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The assessment of significant activations in func-
tional imaging using voxel-based methods often relies
on results derived from the theory of Gaussian random
fields. These results solve the multiple comparison
problem and assume that the spatial correlation or
smoothness of the data is known or can be estimated.
End results (i.e., P values associated with local maxima,
clusters, or sets of clusters) critically depend on this
assessment, which should be as exact and as reliable as
possible. In some earlier implementations of statistical
parametric mapping (SPM) (SPM94, SPM95) the
smoothness was assessed on Gaussianized t-fields (Gt-f)
that are not generally free of physiological signal. This
technique has two limitations. First, the estimation is
not stable (the variance of the estimator being far from
negligible) and, second, physiological signal in the Gt-f
will bias the estimation. In this paper, we describe an
estimation method that overcomes these drawbacks.
The new approach involves estimating the smoothness
of standardized residual fields which approximates
the smoothness of the component fields of the associ-
ated t-field. Knowing the smoothness of these compo-
nent fields is important because it allows one to com-
pute corrected P values for statistical fields other than
the ¢-field or the Gt-f (e.g., the F-map) and eschews bias
due to deviation from the null hypothesis. We validate
the method on simulated data and demonstrate it using
data from a functional MRI study. o 1999 Academic Press

INTRODUCTION

The objective of voxel-based analyses of functional
brain images is to classify measured activities as
significant on the basis of the probability that they
could have occurred by chance. Estimation of these
probabilities can be based on the theory of Gaussian
random fields (GRF) (Adler, 1981), which is used to
describe certain features of functional brain images
and the associated statistic image process. It is impor-
tant that the correlations of neighbouring voxels in
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statistical processes are taken into account when solv-
ing the multiple comparison problem and estimating
the significance of an activation. To quantify these
correlations, the smoothness of the statistical process
must be estimated under the null hypothesis that the
statistical process does not contain any signal due to
physiological changes. The smoothness estimator in
the framework of older implementations of statistical
parametric mapping (SPM) (SPM94, SPM95) used the
observed statistical process, which is generally not free
of effects induced by the experimental paradigm. In
this note, we describe a new method that uses math-
ematical results from Worsley (1996), which eschews
this problem and estimates smoothness in an unbiased
way. To validate these findings, we show that the new
method accurately estimates the smoothness of simu-
lated statistical processes. We apply the new estimator
to a functional MRI study to exemplify the procedure
and observe that the new smoothness estimator is more
accurate than the previous one.

THEORY

Preliminaries

One of the aims of functional brain data analysis
techniques is to find a solution for the multiple compari-
son problem, which is to characterize a computed
univariate statistical map in such a way that the
chance of occurrence of interesting events is estimated
correctly under the null hypothesis that there are no
effects induced by the experimental design. This task is
not as simple as it first appears to be, since neighboring
statistical voxel values are not independent because of
the intrinsic point spread function of the imaging
device, the autocorrelation in physiological effects, or
smoothness induced by an exogenous spatial lowpass
filter employed prior to analysis.

Modeling this knowledge about the underlying spa-
tial autocorrelation of the signal or the smoothness
leads quite naturally to methods which use some
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measure of autocorrelation to detect activation effects
deviating from the expected spatial features within a
given statistical map. The theory of Gaussian random
fields (Adler, 1981) seems to be a framework appropri-
ate for characterizing statistical maps and detecting
spatial activation effects. Using the theory of random
fields, the chance of occurrence of events (local voxel
maxima, cluster sizes, or cardinality of a set of clusters)
in a statistical process can be assessed under the
assumption that the discrete process in question ap-
proximates a GRF that conforms to this characteriza-
tion. Any event in the statistical image whose P value
for occurrence by chance in the GRF is sufficiently
small can be declared significant. In the framework of
SPM, the statistical process is a Gaussianized ¢-field
(Gt-f), which is taken to be a good lattice representation
of a stationary Gaussian random field for high degrees
of freedom. (See, e.g., Holmes, 1994, for a review of the
underlying assumptions.) The important properties of
a stationary GRF are that (1) the distribution of any
voxel value is normal with zero mean and unit vari-
ance, (2) any subset of voxel values has a multivariate
normal distribution, and (3) this multivariate distribu-
tion is strictly stationary (i.e., is not a function of
position). These properties imply that the point re-
sponse function (PRF) of the Gt-f under the null
hypothesis is stationary; i.e., the generating param-
eters of a stationary GRF are its mean, variance, and
the autocorrelation function (ACF), where the paramet-
ric form of the ACF itself does not need to be Gaussian,
but has properties (2) and (3) of a stationary GRF. Since
the moments of the statistical process under the null
hypothesis are known, the smoothness induced by the
ACF (under the null hypothesis) remains to be as-
sessed.

