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Most approaches to detecting changes in functional
brain images assume that activations are focal or very
localized. However, the brain’s response to cognitive
of sensorimotor challenge may be spatially or anatom-
ically distributed. In this paper we consider the use-
fulness of a test based on the mean sum of squares of
statistical parametric maps. The performance of this
test is evaluated using simulated and real data and is
compared to the vy, test, a test of the size of the acti-
vated region, and a focal activation test based on the
intensity of local maxima. We demonstrate that the
mean sum of squares test is more sensitive to nonfocal
signals and propose that it could be used to comple-
ment approaches that are more sensitive to focal acti-
vations. © 1995 Academic Press, Inc.

1. INTRODUCTION

The main aim of this paper is to describe a simple
test that can be applied to data obtained from activa-
tion studies. In particular, we emphasize the potential
importance of this test in assessing distributed or non-
focal task-dependent brain changes.

In past years, a number of statistical methods have
been proposed for the analysis of brain activation stud-
ies (see McColl et al., 1994, for a review). Their purpose
is to characterize, in a statistical way, the difference
between two (or more) brain states, as measured by
Positron Emission Tomography (PET) or functional
Magnetic Resonance Imaging (fMRI). A number of
methods have focused on assessing the chance proba-
bility of detecting focal differences using either the in-
tensity of local maxima in statistical parametric maps
(Friston et al., 1991; Worsley et al., 1992) or the spatial
extent of foci above an arbitrary threshold (Poline et
al., 1993; Roland et al., 1993; Friston et al., 1994b).

These approaches are based on distributional ap-
proximations that hold for high thresholds and assume
(implicitly) that the underlying physiological effect is
focal. It is possible, however, that in some circum-

stances, nonfocal or anatomically distributed differ-
ences may occur, with or without focal changes. This
possibility is suggested by the topography of eigenim-
ages based on activation study time-series. These
eigenimages or spatial modes reveal widespread brain
systems with coherent physiological activity. This ac-
tivity reflects systematic changes that often depend on
the experimental conditions used (e.g., see Friston et
al., 1993a,b). A second observation, which is suggestive
of nonfocal changes, is that many cognitive activation
studies result in large distributed activations (and de-
activations), particularly in multimodal and paralim-
bic cortex, for example, the dorsolateral prefrontal ac-
tivations, and extensive bitemporal deactivation due to
verbal fluency (Frith et al., 1991). The topography of
functional activations as measured with fMRI does not
resolve the focal vs nonfocal issue. Eigenimage analy-
sis of fMRI time-series (Friston et al., 1994a) suggests
a widespread focal and nonfocal functional organiza-
tion and yet when thresholded, fMRI activations ap-
pear very localized.

The concept of nonfocal differences is important in
describing the pathophysiology of certain clinical con-
ditions. An example is hypofrontality in schizophrenia
(Ingvar, 1983). Hypofrontality is a diffuse nonfocal re-
duction in prefrontal cortical physiology that is char-
acteristic of “psychomotor poverty” syndromes (e.g.,
Liddle et al., 1992).

In summary, the possibility of nonfocal response to
cognitive or sensorimotor challenge points to the im-
portance of (i) acknowledging that the assumption of
focal change is implicit in many current approaches to
data analysis and (ii) assessing the ability of new tests
to reveal or discount the presence of nonfocal changes.

In 1989, Fox and Mintun proposed an omnibus test
(the v, statistic) using the kurtosis of the distribution
of the local maxima in difference volumes. The pro-
posal was based on the idea that activations should
increase the number of local maxima outliers and
therefore the fourth moment (kurtosis) of their distri-
bution. In contrast, our proposed mean sum of squares
test is based on the second moment of all the voxel
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values of the statistical parametric map, and not just
the local maxima. Friston et al. (1990) proposed an om-
nibus test based on the activation proportion of thresh-
olded statistical parametric maps, and in Section 3 of
this paper, we report a correction to the specificity of
this test, derived in Worsley and Vandal (1994). These
tests can be described as “omnibus tests” in the sense
that they allow rejection of a weak null hypothesis that
no activation has occurred in the brain volume, without
indicating where the activation is localized (a stronger
null hypothesis is that an activation has not occurred
in a specific brain region).

