number of distinct
dipoles were identified, some of which had different laten-
cies of onset (see Fig. 3). One particularly noteworthy find-
ing concerned a dipole in the left temporo-occipital area,
where control subjects showed a strong activation about

180 ms following word presentation. The dyslexic subjects,
on the other hand, either failed to demonstrate this activa-
tion, or else if they did, it was with a slowly increasing late
response. Interestingly, this left temporo-occipital region is
an area found by Horwitz et al. (1998) to have strong func-
tional connections with the left angular gyrus in normal
readers, but not in dyslexics (see Fig. 2).

Finally, we should mention that EEG/MEG data can also
be evaluated by methods that examine something akin to the
functional connectivity measures that were discussed for
PET/fMRI. Assessing functional connectivity between
different cortical regions by evaluating the cross-correlation
between scalp electrodes has a long history (e.g. Adey,
Walter, & Hendrix, 1961; Barlow & Brazier, 1954; Gevins
et al., 1985; Livanov, 1977), and a variety of techniques
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Fig. 3. Example of an MEG study. Shown are magnetic responses to visually presented words from 100 ms before stimulus onset to 800 ms after it (the
responses from detectors in a helmet are shown from above, but flattened onto a plane) in a single control subject. The data were modeled by seven equivalent
current dipoles, identified at distinct latencies and shown on the brain drawings (lower right); each dot represents the location of the dipole, each tail the
direction of current flow. The amplitudes of these sources as a function of time are shown on the right. (From Salmelin et al., 1996, used with permission.)

Fig. 2. Example of functional connectivity analysis for PET. Shown are the correlation coefficients (functional connectivity) between rCBF in a reference
voxel in the left angular gyrus and rCBF in all other brain voxels in control (top) and dyslexic (middle) subjects during the pronunciation of visuallypresented
pseudowords. At the bottom are modified drawings of the corresponding axial slices from the Talairach atlas (1988) (the left side of the brain is on the left side
of each image; the top of each image is the front of the brain). The numbers at the sides of each row correspond to the distance (in mm) above or below the
intercommisural plane. The reference voxel is denoted by the black dot on the 24 mm slice. The intensity level (gray scale) corresponds to the value of the
correlation coefficient (the whiter the scale, the more positive the correlation), with significantly large positive correlations shown in red and large negative
correlations in cyan. Results show strong positive correlations between rCBF in the left angular gyrus and rCBF in visual association regions and in language
regions in temporal and frontal cortex in controls, but not dyslexic subjects. (Adapted from Horwitz et al., 1998.)



have been used. Different methods focus on correlating
various features of the spatiotemporal waveforms associated
with electric–magnetic activity. For example, one
commonly used approach evaluates the coherence, which
is simply the correlation between EEG signals at different
scalp sites in the frequency domain (e.g. Pfurtscheller &
Andrew, 1999). The amplitude of an EEG signal is thought
to provide a measure of the amount of synchrony of a loca-
lized neural population within range of the scalp electrode.
Coherence, on the other hand, reflects the dynamic func-
tional interrelation between spatially separated electrode
sites, and is assumed to correspond to synchronized activity
between electrical activity in distinct brain regions. Because
neural activity is quite dynamic, methods also have been
developed to examine coherence (Andrew & Pfurtscheller,
1996) or temporal covariance (Gevins et al., 1985, 1999;
Gevins & Bressler, 1988) for individual trials.

We give two examples to illustrate these approaches.
Weiss and Rappelsberger (2000) evaluated EEG coher-
ence during memory encoding of words. Words that
would later be correctly recalled showed larger coher-
ence between anterior and posterior sites than did
words not correctly recalled. This also was the case for
interhemispheric coherence. This pattern of coherence
was found for all frequency bands, except one of the
alpha bands (8–10 Hz). In a study that examined the
dynamically changing patterns of event-related covar-
iances during a task that required subjects to make a
finger response of a given pressure, indicated by a visual
cue, Gevins et al. (1989) found a pattern of covariances
during a 375 ms interval centered 687 ms post-cue that
preceded subsequently correct responses, and a different
pattern that preceded subsequently incorrect responses.
These results suggested the presence of a cortical
preparatory network, involving left frontal, midline
antero-central and parietal sites, that is needed for accu-
rate performance.

2.4. Two other methods of relevance

There are two other techniques for investigating human
cognition have become prominent recently, and are closely
tied to the functional brain imaging methods we have been
discussing. One is the imaging of intrinsic optical signals
(used primarily in nonhuman primates (Frostig, Lieke, Ts’o,
& Grinvald, 1990; Grinvald, Frostig, Lieke, & Hildesheim,
1988; Ts’o, Frostig, Lieke, & Grinvald, 1990), although
some studies in humans undergoing neurosurgical interven-
tion have been carried out (Haglund, Ojemann, & Hochman,
1992)). The second is trancranial magnetic stimulation
(TMS) (Cohen et al., 1998; Cracco, Cracco, Maccabee, &
Amassian, 1999; Jahanshahi & Rothwell, 2000; Pascual-
Leone, Walsh, & Rothwell, 2000), which has been used in
conjunction with functional brain imaging to help elucidate
functional connectivity (Paus et al., 1997).

