
Anatomically Informed Basis Functions in
Multisubject Studies

Stefan Kiebel* and Karl J. Friston

The Wellcome Department of Imaging Neuroscience, The Institute of Neurology,
London, United Kingdom

� �

Abstract: We describe the use of anatomically informed basis functions (AIBF) in the analysis of
multisubject functional imaging studies. AIBF are used to specify an anatomically informed spatial model
that embodies anatomical knowledge for the statistical analysis of neuroimaging data. In a previous
communication, we showed how AIBF can be used to incorporate prior anatomical constraints in single
subject functional magnetic resonance image (fMRI) analyses to augment their anatomical precision. In
this paper, we extend AIBF such that it can be applied to multisubject studies using fMRI or PET. The key
concept is that, after spatial normalization, a canonical cortical surface can be used to generate a forward
model of signal sources for all subjects. By estimating the hemodynamic signal in this canonical AIBF-
space and then projecting it back into the voxel-space, one effectively extracts functional activity that is
smooth, within and only within, the cortical sheet while attenuating other components unrelated to the
physiological process of interest. The ensuing procedure can be considered as a highly non-stationary,
anisotropic anatomically informed [de]convolution or smoothing. It is shown that this procedure offers
various advantages compared to existing conventional methods for the analysis of multisubject studies,
in particular it is more sensitive to underlying activations. Hum. Brain Mapping 16:36–46, 2002.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

In functional neuroimaging, multisubject studies
are used to make inferences about population re-
sponses using effects observed in a group of subjects.
If one employs a fixed effects analysis, the inference is
about the average activation in this group. If one uses
a random effects analysis, the inference is about the
population from which the subjects were sampled
[Friston et al., 1999]. As a special case of a fixed effects

analysis, one can also use a conjunction analysis look-
ing for activations that are common to all subjects
[Worsley and Friston, 2000]. All these inferences are
made using multisubject designs. One problem, when
measuring hemodynamic responses in different sub-
jects is finding a suitable transformation that projects
the individuals’ functional and structural data into the
same anatomical space. In most neuroimaging studies,
this reference space is the Talairach- [Talairach and
Tournoux, 1988] or the so-called MNI-space [Collins et
al., 1994]. The precision of these spatial normalization
procedures is controlled by the constraints on the
transformations employed e.g., by parameterizing the
transformations in terms of a discrete cosine set [Ash-
burner and Friston, 1999]. These constraints are based
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on the observation that there is no one to one mapping
between two structural images and even if there was,
functional areas are not located in exact relation to
structural landmarks e.g., to the sulcal pattern
[Amunts et al., 1999]. Therefore most normalization
procedures use a rather smooth transformation.

Voxel-based methods for the analysis of functional
neuroimaging data rely on the assumption that, after
spatial transformation (realignment and normaliza-
tion), all voxels are not only in the same anatomical
reference space, but that activations over subjects are
expressed in the same location. Given the functional
anatomical variability across subjects, however, it is
unlikely that one voxel will evidence activation in all
subjects. Although any individuals’ activations will
fall roughly into the same region, there will be some
spatial discrepancy (in the order of mm) among acti-
vations. In this situation, the usual approach is to
convolve the functional data, after spatial normaliza-
tion, with a stationary lowpass kernel to smear the
activations together and ensure evidence of a common
activation by increasing their spatial overlap. This
overlap can then be detected using statistical paramet-
ric mapping (SPM). In short, resolution is traded for
sensitivity. The question of optimum filter width is
addressed implicitly in formal approaches to detect
activations, using scale-space searches [Poline and
Mazoyer, 1994] based on the theory of Gaussian ran-
dom fields [Worsley et al., 1996b]. Most conventional
analyses of neuroimaging data use a stationary 3D
spatial lowpass filter. These filters are optimal for
detecting activations that conform to the size and
shape of the filter kernel. Given the underlying neu-
roanatomy, however, such stationary filters are almost
certainly not the best in terms of sensitivity to real
activations.

