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Abstract: We assess the suitability of conventional parametric statistics for analyzing oscillatory activity,
as measured with electroencephalography/magnetoencephalography (EEG/MEG). The approach we
consider is based on narrow-band power time–frequency decompositions of single-trial data. The ensuing
power measures have a �2-distribution. The use of the general linear model (GLM) under normal error
assumptions is, therefore, difficult to motivate for these data. This is unfortunate because the GLM plays
a central role in classical inference and is the standard estimation and inference framework for neuroim-
aging data. The key contribution of this work is to show that, in many circumstances, one can appeal to
the central limit theorem and assume normality for generative models of power. If this is not appropriate,
one can transform the data to render the error terms approximately normal. These considerations allow
one to analyze induced and evoked oscillations using standard frameworks like statistical parametric
mapping. We establish the validity of parametric tests using synthetic and real data and compare its
performance to established nonparametric procedures. Hum Brain Mapp 26:170–177, 2005.
© 2005 Wiley-Liss, Inc.

Key words: statistical parametric mapping; EEG; MEG; time–frequency decomposition

� �

INTRODUCTION

The majority of studies in cognitive neuroscience, using
EEG or MEG, are based on evoked response potentials (ERP)
or fields (ERF). The ERP/ERF is an estimate of the response
that is phase-locked to a stimulus. It is well known that the
EEG/MEG also contains non-phase–locked responses
[Makeig et al., 2002; Tallon-Baudry and Bertrand, 1999].
These responses are suppressed in the ERP by averaging,
especially at higher frequencies and later peristimulus times.

The conventional approach to quantify transient, non-
phase–locked responses is to estimate instantaneous power
or magnitude, using narrow-band filtering [Pfurtscheller
and Aranibar, 1977] or a time–frequency decomposition of
single trial responses (e.g., the short-term Fourier transform
(STFT) [Makeig, 1993]). Recently, two other transforms have
been introduced. The first is the Morlet wavelet transform
(MWT) [Keil et al., 2003; Tallon-Baudry et al., 1996] and the
second is the Hilbert transform [Breakspear et al., 2004; Tass
et al., 1998], applied after bandpass-filtering the data (BP/
HT). These three transforms, i.e., STFT, MWT, and BP/HT,
are largely equivalent, because they conform to a linear
convolution with a similar or, in some cases, the same filter
kernel [Bruns, 2004].

Any of the three transforms can be used to estimate in-
stantaneous power, at each time point, by computing the
sum of squares of the convolved data. In several studies,
changes in power have been used to make inferences about
induced oscillations. The inferences have employed para-
metric [Barnes and Hillebrand, 2003; Keil et al., 2003] and
nonparametric statistics [Durka et al., 2004; Marroquin et al.,
2004; Tallon-Baudry et al., 1997]. In this article we show that
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typical analyses of EEG/MEG power use measures that are
essentially normally distributed. In rare circumstances,
when the normal error assumption is inappropriate, a non-
linear transform (log or sqrt) renders instantaneous power
differences approximately normal [Nuwer, 1988]. The nor-
mal distribution allows us to make inferences with existing
parametric procedures for neuroimaging data. This makes a
broad range of modeling and hypothesis testing machinery
available to EEG and MEG researchers.

This article comprises three sections. The first two are
theoretical and describe the mathematical and conceptual
background. In the final section we compare parametric and
nonparametric analyses using synthetic and real EEG data.
In the first section we describe the three transforms that are
used widely to estimate power. In the second theoretical
section we motivate the log- or sqrt-transform of the power
data to render the modeled residuals approximately normal.
In the application section, we use synthetic data to demon-
strate the validity and sensitivity of the parametric ap-
proach. Finally, we illustrate the operational details of the
analysis on real EEG data and compare it to an analysis
based on a nonparametric statistic.

THEORY

Transforms

In this section we describe three nonlinear transforms, the
short-term Fourier transform (STFT), the Morlet wavelet
transform (MWT), and the Hilbert transform on bandpass-
filtered data (BP/HT). In recent publications all three have
been used to estimate instantaneous power and phase in
peristimulus time [Makeig, 1993; Tallon-Baudry et al., 1996;
Tass et al., 1998]. These transforms are largely equivalent,
because they are all based on linear convolution with similar
kernels (Fig. 1) [Bruns, 2004]. Thus, in practice, they can all
be used to estimate narrow-band power.

