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In fMRI there are two classes of inference: one aims
o make a comment about the ‘‘typical’’ characteristics
f a population, and the other about ‘‘average’’ charac-
eristics. The first pertains to studies of normal sub-
ects that try to identify some qualitative aspect of
ormal functional anatomy. The second class necessar-

ly applies to clinical neuroscience studies that want to
ake an inference about quantitative differences of a

egionally specific nature. The first class of inferences
s adequately serviced by conjunction analyses and
xed-effects models with relatively small numbers of
ubjects. The second requires random-effect analyses
nd larger cohorts. r 1999 Academic Press

Key Words: fMRI; inference; fixed and random effects;
onjunctions; typical.

typical /tIpIc(a) l/ adj. 2. characteristic of or serving
to distinguish a type.
average /ævarIg5/ n., adj., & v., — adj. 1. usual,
ordinary. 2. estimated or calculated by average. (The
Concise Oxford Dictionary, OUP 1991)

INTRODUCTION

With the increasing use of fMRI many units, includ-
ng our own, must contend with practical constraints on
he number of subjects that constitute a study. These
onstraints are imposed by data-handling restrictions
nd access to scanning time. The following comments
re based on discussions about the scientific motivation
or scanning large numbers of subjects.

THE NATURE OF INFERENCES WE MAKE

A critical distinction that determines the number of
ubjects included in a neuroimaging study is between
nferences about the particular subjects studied and
nferences that pertain to the population from which
hose subjects came. This is equivalent to the distinc-
ion between fixed- and random-effect analyses and

peaks to the notion that, in making inferences at the p

1

opulation level, we must account for having only a
ample of subjects from the population. The distinction
rises only when one has several observations from
ach subject or session. This is clearly the case in fMRI
nd engenders the following problem: Imagine that one
as studied six subjects. These subjects are analyzed
sing a conventional, fixed-effect, statistical model
sing subject-specific parameter estimates (i.e., a de-
ign matrix that is separable over subjects or sessions).
n this instance one can specify contrasts testing for an
ctivation in each subject separately or for an average
ctivation over the group. Let us say that the subject-
pecific contrasts show that two of the six subjects
ctivate very significantly, whereas the remainder do
ot. By virtue of these two subjects the contrast testing

or an average activation over the six subjects also
hows significant effects. What then can be said about
he population from which these six subjects came? In
hort, nothing. All that can be said is that relative to
he within-session (i.e., scan to scan) variability, the
ctivation expressed by two subjects is large and conse-
uently the average activation over all six is signifi-
ant. This allows one to infer that these and only these
ix subjects show an average activation and, in this
nstance, this average effect is accounted for by two of
he six subjects. To assess the probability that a subject
ampled randomly from the population would show an
ctivation one needs to know the variability of the
ctivation itself. This is simply obtained by the varia-
ion in activation from subject to subject. Clearly, in
his example, this variation would be large relative to
he average activation, which, as a result, would be
eemed insignificant. The latter analysis corresponds
o a random-effect analysis where the ‘‘random’’ speaks
o the fact that one has allowed for the expression of
ach subject’s activation to be modeled as a random
ariable. In the subject-separable fixed-effect analysis
escribed above these differential contributions were
odeled implicitly, in terms of subject by condition

nteractions, but were assumed to represent ‘‘fixed’’

arameters of the statistical model employed. Put
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2 COMMENTS AND CONTROVERSIES
imply, if one wants to make an inference about a
articular subject or group of subjects then one com-
ares the average activation to the within-subject or
ession variability. To make an inference about the
opulation from which these subjects came, then one
ompares the average activation to the variability of
hat activation over subjects. The implication is that to
eneralize one’s inference to the population one must
ave a large number of subjects to reliably assess the
etween-subject variability. This is the critical point of
ontact between the nature of inference required and
he number of subjects required.

In what follows we will review the status of fixed- and
andom-effect analyses in relation to fMRI data analy-
is, focusing specifically on inferences that can be made
bout the population from which the subjects were
rawn. The main aim of this discussion is to demon-
trate that fixed-effect models can be used to make
nferences at a population level through the use of
onjunction analyses and the notion of typicality.