The smoothness of a stationary GRF is defined as
|A|712, where A is the covariance matrix of the partial
derivatives of the GRF at any voxel position. This
definition of smoothness is a function of the underlying
(in most cases unknown) parametric form of the PRF.
However, to estimate the unknown A, it is not neces-
sary to estimate the actual PRF or the associated ACF.
The only assumption made is that the ACF must be
twice differentiable at zero. This reflects the fact that
smoothness estimation is only concerned with the
features of the ACF around zero.

If the underlying parametric form of the PRF is
assumed to be Gaussian, another way of describing the
smoothness is the covariance matrix W = (2A)~! of the
Gaussian filter, which could have been used to generate
the smoothness of the GRF in question from a Gaussian
white noise process.

If the off-diagonal elements of W are zero, meaning
that the PRF is elliptical in shape, with axes aligned
with the coordinate axes, each image dimension has its
own smoothness measure, independent of other dimen-
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sions. This sparse way of reporting smoothness is often
used for a Gaussian PRF, for which we measure smooth-
ness as full width at half maximum (FWHM) in each

dimension: FWHM, = \8In(2)W,; fori =1,...,D.

Inference

In the following, we will summarize some of the
important results concerning statistical inference in
voxel-based functional brain imaging based on the
theory of random fields.

Although the following equations look rather com-
plex, it is important to note that only the smoothness
parameter |A|is unknown. Since it would be beyond the
scope of this work to derive the equations, we refer the
reader to the cited articles.

The first statistical inference method based on
smoothness of the statistical process was described by
Friston et al. (1991). In this work, a test for peak height
for two-dimensional data was proposed. This method
effectively solved the problem of mass, nonindependent
testing. Worsley et al. (1992) proposed a test, which
could be applied to data of any dimension D using the
expected Euler characteristic of a GRF. These methods
were based on the probability that the maximum value
Z ax In a GRF is higher than a high threshold ¢,

P(Zpoy > t) = V|AY2(2m) O+ V2He (e 172, (1)
where Hep(¢) is the Hermite polynomial of degree D in £.

Worsley et al. (1992) assumed homoscedasticity (i.e.,
assumed the same error variance at each voxel) giving
a Gaussian statistical image so that he could directly
apply Eq. (1). When this assumption cannot be made, a
t-field statistic must be computed, where the degrees of
freedom used for variance estimation at each voxel is
dependent on the rather low number of observations
(scans) instead of the high number of voxels.

Friston et al. (1994), building on the results of
Worsley et al. (1992), derived a formula for the probabil-
ity that the size n; of a cluster in a GRF above a high
threshold ¢ exceeds % voxels,

P(n,> k) = 1 — exp(—E(m)e D), (2)

where E(m) =~ P(Z,. > t) is the expected number of
clusters for threshold ¢ and

2/D

(/2 + DE(m)
_( V(1)

In Friston et al. (1996), a formula for the probability
that a set of clusters ¢ in a GRF above threshold ¢ and
size greater than n has cardinality greater than or
equal to £ was presented. Let C,,, be the cardinality of ¢
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FIG. 1.

with cluster size greater n and generating threshold ¢
in volume V. Then

k-1

P((C,,=k)=1— > poisson (i, E(m)-pn,=n)), (3)
i=0

where

e Pri

poisson (i, p) = B

Formulas for the test for peak height are not only
known for Gaussian random fields (Eq. (1)), but also for
x2-, F-, and t-fields, whereas formulas for other tests
(supratreshold cluster size and set level inference, Eqs.
(2) and (3)) are only known for Gaussian random fields.
This means that analysis methods assuming heterosce-
dasticity (e.g., SPM) must transform the resulting
t-field to a Gaussianized ¢-field (see next section) to
apply these results for low degrees of freedom.