Most of the tests discussed above are based on
thresholds or maxima and implicitly assume the pres-
ence of focal activations. In this paper we highlight the
potential usefulness of an omnibus test based on the
mean sum of squares of an SPM. It is simple, sensitive,
and particularly suited for the detection of nonfocal
activations. The second section of the paper presents
the test and the underlying theory. In Section 4 we
assess its specificity and sensitivity using Monte Carlo
simulations (that include distributed foci) and apply
the test to an experimental data set (a verbal fluency
activation study of normal subjects) in Section 5.

2. THE MEAN SUM OF SQUARES STATISTIC

The result of many statistical analyses of PET or
fMRI data is a statistical parametric map (SPM) Z(x)
at voxel locations x in a region of interest R (Friston et
al., 1991, 1994a; Worsley et al., 1992). The map is a
measure of activation standardized to have a Gaussian
distribution with zero mean and unit variance at all
locations when no activation is present. Our test for
activation is based on the mean sum of squares S of
Z(x) in the search region R, defined as

S =3 Z(x)%/N, (2.1)
where summation is over all voxels with coordinates x
in R, and N is the number of voxels in R. Obviously the
usual x? distribution cannot be used to set the speci-
ficity of S because the voxels are highly correlated
due to the so-called “partial volume” effect. Instead,
we show how to adjust the degrees of freedom of the
x° distribution to take this into account; specifically,
we show that the degrees of freedom depends on the
RESELS in the search region, which equals the volume
of the search region divided by the product of the full
width at half maxima of the point response function of
the PET camera (Worsley et al., 1992).

2.1. Distribution

We suppose that under the null hypothesis of no ac-
tivation the SPM can be represented as a Gaussian
random field Z(x) sampled on a uniform lattice of vox-
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els. We assume that Z(x) is stationary with mean zero
and unit variance at any point, and correlation func-
tion p(x). Then the expectation of S is

E(S) = SE{Z(x)*}N

=1, (2.2)
and the variance of S is
Var(S) = 33CoviZ(x,)%,Z(x,)}/N?
= 332CoviZ(x,),Z(xx)}%/N?
= 332p(x, — x,)%/N?, (2.3)

where summations are over X, Xy, and X, in R. Letting
h = x; - x,, we get, from (2.3),

Var(8) < 332p(h)*/N?

=2%p(h)*N, (2.4
where summations are over x in R and all h. Worsley
and Vandal (1994) show that the inequality (2.4) is a
very accurate approximation provided that the search
region is large.

If voxels were independent, then from (2.3) we see
that Var(S) = 2/N, and the distribution of NS is y? with
N degrees of freedom. This suggests that in the corre-
lated case, we can find a value v for the “effective”
degrees of freedom of S so that vS is approximately x*
with v degrees of freedom (Satterthwaite, 1946). The
appropriate value of v, obtained by solving Var(S) = 2/+,
and approximating the summation in (2.4) by an inte-
gral, is

v = Vllp(h)’dh, (2.5)
where V is the volume of R. A similar method has been
used by Friston et al. (1995) and Worsley and Friston
(1995) for fMRI time-series.

Friston et al. (1991) and Worsley et al. (1992) show
that the correlation function can be well approximated
by a Gaussian function with full width at half maxima
(FWHM) equal to those of the point spread function
multiplied by V2. Substituting this in (2.5) gives

v = RESELS(4log,2/m)P'2, (2.6)

where D is the number of dimensions.

2.2. Fourier Analysis Approach

Fourier analysis can be used to help find the exact
distribution of § in a rectangular search region. For
simplicity we shall assume that D = 1, although the
results are straightforward to generalize to higher di-
mensions. The search region is then an interval of
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length V sampled at N points. An important constraint
is that the correlation function is periodic; that is,

plx) = p(V —x). 2.7
This assumption implies that voxels on one boundary
of the search region are highly correlated with those on
the opposite boundary. Admittedly this is an unrealis-
tic assumption for PET or fMRI data but it will allow
us to find the exact distribution of S in this artificial
case.

Let k(x) be the kernel associated with p(x), where, in
neuroimaging, this kernel is the point spread function.
The spectral density function g(w) of the process at fre-
quency w = 27j/N, j=0,..., (N -1)is given by

8(w) = FT{p(x)} = FT{R()IFT{k(x)}*, (2.8)
where FT denotes Fourier transform and * the complex
conjugate.