TYPICAL AND AVERAGE CHARACTERISTICS

In fMRI the scan to scan variability is generally
uch lower than the session to session variability and

he distinction between a random- and fixed-effect
nalysis is crucial. This distinction is made more acute
y the fact that the ratio of scans to subjects is
enerally high, rendering a greater difference between
xed- and random-effect analyses (the emphasis on
etween-subject effects increases with this ratio in
andom-effect analyses). It is worthwhile considering
he various approaches adopted in other disciplines
aced with similar problems. One more useful example
s the distinction between electrophysiology in awake
ehaving primates and in human event-related stud-
es. In electrode recording it is quite common, and
cceptable by peer review, to present a careful statisti-
al characterization of a single monkey and supplement
hese observations with replications in a further one or
wo subjects. From the perspective of fMRI this corre-
ponds to a fixed-effect analysis or case study of two to
hree subjects. In contradistinction, in most human
tudies, evoked responses are averaged within subject
nd then analyzed. The number of subjects here is
enerally much greater (e.g., 8–16) and the inference is
ased explicitly on subject to subject response variabil-
ty. This corresponds to a random-effect analysis using
to 16 subjects. Which is the most appropriate for fMRI

tudies? Clearly the answer to this question depends
pon the experimental question and leads us to think
arefully about the nature of the inference that we
ant to make.
These inferences can fall into one of two classes.
irst, we are trying to delineate, in a qualitative sense, c
ome typical aspect of functional architecture in the
uman brain or, second, we may want to make a
uantitative statement about some average trait that
haracterizes a particular cohort of subjects or pa-
ients. The distinction is subtle but crucial from a
tatistical perspective. For example, the inference that
armers typically own tractors is not refuted by the fact
hat some farmers do not have a tractor. It only implies
hat farmers are more likely than not to own one. On
he other hand, the statement that farmers in Wales
ave, on average, more than 0.86 tractors has a differ-
nt connotation and provides a more refined character-
zation in terms of the quantity of tractors owned. The
istinction can be appreciated in terms of the corre-
ponding null hypotheses. For typical characteristics
he null hypothesis is that less than a specified propor-
ion of the population evidences the trait. For average
raits the null hypothesis is that the average expres-
ion of the trait is not significantly different from some
pecified level (e.g., 0 or, in the example above, 0.86).
ote that the trait or characteristic is treated as a
ualitative variable from a typicality perspective (i.e.,
ne does or does not own a tractor) and as a quantitative
etric in terms of average traits (i.e., one can own one

r more tractors). The reason that fMRI lends itself to
his dichotomy is that any neurophysiological effect can
e inferred to be present or absent (in a statistical sense
sing a single-subject analysis) or characterized in
erms of the effect itself (the parameter estimates of the
ffect’s size).
A more relevant example, of the distinction between

nferences about typical and average characteristics,
ould be the difference between asking ‘‘do normal

ubjects typically active their left prefrontal cortex
uring the encoding of semantic material?’’ and ‘‘do
chizophrenic patients with psychomotor poverty show,
n average, lower left prefrontal cortical activation
uring semantic encoding than those with reality distor-
ion?’’ In the first case one would be satisfied with an
nference that a neurophysiological response was typi-
al of the population from which the subjects were
rawn, accepting that the occasional subject may not
how this effect. In the second case one wants to make
n inference of a quantitative sort that is always
emonstrably true, given enough subjects.
This difference between inferences about typical and

verage responses is important because fixed-effect
nalyses can, contrary to convention, be used to make
nferences about typical characteristics at a population
evel. To make inferences about average characteristics
ne needs to use random-effect analyses. The next
ubsection describes how fixed-effect models can be
sed to make population inferences through the use of

onjunction analyses.
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3COMMENTS AND CONTROVERSIES
FIXED-EFFECT MODELS: CONJUNCTIONS AND
INFORMATION