2.4.1. Optical imaging
Although optical imaging is performed primarily in

nonhuman animals, including primates, it has a close
connection to the other hemodynamic–metabolic methods
discussed above. There are two optical imaging techniques
that have been widely used: (1) those employing voltage
sensitive dyes (Grinvald et al., 1988; London, Zecevic, &
Cohen, 1987); and (2) those based on the imaging of intrin-
sic optical signals (Frostig et al., 1990; Grinvald, Frostig,
Siegel, & Bartfield, 1991; Ts’o et al., 1990). It is the latter
that is of relevance both because this was the method used
for many important primate experiments, and because the
imaging of intrinsic optical signals can be accomplished in
human intraoperative studies (for a review, see Haglund,
1997). Generally, in this type of imaging, brain tissue
exposed after part of the skull is removed is illuminated
by light of a specific wavelength, and the reflected light is
measured by a charge coupled device camera. Brain activity
produces local optical changes in brain tissue that affect the
intensity of the reflected light. Although a number of factors
contribute, it is thought that, like fMRI BOLD, changes in
the concentrations of oxygenated and deoxygenated hemo-
globin due to local neural activity play a large role (Malonek
& Grinvald, 1996). Therefore, optical imaging, with its high
spatial and temporal resolution, is in a good position to
relate neural signals to the hemodynamic–metabolic
measurements of functional activity (Frostig et al., 1990).
For example, optical imaging has revealed the organization
of ocular dominance columns in the awake monkey over a
wide expanse of primary visual cortex (Grinvald et al.,
1991).

2.4.2. TMS
Although first developed in 1985 (Barker, Jalinous, &

Freeston, 1985), TMS has become a relatively popular
method for investigating the role different brain regions
play in human cognition only in the last few years (reviews
can be found in Cracco et al., 1999; Jahanshahi & Rothwell,
2000; Pascual-Leone, Bartres-Faz, & Keenan, 1999; Pasc-
ual-Leone et al., 2000). TMS uses an externally generated
changing magnetic field, applied by a coil placed over a
subject’s head, to induce electric currents in the brain. The
faster the rate of change of the magnetic field, the larger is
the induced current. Two types of TMS are generally
performed — single-pulse TMS5 and rTMS (repetitive
TMS, in which a series of pulses at rates up to 50 Hz are
applied). Single-pulse TMS appears to be completely safe,
but rTMS can be dangerous, possibly leading to seizures,
and strict guidelines for its use are employed (Wassermann,
1998). The spatial extent and depth of the brain area acti-
vated by TMS depend on a number of factors, including the
design of the stimulating coil, and are difficult to determine
with any precision. Although a study (Brasil-Neto,
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McShane, Fuhr, Hallett, & Cohen, 1992) applying TMS to
motor cortex reported that it was possible to distinguish
scalp positions 0.5–1 cm apart, the spatial extent of TMS
in human cognition experiments generally is much coarser
(Walsh & Rushworth, 1999). Likewise, the way in which
TMS affects neuronal function also is not well understood,
especially the manner in which neuronal populations are
affected by the induced currents. It has been suggested by
a number of workers (e.g. Pascual-Leone et al., 2000) that
the main effect of a TMS pulse is a quick synchronized
firing of neurons lasting a few milliseconds, followed by a
relatively longer-lasting (20–200 ms) GABAergic-
mediated inhibition.

There are three primary ways in which TMS has been
used to study human brain function (Pascual-Leone et al.,
2000): (1) inducing ‘virtual lesions’ by disrupting focal
neural activity during a task; (2) chronometry — applying
TMS to different brain locations at different times during a
task to help elucidate its time course; and (3) applying TMS
to one brain location and determining its effects elsewhere
as a way to assess functional connectivity. An example of
the virtual lesion method can be found in Epstein (1998),
who reviews his own and others’ research on using rTMS to
disrupt language function (mainly for the goal of replacing
the Wada test: Wada, Clarke, & Hamm, 1975 — the intra-
carotid injection of amobarbital during preoperative evalua-
tion for neurosurgery near language areas). He found that
rTMS can lead to speech arrest when applied to the facial
part of the motor cortex, although inducing a true aphasia is
rare. Interestingly, several studies have reported that TMS
can facilitate performance on some tasks, including picture
naming (Mottaghy et al., 1999; Toepper, Mottaghy, Breug-
mann, Noth, & Huber, 1998). In a noteworthy example
(Walsh, Ellison, Battelli, & Cowey, 1998), both disruption
and facilitation were found when TMS was applied to V5/
MT, a motion processing area in extrastriate visual cortex,
during different conjunction tasks. Subjects’ performance
was disrupted when the task involved motion processing
(the conjunction of color and motion), but was improved
when motion processing was irrelevant (the conjunction of
form and color in the presence of motion).

