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In this paper we address the assumptions about the
distribution of errors made by voxel-based morphom-
etry. Voxel-based morphometry (VBM) uses the gen-
eral linear model to construct parametric statistical
tests. In order for these statistics to be valid, a small
number of assumptions must hold. A key assumption
is that the model’s error terms are normally distrib-
uted. This is usually ensured through the Central
Limit Theorem by smoothing the data. However, there
is increasing interest in using minimal smoothing (in
order to sensitize the analysis to regional differences
at a small spatial scale). The validity of such analyses
is investigated. In brief, our results indicate that non-
normality in the error terms can be an issue in VBM.
However, in balanced designs, provided the data are
smoothed with a 4-mm FWHM kernel, nonnormality is
sufficiently attenuated to render the tests valid. Un-
balanced designs appear to be less robust to violations
of normality: a significant number of false positives
arise at a smoothing of 4 and 8 mm when comparing a
single subject to a group. This is despite the fact that
conventional group comparisons appear to be robust,
remaining valid even with no smoothing. The implica-
tions of the results for researchers using voxel-based
morphometry are discussed. © 2002 Elsevier Science (USA)

INTRODUCTION

Voxel-based morphometry was developed to charac-
terize cerebral gray and white matter differences in
structural MRI scans. In contrast to methods that
frame the search in terms of regions of interest, voxel-
based morphometry can detect structural differences
throughout the brain. Voxel-based morphometry is es-
sentially a technique that compares images (segments)
of gray (or white) matter (obtained from segmented
MRI images). This comparison uses statistical para-
metric mapping to identify, and make inferences about,
regionally specific differences.

Voxel-based morphometry involves spatially normal-
izing all the images into the same stereotactic space,
extracting the gray matter (or white matter) from the
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normalized images, smoothing, and finally performing
a statistical analysis to localize and make inferences
about group differences. The output of the method is a
statistical parametric map showing regions where gray
matter density differs significantly among groups.

Normality of Residuals

The parametric statistical tests are carried out
within the framework of the general linear model. In
order for these tests to be valid, the errors must be
normally distributed. Prior to smoothing, the seg-
mented images may have a highly nonnormal density
function, with most voxels having a value close to the
extremes of the range of 0–1. This is because the voxel
values in the segments correspond to the probability
that the voxel is gray matter. The distribution of errors
about any group mean will show a similar nonnormal
distribution. However by appealing to the Central
Limit Theorem, it is generally assumed that the errors
are rendered normally distributed by spatial smooth-
ing.

An important question in this context is what cir-
cumstances would result in deviations from normality
sufficient to render the tests invalid? One potential
situation is the comparison of a single subject and a
group. In parametric statistics it is assumed that the
group difference (more formally a contrast of parame-
ter estimates) is normally distributed. Dividing this
contrast by an estimate of its standard deviation gives
the t statistic. Generally, this difference will be well-
behaved because the group mean represents an aver-
age over many observations and will have a normal
distribution by the central limit theorem. However,
when one of the groups has only one subject the differ-
ence may be highly nonnormal and the distribution of
the ensuing statistic will not conform to parametric
assumptions. In short, for most designs, inferences are
quite robust to violations of normality, but there are
some (e.g., unbalanced) designs that may be less ro-
bust. In other words, there may be an interaction be-
tween the degree of nonnormality and experimental
design that renders the tests invalid.
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Recent applications of voxel-based morphometry
have included analyses with small smoothing kernels
(e.g., 4 mm (Gadian et al., 2000)) and comparisons of an
individual versus a group of controls (e.g., Woermann
et al., 1999a,b). Smaller Gaussian kernels are used to
sensitize the analysis to a spatial scale equivalent to
the structure of interest (e.g., the hippocampal forma-
tion). Investigations into the neuropathology of single
cases are particularly important in clinical diagnosis
and the field of clinical neuropsychology, where indi-
vidual cognitive and behavioral profiles prevent the
formation of a homogeneous clinical group. The valid-
ity of the parametric statistical tests in this context is
investigated in this work.

The aim of this paper was to establish a lower bound
on the degree of smoothing applied during voxel-based
morphometry that is imposed by considerations of sta-
tistical validity. The motivation for using low degrees
of smoothing is to sensitize the analysis to small struc-
tures in accord with the matched filter theorem. How-
ever, we are not necessarily advocating the use of low
degrees of smoothing to look at fine-grain anatomical
differences. We are simply trying to establish the limits
on smoothing that should be adopted in voxel-based
morphometry. Fine-grain or high-resolution analyses
of differences in anatomy would generally be finessed
with deformation field and tensor-based morphometry.
Voxel-based morphometry deliberately uses smooth
deformation fields and smoothing of the gray-matter
partitions to detect differences in the relative volumes
of tissue partitions at a fairly low resolution.