Here we consider conjunction analyses in subject-
eparable fixed-effect statistical models. The term ‘‘con-
unction’’ is used to denote the joint refutation of two or

ore null hypotheses. More simply, a conjunction of
ffects arises when this effect is significant in every
ubject-specific contrast. Note that, because of the
ubject-separable nature of the design matrix, the
nsuing contrast of parameter estimates is orthogonal
nd can be construed as approximately independent. To
ake the role of conjunctions clear consider the follow-

ng example:
Suppose that I told you that men from Caius College
ambridge have a small g tattooed discreetly in their

nguinal region. If you selected a man at random from
aius, and we indeed confirmed that he had a small

attoo, would you believe me? You may or may not. Say
hat we then selected six men from Caius at random
nd they all had similar tattoos. You then might be
ore convinced. Clearly this does not constitute defini-

ive evidence that all men from Caius are embellished
n this way, but you have available to you evidence that
onveys a substantial amount of information about how
ypical this attribute is, in relation to men from Caius.
e can formalize this anecdotal example in the follow-

ng way:
Let p(n) be the probability of n subjects testing

onjointly for some effect. The test has a specificity of a
nd sensitivity of b. Specificity is simply the probability
f getting a positive result under the null hypothesis
hat the subject does not show the effect in question.
he sensitivity is the probability of a positive result
nder the alternate hypothesis that he/she does. Gener-
lly we can specify a because the behavior of the
bservations, under the null hypothesis, is known,
hereas we do not know b because the exact nature of

he data under the alternate hypothesis is generally
ot. Now let g represent the number of subjects in a
opulation showing the effect. The probability of get-
ing a conjunction of positive tests is the sum of the
onditional probabilities of these positive results over
ll possible outcomes of the selection of n subjects. For
ne subject the possible outcomes are oi where o0 is ‘‘no
ffect’’ and o1 means the effect is expressed, i.e., p(o0) 5
2 g and p(oi) 5 g. The probability of a conjunction of n

ests is given by

p(n) 5 [op(1 0oi)p(oi)]n 5 [a(1 2 g) 1 b · g]n . (1)

he information of this conjunction is simply 2log(p(n)).
learly the information depends upon our prior expec-

ations that any subject chosen at random would
xpress this affect, namely, g. In the example above the

ikelihood of any one having a small g tattoo is rela- e
ively small (say one in a million). Assume that the
pecificity and sensitivity of our ability to find the
attoo was 5 and 90%, respectively, then the probability
f getting positive results from six men would be
.0000000156 and the corresponding information would
e 25.9 bits. This information would be substantially
educed if g were equal to 0.5. This might be the case if
e noted that six men from Caius were all taller than
82 cm, where the probability of being taller than 182
m was 0.5. In this instance p(6) 5 0.0115 and the
nformation would only be 6.4 bits.

It can be seen that the information that obtains from
conjunction, based upon a fixed-effect model, depends
pon the prior expectations g. Unfortunately in neuro-

maging we have no principled way, other than measur-
ng large numbers of subjects, of determining g for a
articular regionally specific effect. However, by formu-
ating a null hypothesis at the population level, in
erms of g, there is a lower bound on the information
hat obtains from any conjunction. If we define a typical
haracteristic of human brain functional architecture
s that which is expressed in more than a certain
roportion (gc) of normal subjects, for example, 50%
hen, under the null hypothesis, g , gc. The lower limit
n the information corresponds to the maximum value
f p(n 0g , gc) that, in turn, obtains when g reaches its
pper limit of gc.

p(n 0g , gc) , [a · (1 2 gc) 1 b · gc]n. (2)

(n 0g , gc) is effectively p value for a population infer-
nce about how typical the effect is. In other words,
nder the null hypothesis, the probability of getting a
onjunction over n subjects is less than, the value of the
erm of the right-hand side of Eq. (2) (see Fig. 1 for an
xample with n 5 3 subjects). Figure 1 suggests that
ven three subjects are sufficient to make a population
nference, if we accept a suitably low value for gc and
he sensitivity of our test is small enough (see below).
onversely for any specified gc there a lower limit on n

hat renders the upper limit on the p value in Eq. (2)
uitably small, say 0.05, where the critical value of n is
iven by

nc 5 log (0.05)/log (a · (1 2 gc) 1 b · gc). (3)

