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This paper presents the conjecture that functional
integration may be mediated by the mutual induction
and maintenance of stereotyped spatiotemporal pat-
terns of activity (i.e., transients) in different neuronal
populations. In contradistinction to temporal and rate
coding models of neuronal interactions, transient cod-
ing considers that transactions among neuronal sys-
tems use transient dynamics that are distributed in a
structured way over both space and time. In contrast
to synchronization models, transient coding does not
depend on interactions at the same frequencies, in
different parts of the brain, but involves covariations
among different frequencies and can therefore be con-
sidered a more general form of coding. Using an analy-
sis of the correlations among the spectral density of
neuromagnetic signals, measured at different cortical
regions, this hypothesis was confirmed. For example
high (gamma)-frequency oscillations in the prefrontal
cortex are associated with low (20 Hz)-frequency oscil-
lations in the parietal cortex. The results are consis-
tent with transient coding and suggest that transient
dynamics endure for at least 40–200 ms. Transient
codingmeans that correlations (rate coding) and coher-
ence (synchrony) are neither complete nor sufficient
characterizations of neuronal interactions. Although
temporal coding, rate coding, and synchronyare impor-
tant aspects of neuronal interactions, the results speak
to further integrative neuronal mechanisms of a more
general nature. r 1997 Academic Press

INTRODUCTION

This paper presents the idea that dynamic changes
in the spectral density of neuronal activity may reflect
an underlying ‘‘metric’’ or code mediating functional
integration in the brain. Functional integration here
refers to the concerted interactions among neuronal
populations, and functionally specialized cortical areas,
that mediate perceptual binding, sensorimotor integra-
tion, and cognitive processing. It pertains to the mecha-
nisms by which, and constraints under which, the
dynamics of one population influences the activity of
others. It is suggested that a component of integration
among neuronal systems proceeds at the level of tran-

sient dynamics. This transient coding hypothesis sug-
gests that interactions are mediated by the mutual
expression and induction of reproducible, stereotyped
spatiotemporal patterns of activity that endure over
extended periods of time (i.e., neuronal transients). If
the temporal structure of neural transients shows a
regional specificity, then the prevalence of certain
frequency components in one cortical area will be
associated with the expression of different frequencies
in another area. This hypothesis has implications for
existing measures of neuronal interactions (i.e., coher-
ence and cross-correlogram analyses). In particular it
means that frequency-specific coherence in electrical
and biomagnetic signals, or oscillations in separable
spike trains, may be incomplete characterizations of
neuronal interactions.
A ‘‘neural code’’ is used here to mean a measurement

or metric of neuronal activity that could participate in
teleologically meaningful transactions among different
parts of the brain. However, no attempt is made to
discern the meaning or content of a putative code. All
that we assume is that a code or measure must
necessarily show some dependency when assessed in
two interacting neuronal populations or brain areas.
The problem of identifying possible codes then reduces
to establishing which sorts of measures are mutually
predictive or statistically dependent when measured in
two parts of the brain.
To discuss the nature of these transient dynamics, in

relation to other putative codes, a taxonomy of neural
codes is used that includes temporal coding, rate cod-
ing, frequency coding, and transient coding. This is not
meant to be an exhaustive list but tries to cover most of
the important differences. The first distinction is be-
tween codes that can be measured at one point in time
(i.e., temporal coding and rate coding) and those that
have an explicit temporal domain, in other words can
only be measured after a period of observation (i.e.,
synchrony coding and transient coding):

Temporal Coding

The distinction between temporal coding and rate
coding (see Shadlen and Newsome, 1995) centers on
whether the precise timing of individual spikes is
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sufficient to facilitate meaningful neuronal interac-
tions. In temporal coding the exact time at which an
individual spike occurs is the important metric and the
spike train is considered a point process. The term is
used here in this restrictive sense, as opposed to
designating codes that have a temporal domain (see
below and von der Malsburg, 1985; Singer, 1994).

