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Abstract

In neuroimaging, data are often modeled using general linear models. Here, we focus on GLMs with error covariances which are modeled
as a linear combination of multiple variance/covariance components. Each of these components is weighted by one variance parameter. In
many analyses variance parameters are estimated using restricted maximum likelihood (ReML). Most classical approaches assume the error
covariance matrix can be factorized into a single variance parameter and a nonspherical correlation matrix. In this context, the F test based
on a single variance parameter, with a suitable correction to the degrees of freedom, is the standard inference tool. This correction can also
be adapted to models with multiple variance parameters. However, this extension overlooks the uncertainty about the variance parameter
estimates and P values tend to be underestimated. Here, we show how one can overcome this problem to render the F test more exact. This
issue is important, because serial correlations in fMRI time series are generally modeled using multiple variance parameters. Another
application is to hierarchical linear models, which are used for modeling multisubject data. To illustrate our approach, we apply it to some
typical modeling scenarios in fMRI data analysis.
© 2003 Elsevier Inc. All rights reserved.

Introduction

In neuroimaging, data are often analyzed in a voxel-wise
fashion. After preprocessing, each voxel provides a univar-
iate data sequence. The most prevalent model for these data
is the general linear model (Rao and Toutenburg, 1995).
The basic idea is to partition the data into two components.
The first can be explained by a linear combination of some
user-specified explanatory variables. The second is error.
The experimenter is typically interested in the effects mod-
eled by the explantory variables, e.g., how strong a response
is. However, the error is also important, because the signif-
icance of a response is assessed using its estimated covari-
ance. This depends on the estimated covariance of the error.
In other words, a proper assessment of the error is necessary
to make inferences about activations.

One could estimate all the elements of the error covari-
ance matrix with a nonparametric method, but because the
number of elements is quadratic in the number of scans, this
is prohibitive. One generally parameterizes the covariance
matrix and estimates a single variance parameter. A well-
known example is when the covariance component, scaled
by the variance parameter, is the identity matrix. This is
called the general linear model, which assumes an identi-
cally, independently distributed error. Many statistical tests
are based on this model, e.g., the standard extra sum of
squares F test (Fahrmeir and Tutz, 1994). Positron emission
tomography (PET) and single photon emission computed
tomography (SPECT) data are examples, where this model
is appropriate.

More generally, one can specify a known matrix Q as a
single covariance component. This is useful, when one
knows the correlation structure, but not its variance. This
model was proposed for functional magnetic resonance im-
aging (fMRI) data (Worsley and Friston, 1995; Friston et
al., 2002a). Here, the key issue is the correct specification of
the correlation matrix. A common approach is to estimate
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the correlation structure by pooling over many voxels
(Friston et al., 2002a; Worsley et al., 2002). When Q is
not the identity matrix, the standard F statistic no longer
conforms exactly to an F distribution. However, to make
inferences, one can approximate the unknown distribu-
tion of the test statistic by a F distribution based on the
Satterthwaite approximation (Worsley and Friston,
1995). This is formally identical to that used in the
Greenhouse-Geisser correction.

The generalization of this approach is to model the co-
variance matrix by using a mixture of several covariance
components. Each of these is scaled by its own variance
parameter (Harville, 1977; Friston et al., 2002b). This ap-
proach affords the latitude to model unknown covariance
structures. Examples, for which multiple covariance com-
ponent models are useful, include serial correlations in
fMRI and hierarchical linear models.

The Satterthwaite approximation as employed in (Wors-
ley and Friston, 1995) is not applicable with multiple co-
variance components. There are two reasons for this. First,
the covariance among different variance parameter esti-
mates is ignored. This results in an increased (false) cer-
tainty about these estimates. Therefore, P values are gener-
ally too low and give invalid tests. The second reason is that
the variability of different contrasts may depend on different
variance components (i.e., variance parameters) that may
have been estimated with different precisions. This means
different contrasts should have different degrees of freedom.
The application of the Satterthwaite approximation as de-
scribed in Worsley and Friston (1995) does not accommo-
date this.

