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This paper presents a method for the coregistration
and partitioning (i.e., tissue segmentation) of brain
images that have been acquired in different modali-
ties. The basic idea is that instead of matching two
images directly, one performs intermediate within-
modality registrations to two template images that are
already in register. One can use a least-squares minimi-
zation to determine the affine transformations that
map between the templates and the images. By incorpo-
rating suitable constraints, a rigid body transforma-
tion which directly maps between the images can be
extracted from these more general affine transforma-
tions. A further refinement capitalizes on the implicit
normalization of both images into a standard space.
This facilitates segmentation or partitioning of both
original images into homologous tissue classifications.
Once partitioned, the partitions can be jointly matched,
further increasing the accuracy of the coregistration.
In short, these techniques reduce the between-modal-
ity problem to a series of simpler within-modality
problems. These methods are relatively robust, ad-
dress a number of problems in image transformations,
and require no manual intervention. r 1997 Academic Press

INTRODUCTION

The coregistration of brain images of the same sub-
ject acquired in different modalities has proved useful
in many areas, both in research and in clinical settings.
This work concentrates on the registration of magnetic
resonance (MR) images with positron emission tomog-
raphy (PET) images and on coregistering MR images
from different scanning sequences. The aim was to
coregister images as accurately and quickly as possible,
with no manual intervention.

Intermodality registration of images is less straight-
forward than registering images of the same modality.
Two PET images from the same subject generally look
similar, so it suffices to find the rigid-body transforma-
tion parameters that minimize the sum of squares
difference between them. However, for coregistration
between modalities there is nothing quite so obvious to
minimize. AIR (Woods et al., 1992) is a widely used
algorithm for coregistration of PET to MR images, but
it has the disadvantage that it depends on preprocess-
ing of the MR images. This normally involves laborious

manual editing in order to remove any tissue that is not
part of the brain (i.e., scalp editing).

An alternative method is the manual identification of
homologous landmarks in both images. These land-
marks are aligned together, thus bringing the images
into registration. This is also time-consuming, requires
a degree of experience, and can be rather subjective.

The method described in this paper requires no
preprocessing of the data or landmark identification
and is still reasonably robust.

THEORY

The proposed method of image coregistration relies
on images other than the images which are to be regis-
tered (f and g). These are template images of the same
modalities as f and g (tf and tg) and probability images of
gray matter, white matter, and cerebrospinal fluid. These
probabalistic images will be denoted by the matrix B
(where each column is a separate image). Images tf, tg,
and B conform to the same anatomical space.

The between-modality coregistration described here
is a three-step approach:

1. Determine the affine transformations that map
between the images and the templates by minimizing
the sum of squares differences between f and tf and
between g and tg. These transformations are con-
strained so that only the parameters which describe the
rigid body component are allowed to differ.

2. Segment or partition the images using the prob-
ability images and a modified mixture model algorithm.
The mapping between the probability images to images
f and g was determined in step 1.

3. Coregister the image partitions using the rigid
body transformations computed from step 1 as a start-
ing estimate.

AFFINE TRANSFORMATIONS

Rigid body transformations, necessary to coregister
images of the same subject, are a subset of the more
general affine transformations. An affine transforma-
tion is carried out by a simple matrix multiplication of
the coordinates of the voxels from one image to give the
corresponding coordinates of another. Here we illus-
trate the mapping from a voxel at coordinates x1, x2, x3,
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1, to coordinates y1, y2, y3, 1:

y1 5 m11x1 1 m12x2 1 m13x3 1 m141

y2 5 m21x1 1 m22x2 1 m23x3 1 m241

y3 5 m31x1 1 m32x2 1 m33x3 1 m341

1 5 m41x1 1 m42x2 1 m43x3 1 m441.

Note that in order to express the operation in matrix
form, an extra 1 is needed to fully specify the coordi-
nates. The fourth row of the transformation matrix
always contains the elements (0 0 0 1).

The image is then resampled according to this set of
transformations using one of a number of different
interpolation methods. Each time an image is resam-
pled, it is degraded slightly. The elegance of formulat-
ing these transformations in terms of matrices is that
several transformations can be combined by simply
multiplying the matrices together.