In the frequency domain the spectral density g(w)
represents the amount of variance (or energy) at fre-
quency w. A property of the process in Fourier space is
that the components z(w) of the discrete Fourier trans-
form of the SPM Z(x) are independent Gaussian ran-
dom variables with variance g(w),j =0, ..., (N/2 - 1).
Forj=N/2,...,(N-1), z(w) = 2(27 — w)*. Because the
total variance or energy of the process is the same in
both representations (real and Fourier space), the
mean sum of squares of the process in real space is also
the mean sum of squares of the process in Fourier
space (see, e.g., Cox and Miller, 1980, Chap. 7). There-
fore we can write

S = Yz(w)z(w)*/N, 2.9
where the summation is over the N/2 distinct values of
2Z(wiz(w)*,j=0,...,(IN/2 - 1). Now 2(w)z(w)*/g(w) has a
x? distribution with 2 degrees of freedom, and so the
characteristic function (Fourier transform of the prob-
ability density function) of 2(w)z(w)*/N is

d(t;w) = [1 ~ 2itg(w)/NI . (2.10)

The characteristic function of S is then the product of

P(t;w) over j=0, ..., (N/2 — 1). The density function of

S at s can then be recovered by the standard inversion
formula:

p(s) = (12m)[T1d(t;w)exp(—its)dt. (2.11)

A method of obtaining the upper tail probabilities of
S directly from g(w) without inverting the Fourier
transform (2.11) is given by Imhoff (1961), although we
found it was easier to use (2.11). We can also rederive

the same results (2.2) and (2.4) from the Fourier rep-
resentation (2.9):
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E(S) = 3E{z(w)z(w)*)/N = 32g(w)/N =1, (2.12)

Var(S) = SVar{z(w)z(w)*}/N?
= 34g(w)*/N? = 23p(h)*/N. (2.13)

2.3. Under What Conditions Does the x*
Approximation Fail?

In the case of a periodic correlation in a rectangular
region, we can use the exact expression for p(s) (2.11)
and the x2 approximation (2.2)—(2.5) to examine how
“good” the approximation is under different conditions.
Figure 1 shows the correspondence between the actual
density p(s) from (2.11) and the x® approximation (2.2)—
(2.6) for two autocorrelation functions, a Gaussian
function and a sinc function, for a D = 1 dimensional
process. Our analyses suggest that the x® approxima-
tion behaves very well for any autocorrelation function
irrespective of the dimension of the space, for large
degrees of freedom. However, the x? approximation
fails when the effective degrees of freedom of the pro-
cess is small, although if the search region is shrunk to
a single point, so that S has a x* distribution with 1
degree of freedom, then the approximation given by
(2.2) and (2.4) is exact. Figure 2 shows the actual (2.11)
and approximated (2.2—(2.6) distribution of S for small
v for a 1D and 2D process. Figure 2 suggests that the
agreement is poor for small degrees of freedom, al-
though the periodic assumption under which these re-
sults were obtained is not realistic for practical appli-
cations.

For some point spread functions, again assuming a
periodic correlation structure, the x* approximation is
exact. If the kernel is a product of sinc functions k(x) =
sin(x)/x, then it can be shown that the power spectrum
g(w)is wfor lw| <1 and zero otherwise, that is, for 0 <
J < N/(2m). The distribution of S is now the same as the
sum of N/(27) identically distributed x? random vari-
ables with 2 degrees of freedom, which gives an exact
x> distribution with v = N/m degrees of freedom. The
correlation function p(x) is identical to the kernel k(x),
the integral of p(x)? is 7, so that the degrees of freedom
given by (2.5) is the same result v = N/7. Unfortunately
the relationship between v and the RESELS is not
quite the same as (2.6); the exact relation for the sinc
kernel, found by solving & (x) = 1/2 numerically to find
the FWHM, is » = RESELS (1.207)°.

3. THE ACTIVATION PROPORTION STATISTIC

Friston et al. (1990) proposed a global test based on
the activation proportion, measured by the proportion
A of voxels in a search region R where the SPM exceeds
a fixed threshold ¢. A focal version of this test has re-
cently been proposed by Friston et al. (1994b) based on
the size of the largest connected region where the SPM
exceeds a fixed threshold. The null distribution of A
given in Friston et al. (1990) assumes that voxels are
independent and leads to far more false positives. The



186 WORSLEY ET AL.

Gaussian kermnel

e 20
e

0.5¢ © 2
5 15

0.4¢ 2
e

0.3t ko 1.0t

0.2} —E
Q 0.5}
a 0.