ote that the critical number of subjects nc is a function
f specificity, sensitivity and the criteria defining what
s a typical characteristic gc. A plot of this function for
arious values of b is given in Fig. 2. If b is not known it
s assumed to be 1. This analysis suggests that conjunc-
ions, in the context of fixed-effect analyses, can be used
o verify the alternate hypothesis that a particular
egionally specific effect is typical of normal functional
natomy. Typical is operationally defined as being

xpressed in gc of the population or more. For example,
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4 COMMENTS AND CONTROVERSIES
ccording to Fig. 2, a conjunction over six subjects
nables one to say that over 60% of the population are
ikely to show this effect (irrespective of the test’s
ensitivity). It should be noted, from Fig. 1, that
educing the power of the test enables smaller numbers
f subjects to justify an inference of typicality. For
xample, with a power or sensitivity of 0.6, three
ubjects are sufficient to say that a particular activa-
ion is typical of a population with a gc of about 60%.
his somewhat paradoxical result follows from the fact

FIG. 1. Plot of the upper limit on p(n 0g , gc), the p value for a po
hree subjects with a test that has 5% specificity and a range of sensit
f the population that defines ‘‘typicality’’ of the effect tested for. The b

FIG. 2. Plot of the critical number of subjects required in a conjun
test with 5% specificity and a range of sensitivities (b 5 1, 0.9, 0.8,

efines ‘‘typicality’’ of the effect tested for.
hat the actual likelihood of obtaining this conjunction,
ith a less sensitive test, is exceedingly small.

CONCLUSION

All neuroimaging studies, and ensuing inferences,
im to make some comment about the population from
hich the subjects studied were sampled. There are

wo classes of inference. The first aims to establish the
bserved effect as a typical characteristic of the popula-

lation inference using a conjunction and fixed-effect analysis for just
ies (b 5 1, 0.9, 0.8, and 0.6). The ordinate gc is the critical proportion
en line represents a threshold of p 5 0.05.

n analysis using a fixed-effect model to ensure p(n 0g , gc) , 0.05 for
0.6). The ordinate gc is the critical proportion of the population that
pu
ivit
rok
ctio
and
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5COMMENTS AND CONTROVERSIES
ion, while allowing for the fact that some subjects may
ot show this effect. This sort of inference may be
ntirely sufficient when trying to characterize generic
spects of human functional brain architectures, suffi-
ient in the sense that knowing a particular character-
stic is typical is more useful than not knowing this fact.
hese sorts of inferences are obtained from a conjunc-
ion analysis using fixed-effect models. The second class
f inferences is more stringent in the sense that the
lternate hypothesis requires that the mean effect over
he population is significantly greater than under the
ull hypothesis. This sort of inference requires a ran-
om-effect analysis and would be necessary in many
xamples from clinical neuroscience, where the effect
hould have some diagnostic or predictive validity. The
‘effect’’ is treated as qualitatively present or absent
sing conjunction analyses. The effect in random-effect
nalyses of average responses enters as a quantitative
ariable. By virtue of this a conjunction approach to
stablishing typicality can be seen as an inference (at a
opulation level) about an inference (at a subject level).
n other words, it is a metaanalysis.

In short, in basic imaging neuroscience, it may be the
ase that a conjunction analysis with a fixed-effect
odel is sufficient to infer something about characteris-

ics that are typical of a population, whereas in clinical
euroscience it may well be necessary to use a random-
ffect analysis. By allowing for a more relaxed but
perationally specified definition of typicality one can
otivate the use of conjunctions and fixed-effect models

nd harness their greater sensitivity (that is obtained
y predicating the inference on greater degrees of
reedom).

Note that there are experimental designs that can
nly be analyzed using random-effect analyses. These
nclude fMRI designs where there is no true replication
f treatments within a subject. The more important
xamples of these involve learning experiments and
sychopharmacological studies. Learning experiments,
ver protracted periods of time (as opposed to within-
ession adaptation), require random-effect inference
ecause the treatment only exists on a subject- or
ession-specific level. Similarly, psychopharmacologi-
al studies, especially those employing antagonists
hose receptor binding kinetics have long time con-

tants, require random-effect analysis because the dif-
erences of interest only exist among sessions and not
ithin them.
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