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The goal of this technical report is to demonstrate how the EM objective function in 
DCM can be derived mathematically, under Gaussian assumptions about the densities 
involved.  For this purpose, we derive the equation for the objective function as it is used 
by the SPM routine spm_nlsi_GN from first principles.  We do not deal with the actual 
principles of parameter estimation in the EM algorithm; these are described in Friston 
(2002) and Friston et al. (2003) and simply represent a maximisation of this objective 
function using conventional ascent schemes. 

Motivation of the objective function 
As described in Friston et al. (2003), Eq. A.5, the objective function for EM is defined as 
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where  is a vector comprising  the parameters of the model,  contains the 
hyperparameters, )(q  is an approximation to the true posterior );|(  yp  and u 
represents the external inputs to the system.  
 
What is the motivation underlying Eq. 1?  What we would like to maximise is the model 
evidence (= marginal likelihood) where the parameters  are integrated out.  Because of 
the strict monotonicity of the log function, this is equivalent to maximising the marginal 
log likelihood: 
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In other words, we want to find hyperparameters such that the marginal log likelihood is 
maximised.  Maximising Eq. 2 directly is usually difficult, but we can define ),( qF as a 
lower bound on )(L , using Jensen’s inequality: 
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Therefore, instead of maximising )(L , we can maximise its lower bound ),( qF .  This 
can be accomplished by means of the EM algorithm (see Dayan & Abott 2001 and 
Ghahramani 2002 for introduction to the principles of EM).  In the context of DCM, the 
EM algorithm updates the parameters in the E-step and the hyperparameters in the M-
step at each iteration such that the following inequality holds (the superscript indexes the 
iteration step): 
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The equality )),(()( )1()()1(   kkk qFL  achieved by the E-step is valid if the posterior 
can be matched precisely by )(q .  This is the case for the Laplace approximation which 
assumes that the posterior can be approximated by a Gaussian density whose mean is 
centered on the posterior maximum (see below). 
 
The principles of parameter and hyperparameter estimation in DCM are described in 
detail by Friston (2002) and Friston et al. (2003).  Here, we describe how the value of F 
can be computed at each iteration step in DCM under Gaussian assumptions.  There are 
several ways of decomposing F into computationally more tractable terms than Eq. 1; we 
derive two of these approaches in this tutorial. 
 

Approach I: Direct decomposition of F 
 
We can rewrite ),( qF  from Eq. 1 as  
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Eq. 5 shows that F is comprised of an accuracy term (the expected log likelihood) and the 
Kullback-Leibler (KL) divergence between the approximate posterior q() and the prior 
p(). 
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First, we will rewrite the expected log likelihood.  Using the general definition of a 
multivariate Gaussian distribution for an n-dimensional vector x with mean  and 
covariance 
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the likelihood is  
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where ehy  )( .  The expected log likelihood can then be written as 
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where yd  is the dimensionality of the data. 

 
The challenge now is to rewrite )(1 r from Eq. 8 such that the expectation with regard to 

q() can be computed.  Before we can do that, we need to introduce and define a few 
things.  First of all, we use a Gaussian as the prior density:  
 

),;()( pp CNp           (9) 

 
Furthermore, we make use of the Laplace approximation, i.e. as the approximate 
posterior q(), we use a Gaussian density whose mean is centered on the maximum of the 
true posterior.  Under Gaussian assumptions about the posterior, this approximation 
becomes an identity after each E-step in the EM algorithm (see Eq. 4): 
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(Note: this nomenclature corresponds to that of Friston et al. 2003 in the following way: 

),, ||  CCCC pyMPyMP   

 
The Laplace approximation allows us to express )(h  as a Taylor expansion around MP : 
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Finally, we need the following expression for the posterior precision 1

MPC  which, given 
the linear approximation in Eq. 11 and Gaussian assumptions about the posterior, can be 
derived from the definition of the posterior according to Bayes theorem (see Eqs. 10-13 
in Friston 2002): 
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Now, using the identity 
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we can write )(1 r  from Eq. 8 as       (14) 
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Using Eqs. 11 and 12, we can write )(2 r  as 
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Given these expressions for )(1 r  and )(2 r , we can write Eq. 8 as  
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We now make use of the following lemma that holds for any Gaussian density x with 

),;()(  xNxp : 
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Note that under the assumption of the Laplace approximation  
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Therefore, the above lemma (Eq. 17) can be used to rewrite the integral from Eq. 16 as  
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where d  is the dimensionality of the parameter vector . 

 
Substituting Eq. 19 into Eq. 16, we now have a complete expression for the expected log 
likelihood from Eq. 5: 
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It now remains to transform the KL term from Eq. 5. 
The general definition of the KL divergence between two densities v and w is 
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If v and w are d-dimensional normal densities, ),( wvKL  can be written as 
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(this can be derived by substituting the definitions of v and w as multivariate Gaussians 
[see Eq. 6] into Eq. 21; see also Penny 2001).   
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Applying this to the KL divergence between the approximate recognition density q() and 
the prior density p() in Eq. 5 gives 
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Substituting the results from Eqs. 20 and 23 into Eq. 5 we obtain the following 
expression for ),( qF : 
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This is exactly the expression used in spm_nlsi_GN to compute the value of F at each 
iteration step. 

(Note that earlier versions of spm_nlsi_GN actually omitted the constants terms 

2log
2

yd
  and pClog2
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Approach II: Determining F via computing the log evidence under the 
assumptions of the Laplace approximation 
 
In this second approach, we show that the expression for the log evidence under the 
Laplace approximation is identical to the definition of F above. 
 
Starting with the definition of the densities under Gaussian assumptions, we have 
 

prior:   ),;()( pp CNp    

likelihood: )),(;()|( eChyNyp        (25) 

posterior: ),;()|( MPMP CNyp    
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The evidence can be computed by integrating out the parameters (marginalising): 
 

        







 





 



2

1

2

1
2/)(

112

1

2

1
2/)(

)2(

2

1
)(()((

2

1
exp)2(

)()|()(

pe
dd

pp
T

pe
T

pe
dd

CC

dChyChyCC

dpypyp

y

y











 (26) 

 
Here, d  is the dimensionality of the parameter vector   and yd  is the dimensionality of 

the data. 
 
Our goal is to find an expression that allows to compute the log evidence at every 
iteration step in a convenient fashion.  Initially, we use the following trick to re-write the 
two terms from  in Eq. 24: 
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Now we have decomposed the exponent from Eq. 26 into 4 terms.  Using Eqs. 11 and 12, 
we can show that two of them are identical to the exponent of the posterior (note that this 
is only valid under the assumptions of the Laplace approximation, see above): 
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Because  1)|(  dyp  and because, according to Eq. 25, 
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it follows that  
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Substituting the results from Eqs. 27 and 30 into , this allows us to write 
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Substituting this into Eq. 26 and taking logs gives  
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This expression for the log evidence is identical to the expression for F derived by the 
first approach above. 
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