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We use a neural mass model to address some important issues in

characterising functional integration among remote cortical areas

using magnetoencephalography or electroencephalography (MEG or

EEG). In a previous paper [Neuroimage (in press)], we showed how the

coupling among cortical areas can modulate the MEG or EEG

spectrum and synchronise oscillatory dynamics. In this work, we

exploit the model further by evaluating different measures of statistical

dependencies (i.e., functional connectivity) among MEG or EEG

signals that are mediated by neuronal coupling. We have examined

linear and nonlinear methods, including phase synchronisation. Our

results show that each method can detect coupling but with different

sensitivity profiles that depended on (i) the frequency specificity of the

interaction (broad vs. narrow band) and (ii) the nature of the coupling

(linear vs. nonlinear).

Our analyses suggest that methods based on the concept of

generalised synchronisation are the most sensitive when interactions

encompass different frequencies (broadband analyses). In the context

of narrow-band analyses, mutual information was found to be the most

sensitive way to disclose frequency-specific couplings. Measures based

on generalised synchronisation and phase synchronisation are the most

sensitive to nonlinear coupling. These different sensitivity profiles mean

that the choice of coupling measures can have dramatic effects on the

cortical networks identified. We illustrate this using a single-subject

MEG study of binocular rivalry and highlight the greater recovery of

statistical dependencies among cortical areas in the beta band when

mutual information is used.
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Introduction

The complicated nature of brain connectivity, composed of

local networks interconnected by long range pathways, is well

known and is the principal determinant of its functional organisa-
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tion (Abeles, 1991; Sporns et al., 2000). The ensuing architecture

means that the brain can be understood as a dynamical system,

comprising a huge number of state variables generating many

distinct and metastable states. This metastability endows the

brain with a characteristic lability, that is, sensitivity to change,

which arises from a capacity to self-organise through modulat-

ing its internal structure (Friston, 2000). This modulation is

context dependent, occurs over different time scales and can be

transient (e.g., changes of connectivity due to attention modu-

lation) or enduring (e.g., somatotopic reorganisation due to limb

amputation).

Integration or functional connectivity is usually inferred by

statistical dependencies among signals in coupled neuronal sys-

tems. It is possible to analyse these dependencies using noninva-

sive macroscopic measures such as magnetoencephalography

(MEG) (Hamalainen et al., 1993) and electroencephalography

(EEG) (Nunez, 1981). However, the variability of MEG or EEG

signals and our incomplete understanding of the neuronal process-

es generating them make their analysis particularly difficult. Indeed

characterising dynamic patterns is tricky due to the intrinsic

complexity and nonlinearity of the underlying neuronal processes

(Abarbanel and Rabinovich, 2001).

There is an uncertain consensus about the best method to

characterise neuronal couplings with MEG or EEG. Interactions

can be synchronous or asynchronous, linear or nonlinear and so

forth, engendering many different types of synchronisation, that is,

a common behaviour of at least one property of MEG or EEG

generators (Boccaletti et al., 2002; Pikovsky et al., 2001). This may

be why different dependency measures appear in the MEG or EEG

literature: these include linear (cross-correlation, coherence; Clif-

ford Carter, 1987) or nonlinear (mutual information; Roulston,

1999), nonlinear correlation (Pijn et al., 1992), mutual dimension

(Buzuk et al., 1994), nonlinear interdependencies or generalised

synchronisation (Arnhold et al., 1999; Schiff et al., 1996; Stam and

van Dijk, 2002; Stam et al., 2003), neural complexity (Tononi et

al., 1994)) or are based upon the quantification of phase locking of

oscillations (phase synchronisation; Lachaux et al., 1999; Tass et

al., 1998). This battery of measures has been assembled during the

last decade, making research in this area exciting but quite

confusing. Recently, an attempt has been made to evaluate the

performance of some of these measures in a case study of EEG

signals (Quian Quiroga et al., 2002). The authors conclude that,
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with the exception of mutual information, all these measures give

qualitatively equivalent results, with nonlinear measures being

more sensitive.

The aim of this paper was to compare a set of commonly

employed measures to assess their relative efficacy for detecting

neuronal coupling. Our strategy was to use simulated neuronal

processes in which we could manipulate the coupling between two

cortical areas. Using surrogate or null data, we determined the null

distribution of each measure to enable its sensitivity to be

evaluated. This represents an assessment in terms of each meas-

ure’s ability to detect statistical dependencies among remote

neurophysiological indices. These dependencies define, operation-

ally, ‘‘functional connectivity’’. In this paper, we focus on mea-

suring functional connectivity in continuous neuronal time series.

Note that this does not constitute an analysis of ‘‘effective

connectivity’’ (the influence one neuronal system exerts over

another): We are not interested, here, in the mechanism of the

coupling or indeed how the dependencies are expressed (e.g.,

linear vs. nonlinear). We simply want to establish whether depen-

dencies exist and find their most sensitive measure. In a later

paper, we will deal with similar issues in the context of transient

responses and induced oscillations.

The measures considered in this work were linear (cross-

correlation function or first-order cumulant) and nonlinear. The

nonlinear measures represented static (mutual information) and

dynamic measures. The latter were phase synchronisation and one

based on the concept of generalised synchronisation. We antici-

pated that measures encompassing nonlinear and dynamic depen-

dencies would supervene over linear and static metrics, given the

way neuronal interactions are mediated. However, each estimator

has its own bias and variance that may be important when dealing

with finite time series.

In this paper, we use a model of MEG or EEG signals in which

we changed the coupling strength between two cortical areas. This

allowed us to assess the sensitivity of various interaction measures

using oscillatory signals that simulate normal, ongoing MEG or

EEG activity. The principal characteristics of the model have been

presented in a companion paper (David and Friston, in press) and

are described only briefly here. Our model is a generalisation, to

multiple neuronal populations, of the Jansen model (Jansen and

Rit, 1995) operating in its oscillatory regime. The Jansen model

was based on previous work in the 1970s (Freeman, 1978; Lopes

da Silva et al., 1974) modelling EEG and visual-evoked potentials.

Recently, it has been modified to generate epileptic activity

(Wendling et al., 2000). A specific characteristic of our model is

that it exhibits oscillatory behaviours that are driven by stochastic

noise. Our model generates more complicated activity than the

Jansen model because different neuronal populations are endowed

with different kinetics. Our generalised model was designed to

assess the consequences of coupling changes in the context of

oscillatory dynamics. This complements the modelling initiative in

(Wendling et al., 2001) for epileptic activity.

