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The results from a single functional magnetic reso-
nance imaging session are typically reported as indic-
ative of the subject’s functional neuroanatomy. Under-
lying this interpretation is the implicit assumption
that there are no responses specific to that particular
session, i.e., that the potential variability of response
between sessions is negligible. The present study
sought to examine this assumption empirically. A total
of 99 sessions, comprising 33 repeats of simple motor,
visual, and cognitive paradigms, were collected over a
period of 2 months on a single male subject. For each
paradigm, the inclusion of session-by-condition inter-
actions explained a significant amount of error vari-
ance (P < 0.05 corrected for multiple comparisons)
over a model assuming a common activation magni-
tude across all sessions. However, many of those vox-
els displaying significant session-by-condition interac-
tions were not seen in a multisession fixed-effects
analysis of the same data set; i.e., they were not acti-
vated on average across all sessions. Most voxels that
were both significantly variable and activated on av-
erage across all sessions did not survive a random-
effects analysis (modeling between-session variance).
We interpret our results as demonstrating that correct
inference about subject responses to activation tasks
can be derived through the use of a statistical model
which accounts for both within- and between-session
variance, combined with an appropriately large ses-
sion sample size. If researchers have access to only a
single session from a single subject, erroneous conclu-
sions are a possibility, in that responses specific to this
single session may be claimed to be typical responses
for this subject. © 2000 Academic Press

INTRODUCTION

This study assesses the generality of results ob-
tained from a single functional magnetic resonance
imaging (fMRI) session. fMRI is a noninvasive tech-
nique that has revolutionized the study of human brain
function (e.g., Belliveau et al., 1991; Ogawa et al., 1992;
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Kwong et al., 1992). As with many brain imaging tech-
niques, such as positron emission tomography, a num-
ber of observations (scans) from each subject are col-
lected. A single experimental examination of one
subject in this fashion constitutes a session. Although
exceptions exist, it is unusual for a subject to be
scanned on more than one occasion and, more often
than not, a single fMRI session is assumed to give an
accurate representation of a subject’s functional neu-
roanatomy.

There may be problems, however, if one adopts this
“one subject, one session” approach to neuroimaging
experiments. One session is only a single, discrete
“snapshot” of the subject’s brain and may not epitomize
responses to the sensorimotor or cognitive challenge
employed. Indeed, differences between sessions are in-
evitable: for example, the BOLD response is an indirect
and semiqualitative measure of neuronal activity, and
the relationship between BOLD contrast and cerebral
oxygen metabolism is influenced by a number of phys-
iological factors (e.g., for review see Ogawa et al.,
1998). Furthermore, single-session results may be in-
fluenced by slight variations in the hardware charac-
teristics of the MR scanner, which are not systematic
across sessions (e.g., the shim performed to homoge-
nize the B0 field of the scanner; Howseman et al., 1998).
Any differences in subject position within the headcoil
on separate scanning sessions may also result in
greater variability in voxel signal changes, due to par-
tial volume effects, as may different patterns of subject
movement between sessions. In addition to the above,
nonspecific physiological effects such as the level of
arousal may further influence the neurovascular re-
sponse to the activation task in question.

These effects are hard to control and may substan-
tially influence a single session’s results, such that the
experiment may ultimately say as much about the
context under which the data were acquired as the
effects of the experimental manipulation itself. Al-
though few researchers would expect a precise replica-
tion of the results if an experiment were repeated, it is
currently unclear how generalizable single-session re-
sults are with fMRI.
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FIG. 1. Design matrices used for analysis. The design matrix is a graphical representation of the experimental model. Each column of
the design matrix represents a separate regressor within the statistical model, and each row represents a single fMRI volume. The gray-scale
color value within each cell displays the value of the relevant regressor at that point in the fMRI time series before the model fit is estimated.
For example, a simple boxcar regressor, before convolution, would occupy a single design matrix column, and each cell within the column
would have a value of 0 or 1, depending on the experimental design used. (A) A single session design matrix with the regressor of interest
(the CBC, column 1), the session mean effect (gi, column 2), and the set of discrete cosine basis functions used to effect high-pass filtering
(columns 3–8). (B) A multisession design matrix, constructed from n single-session design matrices, where n is the number of sessions
analyzed at the multisession level. The design matrix in A was used only for single-session analyses, whereas B was used for both the fixed-

and the random-effects multisession analyses.
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This influence of session context on the activation
effects of a study constitutes a session-by-condition in-
teraction. Although a number of studies have exam-
ined the reproducibility of fMRI across a small number
of sessions (Cohen et al., 1999; Noll et al., 1997; Rom-
bouts et al., 1998; Tegeler et al., 1999; Yetkin et al.,
1996), our primary aim was to examine how well a
single session typifies a subject’s responses. Just as the
significance of within-session experimental effects is
assessed by sampling a number of scans for each con-
dition, to assess between-session differences one must
sample multiple sessions. If a single session is to be a
good exemplar of a subject’s functional neuroanatomy,
session-by-condition interactions must be minimal.

The issue of single-session generality also influences
data analysis. If activation effects do indeed vary sub-
stantially between sessions, to generalize the results to
the subject an experiment will need to utilize multi-
ple sessions and assess the data accounting for both
within- and between-session variability. Typically,
these two levels of variability are not addressed, even if

FIG. 2. Single-session sagittal MIPs for the motor paradigm. The
collected, only 30 are shown here (sessions 17, 23, and 24 were rejec
corrected for multiple comparisons unless otherwise stated.
multiple sessions are acquired; the experimental ef-
fects of interest are assessed using statistical models
that utilize within-session error variance (residual
scan/scan variability) as the only component of vari-
ance. Although session-by-condition interactions are
often modeled, the variability of these interaction ef-
fects does not enter into the inference. Such a model,
employing a single variance component, is a fixed-ef-
fects model (Searle et al., 1992). These models have
been the norm in neuroimaging analysis and assess
only the average experimental effect across the ob-
served sessions. They do not take account of the vari-
ability of responses between sessions and therefore
cannot be used to draw conclusions about a subject’s
typical response. For example, a spuriously large acti-
vation in one voxel during only one session may be
large enough to dominate that voxel’s average re-
sponses across sessions. In the case of a single session
collected from a single subject, the experiment is re-
duced to a case study. Conclusions regarding the sub-
ject’s typical response can be made only under the
implicit assumption that intersession variability of re-

mber of each session is displayed below it. Although 33 sessions were
due to movement artifacts). All results are thresholded at P , 0.05
nu
ted
sponse would be negligible were the experimental ses-
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sion repeated. As discussed above, this is highly un-
likely.

If session-by-condition interactions are substantial,
random-effects models are required. Random-effects
models allow for multiple variance components (Searle
et al., 1992), so the effects of each session on the BOLD
response are treated as a random variable. This re-
flects the fact that a single session is considered a
sample from the population of all possible sessions
from the subject, and so significance can be computed,
accounting for both between- and within-session vari-
ance. Random-effects analyses have previously been
employed to account for between-subject variability, or
subject-by-condition interactions, in fMRI studies
(Holmes et al., 1998; Henson et al., 1999a,b).

As the random-effect analysis infers about the pop-
ulation from which the samples were drawn, the N of
observations is now the number of sessions. As the
number of sessions is quite small, these analyses tend
to have low power, that is, there is a high chance of
type II errors. An analysis of this type, however, is
essential for the correct level of inference if session-by-

FIG. 3. Single-session sagittal MIPs for the cognitive paradigm
isplayed. Sessions marked with “*” contain no significant voxels.
condition interactions are considerable. In the present
study we examined the reproducibility of the BOLD
response in a single subject over multiple sessions for
simple motor, cognitive, and visual paradigms. We first
present results from each session analyzed in isola-
tion, as if from a single-session experiment, using only
within-session variance to compute significance. We
then show where significant session-by-condition inter-
actions occur for each of our activation paradigms.
Finally, we consider two analyses of the entire multi-
session data set. The first is a fixed-effects analysis, the
second a simple random-effects analysis.