In this study, we resolve the problem of anatomical
variability in a different way by using a non-stationary
filter kernel. The basic assumption is that any activa-
tion is located within the cortical grey matter sheet.
Anatomical variability can now be decomposed into
two components. The first is tangential to the grey
matter sheet and the second is orthogonal to the sheet.
Intersubject variability will disperse the signal tangen-
tially or within the sheet, because much of the orthog-
onal variability will have been removed by registering
the cortical sheets during spatial normalization. The
appropriate smoothing filter should therefore com-
prise some non-stationary kernel that, according to the
matched filter theorem, conforms to the cortical sheet
(i.e., has different widths in the directions tangential
and orthogonal to the cortical sheet). Figure 1 shows

the outline of a conventional smoothing kernel and the
shape of an anatomically informed filter kernel. Given
activations that arise in the cortical sheet are less dis-
persed in the direction orthogonal to the sheet, it is
evident that the anatomically informed kernel will
enhance sensitivity to these activations. It does this by
taking a weighted average of voxel intensities selec-
tively from activated locations. In contrast, the spher-
ical filter samples a large number of non-activated
locations. What follows can be seen as a simple tech-
nique to construct and apply a non-stationary, ana-
tomically informed filter. This filter is specified by a

Figure 1.
Concept of anatomically informed smoothing in 2D. Top: Con-
ventional stationary and spherical smoothing filter. Bottom: An-
atomically informed variable (non-stationary) smoothing kernel.
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convolution matrix P, where the kernels constitute the
rows of P.

In this study we use anatomically informed basis
functions (AIBF) [Kiebel et al., 2000] to specify a spa-
tially variable filter matrix for multisubject neuroim-
aging data. There are two key issues. The first is that
we use a canonical surface, that models a representa-
tive cortical sheet, to generate the same spatially vari-
able filter for all subjects. The second is that by explic-
itly specifying one smoothing kernel for each voxel,
one can specify not only a smoothing matrix, but also
a spatially variable deconvolution matrix that removes
the effect of unwanted signal dispersion due to the
effective point spread function. This is possible be-
cause we are using an explicit forward model for the
spatial distribution of signal sources. Once the param-
eters of that model have been identified by solving the
inverse problem, the forward model can be used to
generate the data that would have been observed in
the absence of any point spread function.

After filtering the data with the AIBF [de]convolu-
tion matrices, one can proceed with conventional anal-
ysis in the temporal domain. Here, we use statistical
parametric mapping (SPM99), but any uni- or multi-
variate voxel- or surface-based method could be used.

We describe the theoretical background to the anal-
ysis of multisubject data with AIBF. The method is
then applied to two data sets. The first is a multisub-
ject PET and the second is a multisubject fMRI data
set. Using these empirical studies, we demonstrate the
advantages and potential pitfalls of AIBF.

THEORY

This section describes the generation of an anatom-
ically informed forward model used to implement a
spatially variable convolution that conforms to the
cortical surface. The description is divided into three
parts. First, we will outline the method of anatomi-
cally informed basis functions. Second, we specify the
model and show how its parameters are estimated.
Finally, we describe how these estimated parameters
are projected back into image space to give a non-
stationary [de]convolution.

Assuming that all activations are distributed within
the cortical surface, we require a spatial model that
matches these activation patterns. We use a linear
model that attempts to explain all observed voxel
intensities within a single functional image by a linear
combination of smooth basis functions following the
cortical surface. Such basis functions can be of any
shape provided that they model smooth voxel inten-

sity distributions tangential to the cortical surface. In
this study, we use Gaussian basis functions with local
support, but one could also use a discrete cosine trans-
form set [Kiebel, 2001]. By repeatedly fitting this
model to each functional image in a time-series, we
estimate a spatiotemporal parameter matrix compris-
ing one spatial parameter vector for each image. This
estimated parameter matrix can then be projected
back into voxel-space. The procedure of estimating
parameters of the AIBF model and their subsequent
back-projection is formally identical to, and can be
described in terms of, a spatially variable [de]convo-
lution.

One basic assumption we make is about separability
in the spatial and temporal domain. With this assump-
tion one can specify the same spatial model for each
image before analyzing the ensuing time-series.

Basis function specification

The following is described in detail in Kiebel et al.
[2000], but is briefly reprised here for completeness.
Given a surface reconstruction of a human brain S
� (V, F), where V is a NV � 3 matrix of vertex coor-
dinates and F is a NF � 3 matrix of vertex indices, the
graph S approximates the grey matter surface. In the
following, V will be referred to as a vertex-matrix and
F as a face-matrix.