Modelled cortical areas are composed of interacting inhibitory

and excitatory populations with slow and fast kinetics. Two

operations are used to integrate the model: a spike density-to-

membrane potential conversion, which depends linearly upon

neuronal kinetics; and the inverse conversion, which is considered

instantaneous and nonlinear (a sigmoid function). Different areas

are coupled by excitatory connections whose strength is set by a

coupling parameter. We have shown, qualitatively, that coupling

areas results in a phase locking of their activities. The purpose of
using this model here is to demonstrate that the sensitivity profile

of each measure differs and that a complete description of

interactions calls for the use of several approaches.

In the first section, we introduce the different measures of

interdependencies among MEG or EEG signals that are considered

in subsequent sections. Then we use our neural mass model to

evaluate their sensitivity to coupling in the context of nonlinear

interactions. Finally, we show how findings obtained from simu-

lations translate using real MEG data from a binocular rivalry

study.
Dependency measures

Consider two discrete univariate time series xn and yn, n = 1,. . .,
N measured simultaneously. A dependency measure quantifies

relationships between these time series, induced by interactions

at the level of the generating processes. Each dependency measure

has particular characteristics and we divide them into three groups:

linear, nonlinear and phase related. The linear measures are fast but

insensitive to nonlinear coupling in contrast to nonlinear measures.

The phase-related measures are nonlinear but consider that the state

variables of interest are the instantaneous phases Ux,y of oscilla-

tions instead of their instantaneous amplitudes x,y.

Linear measures

The most commonly used measure of first-order interactions

between two time series x and y is the linear cross-correlation

function cxy(l ) defined as

cxyðlÞ ¼
xi � x̄

rx

� �
yiþl � ȳ

ry

� �� �
i

ð1Þ

where x̄ and rx are the mean and standard deviation of x, similarly

for y, and l is a time lag. The absolute value of cxy ranges from 0

(no interaction) to 1 (x and y are proportional).

The coherence function Cxy(x) is the normalised value of the

cross-spectrum Cxy(x) defined as the Fourier transform of the

cross-correlation function cxy(l ):

CxyðxÞ ¼ ACxyðxÞAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ACxxðxÞAACyyðxÞA

p ð2Þ

where x is the discrete frequency. Cxy(x) takes its values between

0 and 1. It has been shown that coherence is useful for quantifying

long-range interactions in the EEG (Bressler, 1995; Gross et al.,

2001; Nunez et al., 1997). However, as the information contained

in the cross-correlation function and coherence function is identi-

cal, we restrict our analyses to the cross-correlation function. We

define our linear measure of interactions as maxl(cxy) and refer to it

as the cross-correlation.

Nonlinear measures

Mutual information

The measure of mutual information (MI) between two random

variables X and Y is based upon concepts from information theory.

It indicates the amount of information in X, given that Y is known

and vice versa. If the random variable X is partitioned into I bins,
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then a probability pi
X can be assigned to each possible outcome

Xi (i = 1,. . ., I ): pi
X = ni

X/N where ni
X is the number of occurrences

of Xi after N samples. The Shannon entropy of X is defined as

HðX Þ ¼ �
XI
i¼1

pX
i lnp

X
i : ð3Þ

The estimation of H(X) is biased when some bins contain no

points ( pi
X=0). This occurs with finite time series, leading to an

underestimate of the entropy. The systematic bias can be compen-

sated for by estimating the errors introduced by the partitioning

into bins. The corrected entropy Hl (Roulston, 1999) is then

defined as:

HlðX Þ ¼ HðX Þ þ bX � 1

2N
ð4Þ

where bX is the number of states for which pi
X p 0. Similarly, the

joint entropy between X and Y is equal to

HðX ; Y Þ ¼ �
X
i;j

p XY
ij lnp XY

ij : ð5Þ

where pij
xy is the joint probability of X = Xi and Y = Yj. Finally, the

mutual information between X and Y is defined as

MIðX ; Y Þ ¼ HðX Þ þ HðY Þ � HðX ; Y Þ ð6Þ

and its bias corrected expression MIl (Roulston, 1999) is

MIlðX ; Y Þ ¼ MIðX ; Y Þ þ bX þ bY � bXY � 1

2N
ð7Þ

where bX, bY and bXY are the number of bins containing points. In

the following, the mutual information is bias corrected and

normalised by dividing it by ln(I).

The mutual information quantifies the statistical dependencies

between the two variables X and Y, with no assumption about the

form of their respective densities and implicitly their generating

processes, which can be linear or nonlinear. Unless some form of

temporal embedding is used (Quian Quiroga et al., 2002), this sort

of measure is only sensitive to static nonlinear dependencies.

Generalised synchronisation

The broad concept of generalised synchronisation was intro-

duced in 1995 (Rulkov et al., 1995). By definition, generalised

synchronisation exists between two dynamical systems X and Y

when the state of the response system Y is a function of the state

of the driving system X:Y = F(X). If F is continuous, two close

points on the attractor of X should correspond to two close points

on the attractor of Y. An important feature of generalised syn-

chronisation is that synchronised time series can look very

dissimilar. This is in contradistinction to other measures (except

MI), which require some similarity between time courses to detect

interactions.

Since its proposal, several algorithms have been developed to

detect generalised synchrony in experimental time series (Arn-

hold et al., 1999; Quian Quiroga et al., 2002; Rulkov et al.,

1995; Schiff et al., 1996). They all rely upon some time-delay

embedding (Takens, 1981). This method reconstructs the state

space using m-dimensional vectors whose components are con-
secutive values of the signals
!
Xn = [xn, xn + s,. . ., xn + (m � 1)s],!

Yn = [ yn, yn + s,. . ., yn + (m � 1)s], n = 1,. . .,N V, where N V= N �
(m � 1)s, m is the embedding dimension and s is the delay time.

A proper reconstruction of the state space depends upon the

choice of m and s. The embedding dimension m must be large

enough to encompass the attractor but as small as possible to

limit computational load. In the following, we used a geometrical

method to determine m. This procedure is based on minimising

the number of false nearest neighbours (Kennel et al., 1992). The

delay time parameter s was chosen, as is convention, to be the

first zero of the autocorrelation function of the signals. Note that

a geometric approach can also be adopted to determine the

optimal s, which is generally not independent of the optimal m

(Rosenstein et al., 1994). A crucial aspect of all measures based

upon temporal embedding is the exclusion of vectors pairs that

are proximate simply because they are close in time. Conse-

quently, pairs [
!
Xn1 ;

!
Xn2] are excluded when An1 � n2A is lower

than some threshold, called the Theiler correction (Theiler, 1986).

We used a Theiler correction equal to s.
In many systems, the function F is generally unknown. How-

ever, its form is not essential for detecting interdependencies since

the existence of F induces a particular relationship among the

neighbourhood structure of states on the attractors of coupled

systems. This structure can be measured in terms of (i) closeness

between
!
Xn and its corresponding actual and mutual neighbours

using the geometric definition of distance (Arnhold et al., 1999;

Quian Quiroga et al., 2002), (ii) mutual prediction (for instance,

estimation of
!
Ynþd knowing

!
Xn and its neighbours) (Schiff et al.,

1996) and (iii) synchronisation likelihood (Stam and van Dijk,

2002), which is closely related to the concept of generalised mutual

information. We present and use only the first of these measures

(results obtained using the others were qualitatively very similar)

and, for simplicity, refer to it as the generalised synchronisation

measure or generalised synchrony. However, it should be noted

that generalised synchronisation is a concept rather than a measure.