Rate Coding

Rate coding considers spike trains as stochastic pro-
cesses whose first-order moments (i.e., mean activity)
define a space in which neuronal interactions are
enacted. These moments may be in terms of the spikes
themselves or other compound events (e.g., the average
rate of bursting; Bair et al., 1994). The essential aspect
of rate coding is that a complete metric would be the
average firing rates of all the system’s components at
one point in time. Interactions based on rate coding are
usually assessed in terms of cross-correlations, and
many models of associative plasticity are predicated on
these correlated firing rates (e.g., Hebb, 1949).

Synchrony Coding

The proposal most pertinent to this form of coding is
that population responses participating in the encoding
of a percept become organized in time through recipro-
cal interactions so that they come to discharge in
synchrony (von der Malsburg, 1985; Singer, 1994).
Frequency-specific interactions and synchronization
are used here synonymously. It should be noted that
synchronization does not necessarily imply oscillations.
However, synchronized activity is inferred, operation-
ally, by oscillations implicit in the periodic modulation
of cross-correlograms of separable spike trains (e.g.,
Gray and Singer, 1991; Eckhorn et al., 1992) or mea-
sures of coherence inmultichannel electrical and neuro-
magnetic time-series (e.g., Llinas et al., 1994). The
underlyingmechanism of these frequency-specific inter-
actions is usually attributed to phase-locking among
neuronal populations (e.g., Sporns et al., 1992; Aertsen
and Preissl, 1991). The key aspect of this metric is that
it refers explicitly to the extended temporal structure of
firing patterns either in terms of spiking (e.g., syn-fire
chains;Abeles et al., 1994) or oscillations in the ensuing
population dynamics (e.g., Singer, 1994).

Transient Coding

An alternative perspective on neuronal codes is pro-
vided by work on dynamic correlations as exemplified
in Vaadia et al. (1995). A fundamental phenomenon
observed by Vaadia et al. (1995) is that, following
behaviorally salient events, the degree of coherent
firing between two neurons can change profoundly and
systematically over the ensuing second or so. One
implication of this work is that a complete model of

neuronal interactions has to accommodate dynamic
changes in correlations, modulated on time scales of
100–1000 ms. A simple explanation for these dynamic
correlations has been suggested (Friston, 1995): It was
pointed out that the coexpression of ‘‘neuronal tran-
sients’’ in different parts of the brain could account for
dynamic correlations. This transient code hypothesis
suggests that interactions are mediated by the expres-
sion and induction of reproducible, highly structured
spatiotemporal dynamics that endure over extended
periods of time (i.e., neuronal transients). Like fre-
quency coding the dynamics have an explicit temporal
dimension but, in this more general framework, there
is no special dependence on oscillations or synchrony.
In particular the frequency structure of a transient in
one part of the brain may be very different from that in
another, whereas in synchronous interactions the fre-
quency structures of both will be the same (whether
they are oscillatory or not).
If the transient model is correct then important

transactions between cortical areas will be overlooked
by techniques that are predicated on rate coding (corre-
lations, covariance patterns, spatial modes, etc.) or
synchronization models (e.g., coherence analysis and
cross-correlograms). The aim of this work was therefore
to confirm or discount the possibility of a transient code
in the brain. The paper is divided into two sections. The
first section presents the theory upon which we based
our empirical analysis. In brief, if transient coding is
present in the brain then one would predict that (i) the
correlations between different spectral densities mea-
sured (over 100 ms or so) in two regions of the brain
would be significantly high and (ii) these correlations
would be asymmetric (i.e., high frequencies in one
region would be associated with low frequencies in the
other but not vice versa). The second section of this
paper confirms these hypotheses using magnetoen-
cephalographic (MEG) data obtained from a normal
subject while performing self-paced finger movements.