As an example of using TMS to study chronometry,
Cracco et al. (1999) provide an engaging set of findings
showing how one can trace the temporal flow of symbolic
information processing. It takes about 350 ms for a subject
to begin vocalizing in response to a visually presented
stimulus. Cracco et al. concluded that there is a 60 ms trans-
fer time between the retina and primary visual cortex (found
by applying single pulse TMS to occipital cortex at 20 ms
steps from 0 to 200 ms following stimulus presentation);
relay of the symbolic representation out of visual cortex
takes about 120 ms; a further 120–140 ms is required for
its transfer to and facilitation in frontal cortex; and, finally,
about 100 ms more is needed for initiation of voice onset.

Finally, we mention that TMS has been combined with
functional brain imaging, especially PET, to examine brain

functional connectivity (Fox et al., 1997; Ilmoniemi et al.,
1997; Paus et al., 1997). A study by Paus et al. (1998)
illustrates the method. Primary sensorimotor cortex was
stimulated by rTMS while subjects underwent PET. Each
scan consisted of the presentation of a different number of
10 Hz trains (5–30, in steps of 5). Both under the coil, and in
regions distant from the stimulation site (e.g. SMA, medial
parietal lobe), rCBF was negatively correlated with the
number of pulse trains. These findings were interpreted as
showing that TMS was modulating neural activity in an
interconnected neural system. In a similar vein, Ilmoniemi
et al. (1997) demonstrated that EEG signals in brain areas
far from the site of TMS stimulation can be altered.

3. A brief overview of neural modeling as applied to
functional brain imaging

In retrospect, it seems strange that until recently there
were few attempts to apply neural modeling techniques to
functional brain imaging data.6 Certainly, the data acquired
from PET and ERPs were sufficiently complicated and
multi-faceted that neural modeling would seem an appro-
priate way to deal with the complexity and to provide
conceptualizations for the data. We suspect that the reasons
this did not occur included the following: (1) most neural
modelers were focused on neuronal, electrophysiological
recording studies; as a group, there were not familiar with
the data and questions arising from functional brain
imaging; (2) most functional brain imagers were unaware
of the advances being made in computational neuroscience,
and thus, were not in a position to employ these techniques;
(3) as we have stressed earlier, we believe that until recently
both communities tended to think in terms of studying one
neural entity (region, cortical column, neuron, synapse) at a
time; as a result, neuroimagers failed to see the need for
methods that would deal with interacting brain regions,
and neural modelers failed to see the potential of functional
brain imaging for providing the kind of data that would
require network-level analyses; and finally (4) the timing
may have been bad, in that computational neuroscience
and functional brain imaging were both becoming more
mature enterprises at roughly the same time; often, an
immature area of research draws upon the resources found
in more mature areas for support.

3.1. Neuromodeling and PET/fMRI

There are three primary ways in which neuromodeling
has been used in conjunction with PET and fMRI data
(for overviews, see Horwitz & Sporns, 1994; Horwitz,
Tagamets, & McIntosh, 1999). The first concerns efforts
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at determining how local changes in neural activity are
transformed into changes in blood flow and metabolism.
The second way has been through the employment of
modeling to determine the systems-level networks mediat-
ing specific cognitive tasks (Friston, 1994; Horwitz, 1990;
McIntosh & Gonzalez-Lima, 1991, 1994). Finally, in the
last few years, several groups have begun to construct
large-scale neurobiologically realistic models with which
to simulate PET and fMRI studies, allowing one to relate
systems-level results to those obtained at the neuronal and
neural ensemble level (Arbib, Bischoff, Fagg, & Grafton,
1995; Tagamets & Horwitz, 1998; Taylor et al., 2000;
Taylor & Taylor, 1999); see also Monchi et al. (2000) and
Tagamets and Horwitz (2000).