Let n
j
!
Xn

and n
j
!
Yn
, j = 1,. . .,k, denote the time indices of the

k nearest neighbours of
!
Xn and

!
Yn. By definition, f!Xn

j
!
Xn

gj¼1;...;k

are the true neighbours of
!
Xn and f!Yn j

!
Xn

gj¼1;...;k are the mutual

neighbours of
!
Yn and vice versa for n

j
!
Yn
. For each

!
Xn , the mean

squared Euclidean distance to its k nearest neighbours is defined as

DðkÞ
n ðX Þ ¼ !

Xn �
!
Xn

j
!
Xn

 !2* +
j

ð8Þ

and the Y-conditioned mean squared Euclidean distance of
!
Xn is

defined by replacing the true nearest neighbours of
!
Xn by the equal

partners of the closest neighbours of
!
Yn (mutual neighbours of

!
Xn):

DðkÞ
n ðX j Y Þ ¼ !

Xn �
!
Xn

j
!
Yn

 !2* +
j

: ð9Þ

If the systems X and Yexhibit generalised synchrony, then n
j
!
Yn
cn

j
!
Xn

,

and thus Dn
(k)(X jY ) c Dn

(k) (X ). Conversely, if the systems are

independent then Dn
(k)(X jY ) c Dn

(N V� 1)(X ) where Dn
(NV� 1)(X ) is

the mean squared Euclidean distance between point
!
Xn and the

remaining points
!
X . Several normalised measures have been

defined (Arnhold et al., 1999; Quian Quiroga et al., 2002). We will

use only one of these:

DðkÞðX j Y Þ ¼ D
ðN V�1Þ
n ðX Þ � D

ðkÞ
n ðX j Y Þ

D
ðN V�1Þ
n ðX Þ

* +
n

ð10Þ



Fig. 1. Schematic of the neural mass model (David and Friston, in press).

The intrinsic dynamics of each area i are controlled by a parameter wi that

regulates the relative contributions of subpopulations with fast and slow

kinetics. Areas are coupled with a propagation delay d and a coupling

coefficient ki (0 V ki V 1), which controls the contribution of one area to the

other, relative to extrinsic inputs. These inputs pi are stochastic innovations

and represent the influence of the rest of the brain. Simulations were

performed with the following values: w1 = w2 = 0.8, d = 10 ms, <p1> =

<p2> = 220, std( p1) = std( p2) = 22. Detailed equations of this model are

provided in Appendix A.
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which is below but close to 1 when X and Y are synchronised and

tends towards 0 when they are independent.

D(k)(Y jX ) is obtained in a similar fashion but is not identical to

D(k)(X jY ) for asymmetrical systems. This property can be used to

estimate the driver and driven systems, although one should be

careful interpreting D(k)(Y jX ) � D(k)(X jY ) (Pereda et al., 2001;

Quian Quiroga et al., 2000).

Phase synchronisation measures

Phase synchronisation between two oscillators is a ubiquitous

phenomenon, which appears when they are coupled in a broad

range of structures, including MEG or EEG generators (Pikovsky

et al., 2001). Consequently, time frequency analysis of phase

synchronisation is popular in current research on cortical network

identification in MEG or EEG (David et al., 2003b; Engel et al.,

2001; Varela et al., 2001). Basically, phase synchronisation anal-

ysis proceeds into two steps: (i) estimation of the instantaneous

phases and (ii) quantification of the phase locking.

Estimation of the instantaneous phases

There is an uncertain consensus about how to define the phase

of a signal. In the MEG or EEG community, two equivalent

methods are used: either the instantaneous phase of the MEG or

EEG signal is taken to be the phase of its analytical signal obtained

using the Hilbert transform, or it is identified by the phase of a

complex wavelet transform using Gabor functions. It has been

shown that both methods give similar results (Le Van Quyen et al.,

2001; Quian Quiroga et al., 2002). Consequently, we will restrict

our presentation to the Hilbert transform.

The analytic signal n(t) of the univariate measure x(t) is a

complex function of continuous time t defined as (Rosenblum et

al., 1996)

nðtÞ ¼ xðtÞ þ ixhðtÞ ¼ anðtÞei/nðtÞ ð11Þ

where the function xh(t) is the Hilbert transform of x(t)

xhðtÞ ¼
1

p
P:V:

Z þl

�l

xðtÞ
t � s

ds: ð12Þ

P.V. indicates that the integral is taken in the sense of Cauchy

principal value. an(t) and /n(t) are the instantaneous amplitude and

phase of the analytic signal n(t) of x(t). The instantaneous phase

/x(t) of x(t) is taken equal to /n(t). Identically, the phase /y(t) is

estimated from y(t).

The instantaneous phase, although defined uniquely for any

kind of signal to which the Hilbert transform can be applied, is

difficult to interpret physiologically for broadband signals. More-

over, it can be inefficient when looking for oscillations charac-

terised by a weak energy in a particular narrow band. For these

reasons, a standard procedure is to consider only narrow-band

phase synchronisation by estimating an instantaneous phase for

successive frequency bands, which are defined by band-pass

filtering the time series (Le Van Quyen et al., 2001).

Phase-locking quantification

For independent time series x(t) and y(t), the distribution of the

relative phase /xy(t) = /x(t) � /y(t) is uniform within a given time

window whose width defines the time resolution of the analysis
(usually a few hundred milliseconds). The detection of phase

locking involves quantifying the divergence from uniformity of

the relative phase distribution. Several measures have been pro-

posed for this purpose (Lachaux et al., 1999; Tass et al., 1998). We

will consider the one used in (Lachaux et al., 1999):

q ¼ ei/xyðtÞ
D E

t

��� ��� ð13Þ

where q is the mean phase coherence of an angular distribution

(Mormann et al., 2000). By construction, it is bounded by 0 (no

synchronisation) and 1 (perfect synchronisation).
Evaluation of dependency measures with a neural mass model

In this section, we evaluate the sensitivity of the measures

described in the previous section using a neural mass model of

coupled cortical regions (David and Friston, in press). This model

is based upon several simplifying assumptions, partly limiting its

validity, but it still serves as a useful vehicle to understand some

general features of macroscopic brain signals. The major assump-

tion of that model is the so-called mean field approximation, which

considers that variables of the model represent the average behav-

iour of quantities of interest, over the neuronal populations. In other

words, there is no explicit spatial dimension since neurons belong-

ing to a same neuronal assembly all express themselves through the

population dynamics (of the mean). This entails some approxima-

tions to the underlying dynamics that can be evaluated using more

sophisticated approaches based upon population densities (Haskell

et al., 2001). Thus, neural mass models deal with massive inter-

actions at a macroscopic scale and are generally unable to model

microscopic spatiotemporal patterns at the neuronal level.

