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Chapter 1

Slice Timing

Contents
1.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.1 Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Number of Slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Slice order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Reference Slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Filename Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Correct differences in image acquisition time between slices. Slice-time corrected files are
prepended with an ’a’.

Note: The sliceorder arg that specifies slice acquisition order is a vector of N numbers, where
N is the number of slices per volume. Each number refers to the position of a slice within the
image file. The order of numbers within the vector is the temporal order in which those slices
were acquired. To check the order of slices within an image file, use the SPM Display option and
move the cross-hairs to a voxel co-ordinate of z=1. This corresponds to a point in the first slice
of the volume.

The function corrects differences in slice acquisition times. This routine is intended to correct
for the staggered order of slice acquisition that is used during echo-planar scanning. The correction
is necessary to make the data on each slice correspond to the same point in time. Without
correction, the data on one slice will represent a point in time as far removed as 1/2 the TR from
an adjacent slice (in the case of an interleaved sequence).

This routine ”shifts” a signal in time to provide an output vector that represents the same
(continuous) signal sampled starting either later or earlier. This is accomplished by a simple shift
of the phase of the sines that make up the signal. Recall that a Fourier transform allows for a
representation of any signal as the linear combination of sinusoids of different frequencies and
phases. Effectively, we will add a constant to the phase of every frequency, shifting the data in
time.

Shifter - This is the filter by which the signal will be convolved to introduce the phase shift.
It is constructed explicitly in the Fourier domain. In the time domain, it may be described as
an impulse (delta function) that has been shifted in time the amount described by TimeShift.
The correction works by lagging (shifting forward) the time-series data on each slice using sinc-
interpolation. This results in each time series having the values that would have been obtained
had the slice been acquired at the same time as the reference slice. To make this clear, consider
a neural event (and ensuing hemodynamic response) that occurs simultaneously on two adjacent
slices. Values from slice ”A” are acquired starting at time zero, simultaneous to the neural event,
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while values from slice ”B” are acquired one second later. Without correction, the ”B” values
will describe a hemodynamic response that will appear to have began one second EARLIER on
the ”B” slice than on slice ”A”. To correct for this, the ”B” values need to be shifted towards
the Right, i.e., towards the last value.

This correction assumes that the data are band-limited (i.e. there is no meaningful information
present in the data at a frequency higher than that of the Nyquist). This assumption is support
by the study of Josephs et al (1997, NeuroImage) that obtained event-related data at an effective
TR of 166 msecs. No physio-logical signal change was present at frequencies higher than our
typical Nyquist (0.25 HZ).

When using the slice timing correction it is very important that you input the correct slice
order, and if there is any uncertainty then users are encouraged to work with their physicist to
determine the actual slice acquisition order.

One can also consider augmenting the model by including the temporal derivative in the
informed basis set instead of slice timing, which can account for +/- 1 second of changes in
timing.

Written by Darren Gitelman at Northwestern U., 1998. Based (in large part) on ACQCOR-
RECT.PRO from Geoff Aguirre and Eric Zarahn at U. Penn.

1.1 Data

Subjects or sessions. The same parameters specified below will be applied to all sessions.

1.1.1 Session

Select images to slice-time correct.

1.2 Number of Slices

Enter the number of slices.

1.3 TR

Enter the TR (in seconds).

1.4 TA

Enter the TA (in seconds). It is usually calculated as TR-(TR/nslices). You can simply enter
this equation with the variables replaced by appropriate numbers.

1.5 Slice order

Enter the slice order. Bottom slice = 1. Sequence types and examples of code to enter are given
below.

ascending (first slice=bottom): [1:1:nslices]

descending (first slice=top): [nslices:-1:1]

interleaved (middle-top):

for k = 1:nslices,

round((nslices-k)/2 + (rem((nslices-k),2) * (nslices - 1)/2)) + 1,

end

interleaved (bottom -> up): [1:2:nslices 2:2:nslices]

interleaved (top -> down): [nslices:-2:1, nslices-1:-2:1]



1.6. REFERENCE SLICE 21

1.6 Reference Slice

Enter the reference slice

1.7 Filename Prefix

Specify the string to be prepended to the filenames of the slice-time corrected image file(s).
Default prefix is ’a’.
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Chapter 2

Realign

Contents
2.1 Realign: Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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2.1.2 Estimation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Realign: Reslice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Reslice Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Realign: Estimate & Reslice . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Estimation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Reslice Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Within-subject registration of image time series.

2.1 Realign: Estimate

This routine realigns a time-series of images acquired from the same subject using a least squares
approach and a 6 parameter (rigid body) spatial transformation [29]. The first image in the
list specified by the user is used as a reference to which all subsequent scans are realigned.
The reference scan does not have to the the first chronologically and it may be wise to chose a
”representative scan” in this role.

The aim is primarily to remove movement artefact in fMRI and PET time-series (or more
generally longitudinal studies). The headers are modified for each of the input images, such that.
they reflect the relative orientations of the data. The details of the transformation are displayed
in the results window as plots of translation and rotation. A set of realignment parameters are
saved for each session, named rp *.txt. These can be modelled as confounds within the general
linear model [29].

2.1.1 Data

Add new sessions for this subject. In the coregistration step, the sessions are first realigned to
each other, by aligning the first scan from each session to the first scan of the first session. Then
the images within each session are aligned to the first image of the session. The parameter esti-
mation is performed this way because it is assumed (rightly or not) that there may be systematic
differences in the images between sessions.
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Session

Select scans for this session. In the coregistration step, the sessions are first realigned to each other,
by aligning the first scan from each session to the first scan of the first session. Then the images
within each session are aligned to the first image of the session. The parameter estimation is
performed this way because it is assumed (rightly or not) that there may be systematic differences
in the images between sessions.

2.1.2 Estimation Options

Various registration options. If in doubt, simply keep the default values.

Quality

Quality versus speed trade-off. Highest quality (1) gives most precise results, whereas lower
qualities gives faster realignment. The idea is that some voxels contribute little to the estimation
of the realignment parameters. This parameter is involved in selecting the number of voxels that
are used.

Separation

The separation (in mm) between the points sampled in the reference image. Smaller sampling
distances gives more accurate results, but will be slower.

Smoothing (FWHM)

The FWHM of the Gaussian smoothing kernel (mm) applied to the images before estimating the
realignment parameters.

* PET images typically use a 7 mm kernel.

* MRI images typically use a 5 mm kernel.

Num Passes

Register to first: Images are registered to the first image in the series. Register to mean: A two
pass procedure is used in order to register the images to the mean of the images after the first
realignment.

PET images are typically registered to the mean. This is because PET data are more noisy
than fMRI and there are fewer of them, so time is less of an issue.

MRI images are typically registered to the first image. The more accurate way would be to
use a two pass procedure, but this probably wouldn’t improve the results so much and would take
twice as long to run.

Interpolation

The method by which the images are sampled when estimating the optimum transformation.
Higher degree interpolation methods provide the better interpolation, but they are slower because
they use more neighbouring voxels [82, 83, 84].

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed. Also the
recommended option if you are not really sure.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).
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Weighting

The option of providing a weighting image to weight each voxel of the reference image differently
when estimating the realignment parameters. The weights are proportional to the inverses of the
standard deviations. This would be used, for example, when there is a lot of extra-brain motion
- e.g., during speech, or when there are serious artifacts in a particular region of the images.

2.2 Realign: Reslice

This function reslices a series of registered images such that they match the first image selected
voxel-for-voxel. The resliced images are named the same as the originals, except that they are
prefixed by ’r’.

2.2.1 Images

Select scans to reslice to match the first.

2.2.2 Reslice Options

Various reslicing options. If in doubt, simply keep the default values.

Resliced images

All Images (1..n) : This reslices all the images - including the first image selected - which will
remain in its original position.

Images 2..n : Reslices images 2..n only. Useful for if you wish to reslice (for example) a PET
image to fit a structural MRI, without creating a second identical MRI volume.

All Images + Mean Image : In addition to reslicing the images, it also creates a mean of the
resliced image.

Mean Image Only : Creates the mean resliced image only.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Bilinear Interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [82, 83, 84]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels. Fourier Interpolation [24, 20] is
another option, but note that it is only implemented for purely rigid body transformations. Voxel
sizes must all be identical and isotropic.

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).
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Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is
’r’.

2.3 Realign: Estimate & Reslice

This routine realigns a time-series of images acquired from the same subject using a least squares
approach and a 6 parameter (rigid body) spatial transformation [29]. The first image in the
list specified by the user is used as a reference to which all subsequent scans are realigned.
The reference scan does not have to be the first chronologically and it may be wise to chose a
”representative scan” in this role.

The aim is primarily to remove movement artefact in fMRI and PET time-series (or more gen-
erally longitudinal studies) [5]. The headers are modified for each of the input images, such that.
they reflect the relative orientations of the data. The details of the transformation are displayed
in the results window as plots of translation and rotation. A set of realignment parameters are
saved for each session, named rp *.txt. After realignment, the images are resliced such that they
match the first image selected voxel-for-voxel. The resliced images are named the same as the
originals, except that they are prefixed by ’r’.

2.3.1 Data

Add new sessions for this subject. In the coregistration step, the sessions are first realigned to
each other, by aligning the first scan from each session to the first scan of the first session. Then
the images within each session are aligned to the first image of the session. The parameter esti-
mation is performed this way because it is assumed (rightly or not) that there may be systematic
differences in the images between sessions.

Session

Select scans for this session. In the coregistration step, the sessions are first realigned to each other,
by aligning the first scan from each session to the first scan of the first session. Then the images
within each session are aligned to the first image of the session. The parameter estimation is
performed this way because it is assumed (rightly or not) that there may be systematic differences
in the images between sessions.

2.3.2 Estimation Options

Various registration options. If in doubt, simply keep the default values.

Quality

Quality versus speed trade-off. Highest quality (1) gives most precise results, whereas lower
qualities gives faster realignment. The idea is that some voxels contribute little to the estimation
of the realignment parameters. This parameter is involved in selecting the number of voxels that
are used.

Separation

The separation (in mm) between the points sampled in the reference image. Smaller sampling
distances gives more accurate results, but will be slower.

Smoothing (FWHM)

The FWHM of the Gaussian smoothing kernel (mm) applied to the images before estimating the
realignment parameters.

* PET images typically use a 7 mm kernel.
* MRI images typically use a 5 mm kernel.
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Num Passes

Register to first: Images are registered to the first image in the series. Register to mean: A two
pass procedure is used in order to register the images to the mean of the images after the first
realignment.

PET images are typically registered to the mean. This is because PET data are more noisy
than fMRI and there are fewer of them, so time is less of an issue.

MRI images are typically registered to the first image. The more accurate way would be to
use a two pass procedure, but this probably wouldn’t improve the results so much and would take
twice as long to run.

Interpolation

The method by which the images are sampled when estimating the optimum transformation.
Higher degree interpolation methods provide the better interpolation, but they are slower because
they use more neighbouring voxels [82, 83, 84].

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed. Also the
recommended option if you are not really sure.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Weighting

The option of providing a weighting image to weight each voxel of the reference image differently
when estimating the realignment parameters. The weights are proportional to the inverses of the
standard deviations. This would be used, for example, when there is a lot of extra-brain motion
- e.g., during speech, or when there are serious artifacts in a particular region of the images.

2.3.3 Reslice Options

Various reslicing options. If in doubt, simply keep the default values.

Resliced images

All Images (1..n) : This reslices all the images - including the first image selected - which will
remain in its original position.

Images 2..n : Reslices images 2..n only. Useful for if you wish to reslice (for example) a PET
image to fit a structural MRI, without creating a second identical MRI volume.

All Images + Mean Image : In addition to reslicing the images, it also creates a mean of the
resliced image.

Mean Image Only : Creates the mean resliced image only.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Bilinear Interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [82, 83, 84]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels. Fourier Interpolation [24, 20] is
another option, but note that it is only implemented for purely rigid body transformations. Voxel
sizes must all be identical and isotropic.



30 CHAPTER 2. REALIGN

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed.
Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is
’r’.
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Within-subject registration and unwarping of time series.
The realignment part of this routine realigns a time-series of images acquired from the same

subject using a least squares approach and a 6 parameter (rigid body) spatial transformation.
The first image in the list specified by the user is used as a reference to which all subsequent
scans are realigned. The reference scan does not have to the the first chronologically and it may
be wise to chose a ”representative scan” in this role.
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The aim is primarily to remove movement artefact in fMRI and PET time-series (or more
generally longitudinal studies). ”.mat” files are written for each of the input images. The details
of the transformation are displayed in the results window as plots of translation and rotation. A
set of realignment parameters are saved for each session, named rp *.txt.

In the coregistration step, the sessions are first realigned to each other, by aligning the first
scan from each session to the first scan of the first session. Then the images within each session
are aligned to the first image of the session. The parameter estimation is performed this way
because it is assumed (rightly or not) that there may be systematic differences in the images
between sessions.

The paper [2] is unfortunately a bit old now and describes none of the newer features. Hope-
fully we’ll have a second paper out any decade now.

See also spm uw estimate.m for a detailed description of the implementation. Even after
realignment there is considerable variance in fMRI time series that covary with, and is most
probably caused by, subject movements [2]. It is also the case that this variance is typically
large compared to experimentally induced variance. Anyone interested can include the estimated
movement parameters as covariates in the design matrix, and take a look at an F-contrast encom-
passing those columns. It is quite dramatic. The result is loss of sensitivity, and if movements are
correlated to task specificity. I.e. we may mistake movement induced variance for true activations.
The problem is well known, and several solutions have been suggested. A quite pragmatic (and
conservative) solution is to include the estimated movement parameters (and possibly squared)
as covariates in the design matrix. Since we typically have loads of degrees of freedom in fMRI
we can usually afford this. The problems occur when movements are correlated with the task,
since the strategy above will discard ”good” and ”bad” variance alike (i.e. remove also ”true”
activations.

The ”covariate” strategy described above was predicated on a model where variance was
assumed to be caused by ”spin history” effects, but will work pretty much equally good/bad
regardless of what the true underlying cause is. Others have assumed that the residual variance
is caused mainly by errors introduced by the interpolation kernel in the resampling step of the
realignment. One has tried to solve this through higher order resampling (huge Sinc kernels, or
k-space resampling). Unwarp is based on a different hypothesis regarding the residual variance.
EPI images are not particularly faithful reproductions of the object, and in particular there are
severe geometric distortions in regions where there is an air-tissue interface (e.g. orbitofrontal
cortex and the anterior medial temporal lobes). In these areas in particular the observed image is
a severely warped version of reality, much like a funny mirror at a fair ground. When one moves
in front of such a mirror ones image will distort in different ways and ones head may change from
very elongated to seriously flattened. If we were to take digital snapshots of the reflection at
these different positions it is rather obvious that realignment will not suffice to bring them into
a common space.

The situation is similar with EPI images, and an image collected for a given subject position
will not be identical to that collected at another. We call this effect susceptibility-by-movement
interaction. Unwarp is predicated on the assumption that the susceptibility-by- movement inter-
action is responsible for a sizable part of residual movement related variance.

Assume that we know how the deformations change when the subject changes position (i.e.
we know the derivatives of the deformations with respect to subject position). That means
that for a given time series and a given set of subject movements we should be able to predict
the ”shape changes” in the object and the ensuing variance in the time series. It also means
that, in principle, we should be able to formulate the inverse problem, i.e. given the observed
variance (after realignment) and known (estimated) movements we should be able to estimate
how deformations change with subject movement. We have made an attempt at formulating
such an inverse model, and at solving for the ”derivative fields”. A deformation field can be
thought of as little vectors at each position in space showing how that particular location has
been deflected. A ”derivative field” is then the rate of change of those vectors with respect to
subject movement. Given these ”derivative fields” we should be able to remove the variance
caused by the susceptibility-by-movement interaction. Since the underlying model is so restricted
we would also expect experimentally induced variance to be preserved. Our experiments have
also shown this to be true.

In theory it should be possible to estimate also the ”static” deformation field, yielding an
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unwarped (to some true geometry) version of the time series. In practise that doesn’t really seem
to work. Hence, the method deals only with residual movement related variance induced by the
susceptibility-by-movement interaction. This means that the time-series will be undistorted to
some ”average distortion” state rather than to the true geometry. If one wants additionally to
address the issue of anatomical fidelity one should combine Unwarp with a measured fieldmap.

The description above can be thought of in terms of a Taylor expansion of the field as a
function of subject movement. Unwarp alone will estimate the first (and optionally second, see
below) order terms of this expansion. It cannot estimate the zeroth order term (the distortions
common to all scans in the time series) since that doesn’t introduce (almost) any variance in the
time series. The measured fieldmap takes the role of the zeroth order term. Refer to the FieldMap
toolbox and the documents FieldMap.man and FieldMap principles.man for a description of how
to obtain fieldmaps in the format expected by Unwarp.

If we think of the field as a function of subject movement it should in principle be a function
of six variables since rigid body movement has six degrees of freedom. However, the physics of
the problem tells us that the field should not depend on translations nor on rotation in a plane
perpendicular to the magnetic flux. Hence it should in principle be sufficient to model the field
as a function of out-of-plane rotations (i.e. pitch and roll). One can object to this in terms
of the effects of shimming (object no longer immersed in a homogenous field) that introduces
a dependence on all movement parameters. In addition SPM/Unwarp cannot really tell if the
transversal slices it is being passed are really perpendicular to the flux or not. In practice it turns
out thought that it is never (at least we haven’t seen any case) necessary to include more than
Pitch and Roll. This is probably because the individual movement parameters are typically highly
correlated anyway, which in turn is probably because most heads that we scan are attached to a
neck around which rotations occur. On the subject of Taylor expansion we should mention that
there is the option to use a second-order expansion (through the defaults) interface. This implies
estimating also the rate-of-change w.r.t. to some movement parameter of the rate-of-change of
the field w.r.t. some movement parameter (colloquially known as a second derivative). It can be
quite interesting to watch (and it is amazing that it is possible) but rarely helpful/necessary.

In the defaults there is also an option to include Jacobian intensity modulation when estimat-
ing the fields. ”Jacobian intensity modulation” refers to the dilution/concentration of intensity
that ensue as a consequence of the distortions. Think of a semi-transparent coloured rubber sheet
that you hold against a white background. If you stretch a part of the sheet (induce distortions)
you will see the colour fading in that particular area. In theory it is a brilliant idea to include
also these effects when estimating the field (see e.g. Andersson et al, NeuroImage 20:870-888).
In practice for this specific problem it is NOT a good idea.

It should be noted that this is a method intended to correct data afflicted by a particular
problem. If there is little movement in your data to begin with this method will do you little
good. If on the other hand there is appreciable movement in your data (>1deg) it will remove
some of that unwanted variance. If, in addition, movements are task related it will do so without
removing all your ”true” activations. The method attempts to minimise total (across the image
volume) variance in the data set. It should be realised that while (for small movements) a rather
limited portion of the total variance is removed, the susceptibility-by-movement interaction effects
are quite localised to ”problem” areas. Hence, for a subset of voxels in e.g. frontal-medial and
orbitofrontal cortices and parts of the temporal lobes the reduction can be quite dramatic (>90).
The advantages of using Unwarp will also depend strongly on the specifics of the scanner and
sequence by which your data has been acquired. When using the latest generation scanners
distortions are typically quite small, and distortion-by-movement interactions consequently even
smaller. A small check list in terms of distortions is

a) Fast gradients->short read-out time->small distortions

b) Low field (i.e. <3T)->small field changes->small distortions

c) Low res (64x64)->short read-out time->small distortions

d) SENSE/SMASH->short read-out time->small distortions

If you can tick off all points above chances are you have minimal distortions to begin with
and you can say ”sod Unwarp” (but not to our faces!).
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3.1 Data

Data sessions to unwarp.

3.1.1 Session

Only add similar session data to a realign+unwarp branch, i.e., choose Data or Data+phase map
for all sessions, but don’t use them interchangeably.

In the coregistration step, the sessions are first realigned to each other, by aligning the first
scan from each session to the first scan of the first session. Then the images within each session
are aligned to the first image of the session. The parameter estimation is performed this way
because it is assumed (rightly or not) that there may be systematic differences in the images
between sessions.

Images

Select scans for this session.
In the coregistration step, the sessions are first realigned to each other, by aligning the first

scan from each session to the first scan of the first session. Then the images within each session
are aligned to the first image of the session. The parameter estimation is performed this way
because it is assumed (rightly or not) that there may be systematic differences in the images
between sessions.

Phase map (vdm* file)

Select pre-calculated phase map, or leave empty for no phase correction. The vdm* file is assumed
to be already in alignment with the first scan of the first session.

3.2 Estimation Options

Various registration options that could be modified to improve the results. Whenever possible,
the authors of SPM try to choose reasonable settings, but sometimes they can be improved.

3.2.1 Quality

Quality versus speed trade-off. Highest quality (1) gives most precise results, whereas lower
qualities gives faster realignment. The idea is that some voxels contribute little to the estimation
of the realignment parameters. This parameter is involved in selecting the number of voxels that
are used.

3.2.2 Separation

The separation (in mm) between the points sampled in the reference image. Smaller sampling
distances gives more accurate results, but will be slower.

3.2.3 Smoothing (FWHM)

The FWHM of the Gaussian smoothing kernel (mm) applied to the images before estimating the
realignment parameters.