An appropriate estimation of the null distribution
should embody the covariance matrix of the variance
parameters estimated. In this note, we propose a general
Satterthwaite approximation for multiple covariance
components. This is based on a normal approximation to
the distribution of the likelihood of the variance para-
meter estimates. We show how to derive a F ratio for
single and multiple variance parameters starting from the
log-likelihood ratio normalized by its estimated expecta-
tion.

We apply this procedure to three synthetic data sets. We
treat some of the typical modeling scenarios encountered in
neuroimaging research. For these data, we show that our
approach improves P value estimates as compared to the
approach adapted from the procedure described in (Worsley
and Friston, 1995).

Theory

In this section, we describe linear models that are
commonly used in neuroimaging and, in particular, in
functional magnetic resonance imaging (fMRI) data anal-

ysis. These models belong to the class of the general
linear model (Rao and Toutenburg, 1995). We derive a F
test for multiple covariance components models. We fo-
cus on the F test that obtains when using ordinary least-
squares for the regression coefficient or parameter esti-
mates and restricted maximum likelihood (ReML)
(Harville, 1977) for the variance parameter estimates of
the covariance components.

The general linear model and the F ratio

Consider the general linear model

y � X� � �, (1)

where y is a data vector of length n, X is the n � p design
matrix, � is a p-dimensional parameter vector (regression
coefficients), and � is an error vector of length n. For the
general linear model with independent and identically dis-
tributed (iid) error assumptions, the error is normally dis-
tributed with � � N (0, �2In), where In is the identity matrix
of rank n.

Let

R � In � XX�

R0 � In � X0X0
�

M � R0 � R, (2)

where X� denotes the generalized inverse of X. X0 is the
reduced model; i.e., X0 represents a subspace of the full
model X. The null hypothesis is whether the full model X
explains something in addition to the reduced model X0.
Then, M is a projector onto the subspace of X that is not
spanned by X0. M � R0 � R can be defined either by direct
specification of X0 or, more commonly, through contrast
weights c as described in the Appendix.

Classical statistics are generally formed from log-likeli-
hood ratios. In the case of the general linear model, we have

p� y�X� � �2��2��n/ 2exp��
1

2�2 yTRTRy�
p� y�X0� � �2��2��n/ 2exp��

1

2�2 yTR0
TR0y�

l � ln� p� y�X�

p� y�X0�
�

�
1

2�2 � yTR0
TR0y � yTRTRy�

�
1

2�2 yT My. (3)

Scaling the log-likelihood ratio l [Eq. (3)], so its expectation
under the null hypothesis is unity, gives

l

	l0

�

yTMy

�2tr�M�
, (4)
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where tr(�) denotes the trace operator. 	l0
 is the expectation
of l under the null hypothesis

	l0
 � �yTMy

2�2 � � � tr�M��T�

2�2 � �
tr�M�2I�

2�2

	l0
 �
tr�M�

2
. (5)

Similarly, 	yT Ry
 � �2tr(R). This equality provides for
the unbiased maximum likelihood (ML) estimator
�̂2 � yT Ry/tr(R). Replacing the unknown error variance
variance parameter with this estimator gives the classical F
ratio

f �
yTMy

�̂2tr�M�
�

yTMy/tr�M�

yTRy/tr�R�
. (6)

Note that the motivation for the F ratio is more commonly
portrayed as the ratio of the sum of squares (SSQ) due to the
effects of interest and those due to error.