Often, the images f and g will have voxels which are
anisotropic. The dimensions of the voxels are also likely
to differ between images of different modalities. For
simplicity, we work in a Euclidian space, where mea-
sures of distances are expressed in millimeters. Rather
than interpolating all the image data such that the
voxels are cubic and have the same voxel sizes in all
images, we can simply define affine transformation
matrices which map from voxel coordinates into this
Euclidian space. For example, if image f is of size 128 3
128 3 43 and has voxels which are 2.1 3 2.1 3 2.45 mm,
we can define the following matrix:

Mf 5 1
2.1 0 0 2134.4

0 2.1 0 2134.4

0 0 2.45 252.675

0 0 0 1
2 .

This transformation matrix maps voxel coordinates to a
Euclidian space whose axes are parallel to those of the
image and distances are measured in millimeters, with
the origin at the center of the image. Similar matrices
can be defined for g (Mg) and the template and probabil-
ity images (Mt).

The objective is to determine the affine transforma-
tion which maps the space of f to that of g. To
accomplish this, we wish to find a rigid body transforma-
tion matrix Mr, such that Mg

21MrMf will coregister the
images.

DETERMINING THE MAPPINGS FROM IMAGES
TO TEMPLATES

It is possible to obtain a reasonable match of images
of most normal brains to a template image of the same

modality using just a 12- or even 9-parameter affine
transformation. One can register image g to template tg

and similarly register f to tf using this approach. We
will call these transformation matrices Mgt and Mft,
respectively. Thus a mapping from f to g now becomes
Mg21MgtMft

21 Mf. However, this affine transformation
between f and g has not been constrained to be rigid
body. We modify this simple approach to incorporate
this constraint by decomposing matrix Mgt into a
matrix which performs a rigid body transformation
(Mgr) and one which performs the scaling and shearing
(Mta); i.e., Mgt 5 MgrMta, and similarly Mft 5 MfrMta.
Notice that Mta is the same for both f and g. Now the
mapping becomes Mg

21Mgr(MtaMta
21)Mfr

21M f, and is a
rigid body transformation:

Mgr 5 1
1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1
2 3 1

1 0 0 0

0 cos (q4) sin (q4) 0

0 2sin (q4) cos (q4) 0

0 0 0 1
2

3 1
cos (q5) 0 sin (q5) 0

0 0 0

2sin (q5) 0 cos (q5) 0

0 0 0 1
2

3 1
cos (q6) sin (q6) 0 0

2sin (q6) cos (q6) 0 0

0 0 1 0

0 0 0 1
2

Mfr 5 1
1 0 0 q7

0 1 0 q8

0 0 1 q9

0 0 0 1
2 3 1

1 0 0 0

0 cos (q10) sin (q10) 0

0 2sin (q10) cos (q10) 0

0 0 0 1
2

3 1
cos (q11) 0 sin (q11) 0

0 0 0

2sin (q11) 0 cos (q11) 0

0 0 0 1
2

3 1
cos (q12) sin (q12) 0 0

2sin (q12) cos (q12) 0 0

0 0 1 0

0 0 0 1
2
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Mta 5 1
q13 0 0 0

0 q14 0 0

0 0 q15 0

0 0 0 1
2 3 1

1 q16 q17 0

0 1 q18 0

0 0 1 0

0 0 0 1
2

We can now optimize the parameter set q 5 [q1, q2 . . .] in
order to determine the transformations which minimize
the sum of squares differences between the images and the
templates. The optimization method which we choose is
based upon that described by Friston et al. (1995). The
method is iterative, but generally converges within a few
iterations. The chance of finding a local minimum is
reduced by using smoothed data (typically images which
have been convolved with an 8-mm full width at half
maximum Gaussian kernel). It involves generating a lin-
ear approximation to the problem using Taylor’s theorem,
which is solved on each iteration. This can be expressed as
computing q 5 q 1 (ATA)21ATb, at each iteration. Here, q
are the parameter estimates. A is a matrix in which
each column contains the derivatives at various posi-
tions (x) within the template images with respect to the
parameters. The vector b contains the differences be-
tween the templates and the images that have been
spatially transformed according to the latest parameter
estimates.