As mentioned above, all variables in Egs. (1)—(3)
except for the smoothness are known or can be directly
deduced from the observed data. Therefore | A| remains
the only parameter which must be estimated.
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Flow of information in SPM.

Processing Concepts

In what follows, we give a short summary of the
general processing strategy used to analyze functional
images in a univariate way. It is important to note that
the specification of the underlying mathematical mod-
els is not only an abstract way to describe the univari-
ate functional analysis as it is performed in SPM, but
many other possible (and existing) methods could be
described by these or very similar models.

The univariate method implemented in SPM uses
the same linear model at each voxel position so that we
can drop the voxel position subscript in the following.
To aid the understanding of the formal description, Fig.
1 shows a flow chart of the information processing done
in SPM. The general linear model at each voxel position
is given by

Y = MB + ce, 4)

where Y is the observed image intensity vector for
imagesi=1,...,n,Misthen X p-design matrix of the
model, B is a p-dimensional parameter vector, ¢ is the
(scalar) standard deviation of Y, and € is a vector of
normal errors.



ROBUST SMOOTHNESS ESTIMATION

To ensure robust parameter estimates in the case of
temporally autocorrelated data (fMRI), the model is
convolved with an approximate hemodynamic response
function, giving us the extended general linear model

KY = KMB + Koy, 5)
where K is a Toeplitz temporal smoothing matrix. The
correlation matrix of € is assumed to be a known matrix
V. For PET data the scans are independent so V = I,,,
the n X n identity matrix. For fMRI data the errors are
assumed to be autocorrelated, but after temporal
smoothing V ~ KK'.

After estimating 8 by the least-squares method, the
residuals are given by

R =K(Y - Mp) (6)
and R; are the residual fields consisting of R,(1) for all
voxel positions 1. Similarly, the €; are the (unobservable)
error fields of the underlying ¢-field consisting of €;(1) for
all voxel positions 1. In the following, we will refer to
these €; as component fields of a ¢-field.

The residual forming projection matrix is given by

P=1,— M*(M*M*)"M*"), (7

where M * = KM.

The variance o2 (of the temporally convolved observa-
tions) is estimated by dividing the sum of squares of the
residuals by its expectation, i.e.,

- R'R
 trace(PV)’

G

(8)
Then a ¢-field
c’é

t = (e'2M* M*)~M* VM*(M* M*)1c)V2 ~t, (9

is computed to test the hypothesis that ¢’ = 0, where ¢
is a suitable contrast vector (Frackowiak et al., 1997)
and

_ trace(PV)? 10
v trace(PVPV) (10)
are the effective degrees of freedom (Worsley and
Friston, 1995).

Finally, the ¢-field ¢ is Gaussianized to the Gt-f Z =
[ (&), where the transform function is given by

f&) = 71w, @), (11)
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where ®~1 is the inverse standard normal cumulative
density function (CDF) and WV, is the CDF of the
Student’s ¢-distribution with v degrees of freedom. This
Gt-f Z is assumed to approximate a continuous GRF
with zero mean and unit variance under the null
hypothesis for high degrees of freedom.

Smoothness Estimation

To apply the theory of Gaussian random fields and to
evaluate Egs. (1)~(3), the covariance matrix Az, of the
partial derivatives of Z, must be estimated, where Z,
denotes the Gt-f Z under the null hypothesis.

Although it is not possible to directly observe Z, and
estimate Az, a solution can be found based on the
smoothness estimation of the component fields ¢; of the
t-field. The overall strategy consists of two steps: First,
estimate the covariance matrix A, = A, for any i of the
partial derivatives of €;, which can be assessed by an
estimator based on the residual fields R; (Worsley,
1996). Second, a scalar correction factor suffices to
relate A, to Az, thus giving us an estimator for the
smoothness of Z,. In current versions of SPM (e.g.,
SPM99) this second step is no longer necessary because
inference is based directly on the ¢- or F-map without
the need for Gaussianization.