Fig. 1 provides a schematic description of the model when two

areas are coupled. This is the case considered below. The input of

each area acts upon dendrites of pyramidal cells, and not of

excitatory spiny stellate cells as falsely indicated in (David and

Friston, in press). The MEG or EEG signal is computed the level of

apical dendrites. Each area i (i = 1,2) is characterised by a parameter

wi, bounded between 0 and 1, which scales the contribution of

populations with slow and fast time constants to the area’s dynam-
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ics. The input of each area i is a mixture of the output of the other

area j (delayed by a propagation time d) and a stochastic innovation
pi (Gaussian noise), which simulates afferents from the rest of the

brain. The contribution of inputs from the other area is specified by

the coupling coefficients kij bounded between 0 (no coupling) and 1

(stochastic inputs ignored). A detailed description of MEG or EEG

signals generated by this model can be found in (David and Friston,

in press). For completeness, the equations used for the simulations

are provided in the Appendix A.

For simplicity, we consider a symmetric configuration (k =

k12 = k21, w = w1 = w2). The parameters w and d were set to 0.8

and 10 ms, respectively. These parameters generate signals show-

ing a realistic ratio in the alpha and beta bands for a broad range

of coupling values k (Fig. 2). The coupling sensitivity of depen-

dency measures was evaluated using simulated MEG or EEG time

series obtained for different values of the coupling coefficient k.

We varied k between 0.025 and 1 using a step size of 0.025. For

each value of k, 20 realisations of time series were obtained, each

of 1-s duration. When coupled, the signals generated by that

model tend to oscillate in phase or antiphase as shown in David

and Friston (in press). Accordingly, the cross-correlation was

evaluated with a time lag s = 0. The number of bins I used to

compute the mutual information MI was set to the number just

below ln(N)/ln(2). Because of the symmetric configuration, the

generalised synchronisation measure D was taken arbitrarily to be

[D(X jY ) + D(Y jX )]/2. The embedding dimension m used to

compute D was estimated to be 3 and the size of the neighbour-

hood set to 2m, which is large enough to avoid spurious effects of

changes in signal complexity in the quantification of interactions

(Pereda et al., 2001).

We assessed overall sensitivity to coupling in terms of the

changes in each measure induced by changes in k. To establish a
Fig. 2. Some typical simulated MEG or EEG time-series are shown in the top pane

dashed line; k = 0.5: solid line; model parameters: w = 0.8, d = 10 ms). The DC of

Below is the average amplitude spectrum of 20 simulated time series without DC

the parameters w and d were chosen to generate power in the alpha (8–12 Hz) a

Strikingly, the shape of the spectra depends critically on the coupling parameter
statistical bound on the sensitivity, the null distribution of each

measure was determined using surrogate data with no coupling. To

assess the sensitivity to the nonlinear component of coupling, we

computed each measure before and after destroying high-order

dependencies using phase randomisation.

Coupling sensitivity

The model parameters were chosen to generate broadband

signals that generally expressed two well-defined frequency bands

as shown in Fig. 2. It is possible to analyse these signals as such

(broadband analysis) or using a bank of narrow band-pass filters.

This is often done when studying oscillations (narrow-band analy-

sis). Below, we report the coupling sensitivity of the dependency

measures (cross-correlation, mutual information, generalised syn-

chronisation and phase synchronisation) using both approaches. The

characteristics of interaction measures were evaluated by comparing

their distributions obtained using coupled time series (k p 0) and

100 surrogate time series generated with no coupling (k = 0).

Broadband analysis

Fig. 3a shows the dependence of interaction measures on

coupling strength. The black solid curve is the average, over

realisations, of the measures l(k) as a function of coupling strength

k. The standard deviation r(k), normalised by the mean of the

estimators, is plotted in grey. This is the coefficient of variation

C.V. The C.V. reflects the intrinsic variability of the measures in

relation to their size. A small C.V. suggests that one may be able to

correlate the connectivity indices with other measures of brain state.

An example of this is provided in the last section. A high C.V.

compromises the usefulness of the measure when detecting changes

in coupling.
l for different values of the coupling strength k (k = 0: dash dot line; k = 0.1:

fset has been modified for a better display. The sampling frequency is 1 ms.

offset, obtained with the same parameters. The neuronal time constants and

nd beta (15–30 Hz) bands to emulate the typical MEG or EEG spectrum.

k.



Fig. 3. (a) Dependency measures applied to broadband signals as an increasing function of the coupling, as shown by solid lines (average value) over 20

realisations (dots). Cross-correlation, mutual information and phase synchronisation are less sensitive to weak couplings than generalised synchronisation.

The dotted line represents the maximum value obtained from 100 realisations of uncoupled time series (k = 0) and corresponds to a nominal specificity a = 0.01.

The dotted lines are the same measures but obtained with surrogate data that retained only the linear properties of original time series. cross-correlation

and mutual information show little sensitivity to nonlinear properties of data (the solid and dotted lines are almost coincident). As expected, nonlinearity

is detected by generalised synchronisation and by phase synchronisation but only for strong coupling. (b) Left: schematic illustrating how we computed

sensitivity. This is based on simple signal detection theory using threshold to control specificity. This threshold u is based on the empirically determined

null distribution (using surrogate data). The area under the density p(xjk p 0) between u and infinity corresponds to the probability of detecting coupling

when it exists. This threshold also ensures that the false positive rate (or specificity) is maintained at 0.01. Right: sensitivity as a function of coupling

for each of the four measures. It is self-evident that generalised synchrony supervenes at low connection strengths (see encircled region).

O. David et al. / NeuroImage 21 (2004) 659–673664
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The dotted line indicates the maximum value obtained using

surrogate data. This is the nonparametric threshold for a false

positive rate of a = 0.01 for a single measure and will be called u

below. The reason the specificity a = 0.01 is that we used 100

realisations of the surrogate data to form an empirical null

distribution. The power or sensitivity b at this specificity (1� a)
is simply the probability of any measure exceeding u under the

alternate hypothesis that k p 0. We can approximate this for each

level of k by assuming a Gaussian form for the distribution of

measures and using their sample mean and variance. Fig. 3b

provides a schematic illustration of the sensitivity analysis (left

panel). The right panel shows sensitivity b(k) as a function of

coupling for each of the measures.