* PET images typically use a 7 mm kernel.
* MRI images typically use a 5 mm kernel.

3.2.4 Num Passes

Register to first: Images are registered to the first image in the series. Register to mean: A two
pass procedure is used in order to register the images to the mean of the images after the first
realignment.

* PET images are typically registered to the mean.
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* MRI images are typically registered to the first image.

3.2.5 Interpolation

The method by which the images are sampled when estimating the optimum transformation.
Higher degree interpolation methods provide the better interpolation, but they are slower because
they use more neighbouring voxels [82, 83, 84].

3.2.6 Wrapping

These are typically:

* No wrapping - for images that have already been spatially transformed.

* Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

3.2.7 Weighting

The option of providing a weighting image to weight each voxel of the reference image differently
when estimating the realignment parameters. The weights are proportional to the inverses of the
standard deviations. For example, when there is a lot of extra-brain motion - e.g., during speech,
or when there are serious artifacts in a particular region of the images.

3.3 Unwarp Estimation Options

Various registration & unwarping estimation options.

3.3.1 Basis Functions

Number of basis functions to use for each dimension. If the third dimension is left out, the order
for that dimension is calculated to yield a roughly equal spatial cut-off in all directions. Default:
[12 12 *]

3.3.2 Regularisation

Unwarp looks for the solution that maximises the likelihood (minimises the variance) while si-
multaneously maximising the smoothness of the estimated field (c.f. Lagrange multipliers). This
parameter determines how to balance the compromise between these (i.e. the value of the multi-
plier). Test it on your own data (if you can be bothered) or go with the defaults.

Regularisation of derivative fields is based on the regorder’th (spatial) derivative of the field.
The choices are 0, 1, 2, or 3. Default: 1

3.3.3 Reg. Factor

Regularisation factor. Default: Medium.

3.3.4 Jacobian deformations

In the defaults there is also an option to include Jacobian intensity modulation when estimating
the fields. ”Jacobian intensity modulation” refers to the dilution/concentration of intensity that
ensue as a consequence of the distortions. Think of a semi-transparent coloured rubber sheet
that you hold against a white background. If you stretch a part of the sheet (induce distortions)
you will see the colour fading in that particular area. In theory it is a brilliant idea to include
also these effects when estimating the field (see e.g. Andersson et al, NeuroImage 20:870-888).
In practice for this specific problem it is NOT a good idea. Default: No



36 CHAPTER 3. REALIGN & UNWARP

3.3.5 First-order effects

Theoretically (ignoring effects of shimming) one would expect the field to depend only on subject
out-of-plane rotations. Hence the default choice (”Pitch and Roll”, i.e., [4 5]). Go with that
unless you have very good reasons to do otherwise

Vector of first order effects to model. Movements to be modelled are referred to by number.
1= x translation; 2= y translation; 3= z translation 4 = x rotation, 5 = y rotation and 6 = z
rotation.

To model pitch & roll enter: [4 5]
To model all movements enter: [1:6]
Otherwise enter a customised set of movements to model

3.3.6 Second-order effects

List of second order terms to model second derivatives of. This is entered as a vector of movement
parameters similar to first order effects, or leave blank for NONE

Movements to be modelled are referred to by number:
1= x translation; 2= y translation; 3= z translation 4 = x rotation, 5 = y rotation and 6 = z

rotation.
To model the interaction of pitch & roll enter: [4 5]
To model all movements enter: [1:6]
The vector will be expanded into an n x 2 matrix of effects. For example [4 5] will be expanded

to:
[ 4 4
4 5
5 5 ]

3.3.7 Smoothing for unwarp (FWHM)

FWHM (mm) of smoothing filter applied to images prior to estimation of deformation fields.

3.3.8 Re-estimate movement params

Re-estimation means that movement-parameters should be re-estimated at each unwarping iter-
ation. Default: Yes.

3.3.9 Number of Iterations

Maximum number of iterations. Default: 5.

3.3.10 Taylor expansion point

Point in position space to perform Taylor-expansion around. Choices are (’First’, ’Last’ or ’Av-
erage’). ’Average’ should (in principle) give the best variance reduction. If a field-map acquired
before the time-series is supplied then expansion around the ’First’ MIGHT give a slightly better
average geometric fidelity.

3.4 Unwarp Reslicing Options

Various registration & unwarping estimation options.

3.4.1 Resliced images (unwarp)?

All Images (1..n)
This reslices and unwarps all the images.
All Images + Mean Image
In addition to reslicing the images, it also creates a mean of the resliced images.



3.4. UNWARP RESLICING OPTIONS 37

3.4.2 Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Bilinear Interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [82, 83, 84]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels.

3.4.3 Wrapping

These are typically:
* No wrapping - for images that have already been spatially transformed.
* Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

3.4.4 Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

3.4.5 Filename Prefix

Specify the string to be prepended to the filenames of the smoothed image file(s). Default prefix
is ’u’.
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Coregister
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Within-subject registration using a rigid-body model. A rigid-body transformation (in 3D)
can be parameterised by three translations and three rotations about the different axes.

You get the options of estimating the transformation, reslicing images according to some
rigid-body transformations, or estimating and applying rigid-body transformations.

4.1 Coregister: Estimate

The registration method used here is based on work by Collignon et al [19]. The original interpo-
lation method described in this paper has been changed in order to give a smoother cost function.
The images are also smoothed slightly, as is the histogram. This is all in order to make the cost
function as smooth as possible, to give faster convergence and less chance of local minima.

At the end of coregistration, the voxel-to-voxel affine transformation matrix is displayed, along
with the histograms for the images in the original orientations, and the final orientations. The
registered images are displayed at the bottom.

Registration parameters are stored in the headers of the ”source” and the ”other” images.

4.1.1 Reference Image

This is the image that is assumed to remain stationary (sometimes known as the target or template
image), while the source image is moved to match it.
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4.1.2 Source Image

This is the image that is jiggled about to best match the reference.

4.1.3 Other Images

These are any images that need to remain in alignment with the source image.

4.1.4 Estimation Options

Various registration options, which are passed to the Powell optimisation algorithm [79].

Objective Function

Registration involves finding parameters that either maximise or minimise some objective func-
tion. For inter-modal registration, use Mutual Information [19, 85], Normalised Mutual Infor-
mation [81], or Entropy Correlation Coefficient [61].For within modality, you could also use Nor-
malised Cross Correlation.

Separation

The average distance between sampled points (in mm). Can be a vector to allow a coarse regis-
tration followed by increasingly fine ones.

Tolerances

The accuracy for each parameter. Iterations stop when differences between successive estimates
are less than the required tolerance.

Histogram Smoothing

Gaussian smoothing to apply to the 256x256 joint histogram. Other information theoretic coreg-
istration methods use fewer bins, but Gaussian smoothing seems to be more elegant.

4.2 Coregister: Reslice

Reslice images to match voxel-for-voxel with an image defining some space. The resliced images
are named the same as the originals except that they are prefixed by ’r’.

4.2.1 Image Defining Space

This is analogous to the reference image. Images are resliced to match this image (providing they
have been coregistered first).

4.2.2 Images to Reslice

These images are resliced to the same dimensions, voxel sizes, orientation etc as the space defining
image.

4.2.3 Reslice Options

Various reslicing options.
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Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not normally recommended. It can be useful for re-orienting images while
preserving the original intensities (e.g. an image consisting of labels). Bilinear Interpolation is
OK for PET, or realigned and re-sliced fMRI. If subject movement (from an fMRI time series)
is included in the transformations then it may be better to use a higher degree approach. Note
that higher degree B-spline interpolation [82, 83, 84] is slower because it uses more neighbours.

Wrapping

These are typically:
No wrapping - for PET or images that have already been spatially transformed.
Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is
’r’.

4.3 Coregister: Estimate & Reslice

The registration method used here is based on work by Collignon et al [19]. The original interpo-
lation method described in this paper has been changed in order to give a smoother cost function.
The images are also smoothed slightly, as is the histogram. This is all in order to make the cost
function as smooth as possible, to give faster convergence and less chance of local minima.

At the end of coregistration, the voxel-to-voxel affine transformation matrix is displayed, along
with the histograms for the images in the original orientations, and the final orientations. The
registered images are displayed at the bottom.

Registration parameters are stored in the headers of the ”source” and the ”other” images.
These images are also resliced to match the source image voxel-for-voxel. The resliced images are
named the same as the originals except that they are prefixed by ’r’.

4.3.1 Reference Image

This is the image that is assumed to remain stationary (sometimes known as the target or template
image), while the source image is moved to match it.

4.3.2 Source Image

This is the image that is jiggled about to best match the reference.

4.3.3 Other Images

These are any images that need to remain in alignment with the source image.

4.3.4 Estimation Options

Various registration options, which are passed to the Powell optimisation algorithm [79].
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Objective Function

Registration involves finding parameters that either maximise or minimise some objective func-
tion. For inter-modal registration, use Mutual Information [19, 85], Normalised Mutual Infor-
mation [81], or Entropy Correlation Coefficient [61].For within modality, you could also use Nor-
malised Cross Correlation.

Separation

The average distance between sampled points (in mm). Can be a vector to allow a coarse regis-
tration followed by increasingly fine ones.

Tolerances

The accuracy for each parameter. Iterations stop when differences between successive estimates
are less than the required tolerance.

Histogram Smoothing

Gaussian smoothing to apply to the 256x256 joint histogram. Other information theoretic coreg-
istration methods use fewer bins, but Gaussian smoothing seems to be more elegant.

4.3.5 Reslice Options

Various reslicing options.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not normally recommended. It can be useful for re-orienting images while
preserving the original intensities (e.g. an image consisting of labels). Bilinear Interpolation is
OK for PET, or realigned and re-sliced fMRI. If subject movement (from an fMRI time series)
is included in the transformations then it may be better to use a higher degree approach. Note
that higher degree B-spline interpolation [82, 83, 84] is slower because it uses more neighbours.

Wrapping

These are typically:
No wrapping - for PET or images that have already been spatially transformed.
Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the resliced image file(s). Default prefix is
’r’.
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Segment, bias correct and spatially normalise - all in the same model [9]. This function
can be used for bias correcting, spatially normalising or segmenting your data. Note that this
module needs the images to be roughly aligned with the tissue probability maps before you
begin. If strange results are obtained, then this is usually because the images were poorly aligned
beforehand. The Display option can be used to manually reposition the images so that the AC
is close to coordinate 0,0,0 (within a couple of cm) and the orientation is within a few degrees of
the tissue probability map data.

Many investigators use tools within older versions of SPM for a technique that has become
known as ”optimised” voxel-based morphometry (VBM). VBM performs region-wise volumetric
comparisons among populations of subjects. It requires the images to be spatially normalised,
segmented into different tissue classes, and smoothed, prior to performing statistical tests [86,
64, 7, 8]. The ”optimised” pre-processing strategy involved spatially normalising subjects’ brain
images to a standard space, by matching grey matter in these images, to a grey matter reference.
The historical motivation behind this approach was to reduce the confounding effects of non-brain
(e.g. scalp) structural variability on the registration. Tissue classification in older versions of SPM
required the images to be registered with tissue probability maps. After registration, these maps
represented the prior probability of different tissue classes being found at each location in an
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image. Bayes rule can then be used to combine these priors with tissue type probabilities derived
from voxel intensities, to provide the posterior probability.

This procedure was inherently circular, because the registration required an initial tissue clas-
sification, and the tissue classification requires an initial registration. This circularity is resolved
here by combining both components into a single generative model. This model also includes
parameters that account for image intensity non-uniformity. Estimating the model parameters
(for a maximum a posteriori solution) involves alternating among classification, bias correction
and registration steps. This approach provides better results than simple serial applications of
each component.

Note that multi-spectral segmentation (e.g. from a registered T1 and T2 image) is not yet
implemented, but is planned for a future SPM version.

5.1 Data

Select scans for processing. This assumes that there is one scan for each subject. Note that
multi-spectral (when there are two or more registered images of different contrasts) processing is
not yet implemented for this method.

5.2 Output Files

This routine produces spatial normalisation parameters (* seg sn.mat files) by default. These
can be used for writing spatially normalised versions of your data, via the ”Normalise: Write”
option. This mechanism may produce superior results than the ”Normalise: Estimate” option
(but probably not as good as those produced using DARTEL).

In addition, it also produces files that can be used for doing inverse normalisation. If you
have an image of regions defined in the standard space, then the inverse deformations can be
used to warp these regions so that it approximately overlay your image. To use this facility, the
bounding-box and voxel sizes should be set to non-finite values (e.g. [NaN NaN NaN] for the voxel
sizes, and ones(2,3)*NaN for the bounding box. This would be done by the spatial normalisation
module, which allows you to select a set of parameters that describe the nonlinear warps, and
the images that they should be applied to.

There are a number of options about what data you would like the routine to produce. The
routine can be used for producing images of tissue classes, as well as bias corrected images. The
native space option will produce a tissue class image (c*) that is in alignment with the original (see
Figure 5.1). You can also produce spatially normalised versions - both with (mwc*) and without
(wc*) modulation (see Figure 5.2). The bounding box and voxel sizes of the spatially normalised
versions are the same as that of the tissue probability maps with which they are registered. These
can be used for doing voxel-based morphometry with (also see the “Using DARTEL’ chapter of
the manual). All you need to do is smooth them and do the stats (which means no more questions
on the mailing list about how to do ”optimized VBM”).

Modulation is to compensate for the effect of spatial normalisation. When warping a series
of images to match a template, it is inevitable that volumetric differences will be introduced into
the warped images. For example, if one subject’s temporal lobe has half the volume of that of
the template, then its volume will be doubled during spatial normalisation. This will also result
in a doubling of the voxels labelled grey matter. In order to remove this confound, the spatially
normalised grey matter (or other tissue class) is adjusted by multiplying by its relative volume
before and after warping. If warping results in a region doubling its volume, then the correction
will halve the intensity of the tissue label. This whole procedure has the effect of preserving the
total amount of grey matter signal in the normalised partitions.

A deformation field is a vector field, where three values are associated with each location in
the field. The field maps from co-ordinates in the normalised image back to co-ordinates in the
original image. The value of the field at co-ordinate [x y z] in the normalised space will be the
co-ordinate [x’ y’ z’] in the original volume. The gradient of the deformation field at a co-ordinate
is its Jacobian matrix, and it consists of a 3x3 matrix:
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Figure 5.1: Segmentation results. These are the results that can be obtained in the original space
of the image (i.e. the results that are not spatially normalised). Top left: original image (X.img).
Top right: bias corrected image (mX.img). Middle and bottom rows: segmented grey matter
(c1X.img), white matter (c2X.img) and CSF (c3X.img).
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Figure 5.2: Segmentation results. These are the spatially normalised results that can be obtained
(note that CSF data is not shown). Top row: The tissue probability maps used to guide the
segmentation. Middle row: Spatially normalised tissue maps of grey and white matter (wc1X.img
and wc2X.img). Bottom row: Modulated spatially normalised tissue maps of grey and white
matter (mwc1X.img and mwc2X.img).
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The value of dx’/dy is a measure of how much x’ changes if y is changed by a tiny amount.

The determinant of the Jacobian is the measure of relative volumes of warped and unwarped
structures. The modulation step simply involves multiplying by the relative volumes (see Figure
5.2).

5.2.1 Grey Matter

Options to produce grey matter images: c1*.img, wc1*.img and mwc1*.img.

5.2.2 White Matter

Options to produce white matter images: c2*.img, wc2*.img and mwc2*.img.

5.2.3 Cerebro-Spinal Fluid

Options to produce CSF images: c3*.img, wc3*.img and mwc3*.img.

5.2.4 Bias Corrected

This is the option to produce a bias corrected version of your image. MR images are usually
corrupted by a smooth, spatially varying artifact that modulates the intensity of the image (bias).
These artifacts, although not usually a problem for visual inspection, can impede automated
processing of the images. The bias corrected version should have more uniform intensities within
the different types of tissues.

5.2.5 Clean up any partitions

This uses a crude routine for extracting the brain from segmentedimages. It begins by taking the
white matter, and eroding it acouple of times to get rid of any odd voxels. The algorithmcontinues
on to do conditional dilations for several iterations,where the condition is based upon gray or white
matter being present.This identified region is then used to clean up the grey and whitematter
partitions, and has a slight influences on the CSF partition.

If you find pieces of brain being chopped out in your data, then you may wish to disable or
tone down the cleanup procedure.

5.3 Custom

Various options can be adjusted in order to improve the performance of the algorithm with your
data. Knowing what works best should be a matter of empirical exploration. For example, if
your data has very little intensity non-uniformity artifact, then the bias regularisation should be
increased. This effectively tells the algorithm that there is very little bias in your data, so it does
not try to model it.

5.3.1 Tissue probability maps

Select the tissue probability images. These should be maps of grey matter, white matter and
cerebro-spinal fluid probability. A nonlinear deformation field is estimated that best overlays the
tissue probability maps on the individual subjects’ image. The default tissue probability maps
are modified versions of the ICBM Tissue Probabilistic Atlases.These tissue probability maps
are kindly provided by the International Consortium for Brain Mapping, John C. Mazziotta and
Arthur W. Toga. http://www.loni.ucla.edu/ICBM/ICBM TissueProb.html. The original data
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are derived from 452 T1-weighted scans, which were aligned with an atlas space, corrected for
scan inhomogeneities, and classified into grey matter, white matter and cerebrospinal fluid. These
data were then affine registered to the MNI space and downsampled to 2mm resolution.

Rather than assuming stationary prior probabilities based upon mixing proportions, additional
information is used, based on other subjects’ brain images. Priors are usually generated by
registering a large number of subjects together, assigning voxels to different tissue types and
averaging tissue classes over subjects. Three tissue classes are used: grey matter, white matter
and cerebro-spinal fluid. A fourth class is also used, which is simply one minus the sum of the
first three. These maps give the prior probability of any voxel in a registered image being of any
of the tissue classes - irrespective of its intensity.

The model is refined further by allowing the tissue probability maps to be deformed according
to a set of estimated parameters. This allows spatial normalisation and segmentation to be
combined into the same model. This implementation uses a low-dimensional approach, which
parameterises the deformations by a linear combination of about a thousand cosine transform
bases. This is not an especially precise way of encoding deformations, but it can model the
variability of overall brain shape. Evaluations by Hellier et al have shown that this simple model
can achieve a registration accuracy comparable to other fully automated methods with many
more parameters.

5.3.2 Gaussians per class

The number of Gaussians used to represent the intensity distribution for each tissue class can be
greater than one. In other words, a tissue probability map may be shared by several clusters.
The assumption of a single Gaussian distribution for each class does not hold for a number of
reasons. In particular, a voxel may not be purely of one tissue type, and instead contain signal
from a number of different tissues (partial volume effects). Some partial volume voxels could fall
at the interface between different classes, or they may fall in the middle of structures such as the
thalamus, which may be considered as being either grey or white matter. Various other image
segmentation approaches use additional clusters to model such partial volume effects. These
generally assume that a pure tissue class has a Gaussian intensity distribution, whereas intensity
distributions for partial volume voxels are broader, falling between the intensities of the pure
classes. Unlike these partial volume segmentation approaches, the model adopted here simply
assumes that the intensity distribution of each class may not be Gaussian, and assigns belonging
probabilities according to these non-Gaussian distributions. Typical numbers of Gaussians could
be two for grey matter, two for white matter, two for CSF, and four for everything else.

5.3.3 Affine Regularisation

The procedure is a local optimisation, so it needs reasonable initial starting estimates. Images
should be placed in approximate alignment using the Display function of SPM before beginning.
A Mutual Information affine registration with the tissue probability maps (D’Agostino et al,
2004) is used to achieve approximate alignment. Note that this step does not include any model
for intensity non-uniformity. This means that if the procedure is to be initialised with the affine
registration, then the data should not be too corrupted with this artifact.If there is a lot of
intensity non-uniformity, then manually position your image in order to achieve closer starting
estimates, and turn off the affine registration.

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). For example, if registering to an image in ICBM/MNI
space, then choose this option. If registering to a template that is close in size, then select the
appropriate option for this.

5.3.4 Warping Regularisation

The objective function for registering the tissue probability maps to the image to process, in-
volves minimising the sum of two terms. One term gives a function of how probable the data
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is given the warping parameters. The other is a function of how probable the parameters are,
and provides a penalty for unlikely deformations. Smoother deformations are deemed to be more
probable. The amount of regularisation determines the tradeoff between the terms. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude). More regularisation gives
smoother deformations, where the smoothness measure is determined by the bending energy of
the deformations.

5.3.5 Warp Frequency Cutoff

Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the
warps. The number actually used will depend on the cutoff and the field of view of your image. A
smaller cutoff frequency will allow more detailed deformations to be modelled, but unfortunately
comes at a cost of greatly increasing the amount of memory needed, and the time taken.

5.3.6 Bias regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between intensity variations that arise because
of bias artifact due to the physics of MR scanning, and those that arise due to different tissue
properties. The objective is to model the latter by different tissue classes, while modelling the
former with a bias field. We know a priori that intensity variations due to MR physics tend
to be spatially smooth, whereas those due to different tissue types tend to contain more high
frequency information. A more accurate estimate of a bias field can be obtained by including prior
knowledge about the distribution of the fields likely to be encountered by the correction algorithm.
For example, if it is known that there is little or no intensity non-uniformity, then it would be
wise to penalise large values for the intensity non-uniformity parameters. This regularisation can
be placed within a Bayesian context, whereby the penalty incurred is the negative logarithm of a
prior probability for any particular pattern of non-uniformity.