Short-term fourier transform (STFT)

The STFT is a classical approach to time–frequency de-
composition [Oppenheim and Schafer, 1989] and has been
applied to EEG data by Makeig [1993]. The idea of STFT is to
apply the Fourier transform to windowed periods of the
data. The STFT can be formulated as a convolution, at each
frequency, with a complex kernel consisting of two win-
dowed sinusoids of frequency f0 Hz. One sinusoid is phase-
shifted, relative to the other, by �/2 (cf. Fig. 1):

hSTFT�t, f0� � cf0we2i�f0t (1)

where t denotes discrete time steps, cf0 is a frequency-spe-
cific normalization constant and w is the window function.
Makeig et al. [1993] used the Hann window, but other
windows can be used. The convolved data is given by:

zSTFT(t, f0) � hSTFT(f0) * y� (2)

where y� is the original EEG data of one channel or voxel/
equivalent dipole for reconstructed sources and * is the
convolution operator.

Morlet wavelet transform (MWT)

Recently, the Morlet wavelet transform has been used to
compute the instantaneous power and phase of EEG signals
[Tallon-Baudry and Bertrand, 1999]. As with the STFT, the
MWT is a convolution of the data with a windowed, com-
plex sinusoid. What makes the Morlet transform popular is
that the width of the Gaussian window is coupled to the
center frequency f0. This reduces the window width at
higher frequencies to ensure the number of cycles under the
Gaussian is the same.

The wavelet at frequency f0 is defined as:

hMWT(t, f0) � cf0 e � t2/(2�t
2) e2i�f0t (3)

The difference in relation to the STFT (Eq. 1) is that the
window w is Gaussian and that its variance �t

2 is a function
of f0: �t � z0/(2�f0). The value z0 is user-specified and fixes
the number of cycles. For example, with z0 � 6, the support
of the kernels at 40 Hz is roughly 150 ms. At 10 Hz (z0 � 6)
the support is roughly 600 ms. As above, the convolved data
is given by zMWT(t, f0) � hMWT(f0) * y�.

Hilbert transform

The Hilbert transform is used typically to compute the
analytic signal. One application of the analytic signal is to
estimate the instantaneous power and phase of a signal. The
(continuous) Hilbert transform is a convolution of the data
with the kernel hHT � –1/(�t). The Fourier transform of this

Figure 1.
Typical shape of a pair of windowed sinusoids that are used in
time–frequency compositions. Solid line: Real part of kernel.
Dashed line: Complex part. This kernel is a Morlet wavelet at 40
Hz.
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kernel is i sgn(�), where sgn( � ) is the signum function. The
Hilbert transform is equivalent to altering all phases of the
original signal components by �/2 [Bracewell, 1986]. The
analytic signal is a complex function given by:

z(t) � y�(t) � i(hHT * y�)(t) (4)

For discrete time-series, one can compute the analytic signal
using the Fast Fourier transform (FFT) [Marple, 1999]. With
EEG/MEG data the Hilbert transform has been used to
estimate power and phase in narrow frequency bands
[Breakspear et al., 2004; Le Van Quyen et al., 2001; Tass et al.,
1998, 2003]. This is achieved by bandpass-filtering the data
before applying the Hilbert transform.

In this study we use finite impulse response (FIR) band-
pass filters because they typically have so-called linear phase,
i.e., the filter causes a temporal delay of the output [Oppen-
heim and Schafer, 1989]. This delay can be removed by a
subsequent shift operation in time. Critically, a filter without
a linear phase response causes phase distortions, i.e., some
frequency components are more delayed than others.
Clearly, for the analysis of instantaneous power in peris-
timulus time it is appropriate to use a linear-phase filter.