Let SF � (VF, F) be the flattened version of S, i.e., S
has been projected to a plane, e.g., Fischl et al. [1999].
Given a 2D coordinate system on SF, the Gaussian
basis function bF

j with its centre at coordinates (xj, yj) is
defined by

b F
j �x, y� � c1exp����x � xj�

2 � �y � yj�
2�

2w2 � (1)

where c1 is a constant and w is the (user-specified)
width of the basis function in the x- and y-directions.
The hexagonal pattern of the centres of the basis func-
tions are defined by induction, i.e., given that (xj, yj) is
the centre of bF

j , then the centers of its six neighbor
basis functions are (x � d/2, y � do), (x � d, y), (x
� d/2, y � do), (x � d/2, y � do), (x � d, y), (x � d/2,
y � do), where d is a fixed distance between centres
and do � sin(600)d. The basis functions are sampled
discretely at vertex positions.

The next step is to project the basis function bF
j to the

folded surface S. This is effected by a coordinate ex-
change from VF to V resulting in basis function bG

j . The
final step is to project bG

j to the space in which images
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were acquired (measurement space). To do this, an
operator g is defined, that integrates, over each voxel
k, the surface of a given basis function bG

j multiplied
by the height of the basis function, i.e., g returns the
integral of each basis function in folded vertex-space
encompassed by the voxel. We assume that the activ-
ity distribution on a given face is a linear function of
activity at the three vertices of this face. Then a NK �
NV matrix G can be defined, where NK is the number
of voxels. The jth column of G specifies the observed
activity in voxel-space produced by unit activity at
vertex j.

The matrix-vector multiplication GbG
j transforms the

basis function bG
j in vertex-space to bY

j (bY
j � bY1

j ,…,
bYNK

j ). This is the jth AIBF in voxel-space.

Model specification

Let AG be a NV � Np-matrix, where column j of AG

is the basis function bG
j in vertex-space, i.e., AG �

[bG
1 �…�bG

Np] and Np is the number of basis functions. To
project these onto voxel space we multiply by G to
give A � GAG.

To model effects of any point spread function (PSF)
due to the measurement process (e.g., PET), let LI be a
NK � NK convolution matrix. Let LE be a NK � NK

convolution matrix that models any additional exog-
enous smoothing applied to data and model. Apply-
ing LE will allow us to capture activations that are not
very close to the cortical sheet, but follow the shape of
the cortical sheet over some short distance. The width
of LE controls the width of the smoothing of the man-
ifold containing the basis functions. In terms of the
implicit non-stationary deconvolution described in the
introduction, LE specifies how much anatomical vari-
ability is deconvolved out of the direction orthogonal
to the surface S.

Finally, we assemble all the smoothed basis func-
tions into a matrix

AL � LELIA (2)

The general linear model for the data is simply:

LEYi � AL�
i � LE� (3)

where Yi is a NK-dimensional observation vector in
voxel-space (the ith functional image), �i is a Np-di-
mensional parameter vector and � is a NK-dimensional
error vector.

Fitting the model for one time point

The model parameters in equation (3) are estimated
in a least-squares sense with

�̂ � �AL
TAL � 	WTW� � 1AL

TLEYi (4)

where W is an appropriate weighting matrix and 	 is
a regularization factor. We obtain good results by
using a simple zeroth-order regularization, i.e., W
� INp, the identity matrix of rank Np. The regulariza-
tion factor 	 can be computed using results from Press
et al. [1992]

	 �
trace�AL

TAL�

trace�WTW�
(5)

or by using a more sophisticated method like re-
stricted maximum likelihood (ReML), which can be
implemented by the EM-algorithm [Dempster et al.,
1977].

Temporal domain

Given a series of functional observations Y � [Y1�…�
YNY], we estimate for each Yi a parameter vector �̂i

using equation (4) and assemble a (NY � Np) estimated
parameter matrix

BT � 
�̂1� . . . ��̂NY�

� �AL
TAL � 	WTW� � 1AL

TLE
Y1� . . . �YNY� (6)

that represents the estimate of functional observations,
in the space of anatomically informed basis functions.
The estimated signal in voxel-space, subject to convo-
lution by LELI, is given by

BL � BAL
T � BATLI

TLE
T (7)

Similarly, if LE � INK, one can project the estimated
parameters into voxel-space subject to convolution
with LI (only) by

BLI � BATLI
T (8)

The estimated signal in the voxel-space, but without
any convolution (extrinsic or intrinsic) by LELI is

BA � BAT (9)

� AIBF in Multisubject Studies �

� 39 �



By omitting LE or LELI one is effectively deconvolving
the data (see below).