0.1} .s

0 : - : il A SRt
0 10 20 30 0 0.8 1.6 2.4
Mean sum of squares, S
Sinc kernel

e 25
.0

0.4} £ 20
£ 15

0.2} §
z, 1.0

0 8 o5

o
Q.

_0.2 N " " 0 N n

0 20 40 60 0 0.8 1.6 2.4

Mean sum of squares, S

FIG. 1. The distribution of S with large degrees of freedom in D = 1 dimensions. A comparison of the x? approximation and the exact
distribution of the mean sum of squares statistic S for two different periodic point spread functions (upper left: Gaussian; lower left: sinc).
The right panels show good agreement between the distribution of S using the x? approximation (dashed line), the exact distribution (solid
line), and simulations (crosses). The processes have N = 256 points and their effective degrees of freedom are v = 34.0 and v = 50.2 for the
Gaussian and sinc functions, respectively.

correct limiting distribution, derived in Worsley and For a Gaussian correlation function this becomes
Vandal (1994), is as follows. The expectation of A is

- —1/2 2 Var(A) = 1 J'm (4 10g22)—D/277D/2‘1 SD+1
EQA) = ft (2m)~ " exp(-z"/2)dz. (3.1) ar(4) = RESELS Yo DI(D/2)(1 — exp(—r?)Y2

If the process is isotropic (the correlation function p(r) ox ( t* f )
(3.3)

depends only on the distance r from the origin), then _1 + exp(—r2/2) 2
the variance is well approximated, for large R, by

pr-1.D The distribution of A is then approximately normal

™ with expectation (3.1) and variance (3.3).
DT(D/2)(1 - p%)1"2 Friston et al. (1990) suggest three choices of ¢ = 1.64,
2 2.33, and 2.58, corresponding to an expected proportion
R ﬂ’_) d of E(A) =0.05, 0.01, and 0.005. In D = 3 dimensions the
FP\1+p/ \Tar) " (3.2) corresponding variances are Var(A) = 0.0591/RESELS,

1 [
Var(A) = v J:)
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FIG. 2. The distribution of § with small degrees of freedom for D = 1 dimensions (upper right) and D = 2 dimensions (lower right). The
x° approximation (dashed line) is less accurate than the exact distribution (solid line) and simulations (crosses). The left panels show the
corresponding Gaussian point spread functions. The size of the processes were N = 32 in D = 1 dimensions, and N = 162=256in D =2
dimensions, to give v = 4.2 and v = 10.2 degrees of freedom, respectively.

0.00698/RESELS, and 0.00278/RESELS. It is interest-
ing to express Var(A) in terms of the “effective” number
of independent voxels that would produce the same
variance of A, defined as E(A){1 — E(A)}/Var(A). For the
above thresholds these are 0.80 x RESELS, 1.42 x
RESELS, and 1.79 x RESELS, respectively. The result
in Friston et al. (1990) is based on assuming that the
effective number of independent voxels equals the ac-
tual number of voxels N in the search region, which
leads to an underestimate of the variance Var(A).

4. VALIDATION

4.1. Two Dimensions

We simulated 5000 SPMs in D = 2 dimensions using
uncorrelated Gaussian fields of 64 x 64 voxels, con-
volved with a Gaussian kernel with standard deviation

of 3 pixels, k(x) = exp(-|x|?/18). The FWHM is
3V8log 2 = 7.06 pixels and the number of resels in the
field is (64/7.06)% = 82.1. The specificity of the test was
assessed by comparing the observed and expected dis-
tribution of S. Figure 3 shows the empirical distribu-
tion of 8 based on the simulated noise-only SPMs and
the x? approximation with v = 82.1(4 log,2/m) = 72.4
from (2.6). The agreement is evident. Note that the x?
approximation gets better as the effective degrees of
freedom increases.

