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The nonlinear nature of integration among cortical brain areas
renders the effective connectivity between them inherently dy-
namic and context-sensitive. One emerging architectural principle
of functional brain organization, which rests explicitly on these
nonlinear interactions, is that neuronal responses expressed at any
level in a sensory hierarchy reflect an interaction between (i)
bottom up ‘‘driving’’ afferents from lower cortical areas and (ii)
backwards ‘‘modulatory’’ inputs from higher areas that mediate
top-down contextual effects. A compelling example is attentional
modulation of responses in functionally specialized sensory areas.
The aim of this work was to demonstrate that parietal regions may
mediate selective attention to motion by modulating the effective
connectivity from early visual cortex to the motion-sensitive area
V5yMT. Using functional magnetic resonance imaging, and an
analysis of effective connectivity based on nonlinear system iden-
tification, we found that backwards modulatory influences from
the posterior parietal cortex are sufficient to account for a signif-
icant component of attentional modulation of V5yMT responses to
‘‘driving’’ inputs from V2. By explicitly modeling interactions
among inputs to V5yMT, we were able to make inferences about
the influences of V2 inputs and their concomitant activity-depen-
dent modulation by parietal afferents. The latter effects embody
dynamic changes in effective connectivity that may underlie at-
tentional mechanisms. These results speak to the context-sensitive
nature of functional integration in the brain and provide empirical
evidence that attentional effects may be mediated by backwards
connections, of a modulatory sort, in humans.

Imaging neuroscience has firmly established functional special-
ization as a principle of brain organization in humans (1). The

functional integration of specialized areas has proven more
difficult to assess (2–8). Functional integration is usually inferred
on the basis of correlations among measurements of neuronal
activity. However, correlations can arise in a variety of ways: For
example, in multiunit electrode recordings, they can result from
stimulus-locked transients evoked by a common input or can
reflect stimulus-induced oscillations mediated by synaptic con-
nections (4–6). Integration within a distributed system is usually
better understood in terms of effective connectivity: Effective
connectivity refers explicitly to the influence that one neural
system exerts over another (7), either at a synaptic (i.e., synaptic
efficacy) or population level. It has been proposed (6) that ‘‘the
[electrophysiological] notion of effective connectivity should be
understood as the experiment- and time-dependent, simplest
possible circuit diagram that would replicate the observed timing
relationships between the recorded neurons.’’ This speaks to two
important points: (i) Effective connectivity is dynamic: i.e.,
activity- and time-dependent; and (ii) it depends on a model of
the interactions. To date, the models used in functional neuro-
imaging have been linear (8, 9). There is a fundamental problem
with these models because they assume that the multiple inputs
to a region are linearly separable. This assumption precludes
activity-dependent connections that are expressed in one sen-
sorimotor or cognitive context and not in another. The resolu-
tion of this problem lies in adopting nonlinear models that
include interactions among inputs. These interactions can be
construed as a context- or activity-dependent modulation of the

influence that one region exerts over another, where that context
is instantiated by activity in further brain regions that exert
modulatory effects. It follows that nonlinear models are neces-
sary for a proper characterization of contextual changes in
effective connectivity.

This work addresses the modulation of visual cortical re-
sponses by attentional mechanisms (10) and the mediating role
of activity- or context-sensitive changes in effective connectivity.
‘‘The expression of attention in the brain appears to be described
effectively as an enhancement of activity in the attended set of
pathways relative to the unattended set’’ (11). We used attention
to visual motion to examine the modulatory effect of higher
areas on the effective connectivity among lower visual areas in
humans. Area V5yMT (humans) or MT (non-human primates)
receives parallel inputs from the lateral geniculate via V1 and
V2, and extrageniculate pathways involving the pulvinar (12).
V5yMT is specialized for motion (2, 13, 14). Neuroimaging
(15–18) and unit-electrode recordings (10) show that V5yMT
responses can be modulated by attention. A likely source of this
modulation is the posterior parietal cortex (PPC) (19–21). PPC
is part of a distributed system, subserving visual attention, that
includes the frontal eye fields, cingulate cortex, prefrontal
cortex, thalamic (pulvinar), and other regions. These areas have
been implicated on the basis of electrophysiological studies (21),
retrograde labeling (22), and lesion studies (23). For example,
area 7a (PPC) unit firing is enhanced by attentive fixation (21).
The frontal eye fields have been implicated in attention by
ablation of areas 6 and 8, engendering the ‘‘premotor theory’’ of
attention (24). Anatomically V5yMT and other motion-sensitive
areas such as V3a (25) are reciprocally connected to V2. PPC is
densely interconnected with V5yMT (26). Reciprocal projec-
tions from the PPC include areas 6 and 8 (frontal eye fields),
frontal operculum, and area 46 (prefrontal cortex) (27–30). The
specific hypothesis we wanted to test was that PPC exerts a
backwards modulatory influence over the forwards driving
connections from V2 to V5yMT. To do this, we had to adopt a
nonlinear model of effective connectivity that incorporated this
modulatory effect.