5.3.7 Bias FWHM

FWHM of Gaussian smoothness of bias. If your intensity non-uniformity is very smooth, then
choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation
due to different tissue types. The model for intensity non-uniformity is one of i.i.d. Gaussian
noise that has been smoothed by some amount, before taking the exponential. Note also that
smoother bias fields need fewer parameters to describe them. This means that the algorithm is
faster for smoother intensity non-uniformities.

5.3.8 Sampling distance

The approximate distance between sampled points when estimating the model parameters. Smaller
values use more of the data, but the procedure is slower.

5.3.9 Masking image

The segmentation can be masked by an image that conforms to the same space as the images
to be segmented. If an image is selected, then it must match the image(s) voxel-for voxel, and
have the same voxel-to-world mapping. Regions containing a value of zero in this image do not
contribute when estimating the various parameters.
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This very ancient module spatially (stereotactically) normalises MRI, PET or SPECT images
into a standard space defined by some ideal model or template image[s]. The template images
supplied with SPM conform to the space defined by the ICBM, NIH P-20 project, and approximate
that of the the space described in the atlas of Talairach and Tournoux (1988). The transformation
can also be applied to any other image that has been coregistered with these scans. A few
researchers may wish to continue using this strategy, but (when good quality anatomical MRI
scans are available) the DARTEL approach is now generally recommended instead.

Generally, the algorithms work by minimising the sum of squares difference between the image
which is to be normalised, and a linear combination of one or more template images. For the
least squares registration to produce an unbiased estimate of the spatial transformation, the image
contrast in the templates (or linear combination of templates) should be similar to that of the
image from which the spatial normalisation is derived. The registration simply searches for an
optimum solution. If the starting estimates are not good, then the optimum it finds may not find
the global optimum.

The first step of the normalisation is to determine the optimum 12-parameter affine transfor-
mation. Initially, the registration is performed by matching the whole of the head (including the
scalp) to the template. Following this, the registration proceeded by only matching the brains
together, by appropriate weighting of the template voxels. This is a completely automated pro-
cedure (that does not require “scalp editing’) that discounts the confounding effects of skull and
scalp differences. A Bayesian framework is used, such that the registration searches for the so-
lution that maximises the a posteriori probability of it being correct [10] . i.e., it maximises the
product of the likelihood function (derived from the residual squared difference) and the prior
function (which is based on the probability of obtaining a particular set of zooms and shears).

The affine registration is followed by estimating nonlinear deformations, whereby the defor-
mations are defined by a linear combination of three dimensional discrete cosine transform (DCT)
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basis functions [6] . The default options result in each of the deformation fields being described
by 1176parameters, where these represent the coefficients of the deformations in three orthogo-
nal directions. The matching involved simultaneously minimising the membrane energies of the
deformation fields and the residual squared difference between the images and template(s).

The primarily use is for stereotactic normalisation to facilitate inter-subject averaging and
precise characterisation of functional anatomy [5] . It is not necessary to spatially normalise the
data (this is only a pre-requisite for inter-subject averaging or reporting in the Talairach space).
If you wish to circumnavigate this step (e.g. if you have single slice data or do not have an
appropriate high resolution MRI scan) simply specify where you think the anterior commissure is
with the ORIGIN in the header of the first scan (using the ’Display’ facility) and proceed directly
to ’Smoothing’or ’Statistics’.

All normalised *.img scans are written to the same subdirectory as the original *.img, prefixed
with a ’w’ (i.e. w*.img). The details of the transformations are displayed in the results window,
and the parameters are saved in the ”* sn.mat” file.

6.1 Normalise: Estimate

Computes the warp that best registers a source image (or series of source images) to match a
template, saving it to a file imagename’ sn.mat’.

6.1.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.

Source Image The image that is warped to match the template(s). The result is a set of
warps, which can be applied to this image, or any other image that is in register with it.

Source Weighting Image Optional weighting images (consisting of pixel values between the
range of zero to one) to be used for registering abnormal or lesioned brains. These images should
match the dimensions of the image from which the parameters are estimated, and should contain
zeros corresponding to regions of abnormal tissue.

6.1.2 Estimation Options

Various settings for estimating warps.

Template Image

Specify a template image to match the source image with. The contrast in the template must be
similar to that of the source image in order to achieve a good registration. It is also possible to
select more than one template, in which case the registration algorithm will try to find the best
linear combination of these images in order to best model the intensities in the source image.

Template Weighting Image

Applies a weighting mask to the template(s) during the parameter estimation. With the default
brain mask, weights in and around the brain have values of one whereas those clearly outside the
brain are zero. This is an attempt to base the normalisation purely upon the shape of the brain,
rather than the shape of the head (since low frequency basis functions can not really cope with
variations in skull thickness).

The option is now available for a user specified weighting image. This should have the same
dimensions and mat file as the template images, with values in the range of zero to one.
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Source Image Smoothing

Smoothing to apply to a copy of the source image. The template and source images should have
approximately the same smoothness. Remember that the templates supplied with SPM have
been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Template Image Smoothing

Smoothing to apply to a copy of the template image. The template and source images should
have approximately the same smoothness. Remember that the templates supplied with SPM
have been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Affine Regularisation

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). If registering to an image in ICBM/MNI space, then
choose the first option. If registering to a template that is close in size, then select the second
option. If you do not want to regularise, then choose the third.

Nonlinear Frequency Cutoff

Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the
warps. The number used will depend on the cutoff and the field of view of the template image(s).

Nonlinear Iterations

Number of iterations of nonlinear warping performed.

Nonlinear Regularisation

The amount of regularisation for the nonlinear part of the spatial normalisation. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude) - or even just use an affine
normalisation. The regularisation influences the smoothness of the deformation fields.

6.2 Normalise: Write

Allows previously estimated warps (stored in imagename’ sn.mat’ files) to be applied to series of
images.

6.2.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.

Parameter File Select the ’ sn.mat’ file containing the spatial normalisation parameters for
that subject.

Images to Write These are the images for warping according to the estimated parameters.
They can be any images that are in register with the ”source” image used to generate the param-
eters.
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6.2.2 Writing Options

Various options for writing normalised images.

Preserve

Preserve Concentrations: Spatially normalised images are not ”modulated”. The warped images
preserve the intensities of the original images.

Preserve Total: Spatially normalised images are ”modulated” in order to preserve the total
amount of signal in the images. Areas that are expanded during warping are correspondingly
reduced in intensity.

Bounding box

The bounding box (in mm) of the volume which is to be written (relative to the anterior com-
missure).

Voxel sizes

The voxel sizes (x, y & z, in mm) of the written normalised images.

Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:
- Fastest, but not normally recommended.
Bilinear Interpolation:
- OK for PET, realigned fMRI, or segmentations
B-spline Interpolation:
- Better quality (but slower) interpolation [82], especially with higher degree splines. Can

produce values outside the original range (e.g. small negative values from an originally all positive
image).

Wrapping

These are typically:
No wrapping: for PET or images that have already been spatially transformed.
Wrap in Y: for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Filename Prefix

Specify the string to be prepended to the filenames of the normalised image file(s). Default prefix
is ’w’.

6.3 Normalise: Estimate & Write

Computes the warp that best registers a source image (or series of source images) to match a
template, saving it to the file imagename’ sn.mat’. This option also allows the contents of the
imagename’ sn.mat’ files to be applied to a series of images.

6.3.1 Data

List of subjects. Images of each subject should be warped differently.

Subject

Data for this subject. The same parameters are used within subject.
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Source Image The image that is warped to match the template(s). The result is a set of
warps, which can be applied to this image, or any other image that is in register with it.

Source Weighting Image Optional weighting images (consisting of pixel values between the
range of zero to one) to be used for registering abnormal or lesioned brains. These images should
match the dimensions of the image from which the parameters are estimated, and should contain
zeros corresponding to regions of abnormal tissue.

Images to Write These are the images for warping according to the estimated parameters.
They can be any images that are in register with the ”source” image used to generate the param-
eters.

6.3.2 Estimation Options

Various settings for estimating warps.

Template Image

Specify a template image to match the source image with. The contrast in the template must be
similar to that of the source image in order to achieve a good registration. It is also possible to
select more than one template, in which case the registration algorithm will try to find the best
linear combination of these images in order to best model the intensities in the source image.

Template Weighting Image

Applies a weighting mask to the template(s) during the parameter estimation. With the default
brain mask, weights in and around the brain have values of one whereas those clearly outside the
brain are zero. This is an attempt to base the normalisation purely upon the shape of the brain,
rather than the shape of the head (since low frequency basis functions can not really cope with
variations in skull thickness).

The option is now available for a user specified weighting image. This should have the same
dimensions and mat file as the template images, with values in the range of zero to one.

Source Image Smoothing

Smoothing to apply to a copy of the source image. The template and source images should have
approximately the same smoothness. Remember that the templates supplied with SPM have
been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Template Image Smoothing

Smoothing to apply to a copy of the template image. The template and source images should
have approximately the same smoothness. Remember that the templates supplied with SPM
have been smoothed by 8mm, and that smoothnesses combine by Pythagoras’ rule.

Affine Regularisation

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). If registering to an image in ICBM/MNI space, then
choose the first option. If registering to a template that is close in size, then select the second
option. If you do not want to regularise, then choose the third.

Nonlinear Frequency Cutoff

Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the
warps. The number used will depend on the cutoff and the field of view of the template image(s).
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Nonlinear Iterations

Number of iterations of nonlinear warping performed.

Nonlinear Regularisation

The amount of regularisation for the nonlinear part of the spatial normalisation. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude) - or even just use an affine
normalisation. The regularisation influences the smoothness of the deformation fields.

6.3.3 Writing Options

Various options for writing normalised images.

Preserve

Preserve Concentrations: Spatially normalised images are not ”modulated”. The warped images
preserve the intensities of the original images.

Preserve Total: Spatially normalised images are ”modulated” in order to preserve the total
amount of signal in the images. Areas that are expanded during warping are correspondingly
reduced in intensity.

Bounding box

The bounding box (in mm) of the volume which is to be written (relative to the anterior com-
missure).

Voxel sizes

The voxel sizes (x, y & z, in mm) of the written normalised images.

Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:
- Fastest, but not normally recommended.
Bilinear Interpolation:
- OK for PET, realigned fMRI, or segmentations
B-spline Interpolation:
- Better quality (but slower) interpolation [82], especially with higher degree splines. Can

produce values outside the original range (e.g. small negative values from an originally all positive
image).

Wrapping

These are typically:
No wrapping: for PET or images that have already been spatially transformed.
Wrap in Y: for (un-resliced) MRI where phase encoding is in the Y direction (voxel space).

Filename Prefix

Specify the string to be prepended to the filenames of the normalised image file(s). Default prefix
is ’w’.
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This is for smoothing (or convolving) image volumes with a Gaussian kernel of a specified
width. It is used as a preprocessing step to suppress noise and effects due to residual differences
in functional and gyral anatomy during inter-subject averaging.

7.1 Images to Smooth

Specify the images to smooth. The smoothed images are written to the same subdirectories as
the original *.img and are prefixed with a ’s’ (i.e. s*.img). The prefix can be changed by an
option setting.

7.2 FWHM

Specify the full-width at half maximum (FWHM) of the Gaussian smoothing kernel in mm. Three
values should be entered, denoting the FWHM in the x, y and z directions.

7.3 Data Type

Data-type of output images. SAME indicates the same datatype as the original images.

7.4 Implicit masking

An ”implicit mask” is a mask implied by a particular voxel value (0 for images with integer type,
NaN for float images).

If set to ’Yes’, the implicit masking of the input image is preserved in the smoothed image.
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7.5 Filename Prefix

Specify the string to be prepended to the filenames of the smoothed image file(s). Default prefix
is ’s’.



Part III

fMRI Statistics
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Chapter 8

fMRI model specification

Statistical analysis of fMRI data uses a mass-univariate approach based on General Linear Models
(GLMs). It comprises the following steps (1) specification of the GLM design matrix, fMRI data
files and filtering (2) estimation of GLM parameters using classical or Bayesian approaches and
(3) interrogation of results using contrast vectors to produce Statistical Parametric Maps (SPMs)
or Posterior Probability Maps (PPMs).

The design matrix defines the experimental design and the nature of hypothesis testing to be
implemented. The design matrix has one row for each scan and one column for each effect or
explanatory variable. (eg. regressor or stimulus function). You can build design matrices with
separable session-specific partitions. Each partition may be the same (in which case it is only
necessary to specify it once) or different.

Responses can be either event- or epoch related, the only distinction is the duration of the
underlying input or stimulus function. Mathematically they are both modeled by convolving a
series of delta (stick) or box functions (u), indicating the onset of an event or epoch with a set
of basis functions. These basis functions model the hemodynamic convolution, applied by the
brain, to the inputs. This convolution can be first-order or a generalized convolution modeled to
second order (if you specify the Volterra option). The same inputs are used by the Hemodynamic
model or Dynamic Causal Models which model the convolution explicitly in terms of hidden state
variables.

Event-related designs may be stochastic or deterministic. Stochastic designs involve one of a
number of trial-types occurring with a specified probability at successive intervals in time. These
probabilities can be fixed (stationary designs) or time-dependent (modulated or non-stationary
designs). The most efficient designs obtain when the probabilities of every trial type are equal.
A critical issue in stochastic designs is whether to include null events. If you wish to estimate the
evoked response to a specific event type (as opposed to differential responses) then a null event
must be included (even if it is not modeled explicitly).

In SPM, analysis of data from multiple subjects typically proceeds in two stages using models
at two “levels”. The “first level” models are used to implement a within-subject analysis. Typi-
cally there will be as many first level models as there are subjects. Analysis proceeds as described
using the “Specify first level” and “Estimate” options. The results of these analyses can then
be presented as “case studies”. More often, however, one wishes to make inferences about the
population from which the subjects were drawn. This is an example of a “Random-Effects (RFX)
analysis” (or, more properly, a mixed-effects analysis). In SPM, RFX analysis is implemented
using the “summary-statistic” approach where contrast images from each subject are used as
summary measures of subject responses. These are then entered as data into a “second level”
model.

Figure 8.1 shows how the SPM graphics window appears during fMRI model specification.

8.1 Timing parameters

Specify various timing parameters needed to construct the design matrix. This includes the units
of the design specification and the interscan interval.
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Figure 8.1: After starting SPM in fMRI mode and pressing the “Specify 1st-level” button, the
SPM batch editor window should appear as above. The options for “fMRI model specification”
can be examined by clicking on them. A single click will bring up some help text in the lower
subwindow (not shown in the above graphic). Options highlighted with a “<-X” are mandatory
and must be filled in by the user. Each of the options shown above is described in this chapter.

Also, with long TRs you may want to shift the regressors so that they are aligned to a
particular slice. This is effected by changing the microtime resolution and onset.

8.1.1 Units for design

The onsets of events or blocks can be specified in either scans or seconds.

8.1.2 Interscan interval

Interscan interval, TR, (specified in seconds). This is the time between acquiring a plane of one
volume and the same plane in the next volume. It is assumed to be constant throughout.

8.1.3 Microtime resolution

In Echo-Planar Imaging (EPI), data is acquired a plane at a time. To acquire a whole volume of
data takes at least a second or two.

It is possible, however, that experimental events may occur between scan (volume) acquisition
times. This can be specified when building your design matrix either by (i) specifying your design
in scans and using non-integer values or (ii) specifying your design in seconds at a resolution
greater than the TR.

SPM takes these timing specifications and builds its regressors using a ‘microtime’ time-scale.
The microtime resolution, t, is the number of time-bins per scan.

Do not change this parameter unless you have a long TR and wish to shift regressors so that
they are aligned to a particular slice.

8.1.4 Microtime onset

The microtime onset, t0, is the first time-bin at which the regressors are resampled to coincide
with data acquisition. If t0 = 1 then the regressors will be appropriate for the first slice. If you
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Figure 8.2: Design matrix for fMRI data from two sessions. There are 24 experimental conditions
for each session. The last two columns model the average activity in each session, giving a total
of 50 regressors. There are 191 fMRI scans for each session. The overall design matrix therefore
has 382 rows and 50 columns.

want to temporally realign the regressors so that they match responses in the middle slice then
make t0 = t/2 (assuming there is a negligible gap between volume acquisitions).

Do not change the default setting unless you have a long TR.
A typical use of the t and t0 parameters is to set them to correspond to the results of any slice

timing correction you have made eg. if you have 24 slices and have made slice 12 the reference
slice you would set t=24, t0=12.

8.2 Data & Design

The design matrix defines the experimental design and the nature of hypothesis testing to be
implemented. The design matrix has one row for each scan and one column for each effect or
explanatory variable. (e.g. regressor or stimulus function). Figure 8.2 shows an example of a
design matrix.

You can build design matrices with separable session-specific partitions. Each partition may
be the same (in which case it is only necessary to specify it once) or different. Responses can
be either event- or epoch related, where the latter model involves prolonged and possibly time-
varying responses to state-related changes in experimental conditions. Event-related response are
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modelled in terms of responses to instantaneous events. Mathematically they are both modelled
by convolving a series of delta (stick) or box-car functions, encoding the input or stimulus function.
with a set of hemodynamic basis functions.

8.2.1 Subject/Session

The design matrix for fMRI data consists of one or more separable, session-specific partitions.
These partitions are usually either one per subject, or one per fMRI scanning session for that
subject.

Scans

Select the fMRI scans for this session. They must all have the same image dimensions, orientation,
voxel size etc. This is implemented using SPM’s file selector.

Conditions

You are allowed to combine both event- and epoch-related responses in the same model and/or
regressor. Any number of condition (event or epoch) types can be specified. Epoch and event-
related responses are modeled in exactly the same way by specifying their onsets [in terms of onset
times] and their durations. Events are specified with a duration of 0. If you enter a single number
for the durations it will be assumed that all trials conform to this duration.For factorial designs,
one can later associate these experimental conditions with the appropriate levels of experimental
factors.

Condition An array of input functions is constructed, specifying occurrence events or epochs
(or both). These are convolved with a basis set at a later stage to give regressors that enter into
the design matrix. Interactions of evoked responses with some parameter (time or a specified
variate) enter at this stage as additional columns in the design matrix with each trial multiplied
by the [expansion of the] trial-specific parameter. The 0th order expansion is simply the main
effect in the first column.

Name Condition Name

Onsets Specify a vector of onset times for this condition type. This can be entered using
the keyboard eg. typing in “100 300” and then hitting return or “100;300” or “[100,300]” or
“[100,300]”.

More usually, however, this specification takes place using variables that have been created
before and loaded into matlab. For example, an my_onsets cell array1 might exist in a file
you created earlier called my_design.mat. You would then type load my_design at the matlab
command prompt before pressing the ‘Specify 1st-level’ button.

You could then specify the onsets for condition 2 by typing in eg. my_onsets{2} instead of
entering the numbers via the keyboard.

Durations Specify the event durations. Epoch and event-related responses are modeled in
exactly the same way but by specifying their different durations. Events are specified with a
duration of 0. If you enter a single number for the durations it will be assumed that all trials
conform to this duration. If you have multiple different durations, then the number must match
the number of onset times.

Time Modulation This option allows for the characterisation of nonstationary responses.
Specifically, you can model either linear or nonlinear time effects. For example, 1st order modu-
lation would model the stick functions and a linear change of the stick function heights over time.
Higher order modulation will introduce further columns that contain the stick functions scaled
by time squared, time cubed etc.

1Cell arrays are usually used in preference to matrices as different event types can then have different numbers
of events.
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Parametric Modulations The stick function itself can be modulated by some parametric
variate (this can be time or some trial-specific variate like reaction time) modeling the interaction
between the trial and the variate. The events can be modulated by zero or more parameters.

See [16, 14] for further details of parametric modulations.

Multiple conditions

If you have multiple conditions then entering the details a condition at a time is very inefficient.
This option can be used to load all the required information in one go.

You will need to create a *.mat file containing the relevant information. This *.mat file must
include the following cell arrays: names, onsets and durations eg. names{2}=’SSent-DSpeak’,
onsets{2}=[3 5 19 222], durations{2}=[0 0 0 0] contain the required details of the second
condition. These cell arrays may be made available by your stimulus delivery program eg. CO-
GENT. The duration vectors can contain a single entry if the durations are identical for all
events.

You then need to use SPM’s file selector to select this *.mat file.

Regressors

Regressors are additional columns included in the design matrix, which may model effects that
would not be convolved with the haemodynamic response. One such example would be the
estimated movement parameters, which may confound the data.

Regressor

Name Enter name of regressor eg. First movement parameter

Value Enter the values that the regressor takes. This could also be, for example, the name
of a variable in MATLAB’s work space that you have previously loaded in from a file. This might
be a subjects movement parameters or reaction times.

Multiple regressors

If you have mutliple regressors eg. realignment parameters, then entering the details a regressor
at a time is very inefficient. This option can be used to load all the required information in one
go.

You will first need to create a *.mat file containing a matrix R. Each column of R will contain
a different regressor. When SPM creates the design matrix the regressors will be named R1, R2,
R3, ..etc.