At a first glance, we observe that every measure was sensitive

to changes in neuronal coupling. However, some differences are

seen. Apart from mutual information, all the measures exhibit a

similar profile, on average (quasi-linear dependence upon coupling

before saturating at large coupling values), and approximately the

same coefficient of variation. The mutual information shows a

quasi-linear dependence upon coupling but is a less reliable metric

as indicated by its larger C.V. The cross-correlation and the phase

synchronisation show very similar behaviours. In terms of weak

coupling values are concerned (0 < k = 0.125), generalised

synchronisation is the best measure for detection (i.e., making an
Fig. 4. Coupling detection power as a function of the length of the time series. To e

time window applied to signals (with k = 0.1), from 0.2 to 2 s, with a step size of 200

by computing z-scores. The slopes for mutual information and generalised synch

windows relative to short one. Moreover, the variance of the generalised synchron
inference that k p 0). This is clearly evident from the right panel of

Fig. 3b. On the other hand, mutual information may be a better

characterisation in the context of strong coupling because it has a

relatively low coefficient of variation and retains sensitivity to

changes in k, that is, the slope Bl (k) / Bk is much greater relative

to the other measures.

Another important property of the interdependency measures is

their time resolution. A characteristic feature of functional con-

nectivity in the brain is its tendency to fluctuate rapidly; synchro-

nous cells assemblies are formed and dissolved at subsecond time

scales (Friston, 2000; Varela et al., 2001). To evaluate the time

resolution of the coupling measures, we varied the length of the

time window applied to signals used in Fig. 3 from 0.2 to 2 s with

a step size of 200 ms. We used k = 0.1 (Fig. 2) to produce signals

that resemble real MEG data. We compared the coupling values to

those obtained with surrogates (k = 0) by computing z-scores (i.e.,

the mean divided by the standard deviation under the null

hypothesis). Fig. 4 shows that the statistical power of coupling

detection is an increasing monotonic function of window length.

The slopes for mutual information and generalised synchronisa-

tion are larger. This suggests that these measures are relatively

more efficient with longer time windows that are used to charac-

terise stable regimes. Moreover, the variance of the generalised

synchronisation measure is smaller, indicating a more sensitive
valuate the time resolution of coupling measures, we varied the length of the

ms.We compare the coupling values to those obtained with surrogates (k = 0)

ronisation are larger reflecting a relatively greater efficiency for long-time

isation measure is smaller indicating a more reliable estimator.
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detection in the context of stationary coupling. In a subsequent

paper, we will revisit this issue using evoked neuronal transients

that are, by definition, nonstationary.

In summary, the generalised synchronisation measure appears

to be the most sensitive for detecting interactions between broad-

band simulated MEG or EEG signals under continuous recording

conditions. Conversely, mutual information retains the greatest

sensitivity to changes in coupling at higher levels.

Narrow-band analysis

To supplement the broadband analysis, we performed narrow-

band analyses from 2 to 50 Hz, with a step size of 2 Hz, encompass-

ing the resonant frequencies of the model. For each frequency band,

we used a band-pass filter constructed so that the central frequency/

band width ratio was 5. The coupled (k = 0.1) and uncoupled (k = 0)

time series were filtered and dependencymeasures were estimated as

above. For each frequency band, the optimal embedding dimension

m remained 3 but the delay time s varied, changing with the first zero
of the autocorrelation function. The results are summarised in Fig. 5

by plotting the z-scores of each statistic as a function of central

frequency. The shape of the sensitivity profile of each statistic is very

similar with peaks over the two frequency bands of prominent

oscillations expressed by the neuronal populations in the model.
Fig. 5. Coupling sensitivity for narrow-band analysis. The original (coupled k = 0.1

bands from 2 to 50 Hz, with a step size of 2 Hz, encompassing the resonant freque

plotted as a function of central frequency. The sensitivity profile of each statistic

expressed by the neuronal populations in the model. The mutual information z-sc
Strikingly, the mutual information z-scores were much higher than

the other measures. This suggests that mutual information may be a

more efficient (i.e., less variable) index of coupling in the context of

frequency-specific coupling.

In summary, all measures can be used to estimate interactions

that are localised in frequency space, but mutual information has a

much larger sensitivity. This allows one to identify the frequencies

within which occur strong interactions. These frequencies depend

on various network properties (neuronal time constants, propaga-

tion delays, coupling strength, neuronal architecture, etc.).

Sensitivity to nonlinearity

Nonlinearity is an important characteristic of MEG or EEG

signals, especially when considered in the context of broadband

processes. In our model, nonlinearity arises from the sigmoid

relationship that maps the membrane potential to firing rate of

neurons; this is equation S(v) in the Appendix A. However, it

should be noted that the degree of nonlinear coupling in our model

is fairly weak. Weak nonlinearities can be typical of normal EEG

time series (Breakspear and Terry, 2002; Stam et al., 1999) in

contradistinction to epileptic signals where nonlinearity supervenes

(Lopes da Silva et al., 1989). An expedient way to detect
and uncoupled k = 0) time series were filtered in different narrow frequency

ncies of the model (centre: width ratio = 5). The z-scores of each statistic are

is very similar, clearly highlighting the two frequency bands of interactions

ores are much higher than the other measures.



Fig. 6. Power spectrum of real MEG data. This spectrum was obtained after averaging over 151 channels and 50 successive segments of 2-s duration. The 5-Hz

peak corresponds to the frequency tag introduced by visually presented expanding rings. It shows also a clear alpha band centred at 10 Hz, a flat beta band

between 15 and 30 Hz (approximately) and a power supply artefact at 50 Hz.
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nonlinearity is to apply the dependency measures to surrogate data

that retain the linear properties of original data after destroying any

nonlinear dependencies (Palus and Hoyer, 1998; Prichard and

Theiler, 1994). These surrogates are realisations of a bivariate

linear stochastic process that preserve the individual spectra of the

two time series, as well as their cross spectrum. They are

constructed by (i) computing the Fourier coefficients of original

time series, (ii) adding an identical but random phase u(x) to both

coefficients of the same frequency bin x [where u(x) = �u(�x)]

and (iii) performing the inverse Fourier transform.

We applied this surrogate method to the simulated broadband

signals and repeated the test for each of the four measures as a

function of coupling strength. The dashed line in Fig. 3a represents

average measures over 20 surrogates. The difference between the

statistics with (solid) and without (dashed) nonlinear coupling

reflects the relative sensitivity to nonlinear interdependencies. By

definition, the cross-correlation is insensitive to nonlinear inter-

actions and the dashed and solid lines are indistinguishable. The

mutual information does not show any significant nonlinear

component. However, generalised and phase synchronisation

measures are sensitive to nonlinear interactions, which account

for a small component of their value.

In summary, these results suggest that although all measures are

sensitive to neuronal coupling, they do not behave identically.