THEORETICAL BACKGROUND

The Neural Basis of Transient Coding

From a neurobiological perspective the distinction
between transient coding and synchrony coding could
be viewed in the following way: Synchronization repre-
sents the direct, reciprocal exchange of signals between
two populations, wherein the activity in one population
has a direct effect on the activity of the second, such
that the dynamics become entrained and mutually
reinforcing. In transient coding the incoming activity
from one population exerts a modulatory influence, not
on the activity of units in the second, but on the
interactions (e.g., synaptic or effective connectivity)
among these units to change the dynamics intrinsic to
the second population. In this model there is no neces-
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sary synchrony between the intrinsic dynamics that
ensue and the temporal pattern of modulatory input. A
simple example of this may be the facilitation of high
frequency gamma oscillations among nearby columns
in visual cortex by transiently increased modulatory
input from the pulvinar. In this example the expression
of low-frequency transients in the pulvinar will be
correlated with the expression of high-frequency tran-
sients in visual cortex. This phenomenon is distinct
from broad-band coherence (e.g., Bressler et al., 1993)
in which synchronization is evident over many frequen-
cies. In broad-band coherence the correlations between
different frequencies are accounted for completely by
correlations within each frequency band.

Why ‘‘Transients’’?

The underlying mechanisms behind transient coding
are speculative but are most easily framed in terms of
nonlinear dynamics; where attractor-like transients
evoke, and interact with, other transients among loosely
coupled neuronal populations. These transients can be
expressed in terms of firing rates (e.g., chaotic oscilla-
tions; Freeman and Barrie, 1994) or individual spikes
(e.g., syn-fire chains; Abeles et al., 1994, 1995). In
nonlinear dynamics the term ‘‘transient’’ usually refers
to the initial, self-limiting behavior of nonlinear sys-
tems that is observed before the system settles down
into its attractor. The term is used in the same sense
here to denote self-limiting patterns of activity. How-
ever, in the brain this period of ‘‘settling down’’ can be
thought of as ongoing and continuous as the attractor
changes from moment to moment (due to modulatory
interactions among different populations). In other
words, neuronal dynamics are not thought of as chaotic
dynamics, played out on an invariant attractor, but as
the succession of organized and structured transients
that ensue as the attractor itself changes (due to
activity-dependent changes and modulation of synaptic
connections).

Testing the Transient Coding Hypothesis

If the transient code hypothesis is correct there are
some specific and testable predictions that are implied.
In brief if one measures the spectral densities of many
paired segments of activity, from two parts of the brain,
then the coexpression of transients in these regions
should be reflected in correlations among the spectral
densities. We can therefore test the transient coding
hypothesis by testing for the statistical dependence of
these spectral density measures using standard multi-
variate statistical inference (in fact this turns out to be
a test for the mutual information between the two sets
of spectral density measures). This is a little bit like a
coherence analysis but addresses not only the correla-
tions at a particular frequency but also correlations
among different frequencies.

Let a(t) and b(t) denote paired segments of length n,
from two time series measured in different parts of the
brain. Let g(v) be the spectral density of a(t). g(v) 5

s(v) · s(v)*, where s(v) is the Fourier transform of
H(t) · a(t) and H(t) is a suitable (e.g., Hanning or
Gaussian) windowing function. Similarly f (v) is the
spectral density of b(t). Now assume that each segment
contains a transient such that the ith transient from
the first time series has spectral density gi(v) and the
jth transient from the second time series has a spectral
density fj(v). Note that if a transient is sampled half-
way though, it is simply treated as a new transient (the
precise phase relationships among transients and be-
tween the transients and sampling are discounted by
the spectral density). Consider k paired, independent
observations of g(v), and f (v) being drawn from the
(large) sets of events gi(v) and fj(v) with probabilities pi
and qj, respectively. In this formulation the null hypoth-
esis of no transient coding suggests that the expression
of the ith transient in the first time series is indepen-
dent of the expression of the jth transient in the second.
More exactly pij 5 pi · qjwhere pij is the joint probability
of the ith and jth transients occurring at the same time.
What implications does this have for the observed
spectral densities? By direct calculation,

Cov5g(u), f (v)6 5 E5g(u) · f (v)6 2 E5g(u)6 · E5 f (v)6

5 o o pij · gi(u) · fj (v)

