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The assessment of significant activations in func-
ional imaging using voxel-based methods often relies
n results derived from the theory of Gaussian random
elds. These results solve the multiple comparison
roblem and assume that the spatial correlation or
moothness of the data is known or can be estimated.
nd results (i.e., P values associated with local maxima,
lusters, or sets of clusters) critically depend on this
ssessment, which should be as exact and as reliable as
ossible. In some earlier implementations of statistical
arametric mapping (SPM) (SPM94, SPM95) the
moothness was assessed on Gaussianized t-fields (Gt-f)
hat are not generally free of physiological signal. This
echnique has two limitations. First, the estimation is
ot stable (the variance of the estimator being far from
egligible) and, second, physiological signal in the Gt-f
ill bias the estimation. In this paper, we describe an

stimation method that overcomes these drawbacks.
he new approach involves estimating the smoothness
f standardized residual fields which approximates
he smoothness of the component fields of the associ-
ted t-field. Knowing the smoothness of these compo-
ent fields is important because it allows one to com-
ute corrected P values for statistical fields other than
he t-field or the Gt-f (e.g., the F-map) and eschews bias
ue to deviation from the null hypothesis. We validate
he method on simulated data and demonstrate it using
ata from a functional MRI study. r 1999 Academic Press

INTRODUCTION

The objective of voxel-based analyses of functional
rain images is to classify measured activities as
ignificant on the basis of the probability that they
ould have occurred by chance. Estimation of these
robabilities can be based on the theory of Gaussian
andom fields (GRF) (Adler, 1981), which is used to
escribe certain features of functional brain images
nd the associated statistic image process. It is impor-

ant that the correlations of neighbouring voxels in l

756053-8119/99 $30.00
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tatistical processes are taken into account when solv-
ng the multiple comparison problem and estimating
he significance of an activation. To quantify these
orrelations, the smoothness of the statistical process
ust be estimated under the null hypothesis that the

tatistical process does not contain any signal due to
hysiological changes. The smoothness estimator in
he framework of older implementations of statistical
arametric mapping (SPM) (SPM94, SPM95) used the
bserved statistical process, which is generally not free
f effects induced by the experimental paradigm. In
his note, we describe a new method that uses math-
matical results from Worsley (1996), which eschews
his problem and estimates smoothness in an unbiased
ay. To validate these findings, we show that the new
ethod accurately estimates the smoothness of simu-

ated statistical processes. We apply the new estimator
o a functional MRI study to exemplify the procedure
nd observe that the new smoothness estimator is more
ccurate than the previous one.

THEORY

reliminaries

One of the aims of functional brain data analysis
echniques is to find a solution for the multiple compari-
on problem, which is to characterize a computed
nivariate statistical map in such a way that the
hance of occurrence of interesting events is estimated
orrectly under the null hypothesis that there are no
ffects induced by the experimental design. This task is
ot as simple as it first appears to be, since neighboring
tatistical voxel values are not independent because of
he intrinsic point spread function of the imaging
evice, the autocorrelation in physiological effects, or
moothness induced by an exogenous spatial lowpass
lter employed prior to analysis.
Modeling this knowledge about the underlying spa-

ial autocorrelation of the signal or the smoothness

eads quite naturally to methods which use some
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757ROBUST SMOOTHNESS ESTIMATION
easure of autocorrelation to detect activation effects
eviating from the expected spatial features within a
iven statistical map. The theory of Gaussian random
elds (Adler, 1981) seems to be a framework appropri-
te for characterizing statistical maps and detecting
patial activation effects. Using the theory of random
elds, the chance of occurrence of events (local voxel
axima, cluster sizes, or cardinality of a set of clusters)

n a statistical process can be assessed under the
ssumption that the discrete process in question ap-
roximates a GRF that conforms to this characteriza-
ion. Any event in the statistical image whose P value
or occurrence by chance in the GRF is sufficiently
mall can be declared significant. In the framework of
PM, the statistical process is a Gaussianized t-field