Values of this statistic that are significantly greater than
1 allow rejection of the null hypothesis. The null distribu-
tion of f obtains from the ratio of two scaled �2 variables.
An important interpretation of Eq. (6) is that the F ratio is
simply the estimated normalized SSQ due to treatment ef-
fects of interest (yT My)/�̂2 divided by its expectation under
the null hypothesis tr(M). The uncertainty in these SSQ
estimators enters the inference through the degrees of free-
dom, where f � F	0,	

with

	0 � tr�M� and 	 � tr�R�. (7)

F	0
,	 denotes the F distribution with 	0 and 	 degrees of

freedom.

One nonspherical variance component

In many cases, we cannot assume, as in Eq. (6), that the
error is independent and identically distributed. If we know
the form of the covariance matrix, we can still derive an
(approximate) F statistic.

For a general linear model with a single variance param-
eter and a nonspherical variance component Q, i.e., � �
N(0, �2Q), the F statistic and degrees of freedom can be
estimated as (Worsley and Friston, 1995)

f �
yTMy/tr�MQ�

yTRy/tr�RQ�
� F	0,	, (8)

where

	0 �
tr�MQ�2

tr�MQMQ�
and 	 �

tr�RQ�2

tr�RQRQ�
. (9)

There are two approximations here. The first is that the
variance parameter estimate

�̂2 � yTRy/tr�RQ� (10)

no longer conforms to a scaled �2 distribution. However,

through the Satterthwaite approximation (e.g., Yandell,
1997, p. 224–225), we can approximate it with one using
the method of moments to estimate the effective degrees of
freedom given in Eq. (9).

	 �
2	�̂2
2

Var��̂2�
, (11)

where 	�
 denotes the expectation and Var (�) the variance of
a random variable.

The expectation of �̂2 is given by �2 itself; i.e.,

	�̂2
 � �2 (12)

and its variance by

Var��̂2� �
2�2tr�RQRQ�

tr�RQ�2 . (13)

These results are also derived (in more detail) in (Kiebel
and Holmes, 2003). The utility of Eq. (8) lies in being able
to model nonsphericity using simple OLS parameter esti-
mates, followed by an adjustment to the degrees of freedom
using the Satterthwaite approximation. This is formally
identical to the Greenhouse-Geisser correction.

The second approximation is that the F value [Eq. (8)],
although valid, is no longer a log-likelihood ratio. To con-
struct a log-likelihood ratio we would have to use projector
matrices based on the maximum-likelihood estimates and
restricted maximum likelihood estimates of the variance
parameters. The classical F ratio [Eq. (8)] is based on OLS
projectors.

The ensuing loss of efficiency, when using classical F
statistics, in estimating the variance parameter is reflected in
the fact that the effective degrees of freedom 	 are always
less than tr(R).

As noted above, a better estimator of the variance pa-
rameter �2 is the ReML estimator. The ReML estimate uses
decorrelated residuals about the maximum likelihood fit, see
Appendix 2 of Friston et al., 2002b. The ReML estimate is
given by

�̂2 �
yTRML

T Q�1RMLy

tr�RML�
, (14)

where

RML � In � X�XTC�
�1X��1XTC�

�1 (15)

and the error covariance matrix C� � �2Q so that

RML � In � X�XTQ�1X��1XTQ�1. (16)

	 � tr(RML) � tr(R); i.e., the effective degrees of freedom
for the variance parameter revert to those in Eq. (7). We will
pursue the construction of F ratios that use OLS projectors
but incorporate ReML variance parameter estimates.

Multiple variance parameters

A generalization of the single covariance component
case is when one assumes that the error covariance matrix
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can be characterized as a linear combination of several
components.

For general linear models with m variance para-
meters, the errors are distributed with � � N(0, C�)
and C�� 
1Q1 � � � � � 
mQm� �i�1

m 
iQi has multiple
components. ReML variance parameters estimates 
̂ �
[
̂1, . . . , 
̂m]T are usually obtained iteratively and do not gen-
erally have an easily derived covariance matrix. This covari-
ance matrix is needed to specify an appropriate null distribu-
tion for F. In the following two subsections we describe how
one can use the ReML variance parameter estimates to find an
approximating F null distribution using the Satterthwaite and a
normal approximation.