Overall, generalised synchrony appears to be the most appropriate

measure because of its relatively high sensitivity in the context of

weak coupling and sensitivity to nonlinear coupling. However, it

entails very high computational demands in comparison to the

other methods and may not be robust to nonstationariness. It

follows that the choice of measure is a crucial determinant of

functional connectivity architecture that is operationally defined by
Fig. 7. Frequency histograms of dominance periods (29 for face, 30 for rings). O

(1.53 vs. 1.46 s).
its measurement, particularly in broadband analyses. Below we

analyse an MEG data set to illustrate this point and show how the

cortical networks identified can change substantially with the

measure of functional connectivity employed.
Application to binocular rivalry MEG data

Binocular rivalry occurs when nonfusible stimuli are presented

to each eye simultaneously. The outcome is not a superposition of

both stimuli but a spontaneously alternating perception of each

monocular stimulus. Dominance periods, for each percept, last

about one or 2 s before perceptual transition (for a review, see

Blake and Logothetis, 2002). Studying data obtained during

binocular rivalry is well suited to our purpose because neural

signals are produced under conditions that are close to our

simulations: (i) binocular rivalry must arise in the context of

substantial changes in neural interactions, as the stimulus always

remains constant, and (ii) the perceptual dynamics evolves at a

slow time scale, allowing the use of nonlinear methods that rest on

local stationariness for efficient estimation.

Experimental design

This experiment was performed at the MEG Centre, La Salpê-

trière Hospital, Paris, France, using a whole-head 151 sensors MEG

system (CTF Inc., Vancouver, Canada). The stimuli composed an

emotionally neutral face and a set of checkerboard rings expanding

at 5 Hz. Stimuli were presented dichoptically using polarised

projection. The primary motivation for using expanding rings was

to tag MEG responses at the stimulus frequency (Srinivasan et al.,
n average, the dominance period for rings and faces are roughly the same



Fig. 8. Cortical networks related to the face perception (a) and to ring perception (b), estimated using several dependency measures. The cortical connections

were estimated by applying a threshold ( P < 0.005 where the null distribution was determined using surrogate data) to the correlation between the dependency

measures and the face perception function (dashed lines) averaged over a 9-s time window. The solid lines on the right are the coupling time series averaged

over the selected cortical connections. Networks correlated with face perception are much more extensive than those correlated to ring perception. The time

series also show a stronger correlation between cortical interactions and perceptual state for faces. The networks based on cross-correlation and mutual

information tend to be denser.
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1999). It has been shown that the conscious percept of 5 Hz

expanding rings modulates the MEG spectrum at the same frequen-

cy (Fig. 6). This entrainment is enabled by the retinotopic organi-

sation of visual areas (David et al., 2003a). This tagging is an

interesting dynamical phenomenon during binocular rivalry (Cos-

melli et al., in preparation), but it is an artefact from our perspective.

In addition to the 5-Hz component, the data power spectrum in Fig.

6 shows a clear alpha band centred at 10 Hz, a rather flat beta band

and a power supply artefact at 50 Hz. We therefore focused,

arbitrarily, on signals in the beta band (15–30 Hz).

The MEG data were acquired for 100 s at a sampling frequency

of 1250 Hz. The subject indicated perceptual state (rings or face)

with a button press. Twenty-nine periods of face dominance were

reported, while 30 were attributed to the rings. The frequency

histograms of dominance periods are shown in Fig. 7. On average,

the dominance periods for rings and faces were about the same

(1.53 vs. 1.46 s). The subject’s report enabled us to construct a face

perception time series (equal to 1 for face dominance and 0 for ring

dominance).

Source localisation and dynamics estimation

The MEG data were band-pass filtered in the beta band

(between 15 and 30 Hz), and source localisation procedures were

applied to estimate cortical dynamics. Sparse focal, cortically

distributed solutions were reconstructed using inverse methods

described elsewhere (David and Garnero, 2002; David et al.,

2002, 2003a). The resulting 22 sources are shown in Fig. 8. Each

source corresponds to a single time series, obtained using the

classical minimum norm estimator (Dale and Sereno, 1993; David

and Garnero, 2002). Bilateral activations were found in lingual

gyrus, precuneus, cingulate gyrus, orbital cortex (posterior and

medial orbital gyrus), inferior frontal gyrus or frontal operculum,

posterior inferior temporal gyrus and intraparietal sulcus. Exclusive

right hemisphere activation was found in the anterior portion of the

superior temporal gyrus and the central sulcus. In the left hemi-

sphere, responses were detected in the cuneus, middle occipital

gyrus, middle temporal gyrus and angular gyrus.

It is important to note that the dynamics of localised sources

depend upon the source configuration since the lead fields are

not orthogonal. This means that in principle, if one source is not

detected by the localisation procedure, then its contribution to

the surface data may be reallocated in part to other sources. This

is a tricky issue that cannot be entirely avoided due to the ill-

posed nature of the MEG or EEG inverse problem (Baillet et al.,

2001).

Functional connectivity analysis

Neuronal interactions were estimated among reconstructed

sources using the measures considered above. A sliding time

window (1 s width, 100 ms between successive windows) was

used to reconstruct a time-dependent measure of functional con-

nectivity. To ensure that the results were comparable to the

simulations, the asymmetry of generalised synchronisation mea-

sure D was discounted by defining D = [D(X jY ) + D(Y jX )]/2.

Moreover, the same embedding dimension and neighbourhood size

were used.

We were particularly interested in whether time-dependent

changes in coupling were correlated to conscious perception. To

assess this, we computed the correlation between the dependency
measures and the subject’s perceptual state. The average perception

function, computed over a 9-s time window, is shown as the dashed

lines on the right side of Fig. 8 (large values correspond to face

perception).

For each perceptual state and dependency measure, the con-

nections that were significantly correlated with perception were

used to define the perceptual network (Fig. 8). This was achieved

using the cross-correlation between dependency measures and

perceptual state. The threshold was determined nonparametrically

using surrogates. Two hundred surrogate data sets were con-

structed by averaging time series using the same number of time

windows but randomly in time. Each surrogate was correlated to

the average perception function and the threshold for each source

pair was taken to be the maximum of this quantity over realisations

(i.e., P < 0.005).

Fig. 8 presents the networks identified in this fashion, for each

dependency measure. The networks are shown separately for

positive correlations with face perception (Fig. 8a) and negative

correlations (i.e., positive correlations with rings; Fig. 8b). As can

be seen in the left panels of Fig. 8a, all four measurements show a

good correlation with face perception. Likewise, the networks

show important similarities in their overall distribution. All the

networks share a common pattern of interaction among occipital,

inferior parietal, posterior inferior temporal, middle temporal and

frontal regions, in particular, inferior lateral frontal cortices and

medial frontal regions including the cingulate cortex. However, the

density of perception-related changes in coupling varies with the

different measures. While cross-correlation and mutual information

reveal a dense network of interacting regions, generalised synchro-

nisation and, in particular, phase synchronisation show a more

diffuse set of connections. In the specific case of phase synchro-

nisation, the right inferior frontal region connections are particu-

larly sparse. On the other hand, when the subject perceives the

rings, the identified networks (Fig. 8b), although present, are

consistently smaller. cross-correlation and mutual information still

reveal more percept-dependent coupling relative to synchronisation

measures.

