
they are only uncorrelated). More im-
portantly, ICA does this in a fashion that
renders the expression of the com-
ponents non-Gaussian. In the implemen-
tation proposed by McKeown et al.
these distributions are super-Gaussian
or ‘sparse’. This simply means that
things happen infrequently. Why is a
‘sparse’, or more generally a non-
Gaussian, distribution interesting? The
answer to this question is simple and
extremely compelling: because meas-
urements of biological systems receive
contributions from many sources (e.g.
dipoles generated by neuronal activ-
ity), the observations usually represent
a [roughly linear] mixture of interest-
ing things. By the central limit theorem
this mixture conforms to a Gaussian
distribution. As mixtures themselves
are uninteresting the only interesting
things must be non-Gaussian (assum-
ing that Gaussian distributions arise
only from mixing). This is the rather
beautiful motivation behind ICA. There
are many ways of understanding the
nature of ICA but this perspective high-
lights why ICA is so pertinent to bio-
logical time-series. In what follows we
will look at the particular implemen-
tation of ICA in relation to fMRI time-
series proposed by McKeown et al. and
then consider this contribution in the
context of extant approaches to fMRI
data analysis, and the larger issues it
raises in terms of the scientific process
in imaging neuroscience.

ICA and fMRI time-series
In application to multi-channel EEG or
MEG signals, independent components
are generally identified using corre-
lations among channels that are esti-
mated over time. The output comprises
a set of non-orthogonal spatial modes
whose dynamics are independent and
have a sparse distribution. This decom-
position can be viewed as an elegant
‘un-mixing’ of the observed (linearly
mixed) time-series to reveal the under-
lying and independent biological
sources. This is very sensible and ap-
peals directly to the conceptual basis of
ICA. However, this approach is not that
used for fMRI. In fMRI there are many
more voxels (i.e. channels) than there

are scans (i.e. time points). This is the
complement of the situation in EEG
and poses a computationally intract-
able problem if one wanted to apply
ICA to the correlations among voxels.
The clever trick, adopted by McKeown
et al., is literally to transpose the prob-
lem and derive independent compo-
nents based upon correlations among
different time points that are evalu-
ated over voxels. The spatial modes
that ensue are sparse and independent
and express dynamics that are gener-
ally correlated. This lends the interpre-
tation of the ensuing modes and their
dynamics a very different complexion,
relative to ICA analyses of EEG data.
There are both pros and cons to the 
approach of McKeown et al. Firstly, the
fact that neuronal responses that have
distinct causes are likely to be spatially
non-overlapping and regionally spe-
cific, provides a very nice motivation for
identifying spatial modes that are in-
dependent and sparse. Secondly, the
correlations between temporal dynamics
frees one of the constraint that, for 
example, artifacts due to motion have
to be orthogonal to those elicited by
experimental design (in conventional
analyses any confounding between a
signal of interest and an artifact means
that one has effectively lost that sig-
nal). On the negative side, the very 
nature of functional integration among
brain areas means that large scale 
neuronal dynamics can share a sub-
stantial anatomical infrastructure. ICA
would not find it easy to identify these
systems1. More critically ICA precludes
any nonlinear interactions among
modes that underpin context-sensitive
changes in functional architecture that
are the focus of many neuroimaging
studies. For example the spatial mode
implicated in processing visual motion
(that might include the lateral genicu-
late nucleus and cortical visual areas
V1, V2, V5 and V3a) could be substan-
tially modulated by changes in atten-
tion to visual motion (such that the
contribution of V5 and V3a was in-
creased relative to the other areas)
where this modulatory effect might be
mediated by an attentional mode in-
volving the prefrontal and posterior
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Modes or models: 
a critique on independent
component analysis for
fMRI
Karl J. Friston

This is a commentary on a novel 
approach to characterizing functional
magnetic resonance imaging (fMRI)
time-series presented in McKeown et
al.1 This characterization uses independ-
ent component analysis (ICA) and rep-
resents a departure from conventional
approaches to fMRI data analysis. The
paper is a significant contribution to
the literature for a number of reasons:
firstly, the interpretation of functional
neuroimaging time-series is vitally im-
portant given the increasing role of
imaging neuroscience in nearly every
aspect of systems and cognitive neuro-
science2. Secondly, ICA has attracted a
lot of attention in many fields of re-
search over the past few years, in par-
ticular the analysis of electrophysio-
logical (EEG) and neuromagnetic (MEG)
time-series3. Furthermore, it is closely
related to algorithms, adopted in theo-
retical neuroscience, that emulate the
way that the brain extracts information
from sensory input in as efficient a way
as possible4.