As in the single variance parameter case [Eq. (8)], one
can use the estimated normalized sum of squares due to
treatment divided by its estimated expectation under the null
hypothesis, where 	yT My
 � 	�T M�
 � tr(MC�), giving

f �
yT My


̂1tr�MQ1� � . . . � 
̂mtr�MQm�
�

yTMy


̂TT
, (17)

where the elements of vector T are

Ti � tr�MQi�. (18)

The degrees of freedom of the numerator is 	0 � tr(MĈ�)2/
tr(MĈ�MĈ�), [cf. Eq. (9)]. The degrees of freedom of the
denominator (	), whose distribution is approximately a mix-
ture of scaled �2 variables, depend on the distribution of
each of the estimated variance parameters. Again, we can
use the Satterthwaite approximation to compute the effec-
tive degrees of freedom

	 �
2	
̂TT
2

Var�
̂TT�
�

2	
̂TT
2

TTCov�
̂�T
, (19)

where Cov(�) denotes the covariance. The expectation of the
variance parameter estimates is simply 	
̂
 � 
. However,
the covariance matrix of the estimated variance parameters
can, in many cases, only be approximated. We will use a
normal approximation to Cov(
̂).

Normal approximation

Assuming we have ReML estimators of the variance
parameters 
, we can use a Taylor series expansion for the
log-likelihood log(p(y�
)). The expansion gives

log p� y�
� � log p� y�
̂�

�
1

2
�
 � 
̂�T

�2

�
2 log p� y�
̂��
 � 
̂� � . . .. (20)

Note that the first-order term in the Taylor series expansion

is zero, because the partial derivative is zero at 
̂. A second
order approximation implies

log p� y�
� �
1

2
�
 � 
̂�T

�2

�
2 log p� y�
̂��
 � 
̂�

(21)

and therefore

p� y�
� � N�
̂, I�
̂��1�, (22)

where I(
̂) is the observed information matrix with

I�
̂� � �
�2

�
2 log p� y�
̂�. (23)

Here, we use the expectation of I(
̂) over the data y, the
expected information matrix

IE�
̂� � � ��2 log p� y�
̂�

�
i�
j

�
y

. (24)

From (Harville, 1977), the elements of this matrix are given by

IE�
̂�ij �
1

2
tr�PQiPQj�, (25)

where

P � C�
�1 � C�

�1X�XTC�
�1X��1XTC�

�1. (26)

When we substitute C� by its estimate Ĉ�, the normal
approximation to p(y�
̂) is N(
̂, ÎE(
̂)�1).

Effective degrees of freedom

The normal approximation to p(y�
̂) allows us to com-
pute the effective degrees of freedom using the Satterth-
waite approximation [Eq. (19)]. Using the estimated infor-
mation matrix, we have

	̂ �
�
̂TT�2

TTW�1T
, (27)

where T is defined in Eq. (18) and

Wij � tr�P̂QiP̂Qj�, (28)

i.e., W is the information matrix multiplied by two. In many
instances, the variance parameters in the numerator and
denominator in Eq. (27) cancel and the expression is exact,
i.e., 	̂ � 	.

Summary

To use our approach for multiple variance parameters,
one estimates the parameters � using ordinary least-squares
(OLS) while estimating the variance parameters 
 using
restricted maximum likelihood. One then computes an F
ratio according to Eq. (17). The inference is made by com-
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puting the P value of this F ratio by using a null F distri-
bution with 	0 � tr(MĈ�)2/tr(MĈ�MĈ�) and 	̂ � ((TT
̂)2)/
(TTW�1T ) [Eq. (27)] degrees of freedom.

There are two critical points about this approach. The
first is that different contrasts have different degrees of
freedom. The second is that the covariance among variance
parameters is taken into account when estimating the effec-
tive degrees of freedom. Both these considerations should
ensure reasonably valid tests.