You then need to use SPM’s file selector to select this *.mat file.

High-pass filter

The default high-pass filter cutoff is 128 seconds. Slow signal drifts with a period longer than
this will be removed. Use “Explore design” to ensure this cut-off is not removing too much
experimental variance. This is described later in section 8.10. High-pass filtering is implemented
using a residual forming matrix (i.e. it is not a convolution) and is simply a way to remove
confounds without estimating their parameters explicitly. The constant term is also incorporated
into this filter matrix.

8.3 Factorial design

If you have a factorial design then SPM can automatically generate the contrasts necessary to
test for the main effects and interactions.

This includes the F-contrasts necessary to test for these effects at the within-subject level (first
level) and the simple contrasts necessary to generate the contrast images for a between-subject
(second-level) analysis.
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To use this option, create as many factors as you need and provide a name and number of
levels for each. SPM assumes that the condition numbers of the first factor change slowest, the
second factor next slowest etc. It is best to write down the contingency table for your design to
ensure this condition is met. This table relates the levels of each factor to the conditions.

For example, if you have 2-by-3 design your contingency table has two rows and three columns
where the the first factor spans the rows, and the second factor the columns. The numbers of the
conditions are 1,2,3 for the first row and 4,5,6 for the second.

See [45] for more information on SPM and factorial designs.

8.3.1 Factor

Add a new factor to your experimental design.

Name

Name of factor, eg. ’Repetition’

Levels

Enter number of levels for this factor, eg. 2

8.4 Basis Functions

SPM uses basis functions to model the hemodynamic response. This could be a single basis
function or a set of functions. The most common choice is the ‘Canonical HRF’ with or without
time and dispersion derivatives.

8.4.1 Canonical HRF

Canonical Hemodynamic Response Function (HRF). This is the default option. Contrasts of
these effects have a physical interpretation and represent a parsimonious way of characterising
event-related responses. This option is also useful if you wish to look separately at activations and
deactivations. This is implemented using a t-contrast with a +1 or -1 entry over the canonical
regressor.

Model derivatives

Model HRF Derivatives. The canonical HRF combined with time and dispersion derivatives
comprise an ‘informed’ basis set, as the shape of the canonical response conforms to the hemo-
dynamic response that is commonly observed. The incorporation of the derivative terms allow
for variations in subject-to-subject and voxel-to-voxel responses. The time derivative allows the
peak response to vary by plus or minus a second and the dispersion derivative allows the width
of the response to vary by a similar amount.

A positive estimate of the time-derivative regression coefficient implies that the peak hemo-
dynamic response occurs earlier than usual ie. than would be expected using just the canonical
regressor. A positive estimate for the dispersion derivative implies a less dispersed response than
usual.

The informed basis set requires an SPMF for inference. T-contrasts over just the canonical are
perfectly valid but assume constant delay/dispersion. The informed basis set compares favourably
with eg. FIR bases on many data sets [47].

8.4.2 Other basis sets

The other basis sets supported by SPM are

1. Fourier Set

2. Fourier Set (Hanning)
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3. Gamma Functions

4. Finite Impulse Response (FIR)

For each of these options you must also specify the window length which is the length in
seconds of the post-stimulus time window that the basis functions span. You must also specify
the order, that is, how many basis functions to use.

Usually, an informed basis set should be sufficient for most data sets. If this does not provide
a good fit to the data it may be worthwhile re-considering how the neuronal events are modelled
ie. is the timing correct ? should events be split into subsets ?

Alternatively, the gamma basis functions are an interesting choice as a particular linear com-
bination of them is actually used to specify the canonical HRF. The FIR approach is of interest
as it is equivalent to the method of ‘selective averaging’. See [43] for further details.

8.5 Model Interactions (Volterra)

Generalized convolution of inputs, U , with basis set, bf .
For first order expansions the causes are simply convolved (e.g. stick functions) in U by the

basis functions in bf to create a design matrix X. For second order expansions new entries appear
that correspond to the interaction among the original causes. The basis functions for these effects
are two dimensional and are used to assemble the second order kernel.

Interactions or response modulations can enter at two levels. Firstly the stick function itself
can be modulated by some parametric variate. This can be time or some trial-specific variate
like reaction time modeling the interaction between the trial and the variate. Secondly inter-
actions among the trials themselves can be modeled using a Volterra series formulation that
accommodates interactions over time (and therefore within and between trial types).

This last option is useful for accommodating nonlinearities in the hemodynamic response. For
example, if two events occur within a second or so of each other then the hemodynamic response
to the pair may be less than the sum of the responses to each event when occuring in isolation.
This type of ‘sub-linear’ response can be modelled using Volterra kernels. See [34] for further
details.

8.6 Directory

Select a directory where the SPM.mat file containing the specified design matrix will be written. If
this directory already contains an SPM.mat file then SPM will warn you of this before overwriting
it, when the specification job is run.

8.7 Global normalisation

SPM can normalise fMRI data in one of two ways. These are selected using the options ‘None’
(the default) and ‘Scaling’.

Both methods are based on first estimating the average within-brain fMRI signal, gns, where
n denotes scan and s denotes session. If you select ‘Scaling’, SPM will multiply each fMRI value
in scan n and session s by 100/gns.

If you select “None” then SPM computes the grand mean value, gs =
∑N

n=1 gns

N where N is
the number of scans in that session. This is the fMRI signal averaged over all voxels within the
brain and all time points within session s. SPM then implements “Session-specific grand mean
scaling” by multiplying each fMRI data point in session s by 100/gs.

See [1] for further discussion of this issue.

8.8 Explicit mask

Specify an image for explicitly masking the analysis. A sensible option here is to use a segmenta-
tion of structural images to specify a within-brain mask. If you select that image as an explicit
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mask then only those voxels in the brain will be analysed. This both speeds the estimation
and restricts SPMs/PPMs to within-brain voxels. Alternatively, if such structural images are
unavailable or no masking is required, then leave this field empty.

8.9 Serial correlations

Serial correlations in fMRI time series due to aliased biorhythms and unmodelled neuronal activity
can be accounted for using an autoregressive AR(1) model during Classical (ReML) parameter
estimation.

This estimate assumes the same correlation structure for each voxel, within each session.
ReML estimates are then used to correct for non-sphericity during inference by adjusting the
statistics and degrees of freedom appropriately. The discrepancy between estimated and actual
correlations are greatest at low frequencies. Therefore specification of the high-pass filter is
particularly important.

Serial correlation can be ignored if you choose the “none” option. Note that the above options
only apply if you later specify that your model will be estimated using the Classical (ReML) ap-
proach. If you choose Bayesian estimation these options will be ignored. For Bayesian estimation,
the choice of noise model (AR model order) is made under the estimation options. See [37, 73]
for further discussion of these issues.

8.10 Reviewing your design

After you have completed the SPM “job” file for specifying your fMRI design, and have run it,
you will then be able to review your design by pressing the “Review” button in SPM’s button
window (the top-left window). This is particularly useful, for example, for checking that your
experimental variance has not been removed by high-pass filtering, as shown in Figure 8.3.
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Figure 8.3: After pressing “Review”, selecting the pull-down ‘Design’ menu, Explore->Session,
and selecting the regressor you wish to look at, you should get a plot similar to the one above. The
top row shows time and frequency domain plots of the time-series corresponding to this regressor.
In this particular case we have four events. Each event or “stick function” has been convolved
with the hemodynamic response function shown in the bottom panel. The frequency domain graph
is useful for checking that experimental variance is not removed by high-pass filtering. The grayed
out section of the frequency plot shows those frequencies which are removed. For this regressor
we have plenty of remaining experimental variance (see the peak at about 0.04Hz).
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Chapter 9

fMRI model estimation

Model parameters can be estimated using classical (ReML - Restricted Maximum Likelihood) or
Bayesian algorithms. After parameter estimation, the RESULTS button can be used to specify
contrasts that will produce Statistical Parametric Maps (SPMs), Effect Size Maps (ESMs) or
Posterior Probability Maps (PPMs) and tables of statistics.

9.1 Select SPM.mat

Select the SPM.mat file that contains the design specification. SPM will output the results of its
analysis into this directory. This includes overwriting the SPM.mat file. When the estimation job
is run, no warning will be given that the SPM.mat file will be overwritten. A warning is given at
the specification stage. When it comes to estimation, SPM assumes that you’ve now sorted out
your directory structures.

9.2 Method

There are three possible estimation procedures for fMRI models (1) classical (ReML) estimation
of first or second level models, (2) Bayesian estimation of first level models and (3) Bayesian
estimation of second level models. Option (2) uses a Variational Bayes (VB) algorithm introduced
in SPM5. Option (3) uses the Empirical Bayes algorithm with global shrinkage priors that was
also in SPM2.

To use option (3) you must have already estimated the model using option (1). That is, for
second-level models you must run a ReML estimation before running a Bayesian estimation. This
is not necessary for option (2). Bayesian estimation of 1st-level models using VB does not require
a prior ReML estimation.

9.2.1 Classical

Model parameters are estimated using Restricted Maximum Likelihood (ReML). This assumes
the error correlation structure is the same at each voxel. This correlation can be specified using
either an AR(1) or an Independent and Identically Distributed (IID) error model. These options
are chosen at the model specification stage. ReML estimation should be applied to spatially
smoothed functional images. See [37, 30] for further details of the ReML estimation scheme.
After estimation, specific profiles of parameters are tested using a linear compound or contrast
with the T or F statistic. The resulting statistical map constitutes an SPM. The SPMT/F is then
characterised in terms of focal or regional differences by assuming that (under the null hypothesis)
the components of the SPM (ie. residual fields) behave as smooth stationary Gaussian fields.

The rest of this chapter describes the Bayesian estimation options. So, please skip to the next
chapter if you are interested only in classical estimation and inference.

71



72 CHAPTER 9. FMRI MODEL ESTIMATION

Figure 9.1: After starting SPM in fMRI mode and pressing the “Estimate” button, the SPM batch
editor window should appear as above. The options for “fMRI model estimation” can be examined
by clicking on them. A single click will bring up some help text in the lower subwindow (not
shown in the above graphic). Options highlighted with a ‘<-X’ are mandatory and must be filled
in by the user. Each of the options shown above is described in this chapter.

9.2.2 Bayesian 1st-level

Model parameters are estimated using Variational Bayes (VB). This allows you to specify spatial
priors for regression coefficients and regularised voxel-wise AR(P) models for fMRI noise processes.
The algorithm does not require functional images to be spatially smoothed. Estimation will take
about 5 times longer than with the classical approach. This is why VB is not the default estimation
option. The VB approach has been described in a number of papers [73, 77, 70, 71].

After estimation, contrasts are used to find regions with effects larger than a user-specified
size eg. 1 per cent of the global mean signal. These effects are assessed statistically using a
Posterior Probability Map (PPM) [35].

Analysis Space

Because estimation can be time consuming options are provided to analyse selected slices or
clusters rather than the whole volume.

Volume A volume of data is analysed in “blocks”, which can be a slice or 3D subvolume, where
the extent of each subvolume is determined using a graph partitioning algorithm. Enter the block
type, i.e. “Slices” or “Subvolumes”.

Block type Enter the block type, i.e. “Slices” or “Subvolumes”.

Slices Enter Slice Numbers. This can be a single slice or multiple slices. If you select a single
slice or only a few slices you must be aware of the interpolation options when, after estimation,
displaying the estimated images eg. images of contrasts or AR maps. The default interpolation
option may need to be changed to nearest neighbour (NN) (see bottom right hand of graphics
window) for you slice maps to be visible.

Slice numbers Enter Slice Numbers.
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Figure 9.2: After choosing “Bayesian 1st-level” under “Method”, the SPM batch editor window
should appear as above. Each of the options shown above is described in this chapter.

Block type Enter the block type, i.e. “Slices” or “Subvolume”.

Clusters Because estimation can be time consuming an option is provided to analyse selected
clusters rather than the whole volume.

Cluster mask Select cluster image.

Block type Enter the block type, i.e. “Slices” or “Subvolumes”.

Signal priors

• [UGL] Unweighted Graph Laplacian. This spatial prior is the recommended option.
Regression coefficients at a given voxel are (softly) constrained to be similar to those at
nearby voxels. The strength of this constraint is determined by a spatial precision parameter
that is estimated from the data. Different regression coefficients have different spatial
precisions allowing each putative experimental effect to have its own spatial regularity.

• [GMRF] Gaussian Markov Random Field. This is equivalent to a normalized UGL.

• [LORETA] Low resolution Tomography Prior. This is equivalent to UGL squared.
It is a standatd choice for EEG source localisation algorithms.

• [WGL] Weighted Graph Laplacian. This is a generalization of the UGL, where weights
can be used to preserve “edges” of functional responses.

• [Global] Global Shrinkage prior. This is not a spatial prior in the sense that regression
coefficients are constrained to be similar to neighboring voxels. Instead, the average effect
over all voxels (global effect) is assumed to be zero and all regression coefficients are shrunk
towards this value in proporation to the prior precision. This is the same prior that is used
for Bayesian estimation at the second level models, except that here the prior precision is
estimated separaetly for each slice.
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• [Uninformative] A flat prior. Essentially, no prior information is used. If you select
this option then VB reduces to Maximum Likelihood (ML)estimation. This option is useful
if, for example, you do not wish to use a spatial prior but wish to take advantage of the
voxel-wise AR(P) modelling of noise processes. In this case, you would apply the algorithm
to images that have been spatially smoothed. For P=0, ML estimation in turn reduces to
Ordinary Least Squares (OLS) estimates, and for P>0 ML estimation is equivalent to a
weighted least squares (WLS) but where the weights are different at each voxel (reflecting
the different noise correlation at each voxel).

AR model order

An AR model order of 3 is the default. Cardiac and respiratory artifacts are periodic in nature
and therefore require an AR order of at least 2. In previous work, voxel-wise selection of the
optimal model order showed that a value of 3 was the highest order required.

Higher model orders have little effect on the estimation time. If you select a model order of
zero this corresponds to the assumption that the errors are IID. This AR specification overrides
any choices that were made in the model specification stage.

Voxel-wise AR models are fitted separately for each session of data. For each session this
therefore produces maps of AR(1), AR(2) etc coefficients in the output directory.

Noise priors

There are five noise prior options here (1) UGL, (2) GMRF, (3) LORETA, (4) Tissue-type and
(5) Robust.

UGL [UGL] Unweighted graph-Laplacian. This is the default option. This spatial prior is the
same as that used for the regression coefficients. Spatial precisions are estimated separately for
each AR coefficient eg. the AR(1) coefficient over space, AR(2) over space etc.

GMRF [GMRF] Gaussian Markov Random Field. See comments on GMRF priors for regresion
coefficients.

LORETA [LORETA] Low resolution Tomography Prior. See comments on LORETA priors
for regresion coefficients.

Tissue-type [Tissue-type] AR estimates at each voxel are biased towards typical values for
that tissue type (eg. gray, white, CSF). If you select this option you will need to then select files
that contain tissue type maps (see below). These are typically chosen to be Grey Matter, White
Matter and CSF images derived from segmentation of registered structural scans.

Previous work has shown that there is significant variation in AR values with tissue type.
However, GMRF priors have previously been favoured by Bayesian model comparison.

Robust Robust GLM. Uses Mixture of Gaussians noise model.

Log evidence map

Computes the log evidence for each voxel

ANOVA

Perform 1st or 2nd level Analysis of Variance.
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First level This is implemented using Bayesian model comparison. For example, to test for
the main effect of a factor two models are compared, one where the levels are represented using
different regressors and one using the same regressor. This therefore requires explicit fitting
of several models at each voxel and is computationally demanding (requiring several hours of
computation). The recommended option is therefore NO.

To use this option you must have already specified your factorial design during the model
specification stage.

Second level This option tells SPM to automatically generate the simple contrasts that are
necessary to produce the contrast images for a second-level (between-subject) ANOVA. Naturally,
these contrasts can also be used to characterise simple effects for each subject.

With the Bayesian estimation option it is recommended that contrasts are computed during
the parameter estimation stage (see ’simple contrasts’ below). The recommended option here is
therefore YES.

To use this option you must have already specified your factorial design during the model
specification stage.

If you wish to use these contrast images for a second-level analysis then you will need to
spatially smooth them to take into account between-subject differences in functional anatomy ie.
the fact that one persons V5 may be in a different position than anothers.

Simple contrasts

“Simple” contrasts refers to a contrast that spans one-dimension ie. to assess an effect that is
increasing or decreasing.

If you have a factoral design then the contrasts needed to generate the contrast images for a
2nd-level ANOVA (or to assess these simple effects within-subject) can be specified automatically
using the ANOVA->Second level option.

When using the Bayesian estimation option it is computationally more efficient to compute the
contrasts when the parameters are estimated. This is because estimated parameter vectors have
potentially different posterior covariance matrices at different voxels and these matrices are not
stored. If you compute contrasts post-hoc these matrices must be recomputed (an approximate
reconstruction based on a Taylor series expansion is used). It is therefore recommended to specify
as many contrasts as possible prior to parameter estimation.

If you wish to use these contrast images for a second-level analysis then you will need to
spatially smooth them to take into account between-subject differences in functional anatomy ie.
the fact that one persons V5 may be in a different position than anothers.

Simple contrast

Name Name of contrast eg. “Positive Effect”.

Contrast vector These contrasts are used to generate PPMs which characterise effect sizes
at each voxel. This is in contrast to SPMs in which eg. maps of t-statistics show the ratio of
the effect size to effect variability (standard deviation). SPMs are therefore a-dimensional. This
is not the case for PPMs as the size of the effect is of primary interest. Some care is therefore
needed about the scaling of contrast vectors. For example, if you are interested in the differential
effect size averaged over conditions then the contrast 0.5 0.5 -0.5 -0.5 would be more suitable
than the 1 1 -1 -1 contrast which looks at the differential effect size summed over conditions.

9.2.3 Bayesian 2nd-level

Bayesian estimation of 2nd level models. This option uses the Empirical Bayes algorithm with
global shrinkage priors that was previously implemented in SPM2. Use of the global shrinkage
prior embodies a prior belief that, on average over all voxels, there is no net experimental effect.
Some voxels will respond negatively and some positively with a variability determined by the
prior precision. This prior precision can be estimated from the data using Empirical Bayes.
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9.3 Output files

After estimation a number of files are written to the output directory. These are

• An SPM.mat file containing specification of the design and estimated model parameters

9.3.1 Classical 1st-level

For classical 1st-level models the following files are also produced

• Images of estimated regression coefficients beta_000k.img where k indexes the kth regres-
sion coefficient.

• An image of the variance of the error ResMS.img.

• An image mask.img indicating which voxels were included in the analysis.

• The image RPV.img, the estimated resels per voxel.

• If contrasts have been specified SPM also writes con_000i.img if the ith contrast is a
t-contrast and the extra sum of squares image ess_000i.img if it is an F-contrast.

Type help spm_spm at the matlab command prompt for further information.

9.3.2 Bayesian 1st-level

For Bayesian 1st-level models the following files are also produced

• Images of estimated regression coefficients Cbeta_000k.img where k indexes the kth regres-
sion coefficient. These filenames are prefixed with a “C” indicating that these are the mean
values of the ‘Conditional’ or ‘Posterior’ density.

• Images of error bars/standard deviations on the regression coefficients SDbeta_000k.img.

• An image of the standard deviation of the error Sess1_SDerror.img.

• An image mask.img indicating which voxels were included in the analysis.

• If a non-zero AR model order is specified then SPM also writes images Sess1_AR_000p.img
where p indexes the pth AR coefficient.

• If contrasts have been specified SPM also writes con_000i.img and con_sd_000i.img which
are the mean and standard deviation of the ith pre-defined contrast.

Each of these images can be inspected using the “Display” button. Type help spm_spm_vb

at the Matlab command prompt for further information.

9.4 Model comparison

Once you have estimated a model you can use SPM’s results button to look at the results. You
can also extract fMRI data from regions of interest using the ROI button. You can then compare
GLMs based on different hemodynamic basis sets using the Bayesian model evidence.

This is described in [71] and implemented using the command line option spm vb roi basis.
This requires a VOI filename (created using the ROI button) and an SPM data structure. Type
help spm vb roi basis at the Matlab command prompt for further information. Figure 9.3
shows an example output from the function indicating that, for the data in this brain region, an
informed basis set has the highest model evidence.
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Figure 9.3: This plot shows the model evidence for a number of different hemodynamic basis
sets: Inf1 - Canonical HRF, Inf2 - Canonical plus temporal derivative, Inf3 - Canonical plus
temporal and dispersion derivatives, F - Fourier, FH - Fourier with a Hanning Window, Gamm3
- 3 Gamma basis functions and FIR - a Finite Impulse Response function. An informed basis set
provides the best model of the data for the selected region.
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Factorial design specification
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This interface is used for setting up analyses of PET data. It is also used for ’2nd level’ or
’random effects’ analysis which allow one to make a population inference. First level models can
be used to produce appropriate summary data, which can then be used as raw data for a second-
level analysis. For example, a simple t-test on contrast images from the first-level turns out to
be a random-effects analysis with random subject effects, inferring for the population based on a
particular sample of subjects.