For the purpose of this optimization, we define two
matrices, M1 5 (Mt

21MftMf) 21 and M2 5 (Mt
21MgtMg) 21.

A and B are described in Scheme 1.

b 5 1
f (M1x1) 2 q19tf (x1)

f (M1x2) 2 q19tf (x2)
···

g(M2x1) 2 q20tg(x1)

g(M2x2) 2 q20tg(x2)
···

2 .

The parameters describing the nonrigid transforma-
tions (q13 to q18) could in theory be derived from either f
or g. In practice, we obtain a better solution by estimat-
ing these parameters using both images and by biasing
the result so that the image which fits the template
better has a greater influence over the parameter
estimates. This is achieved by weighting the rows of A
and b which correspond to the different images. The
weights are derived from the sum of squares difference
between the template and the object images, obtained
from the previous solution of q. These are

I

o
i51

I

( f (M1xi) 2 q19tf (xi))2

and
I

o
i51

I

(g(M2xi) 2 q20tg(xi))2

.

Once the optimization has converged to the final solution,
we can obtain the rigid body transformation which approxi-
mately maps between f and g, and we also have affine
transformation matrices which map between the object
images and the templates. These are used in the next step.

PARTITIONING THE IMAGES

Healthy brain tissue can generally be classified into
three broad tissue types on the basis of an MR image.
These are gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF). This classification can be
performed manually on a good-quality T1 image by
simply selecting suitable image intensity ranges which

A 5 1
2

df (M1x1)

dq1

· · · 2
df (M1x1)

dq6

0 · · · 0 2
df (M1x1)

dq13

· · · 2
df (M1x1)

dq18

tf (x1) 0

2
df (M1x2)

dq1

· · · 2
df (M1x2)

dq6

0 · · · 0 2
df (M1x2)

dq13

· · · 2
df (M1x2)

dq18

tf (x2) 0

···
· · ·

···
···

· · ·
···

···
· · ·

···
···

···

0 · · · 0 2
dg(M2x1)

dq7

· · · 2
dg(M2x1)

dq12
2

dg(M2x1)

dq13

· · · 2
dg(M2x1)

dq18

0 tg(x1)

0 · · · 0 2
dg(M2x2)

dq7

· · · 2
dg(M2x2)

dq12
2

dg(M2x2)

dq13

· · · 2
dg(M2x2)

dq18

0 tg(x2)

···
· · ·

···
···

· · ·
···

···
· · ·

···
···

···

2
Scheme 1. Matrix A and vector b, where f(x) is the intensity of

image f at position x, and similarly for g(x), tf (x), and tg(x).
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encompass most of the voxel intensities of a particular
tissue type. However, this manual selection of thresh-
olds is highly subjective.

Many groups have used clustering algorithms to
partition MR images into different tissue types, either
by using images acquired from a single MR sequence or
by combining information from two or more registered
images acquired using different scanning sequences
(e.g., proton-density and T2-weighted).

The approach we have adopted here is a modified
version of one of these clustering algorithms. The
clustering algorithm of choice is the maximum likeli-
hood ‘‘mixture model’’ algorithm (Hartigan, 1975).

We assume that the MR image (or images) consists of
a number of distinct tissue types (clusters) from which
every voxel has been drawn. The intensities of voxels
belonging to each of these clusters conform to a multi-
variate normal distribution, which can be described by
a mean vector, a covariance matrix, and the number of
voxels belonging to the distribution.

In addition, we have approximate knowledge of the
spatial distributions of these clusters, in the form of
probability images (provided by the Montreal Neurologi-
cal Institute (Evans et al., 1992, 1993, 1994)) which
have been derived from MR images of a large number of
subjects (see Fig. 1). The original images were seg-
mented into binary images of GM, WM, and CSF, and
all normalized into the same space using a nine-
parameter (three translations, three rotations, and
three orthogonal zooms) affine transformation. The
probability images are the means of these binary
images, so that they contain values in the range of 0 to
1. These images represent the a priori probability of a
voxel being GM, WM, or CSF after an image has been
normalized to the same space using a nine-parameter
affine transformation.