Sensitivity was assessed by adding focal and nonfo-
cal signals of different spatial extent. The signals were
step functions (convolved with k(x)), with a deliber-
ately small positive signal of 0.15 in half the signal
area and the same size decrease of —0.15 in the other
half. Three sorts of signal were used, ranging from fo-
cal to spatially distributed (representing 7.8, 14.6,
25.4, and 58.6% of the region tested). Figure 4 shows
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FIG. 3. The distribution of S with large degrees of freedom in D = 2 dimensions. A comparison of the x? approximation and the simulated
distribution (5000 realizations) of S for a Gaussian point spread function (FWHM = 7.06 pixels). The x? approximation (dashed line) is in good
agreement with simulations (crosses). The process has N = 642 = 4096 points and the effective degrees of freedom is v = 72.4.

the signals used in the simulation and an example of a
simulated SPM with no signal. The sensitivity of the
sums of squares was compared to the sensitivity of the
v, statistic (Fox and Mintun, 1989), a test based on the
kurtosis of the distribution of SPM local maxima. Sen-
sitivity was measured as the percentage of correctly
detected signals at a fixed false positive rate (P = 0.05).
Table 1 presents the results for the comparison of sen-
sitivity between the test based on S and that on the v,
statistic for the different signal sizes. It shows that for
all signals the S test is more or equally powerful than
a test based on the distribution of local maxima. The S
test was up to nine times more sensitive in the case of
very nonfocal signals and retains a comparable sensi-
tivity for focal signals, therefore proving itself to be (to
some extent) versatile. Of course, in the case of very
focal signals, the S test is much less sensitive than
tests based explicitly on maxima (Friston et al., 1991;
Worsley et al., 1992), as we shall see in the next sec-
tion.

4.2, Three Dimensions

We simulated 200 Gaussian SPMs in D = 3 dimen-
sions with zero mean and unit variance, sampled on a
128 x 128 x 64 lattice of 1.5-mm voxels. The search
region R was a hemisphere of radius 75 mm and vol-
ume V = 884 cm?®, which roughly approximated the
brain region. The Gaussian random fields were created
by convolving Gaussian white noise with a Gaussian
smoothing kernel of resolution 18-, 18- and 7.5-mm
FWHM, chosen to represent smoothing in the x and y
directions but no axial (z) smoothing, giving RESELS =
884/(1.8 x 1.8 x 0.75) = 364. Convolution was achieved
via the Fast Fourier Transform.

Three tests were compared on the 3D data: the mean
sum of squares test S, the activation proportion test A,
and the maximum SPM test M. Critical thresholds for
each test were calculated at the 5% nominal false pos-
itive rate. The degrees of freedom for the x? distribu-
tion of S was v =301 from (2.6). The mean and variance
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FIG. 4. The same as in Fig. 3, but with a simulated signal (upper left) added to the noise (upper right) to give signal plus noise (lower
left). The lower right panel shows the x* approximation to the distribution of S for noise only from Fig. 3 (smooth line), and the distribution
of S from 1000 realizations of signal plus noise (broken line). The evident increase in S shows the sensitivity of the test to the addition of this

signal.

of A were calculated from (3.1) and (3.3) using three
values of the threshold ¢. The P value of M was calcu-
lated from Worsley et al. (1992). The observed specific-
ities are shown in Table 2, and it can be seen that they
are in good agreement with the nominal levels.

TABLE 1
2D Specificity and Sensitivity

Signal Detection (%)
Area (%) SNR (%) MSOS Yo
None 0 0 3.6 1.0
Signal 1 7.8 28 7.9 7.3
Signal 2 14.6 45 31.7 12.3
Signal 3 25.4 65 67.7 11.0
Signal 4 58.6 106 99.2 13.0

Note. SNR, signal to noise ratio; MSOS, mean sum of squares test;
Yor Yo test.

Phantom signals were created and added to each
simulated image and the tests were repeated. The sig-
nals were:

* a focal signal, created by convolving the point
spread function with itself to produce a Gaussian
shaped signal with FWHM equal to V2 times that of the
point spread function. This was shown by Worsley and
Vandal (1994) to be the signal shape best detected by S
and M. The location was chosen to lie in the anterior
cingulate close to where activation was in fact detected
in a study of pain perception by Talbot et al. (1991).
The peak height was chosen to be 4. In comparison
with the 2D simulations, the focal signal occupied only
a small part (0.8%) of the search region.