Gt-f), which is taken to be a good lattice representation
f a stationary Gaussian random field for high degrees
f freedom. (See, e.g., Holmes, 1994, for a review of the
nderlying assumptions.) The important properties of
stationary GRF are that (1) the distribution of any

oxel value is normal with zero mean and unit vari-
nce, (2) any subset of voxel values has a multivariate
ormal distribution, and (3) this multivariate distribu-
ion is strictly stationary (i.e., is not a function of
osition). These properties imply that the point re-
ponse function (PRF) of the Gt-f under the null
ypothesis is stationary; i.e., the generating param-
ters of a stationary GRF are its mean, variance, and
he autocorrelation function (ACF), where the paramet-
ic form of the ACF itself does not need to be Gaussian,
ut has properties (2) and (3) of a stationary GRF. Since
he moments of the statistical process under the null
ypothesis are known, the smoothness induced by the
CF (under the null hypothesis) remains to be as-
essed.
The smoothness of a stationary GRF is defined as

L 021/2, where L is the covariance matrix of the partial
erivatives of the GRF at any voxel position. This
efinition of smoothness is a function of the underlying
in most cases unknown) parametric form of the PRF.
owever, to estimate the unknown L, it is not neces-

ary to estimate the actual PRF or the associated ACF.
he only assumption made is that the ACF must be
wice differentiable at zero. This reflects the fact that
moothness estimation is only concerned with the
eatures of the ACF around zero.

If the underlying parametric form of the PRF is
ssumed to be Gaussian, another way of describing the
moothness is the covariance matrix W 5 (2L)21 of the
aussian filter, which could have been used to generate

he smoothness of the GRF in question from a Gaussian
hite noise process.
If the off-diagonal elements of W are zero, meaning

hat the PRF is elliptical in shape, with axes aligned
ith the coordinate axes, each image dimension has its

wn smoothness measure, independent of other dimen- e
ions. This sparse way of reporting smoothness is often
sed for a Gaussian PRF, for which we measure smooth-
ess as full width at half maximum (FWHM) in each
imension: FWHMi 5 Î8ln(2)Wii for i 5 1, . . . , D.

nference

In the following, we will summarize some of the
mportant results concerning statistical inference in
oxel-based functional brain imaging based on the
heory of random fields.

Although the following equations look rather com-
lex, it is important to note that only the smoothness
arameter 0L 0 is unknown. Since it would be beyond the
cope of this work to derive the equations, we refer the
eader to the cited articles.
The first statistical inference method based on

moothness of the statistical process was described by
riston et al. (1991). In this work, a test for peak height

or two-dimensional data was proposed. This method
ffectively solved the problem of mass, nonindependent
esting. Worsley et al. (1992) proposed a test, which
ould be applied to data of any dimension D using the
xpected Euler characteristic of a GRF. These methods
ere based on the probability that the maximum value
max in a GRF is higher than a high threshold t,

P(Zmax . t) < V 0L 01/2(2p)2(D11)/2HeD(t)e2t2/2, (1)

here HeD(t) is the Hermite polynomial of degree D in t.
Worsley et al. (1992) assumed homoscedasticity (i.e.,

ssumed the same error variance at each voxel) giving
Gaussian statistical image so that he could directly

pply Eq. (1). When this assumption cannot be made, a
-field statistic must be computed, where the degrees of
reedom used for variance estimation at each voxel is
ependent on the rather low number of observations
scans) instead of the high number of voxels.

Friston et al. (1994), building on the results of
orsley et al. (1992), derived a formula for the probabil-

ty that the size nt of a cluster in a GRF above a high
hreshold t exceeds k voxels,

P(nt . k) 5 1 2 exp(2E(m)e2bk2/D), (2)

here E(m) < P(Zmax . t) is the expected number of
lusters for threshold t and

b 5 1G(D/2 1 1)E(m)

VF(2t) 2
2/D

.

n Friston et al. (1996), a formula for the probability
hat a set of clusters c in a GRF above threshold t and
ize greater than n has cardinality greater than or

qual to k was presented. Let Cn,t be the cardinality of c
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758 KIEBEL ET AL.
ith cluster size greater n and generating threshold t
n volume V. Then

((Cn, t $ k) 5 1 2 o
i50

k21

poisson (i, E(m) · p(nt $ n)), (3)

here

poisson (i, p) 5
e2ppi

i!
.