Equations (7–9) can be expressed in an alternative
form. By substituting equation (6) in equation (7),

BL � 
Y1� . . . �YNY�
TLE

TAL�AL
TAL � 	WTW� � TAL

T (10)

Let

PAL � LE
TAL�AL

TAL � 	WTW� � TAL
T (11)

such that

BL � 
Y1� . . . �YNY�
TPAL (12)

PAL is a NK � NK matrix that projects the data
convolved with LE onto the estimated response to give
BL. PAL represents an anatomically informed spatially-
variable filter matrix, where each column k of PAL

encodes the kernel at voxel k. The projection matrix
that represents an anatomically informed deconvolu-
tion of the data in equation (9) is given by

PA � LE
TAL�AL

TAL � 	WTW� � TAT (13)

PA effectively performs a least squares deconvolution
of the data orthogonal to the cortical surface while
preserving smoothness within the sheet. These projec-
tor matrices give us natural tools to make inferences
about the activations in any space that the basis func-
tions encompass. This allows us to infer not only
about the fitted effects in AL-space given by equation
(7) but also in the A-space (equation 9), i.e., a space
void of convolution with LE or LI. Projection to A-
space (equation 13) corresponds to an anatomically
informed least squares deconvolution of the point
spread function (LELI) out of the data.

The Canonical Surface

AIBF can be applied to any neuroimaging data
(fMRI, PET, SPECT). The application of AIBF to single
subject data has been described in Kiebel et al. [2000].
The applicability to multisubject data, as presented
here, is based on the convolution of the model with a
lowpass filter LE and the implicit deconvolution that
obtains after fitting the model (equation 3). This ap-
proach rests on another assumption; that the surface
used for generating the AIBFs is a close approximation
to the spatially normalized surface of each subject. The
technique is robust to violations of this assumption,

because effects of errors in the normalization or ana-
tomical variability among subjects are deliberately at-
tenuated by the lowpass filter LE.

Summary of the method

Two general linear models are fitted to the data, the
first (AIBF as described above) is in the spatial domain
and the second is in the temporal domain. The tem-
poral component is implemented using SPM99 so that
the only part of the AIBF-analysis that differs from a
conventional analysis (e.g., SPM99) is the AIBF source
reconstruction. This involves a choice for the smooth-
ing filter LE applied to the realigned and normalized
functional image-series. In a conventional analysis, the
spatial smoothing filter is a stationary lowpass filter of
a user-specified width. With AIBF, one implements a
non-stationary kernel, which takes the underlying
neuroanatomy into account. This process is described
schematically in Figure 2. In single subject studies, one
generally uses the individual’s reconstructed grey
matter surface as anatomical constraints. For multi-
subject studies, we propose using a canonical surface
to generate the AIBFs. After choosing a set of basis
functions, one specifies the width of the stationary
filters LI and LE, where LI emulates the point spread
function of the acquisition system and LE reflects the
accuracy of the anatomical model. In a single subject
study, LE can be very small, because the individual’s
reconstructed surface should be a fairly accurate esti-
mate of the true grey matter surface. In multisubject
studies, LE should be larger to render the model robust
with respect to normalization errors and anatomical
variability among subjects. In the following analysis of
PET and fMRI data, we employ the smoothing and
deconvolution scheme as summarized in equation
(13).

PET data

The data were obtained from five subjects scanned
12 times (every 8 min) while performing one of two
verbal tasks. Scans were acquired with a CTI PET
camera (953B, CTI, Knoxville, TN). 15O was adminis-
tered intravenously as radiolabeled water infused
over 2 min. Total counts per voxel during the build-up
phase of radioactivity served as an estimate of re-
gional cerebral blood flow (rCBF). One task involved
repeating a letter presented aurally, at one per two
seconds (word shadowing). The other was a paced
verbal fluency task, where the subjects responded
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with a word that began with the letter presented (in-
trinsic word generation).

The functional data were realigned and spatially
normalized using SPM99. Normalized images had a
voxel size of 2 mm in each direction. A canonical grey
matter surface of a normal brain was reconstructed
using a T1-weighted MRI sequence with voxel-sizes of
1 � 1 � 1 mm. The subject providing the canonical
surface came from the same population, but did not

take part in the PET study. The MR sequence was
optimized for grey-white contrast and is described in
Deichmann and Turner [2000].