¢ a signal with three peaks, identical in shape and
height to the first but centered in the anterior cingu-
late, the primary and secondary somatosensory regions
of the brain, close to where activation was detected in
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TABLE 2
3D Specificity and Sensitivity
Signal Detection (%)

Volume (%) SNR (%) MSOS AP(1.64) AP(2.33) AP(2.58) Max
None 0 0 4.25 4.25 5.25 5.75 4.50
One focal 0.8 23 16 20 31 38 56
Three focal 2.3 38 55 60 85 90 89
One flat 4.6 64 89 98 100 100 97
Diffuse 100 50 87 49 59 59 27

Note. SNR, signal to noise ratio; MSOS, mean sum of squares test; AP(¢), activation proportion test with threshold ¢; Max, maximum SPM

test.

Talbot et al. (1991). This signal covered 2.83% of the
search region.

* a “flat” signal, created by convolving a 3 x 4.5 x
3-cm region of uniform height with the Gaussian point
spread function to create a broader region of activation
which covered 4.6% of the search region. The maxi-
mum height of this region was chosen to be the same as
the peak heights above, and the region was located in
the right hemisphere in roughly the same place where
activation was detected by Talbot et al. (1991).

* a random “diffuse” signal, created as the realiza-
tion of a Gaussian random field with the same corre-
lation structure as the noise. For this signal, there is a
straightforward way of assessing the sensitivity of all
tests without using simulations. The sensitivity, aver-
aged over all such random realizations, is equivalent to
just the P value for the same statistic but with the
image standard deviation multiplied by (1 + SNR?)%,
where SNR is the signal to noise ratio, as measured by
the root mean square (RMS) amplitude of the signal
relative to that of the noise. In our case we chose SNR
= 0.5.

The sensitivity of the tests was then estimated by the
proportions of simulated values exceeding the nominal
critical values, and the results are given in Table 2,
along with the SNR of all signals.

We note that, as expected, the maximum SPM test M
is by far the most sensitive at finding a single peak,
closely followed by the activation proportion test A at
high threshold; all tests are better at finding three
peaks or a flat peak. For the diffuse signal the S test is
the most sensitive, followed by the activation propor-
tion test A for highest threshold; the maximum test M
has low sensitivity. The conclusion is that focal signals
are best detected by the maximum test, diffuse signals
are best detected by the mean sum of squares test S,
and the activation proportion test A performing rea-
sonably well for all types of signal, particularly at the
highest threshold.

5. APPLICATION

Data were obtained from three subjects scanned 12
times (every 8 min) while performing one of two verbal

tasks. Scans were obtained with a CTI PET camera
(Model 953B CTI Knoxville, TN). *0 was adminis-
tered intravenously as radiolabeled water infused over
2 min. Total counts per voxel during the buildup phase
of radioactivity served as an estimate of regional cere-
bral blood flow (rfCBF) (Fox and Mintun 1989). Subjects
performed two tasks in alternation. One task involved
repeating a letter presented aurally at 1 per 2 s (word
shadowing). The other was a paced verbal fluency task,
for which the subjects responded with a word that be-
gan with the letter presented (intrinsic word genera-
tion). To facilitate intersubject pooling, the data were
stereotactically normalized (Friston et al., submitted)
and analyzed as a randomized block design ANCOVA
at every voxel (with global activity as covariate). The
data were analyzed using a contrast designed to test
for time-dependent effects. This contrast compared a
linear effect during the first with a similar effect dur-
ing last six scans. The result of this test generated an
SPM of the Student ¢ statistic. This SPM was trans-
formed to the unit Gaussian distribution.

The test based on the mean sum of squares was very
significant. Figure 5 presents the observed and ex-
pected distribution of the voxel values in the SPM vol-
ume, the design matrix, and the contrast used in the
example. The mean sum of squares statistic was S =
79378/62025 = 1.28, corresponding to P < 0.02 with v =
142 degrees of freedom (171 RESELS). No localized
activation was assessed as significant using the maxi-
mum M (Friston et al., 1991; Worsley et al., 1992) or
the spatial extent (Friston et al., 1994b). The v, statis-
tic was not significant. In this example, the spatially
distributed time-dependent effects involved extensive
regions in the posterior cingulate and fusiform gyrus
(Fig. 6).

A null analysis was performed by randomizing the
order of the scans and the elements of the contrast
used to compute the SPM. The P value of the observed
S = 1.04 did not reach significance (P = 0.34).