The aim of ICA is to decompose a
multi-channel or imaging time-series
into a set of linearly separable ‘spatial
modes’ and their associated time courses
or dynamics. By adding together these
dynamically changing spatial patterns,
one reconstitutes the original obser-
vations. In this sense it is similar to prin-
cipal component or eigenimage analy-
sis5. The constraint employed by
eigenimage analysis is that both the
spatial and temporal profiles are all
mutually orthogonal (and uniquely de-
termined such that the first mode ac-
counts for the greatest amount of vari-
ance, the second mode for the next
greatest and so on). ICA, on the other
hand, represents a somewhat more
principled decomposition of biological
time-series: the analysis renders either
the temporal dynamics, or the spatial
modes (but not both), not only orthog-
onal or uncorrelated, but independent.
The distinction between ‘uncorrelated’
and ‘independent’ relates to correlations
between non-linear functions of the
variables in question. These are some-
times referred to as ‘high-order corre-
lations’ (absent if the variables are in-
dependent but not necessarily so when



parietal cortices6. ICA would not han-
dle this situation very gracefully and
would probably fractionate the visual-
motion system into two components
(that do and do not show attentional
modulation). Interestingly non-lineari-
ties7 in the hemodynamic response to
underlying neuronal changes at any
one point in the brain are not prob-
lematic for ICA; the difficulties arise
when anatomically distinct neuronal
systems interact in a non-linear way6

(see McKeown et al., p. 184, for a dis-
cussion that touches on this).

In short, conventional applications
of ICA identify sources with independ-
ent and sparse dynamics that may or
may not be neuro-anatomically segre-
gated. ICA, as proposed by McKeown
et al., identifies sparse, independent
spatial modes that may or may not ex-
press correlated dynamics. The inter-
pretation of the ensuing modes and
their time courses rests upon a proper
appreciation of this.

ICA in context
To understand the potential role for
ICA, in characterizing fMRI time-series,
it is worthwhile considering estab-
lished techniques. The framework for
the analysis of imaging time-series was
largely established in positron emission
tomography (PET) neuroimaging and
has been extended, or recapitulated,
for fMRI. In general approaches are 
either hypothesis-led or data-led (i.e.
exploratory). The vast majority of
imaging neuroscience depends upon
hypothesis-led characterizations that
are inferential in nature. These in turn
are based upon some form of ‘statisti-
cal parametric mapping’. Statistical
parametric mapping refers to the con-
struction of images using a voxel-
specific statistic that tests hypotheses
about the dynamics at that voxel. This
statistic is usually derived under para-
metric assumptions using the general
linear model (e.g. the T statistic, in 
testing for a particular compound of
parameter estimates using multiple 
regression, or in the case of just one 
regressor, the correlation co-efficient)8.
There have been some developments,
such as the use of non-parametric sta-
tistics9 and extensions to the general
linear model that allow for serial corre-
lations in fMRI time-series10, but the
overall approach has endured for a
decade.

The second class of analyses are
data-led and eschew any need to 
specify a statistical model about which
inferences are made. Among these are
eigenimage analysis, cluster analysis,
multi-dimensional scaling and now
ICA. ICA distinguishes itself because it
is predicated on assumptions that seem
particularly relevant to biological time-
series. It should be noted that the con-
ventional ‘correlational’ analysis11 used
by McKeown et al., as a comparison for
ICA, is the simplest form of statistical
parametric mapping and uses a statisti-
cal model that might be sub-optimal in

many circumstances. A typical model
would normally include multiple com-
ponents; for example a series of tem-
poral basis functions for modelling
voxel-specific differences in the form
of evoked hemodynamic responses 
(i.e. consistent task-related responses),
periodic confounds modelling low fre-
quency drifts and aliased biorhythms
and interactions among these terms to
accommodate nonlinear responses7 or
time by condition interactions (i.e.
transiently task-related responses)12.

Why is the distinction between 
hypothesis-led and data-led approaches
important? The usefulness of any new
technique emerges in the context in
which it is used. The facility of being
able to apply techniques like ICA to
imaging augments the ongoing re-
evaluation of inferential approaches in
imaging neuroscience. The ubiquity of
inferential approaches reflects the
(Popperian) scientific process adopted
by the imaging neuroscience commu-
nity (hypothesis generation, refutation
and design of ensuing experiments).
On the one hand questions have been
raised about the usefulness of inferen-
tial statistics, especially in relation to
fMRI time-series, and there have been
calls to move towards alternative char-
acterizations (such as confidence inter-
vals, posterior possibilities, mixture
models and nonparametric regression).
On the other hand, however, the scien-
tific process based on conventional sta-
tistical inference has proved extremely
successful. It has allowed for the suc-
cessive elaboration of increasingly so-
phisticated experiments, the testing of
more refined hypotheses and a com-
prehensive characterization of func-
tional brain architectures, in terms of
both functional specialization and in-
tegration. Testing a hypothesis reduces
operationally to specifying what one
expects to see. In statistical parametric
mapping this is realized in terms of the
statistical model (i.e. design matrix)
that embodies all the explanatory ef-
fects that constitute the hypothesis.
These explanatory variables are noth-
ing more than assumptions about the
spatiotemporal dynamics of fMRI time-
series and are central to scientific infer-
ence. Data-led techniques like ICA do
not appeal to a statistical model and
deny the opportunity to test any hy-
pothesis (although they might provide
insights that allow better models to be
elaborated). Imaging neuroscience is
now a maturing discipline wherein
some principles of brain organization
have already been elucidated. Within
these broad principles, for example
functional segregation, hundreds of
imaging neuroscience programs are
following the conventional scientific
process to carefully characterize neur-
onal responses and their relationship
to the brain’s infrastructure. Working
in any imaging laboratory repeatedly
exposes one to the importance of
being able to test hypotheses, where
the results of one experiment inform