A simple approach to designing an FIR filter is the win-
dow method. The filter kernel of a bandpass filter is given
by:

hBP(t, f0) � cf0 w sin(2�f0t) (5)

The window function w can take several forms, e.g., Ham-
ming, Hann, Kaiser, or Gaussian [Oppenheim and Schafer,
1989].

Equivalence of transforms

All three transforms, as described above, are convolutions
of the data and effectively equivalent [Bruns, 2004] (see
Appendix). This means that it does not matter which trans-
form is used to compute a time–frequency decomposition.
The key parameter is the window length (assuming a Gauss-
ian or a similar shape) one chooses at each frequency.

Power

For all three transforms the instantaneous power, around
a frequency f0, is:

P(t, f0)F � z(t, f0)F z(t, f0)F* (6)

where the superscript F stands for any of the transforms
STFT, MWT, or BP/HT, z is the convolved data and z* is its
complex conjugate. A schematic of the power transform is
shown in Figure 2.

Normal Error Assumptions

Instantaneous power estimates are a nonlinear function of
the data (Eq. 6). Power will follow a �2-distribution with two

degrees of freedom if EEG data are normally distributed.
(Note that this assumption may not be strictly necessary due
to the convolution of the data to estimate power.) This
means that the use of the general linear model, under nor-
mal error assumptions, is difficult to motivate [Nuwer,
1988]. This is unfortunate because the general linear model
(GLM) plays a central role in classical inference. For exam-
ple, in ERP research nearly all analysis techniques rely on a
special case of the GLM: analysis of variance (ANOVA). If
instantaneous power were normally distributed we could
reasonably assume that the stochastic or random effects in
statistical models of power also conformed to normal as-
sumptions. There are two simple ways to render power
approximately normal, enabling the use of the GLM and its
associated inference machinery.

The first is based on the fact that EEG/MEG questions are,
typically, not about power at a single time/frequency.
Rather, the interest lies in differences averaged over time–
frequency bins and, sometimes, single trials. By central limit
theorem these averages conform to Gaussian assumptions.
To be more specific, in most studies authors test for power
changes in rather wide time–frequency windows. For exam-
ple, Tallon-Baudry et al. [1998] average power over all time–
frequency bins between 24–60 Hz and 230–330 ms and test
for differences between two trial types. This large window
speaks to the intersubject variability expected for the latency
and frequency of gamma oscillations. When averaging sev-
eral �2-variables, one obtains a near-normal distribution due

Figure 2.
Schematic of power transform. For each trial i, we perform a
convolution with some kernel and estimate instantaneous power.
This process is repeated for all frequencies of interest. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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to the central limit theorem. (Note that power estimates over
time and frequency are correlated so that the effective degrees
of freedom of the resulting �2-distribution are lower than the
number of bins.) Furthermore, most researchers use a so-
called baseline correction, i.e., one subtracts baseline power in
a prestimulus time window. The distribution of this differ-
ence, under the null hypothesis, is symmetric around zero
and further approximates the normal distribution. These
considerations allow one to use linear models under normal
error assumptions.

In circumstances that preclude appeal to the central
limit theorem, one can transform the metric of interest
(e.g., the average power) to render it approximately nor-
mal. There are several nonlinear functions that can be
used, including the square root and the log-transform.
Both are used traditionally to render right-skewed data
normal [Nuwer, 1988]. The advantage of the square-root
transform is that it has a physical interpretation in terms
of magnitude. These transforms can be applied if there are
concerns about the normality of the data, for example,
time–frequency averages over a small number of bins. We
conclude this section by applying the log-transform to
synthetic (see next section) EEG data to demonstrate its
effect on the distributions of metrics of instantaneous
power (see Fig. 3).

• Single time–frequency bin: For a single time–frequency
bin, the distribution is �2, although a log-transform
renders the distribution approximately Gaussian (Fig.
3a,b). In the next section we show that the normal error
assumption for single time–frequency bin data leads to
biased P-values. For these data, a log- or sqrt-transform
is recommended.

• Averages over time bins: When taking an average over
peristimulus time (100 time points, averaged over
30–80 Hz), the resulting distribution of the log-trans-
formed power is virtually normal (Fig. 3d).