The first way alluded to in the previous paragraph can be
discussed very quickly. We misspoke in saying that neural
modeling has been used to help elucidate the coupling
between changes in neural activity and their hemody-
namic–metabolic consequences, because essentially not
much research of this kind has been performed. Since Roy
and Sherrington’s hypothesis (Roy & Sherrington, 1890)
that changes in neural activity would lead to changes in
blood flow and oxidative metabolism, there has been exten-
sive experimental investigation on this topic. A large
number of neurochemicals have been found that affect
blood flow and/or metabolism (e.g. adenosine, nitric
oxide, lactate, and most importantly, several neurotransmit-
ters, including glutamate, acetylcholine and noradrenaline).
A major difficulty appears to be that metabolism and blood
flow, although normally coupled under physiological condi-
tions, are apparently regulated by separate and possibly
multiple mechanisms (see, for example, Villringer &
Dirnagl, 1995 for a more detailed discussion). We are thus
in the position where a large number of factors, many inter-
acting with one another, mediate the couplings between
neural activity and blood flow, neural activity and metabo-
lism, and blood flow and metabolism. This is the type of
situation where computational modeling may be quite help-
ful in determining which factors are major, which are minor,
and the conditions under which the normal couplings are
maintained (Horwitz & Sporns, 1994). Understanding the
nature of these neural activity-metabolism/blood flow
couplings is crucial because it is the foundation on which
our interpretation of what a change in PET/fMRI activity
means in terms of neural activity rests. For example, it is
thought that the hemodynamic–metabolic measurements
associated with PET and fMRI reflect synaptic activity to
a larger extent than neuronal activity (Jueptner & Weiller,
1995; Mata et al., 1980), and because of this, increased
excitatory and inhibitory synaptic activity probably result
in increased PET or fMRI activity (Ackermann, Finch,
Babb, & Engel, 1984; Horwitz & Sporns, 1994; Jueptner
& Weiller, 1995). The conditions, and brain regions, where
this is indeed the case, however, have yet to be fully estab-
lished, and may in fact be quite difficult to determine experi-
mentally. Robust conclusions from computational modeling

can thus play a central role in helping to design appropriate
experiments for addressing these issues.

3.1.1. Systems-level modeling of PET/fMRI data
As mentioned above in our discussion of the covariance

paradigm, an analysis of brain functioning in terms of
networks, rather than single regions, is necessary in order
to fully grasp the complexities associated with cognition
(Damasio, 1989; Horwitz, Soncrant, & Haxby, 1992b;
Mesulam, 1990; Taylor, 1999). Indeed, Fuster (2000) has
argued, along with others, that the concept of module, origi-
nating from studies of sensory physiology, has been over-
extended when applied to the neural substrates of higher
level cognition, and perhaps the better paradigmatic notion
is that of network. Thus, it is not surprising that the most
extensive use of neural modeling with PET/fMRI data has
been at the systems-level, where the main goal has been to
determine what are the critical brain regionsand the
strengths of their interactionsinvolved in mediating specific
cognitive tasks. However, a major problem with using just
the interregional covariances to infer network behavior is
that large covariances in interregional activity can come
about by both direct and indirect effects. That is, two regions
may have a large correlation in activity if they are anatomi-
cally linked, and that link is functional in a specific task.
However, they also could have a large correlation if they are
not directly connected, but rather receive inputs from a third
region, or are indirectly connected via other regions. Or, one
could have combinations of all these going on simulta-
neously. The key distinction here is between functional
and effective connectivity (Friston, 1994). The functional
connectivity between two brain regions simply tells us
how correlated are their activities. Their effective connec-
tivity, on the other hand, is the explicit influence that one
region’s activity has on the activity of the second along the
direct anatomical pathway linking the two.7

The evaluation of effective connectivity requires the use
of systems-level computational modeling (Buechel & Fris-
ton, 1997; Horwitz, 1994; McIntosh & Gonzalez-Lima,
1994; Taylor, 1999). For a specified set of brain regions,
explicit data about their anatomical connections (often
based on the results from neuroanatomical studies in nonhu-
man primates) are combined with their task-specific inter-
regional rCBF8 covariances. Some type of computational
optimization analysis is then used to determine the func-
tional strengths (i.e. the effective connectivities) of each
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anatomical link between regions that provide the closest
match between the experimentally determined interregional
covariances and those based on the computed functional
strengths. The most popular approach for performing this
analysis uses a technique called structural equation model-
ing (Hayduk, 1987; Joreskog & Sorbom, 1979). The final set
of computed effective connections defines the functional
network corresponding to each task under study. Of course,
this is a model in the true sense in that only a few brain
regions are included. One is explicitly attempting to distin-
guish those regions whose interactions are central to the
tasks under investigation from those whose involvement is
peripheral. As with all modeling efforts, one is essentially
guessing what is important. However, statistical estimates
of goodness-of-fit can be obtained that allow one to infer
how reasonable the model is, and whether two or more
functional networks differ.