An alternative approach

Below, we will compare our approach to that based on
(Worsley and Friston, 1995). Their approach assumes that the
error covariance matrix is known and employs a Satterthwaite
approximation to compute the effective degrees of freedom for
a t or F distribution. One can use this approach for multiple
variance parameter models by first estimating the correlation
matrix and then treating it as known. This estimate V obtains
by scaling Ĉ� so that V � (nĈ�)/(trace(Ĉ�)). In other words,
one reduces the multiple variance parameter model to a single
variance parameter one (C� � 
V), for which distributional
results are provided in (Worsley and Friston, 1995).1 In the
remainder of the note, we will refer to this as the WF proce-
dure, which is applied in this deliberately inappropriate way to
illustrate the improvement conferred by the current approach.

Some important cases

In the following, we will discuss three models, which are
special cases of the multiple variance parameter model. For
these, we derive the effective degrees of freedom using
Eq. (27).

Generally, if there is only one variance parameter, T
[Eq. (18)] becomes a scalar and disappears from Eq. (27). In
other words, the effective degrees of freedom of the denom-
inator do not depend on the contrast of effects tested. In
contradistinction, when there are multiple variance param-
eters, they do.

The general linear model
Here, � � N(0, 
In), i.e., Q � In, and C�

�1 � In/
 and P �
(In�X (XTX)�1XT)/
 � R/
. This gives the classical result
for the degrees of freedom

T � tr�M�

W �
tr�R�


̂2

	 � tr�R�. (29)

General linear model with a single variance parameter
Let � � N(0, 
Q). Here, C�

�1 � Q�1/
 and therefore P �
(Q�1 � Q�1X (XTQ�1X)�1XTQ�1)/
 � Q�1 RML/
, where
RML as defined in Eq. (15). This again gives the classical
degrees of freedom

T � tr�MQ�

W �
tr�R̂ML�


̂2

v � tr�R̂ML�, (30)

where tr(R̂ML) � tr(R). (These results can be derived using
tr(A � B) � tr(A) � tr(B) and the cyclical property of the
trace operator, i.e. tr(ABC) � tr(BCA).)

The Satterthwaite approximation used by Worsley and
Friston (1995) reduces to Eq. (30) when prewhitening is
used for the variance parameter estimation [Eq. (10)]. Pre-
whitening means the multiplication of the model Y � X� �
� by Ĉ�

�1/2. Using the notation in (Worsley and Friston,
1995), matrix V becomes the identity matrix, the variance
parameter estimate becomes the ReML estimate, and the
effective degrees of freedom 	 � tr(R).

General linear model with spherical variance components
If the Qi are leading diagonal and nonoverlapping such

that Wij � 0 for i � j we have

	̂ �
�i
̂i

2tr�MQi�
2

�i
̂i
2
tr�MQi�

2tr�RMLQiRMLQi�
�1

. (31)

If we impose the additional constraint on the F contrast that
renders only one tr(MQi) nonzero, we have

	̂ � tr�R̂MLQiR̂MLQi�. (32)

Critically, the degrees of freedom 	 now depend on M. This
means different subspaces tested (by different contrasts) will have
different degrees of freedom. We will demonstrate this below.

Simulations

Synthetic data

In the following, we apply the current and the WF proce-
dure to synthetic data. To assess the validity of our approach,
we evaluated the approximation to the null distribution. There-
fore, it was sufficient to generate synthetic data under the null
hypothesis that does not include signal, i.e., activation.

We first deal with a simple but classic (Behrens-Fisher)
problem of comparing the means of two samples with dif-
ferent error variances. This is a somewhat trivial example
that sets the scene for two further examples of nonsphericity
with multiple variance components. These are (1) compo-
nents induced by the hierarchical nature of observation
models and (2) by serial correlations in a single level model.