The model we used is based on nonlinear system identifica-
tion. We assume that the activity in one region can be ‘‘ex-
plained’’ by a nonlinear convolution or filtering of the dynamics
in regions that contribute inputs. The implicit nonlinear mixing
of inputs over time allows source regions to ‘‘cause’’ responses in
a target that may be more enduring than the input or, indeed,
delayed. Furthermore, the nonlinearities allow for inputs to
interact and sensitize the target to other inputs, again with any
time course. This convolution model can, in principle, model any
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driving or modulatory effects that distant regions exert over a
target and characterizes them in terms of Volterra kernels (31).
Because the kernels are high-order they embody interactions
among inputs. The influence of one region j on another i can
therefore be divided into two components: (i) the ‘‘driving’’
influence of j on i, irrespective of the activities elsewhere; and (ii)
an activity-dependent component that represents an interaction
with inputs from the remaining regions. These two aspects of
effective connectivity correspond to terms that: (i) involve only
activity in area j; and (ii) the remaining terms that model an
interaction between activity in j and other regions. By using
low-order approximations, the kernels can be estimated by using
ordinary least squares which, in turn, facilitates the use of
standard inferential statistics. Connections (driving or modula-
tory) are assessed by testing the null hypothesis that the asso-
ciated kernel is zero. This can be repeated at every voxel in some
prespecified target region (e.g.V5yMT) to produce a statistical
parametric map (32–34) that reflects the significance of the
connection’s influence. When making inferences about modu-
latory effects one is testing the null hypothesis that the interac-
tions among inputs, causing a response in an area, are negligible.
It is these interactions that distinguish the nonlinear model from
an equivalent linear model. In this sense a significant modulatory
effect implies that a linear model is not sufficient to explain the
observed response. Having established that an effect is signifi-
cant, the influence of remote regions (either driving or modu-
latory) can be characterized by using simulated inputs and the
estimated kernels.

This approach differs from existing approaches [e.g., struc-
tural equation modeling (8, 18) and regression analyses (9)] in
that the model parameters do not explicitly identify the effective
connections but are used to characterize them in terms of
responses to simulated inputs. Another important aspect of the
current framework, which distinguishes it from conventional
approaches to effective connectivity, is that it does not charac-
terize a ‘‘network’’ but deals with the response of a single region
given the inputs or causes of that response. This allows one to
address very directed questions or hypotheses about regionally
specific responses given the neurophysiological context in which
they are expressed. In contradistinction to other approaches, the
emphasis is not on estimating the parameters of an assumed
connectivity architecture but on making statistical inferences
about the integration of multiple inputs to a single area that
elaborates a response.

Methods
The Nonlinear Model. Neuronal systems are inherently nonlinear
and lend themselves to modeling by dynamical systems. How-
ever, it is generally difficult to identify the appropriate analytic
equations. An alternative is to take a generic model and obtain
the specific parameters that enable it to describe the system in
question (35). A common example of this approach is the use of
Volterra series to model the nonlinear transformation of some
inputs u(t) to an output y(t):
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where V{u} is a functional Taylor expansion implementing a
high-order convolution. y(t) is the hemodynamic response of
region i over time, and u 5 u(t) is an m-vector function [u1(t),

. . . . um(t)]T representing equivalent measures of activity in m
other regions. hj1. . . jn(t1,. . . . tn) is the nth order Volterra kernel.
Eq. 1 can be expressed in matrix form as the second order
approximation:

