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Introduction 
 
This document describes aspects of how Bayesian analysis of single subject fMRI  is 

implemented in SPM5. The algorithm is described in detail in (Penny et al., 2004). Since 

that paper, however, the algorithm has been extended to allow for  spatial regularisation 

of AR coefficients. The implementation has also been speeded up by using cross-

covariance formulae for computing some necessary time domain quantities, and  the 

algorithm can be applied to data from multiple sessions. Further, PPMs based on  

contrasts of parameter estimates are computed differently depending on whether they are 

specified beforehand or post-hoc. If they are specified beforehand they use the posterior  

covariance from VB, whereas if they are specified post-hoc the posterior covariance is  

approximated using a Taylor-series approach. We now described each of these 

developments in some detail. 



Spatial regularisation of AR coefficients 
 
The  generative model described in Figure 1 of (Penny et al., 2004) has been updated to 

allow for spatial regularisation of AR coefficients, as shown in Figure 1 of this document. 

 In SPM 5, Bayesian analysis allows you to specify voxel-wise AR(p) models with 

arbitrary p (same p for all voxels). 

 

Figure 1. The figure shows the probabilistic dependencies underlying our generative 

model for fMRI data. The quantities in square brackets are constants and those in circles 

are random variables. The spatial regularization coefficients α constrain the regression 

coefficients W, and the spatial regularization coefficients β constrain the AR coefficients 

A. The parameters λcontrol the observation noise precision at each voxel. The graph 



shows that the joint probability of parameters and data can be written 

1 2 1 2 1 2( , , , , , ) ( | , , ) ( | ) ( | ) ( | , ) ( | , ) ( | , )p p p p p u u p q q p r r=Y W A λ α β Y W A λ W α A β λ α β  

where the first term is the likelihood and the other terms are priors.  

 
 
 
The corresponding update equations for the approximate posterior are shown in Figure 2. 

 
 
Figure 2. Approximate posterior and summary of VB-update equations 
 

Cross covariance formulae 
 
The formulae in the appendix of (Penny et al., 2003) for computing the quantities  

{ , , , , }gA b C d (equations 63, 64, 50 and 77 respectively) though correct (apart from a few 

missing transpose operators here and there ! ) are computationally inefficient. This is 



because of the sums over time. For the lengths of time series typical in fMRI (eg. 300-

400 scans) this creates a bottleneck when implementing the algorithm in MATLAB. The 

equations, which contain terms only up to second order (ie. quadratic), can however be 

re-arranged to isolate the sums over time so that they can be pre-computed. This 

effectively amounts to computing the following cross-covariances. This first set of terms 

depends on the design matrix only and therefore can be pre-computed for the whole 

volume  
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where the Cov() operator only involves terms from p+1 to T where p is the order of the 

AR model and T is the number of time points, X is the design matrix, and X  is the 

embedded design matrix. Underneath each equation is the dimension into which the 

result is re-shaped into (where necessary). The following terms depend on the design 

matrix and the data and therefore can be pre-computed for each slice 
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where y is the fMRI time series and d  is the embedded time series. The new update 

formulae can then be related to these quantities. For T=400, the new formulae are about 

200 times quicker. 

 



Approximating Posterior Covariance Matrices 
 

In the SPM implementation of this algorithm we do not store full covariance 

matrices for each voxel  as this would require too much disk space. Instead we store the 

posterior standard deviations of parameter estimates  

 ˆ( )n nd diag= Σ  (1) 

(effectively images of error bars), AR coefficents, na , and noise standard deviation, 

1
nλ

. These are stored in the files SDbeta_000k.img,  SessM_AR_000p.img and 

SessM_SDerror.img where M is the session number. The  approximate posterior 

covariances are then formed using a Taylor series expansion as follows. For each slice, s, 

we first compute the averages 
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where nV is the posterior covariance of AR coefficients, and nnB is the spatial 

precision, and from these compute a slice-specific error covariance matrix, ˆ
sΣ . This is 

then normalised to produce a slice-specific error correlation matrix, sR . The error 

correlation matrix at voxel n is then approximated using 
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where Jacobian matrices are stored for each slice. In SPM the slice-specific 

information is held in SPM.Sess(M).PPM.slice(z).mean. Finally the 

approximate covariance at voxel n is formed using 

 ( ).*T
n n n nC d d R=  (4) 

This approximate covariance is used when inferences are made about contrasts of  

parameter estimates. Figure 3 plots the resulting approximate variance versus the  true 

variance for two contrasts from the face fMRI data sets (see Penny et al. 2005). 

 

Contrasts 
 

If  contrasts are specified beforehand (when the batch mode is used) then PPM 

inference is based on the posterior covariances as estimated using the VB algorithm. This 

is implemented by creating contrast images, con*.img, and contrast standard deviation 

(sd) images, con_sd*.img, and updating them as the parameters in each slice are 

estimated. These are then used by the contrast manager later on. This ‘pre-computation’ 

of the contrast and contrast SD makes the specification of PPMs with different effect-size 

thresholds computationally efficient. 

If contrasts are specified post-hoc (ie. after parameter estimation by 

spm_spm_vb.m) then PPMs are based on posterior covariances that are approximated 

using the Taylor series approximation described in the previous section. 

Multiple Sessions 
 
Multiple sessions are handled by  modelling the data in each session separately 

and then concatenating the parameter estimates into a single larger model. This then, as 



usual, allows for contrasts that span different sessions, so that conditions that span 

multiple sessions can be assessed. For contrasts that are specified prior to estimation,  

inference is based on the posterior covariances as estimated using the VB algorithm. This 

is implemented by creating contrast images (and contrast standard deviation images) as  

described above. For contrasts specified post hoc inference is based on the Taylor series 

approximation to the posterior covariance described earlier. This uses session-specific  

AR and noise precision parameters which are stored in SessM_AR_000p.img and 

SessM_SDerror.img where M is the session number. 

High Pass Filtering 
 

High pass filtering is implemented by filtering the data, y, within the function 

spm_spm_vb.m before passing it to the model fitting routine, spm_vb_glmar.m. 

This is done by forming the matrix R0=I-X0X0
+, where X0 is the matrix of DCT basis 

functions, and filtering using y_filtered=R0y. 
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Figure 3.  Approximating the Posterior Covariance. Plots of approximate 

variance versus true variance for the face fMRI data and contrasts (a) main effect of faces 

and (b) main effect of fame. Crosses mark values at each of the voxels in slice z=10 and 



the straight line shows y=x. The second contrast, being a differential contrast, shows 

smaller error. 
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