An example of this type of neural modeling is given by
the study of McIntosh et al. (1994), which used rCBF/PET
data from two tasks employed to distinguish the neural
substrates for object and spatial visual processing (Haxby
et al., 1991; Ungerleider & Mishkin, 1982). Both tasks
were match-to-sample; for object vision, the stimuli were
faces, and for the spatial processing task, the stimuli
consisted of a dot relative to a double line. Data from
nonhuman primate studies (Ungerleider, Gaffan, & Pelak,
1989; Ungerleider & Mishkin, 1982) had suggested that
visual processing for the object features (e.g. color,
shape) takes place along a ventral cortical pathway, from
occipital cortex through temporal cortex, and thence into
the frontal lobe; the pathway for spatial vision follows a
dorsal route from occipital to parietal to frontal cortex.
McIntosh et al. (1994) found that for the object vision
task the strongest positive effective connections were
indeed in the ventral pathway, whereas for the spatial
processing task, the largest positive effective connections
were in the dorsal pathway. Moreover, they found that
functionally, both visual processing pathways were not
totally independent; strong effective connections between
the two were present in both tasks.

Recently, Buechel, Coull, and Friston (1999) demon-
strated that the effective connections linking the two visual
cortical pathways can change in individual subjects during a
single fMRI scanning session. They performed a study in
which subjects were instructed to learn the spatial locations
of a set of visual objects. During each scanning session,
subjects were given eight trials for each of 10 object-loca-
tion combinations. Using structural equation modeling, they
found that the effective connection between posterior parie-
tal cortex (in the dorsal pathway) and posterior inferior
temporal cortex (in the ventral pathway) increased in
value during the scanning session. Furthermore, the time
course of these changes in effective connectivity was highly
correlated with individual learning performance, suggesting
that the associative learning was being mediated by the
interregional interactions.

3.1.2. Large-scale neural modeling and PET/fMRI data
The interregional effective connectivity determined by

systems-level modeling, as discussed in the previous
section, provides information about how hemodynamic
activity in one brain region is related to that in another
brain region. Likewise, the subtraction paradigm tells us
what brain areas have significantly different hemodynamic
activities between two or more experimental conditions. A
number of problems makes it difficult to use these results to
gain information about the underlying neural activity during
different components of the cognitive tasks being studied
(Horwitz & Sporns, 1994; Horwitz et al., 1999; Taylor et al.,
2000). We have already mentioned the lack of understand-
ing of the mechanism(s) by which local changes in neural
activity lead to local changes in blood flow and metabolism.
There are other problems as well: (1) spatial resolution —
even with fMRI, the spatial resolution of human brain
imaging devices is large compared with the size of neurons
or cortical columns; this means that multiple and diverse
neuronal populations are lumped together in any resolvable
PET or fMRI region of interest (even a single voxel); (2)
temporal resolution — the temporal resolution for electro-
physiological activity is on the order of milliseconds,
whereas the temporal dimension for PET and fMRI is on
the order of seconds to tens of seconds; (3) synaptic vs.
neuronal activity — activity measured in nonhuman animal
studies by single unit electrical recordings generally reflect
the spiking behavior of neurons, whereas, the hemodynamic
measurements associated with PET and fMRI, as mentioned
above, most likely correspond to synaptic activity more than
to the spiking activity of neurons (Jueptner & Weiller, 1995;
Mata et al., 1980), although these two electrophysiological
features are related; this also means, as indicated before, that
both excitatory and inhibitory synaptic activity may result in
similar PET or fMRI signals (Ackermann et al., 1984;
Horwitz & Sporns, 1994; Jueptner & Weiller, 1995); and
(4) connectivity — because the hemodynamic-measured
activity most likely reflects synaptic activity in a brain
region, this activity is a mixture of local synaptic activity
plus afferent activity coming from all the regions that
project to the region being examined; this makes the inter-
pretation of why a region is active in one task compared to a
second difficult to relate to other ways that are used to
understand the role that a specific brain region plays in a
cognitive function (e.g. lesion analysis and electrical record-
ings in nonhuman primates).

Recently, several groups have attempted to develop ways
to bridge this divide between PET/fMRI signals on one
hand, and neuronal activity on the other. Taylor et al.
(2000) presented a general mathematical formulation for
the dynamic behavior of coupled neural networks. Making
a number of simplifying assumptions about the underlying
neural activity and its relation to blood flow, they showed
how synchronized neural activity between coupled popula-
tions can lead to the type of covariance structures that form
the basis for analyzing systems-level networks using
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structural equation modeling. Specifically, the detailed
manner in which connection strengths can be related to
underlying neural synaptic weights and to learning
processes was developed. The need to extend the usual
structural equations was indicated by considering the inhi-
bitory and excitatory neural populations separately. The
resulting structural equation models represented the neural
activity as hidden variables, allowing the manner in which
neural activity contributed to the blood flow measurements
to be determined from experiment. Finally it was shown
how the temporal features of neural activity could be
included so as to lead to predictions for EEG/MEG measur-
ing techniques.