V$u% < h 1 hTpu 1 uTpHpu, [2]

where h is a constant, h 5 h(t) is a column m-vector of first order
Volterra kernels, H 5 H(t1, t2) is an m 3 m matrix of second order
kernels, and * is the convolution operator. This equation is a general
linear model with response variable y(t) and explanatory variables
u. The unknown parameters are the kernels and can be estimated
by using ordinary least squares, after expansion in terms of tem-
poral basis functions as described by Friston et al. (31). The basis
functions used are dictated by the nature of the time-series ana-
lyzed. For high temporal acuity data, like electroencephalographic
or neuromagnetic time-series, a large number of basis functions
might be appropriate, allowing the fine temporal structure of
neuronal interactions or effective connectivity to be characterized.
However, in fMRI, the underlying neuronal time-series is tempo-
rally ‘‘blurred’’ by the hemodynamic response function (31), and we
can use a very parsimonious model (equivalent to two basis
functions, a delta function and its temporal derivative): Assuming
that the length of the kernels are small in relation to temporal
smoothness of u(t) imposed by the hemodynamic response function,
we can substitute the first order approximation u(t 2 t) ' u(t) 2
t.u̇(t) into Eq. 1, giving

V$u% < g 1 gTũ 1 ũTGũ, [3]

where

2u̇ 5 ũ~t! 5 Su
u̇D , [4]

g 5 1 Eh

2 E th2 , G 5 1 EH 2 E t1H

2 E t2H E t1t2H2 .

Here the explanatory variables are [1, ũ(t)T, ũ(t)T R ũ(t)T], where
R is the Kronecker tensor product.§ ũ(t) represents activity
measurements (and their derivatives) in the source regions. The
estimation of g, g, and G, which embody the effective connec-
tivity, reduces to a simple regression problem in the context of
serially correlated fMRI time-series (32, 33).

To understand the role played by the parameters of effective
connectivity, consider connectivity Cij{u} as the differential
response in region i to a hemodynamic transient s(t) 5 [0,. . . . .
s(t),. . . 0]T in region j, for a fixed profile u of activities over
regions:

Cij$u% 5 V$u 1 s% 2 V$u%

< gTs̃ 1 s̃TGs̃ 1 2ũTGs̃ .
[5]

Eq. 5 means that the effect of inputs can be decomposed into those
that are activity-independent gTs̃ 1 s̃TGs̃ 5 Cij{0} and those that are
activity-dependent ũTGs̃. In fact, Eq. 5 is equivalent to the first order
Taylor approximation (noting u̇ 5 0):

Cij$u% < Cij$0}1OukCijyuk. [6]

§Note that, if we dropped the temporal derivatives from the model, then it would reduce
to a simple polynomial regression model of effective connectivity (36). However, it is
important to include these terms because they allow for differential hemodynamic
response latencies among regions that are characteristic of fMRI data (31).
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The activity-independent component is simply Cij{0}, the driving
effect of the input that would have been observed in the absence
of other inputs and depends on the first-order coefficients and
the second-order coefficients that involve j and only j. The
remaining second-order coefficients model interactions between
the region j and inputs from other regions. Cijyuk can be
interpreted as a modulatory influence of region k on the
connectivity from j to i (examples of Cij{0} and Cijyuk are given
below). The explanatory variables pertinent to this effect are
those that involve regions j and k. By partitioning the terms in
this way, one can test separately for driving and modulatory
effects. Significance is simply tested with the F statistic by
treating the driving (or specified interaction) terms as interesting
and the remainder as confounds or nuisance variables in a
multiple regression analysis for serially correlated data (32, 33).

In summary one can take a highly nonlinear model of how
different inputs interact to produce a response in a target area
and, through sensible approximations, linearly separate the
response into driving and modulatory components. The contri-
bution of these components to the observed response, at any
voxel, can be estimated by using standard regression techniques.
One nice thing about the use of regression analysis is that the
estimation of, and inferences about, the influence of any input
are based on dynamics that are unique to the target and source.
This follows because the effects of other sources and interactions
are implicitly removed during the least squares estimation,
eschewing the problem of common inputs. For example, the
influence of one input will be discounted if it can be explained
by another correlated input. This of course assumes that all of the
relevant variables have been included in the model. It should be
noted that the techniques used here are subject to the same
qualifications as linear models of effective connectivity; namely,
that the validity of the model is inherently determined by the
validity of the architecture assumed (i.e., which regions and
connections are included).