the next, often generating more ques-
tions than resolutions. Furthermore, 
inferential approaches, based upon
statistical models, allow insights from
other fields to be adopted easily and
powerfully. A clear example of this is
the increasing use of multifactorial 
designs in neuroimaging. These ap-
proaches are predicated on advances in
psychology (e.g. the additive factors
method of Sternberg13) made many
years before the first PET camera.

In my opinion the hypothesis-
based scientific process is serving the
imaging community extremely well 
at the present time. It has arisen not 
by explicit design (although the con-
straints of available data acquisition
techniques and analysis methods could
have played a role) but because it is so 
efficacious. It enables an internal con-
sistency within scientific programs and
a discourse between the imaging 
and other neuroscience communities.
Techniques that seek an entry into the
field on the basis of ‘minimal assump-
tions’ might not be attractive to those
who have treasured assumptions about
which they want to make inferences. In
relation to the distinction between hy-
pothesis-led and data-led approaches,
it is interesting to note that the appli-
cation of ICA considered here has
emerged from a laboratory that is
renowned for its insightful use of mod-
elling techniques to emulate the be-
haviour of neuronal systems. The ques-
tions addressed by these approaches
pertain to emergent behaviours and
the exploration of the parameter space
of neuronal models that are a long way
away from the statistical models used
in neuroimaging. It will be interesting
to see if ICA can mediate between
these two distinct approaches.
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As Professor Friston eloquently de-
scribes in his commentary1, current
techniques for analysing fMRI data can
be dichotomized into either data-
driven methods, like independent com-
ponent analysis (ICA), or hypothesis-
driven methods, like the General
Linear Model2. These two approaches
are complementary and mirror the ex-
ploratory and confirmatory aspects of
scientific investigation. Imaging studies
driven by hypotheses derived from
cognitive psychology and related disci-
plines can at best support or refute cur-
rently formulated psychological mod-
els. Counterintuitive or unanticipated
time courses of activation of localized
brain areas are less likely to be discov-
ered with such analysis methods. For
example, in our paper, we demon-
strated transiently task-related (TTR)
ICA components whose time courses
could not be anticipated before the 
experiment3.

The ICA implementation described
in our paper fully characterizes the
data by separating them into sparse
maps, or spatial modes, and associated
time courses. Employing an ICA algo-
rithm capable of looking for non-
sparse as well as sparse maps found
maps that were all sparse4. Many of
these maps can be identified with
known artifacts, such as blood vessel
pulsations, head movements and slow
drifts. These highly spatially structured
signals are not easily modeled by a 
priori estimates as required by hypoth-
esis-driven methods. The other key ICA
assumption, that the maps are spa-
tially independent, does not preclude
the possibility of spatial overlap, be-
cause maximal independence can be
achieved with overlap in high-dimen-
sional spaces, especially as positive and
negative regions of those maps can
cancel.

Friston also rightly points out some
of the inherent weaknesses of ICA. In
an attempt to find maps that are maxi-
mally independent, ICA might tend to
fragment broad areas of activation
into multiple maps, all having highly

correlated time courses. Like all linear
models, ICA will be less sensitive to
finding non-linear activation relation-
ships between voxels, if these exist.
More recent work takes advantage of
an important by-product of ICA analy-
sis; that the probability of observing
the data conditioned on the ICA model
is relatively easy to calculate, in order
to estimate how well a linear model
fits the data5. This report found that
some brain regions (e.g. around blood
vessels) might fit less well than say,
subcortical white matter using an ICA
model. Also, purely data-driven tech-
niques like ICA, as Friston says, do not
lend themselves to straightforward sta-
tistical analyses, potentially limiting
their use for functional neuroimaging
studies specifically designed to test 
certain hypotheses, rather than for 
exploratory analysis.

As the field continues to mature,
we foresee the development of hybrid
methods that will attempt to take ad-
vantage of these two complementary
approaches: first employing powerful
data-driven techniques to characterize
the underlying nature of the signals
and noise, then testing hypotheses of
interest in the context of this accurate
characterization. ‘Data-driven’ or ‘hy-
pothesis-driven’ analysis methods will
then refer to the extremes of a con-
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