1 It should be noted that this approach is adapted by SPM2. However, the
estimate of V obtains by pooling over all responsive voxels. The ensuing
precision is so high that V can be treated as known (Glaser et al., 2002).
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Two groups with different variances

In the first experiment, we model two groups with different
means and variances. We do not assume any covariance be-
tween groups. We used six observations in each group. We
want to test for the difference between group means while
allowing for different variances. The design matrix consists of
two columns with dummy variables indicating that an obser-
vation belongs to either group 1 or group 2 (Fig. 1, left). The
two variance components have ones and zeros on the diagonal,
indicating group 1 or 2 (Fig. 1, right).

The interesting contrasts are the vectors c � [�1 1]T and [1
�1]T that test for a difference between group means. For these
contrasts, WF gives the same effective degrees of freedom as our
procedure. However, for a contrast that is zero for one of the
columns of the design matrix, e.g., [0 1]T, the effective degrees of
freedom diverge. This means the null distributions and subse-
quently the P values are different. The [0 1]T contrast might
appear nonsensical at first, because one can test this hypothesis
simply by using a one-sample t test. However, note that our
formulation has the advantage that one model can be used to test
multiple hypotheses without refitting different models.

To see how the diversion of the effective degrees of
freedom effects the computed P values, we repeated this
experiment 104 times by drawing a Gaussian identically
independently distributed (iid) data vector with variance 1
and applied both approaches. The resulting cumulative P
value distributions are shown in a PP plot (Fig. 2). In this
plot, lines above the identity represent invalid, or capri-
cious, performance, and regions below the identity represent
conservative performance. For small P values, the WF ap-
proach slightly underestimates P values. Our approach es-
timates P values that indicate a more valid test. The degrees
of freedom of the associated F statistic were ranging be-
tween 5.48 and 10.00 (mean 8.68) for WF and 5 for the
current approach.

Hierarchical model

Another model that is often used in neuroimaging is a
hierarchical model with two levels (Friston et al., 2002a). In
our example, the first level models scans within subjects and

the second level models effects over subjects. We modeled
three scans for each of 12 subjects. At the second level, we
model two groups of 6 subjects each. We assume different
variances between groups at the second level. See Fig. 3 and 4
for a graphical display of the two design matrices and the three
covariance components at both levels. Hierarchical models
induce multiple variance components in the following way

y�1� � X�1���1� � ��1� (33)

��1� � X�2���2� � ��2� (34)

Fig. 1. Graphical display of a model for two groups with different means
and variances. Left, design matrix, right, two covariance components.

Fig. 2. Comparison of cumulative P values using our approach and WF.
We modeled two groups with different means and different variances and
tested for the mean of group 2. Results are displayed on a log-log plot.
Dashed line, P values required for an exact test; dot-dashed line, WF
approach; Solid line, current approach.

Fig. 3. First and second level design matrix for a hierarchical model.
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giving

y�1� � X�1�X�2���2� � X�1���2� � ��1�. (35)

The ensuing error has three components (Fig. 4) corre-
sponding to 
1Q1 (first level), 
2Q2, and 
3Q3 (second
level). Note that the two variance parameters at the second
level are hyperparameters of the first level parameters �(1).

Here, we use a [0 1]T contrast. We repeated this exper-
iment 104 times by drawing a data vector with variance 1
from a iid Gaussian distribution and applied both ap-
proaches. We observed discrepancies in the P value estima-
tion between the two approaches (Fig. 5). For low P values,
the WF approach underestimates the P values. Our approach
gives higher P values, which provide a nearly valid test. The

degrees of freedom of the associated t statistic were 10 for
WF and 5 for the current approach.

Serial correlations

Our third simulation embodies simulated serial correla-
tions in fMRI time series. These can be modeled by two
error covariance components. The choice of the covariance
components are based on an AR(1) plus white noise model
and are shown in Fig. 6. The AR(1) coefficient is fixed to be
1/e, which is typical for data acquired at 1.5 or 2 T with a
standard echo planar imaging (EPI) sequence.