As with all questions of model assumptions, the key
one is not to prove that the assumptions are false. In
reality, they must be false. Given enough data, one
could always detect things like nonnormality. The im-
portant issue here is the degree of robustness to the
effect that nonnormality has on the decisions or infer-
ences made. In what follows we present a quantitative
analysis of nonnormality using QQ plots. However,
although the results from these analyses were reassur-
ing, they do not directly address the issue of robust-
ness. In a second step, we then move on to test robust-
ness directly in terms of false positive inferences.

MATERIALS AND METHODS

In brief, to assess the lower bound on smoothing that
is required to render VBM analyses valid, we adopted
the following strategy. In the first instance we assessed
the degree of nonnormality over all voxels included in
the search volume using a metric of nonnormality. This
metric comprised the correlation coefficient from a QQ
plot. Although distributional approximations exist for
this coefficient, we used simulations to establish its
null distribution to avoid any assumptions about the
behavior of our data. This entailed computing the non-
normality coefficient for every voxel in real data and

comparing the number of nonnormal voxels, after
thresholding, with the equivalent number based on
simulated data that were exactly Gaussian. This is a
somewhat descriptive exercise that allows us to assess,
quantitatively, the degree of nonnormality expressed
at low degrees of smoothing. However, the degree of
nonnormality is operationally irrelevant in the sense
that it is the impact of nonnormality on inference and
false-positive rates that defines robustness. The second
part of our analysis therefore compared the false-pos-
itive rates in a series of VBM analyses at different
degrees of smoothness. Again, this involved comparing
the expected and observed false-positive rates under a
simple Poisson model. The expected false-positive rates
were obtained using rerandomization strategies to pro-
vide surrogate data.

MRI Data Acquisition and Preprocessing

All subjects (20 children, mean age 13 years; 11 male
and 9 female, with no known neurological or psychiat-
ric history) were scanned on a 1.5 T Siemens Vision
scanner, using a T1-weighted 3D MPRAGE sequence
(Mugler and Brookeman, 1990) with the following pa-
rameters: TR, 9.7 ms; TE, 4 ms; TI, 300 ms; flip angle,
12°; matrix size, 256 � 256 � 128; field of view, 250 �
250 � 160 mm. The data were analyzed in SPM99
(Wellcome Department of Imaging Neuroscience, Lon-
don, UK). Each scan was spatially normalized (Friston
et al., 1995; Ashburner and Friston, 1999). The images
were then segmented using the Bayesian algorithm
described in Ashburner and Friston (1997). This pro-
duced continuous probability maps where the values
correspond to the posterior probability that a voxel
belongs to the gray-matter partition. The gray-matter
images were smoothed with 12, 8, 4, and 0 mm isotro-
pic Gaussian kernels. This smoothing renders the
voxel values an index of the amount of gray matter per
unit volume under the smoothing kernel. The term
“gray matter density” is generally used to refer to this
measure.

Effects of Smoothing on Normality of Residuals

QQ plots. It is not possible to prove that data are
normally distributed. However, it is possible to quan-
tify the degree of nonnormality. One method is the QQ
plot. A QQ plot is a plot of the sample quantile versus
the sample quantile that would be expected if the data
were normally distributed. For normally distributed
data, the QQ plot of the data should be a straight line.
A significant deviation from a straight line can be
identified by computing the correlation coefficient of
the plot (as described by Johnson and Wichern, 1998).
If the correlation coefficient falls below a particular
value, given a certain sample size, nonnormality can be
inferred. For more information see Ashburner and
Friston (1999).
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Twelve sets of 10 scans were selected randomly, from
the 20 possible scans, for three levels of smoothness (8,
4 and 0 mm). Correlation coefficients from a QQ plot
were computed over all voxels where the mean inten-
sity over all the images was greater than 0.05 (adimen-
sional units of probability). Voxels of low mean inten-
sity were excluded as they would not be included in a
conventional SPM analysis. The QQ plots were calcu-
lated using the residuals of a model that accounted for
the confounding effects of age, sex, and total amount of
gray matter in each volume.

This procedure was repeated but replacing the data
with simulated Gaussian noise for comparison. The
proportion of voxels where the correlation coefficient
fell below the tabulated value (indicating residuals
that were not normally distributed at P � 0.05) was
used to quantify nonnormality by comparing this pro-
portion in the real and simulated data.

Transforming the smoothed, segmented data with a
“logit” transform prior to performing statistical tests
may render the errors more normally distributed. This
is because every voxel in the smoothed image segment
has a value between 0 and 1. In order to assess the
improvement the logit transform makes, the QQ anal-
yses were calculated with and without the logit trans-
form.

Rate of false positives. While QQ analyses can de-
termine whether the data are not normally distributed,
they cannot demonstrate the influences that any non-
normality may have on subsequent statistical infer-
ence. One way of assessing this is to look at the false
positive rate. The rate of false positives was assessed
by randomly assigning the 20 children into two groups
(each of size 10). Confounding factors of age, sex, and
total amount of gray matter were included in the
model. This was repeated a total of 10 times at three
levels of smoothing (8, 4, and 0 mm). Significant in-
creases and decreases in gray matter density were
assessed, resulting in a total of 20 SPMs of the t sta-
tistic, for each smoothing level. The number of analy-
ses with one or more false positives (at P � 0.05 cor-
rected) was assessed.