Formulas for the test for peak height are not only
nown for Gaussian random fields (Eq. (1)), but also for
2-, F-, and t-fields, whereas formulas for other tests
supratreshold cluster size and set level inference, Eqs.
2) and (3)) are only known for Gaussian random fields.
his means that analysis methods assuming heterosce-
asticity (e.g., SPM) must transform the resulting
-field to a Gaussianized t-field (see next section) to
pply these results for low degrees of freedom.
As mentioned above, all variables in Eqs. (1)–(3)

xcept for the smoothness are known or can be directly
educed from the observed data. Therefore 0L 0 remains

FIG. 1. Flow of
he only parameter which must be estimated. n
rocessing Concepts

In what follows, we give a short summary of the
eneral processing strategy used to analyze functional
mages in a univariate way. It is important to note that
he specification of the underlying mathematical mod-
ls is not only an abstract way to describe the univari-
te functional analysis as it is performed in SPM, but
any other possible (and existing) methods could be

escribed by these or very similar models.
The univariate method implemented in SPM uses

he same linear model at each voxel position so that we
an drop the voxel position subscript in the following.
o aid the understanding of the formal description, Fig.
shows a flow chart of the information processing done

n SPM. The general linear model at each voxel position
s given by

Y 5 Mb 1 se, (4)

here Y is the observed image intensity vector for
mages i 5 1, . . . , n, M is the n 3 p-design matrix of the

odel, b is a p-dimensional parameter vector, s is the
scalar) standard deviation of Y, and e is a vector of

ormation in SPM.
inf
ormal errors.
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759ROBUST SMOOTHNESS ESTIMATION
To ensure robust parameter estimates in the case of
emporally autocorrelated data (fMRI), the model is
onvolved with an approximate hemodynamic response
unction, giving us the extended general linear model

KY 5 KMb 1 Kse, (5)

here K is a Toeplitz temporal smoothing matrix. The
orrelation matrix of e is assumed to be a known matrix
. For PET data the scans are independent so V 5 In,

he n 3 n identity matrix. For fMRI data the errors are
ssumed to be autocorrelated, but after temporal
moothing V , KK 8.
After estimating b by the least-squares method, the

esiduals are given by

R 5 K (Y 2 M b̂) (6)

nd Ri are the residual fields consisting of Ri(l) for all
oxel positions l. Similarly, the ei are the (unobservable)
rror fields of the underlying t-field consisting of ei(l) for
ll voxel positions l. In the following, we will refer to
hese ei as component fields of a t-field.

The residual forming projection matrix is given by

P 5 In 2 M*(M*8M*)21M*8), (7)

here M* 5 KM.
The variance s2 (of the temporally convolved observa-

ions) is estimated by dividing the sum of squares of the
esiduals by its expectation, i.e.,

ŝ2 5
R8R

trace(PV )
. (8)

hen a t-field

t 5
c8b̂

(c8ŝ2(M*8 M*)21M*8VM*(M*8 M*)21c)1/2
, tn (9)

s computed to test the hypothesis that c8b 5 0, where c
s a suitable contrast vector (Frackowiak et al., 1997)
nd

n 5
trace(PV )2

trace(PVPV )
(10)

re the effective degrees of freedom (Worsley and
riston, 1995).
Finally, the t-field t is Gaussianized to the Gt-f Z 5

(t), where the transform function is given by

21
f (t) 5 F (Cn(t)), (11) f
here F21 is the inverse standard normal cumulative
ensity function (CDF) and Cn is the CDF of the
tudent’s t-distribution with n degrees of freedom. This
t-f Z is assumed to approximate a continuous GRF
ith zero mean and unit variance under the null
ypothesis for high degrees of freedom.