2 o pi · gi(u) · o qj jfj (u),

where Cov 5 6 denotes covariance and E5 6 expectation.
Now if pij 5 pi · qj this implies that Cov5g(u), f (v)6 5 0 for
all frequency pairs (u, v). Let G be the (k 3 n) matrix
with one discrete estimate of spectral density g(v) per
row. Similarly let F be the matrix of f (v) estimates.
Therefore under the null hypothesis of no transient
coding Cov5G,F6 5 0. Cov5G,F6 is the (n 3 n) spectral
density covariance matrix with elements Cov5g(u),f (v)6.
The transient coding hypothesis can now be tested
using standard inferential statistics, in this instance,
Wilk’s l, the likelihood ratio statistic for testing the
independence of G and F (Chatfield and Collins, 1980,
p. 167). Using appropriate distributional approxima-
tions (Chatfield and Collins, 1980, p. 149), one can
calculate a P value using the observed spectral densi-
ties for any windowing functionH(t).
This statistical formulation of the problem allows one

to test the transient coding hypothesis directly by
showing that spectral densities in two brain areas F
and G are indeed mutually predictive or dependent. If
they were independent, then transients, and implicitly
their spectral densities, could not be candidates for a
neural code.
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Transients and Other Codes

In this section we show that both rate and synchrony
coding can be seen as special cases of transient coding.
This means that a significant P value is not sufficient to
accept the transient coding hypothesis in its most
general form. To do this we have to show in addition
that Cov5G,F6 is significantly different from Cov5F,G6:

Rate Coding

Interactions based on rate coding would be expressed
as a significant correlation between the two time series
a(t) and b(t). In the above formulation rate coding can
be considered a special and limiting case of transient
coding, where the length of the transient shrinks to one
time bin. Here n 5 1, meaning g(v) and f (v) are only
evaluated at the 0th frequency and therefore corre-
spond to the activity at that time. The statistical
inference above reduces to a univariate test for a
significant correlation. This presents a problem in the
present context because, in rejecting the null hypoth-
esis of no transient coding, we cannot discount rate
coding as the explanation. However if rate coding is
extant there are specific constraints on the form of
Cov5G,F6: If the two segments a(t) and b(t) are corre-
lated then a(t) < b(t) where < means equal apart from
unspecified error terms. Similarly g(v) < f (v). This
implies that Cov5g(u), f (v)6 < Cov5g(v), f (u)6 or Cov
5G,F6 5 Cov5F,G6. In other words Cov5G,F6 should be
symmetric about the leading diagonal. More intuitively
although high frequencies in one region may be corre-
lated with low frequencies in another; this is because
both frequencies are expressed at the same time in both
regions.

Synchronization

Synchronisation due to phase-locking can also be
considered a special case of transient coding, in which
the two transients comprise the same frequencies.
Unlike rate coding this does not necessarily imply a
correlation (e.g., dominant oscillations may be p/2 out
of phase), but, like rate coding, synchronization implies
that the spectral density of the dynamics in interacting
populations are similar. In other words the phasic and
reentrant (Edelman, 1993) exchange of signals among
disparate neuronal populations would incur oscillatory
dynamics at the same frequencies so that, again, g(v)<
f (v) and Cov5G,F6 5 Cov5F,G6. Note that this argument
also applies to aperiodic transients that are due to
nonoscillatory synchronous interactions.
In order to demonstrate transient coding, above and

beyond rate coding or synchronization, it is therefore
necessary to show that Cov5G,F6 is not symmetric (i.e.,
the spectral density of two coupled transients gi(v) and
fj(v) are dissimilar). For example a transient compris-
ing predominantly high frequencies in one neuronal

population is predictive of, and predicted by, a transient
elsewhere with a different (i.e., a low) frequency struc-
ture. This is exactly what we observed.