This interface configures the design matrix, describing the general linear model, data specifi-
cation, and other parameters necessary for the statistical analysis. These parameters are saved
in a configuration file (SPM.mat), which can then be passed on to spm spm.m which estimates
the design. This is achieved by pressing the ’Estimate’ button. Inference on these estimated
parameters is then handled by the SPM results section.
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A separate interface handles design configuration for fMRI time series.
Various data and parameters need to be supplied to specify the design (1) the image files, (2)

indicators of the corresponding condition/subject/group (2) any covariates, nuisance variables,
or design matrix partitions (3) the type of global normalisation (if any) (4) grand mean scaling
options (5) thresholds and masks defining the image volume to analyse. The interface supports
a comprehensive range of options for all these parameters.

10.1 Directory

Select a directory where the SPM.mat file containing the specified design matrix will be written.

10.2 Design

10.2.1 One-sample t-test

Scans

Select the images. They must all have the same image dimensions, orientation, voxel size etc.

10.2.2 Two-sample t-test

Group 1 scans

Select the images from sample 1. They must all have the same image dimensions, orientation,
voxel size etc.

Group 2 scans

Select the images from sample 2. They must all have the same image dimensions, orientation,
voxel size etc.

Independence

By default, the measurements are assumed to be independent between levels.
If you change this option to allow for dependencies, this will violate the assumption of spheric-

ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Variance

By default, the measurements in each level are assumed to have unequal variance.
This violates the assumption of ’sphericity’ and is therefore an example of ’non-sphericity’.
This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled

differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
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structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling

This option is only used for PET data.
Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean

scaling by subject’ if the factor is ’subject’.
Since differences between subjects may be due to gain and sensitivity effects, AnCova by

subject could be combined with ”grand mean scaling by subject” to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA

This option is only used for PET data.
Selecting YES will specify ’ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-

ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.3 Paired t-test

Pairs

Pair Add a new pair of scans to your experimental design

Scans [1,2] Select the pair of images.

Grand mean scaling

This option is only used for PET data.
Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean

scaling by subject’ if the factor is ’subject’.
Since differences between subjects may be due to gain and sensitivity effects, AnCova by

subject could be combined with ”grand mean scaling by subject” to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA

This option is only used for PET data.
Selecting YES will specify ’ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-

ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.4 Multiple regression

Scans

Select the images. They must all have the same image dimensions, orientation, voxel size etc.

Covariates

Covariates

Covariate Add a new covariate to your experimental design

Vector Vector of covariate values

Name Name of covariate
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Centering

Intercept

By default, an intercept is always added to the model. If the covariates supplied by the user
include a constant effect, the intercept may be omitted.

10.2.5 One-way ANOVA

One-way Analysis of Variance (ANOVA)

Specify cells

Enter the scans a cell at a time

Cell Enter data for a cell in your design

Scans Select the images for this cell. They must all have the same image dimensions,
orientation, voxel size etc.

Independence

By default, the measurements are assumed to be independent between levels.
If you change this option to allow for dependencies, this will violate the assumption of spheric-

ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Variance

By default, the measurements in each level are assumed to have unequal variance.
This violates the assumption of ’sphericity’ and is therefore an example of ’non-sphericity’.
This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled

differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling

This option is only used for PET data.
Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean

scaling by subject’ if the factor is ’subject’.
Since differences between subjects may be due to gain and sensitivity effects, AnCova by

subject could be combined with ”grand mean scaling by subject” to obtain a combination of
between subject proportional scaling and within subject AnCova.
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ANCOVA

This option is only used for PET data.
Selecting YES will specify ’ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-

ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.6 One-way ANOVA - within subject

One-way Analysis of Variance (ANOVA) - within subject

Subjects

Subject Enter data and conditions for a new subject

Scans Select the images to be analysed. They must all have the same image dimensions,
orientation, voxel size etc.

Conditions

Independence

By default, the measurements are assumed to be dependent between levels.
If you change this option to allow for dependencies, this will violate the assumption of spheric-

ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Variance

By default, the measurements in each level are assumed to have unequal variance.
This violates the assumption of ’sphericity’ and is therefore an example of ’non-sphericity’.
This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled

differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling

This option is only used for PET data.
Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean

scaling by subject’ if the factor is ’subject’.
Since differences between subjects may be due to gain and sensitivity effects, AnCova by

subject could be combined with ”grand mean scaling by subject” to obtain a combination of
between subject proportional scaling and within subject AnCova.
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ANCOVA

This option is only used for PET data.
Selecting YES will specify ’ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-

ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

10.2.7 Full factorial

This option is best used when you wish to test for all main effects and interactions in one-way,
two-way or three-way ANOVAs. Design specification proceeds in 2 stages. Firstly, by creating
new factors and specifying the number of levels and name for each. Nonsphericity, ANOVA-
by-factor and scaling options can also be specified at this stage. Secondly, scans are assigned
separately to each cell. This accomodates unbalanced designs.

For example, if you wish to test for a main effect in the population from which your subjects are
drawn and have modelled that effect at the first level using K basis functions (eg. K=3 informed
basis functions) you can use a one-way ANOVA with K-levels. Create a single factor with K levels
and then assign the data to each cell eg. canonical, temporal derivative and dispersion derivative
cells, where each cell is assigned scans from multiple subjects.

SPM will also automatically generate the contrasts necessary to test for all main effects and
interactions.

Factors

Specify your design a factor at a time.

Factor Add a new factor to your experimental design

Name Name of factor, eg. ’Repetition’

Levels Enter number of levels for this factor, eg. 2

Independence By default, the measurements are assumed to be independent between lev-
els.

If you change this option to allow for dependencies, this will violate the assumption of spheric-
ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Variance By default, the measurements in each level are assumed to have unequal variance.
This violates the assumption of ’sphericity’ and is therefore an example of ’non-sphericity’.
This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled

differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
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structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling This option is only used for PET data.
Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean

scaling by subject’ if the factor is ’subject’.
Since differences between subjects may be due to gain and sensitivity effects, AnCova by

subject could be combined with ”grand mean scaling by subject” to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA This option is only used for PET data.
Selecting YES will specify ’ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-

ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

Specify cells

Enter the scans a cell at a time

Cell Enter data for a cell in your design

Levels Enter a vector or scalar that specifies which cell in the factorial design these images
belong to. The length of this vector should correspond to the number of factors in the design

For example, length 2 vectors should be used for two-factor designs eg. the vector [2 3] specifies
the cell corresponding to the 2nd-level of the first factor and the 3rd level of the 2nd factor.

Scans Select the images for this cell. They must all have the same image dimensions,
orientation, voxel size etc.

10.2.8 Flexible factorial

Create a design matrix a block at a time by specifying which main effects and interactions you
wish to be included.

This option is best used for one-way, two-way or three-way ANOVAs but where you do not
wish to test for all possible main effects and interactions. This is perhaps most useful for PET
where there is usually not enough data to test for all possible effects. Or for 3-way ANOVAs
where you do not wish to test for all of the two-way interactions. A typical example here would
be a group-by-drug-by-task analysis where, perhaps, only (i) group-by-drug or (ii) group-by-task
interactions are of interest. In this case it is only necessary to have two-blocks in the design matrix
- one for each interaction. The three-way interaction can then be tested for using a contrast that
computes the difference between (i) and (ii).

Design specification then proceeds in 3 stages. Firstly, factors are created and names specified
for each. Nonsphericity, ANOVA-by-factor and scaling options can also be specified at this stage.

Secondly, a list of scans is produced along with a factor matrix, I. This is an nscan x 4 matrix
of factor level indicators (see xX.I below). The first factor must be ’replication’ but the other
factors can be anything. Specification of I and the scan list can be achieved in one of two ways
(a) the ’Specify All’ option allows I to be typed in at the user interface or (more likely) loaded
in from the matlab workspace. All of the scans are then selected in one go. (b) the ’Subjects’
option allows you to enter scans a subject at a time. The corresponding experimental conditions
(ie. levels of factors) are entered at the same time. SPM will then create the factor matrix I.
This style of interface is similar to that available in SPM2.

Thirdly, the design matrix is built up a block at a time. Each block can be a main effect or a
(two-way) interaction.

Factors

Specify your design a factor at a time.
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Factor Add a new factor to your design.

If you are using the ’Subjects’ option to specify your scans and conditions, you may wish to
make use of the following facility. There are two reserved words for the names of factors. These
are ’subject’ and ’repl’ (standing for replication). If you use these factor names then SPM can
automatically create replication and/or subject factors without you having to type in an extra
entry in the condition vector.

For example, if you wish to model Subject and Task effects (two factors), under Subjects-
>Subject->Conditions you can type in simply [1 2 1 2] to specify eg. just the ’Task’ factor level.
You do not need to eg. for the 4th subject enter the matrix [1 4; 2 4; 1 4; 2 4].

Name Name of factor, eg. ’Repetition’

Independence By default, the measurements are assumed to be independent between lev-
els.

If you change this option to allow for dependencies, this will violate the assumption of spheric-
ity. It would therefore be an example of non-sphericity. One such example would be where you
had repeated measurements from the same subjects - it may then be the case that, over subjects,
measure 1 is correlated to measure 2.

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Variance By default, the measurements in each level are assumed to have unequal variance.

This violates the assumption of ’sphericity’ and is therefore an example of ’non-sphericity’.

This can occur, for example, in a 2nd-level analysis of variance, one contrast may be scaled
differently from another. Another example would be the comparison of qualitatively different
dependent variables (e.g. normals vs. patients). Different variances (heteroscedasticy) induce
different error covariance components that are estimated using restricted maximum likelihood
(see below).

Restricted Maximum Likelihood (REML): The ensuing covariance components will be esti-
mated using ReML in spm spm (assuming the same for all responsive voxels) and used to adjust
the statistics and degrees of freedom during inference. By default spm spm will use weighted least
squares to produce Gauss-Markov or Maximum likelihood estimators using the non-sphericity
structure specified at this stage. The components will be found in SPM.xVi and enter the esti-
mation procedure exactly as the serial correlations in fMRI models.

Grand mean scaling This option is only used for PET data.

Selecting YES will specify ’grand mean scaling by factor’ which could be eg. ’grand mean
scaling by subject’ if the factor is ’subject’.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by
subject could be combined with ”grand mean scaling by subject” to obtain a combination of
between subject proportional scaling and within subject AnCova.

ANCOVA This option is only used for PET data.

Selecting YES will specify ’ANCOVA-by-factor’ regressors. This includes eg. ’Ancova by sub-
ject’ or ’Ancova by effect’. These options allow eg. different subjects to have different relationships
between local and global measurements.

Specify Subjects or all Scans & Factors

Subjects
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Subject Enter data and conditions for a new subject
Scans Select the images to be analysed. They must all have the same image dimensions,

orientation, voxel size etc.
Conditions

Specify all Specify (i) all scans in one go and (ii) all conditions using a factor matrix, I. This
option is for ’power users’. The matrix I must have four columns and as as many rows as scans.
It has the same format as SPM’s internal variable SPM.xX.I.

The first column of I denotes the replication number and entries in the other columns denote
the levels of each experimental factor.

So, for eg. a two-factor design the first column denotes the replication number and columns
two and three have entries like 2 3 denoting the 2nd level of the first factor and 3rd level of the
second factor. The 4th column in I would contain all 1s.

Scans Select the images to be analysed. They must all have the same image dimensions,
orientation, voxel size etc.

Factor matrix Specify factor/level matrix as a nscan-by-4 matrix. Note that the first
column of I is reserved for the internal replication factor and must not be used for experimental
factors.

Main effects & Interactions

Main effect Add a main effect to your design matrix

Factor number Enter the number of the factor.

Interaction Add an interaction to your design matrix

Factor numbers Enter the numbers of the factors of this (two-way) interaction.

10.3 Covariates

This option allows for the specification of covariates and nuisance variables. Unlike SPM94/5/6,
where the design was partitioned into effects of interest and nuisance effects for the computation
of adjusted data and the F-statistic (which was used to thresh out voxels where there appeared
to be no effects of interest), SPM does not partition the design in this way anymore. The only
remaining distinction between effects of interest (including covariates) and nuisance effects is their
location in the design matrix, which we have retained for continuity. Pre-specified design matrix
partitions can be entered.

10.3.1 Covariate

Add a new covariate to your experimental design

Vector

Vector of covariate values.
Enter the covariate values ”per subject” (i.e. all for subject 1, then all for subject 2, etc).

Importantly, the ordering of the cells of a factorial design has to be the same for all subjects in
order to be consistent with the ordering of the covariate values.

Name

Name of covariate
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Interactions

For each covariate you have defined, there is an opportunity to create an additional regressor that
is the interaction between the covariate and a chosen experimental factor.

Centering

The appropriate centering option is usually the one that corresponds to the interaction chosen,
and ensures that main effects of the interacting factor aren’t affected by the covariate. You are
advised to choose this option, unless you have other modelling considerations.

10.4 Masking

The mask specifies the voxels within the image volume which are to be assessed. SPM supports
three methods of masking (1) Threshold, (2) Implicit and (3) Explicit. The volume analysed is
the intersection of all masks.

10.4.1 Threshold masking

Images are thresholded at a given value and only voxels at which all images exceed the threshold
are included.

None

No threshold masking

Absolute

Images are thresholded at a given value and only voxels at which all images exceed the threshold
are included.

This option allows you to specify the absolute value of the threshold.

Threshold Enter the absolute value of the threshold.

Relative

Images are thresholded at a given value and only voxels at which all images exceed the threshold
are included.

This option allows you to specify the value of the threshold as a proportion of the global value.

Threshold Enter the threshold as a proportion of the global value

10.4.2 Implicit Mask

An ”implicit mask” is a mask implied by a particular voxel value. Voxels with this mask value
are excluded from the analysis.

For image data-types with a representation of NaN (see spm type.m), NaN’s is the implicit
mask value, (and NaN’s are always masked out).

For image data-types without a representation of NaN, zero is the mask value, and the user
can choose whether zero voxels should be masked out or not.

By default, an implicit mask is used.
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10.4.3 Explicit Mask

Explicit masks are other images containing (implicit) masks that are to be applied to the current
analysis.

All voxels with value NaN (for image data-types with a representation of NaN), or zero (for
other data types) are excluded from the analysis.

Explicit mask images can have any orientation and voxel/image size. Nearest neighbour
interpolation of a mask image is used if the voxel centers of the input images do not coincide with
that of the mask image.

10.5 Global calculation

This option is only used for PET data.

There are three methods for estimating global effects (1) Omit (assumming no other options
requiring the global value chosen) (2) User defined (enter your own vector of global values) (3)
Mean: SPM standard mean voxel value (within per image fullmean/8 mask)

10.5.1 Omit

Omit

10.5.2 User

User defined global effects (enter your own

vector of global values)

Global values

Enter the vector of global values

10.5.3 Mean

SPM standard mean voxel value

This defines the global mean via a two-step process. Firstly, the overall mean is computed.
Voxels with values less than 1/8 of this value are then deemed extra-cranial and get masked out.
The mean is then recomputed on the remaining voxels.

10.6 Global normalisation

This option is only used for PET data.

Global nuisance effects are usually accounted for either by scaling the images so that they
all have the same global value (proportional scaling), or by including the global covariate as a
nuisance effect in the general linear model (AnCova). Much has been written on which to use,
and when. Basically, since proportional scaling also scales the variance term, it is appropriate
for situations where the global measurement predominantly reflects gain or sensitivity. Where
variance is constant across the range of global values, linear modelling in an AnCova approach
has more flexibility, since the model is not restricted to a simple proportional regression.

’Ancova by subject’ or ’Ancova by effect’ options are implemented using the ANCOVA options
provided where each experimental factor (eg. subject or effect), is defined. These allow eg.
different subjects to have different relationships between local and global measurements.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by sub-
ject could be combined with ”grand mean scaling by subject” (an option also provided where each
experimental factor is originally defined) to obtain a combination of between subject proportional
scaling and within subject AnCova.
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10.6.1 Overall grand mean scaling

Scaling of the overall grand mean simply scales all the data by a common factor such that the
mean of all the global values is the value specified. For qualitative data, this puts the data into
an intuitively accessible scale without altering the statistics.

When proportional scaling global normalisation is used each image is separately scaled such
that it’s global value is that specified (in which case the grand mean is also implicitly scaled to
that value). So, to proportionally scale each image so that its global value is eg. 20, select <Yes>
then type in 20 for the grand mean scaled value.

When using AnCova or no global normalisation, with data from different subjects or sessions,
an intermediate situation may be appropriate, and you may be given the option to scale group,
session or subject grand means separately.

No

No overall grand mean scaling

Yes

Scaling of the overall grand mean simply scales all the data by a common factor such that the
mean of all the global values is the value specified. For qualitative data, this puts the data into
an intuitively accessible scale without altering the statistics.

Grand mean scaled value The default value of 50, scales the global flow to a physiologically
realistic value of 50ml/dl/min.

10.6.2 Normalisation

Global nuisance effects are usually accounted for either by scaling the images so that they all have
the same global value (proportional scaling), or by including the global covariate as a nuisance
effect in the general linear model (AnCova). Much has been written on which to use, and when.
Basically, since proportional scaling also scales the variance term, it is appropriate for situations
where the global measurement predominantly reflects gain or sensitivity. Where variance is
constant across the range of global values, linear modelling in an AnCova approach has more
flexibility, since the model is not restricted to a simple proportional regression.

’Ancova by subject’ or ’Ancova by effect’ options are implemented using the ANCOVA options
provided where each experimental factor (eg. subject or effect), is defined. These allow eg.
different subjects to have different relationships between local and global measurements.

Since differences between subjects may be due to gain and sensitivity effects, AnCova by sub-
ject could be combined with ”grand mean scaling by subject” (an option also provided where each
experimental factor is originally defined) to obtain a combination of between subject proportional
scaling and within subject AnCova.
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Chapter 11

SPM for MEG/EEG overview

11.1 Welcome to SPM for M/EEG

With SPM8 you can analyze all kinds of MEG and EEG data. Our group has recently published
many articles about M/EEG analysis, in particular about Source Reconstruction1 and Dynamic
Causal Modelling2 (DCM), which is a spatio-temporal network model to estimate effective con-
nectivity in a network of sources. All these new methods, mostly based on a Bayesian approach,
have been implemented in SPM8. We provide a range of tools for the full analysis pipeline, i.e.,
you can take your raw data from the MEG or EEG machine, and put it through SPM, starting
from the conversion of the data through to a statistical analysis of sensor level or source recon-
structed multi-subject data or Dynamic Causal Modelling.

Our overall goal is to provide an academic M/EEG analysis software package that can be used
by everyone to apply the most recent methods available for the analysis of M/EEG data. As
you may guess, this goal is quite ambitious because there is a large number of different M/EEG
formats available, plus there are literally dozens of different analysis strategies that researchers
would like to use. Clearly, our rather small group doesn’t have the resources to cover all these
different approaches. However, we made SPM for M/EEG as open as it possibly can be to allow
researchers to use their favourite analysis software for specific processing steps. For example, it
is possible to convert raw data to SPM8, then convert them to FieldTrip3 or EEGLAB4 (using
an SPM conversion routine), use a couple of functions in these packages, convert back to SPM,
and do source reconstruction or DCM. Any combination of processing steps should be possible,
and we expect that this software-interoperability among analysis software packages (each with
its own area of expertise) will lead to a boost of M/EEG researchers trying out new ways of
analysing their data with a wide range of sophisticated methods. We are pleased to say that we
have a formal collaboration with the excellent FieldTrip package (head developer: Robert Oost-
enveld, F.C. Donders centre in Nijmegen/Netherlands) on many analysis issues. For example,
SPM and FieldTrip share routines for converting data to Matlab, forward modelling for M/EEG
source reconstruction and the SPM8 distribution contains a version of FieldTrip so that you can
combine FieldTrip and SPM functions in your custom scripts. SPM and FieldTrip complement
each other well, as SPM is geared toward very specific analysis tools as will be described below,
whereas FieldTrip is a more general repository of different methods that can be put together in
flexible ways to perform a variety of analyses. This flexibility of FieldTrip, however, comes at the
expense of accessibility to a non-expert user. FieldTrip does not have a graphical user interface
(GUI) and its functions are used by writing custom Matlab scripts. By combining SPM8 and
FieldTrip the flexibility of FieldTrip can be complemented by SPM’s GUI tools and batching
system. Within this framework, power users can easily and rapidly develop specialized analysis
tools with GUIs that can then also be used by non-proficient Matlab users. Some examples of
such tools are available in the MEEG toolbox distributed with SPM. We will also be happy to

1Source Reconstruction: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/EEG.html
2Dynamic Causal Modelling: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/DCM.html
3FieldTrip: http://www.ru.nl/neuroimaging/fieldtrip/
4EEGLAB: http://sccn.ucsd.edu/eeglab/
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include in this toolbox new tools contributed by other users as long as they are of general interest
and applicability.

SPM’s speciality is, of course, the statistical analysis of voxel-based images. For statistical
analysis, we use exactly the same routines as SPM for fMRI users would. These are robust
and validated functions based on the General Linear Model5 (GLM) and Random Field Theory6

(RFT). These routines have been developed and used in the fMRI field over many years and are
equally applicable to multi- (or single-) subject M/EEG studies.