It is obviously impossible to conclude which functional con-

nectivity measure is the best with a single subject analysis.

However, the results shown above demonstrate strong correlations

between perceptual states and coupling as inferred using distant

MEG signals. They also confirm that dependency measures can be

a critical factor when characterising functional connectivity in

MEG or EEG.
Discussion

The purpose of this study was to (i) assess the relative

sensitivity of commonly used measures of functional connectivity

and (ii) to show that there is no unique measure of neural

interactions using MEG or EEG signals. We used a neural mass

model to show that several measures detect functional connections

but with different sensitivity profiles. In the context of relatively

weak coupling, statistics based on generalised synchrony appear to

be the most sensitive. We have shown, with real MEG data, that the

choice of dependency measure can be important for the identifi-

cation of functional networks.

The neural mass model we used was developed to obtain a

qualitative characterisation of oscillatory dynamics in MEG or

EEG signals and how these change with the coupling among areas
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(David and Friston, in press). Although its basic architecture is

neurophysiologically plausible, it does not accommodate many

details of neuronal interactions. However, it generates mildly

nonlinear signals that are very similar to empirical signals (Break-

spear and Terry, 2002; Stam et al., 1999). In this paper, we used the

model to show that linear measures are sensitive to coupling

between MEG and EEG signals but insensitive to nonlinear

components. In contradistinction, generalised synchronisation and

phase synchronisation were sensitive to both linear and nonlinear

coupling. Furthermore, generalised synchrony was substantially

more sensitive than any other measure when detecting very weak

coupling.

Our results indicate that measures based on generalised syn-

chronisation may be preferred when studying broadband signals

because they are sensitive to dynamic coupling and nonlinear

interactions expressed over many frequencies. However, they

entail some drawbacks. First, they are time consuming. Second,

they depend upon some parameters (time delay, embedding

dimension and neighbourhood size) that are not always easily

optimised. More importantly, if we consider two time series with a

coupling that is kept exactly the same, but some other property

(for instance the dimensionality) of one changes, almost all

measures will be fooled and suggest a change in the coupling

strength has occurred (Pereda et al., 2001). In view of the

nonstationary nature of brain dynamics, this is not a trivial or

hypothetical problem. For these reasons, linear measures are still

very useful because they afford a rapid and straightforward

characterisation of functional connectivity.

In general, reentrant loops that predominate widely in the

brain generate resonant frequencies that reflect network proper-

ties (synaptic time constants, propagation delay, coupling

strength, neuronal architecture, etc.). This has led to the search

for frequency-specific interactions in MEG or EEG signals using

measures such as coherence (Bressler, 1995; Gross et al., 2001),

power (Tallon-Baudry and Bertrand, 1999) and phase synchro-

nisation (Rodriguez et al., 1999). A growing number of studies

have disclosed robust frequency-specific patterns, which are still

not clearly understood. In particular, some relationship might

exist between the oscillation frequency and the size of the

networks involved (von Stein and Sarnthein, 2000). To analyse

frequency-specific interactions, we used our model to generate

complex signals whose interactions were confined largely to two

distinct frequency bands. The dependency measures showed a

corresponding and consistent frequency dependence, particularly

with mutual information. This suggests that narrow-band anal-

yses might supplement the characterisation of the underlying

neuronal processes.

We have analysed MEG data using several characterisations of

functional connectivity. We were particularly interested in neuronal

interactions in the beta band (15–30 Hz) related to face and ring

perception during binocular rivalry. We used source localisation

algorithms to estimate cortical activity and searched for interac-

tions among reconstructed cortical sources throughout the brain.

Our results suggest that interdependencies among occipital, inferior

parietal, posterior inferior and middle temporal, medial and infero-

lateral frontal cortices correlate strongly with the dominance of the

face percept. The results presented here were obtained from one

subject and little generalisation is possible. However, the patterns

of interaction disclosed involve cortical regions that have been

implicated in visual perception at several levels. Basic low-level

processing of visual stimuli is associated with primary visual
cortex activation (Tong, 2003). The perception of faces has been

shown to implicate the inferior temporal cortex, in particular the

fusiform gyrus (Halgren et al., 2000). In conjunction with parietal

cortices, the cingulate cortex is believed to play a major role in the

direction of attention to extrapersonal stimuli and conscious

perception (Dehaene and Naccache, 2001; Mesulam, 1999). We

have studied networks of interdependent cortical regions using a

multistable perception paradigm in which the perception of a face

is a spontaneous, endogenously driven phenomenon. Such pro-

cesses necessitate the active coordination of recognition and other

mechanisms required for perceptual categorisation, such as those

mediated by striate and extrastriate visual cortex. In addition, high-

level top-down influences, implicated in the selection and mainte-

nance of percepts (Blake and Logothetis, 2002), are likely to be

invoked. The distributed network obtained in this subject speaks to

a dynamic coordination among such low- and high-level areas

during the conscious perception of a face. Furthermore, it agrees

with studies that show parietofrontal regions express correlates of

perceptual transitions in a similar paradigm (Lumer and Rees,

1999; Lumer et al., 1998).

Our results also suggest that the exploration of the beta band

(15–30 Hz) could be of interest for the study of long-range

interactions in the human brain during perception. However, it is

important to note that the functional networks identified

exhibited differences from one measure to another. In particular,

cross-correlation and mutual information revealed very dense

networks, while generalised and phase synchronisation disclosed

sparser patterns, probably because these measures may be intrin-

sically more variable (phase synchronisation) or stochastic

aspects of the time series may confound the generalised syn-

chrony measure.

In this paper, we have used a neural mass model to evaluate

the relative sensitivities of various measures of coupling among

neuronal systems. Clearly, the extent to which our conclusions

can be generalised to the analysis of real data rests upon the

biological validity of the model employed. It will be noted that

although there are many similarities between the simulated and

real data, there are also differences (e.g., in terms of the spectral

density profile). Establishing the validity of models, such as the

one we have used, is an important but difficult issue. One

obvious approach is to use the model parameters that enable

simulated data to emulate key features observed in empirical

data. However, even this can be challenging at times. For

example, as seen in Fig. 2, changes in key parameters such as

the coupling strength can have quite a substantial impact on

characterisations, such as the spectral density. In this paper, the

model has been used to provide a proof of principle that

different metrics are sensitive to different aspects of coupling.