METHODS

Subject and Session Details

The subject was a healthy 23-year-old right-handed
male. As our goal in the current study was to examine
the generality of a single session, each session was
conducted as if it were the first time the subject had
been examined: in effect, as if only one session was to
be obtained. Our motivation was therefore to control

imilar to Fig. 2, although 33 sessions were collected, only 30 are
. S
for obvious and artifactual between-session differences
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while ensuring that sources of typical between-session
variability (scanner hardware and subject physiology)
would be sampled in an unbiased manner. The follow-
ing precautions were taken: the same operators always
controlled the scanner, ambient light and sound levels
were similar between sessions, and spoken instruc-
tions to the subject were always exactly the same. One
obvious factor that we could not control was that our
subject was always aware that he had performed the
task before in the scanner, only under slightly different
circumstances. We called this the “Groundhog Day”
effect.

Ninety-nine individual sessions were acquired from
the subject over a period of 2 months. Each scanning
session consisted of one run of a motor, cognitive, or
visual paradigm. To minimize scanning time, sessions
were acquired in blocks of three. Each block of three
sessions comprised a motor, visual, and cognitive ses-
sion. The order of sessions across scanning blocks was

FIG. 4. Single-session sagittal MIPs for the visual paradigm. Sim
ith “*” contain no significant voxels.
randomized to balance any possible order effects. Ses-
sion paradigms were designed to reduce the effects of
variable task performance. For example, the subject
was familiarized with both the random number gener-
ation and the finger-tapping task before performing
them in the scanner, in an attempt to eliminate per-
formance effects. In addition, the rates at which both
tasks were performed were chosen to ensure that sub-
ject performance would be stable across sessions.
These decisions were informed by studies which used
similar paradigms (motor paradigm—Blinkenberg et
al., 1996; cognitive paradigm—Jahanshahi et al., sub-
mitted for publication).

Motor Paradigm

The subject tapped his right index finger, paced by
an auditory tone (1.5 Hz). The subject’s hand was re-
strained within a custom-built thermoplastic splint,
which ensured that the amplitude of the finger move-

r to Figs. 2 and 3, only 31 sessions are displayed. Sessions marked
ila
ment was consistent both across and within sessions.
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TABLE 1

Area Cluster size (k)a Z scoreb

Talairach coordinates

X Y Z

(a) Local maxima for the motor fixed-effects model

Left precentral gyrus (SM1) 5958 9.77 238 210 52
Left precentral gyrus (SM1) 9.63 262 220 38
Left postcentral gyrus (SM1) 9.51 260 218 46

Right cerebellum, anterior lobe 1709 9.50 20 254 218
Right cerebellum, anterior lobe 9.19 2 254 224
Right cerebellum, anterior lobe 9.14 8 258 220

Left supplementary motor area (SMA) 927 9.39 22 22 52
Right SMA 8.75 8 2 58
Right SMA 8.50 4 8 66

Left inferior frontal gyrus 227 9.23 62 6 16
Left inferior frontal gyrus 6.98 62 4 4

Right postcentral gyrus (SM1) 197 9.07 58 212 50
Right precentral gyrus (SM1) 8.29 52 26 38
Right precentral gyrus (SM1) 7.71 62 22 38

Left inferior thalamus 466 8.84 212 218 2
Left ventral midbrain 6.15 28 212 214
Left midbrain 5.90 28 220 212

Right lateral premotor cortex 70 8.80 38 28 50
Right inferior frontal gyrus 62 8.60 64 0 16
Right inferior parietal lobule 604 8.54 50 228 24
Right transverse temporal gyrus 8.36 52 218 12

Right superior temporal gyrus 7.99 68 226 16
Left posterior cingulate gyrus 100 8.32 28 226 42

Left posterior cingulate gyrus 7.11 22 222 48
Right inferior frontal operculum 228 8.23 0 6 4

Right insula 6.12 0 6 10
Left cerebellum, anterior lobe 66 7.85 20 256 220
Right cerebellum, anterior lobe 98 7.73 2 258 248

Right cerebellar tonsil 7.43 6 270 240
Left posterior postcentral gyrus 67 7.63 18 246 64
Left superior frontal gyrus 79 7.49 28 42 26
Left superior thalamus 46 7.40 18 210 18

Left thalamus 5.73 212 26 12
Left medial frontal gyrus 223 7.27 238 58 22

Left medial frontal gyrus 7.27 230 62 4
Left inferior frontal gyrus 7.20 234 54 28

Third ventricle 22 7.27 6 242 26
Right putamen 171 7.26 8 6 22

Right putamen 6.68 0 6 212
Right anterior cingulate gyrus 27 6.74 14 8 42
Right postcentral gyrus 7 6.74 40 230 58
Right thalamus 40 6.70 14 214 2
Right inferior frontal gyrus 18 6.46 30 60 22
White matter, subcortical 33 6.46 16 0 12

White matter, subcortical 5.13 12 6 2
Right posterior cingulate 19 6.43 12 224 46
Right cerebellum 18 5.94 48 250 238
Right thalamus 16 5.79 20 0 26
Left cerebellum 12 5.76 236 264 226
Left superior frontal gyrus 5 5.64 228 28 56
Right thalamus 9 5.55 8 24 24
Right cerebellum 12 5.51 40 262 250
Left superior frontal gyrus 8 5.42 222 38 48
Right caudate nucleus 9 5.30 20 26 20

(b) Local maxima for the motor random-effects analysis

Left precentral gyrus (SM1) 4253 8.76 236 210 52
Left precentral gyrus (SM1) 8.45 260 218 38
Left frontal operculum 8.37 248 4 0

Right cerebellum, anterior lobe 951 8.04 18 252 218
Right cerebellum, anterior lobe 7.55 30 252 226
Right cerebellum, anterior lobe 7.34 36 262 224
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Each activation epoch was alternated with a rest ep-
och, in which the pacing tone was delivered to control
for auditory activation. Thirteen blocks were collected
per session (7 rest and 6 active). The subject main-
tained fixation on a cross that was backprojected onto
a transparent screen by an LCD video projector. The
projector was similarly employed to deliver visual in-
structions to the subject before each block (either
“Move” or “Rest”).

Cognitive Paradigm

The subject generated random numbers from 1 to 9,
paced by an auditory tone (0.66 Hz). In the rest condi-
tion the subject counted from 1 to 9, similarly paced by
the auditory tone. The subject fixated in a fashion
similar to that used before. Thirteen epochs were col-
lected in total (7 rest and 6 active).

Visual Paradigm

A reversing black and white checkerboard flickering
at 8 Hz (Fox and Raichle, 1985) was presented to the
subject. The subject focused on a central fixation spot
that was constant across both activation (reversing

TABLE 1

Area Cluster size (k)a

Left inferior frontal gyrus 151
Left inferior precentral gyrus

Left supplementary motor area (SMA) 545
SMA
Right superior SMA

Left thalamus 173
Left midbrain (red nucleus)

Right postcentral gyrus (SM1) 104
Right inferior precentral gyrus
Right inferior precentral gyrus

Left supramarginal gyrus 44
Right lateral premotor cortex 46
Right frontal operculum 104
Right parietal operculum 256

Right transverse temporal gyrus
Right transverse temporal gyrus

Left posterior cingulate gyrus 39
Right inferior frontal gyrus 32
Right inferior postcentral gyrus 25
Cerebellar vermis 25
Left superior frontal gyrus 21
Right cerebellar tonsil 8
Left superior thalamus 12
Left posterior postcentral gyrus 14
Left cerebellum, anterior lobe 10
Right putamen 20

Note. SM1, primary somatomotor cortex; SMA, supplementary mo
a Only clusters with k $ 5 are listed. Where multiple foci exist for
b All foci reported survive a statistical threshold of P , 0.05 corre
checkerboard stimulation) and rest (fixation spot only) S
blocks. Six epochs were acquired in total (three activa-
tion and three rest).