We describe here a simplified version of the algo-
rithm as it would be applied to a single image. We use
a 12-parameter affine transformation determined
from the previous step to map between the space of the
MR image (f) and that of the probability images (B).
This allows simple ‘‘on-the-fly’’ sampling of the probabil-
ity images into the space of the image we wish to
partition.

Generally, we use six or seven clusters: one each for
GM, WM, and CSF, two or three clusters to account for
scalp, eyes, etc., and a background cluster. Since we
have no probability maps for scalp and background, we
estimate them by subtracting bGM, bWM, and bCSF from
a map of all ones and divide the results equally between
the remaining clusters.

We then assign initial probabilities (P) for each of the
I voxels being drawn from each of the K clusters. These
probabilities are the a priori probabilities (i.e.,
pik 5 bk(M1

21xi). Where identical a priori probability
maps are used for more than one cluster, the starting
estimates are modified slightly by adding random
noise.

The following steps (1 to 6) are repeated until conver-
gence (or a prespecified number of iterations) is reached.

1. Compute the number of voxels belonging to each
of the K clusters (h) as

hk 5 o
i51

I

pik over k 5 1 . . . K.

2. Mean voxel intensities for each cluster (v) are
computed. This step effectively produces a weighted
mean of the image voxels, where the weights are the

FIG. 1. The a priori probability images of GM, WM, and CS (courtesy of the Montreal Neurological Institute).
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current belonging probability estimates:

vk 5

o
i51

I

p ik f (xi)

hk
over k 5 1 . . . K.

3. Then the variance of each cluster (c) is computed
in a way similar to the mean:

ck 5

o
i51

I

pik( f (xi) 2 vk)2

hk
over k 5 1 . . . K.

4. Now that we have all the parameters which
describe the current estimate of the distributions, we
have to recalculate the belonging probabilities (P).

Evaluate the probability density functions for the
clusters at each of the voxels:

rik 5 (2pck)20.5exp12( f (xi) 2 vk)2

2ck
2

over k 5 1 . . . K and i 5 1 . . . I.

5. Then utilize the a priori information (B) (this is
the only deviation from the conventional mixture model
algorithm which is simply qik 5 rikhk):

qik 5 rik

hkbk(M1
21xi)

o
j 5 1

I

bk(M1
21xj)

over k 5 1 . . . K and i 5 1 . . . I.

Note that we have extended the mixture model by
including an extra term (bk(M1

21xi ))/(S j51
I bk(M1

21xj )).
This term sums to unity over voxels and can be thought
of as the probability density function of a voxel from
cluster k being found at location i, irrespective of how
many voxels of type k there are in the brain. Using this
term, we can include the a priori information, without
biasing the overall proportions of different tissue types.

6. And finally normalize the probabilities so that
they integrate to unity at each voxel:

pik 5
qik

o
j51

K

qij

over k 5 1 . . . K and i 5 1 . . . I.

With each iteration of the algorithm, the parameters

describing the distributions (v, c, and h) move toward a
better fit and the belonging probabilities (P) change
slightly to reflect the new distributions. The param-
eters describing the clusters which have corresponding
a priori probability images tend to converge more
rapidly than the other clusters—this is partly due to
the better starting estimates. The final values in P are
in the range of 0 to 1, although most values tend to
stabilize very close to one of the two extremes. Ex-
amples of MR images classified in this way can be seen
in Fig. 2.

Strictly speaking, the assumption that multinormal
distributions should be used to model MRI intensities
is not quite correct. After Fourier reconstruction, the
moduli of the complex pixel values are taken, thus
rendering any potentially negative values positive.
Where the cluster variances are of comparable magni-
tude to the cluster means, the distribution deviates
significantly from normal. This only really applies for
the background, where the true mean voxel intensity is
zero. The algorithm is modified to account for this
discrepancy between the model and reality. For this
background cluster, the value of v is set to zero before
the variance c is computed. Also, because the back-
ground cluster is described by only a half Gaussian
(and h represent the integrals of the distributions), it is
necessary to double the computed values of r (step 4).