The analysis was constrained to a volume of interest
(VOI), because a practical constraint of the AIBF ap-
proach is the inversion of a NP � NP matrix (equation
4) that limits the number of basis functions that can be
used in the current implementation. This VOI encom-
passed the left frontal lobe. We chose Gaussian AIBFs
with a width of 12 mm full width at half maximum
(FWHM) and a separation of 12 mm. The kernel width
of the Gaussian filter representing LI was 8 mm and
the width of LE was 16 mm. These parameters gave
150 Gaussian basis functions covering the whole sur-
face of the left frontal lobe. We also added a global
basis function corresponding to the mean intensity of
the spatially normalized image-series. After estimat-
ing the parameters, we projected B to A-space, i.e., to
voxel-space, but discounting the effects of convolution
with LI and LE. Finally, the projected images were
analyzed in the time domain using SPM99, modelling
condition- and subject-specific effects in the usual
way.

For cross-validation we employed a conventional
voxel-based univariate analysis using SPM99 based on
a spherical and stationary smoothing kernel. We
smoothed the same realigned and normalized images
as used in the AIBF-analysis with an isotropic Gauss-
ian kernel with a FWHM of 16 mm in each direction.
We used the same model for temporal analysis.

fMRI data

Data from five right-handed subjects were ana-
lyzed, where each subject performed a finger opposi-
tion task. Subjects opposed the middle finger and
thumb of the right hand at a self-paced frequency of
0.5 Hz. All subjects were right-handed. The functional
data (EPI, gradient echo) were acquired on a clinical
1.5 T Siemens Vision unit (Siemens GmbH, Erlangen)
with TR � 168 msec, TE � 79 msec, flip angle � 90°.
Each image consisted of 128 � 128 voxels, 20 slices,
transverse orientation, voxel size 1.8 � 1.8 � 3 mm3.
For each subject, the position and orientation of the
slices were chosen to cover all the brain volume supe-
rior to the corpus callosum, in particular the primary
sensorimotor hand area.

Twenty-three scans were acquired and the first
three scans were discarded to ensure steady state
transverse magnetization. The design was blocked
with a single activation epoch consisting of seven
scans, starting at Scan 8.

Figure 2.
Flowchart describing the data analysis stream in an AIBF-analysis
from functional data and a canonical image to the temporal analysis
of the projected images, i.e., source estimates. Solid arrows: trans-
forms of data, dashed arrows: transfer of information. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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The functional data were realigned and spatially
normalized using SPM99. In this study, we used a
subject’s surface as canonical surface. We chose a VOI
between the left frontal and left parietal lobe encom-
passing the left central sulcus. For the AIBF model, we
used Gaussian basis functions with a width of 3 mm
FWHM and a separation of 3 mm. LI was chosen as the
identity matrix and LE corresponded to a Gaussian
smoothing of [4 4 6] mm FWHM into x-, y- and z-
direction. The estimated parameter matrix B was pro-
jected into A-space before proceeding with a conven-
tional voxel-based analysis using SPM99. The statistical
model (temporal basis functions) comprised a box car
stimulus function convolved with a hemodynamic re-
sponse function (HRF).

As with the PET analysis, a conventional voxel-
based analysis was also performed using conventional
stationary smoothing. The data were smoothed with a
Gaussian kernel of [10 10 12] mm FWHM into x-, y-
and z-direction. This specific smoothing filter was cho-
sen to ensure that both AIBF and CS analyses resulted
in approximately the same estimated smoothness of
the components of the t-field. The same model was
used to characterize the smoothed images in the time-
domain.