We sampled 104 time series of length 48 from an AR(1)
process with a Gaussian iid error with variance 1. The
AR(1) coefficient was 1/e. The design matrix X was simply
a constant regressor. We tested for the mean effect with a
contrast of [1]. Any difference between P value estimates is
due to treating the relative sizes of the covariance compo-
nents as known. In reality there are two unknown covari-
ance components. Our method takes this into account, the
WF approach does not. The resulting estimates of the P
values using the WF and our approach are shown in Fig. 7.
Additionally, we estimated P values using a model for
which the error was assumed to be iid (the current and the
WF procedures are the same here). Clearly, this assumption
leads to highly underestimated P values. For small P values,

Fig. 4. First and second level covariance components for a hierarchical model.

Fig. 5. Comparison of P values using our approach and WF. We modeled
two groups with 12 subjects with three observations each. We tested for the
effect of group 2. Results are displayed on a log-log plot. Dashed line, P
values required for an exact test; dot-dashed line, WF approach; solid line,
presented approach.

Fig. 6. Covariance components which model serial correlations in a fMRI
time series.
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the WF approach still underestimates P values, although to
a much lesser extent. Our approach gives P values closer to
the P values required for a valid test. The degrees of free-
dom of the associated F statistic were between 24.51 and
46.99 (mean 36.40) for WF (modeling serial correlations),
47 when not modeling serial correlations, and between 3.98
and 28.12 (mean 15.44) for the current approach.

Discussion

We have developed a general estimator for the effective
degrees of freedom of a F distribution when using multiple
variance parameters in general linear models. The variance
parameters are coefficients of covariance components which
are linearly mixed to model the error covariance. The esti-
mate of the effective degrees of freedom is based on the
Satterthwaite approximation and a normal approximation to
the likelihood of the variance parameters. We construct a F
statistic from ordinary least-squares estimates of the param-
eters and restricted maximum likelihood estimates of the
variance parameters. Inference can be made by approximat-
ing the distribution of the F statistic by a null F distribution.
Only in the case of the general linear model with iid error is
this null distribution exact. In all other cases the null F
distribution approximates the underlying null distribution.

We derived a Satterthwaite approximation to the distribu-
tion of the estimated expectation of the treatment effect under
the null hypothesis [denominator of Eq. (17)] when using
multiple variance parameters. As we have shown with syn-

thetic data the resulting effective degrees of freedom indicate
reasonably valid tests. When using another method (Worsley
and Friston, 1995) that was developed for a known covariance
matrix structure with a single variance parameter, the resulting
P values tended to be underestimated. The WF procedure is
formally identical to the Greenhouse-Geisser correction.

There are two reasons for discrepancy between the WF and
our approach when using multiple variance parameters. The
first is that the effective degrees of freedom should be a
function of the contrast defining M. With the WF approach,
this is not the case. This is because one assumes a known
correlation matrix and the uncertainty in the single variance
parameter estimate effects all contrasts equally. The resulting
underestimation is clearly illustrated in the first two synthetic
data examples. With our approach, the contrast enters the
estimation of the effective degrees of freedom through M.

Another reason for a difference between both approaches is
that the covariance between estimated variance parameters
should be taken into account during inference. Clearly, this
cannot be done with the WF approach, because there is only
one variance parameter. However, the covariance between
estimated variance parameters is important, if one deals with
overlapping covariance components [see Eq. (27)]. An exam-
ple of an overlap is the model for serial correlations in fMRI.

In practice, for many studies, the differences between using
the current and the WF approach will be small. This is because
the null distribution does not differ much once both estimates
of the effective degrees of freedom are above (say) 32. To see
this, we show three different null t distributions (the cumula-
tive distribution function (CDF)) for 9, 32, and 128 degrees of
freedom (Fig. 8). The interesting part of the CDFs is the upper
tail, which is associated with small P values. The difference
between 9 and 32 degrees of freedom can make a difference.
For 32 and 128 degrees of freedom, this difference in the
resulting P value (given the same t value) is small.