AN EMPIRICAL ANALYSIS OF MEG DATA

Data Acquisition

MEG data were obtained from a normal subject
during unilateral, self-paced movements of a joystick
using a Siemens KRENIKON 37-channel machine.
These data were kindly provided by Klaus Martin
Stephan, Andy Ioannides, and their colleagues. The
subject was trained to perform movements, with the
right hand, every 2 s or so. The data were acquired
every millisecond for at least 64 movements.

Data Preprocessing

In order to enhance the spatial resolution, and to
reduce spurious correlations among channels, we ap-
plied a V3 transformation to the data (this is a Lapla-
cian derivative or edge-enhancing-like operation) (Ioan-
nides et al., 1990). The V3 transformation transforms
data, obtained with axial gradiometers, to signals that
have maxima (roughly) over the underlying source
currents.
Two continuous time series were selected from a

prefrontal and a parietal region (Fig. 1). These regions
were selected because they are known to participate in
the motor task used. The data were digitally bandpass
filtered (4–125Hz). Portions of the resulting time series
are shown at the bottom of Fig. 1. In order to remove
spurious correlations due to (i) poor spatial resolution,
(ii) artifacts (e.g., cardiac or ocular), and (iii) common
(e.g., thalamic) input, which would otherwise confound
the analysis we replaced the second time series b with
b8, where

b8 5 b 2 a · (aT · a)21 · aT · b.

a and b are the large column vectors representing the
two time series. This orthogonalization removes any
component of the second time series that can be pre-
dicted by the first and implicitly discounts rate coding
as a putative explanation for any significant results
that obtain. Recall that synchrony coding does not
necessarily involve correlations (e.g., if the oscillations
are p/2 out of phase).

Statistical Inference

Seven hundred thirty-five paired and ordered seg-
ments 512 ms in length, separated by 256 ms, were
taken from both time series (it is important that these
segments were separated by 256 ms because this
ensured that they represented independent observa-
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tions). Note that we performed no averaging or data
selection on the basis of finger movements. In the
absence of a priori information about the duration of
transients we analyzed the segments using Gaussian
windowing functions with a range of widthsW from 16
to 256 ms (full width at half-maximum) in 16-ms steps.

Each windowed segment was subject to Fourier trans-
form and quadratic rooted, to give the spectral density
matrices (G and F). The quadratic root transform
ensures that the distribution of the residuals are
approximately Gaussian (Gaussian distributions are
assumed by themultivariate statistics employed).Wilk’s

FIG. 1. (Top) Location of the two MEG time series chosen for the analysis. These data were selected after a V3 transformation of
37-channel MEG data obtained during self-paced movements. The ‘‘V’’ denotes the nose and left corresponds to right. The lower square
(channel 1) is over the medial prefrontal region. The upper square (channel 2) is over the left superior parietal region. (Bottom) Exemplar
segments of the two time series. These data are the absolute values of the field vector following V3 transformation and mean correction.
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l was computed and the corresponding P value derived
as a function of window length (W ). To ensure the
validity of these inferential results and the effective-
ness of our data preprocessing, we performed a null, or
control, analysis by repeating the entire procedure but
randomizing the phases of one of the time series. These

data have exactly the same temporal autocorrelations
and degrees of freedom as the real data but any true
coupling between the spectral densities is removed.
The resulting P values are seen in Fig. 2 (bottom) as a

function ofW (effective length of the time series contrib-
uting to the spectral density estimates). It can be seen

FIG. 2. (Top) Empirical and theoretical distributions of the error terms. (Bottom) P values testing the null hypothesis of independence
between spectral densities expressed as a function of W, the width at half-maximum of the Gaussian windowing function H(t) employed to
estimate the spectral densities. Solid line—true analysis. Dotted line—null (phase-randomization) analysis. Broken line—P 5 0.05.
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that the dependence between the two sets of spectral
density measures becomes profoundly significant at
around 40 ms (P , 10214) and then again around 100
ms. Even at durations of 250 ms the mutual informa-
tion is significant. P values that are not significant
should not be overinterpreted because a failure to reject
the null hypothesis does not imply it is true.
One can infer from these results that the temporal

domain, in which transients exist, has a number of
scales ranging from 40 to more than 250 ms, consistent
with predictions from analyses of dynamic correlations
(Vaadia et al., 1995) and the duration of oscillatory
dynamics [both empirical (Singer, 1994) and simulated
(Sporns et al., 1992)]. The absence of significant depen-
dencies at short durations (i.e., 32 ms or less) should
not be overinterpreted and probably reflects the decor-
relation imposed upon the data by the orthogonaliza-
tion above. The null analysis (dotted line in the bottom
graph of Fig. 2) demonstrates specificity of the analysis.