Furthermore, our group has invested heavily in establishing Bayesian approaches to the source
reconstruction of M/EEG data. Good source reconstruction techniques are vital for the M/EEG
field, otherwise it would be very difficult to relate sensor data to neuroanatomy or findings from
other modalities like fMRI. Bayesian source reconstruction provides a principled way of incorpo-
rating prior beliefs about how the data were generated, and enables principled methods for model
comparison. With the use of priors and Bayesian model comparison, M/EEG source reconstruc-
tion is a very powerful neuroimaging tool, which has a unique macroscopic view on neuronal
dynamics.

In addition, we have taken the idea of Dynamic Causal Modelling (DCM) from the fMRI
domain, and applied it to the M/EEG field. For M/EEG, DCM is a powerful technique, because
the data are highly resolved in time and this makes the identifiability of neurobiologically inspired
network models feasible. This means that DCM can make inferences about temporal precedence
of sources and can quantify changes in feedforward, backward and lateral connectivity among
sources on a neuronal time-scale of milliseonds. Note that DCM/fMRI won’t do this for you;
DCM/fMRI (or any other connectivity analysis in fMRI) looks at the modulation of connectivity
by task, on a time-scale of seconds.

11.2 Changes from SPM5 to SPM8

As in SPM5, SPM8 provides tools for the analysis of EEG and MEG data. However, the SPM8
release is much more robust than the previous version, in many aspects such as conversion of
data, source reconstruction, and dynamic causal modelling.

For three years, we have collected valuable experience for the analysis of M/EEG data, and
received much valuable feedback from both FIL and external collaborators and users. We had
plenty of opportunity to see which things worked well and what can be improved. One of our
major insights was that writing a general routine for conversion of M/EEG data from their native
to our SPM-format is a major effort. This is simply because there are so many different formats
around and it is quite an undertaking for a small development team like ours to write stable
software which can read all formats, some of which we have never seen ourselves. This had two
consequences. The first is that we now collaborate with the developers of FieldTrip, who had
already made available a wide range of Matlab code to convert M/EEG data, and we thought
it a good idea to let both SPM and FieldTrip use and develop the same library. The second
major difference is that we changed the internal M/EEG format of SPM in many ways to make
reading/writing and manipulating M/EEG data more robust and straightforward for the user.
Effectively, we invested a lot of effort into rebuilding the SPM for M/EEG machinery almost from
scratch.

There are a couple of other major changes from SPM5 to SPM8.
First, based on our source reconstruction work, we have implemented a number of new routines

which provide for a robust and efficient source reconstruction, using Bayesian approaches. The
resulting, voxel-based source reconstructions can then be analysed, at the group level, with the
same well-tested routines that are used for fMRI data.

Second, Dynamic Causal Modelling, a network analysis for spatiotemporal M/EEG data,
has been developed further over the past three years. The DCM routines for modelling evoked

5GLM: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/GLM.html
6RFT: http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/RFT.html

http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/GLM.html
http://www.fil.ion.ucl.ac.uk/spm/doc/biblio/Keyword/RFT.html
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responses or fields have been significantly improved both in functionality and speed. We now
provide DCMs for modelling induced responses, phase coupling and local field potentials.

Third, there are now three ways of implementing M/EEG analyses in SPM. These are the
graphical user interface, and two different scripting methods (batch analysis). These batch fa-
cilities come in handy for multi-subject studies. As in fMRI analysis, many processing steps are
repetitive and it is now quite straightforward to automatize the software to a high degree.

Fourth, it is now possible to convert, in working memory, SPM data to FieldTrip or EEGLAB,
and back. This feature makes it possible to use, within SPM, many FieldTrip and EEGLAB
functions. For example, it is quite straightforward, using a script, to work within SPM, and use
FieldTrip functions to do parts of the preprocessing.

The following chapters go through all the EEG/MEG related functionality of SPM8. Most users
will probably find the tutorial (chapter 36) useful for a quick start. A more extensive tutorial
demonstrating many new features of SPM8 on both EEG and MEG data can be foind in 37. A
further detailed description of the conversion, preprocessing functions, and the display is given in
chapter 12. In chapter 13, we explain how one would use SPM’s statistical machinery to analyse
M/EEG data. The 3D-source reconstruction routines, including dipole modelling, are described
in chapter 14. Finally, in chapter 16, we describe the graphical user interface for dynamical causal
modelling, for evoked responses, induced responses, and local field potentials.
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Chapter 12

EEG/MEG preprocessing –
Reference

In this chapter we will describe the function and syntax of all SPM/MEEG preprocessing and
display functions. This will be the most detailed description of the functions in this manual. Our
goal is to provide a comprehensive description of how the software can be used to preprocess
M/EEG data up to the point where one would use one of the source reconstruction techniques
or statistical analysis of M/EEG channel data.

These functions can be called either from SPM’s graphical user interface (GUI), from the
Matlab command line, or via the batch input system. We recommend beginners use the GUI
first, because this will prompt SPM to ask for all relevant information needed to process the data.
The batch input system is designed for repetitive analyses of data (eg. from multiple subjects)
once the user knows what should be done, and in which order. The command line facilities are
very useful for writing scripts, or using SPM’s history-to-script functionality to generate scripts
automatically. The command line use of SPM for M/EEG will require some Matlab knowledge.

For the command line, we follow the concept of providing only one input argument to each
function. This input argument is usually a structure (struct) that contains all input arguments
as fields. This approach has the advantage that the input does not need to follow a specific
input argument order. If an obligatory input argument is missing, the function will invoke the
GUI and ask the user for the missing argument. When using the GUI, a function is called with-
out any input argument, i.e. SPM will ask for all input arguments. If using the command line
(e.g., with a script), you can specify all arguments in advance and effectively use SPM/MEEG
functions in batch mode. We provide some sample batch scripts (history subject1.m) in the
man\example scripts folder of the SPM8-distribution.

In the following we will go through the conversion of the data, specifics of the M/EEG for-
mat in SPM8, how to properly enter additional information about the channels, how to call
FieldTrip-functions from SPM, a complete reference of all methods and functions, how to use the
display, and finally how to script and batch the preprocessing.

12.1 Conversion of data

The first step of any analysis is the conversion of data from its native machine-dependent format
to a Matlabbased, common SPM format. This format stores the data in a *.dat file and all
other information in a *.mat file. The *.mat file contains the data structure D and the *.dat

is the M/EEG data. The conversion facility of SPM is based on the “fileio” toolbox1, which
is shared between SPM8, FieldTrip and EEGLAB toolboxes and jointly developed by the users
of these toolboxes. At the moment most common EEG and MEG data formats are supported.
For some cases, it might be necessary to install additional Matlab toolboxes. In this case an
error message will be displayed with a link where the appropriate toolbox can be downloaded.

1fileio: http://fieldtrip.fcdonders.nl/development/fileio
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If your data format is not recognized by “fileio”, it will still try to read the file using the Biosig
toolbox2, if available. This can work for some EEG systems, particularly clinical ones. One of
the consequences of using Biosig as ’fallback’ is that you may see error messages from Biosig or
mentioning Biosig if your data format is not presently supported. In such a case you can extend
the “fileio” toolbox and contribute your code to us. See “fileio” page for details.

In the following we will describe the GUI-version for conversion. One could also convert data
using the batch or a script. After clicking on the Convert button of the M/EEG GUI you will
be asked to select the file to be converted. As a rule of thumb, if the dataset consists of several
files, the file containing the data (which is usually the largest) should be selected. SPM can
usually automatically recognize the data format and apply the appropriate conversion routine.
However, in some cases there is not enough information in the data file for SPM to recognize
the format. This will typically be the case for files with non-specific extensions (*.dat, *.bin,
*.eeg, etc). In these cases the header-, and not the data-, file should be chosen for conversion
and if it is recognized, SPM will locate the data file automatically. Note that SPM8 can also
convert data in SPM5 format, where the the *.mat file should be selected. In some rare cases
automatic recognition is not possible or there are several possible low-level readers available for
the same format. For these cases there is an option to force SPM to use a particular low-level
reader available with the batch tool or in a script (see below).

After the file is chosen, you will be asked (“Define settings?”) to choose whether to define
some settings for the conversion or “just read”. The latter option was introduced to enable
a simple and convenient conversion of the data with no questions asked. The resulting SPM
M/EEG data file can then be explored with SPM’s reviewing tool to determine the appropriate
conversion parameters for the future. If the “just read” option is chosen, SPM will try to convert
the whole dataset preserving as much data as possible. The other option - “yes” - lets you control
all features of the conversion, to convert only the data that will be used in subsequent processing.

If this option is chosen, the next question will be whether to read the data as “continuous”
or as “trials”. Note that some datasets do not contain continuous data to begin with. These
datasets should usually be converted with the “trials” option.

If the “continuous” option is chosen you will be asked (“Read everything?”) whether to
convert the whole file (“yes”) or a subset of it (“no”). If the answer is “no” you will be asked to
specify the time window in seconds. Note that if a data file contains several concatenated long
segments (e.g., if the recording was paused and then resumed) only one of these segments at a
time can be converted as continuous. Therefore you should specify a time window which does
not cross the boundaries between segments.

If the “trial” option is selected, the next question will be where to retrieve the information
about trials. There are three options. If “data” is chosen, SPM will attempt to look for infor-
mation about trials in the dataset. This option is suitable for datasets that are already epoched
or datasets which contain information about trials. If “define” is selected, trials can be defined
based on information about events which appears in the file. The routine used for this option
is identical to the one used in epoching (see below) and the resulting SPM file will be already
epoched. The advantage of defining trials at conversion is that only the necessary subset of the
raw data is converted. This is useful when the trials of interest are only a small subset of the
whole recording. After the trial definition is completed, the results can be saved into a file. This
file can be later used instead of repeating the trial definition again. This is done by selecting the
third trial definition option - “file”.

The next question will be about which channels should be converted. Five options are avail-
able. “all” - convert all the available channels. “meg”, “eeg” - automatically detect and choose
MEG and EEG channels respectively. These options may not work correctly for some EEG sys-
tems because many data formats do not provide information about what data were acquired by
a specific channel. However, the most common cases are supported. “gui” - choose the channels
to convert using a graphical interface. The overall selection of channels can be saved in a file and
this file can later be used by choosing the “file” option.

The final question is by which name the new SPM EEG files should be written to disk. By
default SPM will add the prefix spm8 to the name of the raw data file if the data is read as
continuous and espm8 if the data is read by trials.

2Biosig: http://biosig.sourceforge.net/

http://biosig.sourceforge.net/
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SPM will now convert the data. This may take some time depending on file size and a red
bar will inform you about the progress.

12.2 Converting arbitrary data

It might be the case that your data is not in any standard format but is only available as an ASCII
or Excel file or as a variable in the Matlab workspace. Then you have two options depending
on whether you would be willing to use a Matlab script or want to only use the GUI. If you
want to only use the GUI, we suggest that you assemble your dataset in EEGLAB and then save
it and convert to SPM as any other format. The developers of EEGLAB have invested a lot of
effort into making it possible to build a dataset from scratch without using the command line or
scripts and we see no reason for reproducing the same functionality in SPM.

If you are willing to write a simple Matlab script, the most straightforward way to convert
your data would be to create a quite simple FieldTrip raw data structure (Matlab struct) and
then use SPM’s spm eeg ft2spm.m function to convert this structure to SPM dataset. Missing
information can then be supplemented using meeg methods and SPM functions.

FieldTrip raw struct must contain the following fields:

• .fsample - sampling rate (Hz)

• .trial - cell array of trials containing matrices with identical dimensions (channels × time).

• .time - cell array of time vectors (in sec) - one cell per trial, containing a time vector
the same length as the second dimension of the data. For SPM, the time vectors must be
identical.

• .label - cell array of strings, list of channel labels. Same length as the first dimension of
the data.

If your data only has one trial (e.g. it is already an average or it is raw continuous data) you
should only have one cell in .trial and .time fields of the raw struct.

An example script for converting LFP data can be found under toolbox\Neural Models\spm lfp txt2mat.m.

12.3 The M/EEG SPM format

The M/EEG format has changed from SPM5 to SPM8. There were many reasons why we decided
that it was time to radically change the format. If you still have some data from your SPM5
analyses, you can convert them to SPM8 (see above).

Here are the reasons why we changed the format. Previously, we placed all header information
into a struct, which was then stored in a Matlab mat-file. When the data were read, the struct-
file was put into working memory, and the data, contained in the dat-file, was linked to the struct,
using memory-mapping. We found that making a struct available in working memory was highly
problematic. This was because users would manipulate the struct but sometimes introduced an
error to the format (e.g., they removed a few trials from the data but did not update all fields
relating to the total number of trials). This would generate hard-to-resolve errors when trying to
further process the now inconsistent data. To avoid this in the future, we have introduced two
changes. The first is that SPM8 now always does a consistency check when loading a file. This
means, if, for whatever reason, the data format was made inconsistent, SPM8 will now report
this as soon the user tries to load these data. SPM8 will also report where the check flagged an
inconsistency. If there is enough information available to fix the inconsistency, it will be fixed on
the fly. For instance, you will usually see some messages about missing information starting with
’checkmeeg:’ when converting a file to SPM8 format. These messages are normal and if no error
is generated they do not indicate a problem. Second, when reading the data, we now convert the
header struct to an object and only then make it available in working memory. Generally, this
Matlab object can only be manipulated using standardized functions (called methods), which
makes it very hard to introduce any inconsistency into SPM M/EEG data in the first place. Also,
using methods simplifies internal book-keeping, which makes it much easier to program functions
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operating on the M/EEG object. For example, while the SPM5 format kept a variable which
contained the number of trials, the SPM8 object does not have this variable but a method that
returns the number of trials by simply counting how many trials of data there are. This makes
it easy for a programmer to, for example, remove trials. There is no longer a need to update a
variable for the number of trials. Also there is no need to check for the presence of particular
fields in the struct in every SPM function. All the methods are guaranteed to work on a valid
object. There are many more simplifications along these lines due to the use of “objects” and
“methods”. In summary, the change in format has resulted in a much more robust, and usable
data format.

12.4 Preparing the data after conversion

SPM tries to do its best to extract information automatically from the various data formats. In
some cases it can also supplement the converted dataset with information not directly present in
the raw data. For instance, SPM can recognize common EEG setups (extended 1020, Biosemi,
EGI) based on channel labels and assigns ’EEG’ channel type and default electrode locations for
these cases. However, there are data types which are either not yet supported in this way or
do not contain sufficient information for SPM to make the automatic choices. Also the channel
labels do not always correctly describe the actual electrode locations in an experiment. In these
cases, further information needs to be supplied by the user. Reading and linking this additional
information with the data is the purpose of the Prepare interface. This interface is accessed by
selecting Prepare from the “Other” drop-down menu in the GUI. A menu (easily overlooked)
will appear at the top of SPM’s interactive window. The same functionality can also be accessed
by pressing “Prepare SPM file” in the SPM M/EEG reviewing tool.

In this menu, an SPM M/EEG file can be loaded and saved using the “File” submenu. The
“Channel types” submenu allows reviewing and changing the channel types. Use the “Review”
option to examine the presently set channel types. During conversion, SPM will make an informed
guess at the correct channel types but this can sometimes go wrong, especiallly for EEG data. To
set a particular channel group to some channel type, select this type from the menu. A list of all
channels will appear. Select the subset whose type you would like to set. Ctrl and Shift buttons
can be used to refine the selection. Press OK to apply your choice. It is especially important to
correctly specify which are the EEG channels. MEG types are assigned automatically by SPM
and cannot be modified using the GUI.

The “Sensors” submenu can be used to supply information about the sensor positions to
the file. This information is needed to perform 3D source reconstruction and DCM analysis for
EEG and MEG data. Sensor positions for MEG are extracted from the raw data automatically
and are already present. For EEG, sensor positions are usually measured by a special device
(such as Polhemus) and are not part of the dataset. Even if you do not measure electrode
positions routinely in your lab, we recommend to perform at least one initial measurement with
the electrode cap you use and use the result as your standard template. In order for SPM to
provide a meaningful interpretation of the results of source reconstruction, it should link the
coordinate system in which sensor positions are originally represented to the coordinate system
of a structural MRI image (MNI coordinates). In general to link between two coordinate systems
you will need a set of at least 3 points whose coordinates are known in both systems. This is
a kind of Rosetta stone that can be used to convert a position of any point from one system
to the other. These points are called “fiducials” and the process of providing SPM with all
the necessary information to create the Rosetta stone for your data is called “coregistration”.
The most commonly used fiducials are the nose bridge and the two pre-auricular points. The
coordinates of these points for SPM’s standard template image are hard-coded in SPM code. So
if you provide the coordinates of these specific points with your sensor positions, it will be enough
for SPM. If you do not have these fiducials but have other anatomical landmarks (for instance 3
EEG electrodes whose positions can be easily marked on a structural image) it will be possible to
use them for coregistration as well, but that will require additional input from you. In addition,
or as a replacement of fiducials a headshape measurement may be used. This measurement is
done by an operator moving his digitizer pen around on the subject’s scalp and generates many
more data points than just 3 fiducials. EEG sensor and fiducial positions can be added to an
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SPM file using the “Load EEG sensors” menu. There are 3 options:

• “Assign default” - assigning default sensor positions. If this is possible, it will be done
automatically at conversion but this option can be used to revert to default sensor positions
after making some changes.

• “From a *.mat file” - this option is for the kind of files that were used in SPM5 and can
also be used for any kind of locations without trying to get them into one of the standard
formats. SPM will ask for two files. The sensors file should contain an N × 3 matrix, where
N is the same as the number of channels whose type is set to “EEG” and the order of the
rows matches the order of these channels in the SPM file. The fiducials file should contain
a K × 3 matrix, where K (usually 3) is the number of fiducials. You will then be asked to
provide labels for these fiducials. They should appear in the same order as the rows in the
file.

• “Convert locations file” - this option uses a function from the internal “fileio” toolbox that
supports several common formats for EEG channel position specification such as *.sfp and
BESA’s *.elp. It can also read Polhemus files from FIL and FCDC. In general Polhemus
devices do not have a standard data format so if you are using Polhemus at a different site
is is most likely that your Polhemus file will not be recognized by SPM directly. You will
need to convert it to another format. An *.sfp file is the easiest to create (for instance
in Excel). It is just an ASCII file containing a column of channel labels and 3 columns of
cartesian coordinates. Check “fileio” website3 for a complete list of supported formats. The
file you are importing can also contain positions of fiducial points or any other named points
that do not necessarily correspond to channels. You can also include multiple headshape
points with the label “headshape”. The important thing is that there are coordinates for
each channel that was assigned “EEG” type.

The fiducials for MEG are automatically loaded from the dataset. However, in some MEG
setups the situation is more complicated. For instance, it might be convenient to attach the coils
marking MEG fiducials to the top of the head, where there are no clear anatomical landmarks.
In this case there should be an additional file measured with a Polhemus-like device that contains
the positions of MEG fiducials and something that can be linked to a structural image (either
anatomical landmarks or a headshape) in the same coordinate system. The way SPM handles
this situation is in two steps. First, this additional file is converted into the same coordinate
system in which MEG sensors are represented and it replaces the original MEG fiducials. At a
later stage having MEG sensors and fiducials/headshape in the same coordinate system, SPM
uses the fiducials/headshape for coregistration with standard MRI template or subject’s own
structural image. If you can mark the points where your MEG fiducial coils were located on a
structural image, the step described below is not necessary. It is also possible that the digitizer
measurement is stored with the raw data. Then SPM will read it automatically. Otherwise, the
additional fiducials/headshape file can be loaded using the “Load MEG Fiducials/Headshape”
menu. The supported formats are the same as for electrode locations. It is also possible to create
a fiducials/headshape Matlab struct and store it in a *.mat file. This file will also be recognized
by SPM. The struct should be called shape and it should contain the following fields: shape.pnt
- a K × 3 matrix (possibly empty) with headshape points i.e. points that are on the surface
of the head and have no labels, shape.fid.pnt - M × 3 matrix with fiducial points i.e. points
that have labels, shape.fid.label - M × 1 cell array of strings with the labels of the points in
shape.fid.pnt. As mentioned above, M should be at least 3 for the coregistration to work.

If you did not use default 3D positions, after loading the sensor positions you can perform
coregistration of your sensors with SPM’s template head model. This initial alignment is helpful
to verify that the sensor information you supplied were interpreted correctly and should also be
done if you would like to generate a 2D sensor template based on your 3D sensor positions (see
below). The 2D-coordinates will be used for displaying the data in a topologically meaningful
way. This is implemented using the “Coregister” option. For details of how this option works see
the 3D source reconstruction chapter 14.

3fileio: http://fieldtrip.fcdonders.nl/dataformat

http://fieldtrip.fcdonders.nl/dataformat
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The “2D Projection” menu deals with the generation of representative 2D-coordinates for the
sensors. Note that generating 2D-coordinates is not obligatory. If the 2D-coordinates are not
specified, the sensors will be, when displaying, presented in a default square grid. Missing out
on topographically meaningful 2D-coordinates might be useful when working on few channels.
The 2D-coordinates are also used for producing scalp-level SPMs in voxel space when converting
M/EEG data to images for later statistical analysis (see below). If you are planning to do
3D source reconstruction or DCM, 2D-coordinates are not necessarily required. Also, you can
load 2D-coordinates from a file (several example files are available in the EEGtemplates SPM
directory). 2D-coordinates can also be generated by projecting the 3D sensor positions to a
plane. This is done automatically when default 3D coordinates can be assigned, and also for
MEG. In case of custom EEG sensor positions coregistration should be performed first (see
above). The resulting 2D-coordinates are displayed in SPM’s graphics window. You can modify
these projected 2D-coordinates manually by adding, deleting and moving sensors. To select a
sensor, click on its label. The label will change its color to green. If you then click at a different
location, the sensor will be moved to this position. Note that, at this stage, SPM does not check
whether there is any correspondence between the labels of the coordinates and the labels of the
channels stored in the SPM file. When you are satisfied with the 2D-coordinates, select “Apply”
from the menu and the coordinates will be assigned to EEG or MEG channels according to their
labels. Note that 2D-coordinates cannot be assigned to channels of other types than M/EEG.