• Difference of averages: When taking the difference of two
power averages, the distribution of both the log-trans-
formed and the original power data is symmetric (Fig.
3e,f). Note that the transform is applied before taking
the difference. The distribution of the difference of av-
eraged power estimates is very close to the normal
distribution (Fig. 3e).

Clearly, these distributional assessments are interesting
but anecdotal. The key issue is whether parametric tests,
under normal assumptions, are valid. This is addressed in
the next section.

RESULTS AND DISCUSSION

Validity of Parametric Tests

In this section we use synthetic EEG data to show that
parametric tests are valid tests and retain sensitivity. (A
valid test has a false-positive rate that is equal or less than
the specified significance level.) Subsequent analyses of real
data are provided to illustrate operational details.

Synthetic data

The data were generated by drawing from a multivariate
normal distribution estimated from 80 trials as described in
Kiebel and Friston [2004]. We used data from a single subject
and from one channel, PO8, which showed an N170 compo-
nent in response to face stimuli [Henson et al., 2003]. We
computed the average (ERP) and the singular value decom-
position (SVD) of the sample residual covariance matrix.
EEG data were simulated by drawing from an empirically
defined multivariate Gaussian distribution with the sampled
ERP mean. The covariance was computed using only the
first 15 eigenvectors of the sampled covariance matrix. The
restriction to the principal components of EEG variability
biased the nonspherical variation, in simulated data, to-
wards physiological as opposed to measurement sources of
variance.

Figure 3.
The distributions of three EEG power metrics. The first column
shows distributions of the instantaneous power; the second col-
umn shows distributions of their log-transforms. Solid lines: Mea-
sured distribution. Dotted lines: Normal approximation. First row
(a,b): Distributions of power in a single time–frequency bin. Sec-
ond row (c,d): Distributions of average power over a time–
frequency window. Third row (e,f): Distributions of differences in
average power (cf. baseline-corrected averages).
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In simulations addressing sensitivity we added additional
oscillations to the null data.

Specificity I

In the first simulations, we generated data without (addi-
tional) oscillations to sample from the null distribution of
parametric statistics. To sample one statistic, we created 20
synthetic trials and labeled 10 as trial type 1 and the other
half as trial type 2. This rather low number of trials was
chosen to illustrate a worst-case scenario, which precludes
appeal to the central limit theorem when averaging over
trials. We then tested for a difference in power at 170 ms and
40 Hz. (Note that this difference has zero expectation in the
synthetic data.) We used the Morlet wavelet transform (ratio
f0 � 7) to estimate instantaneous power in each trial. We
iterated this procedure 104 times.

We computed the null distribution of P-values of T-statis-
tics based on power and their log- and sqrt-transforms. The
result is shown in Figure 4 as a probability-probability (P-P)
plot. Here, lines above the diagonal represent invalid or
capricious performance, and regions below the identity rep-
resent conservative performance. It can be seen that the tests
based on transformed power estimates (sqrt and log) re-
turned P-values which are very close to the distribution
necessary for an exact and valid test. The tests based on the
original power estimates were slightly conservative, espe-
cially at low P-values. We conclude that, for maximum
sensitivity, parametric tests of power, in single time–
frequency bins, should be based on transformed data.

Statistical tests on nontransformed data are likely to be
slightly conservative, but still valid.

Specificity II

In the second simulations we generated synthetic data as
above. However, this time we tested baseline-corrected av-
erages, i.e., differences of averages over pre- and poststimu-
lus time–frequency windows. The first window was be-
tween –61 to –20 ms and 30–80 Hz. The second was
between 151–190 ms and 30–80 Hz. As above, we sampled
20 single trials and labeled 10 trials as trial type 1 and the
other 10 as trial type 2. A test for differences between trial
types was repeated 104 times.

The results are shown in Figure 5. The log- and sqrt-
transform result in a valid and exact test. The test based
directly on the differences is slightly conservative. However,
the results are displayed on a log-log-scale and the deviation
from an exact test, at low P-values, is very small (empirical
8 � 10-3 vs. theoretical 10 � 10-3). This correspondence
suggests the transform may not be necessary in some set-
tings. Having established the specificity of parametric tests,
we now turn to sensitivity by simulating data with induced
oscillations.