moothness Estimation

To apply the theory of Gaussian random fields and to
valuate Eqs. (1)–(3), the covariance matrix LZ0

of the
artial derivatives of Z0 must be estimated, where Z0

enotes the Gt-f Z under the null hypothesis.
Although it is not possible to directly observe Z0 and

stimate LZ0
, a solution can be found based on the

moothness estimation of the component fields ei of the
-field. The overall strategy consists of two steps: First,
stimate the covariance matrix Le 5 Lei

for any i of the
artial derivatives of ei, which can be assessed by an
stimator based on the residual fields Ri (Worsley,
996). Second, a scalar correction factor suffices to
elate L̂e to L̂Z0

, thus giving us an estimator for the
moothness of Z0. In current versions of SPM (e.g.,
PM99) this second step is no longer necessary because

nference is based directly on the t- or F-map without
he need for Gaussianization.

Figure 2 shows the relationships between the differ-
nt fields and their smoothness estimates. We assume
ere that all ei have the same Le so that we can use all ei

o estimate the resulting smoothness of the component
elds. This assumption does not necessarily follow from
ur assumption about the strict stationarity of the PRF
sed to generate Z0, since stationarity applies only to
he PRF within a GRF and not to PRFs over different
RFs. However, for functional brain imaging data, the
ssumption of approximately equal PRFs over different
omponent fields can be made, since the data are
sually acquired from the same scanner under similar
onditions and the same exogenous filter kernel is
pplied to the data prior to the statistical analysis.
dditionally, smoothness (in the framework of SPM) is
nly measured within brain tissue locations.
In the following, we describe the estimation of Le

ased on the residuals Ri and derivation of a scalar
actor to relate L̂e to L̂Z0

(Worsley et al., 1992).
Estimating the smoothness of the component fields.

he covariance matrix of the first partial derivatives of
i, given by

Le 5 Var 1­ei

­x2 (12)
or any i 5 1, . . . , n must be estimated.
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760 KIEBEL ET AL.
An estimate Le can be found based on the estimated
i. We define the standardized residuals by

S 5 Ê 5
R

ÎR8R
. (13)

orsley (1996) has shown that an unbiased estimator

FIG. 2. Smoothness estimation of the null fields based on the
esiduals of the general linear model. The solid lines (with arrow)
ndicate computation of a field or estimation of smoothness based on a
eld, whereas the dashed lines stand for estimation of smoothness
ased on a scalar correction factor. The relations described by dashed
ines are valid in both directions.
f ljk, the covariance of the partial derivatives of the
omponents ei in direction j and k, is given by

l̂jk 5
n 2 2

(n 2 1)N o
x

o
i

n ­Si

­lj

­Si

­lk
, (14)

here N is the total number of all positions x. In the
iscrete case, the numerical computation of the partial
erivatives via the gradient operator is given by

=Sj 5
Sj11 2 Sj21

2dd
(15)

or nonedge voxels xj of a discrete field and step size dd.
Since the normalizing denominator of the Si is not

he true voxel-level standard deviation, but an estimate
ith its own error, additional variance is introduced to

he estimated component fields (compared to the true
nd unknown component fields). Thus the smoothness
f the estimated component fields will be slightly lower,
here the amount of underestimation is a function of

he effective degrees of freedoms n. To yield an unbiased
stimator (Eq. (14)), the factor (n 2 2)/n 2 1) must be
sed. For a proof of unbiasedness, see Worsley (1996).
The covariances of the first partial derivatives of

unctional brain imaging processes can be assumed to
e zero (Poline et al., 1995) so that the GRF examined
an be generated by a separable filter kernel. There-
ore, in the framework of SPM, only the variances of Le

re estimated by

l̂jj 5
n 2 2

(n 2 1)N o
x

o
i

n

1­Si

­lj
2
2

. (16)

Estimating the smoothness of Z0. It remains to be
hown that Le is directly related to LZ0