Verification of the Gaussian Assumptions

Wilk’s statistic is based on the general linear model
and assumes that the error terms are identically and
independently distributed according to the normal dis-
tribution. The error terms are given by G 2

F · Cov5F,F621 · Cov5F,G6 . These terms were estimated
and scaled to unit standard deviation for every fre-
quency at each value of W. The pooled distribution is
shown in the top graph of Fig. 2 and conforms almost
exactly to Gaussian assumptions (the theoretical distri-
bution is superimposed).

Testing for Asymmetric Correlations

The Z-transformed cross-correlation matrix Z5F,G6
corresponding to Cov5F,G6 for a window functionHwith
widthW 5 120 ms is shown at the top of Fig. 3 in image
format. The key point to note is that it is asymmetrical,
suggesting that the transient coding model (in its most
general form) is correct. This lack of symmetry dis-
counts both rate coding and synchronization as explana-
tions for the observed correlation. The most prominent
correlation (after Fisher’s Z transform Z 5 3.1) was in
the lower left quadrant, reflecting a high correlation
between gamma (35–40 Hz) prefrontal frequencies and
lower (18–20 Hz) frequencies in parietal cortex. It
should be noted that there is evidence for possible
synchrony at 10 and 20Hz: The correlations are high on
the leading diagonal at these frequencies and it is
noteworthy that nearly all the correlations were posi-
tive (see the bottom of Fig. 3). In other words the
expression of one frequency is associated with the
expression of another but not the suppression of any
particular frequency. This might be interpreted as a

nonspecific modulation of power, at all frequencies,
over time.
In summary the asymmetric form of the covariances

between spectral densities in anterior and posterior
cortical regions suggests that transient dynamics evi-

FIG. 3. Cross-correlation matrix (i.e., a normalized version of
Cov5F,G6) shown in image format after transformation to the Z score
using Fisher’s Z transform. Black corresponds to Z 5 0 and white
corresponds to Z 5 3.1. Channel 1 is the prefrontal time series and
channel 2 is the parietal time series. These correlations were
estimated using a window widthW of 120 ms.
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dence a long-range coupling and, crucially for prevail-
ing models of neuronal interactions, these transients
can have a very different frequency structure.

CONCLUSION

This work has tested the hypothesis that functional
integration is mediated by the mutual induction and
maintenance of stereotyped spatiotemporal patterns of
neuronal activity (i.e., transients) in different parts of
the brain. This transient coding hypothesis considers
that transactions among neuronal subsystems use little
packets or patterns of activity that are distributed in a
structured way over both space and time. Through an
analysis of the statistical dependence between spectral
densities measured at different points in the brain this
hypothesis was confirmed. The results were consistent
with transient coding and suggested that these tran-
sients endure for at least 40–200 ms or so. The results
presented here imply that correlations (rate coding)
and coherence (synchrony) are neither complete or
sufficient characterizations of neuronal interactions
(for example high-frequency oscillations in the prefron-
tal cortex are associated with low-frequency oscilla-
tions in the partial cortex) and suggest that higher
order, more general interactions may be employed by
the brain. One implication of the transient coding
hypothesis is that there is no teleologically meaningful
brain process that exists below the temporal duration
of a transient. This makes further characterization of
neuronal transients a potentially important endeavor.
We have not attempted to characterize the nature of

these transients here (this is the subject of current
work). However, the results presented suggest that
whatever their form or role in neuronal interactions,
transients are an important candidate for furnishing
the basis of a neural code.
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