Figure 4.
Comparison of P-values from null data using original power, log-,
and sqrt-transforms. The intertrial variability of the synthetic data
was based on real data.

Figure 5.
Comparison of P-values from null data. The data was baseline-
corrected power averages within single trials. Dashed line: P-
values required for an exact test. Dotted line: sqrt-transform. Solid
line: log-transform. Dash-dotted line: Original differences. This
shows that the log- and sqrt-transform lead to valid and exact
tests. The test based on differences is slightly too conservative, but
the bias is small.
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Sensitivity of parametric and nonparametric statistics

In the last simulations, we added an oscillatory activation
with random phase to one of the trial types. The acivation
was a windowed sinusoid with a center frequency of 40 Hz
and a full width at half maximum (FWHM) of 65 ms at 170
ms. We generated 5,000 datasets and used these, with the
null data of the previous simulations, to perform a sensitiv-
ity analysis using receiver-operating-characteristics (ROC)
curves. We compared a commonly used nonparametric sta-
tistic (Wilcoxon rank test for matched pairs) [Tallon-Baudry
et al., 1998] and parametric t-tests (Fig. 6). These procedures
test for induced oscillations in baseline-corrected power be-
tween 30–80 Hz and 150–190 ms. The results show that the
nonparametric statistic is the least sensitive approach. The
parametric tests have better and similar sensitivity. Note
that the test based on differences is nearly as sensitive as the
tests based on the log-transform. This allows one to use
parametric statistics on differences of average power, under
normal assumptions, while retaining maximum sensitivity.

EEG Data: Testing for Induced Oscillations

In this section we apply parametric and nonparametric
tests to analyze induced oscillations in the gamma range
(30–80 Hz). To compare the parametric method with an

established nonparametric approach, we analyzed data that
have been published. Tallon-Baudry et al. [1998] looked at
gamma-band activity during the delay period of a visual
short-term memory task. They showed increased power, in
the gamma-band, relative to a control condition.

The original report in Tallon-Baudry et al. [1998] com-
prised several analyses of induced and evoked power at
multiple channels. To illustrate the operational details of the
current method, we analyzed data from a particular channel
(O1).

The analysis of Tallon-Baudry et al. proceeded as follows.
First, they computed time–frequency decompositions, using
Morlet wavelets, of all single trials, between –300 to 1,200 ms
and 15–100 Hz. The data were acquired from 13 subjects
using two trial types with roughly 190 single trials each.
Instantaneous power was computed using Eq. 6. These data
were baseline-corrected by subtracting the average power
between –300 to –50 ms, at each frequency. For each trial
they averaged baseline-corrected power between 230–330
ms and 24–60 Hz. For each subject they averaged within
trial type. The resulting 26 values (two per subject) were
analyzed using the Wilcoxon test for matched pairs (P
	 0.04). The authors chose this nonparametric test because
they found that “…the values were far from having a Gauss-
ian distribution.” This claim was based on a histogram sim-
ilar to Figure 3c, which indeed does not look like a normal
distribution. However, the differences, i.e., baseline-cor-
rected power, have a normal distribution (cf. Fig. 3e). The
nonparametric Wilcoxon test is an appropriate choice, espe-
cially when the distribution of the data is not known. The
drawback of such nonparametric tests, however, is that they
cannot be generalized or adapted to other experimental
designs.

Furthermore, under Gaussian assumptions parametric
tests are, in expectation, more sensitive than nonparametric
tests.

To compare parametric and nonparametric tests we used
the same epoched data as Tallon-Baudry et al. [1998]. We
applied their processing steps to derive, for each subject,
baseline-corrected power between 230–330 ms and 24–60
Hz. This was done using statistical parametric mapping
(SPM) routines, developed specifically for the analysis and
preprocessing of EEG/MEG data [Kiebel and Friston, 2004].
In particular, the baseline-correction can be expressed as a
contrast of power over time–frequency (see Fig. 7). The
resulting data were then subject to parametric and nonpara-
metric tests.