Remember to save the file using “File/Save” after you finished modifying it using the Prepare
interface. Your changes will not be saved automatically. In case of invoking Prepare from the
reviewing tool you should press the ’OK’ button that will appear at the bottom left of the
interactive window, and then save the file with the “Save” button of the reviewing tool.

In the rare case that you neither have measured sensor locations, or fiducials, and the supplied
standard templates do not work for you, you can also supply a so-called channel template file,
which contains all information necessary. However, remember, that if you do not supply any
2D-coordinates, you can still use all SPM functions, however, SPM will use 2D-coordinates laid
out in a topographically unmeaningful rectangular pattern.

A channel template file contains four variables:

Nchannels - The number of channels
Cnames - A cell vector of channel names. Each cell can contain either

a string or a cell vector of strings. The latter allows for
multiple versions of a given channel name. Case can be
ignored, i.e., it doesn’t matter whether channel names are
in small or capital letters.

Cpos - A 2 × Nchannels-matrix of channel coordinates on a 2D
plane. In x- and y-direction the minimum coordinate must
be ≤ 0.05 and the maximum coordinate must be ≥ 0.95.

Rxy - A factor that determines the ratio of the width of the dis-
play plots to their height when displaying the data. Stan-
dard is 1.5.

Note that the channel template files and 3D coordinate files with labels (such as *.sfp) can
contain many more channel labels than your data file. SPM searches, for each channel in the
data, through the labels in the channel template file. If the labels match, the coordinate is used.

12.5 Integration of SPM and Fieldtrip

The SPM8 distribution includes the latest version of the FieldTrip toolbox4. FieldTrip is a
Matlab toolbox for MEG and EEG analysis that is being developed at the F.C. Donders Centre
(FCDC) together with collaborating institutes. FieldTrip functions can be used for many kinds
of analysis which are not supported in SPM proper. However, FieldTrip does not have extensive
graphical user interface and its functionality should be accessed by writing scripts. Full reference
documentation for FieldTrip including example scripts is available at the FieldTrip website. The

4FieldTrip: http://fieldtrip.fcdonders.nl/

http://fieldtrip.fcdonders.nl/
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SPM distribution also contains some documentation, contained as help comments in FieldTrip
functions. These can be found in the directory external\fieldtrip.

Fieldtrip data structures can be converted to SPM EEG files using the spm eeg ft2spm func-
tion. SPM M/EEG data, once loaded with the function spm eeg load can be converted to
FieldTrip format using the methods ftraw (with syntax D.ftraw or ftraw(D)) and fttimelock

(with syntax D.fttimelock or fttimelock(D)). For SPM time-frequency datasets fttimelock

method converts the data to Fieldtrip time-frequency structure.

12.6 Reading of data

If you use the GUI only, there is no need to read this section because the functions called by the
GUI will read the data automatically. However, if you plan to write scripts and access the data
and header information more directly, this section should contain all the necessary information
to do so.

An SPM8 for M/EEG file can be read using the spm eeg load function. Without any argu-
ments a file requester asks for the name of the file. With a string argument P , spm eeg load(P)

will attempt to read a file with the name P. The behavior in this case is identical to the “Just
read” option in the GUI. The SPM-format stores the binary data in a *.dat file. All header
information are stored in a *.mat file. This *.mat file contains a single struct named D which
contains several fields. When using spm eeg load, the struct is transformed into an object, and
the data are linked into this object. The linking is done via memory mapping using file array

objects. Note that the data should always be read using the routine spm eeg load. The memory
mapped data can be addressed like a matrix (see below) which is convenient for accessing the
data in a random access way. However, a word of caution: If you write new values to this matrix,
the matrix is not only changed in the object (in memory), but also physically on the hard disk.

You can also load the header struct using a simple Matlab load but this just returns the
header struct, without the data linked in, and SPM functions won’t know what to do with this
struct. In the following, we will describe the methods that one can use on an M/EEG-object.
Note that we will not describe the internal format of the data here. This would be helpful only
for programmers who want to write new methods for meeg object, because when simply analyzing
M/EEG or even writing SPM functions there should never be a need to access the internal format.
If you think that the existing methods do not provide the functionality you need, please let us
know. For interested power users, there is documentation about the internal format within the
meeg class constructor. meeg.

12.6.1 Syntax

D = spm eeg load(P)

Input

The input string P is optional and contains the file name of the *.mat file.

Output

The output struct D contains all header information about the data. The data are memory
mapped and can be accessed directly using something like d = D(:,:,1). This command would
put the first trial over all channels and time points into the variable d. The first dimension of D

is channels, the second peri-stimulus time, and the third is trials. If the data are time-frequency
transformed, there would be four dimensions, where the frequency dimension is squeezed in at
the second position (i.e., channels/frequencies/time/trials). If you wanted to change the values
of the data, you would write something like D(1,2,3) = 1;, which would change the value of the
first channel, second time-point, and third trial to 1.
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12.7 Methods for the meeg object

meeg methods are functions that operate on an meeg object, loaded with spm eeg load. These
methods should not be used, if you just want to analyze your data using the GUI or simple scripts.
However, if you write your own scripts or high-level functions that need to read or manipulate
the object, you need these methods. In the following, we will provide details about most of the
methods. The code for all methods can be found in the @meeg SPM directory. Most methods
provide some minimalist help text. In the following, we will assume that the object variable is
called D, i.e. previously loaded by using D = spm eeg load;.

12.7.1 Constructor meeg

The meeg method is a constructor. Called without any arguments it will produce a consistent,
but empty object. In SPM, the constructor is called when a struct has been loaded into memory
by spm eeg load, and is transformed into an meeg object. Importantly, the constructor also checks
the consistency of the object.

12.7.2 display

This method will return, in the Matlab window, some information about the object, e.g.,
display(D).

12.7.3 Number methods

These are methods which return the number of something; they count the number of chan-
nels, etc. For example, to find out how many channels an MEEG object contains, you would
use D.nchannels, where D is the object. Number functions are nchannels, nfrequencies,

nsamples, ntrials. You can also use size(D) to get all the dimensions of the data array at
once.

12.7.4 Reading and manipulation of information

There are a large number of methods that can be used to either read or write some information.
The method name is the same but it depends on the arguments whether something is read or
stored. For example, when you use the method badchannels, you can either type D.badchannels,
which returns the indices of all bad channels. You could also change information about specific
bad channels, e.g., D.badchannels([43:55], 1) will flag channels 43 to 55 as bad. You could
also use D.badchannels([43:55], ones(1,13), i.e. you can either use a scalar to change all
channels listed, or supply a 0/1-flag for each channel. There are other functions which use the
same logic. In the following we will list these functions and describe briefly what they do but
won’t go into much detail. We believe that you can work it out using the badchannels-example.

selectdata

With this method the data can be indexed using channel labels, times and condition labels instead
of indices which you would usually need to find out in your code. For instance D.selectdata(’Cz’,
[0.1 0.12], ’Oddball’) will return the waveforms of channel Cz between 100 and 120 ms in
peristimulus time for the condition “Oddball”.

chanlabels

This method reads or writes the label of the channels (string). Note that the channel labels must
be unique.

chantype

This method reads or writes the type of a channel (string). Currently, the types recognized by
SPM are: “EEG”, “MEG”, “EMG”, “EOG”, or “Other”, but in principle type can be any string.
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conditions

This method reads or writes the name of the condition of an epoch (string).

events

This method returns the events stored with each trial. Events are records of things that happened
during the experiment - stimuli, responses, etc. Before a file is epoched all the events are stored
with the only trial and they can be used by the epoching function. For an epoched file SPM
stores with each trial the events that occured within that trial or possibly in some time window
around it (this is a parameter of the epoching function that can be specified). You can use this
information for your analysis (for instance to sort trials by reaction time). Events are represented
by a structure array with the following fields:

• .type - string (e.g. “front panel trigger”)

• .value - number or string, can be empty (e.g. “Trig 1”).

• .time - in seconds in terms of the original file

• .duration - in seconds (optional)

Note that in order to find out the time of an event in peristimulus time you will need additional
information provided by “trialonset” method.

fname

This method reads or writes the name of the mat-file, in which the header information are stored.

fnamedat

This method reads or writes the name of the dat-file, in which the data are stored.

frequencies

If the data has been transformed to time-frequency, this method reads or writes the frequencies
(Hz) of the data.

fsample

This method reads or writes the sampling rate of the data. In SPM, all data must have the same
sampling frequency.

history

This method can read or add to the history of a file. Usually, each time a SPM function (e.g.
like converting) does something to a data set, the function name and arguments (possibly after
collecting them with the GUI) are stored in the history. Effectively, the history is a documentation
of how exactly the data were processed. Of course, the history function can also be used to
replicate the processing, or generate (modifiable) scripts for processing other data in the same
way.

path

This method reads or writes the path, under which the mat- and dat-files are stored.

reject

This method reads or writes the indices of rejected (bad) trials.
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timeonset

This method reads and writes the time of the first sample in a trial in peristimulus time (in
seconds). In SPM all trials should have the same time axis. Therefore there is only one timeonset
in a file. For instance, if you have a pre-stimulus baseline of 100 ms and the stimulus comes at
time zero, timeonset will be -0.1. In general it is possible to define the time axis any way you like
and there is no requirement that the stimulus comes at 0 or that there is baseline with negative
times (which was the case in SPM5).

trialonset

This method should not be confused with the more commonly used timeonset (see above). It
returns the times of the first sample of each trial in the original raw data file time. This information
is not always available to begin with. It may also be invalidated during processing (for instance if
you merge two epoched files). When this happens the information is discarded. For SPM analysis
trialonset is not usually necessary. However it may be useful if you want to relate something in
your analysis to the timing of your experiment, for instance create a regressor for GLM analysis
of single trials to account for fatigue. trialonset is also necessary for interpretation of events in
epoched files.

transformtype

This method reads and writes the type of the data transform (string). For example, when the
data are transformed to a time-frequency represention, transformtype is set to “TF”. For time
data, this is “time”.

type

This method reads and writes the type of the data (string). Currently, this string can be “con-
tinuous”, “single”, “evoked”, or “grandmean”.

units

This method reads and writes the units of the measurements (string). The units are channel-
specific, i.e., each channel can have its own units.

12.7.5 Reading of information

Some methods can only read information but not change them. These are:

condlist

This method returns a list of condition labels. Multiple entries of labels have been removed.

coor2D

This method returns the 2D-coordinates used for displaying or writing sensor data to voxel-based
images.

dtype

This method returns the type under which the data are stored in the file array object.

eogchannels

This method returns which of the channels are EOG channels.

indsample

This method returns the index of the sample which is closest to a specific time point (ms).
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indfrequency

For time-frequency datasets this method returns the index of the frequency closest to the given
value in Hz.

indchannel

This method returns indices of channels based on their labels.

indtrial

This method returns indices of trials based on condition labels.

meegchannels

This method returns the indices of all channels that are either of the MEG or EEG type.

modality

This method returns the modality of channels (MEG, EEG, etc.).

pickconditions

This method returns the indices of trials of a certain condition. The condition must be supplied
by its label (string).

repl

This method returns the number of replications measured for a condition. This method is usually
only used on single trial data.

time

This method returns the time (ms) of the samples.

sensors

This method returns the sensor locations structure. There is an additional argument for modality
(’EEG’ or ’MEG’) as we are planning to support datasets with more than one sensor type. The
exact way sensors are represented depends on the modality and you can find more information
in Fieldtrip documentation as the sensors structure is produced and used by code originally
developed at FCDC. Note that in SPM, sensors are not directly linked with channels, unlike for
instance in EEGLAB. So there is no requirement for the number of sensors and channels to match
or even for any relation between them. Of course loading sensors completely unrelated to your
data will not be very useful and will eventually lead to an error. This kind of representation is
more powerful than a simple correspondence and it will become even more useful with further
development of SPM.

fiducials

This method returns the fiducials. They are represented as shape struct (see the discussion
of loading fiducials by the Prepare function) with an additional field for units that is assigned
automatically.
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ftraw

This method converts an object to a FieldTrip structure. An additional argument can be supplied
to indicate whether the data is memory mapped (1: default) or loaded into memory (0). Note
that not all FieldTrip functions can properly handle memory mapped data. In order to avoid
corrupting the data, ftraw sets a read-only flag on it so in the worst case you might encounter
errors in Fieldtrip functions. Please report such errors on the SPM or Fieldtrip mailing list so
that we can fix them. ftraw(0) is safer in this respect but inefficient in its memory use.

fttimelock

Similar to ftraw but converts the data to a different kind of Fieldtrip structure.

12.7.6 Changing the information saved on the disk

save

This method saves the object to the mat- and dat-files.

delete

This function deletes the mat- and dat-files from the disk. This is useful, for instance, in a script
to delete the intermediate datasets after the next processing step has been completed.

12.7.7 struct-like interface

In addition to pre-defined internal fields that should only be manipulated using methods, the
meeg object also allows storing additional information in it as long as the names of additional
fields do not clash with the names of existing methods. This functionality is used by some SPM
functions. For instance, the results of 3D source reconstructions are stored in D.inv field for
which no methods are necessary to access and modify it. You can use this functionality in your
scripts (try commands like D.myfield = ’hellow world’; disp(D.myfield);). The methods
rmfield and isfield work for these extra-fields as they would if the meeg object was a struct.

12.8 SPM functions

In this section we will describe the high-level SPM functions which are used for preprocessing
M/EEG data. These functions are fairly standard and should allow a simple preprocessing of the
data (e.g., epoching, filtering, averaging, etc.). Here, we will just describe what each function
roughly does and what the input arguments mean. More detailed information about the syntax
can be found in the help text of the code. For example, to get detailed help on epoching, type
help spm eeg epochs. The general syntax is the same for all functions. If called from the
command-line, and if no input arguments are specified, the function will behave exactly as if you
called the function from the GUI by pressing a button or choosing it from the “Other” menu.
However, on the command line, or from a script, you can supply input arguments, up to the point
when all required input arguments are specified, so that the function will run without any user
interaction. In this way, one can write a script that runs without user interaction. See the folder
man\example scripts for an example. Input arguments are provided in a struct S, whose fields
contain the arguments. A typical call, e.g., from a script would be: D = spm eeg epochs(S),
where S is the input struct, and D contains the return argument, the epoched meeg object. Note
that, with all SPM functions, the object is also always written to hard disk. The filenames of
the mat- and dat-files are generated by prepending a single letter to the old file name. In the
example of epoching this would be an ’e’. The idea is that by calling a sequence of functions on a
file, the list of first letters of the file name shows (roughly) which preprocessing steps were called
to produce this file. Note that another way of calling SPM functions and specifying all input
parameters is to use the new batch interface.
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12.8.1 Epoching the data: spm eeg epochs

Epoching cuts out little chunks of continuous data and saves them as “single trials”. In M/EEG
research, this is a standard data selection procedure to remove long gaps between each single
trial. For each stimulus onset, the epoched trial starts at some user-specified pre-stimulus time
and end at some post-stimulus time, e.g. from -100 to 400 milliseconds in peri-stimulus time. The
epoched data will also be baseline-corrected, i.e. the mean of the pre-stimulus time is subtracted
from the whole trial. The resulting event codes are the same as saved in the *.mat file. The
prepended output letter is ’e’.

The epoching function can deal with two different ways of specifying trials you want to epoch.
The first is to specify explicitly where each trial is located in the measured time-series. The
second is to specify trials using the labeled events stored in the file. For most users, the second
way is the most convenient, but sometimes, when the stored triggers in the file do not relate to
what you want to epoch or there is no event information available in the raw data (e.g. when
you have an external stimuli file), you should use the first.

For the first method, you specify a N × 2 so-called trl matrix, where each row contains
the start and end of a trial (in samples). Optionally, there can be a third column containing
the offset of the trigger with respect to the trial. An offset of 0 (default) means that the first
sample of the trial corresponds to the trigger. A positive offset indicates that the first sample
is later than the trigger, a negative offset indicates that the trial begins before the trigger. In
SPM the offset should be the same for all trials. The need to specify a whole column is for
interoperability with FieldTrip where trials can have different time axes. In addition you have
to specify conditionlabels (a single string or a cell array of strings), either one for each trial
or one for all trials. You can also enter a padding which will add time points before and after
each trial to allow the user to later cut out this padding again. This is useful, e.g., for filtering
epoched data, where one would otherwise, without padding experience “edge effects”.

For the second method, one should define the pre- and post-stimulus interval, and also specify
the events (triggers) around which the epochs will be “cut”. SPM identifies events by their “event
type” and “event value”. These are strings or numbers which the software run by the EEG or
MEG vendor uses when generating the measurement file. If you don’t specify parameters for
the epoching function, a GUI will pop up, and present the found triggers with their type and
value entries. These can sometimes look strange, but if you want to run a batch or script to
do the epoching, you have to first find out what the type and value of your event of interest
are. Fortunately, these tend to be the same over scanning sessions, so that you can batch multi-
subject epoching using the types and values found in one subject. You also have to come up with
a “condition label” for each trial type, which can be anything you choose. This is the label that
SPM will use to indicate the trial type of a trial at later processing stages. It is possible to use
several types of triggers for defining trials with the same label - in the GUI, just select several
events using Shift or Ctrl key.

For both methods of input you also have to set a (0/1)-flag (no/yes) indicating whether you
want to review the information for all trials after selecting them. This allows you to make sure
that all your trials are there. You should set the review-flag to 0, if you write a non-interactive
script. In the GUI you can review a list of the epochs you defined and exclude some of them by
hand (e.g. only take the triggers from the first 5 min of recording). You can also choose to save
the trial definitions, for example, for re-use of another epoching of the same data.

12.8.2 Filtering the data: spm eeg filter

Continuous or epoched data can be filtered, over time, with a low-, high-, stop- or bandpass-filter.
SPM uses a Butterworth filter to do this. Note that SPM uses the signal processing toolbox. This
means that you have to have this toolbox to filter data in SPM. Phase delays are minimised by
using Matlab ’s filtfilt function which filters the data twice, forwards and backwards. The
prepended output letter is ’f ’.

When you use the function in GUI mode, it will automatically use the Butterworth-filter. You
can then choose among the four different types of filtering: “lowpass”, “highpass”, “bandpass”,
and “stopband”. Depending on your choice, SPM will ask for the cutoff(s) in Hz.
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12.8.3 Baseline correction: spm eeg bc

This function subtracts the baseline from channel data. You will be asked to specify the baseline
period in ms (e.g. [-100 0]). A new dataset will be written out with the name prepended by ’b’.

12.8.4 Artefact detection and rejection: spm eeg artefact

Some trials not only contain neuronal signals of interest, but also a large amount of signal from
other sources like eye movements or muscular activity. These signal components are referred to
as artefacts. There are many kinds of artefacts and many methods for detecting them. The
artefact detection function in SPM is, therefore, extendable and can automatically detect and use
plugin functions that implement particular detection algorithms. Simple algorithms presently
implemented include thresholding of the data, thresholding of the difference between adjacent
samples (to detect jumps), thresholding peak-to-peak amplitude and detection of flat segments.
Channels containing artefacts in large proportion of the trials are automatically marked as bad.

Note that the function only indicates which trials are artefactual or clean and subsequent
processing steps (e.g. averaging) will take this information into account. However, no data is
actually removed from the *.dat file. The *.dat file is actually copied over without any change.
The prepended output letter is ’a’.

The GUI for artefact detection is based on the batch interface of SPM. When you click the
Artefacts button, window of the SPM8 batch interface will open. Click on “File name” and
select the dataset. Double click “How to look for artefacts” and a new branch will appear. It
is possible to define several sets of channels to scan and one of the several different methods for
artefact detection. For each detection method there are specific configuration parameter (e.g. for
thresholding - the threshold value).

12.8.5 Downsampling: spm eeg downsample

The data can be downsampled to any sampling rate. This is useful if the data was acquired at a
higher sampling rate than one needs for making inferences about low-frequency components. For
example, resampling from 1000 Hz to 200 Hz would cut down the resulting file size to 20% of the
original file size. Note that SPM’s downsampling routine uses the Matlab function resample,
which is part of the signal processing toolbox. The prepended output letter is ’d’.

Here, you choose the new sampling rate (Hz) which must be smaller than the old sampling
rate.

12.8.6 Rereferencing: spm eeg montage

Sometimes it is necessary to re-reference the data to a new reference. For source analysis and
DCM the data should be converted to average reference. For sensor level analysis it is sometimes
useful to use a reference that emphasizes the effects of interest. In SPM this is done by specifying
a weight matrix, which pre-multiplies the data. This is a general approach which allows one to re-
reference to the average over channels, to single channels, or any linear combination of channels,
e.g. the average over a pair of channels. The prepended output letter is ’M’.