Figure 2 shows the relationships between the differ-
ent fields and their smoothness estimates. We assume
here that all ¢; have the same A, so that we can use all ;
to estimate the resulting smoothness of the component
fields. This assumption does not necessarily follow from
our assumption about the strict stationarity of the PRF
used to generate Z,, since stationarity applies only to
the PRF within a GRF and not to PRF's over different
GRFs. However, for functional brain imaging data, the
assumption of approximately equal PRF's over different
component fields can be made, since the data are
usually acquired from the same scanner under similar
conditions and the same exogenous filter kernel is
applied to the data prior to the statistical analysis.
Additionally, smoothness (in the framework of SPM) is
only measured within brain tissue locations.

In the following, we describe the estimation of A,
based on the residuals R; and derivation of a scalar
factor to relate A, to Az (Worsley et al., 1992).

Estimating the smoothness of the component fields.
The covariance matrix of the first partial derivatives of
€;, given by

A, = Var (12)

éei
0x

foranyi=1,...,n must be estimated.
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FIG. 2. Smoothness estimation of the null fields based on the
residuals of the general linear model. The solid lines (with arrow)
indicate computation of a field or estimation of smoothness based on a
field, whereas the dashed lines stand for estimation of smoothness
based on a scalar correction factor. The relations described by dashed
lines are valid in both directions.

An estimate A, can be found based on the estimated
€;. We define the standardized residuals by

. R
S=h=—r

RR’

Worsley (1996) has shown that an unbiased estimator
of N\j;, the covariance of the partial derivatives of the

(13)

KIEBEL ET AL.

components ¢; in direction j and &, is given by

A~ Vv — 2 i GSL GSL
where N is the total number of all positions x. In the

discrete case, the numerical computation of the partial
derivatives via the gradient operator is given by

Siv1 =S
VS=""%d

(15)
for nonedge voxels x; of a discrete field and step size 3d.

Since the normalizing denominator of the S; is not
the true voxel-level standard deviation, but an estimate
with its own error, additional variance is introduced to
the estimated component fields (compared to the true
and unknown component fields). Thus the smoothness
of the estimated component fields will be slightly lower,
where the amount of underestimation is a function of
the effective degrees of freedoms v. To yield an unbiased
estimator (Eq. (14)), the factor (v — 2)/v — 1) must be
used. For a proof of unbiasedness, see Worsley (1996).

The covariances of the first partial derivatives of
functional brain imaging processes can be assumed to
be zero (Poline et al., 1995) so that the GRF examined
can be generated by a separable filter kernel. There-
fore, in the framework of SPM, only the variances of A,
are estimated by

- v—2 " (0S,\2
VoL TDN S 2 (azj) ' (16)

Estimating the smoothness of Zy. It remains to be
shown that A, is directly related to Az . Under the null
hypothesis and provided that the ¢; are discrete realiza-
tions of a stationary GRF, Z; is an approximation of a
GRF. Though the PRF for the ¢;, ¢, (the ¢-field under the
null hypothesis), and Z, are not the same except for
very high (infinite) degrees of freedom, these three
sorts of fields are all dependent on the underlying PRF
such that the smoothnesses of ¢, and the Gt-f Z, can be
related to the smoothness of the ¢; as shown in Worsley
et al. (1992).

Thus, the covariance matrix of the Gt-f Z, can be
computed by

~

Az =\, - A, an
where the correction factor
w (12 +n — 1)2 Todf,(t)?
v = f pdf dt, (18)
-1 —2)

pt)?
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where Tpdyf, is the probability density function (PDF) of
a t-distribution with v degrees of freedom, p(¢) =
H(OH1 — ®,(¢t))) and ¢(z) is the PDF of the standard
normal distribution. This integral does not converge for
v < 3 and approximates 1 for v — inf. As implicit in the
derivation of \,, a similar simple relationship exists
between A to A, and between A, and Az,

A biased estimator. A much simpler way to estimate
Az, is to assume that Az equals Az; 1.e., the smoothness
of the Gt-f Z under the null hypothesis is the same as
the smoothness of the actual realization Z. This is
approximately true for data showing no or only a few
effects (deviations from the null hypothesis), but in
most cases this assumption is wrong due to strong
activations induced by the paradigm, rendering the
smoothness estimate biased. An estimator of the covari-
ance matrix of the partial derivatives of a GRF Z solely
on the field Z is

3, (0Z X)L OZ(X)ol,)
3, Z(x)? ’

NZ);, = (19)

which is the ratio of the total sum of the covariances of
the partial derivatives divided by the total variance of Z
over all positions x.