6. DISCUSSION

We have presented a simple and easily implemented
test based on the distribution of the mean sum of
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FIG. 5. Experimental dataset tested with S. The distribution of the experimental SPM Z values (broken line) and the Gaussian
distribution (smooth line) are shown in the left panel. The design matrix and the contrast used in this application are shown in the right
panel. With an effective degrees of freedom of v = 142 (171 RESELS), the mean sum of squares statistic is § = 1.28, leading to a significant
omnibus test (P < 0.02). No other test (activation proportion, vy,, peak height or spatial extent) gave significant results (see Fig. 6).

squares of a smooth stationary process. The test is ap-
plicable in any number of dimensions and is sensitive
to diffuse nonfocal cerebral signals. The mean sum of
squares can be significant in the absence of local acti-
vations. This raises the issue of whether it is appropri-

ate to model the brain’s physiological response in terms
of highly focal activations. Although this model has
proved itself extremely successful, it is a constrained
model that may not reflect the distributed and varied
spatial scales of neurophysiological changes.
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FIG. 6. Statistical parametric map of Z reflecting the significance of a compound of effects. The SPM is displayed in a standard format
as a maximum intensity projection viewed from the back, the right-hand side, and the top of the brain. The anatomical space corresponds
to the atlas of Talairach and Tournoux (1988). The SPM has been thresholded at 1.64 and the color scale is arbitrary. (Upper right panel)
Top, the contrast used for this SPM. The contrast is displayed above the appropriate effects (columns of the design matrix). (Lower panel)
Table of regional effects (activations or regional differences) characterized by the volume of each region (%), its significance based on patial
extent P(n,.. > k), the highest Z value (2), its significance based on P(Z,,,, > u), and the location of this primary maximum. We have also
included up to three secondary maxima for each region and their associated significance based on the corrected and uncorrected P value.



TESTS FOR DISTRIBUTED, NONFOCAL BRAIN ACTIVATIONS

Because of its explicit dependence on maxima and
kurtosis, the vy, test is not very sensitive to a volume
containing spatially distributed signals. Moreover, its
specificity has only been estimated empirically and
there is no theoretical basis for the validity of the test.
Tests based on the activation proportion (the propor-
tion of voxels exceeding a given threshold) behave more
like the mean sum of squares test, since the number of
suprathreshold pixels also increases with the preva-
lence of distributed signals. These tests, however, de-
pend on the threshold chosen; a high threshold seems
to be best. Among all these tests, our results show that
the mean sum of squares test is the most sensitive at
detecting diffuse nonfocal activation.

As stated in the introduction, the test reviewed in
this paper is omnibus in the sense that it has no local-
izing power. However, it can be applied to parts of the
brain as opposed to the entire brain volume, provided
the choice of this subset is not based on the voxel val-
ues themselves. For example, a subvolume could be
chosen on some anatomical basis (e.g., a specific gyrus).
In such applications the volume and effective degrees
of freedom may be quite small and the y* approxima-
tion may not be accurate.

Note generally that if a focal activation can be de-
tected, the “omnibusness” of any test becomes redun-
dant. This is because if we can reject the strong hy-
pothesis that no activation occurred at some point,
then one is implicitly rejecting the null hypothesis that
an activation has not occurred anywhere.

The degree of smoothing, or equivalently the scale at
which the data are observed, has already been ac-
knowledged as a key parameter in the analysis of func-
tional neuroimaging data (Poline and Mazoyer,
19944a,b). This continues to be the case with the mean
sum of squares test. Varying the width (from 1.5 to 5
pixels) of the Gaussian kernel (used in creating the
simulated processes containing the second smallest 2D
signal) showed that the sensitivity of the test is re-
duced when the filter is too small. In general, Worsley
and Vandal (1994) have shown that the mean sum of
squares test, like the maximum test, is most sensitive
when the kernel associated with the SPM has the same
spatial extent as the underlying physiological signals.
Thus a wide filter should be used to detect a wide sig-
nal, and a narrow filter for a narrow signal.

7. CONCLUSION

We have described a simple test based on the mean
sum of squares of the SPM. The test can be applied to
any volume that approximates (under the null hypoth-
esis) a stationary smooth Gaussian process. This test
has proven powerful in the case of distributed, nonfocal
activations and could be used as a prelude to variance
partitioning procedures that do not allow for statistical
inferences, such as singular value decomposition and
eigenimage analysis (Friston et al., 1993a,b).
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