. Under the null
ypothesis and provided that the ei are discrete realiza-
ions of a stationary GRF, Z0 is an approximation of a
RF. Though the PRF for the ei, t0 (the t-field under the
ull hypothesis), and Z0 are not the same except for
ery high (infinite) degrees of freedom, these three
orts of fields are all dependent on the underlying PRF
uch that the smoothnesses of t0 and the Gt-f Z0 can be
elated to the smoothness of the ei as shown in Worsley
t al. (1992).
Thus, the covariance matrix of the Gt-f Z0 can be

omputed by

L̂Z0
5 ln · L̂e, (17)

here the correction factor

ln 5 e
2`

` (t2 1 n 2 1)2

(n 2 1)(n 2 2)

Tpdfn(t)3

2
dt, (18)
p(t)
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761ROBUST SMOOTHNESS ESTIMATION
here Tpdfn is the probability density function (PDF) of
t-distribution with n degrees of freedom, p(t) 5

(F21(1 2 Fn(t))) and f(z) is the PDF of the standard
ormal distribution. This integral does not converge for
, 3 and approximates 1 for n = inf. As implicit in the
erivation of ln, a similar simple relationship exists
etween Le to Lt0 and between Lt0 and LZ0

.
A biased estimator. A much simpler way to estimate

Z0
is to assume that LZ0

equals LZ; i.e., the smoothness
f the Gt-f Z under the null hypothesis is the same as
he smoothness of the actual realization Z. This is
pproximately true for data showing no or only a few
ffects (deviations from the null hypothesis), but in
ost cases this assumption is wrong due to strong

ctivations induced by the paradigm, rendering the
moothness estimate biased. An estimator of the covari-
nce matrix of the partial derivatives of a GRF Z solely
n the field Z is

l̂(Z)jk 5
Sx(­Z(x)/­lj)(­Z(x)/­lk)

SxZ(x)2
, (19)

hich is the ratio of the total sum of the covariances of
he partial derivatives divided by the total variance of Z
ver all positions x.

RESULTS

We have validated the new smoothness estimator on
esiduals of simulated one-dimensional functional im-
ges and on a fMRI data set. Second, we estimated the
moothness on the statistical images (Gt-f Z) of the
imulated studies to show the bias and higher variance
f this estimator. Our finding is that the new estimator
ased on the residuals is more accurate and more
fficient (i.e., has a lower variance) than the estimator
ased on the statistical image.
Although it was not possible to measure the perfor-
ance of a smoothness estimator on real data (for
hich the component fields are not known), we found

hat estimation of the smoothness of Z0 from real data
ompared well to the expected smoothness induced by
he exogenous smoothing prior to analysis.

alidation of New Method on Simulated Data

One-dimensional data. All validation used simu-
ated one-dimensional GRFs, which was sufficient and
omputationally efficient, since we assumed that the
ovariances of Le of real three-dimensional observa-
ions were zero (Poline et al., 1995).

We performed two sorts of validation. The first was to
est, on a set of noise only data, whether the smooth-
ess was correctly estimated under the true null hypoth-
sis. The second data set included some additive signal
nd we tested whether the smoothness was biased by

his underlying signal. Both tests were performed on
oth temporally independent and temporally autocorre-
ated data. We used a Gaussian filter kernel to spatially
mooth all simulated data sets.
Noise only. We generated series of one-dimensional
aussian random fields Y 5 Y1, . . . , Yn by convolving
hite noise vectors (8192 elements, ,N (0, 1)) with a
aussian filter kernel with standard deviation s. We

hen multiplied the convolved white noise field by a
ariance field (cf. Eq. (5)), where the variance sx at
osition x was distributed with sx