For the parametric test, we derived a t-statistic to test for
a difference in power between conditions (P � 0.0498). For
the nonparametric test (Wilcoxon), the P-value was 0.0477.
Both values are very close to each other and suggest further
that the normal error assumption for this kind of data is
appropriate. The difference from the P-value originally re-
ported by Tallon-Baudry et al. [1998] is due to slightly
different implementations of the processing scheme and lies
in an expected range. Note that the lower P-value of the
nonparametric statistic does not contradict our finding that

Figure 6.
ROC curve analysis: Plot of true-positive vs. false-positive rates.
The graphs show that the nonparametric statistic (diamonds) is
less sensitive than all other tests, at a given false-positive rate.
Tests based on sqrt-transformed data (solid line) result in a slightly
better performance than the test based on power (dotted line) or
their log-transforms (dashed line). Dash-dotted diagonal: Perfor-
mance at chance level.
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parametric statistics are, on average, more sensitive at a
given false-positive rate (Fig. 6). We also performed single
subject analyses on all subjects to compare the parametric
two-sample t-test to the Wilcoxon rank sum test (P-values
not reported). We found that subject-wise parametric and
nonparametric P-values were very close to each other.
Again, this suggests that parametric tests are appropriate for
these data.

Applications

The key motivation for this work was to ensure the valid-
ity of parametric inference so that SPM could be used to
analyze instantaneous power changes. SPM combines para-
metric inference with random field theory to provide P-
values adjusted for continuous search spaces. There are two
useful applications to SPM. First, the analysis of (2D) time–
frequency images, where the dimensions of the search space
are time and frequency [Kilner et al., 2005]. These analyses
pertain to a single channel or source. Second, as we will
illustrate in a future communication, to apply SPM to base-
line-corrected power in source space. In this instance the
search volume is over (3D) anatomical space.

CONCLUSION

We have shown how evoked and induced power, as mea-
sured with EEG/MEG, can be analyzed using parametric
statistics. We found that the normal error assumption is
appropriate for usual metrics of interest, i.e., the baseline-
corrected average over time and frequency. This assumption
may be inappropriate for other metrics, e.g., instantaneous
power. In these cases, we have shown that a nonlinear

transform (log or sqrt) can be used to render the data nor-
mal. Normality allows one to make inferences using a stan-
dard parametric framework. We have established the valid-
ity and sensitivity of parametric tests using simulated and
real EEG data.
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APPENDIX

The STFT and the MWT can be made equivalent, at a
specific frequency, by choosing a Gaussian window for the
STFT with the appropriate width. The equivalence of the
BP/HT can be seen by noting that the convolution operator
is linear, i.e., the Hilbert transform of bandpass-filtered data
hHT * hBP * y� can also be described by (hHT * hBP) * y�. In other
words, instead of applying the Hilbert transform to band-
pass-filtered data, one can also convolve the data with the
Hilbert transformed bandpass filter kernel. This gives the
analytic signal

zBP(t) � (hBP * y�)(t) � i(hHT * hBP * y�)(t) (7)

The first kernel is the bandpass filter kernel hBP, and the
second (complex) is its phase-shifted version hHT * hBP. With
a Gaussian window for the kernel hBP, one obtains equiva-
lence among the three transforms. Clearly, this equivalence
vanishes if one computes a time–frequency decomposition
over more than one frequency. The STFT and BP/HT use, by
default, the same window width at each frequency, whereas
the MWT renders the width a function of frequency.

A further difference is that the window of the MWT is
Gaussian, whereas the STFT and the bandpass filter can be
applied with arbitrary forms. The bandpass filter does not
need to conform to a windowed FIR filter [see, e.g., Tass et
al., 2003]. In theory, free choice of the bandpass filter gives
more latitude to the frequency response. However, with
EEG/MEG the frequency response of interest is seldom
defined sharply. For instance, between-subject variability
calls for averaging of power over frequencies. This averag-
ing is likely to obscure any differences arising from the filter
shape. If we assume that an FIR filter with a Gaussian
window is sufficient to analyze induced oscillations, the key
parameter, for all transforms, is the window width.
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