Experimental Design and Data Acquisition. Subjects were studied
with fMRI under identical stimulus conditions (visual motion
subtended by radially moving dots) while manipulating the
attentional component of the task (detection of velocity chang-
es). The data were acquired from five young normal subjects at
2 Tesla by using a Magnetom VISION (Siemens, Erlangen,
Germany) whole body MRI system, equipped with a head
volume coil. Contiguous multislice T2*-weighted fMRI images
were obtained with a gradient echo-planar sequence (TE 5 40
ms; TR 5 3.22 s; matrix size 5 64 3 64 3 32; voxel size 5 3 3
3 3 3 mm). Each subject had four consecutive 100-scan sessions
comprising a series of 10-scan blocks under five different con-
ditions D F A F N F A F N S. The first condition (D) was a
dummy condition to allow for magnetic saturation effects. F
(Fixation) corresponds to a low-level baseline in which the
subjects viewed a fixation point at the center of a screen area 17°
in diameter. In condition A (Attention), the subject viewed 250
dots moving radially from the center at 4.7° per second and were
asked to detect changes in radial velocity. In condition N (No
attention), the subjects were asked simply to view the moving
dots. In condition S (Stationary), the subjects viewed stationary
dots. The order of A and N was swapped for the last two sessions.
In all conditions, the subject fixated the center of the screen. In
a prescanning session, the subjects were given five trials with five
speed changes (reducing to 1%). During scanning, there were no
speed changes. No overt response was required in any condition.
We validated our manipulation of attentional set by showing that
the motion after-effect was significantly more enduring in the
attention conditions relative to the no attention conditions after
scanning (18).

Data Analysis. The data from each subject were analyzed sepa-
rately as a series of case studies. First, the regions showing
motion-sensitive responses and attentional modulation of these
responses were identified in a conventional analysis. The results
of this first analysis were used to identify the regional activities
that entered into the second effective connectivity analysis.

The data were analyzed by using statistical parametric map-
ping (SPM96 Wellcome Department of Cognitive Neurology).
The time-series were realigned, were corrected for movement-
related effects, and were spatially normalized by using co-
registered structural T1 scans (37, 38). The data were smoothed
in space (6-mm isotropic Gaussian kernel) and time (=8 second
Gaussian kernel). Condition-specific effects were assessed by
using multiple regression for serially correlated data (32, 33).
Each condition was modeled as a box-car function convolved
with a canonical hemodynamic response function. The statistical
model included global and low frequency confounds. Compar-
isons among conditions were effected with the appropriate
contrast of the condition-specific parameter estimates to give
statistical parametric maps (SPMs) of regionally specific effects
(32–34).

To examine the influences of PPC on the forward cortical and
subcortical inputs to V5yMT, we specified the anatomical model
depicted in Fig. 1. In this model, there are direct effects from V2
and the pulvinar and an interaction between V2 and PPC
representing the modulatory effect of interest. The dynamics of
regions contributing inputs to V5yMT (i.e., V2, pulvinar, and the
PPC) were characterized in terms of the first principal compo-
nent of the adjusted (for the effects of confounds) data from
voxels within an 8-mm spherical volume of interest centered on
the maximum of the appropriate SPM for each subject (see Table
1). Only voxels surviving an F threshold of P 5 0.001 in the first
SPM analysis were considered. This is a form of averaging that
properly reflects the correlations among voxels to give a suitable
spatial weighting over the volume of interest. The normalized (to
zero mean and unit variance) dynamics of each region, of the first
subject, are shown in Fig. 2 and demonstrate a progressive
attentional modulation from lower to higher areas: The periodic
response of V2 reflects successive periods of photic stimulation
followed by fixation of a single point. During some of these
periods the subject was asked to detect changes in the speed of
the stimuli (that never actually occurred). The enhanced re-
sponses in V5yMT and the eight most pronounced peaks in the

Fig. 1. Schematic depicting the influences included in the nonlinear model
of effective connectivity. The model includes driving (with linear and nonlin-
ear terms) cortical (V2) and subcortical (Pul) inputs (arrows). Given the rela-
tively slow speed of the stimuli used (4.7° per second), we anticipated that the
functionally expressed input to V5yMT would derive primarily from V2 (12).
Consequently, we modeled a modulation of this input by backwards afferents
from posterior parietal cortex (PPC) (thick line).
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PPC time-series coincide with these attentive conditions
(marked with an asterisk).