A second approach, developed by Arbib et al. (1995) and
Tagamets and Horwitz (Horwitz & Tagamets, 1999; Taga-
mets & Horwitz, 1998), aims at constructing neurobiologi-
cally realistic large-scale neural models with which
simulated PET and fMRI studies are performed. These
multileveled models contain a number of interacting brain
regions, each of which is constructed out of multiple neuro-
nal units (cf. Tononi, Sporns, & Edelman, 1992), and can
therefore serve as platforms with which one tries to relate
neural activity directly to PET/fMRI activity. For example,
the Tagamets–Horwitz simulation model (Tagamets &
Horwitz, 1998) consists of several brain regions correspond-
ing to components of the ventral cortical visual processing
stream discussed in the previous section (V1/V2, V4, IT and
prefrontal cortex). Each of these regions in turn is comprised
on multiple basic elements, each of which can be thought as
representing a cortical column. Every basic element is made
up of an excitatory–inhibitory interacting pair of neuronal
units. Regions of the model differ in how these canonical
elements are connected to one another. Primate neuroana-
tomical data, when available, were used to determine the
strengths of the connections within each area, and between
areas (both feedforward and feedback). It was demonstrated
(Tagamets & Horwitz, 1998) that this model was able to
perform a delayed match-to-sample task for simple shapes,
while concurrently exhibiting electrical activities in each
brain region similar to those seen in monkeys performing
similar tasks (Funahashi, Chafee, & Goldman-Rakic, 1993;
Fuster, 1990; Haenny, Maunsell, & Schiller, 1988). A simu-
lated PET/fMRI scan consists of multiple trials, each of
which comprises the presentation of a shape, a delay period,
a second shape to which the model had to decide if it was the
same as the first shape and an intertrial interval. Simulated
PET/fMRI data were obtained by assuming that the absolute
value of the synaptic activity, spatially integrated over each
region and temporally integrated over an appropriate time
course (about a minute for rCBF/PET simulations, about
50–100 ms for fMRI simulations)9 corresponded to the
functional brain imaging signal. When simulated rCBF (in

a PET design) for the delayed match-to-same task was
compared to rCBF for a control task consisting of the
“passive viewing” of degraded shapes, percentages changes
in each region were similar to those in found in a compar-
able human PET study (Haxby, Ungerleider, Horwitz,
Rapoport, & Grady, 1995).

PET/fMRI predictions also have been made using the
ACTION network cartoon model of the frontal lobes. This
model has been used to simulate two tests that are sensitive
to frontal lobe dysfunction (the Wisconsin card sorting task
and the delayed matching task); the effects of degradations
corresponding to Parkinson’s disease or schizophrenia were
determined (Monchi et al., 2000). At the same time, the
effects of either Parkinson’s disease or Huntington’s chorea
on action sequence generation by the model were simulated
and compared to brain imaging data on globus pallidus
activity levels (Taylor & Taylor, 1999, 2000a,b).

3.2. Neuromodeling and EEG/MEG

The earliest neural modeling efforts involving functional
brain imaging data centered on EEG data, which seems
obvious given that EEG was, in essence, the first of the
neuroimaging modalities.10 A central problem was to deter-
mine the neurophysiological substrate for the EEG/ERP
signals. The basic mechanisms are now fairly well under-
stood. The ionic currents that flow across the neuronal
membrane give rise to potential differences between differ-
ent locations in the extracellular space (i.e. sinks and
sources). These sinks and sources (dipoles) can become
macroscopic in extent if many similar elements of an anato-
mically ordered ensemble of neurons are activated simulta-
neously. Neuronal modeling of such ensembles led to the
conclusion that in the cortex it is the activity of the post-
synaptic potentials associated with pyramidal neurons,
rather than action potentials, that mainly contribute to the
extracellular potential fields (e.g. Nunez, 1990; Wood &
Allison, 1981). It has been estimated that about 30 000
neurons must be activated simultaneously in order for a
extracranial field to be detected (Williamson & Kaufman,
1990).

For both EEG and MEG much computational work (e.g.
Hamalainen et al., 1993; Mosher, Leahy, & Lewis, 1999;
Nunez, 1981) has been performed that allows one approxi-
mately to solve what is called the forward problem — given
a distribution of electric or magnetic dipoles (or other elec-
tric–magnetic distributions, such as quadrupoles or distrib-
uted current densities), what are the electric or magnetic
fields that can be recorded at the surface of the skull?
Major issues concern whether one uses a spherical or
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nonspherical model of the head, how to handle the different
tissue conductivities for EEG, and indeed, how realistic a
model of the head is needed in general.