RESULTS

We have validated the new smoothness estimator on
residuals of simulated one-dimensional functional im-
ages and on a fMRI data set. Second, we estimated the
smoothness on the statistical images (Gt-f Z) of the
simulated studies to show the bias and higher variance
of this estimator. Our finding is that the new estimator
based on the residuals is more accurate and more
efficient (i.e., has a lower variance) than the estimator
based on the statistical image.

Although it was not possible to measure the perfor-
mance of a smoothness estimator on real data (for
which the component fields are not known), we found
that estimation of the smoothness of Z, from real data
compared well to the expected smoothness induced by
the exogenous smoothing prior to analysis.

Validation of New Method on Simulated Data

One-dimensional data. All validation used simu-
lated one-dimensional GRFs, which was sufficient and
computationally efficient, since we assumed that the
covariances of A, of real three-dimensional observa-
tions were zero (Poline et al., 1995).

We performed two sorts of validation. The first was to
test, on a set of noise only data, whether the smooth-
ness was correctly estimated under the true null hypoth-
esis. The second data set included some additive signal
and we tested whether the smoothness was biased by
this underlying signal. Both tests were performed on
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both temporally independent and temporally autocorre-
lated data. We used a Gaussian filter kernel to spatially
smooth all simulated data sets.

Noise only. We generated series of one-dimensional
Gaussian random fields Y = Yy, ..., Y, by convolving
white noise vectors (8192 elements, ~N (0, 1)) with a
Gaussian filter kernel with standard deviation s. We
then multiplied the convolved white noise field by a
variance field (cf. Eq. (5)), where the variance o, at
position x was distributed with o2 ~ N (5, 3). Although
it is unlikely that the chosen distribution simulated the
underlying variance map of a real study, it is sufficient
to show that the smoothness estimator performs cor-
rectly with heterogenous variance. Spatially varying
error is a central assumption made in most analyses of
functional imaging studies (e.g., in the framework of
SPM).

We generated data sets for various different FWHM
of the filter kernel used [FWHM,; = 2, FWHM, = 3,
FWHM; = 25 (voxel)], 104 different degrees of freedom,
ranging from 6 to 110, and two values of temporal
autocorrelation, where the standard deviations of the
Gaussian filter kernels were 0 (independent measure-
ments) and 0.71 scans. The latter value corresponds to
a Gaussian kernel with 6-s FWHM. The choice of the
different filter widths (2, 3, and 25 voxels) represents
two different situations: (i) an intrinsic smoothness of 2
to 3 voxels induced by an exogeneous lowpass filter
which is often the case in real functional studies and a
(i1) theoretical case with a very high degree of smooth-
ness (25 voxels FWHM). The latter was used to show
that in the limit of high smoothness (i.e., in the absence
of discretization errors) the estimates are accurate. For
each of these combinations, we generated 32 data sets.
We then performed all steps of a SPM analysis (estimat-
ing parameter vectors  for each study, computing a
t-field ¢t and Gaussianizing ¢ to generate Z). Finally, the
mean and variance of the 32 resulting smoothness
estimates of Z, were computed for each parameter
combination on the standardized residuals as described
above (Eq. (16)), giving us 3 X 104 X 2 (three different
FWHM of the spatial filter, 104 different degrees of
freedom, two different values of temporal autocorrela-
tion) points in parameter space for our simulated noise
only data.