Scanning Parameters

The data were acquired on a Siemens Magnetom
Vision (Siemens, Erlangen, Germany) at 2 T. Each
BOLD–EPI volume scan consisted of 48 transverse
slices (in-plane matrix 64 3 64; voxel size 3 3 3 3 3

m; TE 5 40 ms; TR 5 4.1 s). Seventy-eight volume
cans were collected during each cognitive and motor
ession, and 36 scans per visual session (epoch length
as always 6 scans). A T1-weighted high-resolution
RI of the subject (1 3 1 3 1.5 mm resolution) was

cquired to facilitate anatomical localization of the
unctional data.

Image Preprocessing

Data preprocessing was carried out using SPM99
Wellcome Department of Cognitive Neurology, Lon-
on, UK; http:/www.fil.ion.ucl.ac.uk/spm). All func-
ional volumes, independent of session or paradigm,
ere realigned to the first volume acquired (Friston et
l., 1995) and a mean realigned volume was created.

ontinued

Z scoreb

Talairach coordinates

X Y Z

8.00 262 8 16
6.96 260 22 16
7.62 28 22 48
7.34 0 2 56
7.15 4 10 66
7.44 212 220 2
5.47 212 214 210
7.40 58 212 50
6.93 50 24 36
5.75 60 22 40
7.27 258 244 18
7.19 38 28 52
7.10 50 6 4
7.07 50 228 26
6.94 48 218 14
6.16 68 226 16
6.88 28 224 44
6.71 64 0 16
6.56 62 212 12
6.22 6 270 240
6.04 228 42 26
5.88 12 256 248
5.81 220 212 18
5.73 218 246 64
5.68 220 256 220
5.57 28 8 22

cortex.
cluster, the three most significant are reported.
d for multiple comparisons.
—C

tor
a

essions containing obvious movement artifacts (de-
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TABLE 2

Area Cluster size (k)a Z scoreb

Talairach coordinates

X Y Z

(a) Local maxima for the cognitive fixed-effects analysis

Right inferior parietal lobule 888 9.27 50 230 44
Right inferior parietal lobule 8.63 34 244 44
Right supramarginal gyrus 7.95 66 224 40

Left medial precentral gyrus (FEF) 1716 9.26 224 0 50
Left lateral precentral gyrus 8.96 250 4 46
Left middle frontal gyrus 8.51 254 10 26

Left precuneus 1812 9.17 210 266 44
Left superior parietal lobule 8.86 242 236 50
Left superior parietal lobule 8.77 218 262 64

Right medial precentral gyrus (FEF) 776 9.17 26 24 58
Right superior frontal gyrus 8.70 20 6 60
Right superior frontal gyrus 7.68 12 14 66

Right superior parietal lobule 876 8.99 20 266 58
Right superior parietal lobule 8.74 26 270 50
Right superior parietal lobule 8.42 22 258 62

Right anterior precentral gyrus 238 8.84 62 4 28
Left middle frontal gyrus 454 8.63 234 36 22

Left middle frontal gyrus 8.22 248 40 24
Left middle frontal gyrus 7.11 230 46 34

Right lateral premotor cortex 85 8.39 56 0 46
Left supplementary motor area 421 8.30 22 18 50
Right inferior frontal gyrus 406 8.30 56 16 22

Right inferior frontal gyrus 7.44 48 26 28
Right superior temporal gyrus 7.44 234 16 6

Left inferior frontal gyrus 414 8.24 256 12 0
Left inferior frontal gyrus 8.09 242 22 28
Left insula 7.23 234 16 6

Right cerebellum, anterior lobe 190 8.00 30 262 230
Right cerebellum, anterior lobe 7.32 34 254 236
Right cerebellum, anterior lobe 5.86 40 260 236

Left tempero-occipital sulcus 41 7.96 252 252 218
Right inferior parietal lobule 44 7.92 68 238 24

Right inferior parietal lobule 5.48 68 230 32
Right inferior parietal lobule 5.33 64 244 34

Right middle frontal gyrus 311 7.91 44 40 32
Right middle frontal gyrus 7.81 44 42 20
Right middle frontal gyrus 7.80 34 36 18

Right anterior cingulate gyrus 37 7.75 12 12 38
Left inferior parietal lobule 80 7.67 262 236 32
Right middle temporal gyrus 72 7.65 58 220 26
Right superior temporal gyrus 67 7.62 48 232 22
Right middle occipital gyrus 27 7.21 50 274 12
Left precentral gyrus 11 6.99 254 28 14
Left middle frontal gyrus 28 6.99 230 56 26
Left superior temporal gyrus 43 6.96 254 240 4
Left inferior frontal gyrus 16 6.67 254 34 8
Right cerebellum 16 6.58 36 238 242
Right calcarine cortex (V1) 17 6.45 12 278 8
Right insula 11 6.39 40 6 0
Left cerebellum 30 6.36 222 256 234
Left anterior cingulate 9 6.35 212 16 32
Left inferior frontal gyrus 23 6.02 236 58 22

Left inferior frontal gyrus 5.53 232 62 4
Right insula 11 5.90 42 16 4
Left calcarine cortex (V1) 17 5.80 26 272 20
Right middle frontal gyrus 7 5.77 40 30 24
Left calcarine cortex (V1) 6 5.50 24 29 0
Left hemisphere, white matter. 9 5.44 222 54 0
Right superior frontal gyrus 5 5.24 16 38 54
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cided by two of the authors with previous experience of
typical artifacts) were discarded at this stage: three
motor sessions, two visual sessions, and three cognitive
sessions were excluded in this manner. The subject’s
T1-weighted structural scan was coregistered to the
mean functional volume, and the mean volume used to
determine the parameters applied to all volumes dur-
ing spatial normalization and resampling (Ashburner

TABLE 2

Area Cluster size (k)a

(b) Local maxima for the cog

eft superior parietal lobule 690
Left posterior postcentral gyrus
Left superior parietal lobule

eft medial precentral gyrus (FEF) 1134
Left middle frontal gyrus
Left ventral precentral gyrus

eft superior parietal lobule 156
Left superior parietal lobule
Left superior parietal gyrus
ight inferior parietal lobule 460
Right inferior parietal lobule
Right supramarginal gyrus
ight superior parietal lobule 540
Right superior parietal lobule
Right superior parietal lobule
ight medial precentral gyrus (FEF) 569
Right superior frontal gyrus
Right superior frontal gyrus

eft precuneus 157
Right anterior precentral gyrus 173
Left middle frontal gyrus 276

Left middle frontal gyrus
Right cerebellum, anterior lobe 78

Right cerebellum, anterior lobe
Right inferior parietal lobule 22
Right middle temporal gyrus 55
Right lateral premotor cortex 41
Left inferior frontal gyrus 139

Left inferior frontal gyrus
Right inferior frontal gyrus 122
Left temporal-occipital sulcus 18
Left supplementary motor area (SMA) 201

Left supplementary motor area (SMA)
Left supplementary motor area (SMA)

Right anterior cingulate gyrus 15
Right middle frontal gyrus 98

Right middle frontal gyrus
Right middle frontal gyrus

Left inferior parietal lobule 33
Right middle frontal gyrus 19
Right superior temporal gyrus 26
Left middle frontal gyrus 7
Right superior temporal gyrus 16
Right inferior frontal gyrus 16
Left superior frontal gyrus 7