The ability of these inputs and their interactions to predict the

responses of every voxel within the V5yMT volume of interest
were assessed with the appropriate SPM of the F statistic. In this
analysis, the response variable y(t) in Eq. 1 was the voxel-specific
activity in V5yMT voxels, and the explanatory variables u(t)
were constructed by using the regional dynamics of V2, pulvinar,
and the PPC illustrated in Fig. 2. Inferences about the signifi-
cance of modulatory effects were made by considering the all
second order terms involving PPC and V2 as interesting and the
remainder as confounds. Corrected P values were assigned by
using the maximal F value in the voxels comprising the V5yMT
region (34). In principle, we could have included all brain voxels
in this analysis, but the correction for multiple comparisons
makes our restricted search more sensitive.

Results
The conventional analysis, in terms of regionally specific effects
and structural equation modeling, has been reported fully else-
where (18). In summary, attentional modulation of hemody-
namic responses to optic f low stimuli were seen in an occipito-
parieto-frontal network, including V3a, PPC (BA 7 extending
into the intraparietal sulcus), frontal eye fields, anterior pre-
frontal cortex at the junction of the precentral sulcus and inferior
frontal sulcus, and the lateral prefrontal cortex. Using the
nonlinear model of effective connectivity described above, we
were able to show that the modulatory effect of PPC on V2
inputs to V5yMT was significant and replicated this finding four
times in independent studies of further subjects (Table 1)
(strictly speaking, the first subject only achieved trend signifi-
cance after correction for the volume of V5yMT analyzed).

Fig. 3 shows a characterization of this modulatory effect in
terms of the increase in V5yMT responses, to a simulated V2
input, when PPC activity is zero (broken lines) and when it is high
(solid lines), for the first three subjects. The broken lines in Fig.
3 represent estimates of CV5,V2{0} according to Eq. 6 and
corresponds to a driving effect. In this example, s(t), the simu-
lated input from V2, was a 500-ms square wave convolved with
a hemodynamic response function and scaled to unit height. The
solid curves represent the same response when PPC activity is
unity (i.e., CV5,V2{0} 1 CV5,V2yuPPC). It is evident that V2 has
a driving effect on V5yMT and that PPC increases the respon-
siveness of V5yMT to these inputs. Quantitatively, there is an
increase of about 30% in the response to V2 inputs for a unit
increase in PPC activity. By virtue of the normalization applied
to the time-series, the (dimensionless) activities are expressed in
terms of the standard deviation of each region. The inserts show

Table 1. Location of the specified regions (x, y, and z in millimeters) in the standard space defined by Talairach
and Tournoux (38) and the significance of the modulatory effect of PPC on V5yMT responses to V2 inputs (see
Fig. 3)

Subject 1 2 3 4 5

Region definition
Pul 21 227 9 21 230 0 24 227 2 3 27 227 3 24 230 3
V2 9 293 12 12 299 9 12 290 9 12 296 0 9 296 3
V5 51 260 3 51 272 2 6 51 254 2 9 49 257 2 9 54 272 2 6
PPC 27 272 60 38 251 51 30 248 63 24 266 57 33 268 60

Statistical inference
Fmax 11.24 11.84 14.64 33.99 10.89
Location 51 263 0 54 274 212 48 251 2 9 48 254 212 54 272 2 6
Voxels 75 64 43 72 33
P uncorrected 0.001 0.001 ,0.001 ,0.001 0.001
P corrected (34) 0.054 0.036 0.008 ,0.001 0.029

By virtue of the region definition and spatial smoothing, the cortical region (V2) subsumes portions of V1. Similarly, the subcortical
region (Pul) probably includes a contribution from both the pulvinar and the lateral geniculate nucleus. Fmax corresponds to the largest
F value in V5yMT. The effective degrees of freedom (corrected for serial correlations) were approximately 2 and 179 (33). The location
of the voxel with the largest F value, the number of voxels comprising the V5yMT region, and the associated P values are provided for
each subject.

Fig. 2. Dynamics of the regions used in the analysis: Data from the first
subject are shown in terms of the voxels used (white areas on a standard
structural MRI scan) and the associated time-series. The time-series from the
pulvinar (Pul), V2, and PPC were used in the subsequent analysis of modulatory
effects and correspond to u(t) in the text.
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all of the voxels in V5yMT that evidenced a modulatory effect
(P , 0.05 uncorrected). Results for the first three subjects are
shown. Similar results were obtained for the remaining two
subjects.