The greatest problem which the technique faces is
image nonuniformity. The current algorithm assumes
that the voxel values for GM (for example) have the
same intensity distribution throughout the image. The
nonstationary nature of MR image intensities from
some scanners can lead to a significant amount of
tissue misclassification.

COREGISTERING THE IMAGE PARTITIONS

The previous step produces images of GM and WM
from the original images f and g. These image parti-
tions can then be simultaneously coregistered to pro-
duce the final solution.

This optimization stage only needs to search for
the six parameters which describe a rigid body trans-
formation. Again, we call these parameters q and
define a matrix Mfg based upon these parameters (cf.
Mgr as defined earlier). We define a matrix M as
(Mg

21MfgMgt
21MftMf)21. The way that this matrix has

been formulated means that the starting estimates for
q can all be zero, because it incorporates the results
from the first step of the coregistration. Very few
iterations are required at this stage to achieve conver-
gence. No scaling parameters are needed, since the
probability images derived from f have similar intensi-
ties to those derived from g. The system of equations
which we iteratively solve (Ax 5 b) to optimize the
parameters q is as follows (using a notation where
pg1(x2) means probability of voxel at x2 from image g
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belonging to cluster 1):

A 5 1
2

dpf1(Mx1)

dq1
2

dpf1(Mx1)

dq2

· · · pg1(x1) 0 0

2
dpf1(Mx2)

dq1
2

dpf1(Mx2)

dq2

· · · pg1(x2) 0 0

···
···

· · ·
···

···
···

2
dpf2(Mx1)

dq1
2

dpf2(Mx1)

dq2

· · · 0 pg2(x1) 0

2
dpf2(Mx2)

dq1
2

dpf2(Mx2)

dq2

· · · 0 pg2(x2) 0

···
···

· · ·
···

···
···

2
b 5 1

pf1(Mx1) 2 pg1(x1)

pf1(Mx2) 2 pg1(x2)
···

pf2(Mx1) 2 pg2(x1)

pf2(Mx2) 2 pg2(x2)
···

2

After this coregistration we have our final solution. It is
now possible to map voxel x of image g to the correspond-
ing voxel Mx of image f. An example of PET–MRI
coregistration using this approach is illustrated in
Fig. 3.

AN ALTERNATIVE IMPLEMENTATION FOR
LOW-RESOLUTION IMAGES

Here we briefly describe an approach which may be
more appropriate for the registration of SPECT or
low-resolution PET images to MRI. The tissue classifi-
cation model described above is not ideal for partition-
ing low-resolution images. It assumes that each voxel
contains tissue from only one of the underlying clus-
ters, whereas in reality, many voxels will contain a
mixture of different tissue types (Bullmore et al., 1995;
Ashburner et al., 1996).

An alternative is to partition only the MR image as
described above and to generate an image from the
resulting segments which resembles a PET image. This
can be achieved by assigning the gray matter segment a
value of 1, white matter a value of about 0.3, and CSF a
value of about 0.1, followed by smoothing. It is then
possible to apply the within-modality coregistration

FIG. 2. Examples of MR images partitioned into GM, WM, and CSF. (Top) T2-weighted image. (Bottom) T1-weighted image.
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described in the previous section to coregister the real
and ‘‘fake’’ PET images.

EVALUATION

The coregistration methods were evaluated for PET
to T1-weighted MRI, using data from the Evaluation of

Retrospective Image Registration project (West et al.,
1996, 1997). This involved obtaining both PET and MRI
data from Vanderbilt University and performing inter-
modality registrations on the volumes. Fiducial mark-
ers during the acquisition of these datasets enabled
investigators at Vanderbilt to know the true registra-
tion parameters, but any visible traces of these mark-

FIG. 3. An example of PET–MRI coregistration, achieved using the techniques described here.
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ers had been removed from the images prior to their
distribution to other investigators.

Registrations were performed on 11 volume images
both with and without geometry distortion correction
from the Vanderbilt dataset. They were done using only
the first step of the registration process (constrained
simultaneous affine registration) and also using all the
steps.