Note. FEF, frontal eye fields; V1, primary visual cortex; SMA, sup
a,b See footnotes to Table 1.
et al., 1997; Ashburner and Friston, 1999) to a stan-
dard template (Evans et al., 1993). As the volume of
brain sampled in each study was affected by the posi-
tion of the subject within the scanner’s field of view, we
found that the extreme superior and inferior portions
of the subject’s brain were sparsely sampled. To ad-
dress this, voxels not sampled in every session were
eliminated during normalization. All functional vol-
umes were then smoothed with a FWHM Gaussian

ontinued

Z scoreb

Talairach coordinates

X Y Z

ive random-effects analysis

8.13 240 236 48
7.44 248 228 40
7.28 230 248 42
8.07 226 22 50
8.06 250 8 44
7.74 252 10 26
7.87 218 264 64
6.58 226 262 60
5.59 234 260 60
7.87 48 230 44
7.50 56 232 44
6.84 64 224 40
7.75 18 264 58
6.97 22 256 62
6.93 26 264 34
7.73 28 22 60
7.62 20 6 62
6.47 12 12 68
7.72 28 266 42
7.56 62 6 28
7.38 234 38 24
6.81 250 36 24
7.24 30 262 230
6.56 32 256 236
7.03 68 238 24
6.95 60 220 28
6.94 54 2 44
6.92 242 22 28
6.80 256 12 0
6.89 56 16 22
6.77 252 252 218
6.71 22 18 48
6.66 26 10 54
6.64 0 16 58
6.66 14 12 38
6.53 38 38 34
5.93 44 40 20
5.66 34 44 38
6.26 264 238 26
6.26 34 36 18
6.01 46 230 24
5.98 230 54 28
5.90 54 18 220
5.79 50 26 28
5.73 210 12 70

mentary motor area.
—C

nit

ple
kernel. Global changes in fMRI response from scan to
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TABLE 3

Area Cluster size (k) Z score

Talairach coordinates

X Y Z

(a) Local maxima for the visua fixed-effects analysis

Right calcarine cortex (V1) 11002 9.72 14 286 2
Right calcarine cortex (V1) 9.63 6 274 24
Left calcarine cortex (V1) 9.57 28 282 0

Right superior temporal gyrus 80 7.96 42 228 18
Right precuneus 54 7.93 8 280 44
Left lateral geniculate nucleus 91 7.92 218 226 24
Right superior temporal gyrus 51 7.81 70 232 14
Left inferior parietal lobule 152 7.79 232 238 54
Left superior parietal lobule 130 7.75 228 254 54

Left superior parietal lobule 6.66 220 252 54
Left superior parietal lobule 5.08 228 248 62

Left superior temporal gyrus 32 7.60 256 242 16
Right lateral geniculate nucleus 83 7.59 24 224 4
Right postcentral gyrus 95 7.52 36 232 54
Left superior temporal gyrus 31 7.17 242 228 20
Right lateral ventricle 112 6.82 20 226 24
Left precuneus 25 6.76 218 262 48
Right midbrain 27 6.71 8 226 26
Right middle frontal gyrus 22 6.58 60 2 38
Right inferior frontal gyrus 26 6.46 56 36 12

Right inferior frontal gyrus 5.50 52 42 16
Left lateral ventricle 58 6.30 216 222 26
Right precuneus 12 6.24 28 262 48
Right cerebellum 18 6.18 12 270 246
Right lateral ventricle 11 6.18 4 12 12
Right parietal lobe, white matter 7 6.18 36 258 64
Right supplementary motor area 8 5.50 2 2 64
Right cerebellum 6 5.49 32 272 230
Right fusiform gyrus 5 5.48 48 250 216
Right temporal lobe, white matter 6 5.40 34 240 10
Right superior parietal lobule 5 5.20 40 252 54

(b) Local maxima for the visual random-effects analysis

Right calcarine cortex (V1) 8766 8.66 10 280 28
Right extrastriate cortex 8.59 24 296 16
Right extrastriate cortex 8.54 22 276 218

Right precuneus 46 7.48 8 278 44
Right parieto-occipital fissure 7.23 12 286 38

Right superior temporal gyrus 80 6.68 42 228 18
Left superior parietal lobule 37 6.49 226 256 54
Left lateral geniculate nucleus 27 6.21 216 228 24
Left inferior parietal lobule 47 6.06 232 238 56
Right postcentral gyrus 17 6.04 34 232 52
Right lateral geniculate nucleus 21 5.98 22 226 0
Right superior temporal gyrus 17 5.96 70 234 12
Right inferior precentral gyrus 6 5.87 64 10 6
Left intraparietal sulcus 13 5.86 220 270 34
Left superior temporal gyrus 9 5.72 240 226 20
Right intraparietal sulcus 26 5.71 32 270 26
Left superior temporal gyrus 7 5.70 256 242 18
Right middle frontal gyrus 6 5.57 58 4 38
Right intraparietal sulcus 8 5.34 24 276 38
Left inferior occipital gyrus 5 5.16 240 264 28
Note. V1, primary visual cortex.
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scan were removed by proportionally scaling each scan
to have a common global mean voxel value.

Theory and Implementation

Statistical analysis was carried out using the general
inear framework described by Worsley and Friston
1995). The sessions for each paradigm were modeled
ith a simple linear model for the data at each voxel:

Yij 5 gi 1 aif~ j! 1 OK bikgk~ j! 1 eij. (1)

FIG. 5. Multisession analyses of the motor paradigm, analyzed
andom-effects model (c). Voxels surviving the statistical threshold a
dentification of activated areas. Each transverse slice is 2 mm thick
cores having a brighter color.
k51
Here Yij denotes the value of the voxel of scan j ( j 5
1, . . . , J ) of session i (i 5 1, . . . , I ). gi is the mean
(block) effect for session i. f( j) is a reference waveform,
a function of the scan index within session which has
the same form for all sessions. Here we shall use a
simple “convolved boxcar” reference waveform (CBC),
consisting of a boxcar function of zeros and ones rep-
resenting the experimental time course, convolved
with the expected hemodynamic response function.
The parameter ai is the amplitude of the CBC response
for session i. Differences in the session response am-

ng a fixed-effects model (a), extra-sum of squares F test (b), and a
displayed on a coregistered structural scan of the subject to aid the
he color bar represents statistical significance, with higher Z and F
usi
re
. T
plitudes ai constitute session-by-condition interac-
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tions. The additional reference functions gk( j) are a set
of discrete cosine basis functions, effecting a simple
“high-pass” filter, as described by Holmes et al. (1997),
with cutoff (specified by K) set at twice the experimen-
tal period. We shall assume that this model fits, such
that the residual errors (eij) have zero mean and exhibit
only short-term autocorrelation within session. In the
following we shall refer to the CBC amplitudes ai sim-
ply as the response for session i.

Individual-Session Analyses

Each session was analyzed alone as a single fMRI
session, as if it were the only session acquired, using a

FIG. 5—
“standard” SPM analysis. The Groundhog Day effects
aside, this enables a comparison of how the results of a
single-session experiment can vary and illustrates why
drawing conclusions about a subject from a single ses-
sion can be dangerous. The model used is that of Eq.
(1), but considering only a single session (i) at a time.
The residual errors are assumed to be Normally dis-
tributed with variance si(e)

2 , estimated individually for
each session. Temporal autocorrelation was dealt with
using the method of Worsley and Friston (1995) by
temporally smoothing the session time series with a
Gaussian kernel of 6-s FWHM. The design matrix for
each session is illustrated in Fig. 1A. A t statistic
assessing the null hypothesis of zero response (ai 5 0)

ntinued
Co
was constructed for each voxel, giving an SPM{t} for
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each session indicating the significance of the response.
For display, each session-specific SPM{t} was trans-
formed to an equivalent SPM{Z} by probability integral
transform. This was effected by replacing each t value
with the standard Normal ordinate with the same up-
per tail probability.

Multiple-Session Analyses—Session-by-Condition
Interactions

To assess whether there were significant session-
by-condition interactions, we compared the model of
Eq. (1) for all I sessions (design matrix shown in Fig.