The theoretical value of each Az, (the variance of the
partial derivative of the one-dimension Gaussianized
t-field under the null hypothesis) can be assessed by

(20)
where

| _ [ZEWHM)1
J8log2)
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FWHM = 2 voxels

FWHM = 3 voxels
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FWHM = 25 voxels
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FIG. 3. (Top row) Estimation error for noise data without temporal autocorrelation. (Bottom row) Estimation error for noise data with

temporal autocorrelation (Gaussian kernel, o = 0.71). The error is defined as the estimated minus the theoretical FWHM.

In Fig. 3, the errors made by the smoothness estima-
tor are plotted as a function of degrees of freedom for
the different smoothing filters [FWHM; = 2, FWHM, =
3, FWHM; = 25 (voxel)] and two different temporal
autocorrelations. The error is defined as the difference
between the (known) theoretical and the estimated
FWHM of the Gaussian PRF of Z,,.

The smoothness estimates approximate a biased
estimate for high degrees of freedom, where the bias
seems to be a function of the FWHM of the filter used to
generate the data and the degrees of freedom. The
estimates are nearly unbiased for a wide filter kernel
and high degrees of freedom. As we will see in the
Discussion, these overestimation effects for low degrees
of freedom and low FWHM (voxels) are expected and
are explained by discretization effects. Moreover, the
smoothness estimates on temporally correlated data
have higher variance than on uncorrelated data. This
seems to be true for all filter sizes, but becomes only
obvious for the 25-voxel FWHM, since the variance of
the absolute error made by the estimator increases

proportionally with the width of the underlying filter
kernel.

Linear additive signal. In contrast to the noise only
validation, a second study based on simulated data was
performed which included an additive activation effect.
Data were generated as before, but this time a signal (a
constant value of 0.3) prior to the convolution with the
PRF was added to 1000 (of 8192) contiguous voxels in
an alternating on—off pattern over time. The signal was
modeled by two linear basis functions so that this
experiment simulated a simple activation study with
two conditions.

We used the same parameters as in the noise only
study, giving us 3 X 104 X 2 (three different FWHM of
the spatial filter, 104 different degrees of freedom, two
different values of temporal autocorrelation) parameter
sets. We generated 32 data sets for each parameter
combination and estimated its smoothness on the stan-
dardized residuals.

The results are nearly indistinguishable from the
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noise only

Estimation error [voxel]
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FIG. 4. Estimation error of estimator based on statistical image. (Left) Error on noise data; (Right) error on data with additive signal. The

error is defined as the estimated minus the theoretical FWHM.

noise only study (Fig. 3) and therefore the correspond-
ing curves are not displayed.

Smoothness Estimation Based on the Statistical Image

As described above, the smoothness of the statistical
image Z, under the null hypothesis can be assessed
directly on the statistical field Z. To show the bias due
to a potential signal and the higher variance of such an
estimator, we estimated the smoothness on the same
simulated studies as used in the previous section, but
based on Eq. (19). We applied the estimator only to
simulated studies, which were convolved with a Gauss-
ian filter kernel with a FWHM of 25 voxels to exclude
confounding effects due to coarse filter sampling (see
Discussion). Furthermore, we assumed temporally inde-
pendent data. Results are very similar for autocorre-
lated data (data not shown).

Figure 4 shows the estimates based on a noise only
and a signal data set (25-voxel FWHM). We used 32 studies
to compute the mean of 32 smoothness estimates for each
data point as a function of degrees of freedom.

The differences between the two smoothness estima-
tors are evident by comparison of Fig. 3 with Fig. 4. First,
the method based on the statistical image clearly overesti-
mates the underlying smoothness, if the statistical image
contains effects due to an underlying signal, and, second,
the estimates have a rather high variance as can be seen by
comparison with the two right-most graphs in Fig. 3.

Application of the Smoothness Estimator to an fMRI
Study

To illustrate the performance of the new smoothness
estimator on real data, we applied the estimator given

by Eq. (14) to a single subject fMRI activation study. We
used SPM96, since this implementation contained the
smoothness estimator based on the residuals.

Data were acquired with a 2-T MRI (Magnetom
Vision, Siemens, Erlangen, Germany) whole-body MRI
equipped with a head volume coil. Contiguous mul-
tislice T2*-weighted images (TE = 40 ms, 90 ms/image,
64 X 64 pixels, voxel size 3 X 3 X 3 mm3) were ob-
tained with echo-planar imaging (EPI) using an axial
slice orientation. The volume covered the whole brain
(14.4 cm). The effective repetition time was 4.0 s per
volume.