For which data does a proper distributional approxima-
tion make a difference? Basically, one will observe differ-
ences when using multiple covariance components in hier-
archical models, where one has only few data points at the
subject level. A relevant example is a two-level model,
where the second level models effects over subjects. If one
uses multiple covariance components at the subject level (to
model different variances), one may encounter differences
for small P values for group-specific contrasts and contrasts
testing for differences between groups.

Finally, we would like to point out the differences be-
tween the approach described here and the one adapted by
statistical parametric mapping (SPM). SPM uses a spatial,
hierarchical model to estimate the correlation matrix struc-
ture for all voxels. In a first step, SPM estimates from the
sample covariance matrix (over a subset of voxels) the
variance parameters of the specified covariance components
using ReML. Note that ReML estimates the variance pa-
rameters in the null space of the design matrix. The esti-
mates are based on many voxels; i.e., the certainty or pre-
cision about the estimates is extremely high. Therefore, at

Fig. 7. Comparison of P values using our approach and WF. We modeled
a fMRI time series using two covariance components. Results are displayed
on a log-log plot. Dashed line, P values required for an exact test; dotted
line, conventional F test (not modeling serial correlations); dot-dashed line,
WF approach (modeling serial correlations); solid line, presented approach.
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each voxel, one can treat the estimates and therefore the
correlation matrix as known. Then, SPM uses the Worsley
and Friston (1995) procedure. In other words, SPM uses
knowledge derived from a global estimate to finesse local
variance parameter estimates.

Conclusion

We have derived an estimator for the effective degrees of
freedom when using multiple variance parameters in a re-
gression model with normally distributed error. Our ap-
proach is based on the Satterthwaite and a normal approx-
imation. Inference is made using F tests, using ordinary
least-squares estimates for the parameters and restricted
maximum likelihood for the variance parameters. We have
shown that our approach gives valid tests, whereas classical
approaches based on a single variance parameter underes-
timate P values and yield invalid tests.
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Appendix

In this appendix, we show how to compute the projection
matrix M, which is necessary to form F statistics, based on
OLS parameter estimates.

The general linear model is given by

y � X� � �, (36)

where y is a data vector of length n, X is the n � p design
matrix, � is a p-dimensional parameter vector (regression
coefficients), and � is an error vector of length n. If one has
a reduced model X0, one can test whether the full model X
explains anything in addition to X0. X0 spans a subspace of

the space spanned by X. One often talks, in this context, of
a nested model.

The test based on the F statistic [Eq. (6)] is a function of
the data y and two projection matrices R and M. R � In �
XX� is the residual forming matrix of the full model X, i.e.,
a projection matrix from the measurement to the residual
space. M projects the data to a subspace of X that is the null
space of X0. This subspace spans the effects of interest after
taking into account the reduced model.

Computing M requires the reduced model X0. One can
specify X0 directly for simple models, but for more complex
models, this can be difficult. The most commonly used
approach is to specify contrast weights c which define the
effects one wishes to test for c can be a vector or a matrix.

To get X0, one first finds the null space of c.

c0 � Ip � cc�Ip. (37)

The reduced model is X0 � Xc0. Note that although the
contrast weights c0 and c are orthogonal to each other, the
resulting partitions of the design matrix (Xc and Xc0) are not
necessarily orthogonal. The residual forming matrices of X
and X0 are then

R � In � XX�

R0 � In � X0X0
� (38)

and M � R0�R. The important point to note is that an
overlap of the subspaces spanned by X0 and Xc is resolved
by assigning it to X0. The space orthogonal to X0 is

X1 � Xc � X0X0
�Xc. (39)

X1 is never needed in the computation of the F statistic, but
it is the space that one tests for.
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