FIG. 5—
1B) with a reduced model in which the response was
identical for all sessions (a i 5 a9, i 5 1, . . . , I ).
ere we assume that the residual variance is iden-

ical across sessions, such that the residuals are
ormally distributed with zero mean and variance
e
2. The additional variance modeled by the full

model (including session-by-condition interactions)
was compared with the residual variance using an
extra sum-of-squares F test (Draper and Smith,
1981), modified to account for temporally autocorre-
lated residuals using the method of Worsley and
Friston (1995). The resulting SPM{F} identifies vox-
els that display significant session-by-condition in-

ntinued
Co
teractions.
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721INTERSESSION VARIANCE IN fMRI
Multiple-Session Analyses

If there are substantial differences in response from
session to session a single-session experiment is inad-
equate if one wishes to examine a subject’s response to
experimental stimuli in general, and so a multiple-
session experiment is necessitated.

Multiple-Session Analyses—Fixed-Effects Model

Given a multiple-session data set, modeled with Eq.
(1) (design matrix shown in Fig. 1B), a fixed-effects
analysis proceeds by assuming that the session-specific
responses ai themselves are of interest. The residual
errors eij are assumed Normally distributed with zero
mean and constant variance se

2. Evidence of a response
across sessions can be tested by examining a# •, the
verage of the I session-specific responses

a# • 5 O
i51

I

ai .

gain, short-term temporal autocorrelation in the er-
ors were handled using the method of Worsley and
riston (1995), temporally smoothing each session
ime series with a Gaussian kernel of 6-s FWHM.

However, since the session-specific responses are
onsidered fixed, only one component of variance is
ccounted for (the residual error variance se

2), and in-
ference from the resulting SPM{t} is limited to the
average response for the observed sessions. As such,
his analysis is sensitive to large effects in a small
umber of sessions.

ultiple-Session Analyses—Random-Effects Model

To extend inference beyond the particular sessions
cquired, we must recognize that these sessions are
erely a sample of possible sessions, each of which
ould have its own response ai. Thus, we regard the ai

of Eq. (1) as random effects, accepting that the response
mplitudes ai for the sessions under consideration are

merely one sample from the (hypothetical) distribution
of response amplitudes for a session chosen at random.
A simple second-level (between-session) model would
be

ai 5 a 1 ei, (2)

where the ai are from Eq. (1) (the within-session
model), and the between-session errors ei have zero
mean and variance sa

2 and can be considered indepen-
dent. Thus, the random-effects model has two compo-
nents of variance, between session, sa

2, and within ses-
ion (residual), se

2. Using this model we can consider
nference regarding a, the underlying average re-

ponse across all possible sessions. c
In general, analysis of such random-effects models
an be difficult (Searle and Casella, 1992). However,
he simple models considered here are balanced (the
odels for each session are exactly the same) and

eparable (the only common parameter across sessions
s the intrasession (residual) variance se

2, assumed con-
tant for all sessions). This permits a simple “summary
tatistic” approach (Frison and Pocock, 1992). Such an
pproach was first described for neuroimaging data by
orsley et al. (1992), and its importance subsequently

ighlighted by Holmes et al. (1998), who describe the
mplementation (in SPM) used here. In essence, the

odel of Eq. (1) is fitted to yield estimates âi of the
response amplitude ai at each voxel for each session.
The variance of the estimated response amplitudes âi

across sessions incorporates both within- (se
2) and be-

tween-session variability (sa
2) in the appropriate pro-

ortions to assess the significance of the overall subject
ctivation effect a (Frison and Pocock, 1992). Thus,

each session data set is surmised by a single contrast
image whose voxel values are the fitted response am-
plitudes. These contrast images can then be assessed
at the intersession level for a significant average effect,
with inference extending to the subject in general (un-
der similar experimental conditions) rather than just
the particular sessions acquired.

To conduct a parametric analysis, it remains to
choose a specific model for the between-session errors
ei. In the absence of any evidence (yet) to suggest
otherwise, consider a simple Normal model

ai 5 a 1 ei, ei , N~0, s a
2!. (3)

Our approach here is pragmatic: we know nothing
about ei’s distribution. Our assumption of Normality
allows us to introduce random effects analyses simply
and logically as an extension of the parametric statis-
tical tests used by SPM. We will discuss the validity of
this assumption in the discussion.

With the models of Eqs. (1) and (3), the random-
effects analysis can be effected as a simple one-sample
t test on the contrast images, yielding an SPM{t}.

RESULTS

All tabular data referenced in the results section can
e accessed at http://www.fil.ion.ucl.ac.uk/;davem.
he coordinate system used is that of the space defined
y Talairach and Tournoux (1988).

Individual Session Results

Figures 2, 3, and 4 show sagittal maximum intensity
rojections (MIPs) per session for the motor, cognitive,
nd visual tasks, respectively. Each SPM{Z} MIP
hows voxels that survive a threshold of P , 0.05,

orrected for multiple comparisons.
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It is immediately obvious that the pattern of acti-
vated voxels varies widely between repeated single
sessions in our subject. While a grossly homogeneous
pattern is evident across single-session MIPs of the
same paradigm, the spatial distribution of voxels in
each MIP is highly variable. Even though striking sim-
ilarity is evident between certain data sets (e.g., visual
sessions 10 and 12, Fig. 4), a large number of sessions
from all three paradigms display no significantly acti-
vated voxels (e.g., visual sessions 4 and 30). The differ-
ences are best exemplified by comparing the SPM{Z} of
motor session 1 (Fig. 2), which contains 1076 voxels

FIG. 6. Multisession analyses of the cognitive paradigm, analyze
random-effects model (c). Voxels surviving the statistical threshold a
identification of activated areas. Each transverse slice is 2 mm thick
cores having a brighter color.
above threshold, and motor session 33, which contains
only 5. Results from the cognitive paradigm (Fig. 3) are
broadly similar: while the spatial distribution of voxels
between MIPs is more comparable than in the motor
and visual paradigms, a large number of sessions con-
tain no significantly activated voxels at the chosen
threshold.

MIPs are binary statistical images, in which voxels
are classified as “active” or “inactive” according to ac-
cepted but arbitrary statistical thresholds (for discus-
sions of this issue, see Poline et al., 1996; Genovese et
al., 1997; Noll et al., 1997; Cohen and DuBois, 1999;

egeler et al., 1999). In any of the MIPs of Figs. 2, 3,

sing a fixed-effects model (a), extra-sum of squares F test (b), and a
displayed on a coregistered structural scan of the subject to aid the
he color bar represents statistical significance, with higher Z and F
d u
re
. T
and 4, a voxel i could have very different ai’s between
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723INTERSESSION VARIANCE IN fMRI
sessions, yet still pass the threshold and appear to be
consistently activated.

Multiple-Session Analyses

Figures 5, 6, and 7 show the results of the motor,
cognitive, and visual multiple-session analyses, respec-
tively. As noted above, merely examining thresholded
statistical maps is perhaps not the best way to examine
similarities between sessions. Our use of the ESS-F test
llowed us to examine which voxels showed statistically
ignificant variability across all sessions for our single
ubject (Figs. 5b, 6b, and 7b). If a single session typifies
ur subject’s response, there should be few session-by-
ondition interactions, and thus the SPM{F} maps from

FIG. 6—
each analysis should display relatively few voxels.
By specifically examining the variability of session-by-
condition interactions, we implicitly limit our analysis to
voxels that are activated on at least one session by the
task. Noise that has a truly random expression over time
is unlikely to be modeled sufficiently well by each ses-
sion’s regressor of interest; however, task-correlated
noise, such as movement, will still present a problem.

ESS{F} Analyses

Figures 5b, 6b, and 7b show the results of each
multisession ESS-F test. These SPMs were thresh-
olded at P , 0.05 corrected as for the fixed-effects
SPM{Z}’s, reflecting that we did not have any a priori
hypotheses concerning where we expected to see

ntinued
Co
greater variability. An important point to note at this
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stage is that the ESS-F test is free of any constraints
about the direction of activation effects observed. As
such, although our main concern was to examine the
variability of activation effects, each SPM{F} also con-
ains voxels that had highly variable deactivations. In

the interest of parsimony, these results will not be
discussed here.