2 , N (5, 3). Although
t is unlikely that the chosen distribution simulated the
nderlying variance map of a real study, it is sufficient
o show that the smoothness estimator performs cor-
ectly with heterogenous variance. Spatially varying
rror is a central assumption made in most analyses of
unctional imaging studies (e.g., in the framework of
PM).
We generated data sets for various different FWHM

f the filter kernel used [FWHM1 5 2, FWHM2 5 3,
WHM3 5 25 (voxel)], 104 different degrees of freedom,
anging from 6 to 110, and two values of temporal
utocorrelation, where the standard deviations of the
aussian filter kernels were 0 (independent measure-
ents) and 0.71 scans. The latter value corresponds to
Gaussian kernel with 6-s FWHM. The choice of the

ifferent filter widths (2, 3, and 25 voxels) represents
wo different situations: (i) an intrinsic smoothness of 2
o 3 voxels induced by an exogeneous lowpass filter
hich is often the case in real functional studies and a

ii) theoretical case with a very high degree of smooth-
ess (25 voxels FWHM). The latter was used to show
hat in the limit of high smoothness (i.e., in the absence
f discretization errors) the estimates are accurate. For
ach of these combinations, we generated 32 data sets.
e then performed all steps of a SPM analysis (estimat-

ng parameter vectors b̂ for each study, computing a
-field t and Gaussianizing t to generate Z). Finally, the
ean and variance of the 32 resulting smoothness

stimates of Z0 were computed for each parameter
ombination on the standardized residuals as described
bove (Eq. (16)), giving us 3 3 104 3 2 (three different
WHM of the spatial filter, 104 different degrees of

reedom, two different values of temporal autocorrela-
ion) points in parameter space for our simulated noise
nly data.
The theoretical value of each lZ0

(the variance of the
artial derivative of the one-dimension Gaussianized
-field under the null hypothesis) can be assessed by

lZ0
5 l n · l, (20)

here

l 5 1
2FWHM

2
21

.
Î8 log 2
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762 KIEBEL ET AL.
In Fig. 3, the errors made by the smoothness estima-
or are plotted as a function of degrees of freedom for
he different smoothing filters [FWHM1 5 2, FWHM2 5
, FWHM3 5 25 (voxel)] and two different temporal
utocorrelations. The error is defined as the difference
etween the (known) theoretical and the estimated
WHM of the Gaussian PRF of Z0.
The smoothness estimates approximate a biased

stimate for high degrees of freedom, where the bias
eems to be a function of the FWHM of the filter used to
enerate the data and the degrees of freedom. The
stimates are nearly unbiased for a wide filter kernel
nd high degrees of freedom. As we will see in the
iscussion, these overestimation effects for low degrees
f freedom and low FWHM (voxels) are expected and
re explained by discretization effects. Moreover, the
moothness estimates on temporally correlated data
ave higher variance than on uncorrelated data. This
eems to be true for all filter sizes, but becomes only
bvious for the 25-voxel FWHM, since the variance of

FIG. 3. (Top row) Estimation error for noise data without tempo
emporal autocorrelation (Gaussian kernel, s 5 0.71). The error is de
he absolute error made by the estimator increases
roportionally with the width of the underlying filter
ernel.
Linear additive signal. In contrast to the noise only

alidation, a second study based on simulated data was
erformed which included an additive activation effect.
ata were generated as before, but this time a signal (a

onstant value of 0.3) prior to the convolution with the
RF was added to 1000 (of 8192) contiguous voxels in
n alternating on–off pattern over time. The signal was
odeled by two linear basis functions so that this

xperiment simulated a simple activation study with
wo conditions.

We used the same parameters as in the noise only
tudy, giving us 3 3 104 3 2 (three different FWHM of
he spatial filter, 104 different degrees of freedom, two
ifferent values of temporal autocorrelation) parameter
ets. We generated 32 data sets for each parameter
ombination and estimated its smoothness on the stan-
ardized residuals.

autocorrelation. (Bottom row) Estimation error for noise data with
d as the estimated minus the theoretical FWHM.
ral
The results are nearly indistinguishable from the
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763ROBUST SMOOTHNESS ESTIMATION
oise only study (Fig. 3) and therefore the correspond-
ng curves are not displayed.

moothness Estimation Based on the Statistical Image

As described above, the smoothness of the statistical
mage Z0 under the null hypothesis can be assessed
irectly on the statistical field Z. To show the bias due
o a potential signal and the higher variance of such an
stimator, we estimated the smoothness on the same
imulated studies as used in the previous section, but
ased on Eq. (19). We applied the estimator only to
imulated studies, which were convolved with a Gauss-
an filter kernel with a FWHM of 25 voxels to exclude
onfounding effects due to coarse filter sampling (see
iscussion). Furthermore, we assumed temporally inde-
endent data. Results are very similar for autocorre-
ated data (data not shown).