The paradigm used was a simple finger tapping
condition alternated with rest.

Prior to statistical analysis we spatially smoothed
the data with an isotropic Gaussian filter with a
FWHM of three voxels in each direction. Figure 5
contains the SPM96 statistics output for this data set.
As it can be seen, the smoothness based on the residu-
als is estimated as (3.7, 3.6, 3.4) FHWM (voxel) in x-, y-,
and z-direction, which is an overestimation of the
theoretically expected smoothness of three-voxel
FWHM. However, the major part of this overestimation
is most likely due to filter discretization effects (see
Discussion) and physiologically mediated effects.

DISCUSSION

In this paper we have described a new smoothness
estimator for discrete Gaussian random fields based on
the residuals of a general linear model.

It is important to note that the new smoothness
estimator combined with the possibility of relating
smoothness estimates of subsequent processing stages
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SPM{Z} contrast
100 [k
200 K
300 :
400 gk
10 20 30

design matrix

P values & statistics:

set-level {c}  cluster-level {k,Z}  voxel-level {Z} uncorrected k& Z  x,y,z {mm}

0.985 (10) 0.000 (1162, 8.13) 0.000 (8.13) 0.000 0.000 39 -9 48
0.000 (8.08) 0.000 39 -9 57
0.000 (7.37) 0.000 54 -9 42
0.000 (405, 7.50) 0.000 (7.50) 0.000 0.000 -9 -45 -15
0.000 (6.32) 0.000 -27 -36 -27
0.001 (189, 6.98) 0.000 (6.98) 0.000 0.000 -21 -36 -48
0.000 (6.17) 0.000 -12 -45 -51
0.002 (223, 6.70) 0.000 (6.70) 0.000 0.000 3 12 42
0.000 (6.48) 0.000 12 6 48
0.033 (34,5.41) 0.002 (5.41) 0.072 0.000 57 21 33
0.088 (93, 4.98) 0.018 (4.98) 0.006 0.000 24 -48 -24
1.000 (2.60) 0.005 36 -30 -30
0.581 (27, 4.14) 0.427 (4.14) 0.105 0.000 27 9 -3
0.732 (17, 4.00) 0.607 (4.00) 0.190 0.000 -36 12 6
0.759 (23, 3.97) 0.642 (3.97) 0.131 0.000 45 -3 15
1.000 (3.18) 0.001 51 -9 12
0.990 (19, 3.55) 0.982 (3.55) 0.168 0.000 45 15 6
1.000 (2.93) 0.002 54 18 0
Height threshold {u} = 2.33, p = 0.010 Volume {S} = 65809 voxels or 1471.5 Resels
Extent threshold {k} = 11 voxels, p = 0.289 Degrees of freedom due to error = 225.1
Expected voxels per cluster, E{n} = 10.6 Smoothness FWHM {mm} =11.0 10.8 10.1
Expected number of clusters, E{m} = 18.0 {voxels} =3.73.6 3.4

FIG.5. Output of SPM96 statistics section.



ROBUST SMOOTHNESS ESTIMATION

of SPM to each other is a powerful tool to estimate
smoothness of other statistic fields under the null
hypothesis. It is, e.g., possible to relate the smoothness
of the residual components to the smoothness of the
F-field such that P values for peak height in the F-field
can be estimated (Worsley, 1994).

We have shown empirically for simulated data that
the smoothness estimator will be unbiased if (1) the
degrees of freedom of the model are sufficiently high
(>20) and (2) the discrete filter kernel used for spatial
filtering is a fine mesh representation of the underlying
continuous filter. This is true for both temporally
independent and autocorrelated data. As expected, the
smoothness estimated is invariant of a linear additive
signal modeled as a temporal basis function in the
design matrix of the specified general linear model.
However, in real studies, any signal components not
modeled as basis functions will bias the smoothness
estimate.