Somewhat surprisingly, each fixed-effects SPM{Z}
did not display a high degree of overlap with its corre-
sponding SPM{F}. This is because each SPM{F} iden-
tifies voxels that show high variability, even if they are
not classified as activated on average. Reflecting this
fact, the area displaying the highest degree of variabil-
ity in signal intensity between sessions in the motor

FIG. 6—
paradigm (Fig. 5b) is located within the white matter of
the temporal lobe (228, 242, 228, F 5 7.88)—an area
which does not appear on the fixed-effect SPM{Z} map
(Fig. 5a). A similar area is observed in the cognitive
paradigm’s SPM{F} (238, 240, 6, F 5 7.40; Fig. 6b);
again, this area is not present on the fixed-effects
SPM{Z} (Fig. 6a). There was some overlap between
voxels which displayed significant variability in each
SPM{F} and the corresponding fixed-effects SPM{Z}:
for example, posterior SMA (22, 28, 52; F 5 4.67),
ipsilateral cerebellum (26, 238, 222; F 5 5.68), and
contralateral precentral gyrus (226, 218, 70; F 5
4.66). These voxels were typically located at the edge of
a larger cluster of activated voxels. The variability seen
may reflect subtle differences in the areal extent of

ntinued
Co
activations at the periphery of large clusters.
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725INTERSESSION VARIANCE IN fMRI
Fixed-Effects Analyses

The fixed-effects analyses of all three tasks (Figs.
5a, 6a, and 7a) displayed areas of activation concor-
dant with previous studies employing a similar task.
A number of fMRI studies have used finger-tapping
as a stereotypical motor task (e.g., Rao et al., 1993),
and we found similar results (Table 1a), including
the contralateral SM1 (Talairach coord. 238, 210,

2; Z score 5 9.77), the anterior lobe of the ipsilateral
erebellum (20, 254, 218; Z 5 9.50), the SMA (22,
2, 52; Z 5 9.39), the contralateral thalamus (212,
18, 2; Z 5 8.84), and the ipsilateral premotor cortex

38, 28, 50; Z 5 8.80). It is notable that the SPM{Z}
lso contains areas not previously reported as acti-
ated by a simple externally paced finger-tapping
aradigm, such as the right inferior parietal lobule
50, 228, 24; Z 5 8.54). This is not surprising, as a
ingle a i of sufficient magnitude may be adequate for

any voxel to pass the average significance threshold
over sessions and so appear on the multisession
fixed-effects SPM{Z}. If the fixed-effects SPM{Z} is
viewed in isolation, it is impossible to know if these
are “true” activated voxels which have not been re-
ported in previous studies due to a lack of sensitivity
or areas which display an activation effect signifi-
cantly large to appear in the multisession fixed-ef-
fects maps, yet are not consistently activated across
sessions.

Similar patterns of results were observed upon
inspection of the multisession fixed-effects SPM{Z}’s
from the cognitive and visual paradigms (Figs. 6a
and 7a). Although less is known about the functional
neuroanatomy of paced random-number generation,
we found areas similar to a previous study (Table 2a;
Jahanshahi et al., submitted for publication). In com-
mon with Jahanshahi and colleagues, we found acti-
vation in the anterior cingulate cortex, but again
noticed discrepancies between our results and theirs,
e.g., our finding of bilateral calcarine cortex (12, 278,
8, Z 5 6.45 and 26, 272, 20, Z 5 5.80) and left SMA

ctivation (22, 18, 50, Z 5 8.30). Similarly, our vi-
ual paradigm activated, as expected, striate and
xtrastriate areas around the calacarine sulcus (Fig.
a, Table 3a), including bilateral V1 (14, 286, 2, Z 5
.72 and 28, 282, 0, Z 5 9.57), in common with
tudies employing a comparable stimulus (e.g.,
wong et al., 1992). However, as with the other
aradigms, a number of areas not previously impli-
ated in the functional neuroanatomy of this task
ere activated (e.g., the right SMA: 2, 2, 64, Z 5
.50).
Clearly, these effects beg closer scrutiny. If we wish

o examine repeated trials of the same activation par-
digm within a particular subject, it is necessary to
efine variability within the same subject. The fixed-

ffects SPM{Z}’s tell us where voxels are active on
verage across the observed sessions. If we wish to
xamine the generality of a single fMRI session, the
ariability of each voxel across all sessions must be
ddressed.

andom-Effects Analyses

Figures 5c, 6c, and 7c show random-effects analyses
f each multisession data set. These SPM{Z}’s have
een weighted by both between-session and withinses-
ion variances of each data set. Upon visual inspection,
he random-effects SPM{Z}’s resemble a “cleaned-up”
ersion of the fixed-effects SPM{Z}’s, and each para-
igm’s pattern of results is now more in concordance
ith previous studies. There are still, however, areas
ithin the random-effects SPM{Z} that one would not
xpect, a priori, to be involved in the functional neuro-
natomy of each task (Tables 1b, 2b, and 3b). For
xample, the motor random-effects SPM{Z} (Fig. 5c)

displays prominent bilateral auditory cortex activation
(242, 228, 18, Z 5 8.14 and 48, 218, 14, Z 5 6.16). We
did not expect this, as pacing tones were played during
both rest and activation epochs during each motor ses-
sion. This result may reflect attentional modulation of
auditory areas (Woodruff et al., 1996; Grady et al.,
1997), as the tones’ salience was different between the
rest and the activation conditions. The neurobiological
explanation for this result need not concern us here: it
is sufficient to recognize that we did not predict this
pattern of activation. If we had access to only a single
session from our subject, we would have been suspi-
cious about their true nature. Even a multisession
fixed effects would not have helped: we would not be
able to identify if the activation was driven by a small
number of sessions only or was indeed a true positive.
This reasoning demonstrates that multiple scanning
sessions analyzed with an appropriate statistical
model can reduce ambiguous interpretations.

The majority of voxels present in both the fixed-
effects SPM{Z} and SPM{F} do not appear in the ran-
dom-effects SPM{Z}’s. Properly accounting for be-
tween-session variance means that these voxels no
longer survive a threshold of P , 0.05, corrected for
multiple comparisons. This demonstrates that combin-
ing multiple sampling of sessions with a statistical
model with more than one component of variance cor-
rectly accounts for even small session-by-condition in-
teractions.

Figures 8 and 9 show voxels that typify different
patterns of behavior across sessions, using the motor
paradigm as an example. Figures 8A and 9A show a
voxel in posterior SMA (22, 28, 252) which survives a
threshold of P , 0.05, corrected for multiple compari-
sons, in our multisession fixed-effects analysis. How-
ever, this voxel displays significant session-by-condi-
tion interactions (as seen by its appearance on the

ESS-F map) and thus fails to survive correction when a
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random-effects model is used. This voxel is an excellent
example of variability in “active” voxels. When one
examines its parameter estimates by session (Fig. 9A),
it is striking how stable it appears over some sessions
(for example, sessions 15 to 18) and yet how variable its
behavior is over all sessions. The histogram of param-
eter estimates in Fig. 9A shows that although only one
session has a parameter estimate of greater than 1.5,
this can still weigh the average activation effect over
all sessions. When the variability of responses over
sessions is addressed in the random-effects analysis,

FIG. 7. Multisession analyses of the visual paradigm, analyzed
andom-effects model (c). Voxels surviving the statistical threshold a
dentification of activated areas. Each transverse slice is 2 mm thick
cores having a brighter color.
the voxel loses significance.
The voxel in left primary motor cortex (236, 210, 52)
displayed in Figs. 8B and 9B typifies voxels that sur-
vive statistical thresholds in both fixed- and random-
effects analyses. This voxel shows remarkably similar
parameter estimates over all sessions (Fig. 9B). The
voxel in Figs. 8C and 9C is one that, although not
significantly variable (not shown on the ESS{F} map in
Fig. 8C), does not survive correction when a random-
effects model is used.