Conclusions
Our demonstration of attentional modulation of V5yMT
responses is compelling insofar as it uses a novel nonlinear
characterization of effective connectivity to test a specific
hypothesis that was motivated by basic neuroscience findings.
It should be noted that the conclusions reached above are
constrained inherently by the hypothesis tested. Alternative
architectures could have been considered (e.g., those allowing
for a modulatory inf luence of the pulvinar) that may have
yielded similar results. In this sense, the analysis described in
this report should not be construed as an exploratory charac-
terization of network interactions but represents a test of a
specific hypothesis. The most that can be concluded from our

analysis is that the activity in PPC is sufficient to explain a
significant component of attentional modulation of V5yMT
responses. It cannot be concluded that other afferents do not
play a role or that PPC modulation is necessary for these
effects. A second limitation is imposed by the spatial and
temporal resolution of neuroimaging data. This precludes
inferences about laminar-specific interactions or anything
more refined than large scale population dynamics. However,
the wealth of data implicating PPC in an attentional role
(19–22, 28) renders the current analysis congruent with a large
body of convergent evidence.

Previous approaches to characterizing interactions among
cortical areas, as measured by fMRI, use either structural
equation modeling (8) or regression techniques (9). We have
recently described how structural equation modeling can be
extended to deal with nonlinear or modulatory effects by the
use of ‘‘moderator’’ variables (18). However, structural equa-
tion modeling places restrictions on the number of parameters
that can be estimated, making it difficult to include many areas
or high-order terms. This is in contradistinction to regression
approaches. The first regression analysis of modulatory effects
(3), using fMRI, used piece-wise linear regression to examine
interactions between V1 and V2. Although appropriate for the
questions addressed, this framework only modeled modulation
by intrinsic activity and did not allow for modulation by
extrinsic inputs. Subsequently, high-order terms were intro-
duced into simple regression models of effective connectivity
(36). This enabled hypothesis testing about second-order
interactions among inputs to an area, or indeed interactions
between experimental factors and activity in a modulating
source [referred to as psychophysiological interactions (36)].
However, these models assume that the activity in one region
causes a response in another instantaneously. To allow for (i)
temporal precedence of inf luences among cortical regions and
(ii) the endogenous variability in the delay of the hemodynamic
response, the current Volterra formulation was developed.
The Volterra approach explicitly models interactions over time
and has been established in the analysis of fMRI time-series
from single voxel (31). This paper describes an application of
this approach to questions about functional integration.

This report has only addressed the modulation of early connec-
tions in the dorsal visual pathway. Clearly, the same principles may
apply at subsequent stages. For example backwards connections
from prefrontal areas may modulate V5yMT inputs to the PPC
(18). This leads to the notion of a serially coupled hierarchy, where
each stage is driven by lower stages but, at the same time, modulates
these driving areas. This has important implications for conceptual
and mathematical models of information processing because the
dynamics at any level are some nonlinear function of activity in both
lower and higher levels. This precludes serial transformations of the
sensory input as assumed in many information theoretic accounts
of early visual processing but is much more consistent with a
‘‘generative’’ model approach, as nicely exemplified by Rao and
Ballard (39).

In conclusion, we have confirmed the hypothesis that changes
in attentional set are associated with augmented responses of
V5yMT to driving inputs from V2 and that the activity of
posterior parietal cortex is sufficient to account for this modu-
lation. This does not preclude the role of other modulatory
effects (e.g., those mediated by cortico-thalamic loops), nor does
it imply that parietal modulation is necessary. However these
results clearly show that parietal influences are sufficient to
explain a significant component of attentional modulation in
V5yMT.

We thank Richard Frackowiak for invaluable comments. This work was
supported by the Wellcome Trust.

Fig. 3. Characterization of effects of V2 inputs on V5yMT and the modula-
tion of these responses by PPC using simulated inputs at different levels of PPC
activity. The broken lines represent estimates of CV5,V2{0} according to Eq. 6, in
which the V2 input s(t) was a 500-ms square wave convolved with the hemo-
dynamic response function. The solid curves represent the same response
when PPC activity is unity (i.e., CV5,V2{0} 1 CV5,V2yuPPC). The insets show all of
the voxels in V5yMT that evidenced a modulatory effect (P , 0.05 uncorrect-
ed). These voxels were identified by thresholding SPMs of the F statistic testing
for the contribution of second order explanatory variables involving V2 and
PPC, while treating all others as confounds. Results for the first three subjects
are shown.
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