Figure 4 shows the estimates based on a noise only
nd a signal data set (25-voxel FWHM). We used 32 studies
o compute the mean of 32 smoothness estimates for each
ata point as a function of degrees of freedom.
The differences between the two smoothness estima-

ors are evident by comparison of Fig. 3 with Fig. 4. First,
he method based on the statistical image clearly overesti-
ates the underlying smoothness, if the statistical image

ontains effects due to an underlying signal, and, second,
he estimates have a rather high variance as can be seen by
omparison with the two right-most graphs in Fig. 3.

pplication of the Smoothness Estimator to an fMRI
Study

To illustrate the performance of the new smoothness

FIG. 4. Estimation error of estimator based on statistical image. (
rror is defined as the estimated minus the theoretical FWHM.
stimator on real data, we applied the estimator given s
y Eq. (14) to a single subject fMRI activation study. We
sed SPM96, since this implementation contained the
moothness estimator based on the residuals.
Data were acquired with a 2-T MRI (Magnetom

ision, Siemens, Erlangen, Germany) whole-body MRI
quipped with a head volume coil. Contiguous mul-
islice T2*-weighted images (TE 5 40 ms, 90 ms/image,
4 3 64 pixels, voxel size 3 3 3 3 3 mm3) were ob-
ained with echo-planar imaging (EPI) using an axial
lice orientation. The volume covered the whole brain
14.4 cm). The effective repetition time was 4.0 s per
olume.
The paradigm used was a simple finger tapping

ondition alternated with rest.
Prior to statistical analysis we spatially smoothed

he data with an isotropic Gaussian filter with a
WHM of three voxels in each direction. Figure 5
ontains the SPM96 statistics output for this data set.
s it can be seen, the smoothness based on the residu-
ls is estimated as (3.7, 3.6, 3.4) FHWM (voxel) in x-, y-,
nd z-direction, which is an overestimation of the
heoretically expected smoothness of three-voxel
WHM. However, the major part of this overestimation

s most likely due to filter discretization effects (see
iscussion) and physiologically mediated effects.

DISCUSSION

In this paper we have described a new smoothness
stimator for discrete Gaussian random fields based on
he residuals of a general linear model.

It is important to note that the new smoothness
stimator combined with the possibility of relating

t) Error on noise data; (Right) error on data with additive signal. The
Lef
moothness estimates of subsequent processing stages
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FIG. 5. Output of SPM96 statistics section.
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f SPM to each other is a powerful tool to estimate
moothness of other statistic fields under the null
ypothesis. It is, e.g., possible to relate the smoothness
f the residual components to the smoothness of the
-field such that P values for peak height in the F-field
an be estimated (Worsley, 1994).
We have shown empirically for simulated data that

he smoothness estimator will be unbiased if (1) the
egrees of freedom of the model are sufficiently high
.20) and (2) the discrete filter kernel used for spatial
ltering is a fine mesh representation of the underlying
ontinuous filter. This is true for both temporally
ndependent and autocorrelated data. As expected, the
moothness estimated is invariant of a linear additive
ignal modeled as a temporal basis function in the
esign matrix of the specified general linear model.
owever, in real studies, any signal components not
odeled as basis functions will bias the smoothness

stimate.
Some overestimation can be observed in Fig. 4, which

hows the estimates based on the statistical images.
he estimates are clearly an overestimation of the
nown underlying smoothness, if there is a smooth
ignal component present in the statistical image.
oreover, the estimates have a higher variance. To

xplain the massive overestimation, we estimate the
ffect of basing the estimate on the statistical image Z:
If some signal is present in Z, we can split the total

ariance into two components,

e E(Z2) 5 e Var(Z) 1 e E(Z)2, (21)