The evaluations were performed on a Sun SPARC
Ultra 2, using an implementation of the method writ-
ten in C and Matlab (from Mathworks Inc., Sherborn,
USA). The starting estimates for the registration param-
eters matched the centers of each volume together and
assumed that the images were in the same orientation.
No manual intervention was involved. The first step of
the registration process (including the initial smooth-
ing) took an average of 66 s, whereas the complete
three-step registration required about 350 s.

The resulting parameter estimates were communi-
cated back to Vanderbilt, where their accuracy was
evaluated. The results presented in Table 1 are the
mean, median, and maximum errors for the registra-
tion and can be compared directly with those in West et
al. (1997). They show that the first step of the process
quickly registered the images to within about 6 mm
before the remaining steps further refined the param-
eters.

Although the accuracy of the registrations was found
to be comparable to that of the other techniques
evaluated by West et al., the data used in the evaluation
did violate a number of the assumptions made in the
current approach. Due to the effects of field inhomoge-
neity and the low gray/white matter contrast, there
was a considerable amount of tissue misclassification of
the MR images. In addition, the assumption that brain
tissue can be broadly classified as gray or white matter
was complicated by the presence of tumors, which were
classified as gray matter in the MR images and white
matter in the PET images. This would be expected to

introduce additional registration errors, since the final
step is based upon matching corresponding image
partitions together. The registration should be much
more accurate for images where the assumptions hold.
In summary, the current technique is valid in relation
to existing techniques. Unlike some of the existing
approaches, the present method does not require
manual intervention (e.g., scalp editing).

DISCUSSION

We have developed a strategy for the coregistration of
brain images from different modalities which is en-
tirely automatic. No manual editing of the images is
required in order to remove scalp, nor does the investi-
gator need to identify any mutual points or features or
even set thresholds for morphological operations such
as brain segmentation. The only occasional interven-
tion which may be needed is to provide starting esti-
mates to the first step of the procedure. The procedure
has so far been successfully applied to the registration
of T1 MRI to PET (blood flow), T1 to T2 MRI, and T2 to
PET.

In addition to providing a method of coregistration,
another feature of the current approach is the genera-
tion of partitioned (or segmented) images which can be
used for voxel-based morphometrics (Wright et al.,
1995). The incorporation of the a priori probability
images into the clustering algorithm produces a much
more robust solution. However, a better result is ex-
pected when the method is applied to two (or more)
exactly registered images from different scanning se-
quences. Although the algorithm has only been illus-
trated for a single image, it has actually been imple-
mented such that the classification can be performed
using any number of registered images. The mixture
model clustering algorithm is described for multidimen-
sional input data in Hartigan (1975), although the a
priori probabilities are not included in the description.

Currently, it is not possible to directly compare the
speed of this method with that of others, since it has
largely been implemented in Matlab (a high level
programming language from Mathworks Inc.). If the
algorithms were translated into efficient C code, they
would compare favorably with other image registration
methods. Alpert et al. (1996) used the Levenberg–
Marquardt algorithm (LM) (Press et al., 1988) for the
optimization of PET–PET and PET–MRI registration,
which was found to be faster than the approach of
Woods et al. (1992). The optimization algorithms de-
scribed in this paper are in fact a simplified version of
LM. The nature of the linear approximations results in
changes in parameter estimates that are usually slight
underestimates at each iteration. Because of this, the
extra precautions taken by LM are largely unnecessary
and simply slow the algorithm down. This can be

TABLE 1

Errors for the PET-MRI Registration

First step only All three steps

Uncorrected Corrected Uncorrected Corrected

Mean error (mm) 5.57 3.77 4.14 3.20
Median error (mm) 5.11 3.17 4.20 3.36
Maximum error

(mm) 11.62 8.54 7.46 5.76
N 7 4 7 4

Note. Errors are presented, for both the uncorrected and the
distortion-corrected MR images. The results in the left-hand column
were derived after using only the first step of the registration process.
The right-hand column shows the results of using all three steps of
the registration process.
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demonstrated by observing the residual sum of squares
at each iteration, which (almost) invariably is less than
that from the previous iteration.
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