RESULTS

PET multisubject study

The two resulting SPM{t} of the AIBF- and the con-
ventional smoothing (CS) analysis are shown as max-
imum intensity projections (MIPs) in Figures 3 and 4.
The t-maps were thresholded at P  0.01 (corrected)
and overlaid on an individual structural MRI. Both
SPMs are centered on their maximum t-value. As it
can be seen, the CS-SPM appears to be rather smooth,
but interestingly both maps have approximately the
same smoothness along the three coordinate axes. The
CS-SPM has an estimated FWHM of [11.3 11.9 12.2]
mm in x-, y- and z-direction, and the AIBF-SPM has a
FWHM of [13.3 12.1 12.3]. These are averages over the
entire volume based on the determinant of the covari-
ances of the residual field gradients at each voxel. The
relevant t-value maxima, P-value minima and their
location for both analyses are shown in Tables I and II.
The search volume of the CS-SPM was 42,501 voxels,
whereas the AIBF-analysis comprised only 7,964 vox-
els. This discrepancy arises during the back-projection
of the AIBF-parameter matrix B into A-space, i.e., the
fitted data is deconvolved such that the search volume
is reduced to the discretized grey matter partition. The

resel count [Worsley et al., 1996a] for the AIBF-analy-
sis was [�92 73.56 179.21 2.15] and [1 22.7 139.20
182.83] for the CS-analysis. These volume metrics can
be thought of as volume estimates normalized by
smoothness for 0, 1, 2, and 3 dimensions. It can be seen
that the 2D resel count surpasses the 3D count for the
AIBF-analysis in contradistinction to the CS-analysis.
These analyses demonstrate the enhanced anatomical
precision of the inferences that can be obtained using
AIBF without impairing sensitivity.

fMRI multisubject study

The resulting MIPs centered on the maximum t-
values of the AIBF- and CS-analysis are shown in
Figures 3 and 4. The t-maps were thresholded at P
 0.01 (corrected) and overlaid on a structural MRI of
a subject’s brain. Each analysis detected an activation
cluster around the hand knob in the left central sulcus.
The peak t-value computed using the AIBF-analysis
was 9.62, corresponding to a P-value of 6.00 10�10 and
was located at [�43.8 �18.4 54.0]. The CS-analysis
t-maximum was 7.89 (P � 1.07 10�6), located at [�47.4
�20.2 60.0]. The estimated smoothness of the SPM{t}
were similar. For the AIBF-analysis, it was [11.8 10.2
15.7] and for the CS-analysis [12.3 12.1 13.7]. The
search volumes were 7,347 voxels (AIBF) and 32,329
voxels (CS). The resel count [Worsley et al., 1996a] for
the AIBF-analysis was [�83 63.74 191.47 3.11] and [1
21.26 106.71 135.13] for the CS-analysis.

DISCUSSION

We have presented a new procedure to analyze
multisubject neuroimaging data (fMRI, PET, SPECT).
The method uses anatomically informed basis func-
tions (AIBF) that are constrained by a canonical grey
matter surface.

The estimation and the projection of the AIBF model
parameters, as described in equations (6) and (9), im-
plement a spatially variable or non-stationary smooth-
ing that conforms to the cortical sheet. This smoothing
is the only difference between the AIBF approach and
a conventional analysis. All other processing steps
(realignment, normalization, statistical modelling in
the time-domain, statistical inference) are identical.

The AIBF [de]convolution approach projects the es-
timated parameters in AIBF-space back to the cortical
sheet. Because this projection omits the spatial convo-
lution operators in the forward model, it is effectively
a deconvolution. This deconvolution can be regarded
as solving the inverse problem to estimate the source
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distribution in PET or fMRI studies. The search vol-
ume after deconvolution is smaller than in a conven-
tional analysis, in which the search volume covers not
only the cortical sheet, but also the surrounding tissue.
Decreasing the search volume reduces the adjustment
to the P-values, provided the smaller search volume
does not become too convoluted [Worsley et al.,
1996a]. Another effect of the deconvolution is that
inference is with respect to the sources on the cortical
sheet enabling AIBF to provide more anatomical pre-
cision than conventional analyses. This assumes that

all activations originate in or close to the cortical sheet.
One can control the meaning of close by varying the
width of the filter LE (equations 2, 3).

An interesting aspect of our results is the difference
in resel count between the AIBF- and CS-analyses,
especially the discrepancy of the resel count in the 3rd
dimension (2.15 vs. 182.83 in the PET study). This
indicates that the AIBF-search volume resembles a
surface rather than a volume. Note that an inflation of
the surface resel term might cause an increase in the
corrected P-values as discussed in Worsley et al.

Figure 3.
AIBF results for PET data. t-Map thresholded at P  0.01 (cor-
rected) overlaid on the normalized structural MRI that was used
for generating the canonical surface. The white dotted lines indi-
cate the volume of interest analyzed.