Voxels within each SPM{F} can be thought of as
belonging to various classes: those which are not

ng a fixed-effects model (a), extra-sum of squares F test (b), and a
displayed on a coregistered structural scan of the subject to aid the
he color bar represents statistical significance, with higher Z and F
usi
re
. T
activated by each paradigm, but display high vari-
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ability of their parameter estimates (Figs. 8D and
9D); “true” active or deactivated voxels, surviving
both fixed- and random-effects definitions of variabil-
ity (Figs. 8B and 9B); voxels which are significant at
a fixed-effects level but are significantly variable and
do not survive correction for between-session vari-
ance (Figs. 8A and 9A); and voxels which, while not
surviving a random-effects analysis, are not signifi-
cantly variable as defined by the ESS{F} map (Figs.
8C and 9C).

DISCUSSION

The generality of any experimental result is an issue

FIG. 7—
which confronts all researchers, independent of exper-
imental discipline (Abelson, 1995). The results of any
isolated experiment are always open to contamination,
and fMRI is no exception. As fMRI is an ideal experi-
mental technique to examine questions that require
serial scanning sessions, there have been a number of
previous studies that sought to examine the reproduc-
ibility of fMRI data. Researchers have examined simi-
lar activation paradigms across laboratories (Casey et

l., 1998), imaging modalities (Ojemann et al.,
998),and sessions (Le et al., 1997; Noll et al., 1997;

Rombouts et al., 1998; Cohen et al., 1999). These stud-
ies sought to characterize the reproducibility of fMRI
data and so tried to ensure that each session was

ntinued
Co
carried out similarly to those preceding it.
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Examining the reproducibility of fMRI data is an
important question, but our own question was subtly
different: we chose to examine how well a single-
session data set from a single subject typified the
subject’s response across multiple sessions, using a
variety of activation paradigms. By examining the
variability in the magnitude of activation effects
across a large number of sessions we accepted that
each session would be different. Indeed, it was ex-
actly this between-session variability that we wished
to quantify.

We found that significant session-by-condition inter-
actions occurred in each of the multisession data sets
that we examined, as illustrated by the respective ESS

FIG. 7—
SPM{F}’s. Our results are evidence of the influence of
session context on the results of any individual session
and show the potential danger of drawing general con-
clusions from an individual session analyzed in isola-
tion with nothing known about reproducibility. If one
samples more sessions, each successive session ac-
quired facilitates a better estimation of between-ses-
sion variance, thereby increasing power to detect the
underlying response.

Differences in the Generality of Different
Activation Paradigms

We chose to examine different activation paradigms
to ensure that the results of our study would not be

ntinued
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limited to a single class of activation task. The majority
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729INTERSESSION VARIANCE IN fMRI
of work examining repeatability in fMRI has employed
simple visual or motor paradigms, though there has
been limited use of “higher” cognitive activation para-
digms (Yetkin et al., 1996; Noll et al., 1997; Casey et al.,
998). Our initial expectations were that the visual
ask would prove to have the fewest session-by-condi-
ion interactions and the cognitive task the most.

hile we did not compare the number or magnitude of
oxels in each paradigm’s SPM{F}, we were initially
urprised to note that the visual SPM{F} appeared to
ave prominent bilateral areas of high variability in
rimary visual cortex (Fig. 7b), while the cognitive
PM{F} contained few voxels which overlapped with
reas activated consistently by the activation task it-
elf. As mentioned above, the visual activations were
ocated in areas not activated on average by the task

FIG. 8. Examples of voxels from the multisession motor analy
significant at a fixed-effects level, but variable enough to not appear
a random-effects level and does not display significant session-by-co
significant at a fixed-effects level and is not significantly variable acr
Voxel D has significance at neither fixed- nor random-effects level, b
tself, but it is still surprising to find them in such close t
proximity to primary visual cortex. We suggest that
slight differences in visual field coverage by our visual
stimulus may have caused these effects, producing a
variable rim around a core of visual cortex that was
consistently stimulated across sessions. A further pos-
sibility is that these results reflect the high concentra-
tion of venules in the microvasculature of visual cortex
(Marinković et al., 1995), which may cause a higher
ariability in its response to afferent stimulation.

Sources of Session-by-Condition Interactions

We did not attempt to systematically assess the
elative magnitudes of different sources of variance
n session reproducibility, as in some previous stud-
es (e.g., Noll et al., 1997). We acknowledge, however,

that typify different kinds of statistical significance. Voxel A is
a random-effects analysis. Voxel B is significant at both a fixed- and
tion interaction terms (it does not appear in the ESS-F). Voxel C is
sessions, but does not possess a random-effects level of significance.
is significantly variable between sessions to appear in the ESS-F.
ses
in
ndi
oss
ut
hat identifying the sources of intersession variance
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FIG. 9. Session-by-session plots of the parameter estimates (ai) and their standard deviations (vertical bars) of the voxels from Fig. 8.
he histograms below each plot show the spread of values of a across all sessions.
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is important. For example, it is possible that spatial
preprocessing may affect intersession variance quite
independent of underlying physical or physiological
variability. The realignment procedure used (Ash-
burner et al., 1997) seeks to minimize the sum-of-
squares differences between successive volumes and
a reference (here, the first volume in the time series).
It is a facile point that each paradigm induces inten-
sity changes in voxels (i.e., it “activates” them), and
so volumes acquired during the “on” period of each
paradigm will contain focal intensity differences
from volumes acquired during “rest.” As a successful
realignment between two volumes relies on the vol-
umes used being similar rigid bodies, differing only
in their alignment in space, the paradigm-induced
intensity changes will affect the efficacy of alignment
and may ultimately raise intersession variance. In
addition, similar effects in voxels lying at a tissue
boundary (voxels in the walls of the ventricles, for
example) may result from simple repositioning of the
subject between sessions, causing session-specific
partial volume effects.

Examples like the above make it difficult to con-
clude if the variability which we observe is attribut-
able to differences in: (i) the scanning environment
(e.g., position of subject within headcoil) or (ii) pre-
processing (misalignment). We are more confident
that we were able to minimize session-by-condition
interactions that could be attributable to perfor-
mance differences. We treated each successive scan-
ning session as though it was the first time that our
subject had been scanned, to examine the potential
influence of session context on a single-session ex-
periment (acknowledging that we cannot overcome
the Groundhog Day effect). It could be argued that
systematic differences in our subject’s performance
across sessions may have resulted in the session-by-
condition interactions which we observed, as the re-
peated execution of any active task or protocol of
sensory stimulation may result in habituation or
learning effects (e.g., Karni et al., 1995). We chose
our activation tasks to minimize this possibility. Our
subject was pretrained on the motor task, and our
task frequency was chosen to lie within a range
previously demonstrated by Blinkenberg and col-
leagues (1996) to have a low error rate (between 1
and 2 Hz). Similarly, we chose a stable rate of num-
ber generation for our cognitive task (informed by
the results of Jahanshahi et al., submitted for pub-
lication). Although we did not record subject perfor-
mance on this task (primarily because of the motion
it would produce), performance at random number
generation remains stable over a number of repeti-
tions (Evans et al., 1980). Furthermore, a prelimi-
nary MANCOVA analysis of our motor data set ex-
amining the effects of session revealed no systematic

expression of the experimental variance over subse-
quent sessions (data not shown). Although we accept
that learning effects may exhibit complex temporal
dynamics, the structure of our parameter estimates
over sessions suggests random variation (Fig. 8)
around a “true” mean parameter estimate. However,
without independent measures of task performance,
we cannot entirely rule out between-session habitu-
ation or learning-related changes in activation.