Assuming false-positive SPMs are encountered like
“rare events,” we used the Poisson distribution to com-
pare the probability of obtaining the observed number
of SPMs with one or more maxima at a corrected level
of significance. This probability assumes the tests are
exact and normality has not been violated. Although
these P values do not establish that VBM is valid, they
do allow us to say that the tests are invalid if the P
value falls below a critical threshold (i.e., P � 0.05).

Effects of Experimental Design on Robustness

The data from 17 of the 20 children were used in this
investigation. One child was randomly chosen and
compared against the remaining 16 children. This was

repeated a total of 10 times at all three levels of
smoothing. Confounding factors of age, sex, and total
amount of gray matter were included in the model.
Significant increases and decreases in gray matter
density were assessed resulting in a total of 20 SPMs of
the t statistic, at three smoothing levels (12, 8, and 4
mm). The number of SPMs with one or more false
positives (at P � 0.05 corrected) was assessed, and the
probability of getting this number or more was com-
puted as above with reference to the Poisson distribu-
tion.

RESULTS

Effects of Smoothing on Normality of Residuals

The effect of smoothing on balanced designs is shown
in Fig. 1. It demonstrates that the proportion of voxels
violating an assumption of normality (based on QQ
plots) is below the expected limit (�0.05) for smoothing
kernels of 4 and 8 mm. The proportion under no
smoothing (0 mm) is higher than the simulated data in
both the logit transformed data and the raw data. The
logit transform does reduce the proportion at all
smoothing levels, suggesting any excess is indeed due
to violations of the assumption of normality.

There were no analyses with one or more false pos-
itives at P � 0.05 (corrected) at any of the three
smoothing levels (8, 4, and 0 mm).

Effects of Experimental Design on Robustness

The effect of unbalanced designs on robustness is
shown in Fig. 2. It demonstrates that the number of
SPMs with one or more false positives at P � 0.05
(corrected) decreases with smoothing. The false posi-
tive rate was within the expected range for 12 mm (P �
0.4). There were significantly more analyses with false
positives than would be expected by chance at 4 and 8
mm (8 mm, P � 0.01; 4 mm, P � 0.00001). Figure 2 also
demonstrates that no false positives were found in
those that looked at increases in gray matter in the
individual versus the group. As expected, the number

FIG. 1. QQ plots: The proportion of data points significantly
violating the assumptions of normality at 8, 4, and 0 mm.
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of false positives was greater for the unbalanced design
(1 vs 16) relative to the balanced design (10 vs 10).

DISCUSSION

Effects of Smoothing on Normality of Residuals

When using balanced group comparisons, smoothing
at 4 mm appears to be sufficient to ensure that any
nonnormality has little effect both as assessed using
the QQ plots and the false-positive rate. This is consis-
tent with, and extends the results of, Ashburner and
Friston, who found that 12 mm was sufficient. The
nonnormality detected by the QQ plots for unsmoothed
data does not markedly inflate the rate of false posi-
tives. While this conclusion should be moderated by the
limited number of SPMs used, it is not necessarily
surprising. Despite the lack of spatial smoothing, the
group analysis is rendered robust by averaging over
subjects. By the central limit theorem this renders the
contrasts normally distributed.

Effects of Experimental Design on Robustness

When comparing a single subject to a group, the
false-positive rates were only within the expected
range for smoothing kernels of 12 mm; i.e., we found no
evidence that these analyses are invalid. Reducing the
smoothing kernel to 8 or 4 mm does render the analy-
ses significantly prone to false positives, suggesting
that the tests are no longer robust. The implicit inter-
action between group size and smoothing on false pos-
itives is to be expected: (as discussed in the Introduc-
tion) group size (i.e., the design) may influence the
robustness to violations of normality at low levels of
smoothing. Reducing the smoothing kernel size to 4
mm when investigating an individual’s neuropathology
should therefore be avoided.

Increases versus Decreases in Gray Matter

An interesting observation was that the false posi-
tive rate appears to be systematically higher in the

tests for decreases in gray matter in an individual
versus a group, compared to increases. This suggests a
“skew” in the distribution of differences between a
single subject and a group. In other words, the proba-
bility that a small region contains gray matter is
skewed toward high values. This is intuitively sensible,
even after smoothing, because the probability of a re-
gion being void of gray matter is much greater than the
probability that it is all gray matter. This is because
gray matter conforms to a sheet or manifold embedded
in a volume of nongray matter.

In conclusion, our results indicate that nonnormality
in the error terms can be an issue in VBM. However,
provided the data are smoothed with a 12-mm FWHM
kernel, nonnormality is sufficiently attenuated to ren-
der the tests valid in all situations. An important ca-
veat, however, is that unbalanced designs appear to be
less robust to violations of normality: a significant
number of false positives arise at a smoothing of 4 and
8 mm when comparing a single subject to a group. This
is in contrast to the observation that conventional
group comparisons appear to be robust, remaining
valid even with no smoothing.
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