Figure 4.
CS results for PET data. t-Map thresholded at P  0.01 (corrected)
overlaid on the normalized structural MRI that was used for
generating the canonical surface. The white dotted lines indicate
the volume of interest analyzed.

Figure 5.
AIBF results for fMRI data. t-Map thresholded at P  0.01 (cor-
rected) overlaid on the normalized structural MRI that was used
for generating the canonical surface. The white dotted lines indi-
cate the volume of interest analyzed.

Figure 6.
CS results for fMRI data. t-Map thresholded at P  0.01 (corrected)
overlaid on the normalized structural MRI that was used for
generating the canonical surface. The white dotted lines indicate
the volume of interest analyzed.
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[1996a]. We did not, however, characterize the rela-
tionship between voxel-size and P-values explicitly.

There were some differences between the statistical
results of AIBF and CS-analyses of the PET data. The
CS-analysis found an apparently smoother represen-
tation of the underlying activation in the sense that the
resulting SPM{t} showed one large highly significant
cluster. In contrast to this, AIBF, although having
roughly the same estimated average smoothness, pro-
vided a SPM{t} that showed distinct clusters (in 3D-
space) that fell into locations similar to the maxima of
the CS-SPM. This is in accord with the shape of the
AIBF kernel, which is smooth tangential to the cortical
sheet, but not orthogonal to the sheet. This feature
provides higher anatomical precision by effectively
removing spatial variability in the estimated sources
that is orthogonal to the cortical surface.

With the fMRI data, both analyses found evidence
for an activation in the left central sulcus close to the
hand knob [Yousry et al., 1997]. There were two fun-
damental differences, however, between the AIBF-
and CS-results. First, the P-value of the AIBF-analysis
was smaller (more significant) than the corresponding
minimum found using CS. This is most likely due to
the fact that the activation induced by the finger tap-
ping paradigm was distributed along the cortical sur-
face within the central sulcus, over a distance of some
mm. This activation pattern is properly modelled by
smooth components along the cortical surface, en-
abling AIBF to detect the underlying activation. In
contrast, a stationary smoothing filter is suboptimal in
this situation, because it cannot follow the cortical
surface. Second, the location identified by the AIBF-
analysis (z-height 54 mm) was closer to the hand knob
than the location indicated by the CS-analysis (z-
height 60 mm). It is evident from Figure 6 that the
location found by CS is rather lateral and inspection of
the underlying single-subject results (data not shown)
indicated that this cluster was due to activations
within cerebrospinal fluid (CSF). This suggests that
the activation estimated by AIBF is closer to the
neuronal activation. This conclusion is based on the

assumed anatomical-functional relationship of the
hand knob in the anterior bank of the central sulcus
and the primary motor area of the hand [Yousry et
al., 1997].

As a caveat, note that the fMRI activation cluster has
been mapped by AIBF to the posterior bank of the
sulcus, although one would have expected some pro-
portion of the activation to arise in the anterior bank,
evoked by the motor components of the task. There
was, however, some non-significant activation on the
anterior bank. Inspection of the single subject SPMs
showed that most individuals’ activations were lo-
cated within the central sulcus and not directly in the
grey matter on either side. Another possible explana-
tion for the location in the posterior bank is given by
a potentially imperfect spatial normalization that mis-
registered the subjects’ central sulci and their hand
knobs. This was partially the case in our five data sets
and speaks to the utility of a spatial normalization that
explicitly incorporates surface-based information. The
anatomical variability in brain regions other than the
hand area, however, is probably higher than in first
order areas [Amunts et al., 1999, 2000] and an im-
proved landmark- or surface-based normalization
would not necessarily improve the alignment of
higher order functional areas.

Another question, related to the spatial normaliza-
tion, is how one chooses a canonical surface. The basic
assumption about the canonical surface is that it is a
reasonable model of the subjects’ cortical surfaces. The
main requirement is that the spatially normalized (in-
dividuals’) cortical surfaces and the canonical surface
have roughly the same configuration. To moderate
violations of this assumption, one can use the spatial
lowpass filter LE to trade resolution for model robust-
ness. The primary advantage of the AIBF method,
sensitivity for spatially extended activations tangen-
tial to the cortical surface, is compromised, however, if
the canonical surface is substantially different from
the actual surface. Therefore, before applying AIBF,
one should verify that the canonical surface is a

TABLE I. AIBF-analysis: location, t-value and corrected
P-value of maxima in activation clusters

Location t-value P-value

�48/12/24 8.92 5.8810�8

�42/46/20 6.08 3.9610�4

�32/20/2 5.90 6.9610�4

�48/16/2 5.11 7.6010�3

TABLE II. CS-analysis: location, t-value and corrected
P-value of maxima in activation clusters

Location t-value P-value

�40/20/0 9.05 2.4010�7

�46/10/26 8.64 7.8710�7

�38/34/16 8.28 2.3210�6

�38/46/18 5.60 5.2010�3
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reasonable model of all the subjects’ cortical sur-
faces.