A more biologically realistic form of modeling has
focused on efforts at computing electrocortical activity, as
would be recorded by local field potentials, in terms of
neuronal interactions within the cortex. These, in turn, can
then be related to surface recorded evoked potentials
(reviews of this area of research can be found in Freeman,
1975, 1987; Vaughan & Arezzo, 1988). One approach has
been to determine the second spatial derivative of the field
potential recorded at the cortical surface, a method called
current source density (CSD) analysis, and to try to under-
stand evoked CSD profiles in terms of interactions among
neurons in the lamina of the cortex (Mitzdorf, 1988; Tenke,
Schroeder, Arezzo, & Vaughan, 1993). For example, Tenke
et al. (1993) used simulation to demonstrate that contribu-
tions from both thalamocortical axons and lamina 4C stel-
late cell activity in monkey striate cortex are needed to
account for measured CSD profiles for visual evoked poten-
tials.

3.3. Models of dynamics and functional integration

It should be clear by now that there is a close relation-
ship between models of neuronal dynamics and the
models used to analyze brain imaging data. In the follow-
ing subsections we will consider modeling initiatives at
three different levels or scales; microscopic, mesoscopic
and macroscopic. All have very useful but complementary
roles, which highlight the variety of approaches that can
be taken to characterize the induction and orchestration of
brain activity.

3.3.1. Microscopic approaches
These approaches rest upon detailed, biologically plausi-

ble, neuronal models that adhere, as closely as possible, to
known neuronal physiology (e.g. Erb & Aertsen, 1992). The
idea behind these approaches is to embody detailed cellular
and electrochemical dynamics in models of neurons and
neuronal populations so as to explore emergent behaviors
that can be seen empirically. They normally employ differ-
ential equations and as many of the system’s state variables
as possible. The advantage of this approach is that the
mechanistic underpinning of any emergent behavior can
be evaluated in terms of simulated neurophysiological
processes, where these processes may not be directly obser-
vable in vivo. The disadvantage of these models is that their
validity cannot always be established using empirical obser-
vations. A nice example of this sort of approach that relates
to neuroimaging is provided by the work of Chawla, Lumer,
and Friston (1999a); see also Aertsen, Erb, and Palm (1994).
These authors used detailed simulations of interacting
neuronal populations, with Hodgkin Huxley-like dynamics,
to explore the relationship between synchronization and
mean synaptic activity. The aim was to establish some prin-

ciples that could relate fast reciprocal exchanges among
cortical areas to synchronization in the local field potentials
(and EEG), and finally to the integrated measures of synap-
tic activity provided by neuroimaging. The key observation
that derived from this modeling was that synchronization is
necessarily associated with increases in mean synaptic
activity (see Riehle, Grun, Diesmann, & Aertsen, 1997 for
an empirical study of this issue). The mechanism is simple
and compelling: in order for synchrony to be maintained, the
effective membrane time constants of postsynaptic
responses to inputs from other populations has to be small
(i.e. express relatively high synchronous gain). Small time
constants are associated with leaky membranes, induced by
balanced increases in excitatory and inhibitory synaptic
inputs. Put in another way, increases in mean synaptic activ-
ity increase membrane conductances, reduce effective time
constants and preclude anything other than synchronous
interactions. This sort of mechanism can be used to posit
a relationship between rCBF (mean synaptic activity) and
EEG (an index of synchronization). Increases in synchro-
nous interactions with distant populations represent one way
in which the effective connectivity among populations can
be increased. If this is the case, then the mean synaptic
activity may modulate the effective connection strength of
afferents or sensitivity to inputs. This hypothesis was tested
empirically, using fMRI and attention to visual motion, to
show that increased responsiveness of V5 was indeed
predicted by baseline activity (Chawla, Rees, & Friston,
1999b).

3.3.2. Mesoscopic approaches
Often one would like to use empirical data to constrain

neuronal models. The problem is that very often we cannot
directly observe all the ‘hidden’ state variables one would
like to include in the model. However, there is a fundamen-
tal equivalence in dynamical systems theory that allows one
to circumvent this problem. This equivalence provides the
basis for: (i) the application of nonlinear system identifica-
tion techniques to EEG and MEG data; and (ii) engenders
the concept of ‘neuronal transients’. The fundamental
equivalence (Fliess, Lamnabhi, & Lamnabhi-Lagarrigue,
1983) referred to above relies on the fact that any nonlinear
dynamical system, framed in terms of its inputs, its (possi-
bly hidden) state variables and its outputs, can be repre-
sented in two equivalent ways. The first is in terms of the
differential equations that govern the dynamics of the state
variables and the second is in terms of the nonlinear convo-
lution of the inputs that reproduce the outputs. The latter is
usually formulated as a Volterra-series expansion of the
inputs and is a function of the inputs at the present time
and the recent past (Bendat, 1990). The critical thing to
note here is that the first representation requires the state
variables themselves (e.g. the depolarization of membranes
in all cell compartments, the configuration of every channel,
the phosphorylation status of every enzyme, the expression
of every gene product and so on). However, the second
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representation only needs the recent history of inputs, which
are generally observable (i.e. the activity in distal popula-
tions delivering afferent input). By adopting the second
representation we immediately arrive at two very important
facts (Friston, 2000). Firstly the integration of connected
neuronal systems can be formulated as a Volterra-series
model of effective connectivity and secondly the only
thing we need to know about neuronal dynamics is the
recent history of activity in each constituent population or
area (see also Stevens, 1994). This recent history is referred
to as a ‘neuronal transient’ (Friston, 1995). By focusing on
the population’s input–output relationships one eschews the
un-observable microscopic hidden variables and moves to a
mesoscopic level of modeling. The disadvantage of meso-
scopic modeling is that a ‘black-boxness’ is ascribed to the
interacting components of the model. On the other hand, the
advantages of being able to use empirical data in the models,
or indeed use the models as the basis of an analysis, are
profound.