Stability of fMRI Results across
Sessions—Consequences for Longitudinal Studies

As noted previously, fMRI is ideally suited to the
examination of learning or recovery-of-function stud-
ies. These studies are typically predicated on the as-
sumption that the experimental effects will be large
enough to ensure their detection compared to nonspe-
cific between-session effects. Because of the consider-
able time that must typically be devoted to such stud-
ies, it would be useful to have some idea of the relative
magnitudes of each effect before beginning. Although
in the present study we have examined the similarity
of the results between sessions while accepting a cer-
tain degree of difference in the practical implementa-
tion of each session, our results do not really address
the issue of signal to noise in longitudinal fMRI stud-
ies. As any difference between sessions is a session-by-
condition interaction, any study which purports to fo-
cus on session-by-condition interactions produced by
the experimental manipulation must ensure that non-
specific session-by-condition interactions can be effi-
ciently controlled (for a discussion of these issues, see
Petersson et al., 1999). We examined three tasks that
were designed to show limited session-by-condition in-
teractions in subject performance. As such, our results
cannot be used to address the validity of longitudinal
fMRI studies. We note, however, that the stability of
our results suggests that longitudinal studies that pro-
duce unambiguous results should be feasible.

Use of Thresholded Statistical Maps
to Analyze Session Generality

Typically, the results of neuroimaging experiments
are displayed using binarized statistical maps. In this
fashion, voxels that pass a predetermined statistical
threshold are classified as active and other voxels as
inactive. Although the utility and clarity of the results
motivate this approach, much of the richness of func-
tional neuroimaging data sets is removed. Attempts to
examine the test–retest reliability of fMRI using mea-
sures such as “voxel counting” on thresholded maps
therefore suffer from two problems: an essentially ar-
bitrarily defined statistical threshold and the loss of
complexity which accompanies any method that has to
classify voxels as either active or inactive. We sought,
instead, to characterize our data sets in terms of the

between-session variance of the activation effects and
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not merely examine when voxels passed an arbitrarily
set threshold on successive sessions. The differences
between the two approaches are apparent when one
compares the results of our single-session analyses
(Figs. 2, 3, and 4) with our later multisession analyses
(Figs. 5, 6, and 7). Generally a failure to detect activa-
tion may say more about the sensitivity of the experi-
ment than the presence of the effect itself (Poline et al.,
1996). Certain areas may therefore appear more vari-
able than they truly are.

Effects of Sample Size on the Analysis of Generality

Our results demonstrate the need for a large sample
size when examining how well a single fMRI session
exemplifies a subject’s responses. The plots of param-
eter estimates by session in Fig. 9 show that voxels in
which we found significant session-by-condition inter-
actions over all of our sessions appear surprisingly
stable when examined over a small number of sessions
(for example, sessions 27–29 in Fig. 9C are almost
identical). This effect has been termed “the law of small
numbers” (Tversky et al., 1971)—the tendency to as-
cribe a lack of variability to small sample groups. Our
use of a large number of sessions allowed us to char-
acterize variability that may have been missed by pre-
vious studies employing five repeated sessions at most
on the same subject. However, the opposite argument
may be leveled at our results: if the sample size is large
enough, then a statistically significant difference will
always be found—this is merely an example of the
fallacy of classical hypothesis testing. We accept this
criticism, but believe that an analysis of 30 sessions is
an appropriate sample size for the purposes of this
study. The existence of significantly variable voxels
necessitates the use of a random-effects model to allow
the experiments to truly generalize their results to the
subject.

Levels of Inference Arising from Fixed- and
Random-Effects Models

Worlsey and colleagues (1992) first suggested the use
of a “summary statistic” approach to the analysis of
functional neuroimaging data. However, the imple-
mentation we used in the current study is that of
Holmes and Friston (1998), who suggested random-
effects analyses for balanced designs in neuroimaging
employing a general linear framework to allow for the
between-subject variance component in multisubject
designs. As discussed previously, the random-effects
analysis confers generality, but with a concomitant
loss of sensitivity due to the inevitable low degrees of
freedom. We assumed that the ei were Normally dis-
ributed and incorporated this assumption into our
andom-effects level model. However, by examining
ig. 9 it is clear that the ei do not necessarily conform
to this distribution. If we examine the case of the voxel
in Fig. 9A, it is clear that this voxel has a skewed-right
distribution. Indeed, if one asks a simpler question of
the voxel in Fig. 9A (how often is a . 0) and employ a
imple sign test, the probability of getting 31/33 posi-
ive a’s is ,7 3 1028. Yet this voxel does not pass the

random-effects analysis used here. Although we accept
that this is only one voxel, it casts doubts on assump-
tions of Normality for the eI, and it is clear that further
investigation is needed into the distribution of be-
tween-session variance. The development of random-
effects models that do not require prior assumptions of
the distribution of residuals may be needed to address
this issue.

The use of random-effects models in the analysis of
fMRI data is a recent addition to the canon of neuro-
imaging analysis methods, and it is wise to note a
previous adoption of this measure. In the analysis of
behavioral data from human subjects, Clark’s (1973)
initial proposal that the model should be used more
frequently highlighted an obvious problem: treating a
sample from a population as random and selecting a
sample randomly from a population are clearly not the
same. Although we could argue that by using a ran-
dom-effects analysis in our study, we can generalize
our results to our subject as a putative population, we
have performed a very limited sampling of our subject’s
responses. Each scanning session was performed over
a 2-month period only, and session times were selected
in a biased manner: near midday and near 6 PM in the
evening. However, it is not elegant to have to state that
“our results generalize to the population of possible
sessions sampled from our subject over a period of 2
months, using the resources available in our labora-
tory.” In practice, these caveats are usually accepted.
Indeed, the use of random-effects models to ensure the
correct level of inference in multisubject fMRI analyses
rarely addresses the other sources of systematic vari-
ation in the population that the investigators are gen-
eralizing to (usually male, Caucasian right-handers
who respond to advertisements and financial reward).
However, adopting a random-effects model does afford
some protection against inappropriate generalization
of results, as noted by Abelson (1995).

Although we have shown that with an appropriate
statistical model and a large sample of sessions we can
obtain robust results, a number of issues remain un-
answered. In particular, we would hesitate before gen-
eralizing our own results to other centers, subjects, or
activation paradigms, as between-session variance
may vary greatly depending on the context under
which it is studied.

CONCLUSIONS

In this paper we described the results of an experi-
ment designed to examine intersession variance in

fMRI during the performance of simple visual, motor,
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and cognitive tasks by a single subject. First, analyzing
our data session by session, we suggested that bina-
rized statistical maps, though convenient, are not a
useful tool for the evaluation of intersession variabil-
ity. We then described an analytical framework that
allowed us to identify significantly variable voxels by
session across our multisession data sets. Each multi-
session data set, by paradigm, showed evidence of sig-
nificant session-by-condition interactions. This result
demonstrates that session context effects have a sig-
nificant effect on fMRI data and illustrates that a sin-
gle session should be considered merely as a single
sample of a subject’s responses to the experimental
intervention employed. As we sampled a large number
of sessions across all paradigms, we then compared the
differences between analyzing these data using either
fixed- or random-effects linear models, the latter being
a recent addition to neuroimaging analysis. Although
we comment on the usefulness of random effects anal-
yses, which allow inference about experimental effects
to be extended to the population which the sessions
were sampled from, we draw attention to the interses-
sion distribution of voxel response amplitudes. Our
assumption of Normally distributed intersession resid-
uals was not supported by close examination of some of
our data, and so we accept that future work is required
before random-effects models can be used to their full
potential. Finally, we acknowledge that identifying the
source and magnitude of the different sources of inter-
session variance in fMRI is crucial. The ability to dif-
ferentiate between variability caused by the neurovas-
cular signals that fMRI measures, and variability
introduced by the means of measurement and analysis
of these signals, is essential for the future of fMRI as a
noninvasive imaging modality.
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