Note that one should avoid a high ratio of the width
of LE and the Gaussian basis functions. This is because
the smoothed basis functions in voxel-space AL (equa-
tion 2) then become roughly overlapping. The ensuing
parameters scaling the contribution of each basis func-
tion then become highly correlated and differences
among them are estimated very inefficiently. The fit
would not have much value for making an inference
about the location of an activation.

This means that for multisubject studies real varia-
tions in function-structure relationships and structural
variation due to imprecise spatial normalization set
equivalent bands on the width of the AIBF. The rela-
tionship means that the registration in a multisubject
study constrains the effective resolution of the infer-
ence.

Finally, we discuss AIBF in relation to the cortical
surface mapping (CSM) approach [Andrade et al.,
2001] that also takes the cortical surface into account to
constrain the statistical analysis of functional data. In
contradistinction to AIBF, which uses an explicit for-
ward model, CSM uses an interpolation of the func-
tional data to solve the inverse problem posed by
dispersion of measured brain responses away from
the cortical surface. This interpolation samples the
functional voxel values of each image at each surface
vertex on the cortical surface. Subsequently, the esti-
mates of cortical activity are smoothed iteratively over
the surface. The iterative smoothing is necessary, be-
cause the cortical surface consists of an irregular grid
embedded in 3D-space. After the smoothing, the time-
series at each vertex are analyzed with a standard
data-sequence approach.

The theoretical basis of both methods are quite dif-
ferent. AIBF computes a forward model and solves the
inverse problem of explaining the functional data by a
distribution that is smooth tangential to the cortical
surface. CSM does not use a forward model, but uses
interpolation and smoothing to project fMRI data to
the cortical surface. There follow some salient differ-
ences between CSM and AIBF. First, AIBF can project
onto any space that was used in the forward model.
One can project to the basis function space, the cortical
surface space, or (as in this study) to voxel-space. With
CSM, one projects to the cortical surface. Second, the
forward model of AIBF can be adapted to any kind of
neuroimaging data, for instance, to PET data [Kiebel et
al., 2000]. Third, a multisubject approach as presented
in this study is presently not possible with CSM. An-
drade et al. [2001], however, discuss the possibility of

using a surface normalization after the interpolation to
enable a multisubject analysis. Fourth, the forward
model of AIBF allows extensions like modelling ex-
plicitly structures on the cortical surface (e.g., thick/
thin stripes in visual area V2). Another extension is the
inclusion of draining veins in the forward model
(identified by a venogram) to differentiate between
signal intensities generated in veins or in grey matter
locations. The veins would be modelled by 1D-basis
functions embedded in 3D-space. Furthermore, AIBF
can be incorporated into a proper Bayesian framework
with priors on the parameters. This allows one to
incorporate beliefs about the underlying distribution
of the activations.

One final difference between the two methods is
that CSM renders the smoothness across the cortical
surface stationary, whereas using AIBF leads to a spa-
tially variable smoothness due to the intrinsic distor-
tions introduced during the flattening.

CONCLUSION

We have shown that anatomically informed basis
functions (AIBF) can be used to analyze neuroimaging
(fMRI and PET) multisubject data by using a canonical
cortical surface. AIBF effectively implements a non-
stationary, anatomically informed filter kernel that
increases sensitivity to smooth activations confined
to the cortical sheet. Critically the ensuing spatial
[de]convolution is pre-defined and is the same for all
functional data that are assumed to be generated by
the same canonical surface. The AIBF filter can be
chosen to implement a smoothing or deconvolution of
the functional data by omitting any convolutions in
the forward model. We have shown that the deconvo-
lution approach leads to better anatomical precision
and increases sensitivity, in relation to conventional
analyses.
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