nd the derivative is

e E(Ż2) 5 e Var(Ż) 1 e E(Ż)2 (22)

o that the expectation of L̂Z is given by

E(L̂Z) 5
e E(Ż2)

e E(Z2)
5

LN 1 sS
2LS

1 1 sS
2

, (23)

here LN is the underlying component of LZ due to
oise, LS is due to the signal not removed from Z, and
S
2 is the average variance of the signal. Quite clearly, if
he smoothness of the noise is the same as the smooth-
ess of the signal (LN 5 LS), the estimated LZ will be
he true LN. However, if the signal component is
moother than the noise, LZ will be greater than LN and
he smoothness of the statistical image under the null
ypothesis will be overestimated. This behavior of the
stimator based on the statistical image should be
xpected for any functional brain images, since the
nderlying physiological signal seems always to be
moother than the noise measured. Given the unlikely

ase that the signal component in functional brain b
mages is rougher than the underlying noise, then Eq.
23) makes it clear that the estimated LZ would be
reater than LN and smoothness would be underesti-
ated.
The higher variance of the estimator based on the

tatistical image compared to the estimator based on
he residuals is due to the smaller number of samples
resent in the statistical image Z compared to the
verall number of voxels over all residual components.
here is only one statistical image, but many more
bservations and the same number of residual compo-
ents such that the estimator has a lower variance.
Returning to the estimator based on the standard-

zed residuals, we need some more theoretical insight
o correctly interpret the results presented in Fig. 3. In
he following, we show that the quantization error
nduced by the discretization of a continuous filter
ernel influences the smoothness estimation performed
n a stationary field convolved with this discrete filter.
Generally, the variance of the partial derivative of a

mooth stationary field is given by

Var(Ż) 5 2s2r̈(0) (24)

here r is the ACF of the stationary field Z (Cox and
iller, 1996). This is the analytical form to compute the

ariance of the partial derivative provided that the
econd derivative of the ACF at zero is known. Assume
hat we undersample a known continuous Gaussian
lter kernel and use this discretized PRF for convolu-
ion of a discrete stationary Gaussian random field as
e did it in our simulated data studies. The sampled
pproximation to a continuous Gaussian envelope has
ower slopes at the points of inflection which in turn
esults in lower maxima of the first derivative such that
he minimum of the second derivative at zero is lower
han the equivalent value of the continuous Gaussian
nvelope. Note that different scaling factors of the
ontinuous filter and its discrete counterpart do not
lay a role here, since these factors cancel out because
f the t-field equation (Eq. (9)) and the voxelwise
ariance estimation (Eq. (8)). As a consequence, V (Ż) is
ower than expected and the smoothness 0L 021/2 is
verestimated in the sense that we wish to estimate the
moothness induced by a continuous Gaussian kernel
hose sampled version we used to smooth the discrete

tationary field. This smoothness overestimation due to
iscretization effects is a decreasing function of the
WHM and the degrees of freedom. This can be ob-
erved in Fig. 3. The overestimation is at maximum for
ery low degrees of freedom and for a FWHM as small
s two voxels. The approximate nature of the function
(df ) 5 (df 2 2/df 2 1) renders this effect less severe for
igher degrees of freedom (df . 20), although a small

ias, depending on the underlying FWHM, can be
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766 KIEBEL ET AL.
bserved in all estimates. For very high FWHM (e.g., 25
oxels) this overestimation is negligible.
Another source of error due to the discreteness of the

unctional data is the estimation of P values based on
he statistical image. Any undersampled lattice repre-
entation of a continuous Gaussian random field has
ower maxima than the unobservable continuous ver-
ion so that resulting P values are lower for the discrete
ase.

CONCLUSION

We have demonstrated the accuracy of an estimation
ethod for the smoothness of discrete approximations

o continuous Gaussian random fields. Using simulated
ata we have shown that errors in smoothness estima-
ion depend (in an expected way) on the degrees of
reedom and on the size of the spatial filter kernel
pplied prior to statistical analysis.
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