The first thing about dynamical models of functional inte-
gration at the mesoscopic level is that they must have a
Volterra-series formulation. In fact the model assumed in
structural equation modeling is a limiting case (first order
and instantaneous) of the Volterra model. Nonlinear models
such as those employed in psychophysiological interactions
(Friston et al., 1997) are again special cases that include
second order terms but, like structural equation modeling,
ignore the recent history. The explicit use of Volterra-series
to model effective connectivity, in particular its nonlinear
and dynamical aspects, is now being established in both
MEG (e.g. Friston, 2000) and fMRI (e.g. Friston & Bu¨chel,
2000).

The second thing that transpires at this level of model-
ing is the central role of neuronal transients — a charac-
terization of neuronal dynamics that necessarily
encompasses an extended temporal domain. The concept
of neuronal transients is of course not new (cf. Abeles et
al., 1995; von der Malsburg, 1985), but in the present
context, leads to some important questions about the
way one measures functional integration with EEG or
MEG: neuronal transients in two coupled regions may
mutually induce themselves but have very different
temporal forms. This difference means that their
frequency structure may differ, leading to a coupling in
the expression of different frequencies in the two brain
regions. This cross-frequency coupling is a hallmark of
nonlinear coupling. In linear coupling only the same
frequencies are correlated where, conventionally, these
within-frequency couplings have been assessed using
coherence analyses. Recently there has been a move
away from coherence analyses towards models that try
to capture nonlinear coupling. This has engendered a
renaissance in the use EEG and MEG to address func-
tional integration in the brain (e.g. Bressler, Coppola, &
Nakamura, 1993; Friston, 2000; Muller-Gerking et al.,
1996; Schiff, So, Chang, Burke, & Sauer, 1996).

3.3.3. Macroscopic approaches
We have focused above on the distinction between micro-

scopic and mesoscopic levels of description. The macro-
scopic level is reserved for approaches, exemplified by
synergistics (Haken, 1983, 1996), that try to characterize
the spatiotemporal evolution of brain dynamics in terms
of a small number of macroscopic order parameters (see
Kelso, 1995 for an engaging exposition). For example,
macroscopic variables can be extracted from large-scale
observations, such as MEG, using the order parameter
concept: order parameters are created and determined by
the co-operation of microscopic quantities and yet, at the
same time, govern the behavior of the whole system. Inter-
ested readers are referred to Jirsa, Friedrich, and Haken
(1995) for a nice example. At this level of modeling the
objective is to characterize and classify the emergent
dynamics by looking for spatial modes of activity with
temporal dynamics that can be explained by low-dimen-
sional dynamical systems. This allows the inherent dynami-
cal architecture of the system to be defined and is very
appealing in that it aims to identify the essential structure
of the system that can explain its behavior. The disadvan-
tage is that the connection with more mechanistically
grounded microscopic levels of description is generally
difficult to establish.

4. Final remarks

Our overview of the field has hopefully demonstrated a
number of key points. First, functional brain imaging is an
area of neuroscience research that is rich with complex data,
complex in both the temporal and spatial domain. These
data allow one to investigate the neural basis for human
sensory, motor, emotional and cognitive function. The
second point is that this very richness precludes easy under-
standing and engenders the need for an equally rich compu-
tational approach to data analysis, and equally important,
data interpretation. The third point is that computational
modeling of functional brain imaging data can occur at
multiple levels (microscopic, mesoscopic and macro-
scopic), which leads to the fourth point: namely, bridging
models will be necessary to tie together all these approaches
into coherent and consistent accounts of brain function. Our
final point is that computational modeling and functional
brain imaging data are at the beginning of a deep and strong
relationship. We hope the papers presented in this issue act
to motivate further ties between these two fields.
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