Some overestimation can be observed in Fig. 4, which
shows the estimates based on the statistical images.
The estimates are clearly an overestimation of the
known underlying smoothness, if there is a smooth
signal component present in the statistical image.
Moreover, the estimates have a higher variance. To
explain the massive overestimation, we estimate the
effect of basing the estimate on the statistical image Z:

If some signal is present in Z, we can split the total
variance into two components,

[E@Z>» = [Var@) + [ E@), 21)
and the derivative is
[EZ?» = [Var2) + [ EZ) (22)
so that the expectation of AZ is given by
. E(Z?) Ay + o2A
E(A,) = ) - X 53 (23)

JEZ»  1+62

where Ay is the underlying component of A; due to
noise, Ag is due to the signal not removed from Z, and
0% is the average variance of the signal. Quite clearly, if
the smoothness of the noise is the same as the smooth-
ness of the signal (Ay = Ag), the estimated A, will be
the true Ay. However, if the signal component is
smoother than the noise, A; will be greater than Ay and
the smoothness of the statistical image under the null
hypothesis will be overestimated. This behavior of the
estimator based on the statistical image should be
expected for any functional brain images, since the
underlying physiological signal seems always to be
smoother than the noise measured. Given the unlikely
case that the signal component in functional brain
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images is rougher than the underlying noise, then Eq.
(23) makes it clear that the estimated A; would be
greater than Ay and smoothness would be underesti-
mated.

The higher variance of the estimator based on the
statistical image compared to the estimator based on
the residuals is due to the smaller number of samples
present in the statistical image Z compared to the
overall number of voxels over all residual components.
There is only one statistical image, but many more
observations and the same number of residual compo-
nents such that the estimator has a lower variance.

Returning to the estimator based on the standard-
ized residuals, we need some more theoretical insight
to correctly interpret the results presented in Fig. 3. In
the following, we show that the quantization error
induced by the discretization of a continuous filter
kernel influences the smoothness estimation performed
on a stationary field convolved with this discrete filter.

Generally, the variance of the partial derivative of a
smooth stationary field is given by

Var(Z) = —o2p(0) (24)
where p is the ACF of the stationary field Z (Cox and
Miller, 1996). This is the analytical form to compute the
variance of the partial derivative provided that the
second derivative of the ACF at zero is known. Assume
that we undersample a known continuous Gaussian
filter kernel and use this discretized PRF for convolu-
tion of a discrete stationary Gaussian random field as
we did it in our simulated data studies. The sampled
approximation to a continuous Gaussian envelope has
lower slopes at the points of inflection which in turn
results in lower maxima of the first derivative such that
the minimum of the second derivative at zero is lower
than the equivalent value of the continuous Gaussian
envelope. Note that different scaling factors of the
continuous filter and its discrete counterpart do not
play a role here, since these factors cancel out because
of the t-field equation (Eq. (9)) and the voxelwise
variance estimation (Eq. (8)). As a consequence, V(Z) is
lower than expected and the smoothness |[A[7Y2 ig
overestimated in the sense that we wish to estimate the
smoothness induced by a continuous Gaussian kernel
whose sampled version we used to smooth the discrete
stationary field. This smoothness overestimation due to
discretization effects is a decreasing function of the
FWHM and the degrees of freedom. This can be ob-
served in Fig. 3. The overestimation is at maximum for
very low degrees of freedom and for a FWHM as small
as two voxels. The approximate nature of the function
f(df) = (df — 2/df — 1) renders this effect less severe for
higher degrees of freedom (df > 20), although a small
bias, depending on the underlying FWHM, can be
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observed in all estimates. For very high FWHM (e.g., 25
voxels) this overestimation is negligible.

Another source of error due to the discreteness of the
functional data is the estimation of P values based on
the statistical image. Any undersampled lattice repre-
sentation of a continuous Gaussian random field has
lower maxima than the unobservable continuous ver-
sion so that resulting P values are lower for the discrete
case.

CONCLUSION

We have demonstrated the accuracy of an estimation
method for the smoothness of discrete approximations
to continuous Gaussian random fields. Using simulated
data we have shown that errors in smoothness estima-
tion depend (in an expected way) on the degrees of
freedom and on the size of the spatial filter kernel
applied prior to statistical analysis.
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