We appeal to the neuronal plausibility of the model’s architecture

in motivating this demonstration. However, the analysis of the

empirical MEG data should not be interpreted quantitatively in

relation to the simulations. This is because our model was not

constrained to reproduce the exact characteristics of the particular

MEG data set analysed. The main point that we wanted to make

was that in both simulations and analyses of real data, different

conclusions are obtained when using different measures of

coupling.

The largest difference between results obtained on simulated

and real signals is the performance of the measure based on the

concept of generalised synchronisation. This is not new as the

application of some of these methods in simple experimental
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models has not been straightforward. The main reason is that MEG

or EEG signals cannot be supposed as purely deterministic

processes and their stochastic component can strongly affect the

results. Another possibility is that such measures can be more

sensitive to experimental artefacts that may be important in non-

averaged MEG or EEG signals (especially muscular artefacts in the

beta band). Nevertheless, nonsymmetrical nonlinear measures are

very important, particularly for the estimation of causality or

direction of information transfer (Chavez et al., 2003; Quian

Quiroga et al., 2000; Wendling et al., 2001).
Conclusion

We have shown that neural mass models can be useful tool to

evaluate measures of neural coupling in MEG or EEG signals. We

have evaluated several commonly used dependency measures and

demonstrated that their sensitivity depends upon (i) the frequency

specificity of coupling (broad vs. narrow band) and (ii) the nature

of the functional connectivity (linear vs. nonlinear). The differ-

ences in functional connectivity analyses, using real data, confirm

differences in sensitivity profiles and speak to a substantial degree

of coupling induced by face perception. The results of this study

suggest that estimation of neuronal coupling is far from trivial and

that one should be careful when studying functional connectivity

using electrophysiological signals. As cautioned by others (Netoff

and Schiff, 2002; Quian Quiroga et al., 2002), one should not

make too many prior assumptions about the type of interactions.

Applying a battery of tests that are sensitive to different aspects of

synchronisation seems to be a more appropriate and balanced

approach.
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Appendix A

The model summarised in Fig. 1 composes the following

stochastic differential equations. A more intuitive explanation of

these equations will be found in David and Friston (in press).

ẏ0 ¼ y3

ẏ1 ¼ y4

ẏ2 ¼ y5

s1e ẏ3¼H1
e Sðwy1þð1�wÞy10�wy2�ð1�wÞy6Þ�2y3�y0=s

1
e

s1e ẏ4 ¼ H1
e ðk21* ðSðwðy13ðt � dÞ � y14ðt � dÞÞ þ ð1� wÞðy22ðt � dÞ

� y18ðt � dÞÞÞ � aÞ þ ð1� k21Þp̃1 þ pþ C2SðC1ðwy0

þ ð1� wÞy8ÞÞÞ � 2y4 � y1=s
1
e

s1i ẏ5 ¼ H1
i C4SðC3ðwy0 þ ð1� wÞy8ÞÞ � 2y5 � y2=s

1
i

ẏ6 ¼ y7

s2i ẏ7 ¼ H2
i C4SðC3ðwy0 þ ð1� wÞy8ÞÞ � 2y7 � y6=s

2
i

ẏ8 ¼ y9

s2e ẏ9 ¼ H2
e Sðwy1 þ ð1� wÞy10 � wy2 � ð1� wÞy6Þ � 2y9 � y8=s

2
e

ẏ10 ¼ y11

s2e ẏ11 ¼ H2
e ðk21* ðSðwðy13ðt � dÞ � y14ðt � dÞÞ þ ð1� wÞðy22ðt� dÞ

� y18ðt� dÞÞÞ� aÞ þ ð1� k21Þp̃1 þ pþ C2SðC1ðwy0
þ ð1� wÞy8ÞÞÞ � 2y11 � y10=s

2
e

ẏ12 ¼ y15

ẏ13 ¼ y16

ẏ14 ¼ y17

s1e ẏ15 ¼ H1
e Sðwy13 þ ð1� wÞy22 � wy14 � ð1� wÞy18Þ � 2y15

� y12=s
1
e

s1e ẏ16 ¼ H1
e ðk12* ðSðwðy1ðt � dÞ � y2ðt � dÞÞ þ ð1� wÞðy10ðt � dÞ

� y6ðt � dÞÞÞ � aÞ þ ð1� k12Þp̃2 þ pþ C2SðC1ðwy12

þ ð1� wÞy20ÞÞÞ � 2y16 � y13=s
1
e

s1i ẏ17 ¼ H1
i C4SðC3ðwy12 þ ð1� wÞy20ÞÞ � 2y17 � y14=s

1
i

ẏ18 ¼ y19

s2i ẏ19 ¼ H2
i C4SðC3ðwy12 þ ð1� wÞy20ÞÞ � 2y19 � y18=s

2
i

ẏ20 ¼ y21

s2e ẏ21 ¼ H2
e Sðwy13 þ ð1� wÞy22 � wy14 � ð1� wÞy18Þ � 2y21

� y20=s
2
e

ẏ22 ¼ y23

s2e ẏ23 ¼ H2
e ðk12* ðSðwðy1ðt � dÞ � y2ðt � dÞÞ þ ð1� wÞðy10ðt � dÞ

� y6ðt � dÞÞÞ � aÞ þ ð1� k12Þp̃2 þ pþ C2SðC1ðwy12
þ ð1� wÞy20ÞÞÞ � 2y23 � y22=s

2
e ðA1Þ

where

Signal1MEG ¼ wðy1 � y2Þ þ ð1� wÞðy10 � y6Þ

Signal2MEG ¼ wðy13 � y14Þ þ ð1� wÞðy22 � y18Þ

SðvÞ ¼ e0

1þ expðrðv0 � vÞÞ

k12
* ¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k12 � k212

p
stdðSðwðy1 � y2Þ þ ð1� wÞðy10 � y6ÞÞÞ

k21
* ¼ rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k21 � k221

p
stdðSðwðy13 � y14Þ þ ð1� wÞðy22 � y18ÞÞÞ

ðA2Þ
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with the following parameters: a = 3.501; c = 135; c1 = c2 =

0.8c; c3 = c4 = 0.25c; He
1 = 3; He

2 = 7; Hi
1 = 20; Hi

2 = 150; se
1 =

0.0108; se
2 = 0.0046; si

1 = 0.022; si
2 = 0.0029; e0 = 5; v0 = 6; r =

0.56; rp = 22; p = 220.

The input noise p̃1,2 is Gaussian with standard deviation rp.

These stochastic differential equations must be integrated numer-

ically using appropriate procedures (Kloeden and Platen, 1999). In

this paper, they were integrated using a standard second order

Runge–Kutta algorithm that gave very similar results to those

obtained with its stochastic version (Honeycutt, 1992). Note that the

estimation of k12* and k21* is performed during the integration.
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