When you call the function, you will first be asked whether you want to use a GUI or read
information from a file to specifying the montage. If you choose GUI, you will see, on the left hand
side, the montage-matrix, where each row stands for a new channel. This means the labels in the
left column describe the new labels. The old labels are on top, that means, each row contains
weights for how the old channels must be weighted to produce new channels in the montage. On
the right hand side, you see a graphical representation of the current matrix. The default is the
identity matrix, i.e., the montage will not change anything. The concept is very general. For
example, if you want to remove channels from the data, just delete the corresponding row from
the montage matrix. To re-reference to a particular channel the column for this channel should
be -1 for all rows, except the row corresponding to itself which should be 0, whereas the other
channels should have 1 in the intersection of their column and row (the diagonal of the matrix)
and 0 elsewhere. For average reference the matrix should have (N − 1)/N (where N is number
of channels) at the diagonal and −1/N elsewhere. In principle, any montage can be represented
this way. If you are not sure about how to represent a montage you need, ask an expert or write
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to the SPM mailing list. The specification will only need to be done once for your setup and then
you can save the montage and use it routinely. After changing the weights of the matrix, you can
check the montage by pressing the button in the lower right below the figure.

If you choose to specify the montage by “file”, you have to enter the filename of a mat-file,
which contains a struct with 3 fields: labelnew (labels of new channels), labelorg (labels of
original channels), and the montage-matrix tra (“tra” as in transform).

Finally, you will be asked, whether you want to “keep the other channels”. There may be
channels that are not involved in the montage. For instance, if you the apply montage defined for
your EEG channels but there are also EOG or trigger channels in the file. If you answer “yes”,
they will just be copied to the new file unaffected. If you answer “no” they will not be included
in the new file.

12.8.7 Grand mean: spm eeg grandmean

The grand mean is usually understood as the average of evoked responses over subjects. The
grand mean function in SPM is typically used to do exactly this, but can also be used to average
over multiple EEG files, e.g. multiple sessions of a single subject. There is an option to either
do averaging weighted by the number of trials in each file (suitable for averaging accross sessions
within a subject) or do unweighted averaging (suitable for averaging accross subjects).

The function will ask you for the name of the output file. Note that in a script, by default,
when you don’t specify an output filename, SPM will generate a new file with the filename of the
first selected file, prepended with a ’g’.

12.8.8 Merge: spm eeg merge

Merging several MEEG files can be useful for concatenating multiple sessions of a single subject.
Another use is to merge files and then use the display tool on the concatenated file to be able to
display in the same graph data coming from different files. This is the preferred way in SPM to
display data together that is split up into several files. The merged file will be written into the
same directory as the first selected file. The prepended output letter is ’c’.

The function will first check whether there are at least two files, and whether all data are
consistent with each other, i.e., have the same number of channels, time points, and sampling
rate. The function will also ask what to do with condition labels. The simplest option is to keep
them the same. This might be useful for instance when you have several sessions for one subject
with the same conditions in all files. In other cases, however, it might be helpful to rename the
conditions like “condition A” to something like “condition A, session 1”, etc. The simplest way to
do it is to append the name of the original file to the condition labels. There is also a possibility
to specify more sophisticated ’recoding rules’ (see the documentation in the function header).
This is mostly useful for writing scripts.

12.8.9 Multimodal fusion: spm eeg fuse

SPM supports datasets containing simultaneously recorded MEG and EEG. For imaging source
reconstruction it is possible to use both modalities to inform the source solution. Usually combined
MEG/EEG data is contained within the same raw dataset and can be pre-processed together from
the beginning. If this is not the case spm eeg fuse makes it possible to combine two datasets
with different channels into a single dataset given that the sets of channels do not overlap and the
datasets are identical in the other dimensions (i.e. have the same sampling rate and time axis,
the same number of trials and the same condition labels in the same order). This function can
be used to create a multimodal dataset also from separately recorded MEG and EEG which is a
valid thing to do in the case an experiment with highly reproducible ERP/ERF.

12.8.10 Time-frequency decomposition: spm eeg tf

The time-frequency decomposition is extendable and can automatically detect and use plugin
functions that implement particular spectral estimation algorithms. Algorithms presently imple-
mented include continuous Morlet wavelet transform, Hilbert transorm and multitaper spectral
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estimation. The result is written to one or two result files, one containing the instantaneous
power and the other, optionally written, the phase estimates (phase estimation is not possible for
all algorithms). One can select the channels and frequencies for which power and phase should
be estimated. For power, the prepended output letters are tf , for phase tph .

The function can be configured using the SPM batch interface.

12.8.11 Rescaling and baseline correction of time-frequency: spm eeg tf rescale

Usually raw event-related power is not the most informative thing to look at (although contrasts
of raw power between conditions can be informative). To see the event-related effects better the
power should be either transformed or baseline-corrected separately for each frequency. There
are several different ways to do this and they are implemented in spm eeg tf rescale function.
’LogR’ method first computes the log of power and then baseline-corrects and scales the result
to produce values in dB. ’Diff’ just does simple baseline subtraction. ’Rel’ expresses the power
in % of the baseline units. Finally ’Log’ and ’Sqrt’ options just compute the respective functions
without baseline-correction. If necessary, you will be asked to specify the baseline period.

12.8.12 Averaging: spm eeg average

Averaging of single trial data is the crucial step to obtain the evoked response. When averaging
single trial data, single trials are averaged within trial type. Power data of single trials (see
sec. 12.8.10) can also be averaged by using the function spm eeg average TF. The prepended
output letter is ’m’.

When you call the function you will be asked whether you want to use robust averaging for
your data. This approach estimates weights, lying between 0 and 1, that indicate how artefactual
a particular sample in a trial is. Later on, when averaging to produce evoked responses, each
sample is weighted by this number. For example, if the weight of a sample is close to zero, it
doesn’t have much influence in the average, and is effectively treated like an artefact.If you choose
robust averaging, you will be given an option to save the weights as a separate dataset which is
useful for finding out what parts od the data were downweighted and adjusting the parameters if
necessary. Then you will be asked whether to compute the weights by condition (as opposed to
for all the trials pooled together). When there are approximately equal numbers of trials in each
condition, it is probably safer to compute weights across all conditions, so as not to introduce
artifactual differences between conditions. However, if one condition has fewer trials than the
others, it is likely to be safer to estimate the weights separately for each condition, otherwise
evoked responses in the rarer condition will be downweighted so as to become more similar to the
more common condition(s). Finally, you will have to choose an offset for the weighting function.
This value, default value 3, defines the weighting function used for averaging the data. The value
3 will roughly preserve 95% of data points drawn randomly from a Gaussian distribution. Robust
averaging can be applied to either time or time-frequency data. In the case of time data if you
applied a low-pass filter before averaging it is advised to apply it again after averaging because
differential weighting of adjacent points may re-introduce high-frequencies into the data.

12.8.13 Contrast of trials: spm eeg weight epochs

As an extension to the averaging functionality, SPM can also be used to compute linear combi-
nations of single trials or evoked responses. For example, if you want to compute the difference
between two evoked responses, you supply a contrast vector of [−1; 1]. Similarly, if you want to
remove some trials from the file, you can do this by using a contrast vector like [1; 0] which would
write a new file with only the first evoked response. The prepended output letter is ’m’.

The function will first ask you to “Enter contrasts”. This is a matrix where each contrast
is given by a row of this matrix. For example, if you compute just one contrast, you have to
enter a vector of the same length as the number of trial types in the file. Note that SPM will
zero-pad this vector (or matrix) if you specify fewer contrast weights than you have trials. The
next question is whether you want to “Weight by num replications”. This is important when you
use this function on single trials, where, typically, you have a different number of trials for each
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trial type. If you then choose to average over multiple trials, this option allows you to choose
whether you want to form an average that is weighted by the number of measurements within
each trial type. As compared to an average, where you implicitly first form the averages within
trial type, and then average with equal weighting.

12.8.14 Copy: spm eeg copy

This function makes it possible to make a copy of a dataset. It won’t work just to copy and
rename the files because the name of the data file is stored in the header file and this should be
updated. You will be asked to specify the new dataset name.

12.8.15 Sort conditions: spm eeg sort conditions

In many cases in SPM the order of the conditions in the file is important (for instance in 3D
source reconstruction and in DCM). This function makes it possible to change the specification
of the order (without actualy changing the data file). Subsequently every time the order of
the conditions is important, the order thereby specified will be used. For instance, if you sort
conditions in an epoched file and then average it, the conditions in the average file will be ordered
as you specified. If you originally defined the trials by selecting events from a list then the order
in which you made the selection will be preserved. You can see the present order in a file using
the condlist method (condlist(D)).

12.8.16 Remove bad trials: spm eeg remove bad trials

This function physically removes trials marked as bad from a dataset. This can be useful, for
instance, before time-frequency computation as processing bad trials generates a lot of overhead.
Also under any other circumstances when it is necessary to remove trials from a dataset (for
instance to get rid of some unused condition) these trials can be first marked as bad and then
removed using this function.

12.9 Displaying data with SPM M/EEG Review

This tool can be called from the main SPM GUI under “Display” → M/EEG.
SPM M/EEG Review is meant to provide the user with basic visualization (data and source

reconstruction) and reviewing (e.g. trial and sensor good/bad status) tools.
When called, SPM M/EEG Review displays in the SPM graphics window information about

the SPM data file which is displayed (only for Matlab versions ≥ 7.4).
SPM M/EEG Review uses tabs to easily access different fields in the SPM data file structure

(see relevant SPM manual section for SPM EEG data format). The main tabs system, at the top
of the graphics windows, offers the following alternatives:

• EEG displays EEG type data (if any). These are the data associated with “EEG” sensors.
The content of this tab is described below, as well as the “MEG” and “OTHER” tabs.

• MEG displays MEG type data (if any).

• OTHER displays any other type of data (e.g. HEOG, VEOG, etc).

• info (active tab by default): displays basic information about the data file. This tab
contains three further sub-tabs5: “channels”, “trials” and “inv” (the latter shows source
reconstructions parameters, if any). Some of this info can be changed by the user (e.g.
sensor/trial6 type, label and status, etc) by editing the table. The changes become effective
when clicking on “update”. They are actually saved in the data file when clicking on
“SAVE”.

5Users can also check sensor coregistration when clicking on “sensor positions”.
6Sensor/trial status (good/bad) can also be changed under the EEG/MEG/OTHER tabs, when visualizing

trials (sensor: right-click uicontextmenu ; trials: button 10).
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• source displays source reconstructions (if any). See below (2- source reconstructions visu-
alization).

In addition, the user can call the SPM Prepare routine 7 or save any modification in the
data file using the top-right buttons “Prepare SPM file” and “SAVE”.

12.9.1 Data visualization

The graphics window of SPM Review offers two modes of data visualization: “scalp” and “stan-
dard” (default). For continuous (non-epoched) data, only “standard” mode is enabled. For time-
frequency data, only “scalp” mode is enabled. For any other type of data, the user can switch
to any of these modes using the standard/scalp radio button. These two modes are described
below:

• standard channels are displayed vertically, within the same axes. A channel uicontextmenu
can be accessed by right clicking on any time series (e.g. for changing the channel good/bad
status). An additional axis (bottom right) provides the user with the temporal and horizon-
tal scale of the displayed data). The size of the plotted time window can be changed using
the top left buttons 1 and 2. User can scroll through the data using the temporal slider, at
the bottom of the graphics window. A global display scaling factor can be changed using
the top buttons 3 and 4. Zooming within the data is done by clicking on button 5. Clicking
on button 6 displays a 2D scalp projection of the data.

When displaying epoched data, the user can select the trial within the list of accessible
trials (top right of the window). It is also possible to switch the status of trials (good/bad)
by clicking on button 10.

When displaying continuous data, SPM M/EEG Review allows the user to manage events
and selections. After having clicked on button 7, the user is asked to add a new event in
the data file, by specifying its temporal bounds (two mouse clicks within the display axes).
Basic properties of any events can be accessed either in the “info” table, or by right-clicking
on the event marker (vertical line or patch superimposed on the displayed data). This gives
access to the event uicontextmenu (e.g. for changing the event label). Buttons 8 and 9
allow the user to scroll through the data from marker to marker (backward and forward in
time).

• scalp channels are displayed vertically, within the same axes. A channel uicontextmenu
can be accessed by right clicking on any time series (e.g. for changing the channel good/bad
status). An additional axis (bottom right) provides the user with the temporal and horizon-
tal scale of the displayed data). The size of the plotted time window can be changed using
the top left buttons 1 and 2. User can scroll through the data using the temporal slider, at
the bottom of the graphics window. A global display scaling factor can be changed using
the top buttons 3 and 4. Zooming within the data is done by clicking on button 5. Clicking
on button 6 displays a 2D scalp projection of the data.

When displaying epoched data, the user can select the trial within the list of accessible
trials (top right of the window). It is also possible to switch the status of trials (good/bad)
by clicking on button 10.

12.9.2 Source reconstructions visualization

SPM M/EEG Review makes use of sub tabs for any source reconstruction that has been stored in
the data file8. Since these reconstructions are associated with epoched data, the user can choose
the trial he/she wants to display using the list of accessible events (top of the main tab). Each
sub tab has a label given by the corresponding source reconstruction comment which is specified
by the user when source reconstructing the data (see relevant section in the SPM manual).

7This is part of the SPM EEG preprocessing tools. It mainly concerns the coregistration of the sensors onto
the normalized SPM space. See relevant section in the SPM manual.

8This concerns any distributed source reconstruction, i.e. also includes imaging DCM analyses, but not ECD
reconstructions (so far).
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Figure 12.1: SPM M/EEG Review buttons legend 1-2: increase/decrease width of plotted time
window, 3-4: increase/decrease global scaling display factor, 5: zoom in, 7: add event, 8-9: scroll
backward/forward data from marker to marker, 10: declare event as good/bad

The bottom-left part of each sub tab displays basic infos about the source reconstruction (date,
number of included dipoles, number of temporal modes, etc). The top part of the window displays
a rendering of the reconstruction on the cortical surface that has been used. User can scroll
through peri-stimulus time by using the temporal slider below the rendered surface. Other sliders
allow the user to (i) change the transparency of the surface (left slider) and (ii) threshold the
colormap (right sliders). In the center, a butterfly plot of the reconstructed intensity of cortical
source activity over peri-stimulus time is displayed. If the data file contains more than one source
reconstruction, the bottom-right part of the window displays a bar graph of the model evidences
of each source reconstruction. This provides the user with a visual Bayesian model comparison
tool9. SPM M/EEG Review allows quick and easy switching between different models and trials,
for a visual comparison of cortical source activities.

12.10 Batching and scripts

Although all functions can be called by the GUI, using only the GUI for preprocessing multi-
subject data is a cumbersome and error-prone affair. For this reason, we included functions in
SPM8 which should make batching jobs feasible, with only a small amount of Matlab knowledge
required. How would one batch a series of preprocessing steps in SPM8? There are two ways of
doing this, the new batch system of SPM8, and generating scripts.

12.10.1 The new SPM8 batch system

This method uses the new SPM8 batch system described in chapter VIII. Using this batch system,
you can put together a series of processing steps by choosing options from menus, in any order
you like. When the full “job” is specified which may be a sequence of several processing step, one
executes the job.

12.10.2 Script generation

Another way of batching jobs is by using scripts, written in Matlab . In SPM8, you can gen-
erate these scripts automatically. To do this, you first have to analyze one data set using the
GUI or batch system. In SPM8, whenever a preprocessing function is called, all the input argu-
ments, once they have been assembled by the GUI, are stored in a “history”. This history can
then be used to not only see in detail which functions have been used on a data set, but also
to generate a script that repeats the same analysis steps. The big difference is that, this time,
no more GUI interactions are necessary because the script already has all the input arguments
which you gave during the first run. The history of an meeg object can be accessed by D.history.

To generate a script from the history of an SPM8 MEEG file, open the file in the M/EEG
Review facility and select the info tab: a history tab is then available that will display all the
history of the file. Clicking the Save as script button will ask for the filename of the Matlab

9Remember that model evidences p(y|m) can only be compared for the same data. Therefore, if the source
reconstructions have different time windows, filters, number of temporal modes, etc., the comparison does not
hold. This is why basic information (bottom-left part of the window) has to be recalled when comparing models.
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script to save and the list of processing steps to save (default is all but it is possible to select only
a subset of them). This will generate a script, which, when run, repeats the analysis. The script
can also be obtained by directly calling the function spm eeg history.

Of course, this script can not only be used to repeat an analysis, but the script can also be
seen as a template that can be re-used for other analyses. One needs minimal Matlab knowl-
edge for these changes. For example, you can replace the filenames to preprocess a different
subject. Or you can change parameters and then re-run the analysis. We have prepared an
example, using the same example data set, as in the previous subsection to demonstrate this
(see the file man\example scripts\history subject1.m). Note that these scripts can currently
be used to do things that one couldn’t do with the batch system. For example, if you want to
exclude a channel from the analysis, there is no way to do this via the batch system. In the GUI,
you would have to call display and switch the channel to ’bad’. With a script, you simply add a
line like D=badchannels(D, 23, 1), which flags channel 23 as bad (see also our example script
after the filtering step). In summary, the idea is to preprocess a file through the GUI or batch
system, then use the history-function to generate a template, and finally adapt this template to
modify the analysis in some way. To run the example script on your computer, you need the data
set that you can download from the SPM webpage (10).

10http://www.fil.ion.ucl.ac.uk/spm/data/eeg_mmn/

http://www.fil.ion.ucl.ac.uk/spm/data/eeg_mmn/


Chapter 13

Analysis in sensor space

Second-level analyses for M/EEG are used to make inferences about the population from which
subjects are drawn. This chapter describes how to perform second-level analyses of EEG/MEG
or time-frequency (TF) data. This simply requires transforming data from filename.mat and
filename.dat format to image files (NIfTI format). Once the data are in image format second-
level analyses for M/EEG are procedurally identical to 2nd level analyses for fMRI. We therefore
refer the reader to the fMRI section for further details of this last step. Also the “Multimodal
face-evoked responses” tutorial chapter 37 contains detailed examples of sensor-level analysis.
In the drop down “Other” menu, select the function Convert to images. This will ask you to
select the filename.mat of the data you would like to convert to images.

13.0.3 Data in time domain

If when calling Convert to images you choose an epoched or averaged dataset, you will then be
prompted to enter the output dimensions of the interpolated scalp image that will be produced.
Typically, we suggest using 64. You will then be asked whether you want to interpolate or remove
bad channels from your images. If you choose interpolate then the image will interpolate missing
channels. This is the preferred option. If you choose to remove bad channels there will be ’holes’
in the resulting images. A directory will be created with the same name as the input dataset. In
this directory there will be a subdirectory for each trial type. These directories will contain 3D
image files where the dimensions are space (X,Y) and time. In the case of averaged dataset a single
image is put in each directory. In the case of epoched dataset there will be an image for each trial.

Averaging over time

If you know in advance the time window you are interested in (for instance if you are interested
in a well characterized ERP/ERF peak) you can average over this time window to create a 2D
image with just the spatial dimensions. This is done by pressing the Specify 1-st level button
(the name is historical as this operation is remotely related to 1-st level analysis of fMRI data).
You will be asked to specify the time window (in ms) and select one or more space-time images
and the output directory.

Masking

When you set up your statistical analysis, it might be useful to use an explicit mask for two
reasons. Firstly, if you smooth the images, the areas outside the scalp will also have some values
and they will be included in the analysis by default if you don’t use a mask. Secondly, you might
want to limit your time window. This can also be done by using small volume correction after-
wards, but using a mask might be more convenient if you have a fixed time window of interest.
Such a mask can be created by selecting Mask images from “Other” dropdown menu. You will
be asked to provide one unsmoothed image to be used as atemplate for the mask. This can be
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any of the images you exported. Then you will be asked to specify the time window of interest
and the name for the output mask file.

13.0.4 Time-frequency data

If you supply a time-frequency dataset as the input, you will first be asked to reduce your data
from a 4D data (space(X,Y), time, frequency) to either a 3D image (space(X,Y), time) or a 2D
time-frequency image (time, frequency). The prompt asks you over which dimension you wish to
average your data.
If you select “channels” you will be asked to select the channels you wish to average over. Next
you will be prompted for a “region number”. This is just a tag that allows you to average over dif-
ferent channels to create different analyses for more than one region. The image will be created in
a new directory with the name <region number>ROI TF trialtype <condition number>. The
image that will be created will be a 2D image where the dimensions are time and frequency.
If you select “frequency” you will be asked to specify the frequency range over which you wish
to average. The power is then averaged over the specified frequency band to produce channel
waveforms. These waveforms are saved in a new time domain M/EEG dataset whose name starts
with F<frequency range>. This dataset can be reviewed and further processed in the same way
as ordinary datasets with waveforms (of course source reconstruction or DCM are will not work
for it). Once this dataset is generated it is automatically exported to images the same way as
data in time domain (see above).

13.0.5 Smoothing

The images generated from M/EEG data must be smoothed prior to second level analysis using
the Smooth images function in the drop down “Other” menu. Smoothing is necessary to ac-
commodate spatial/temporal variability between subjects and make the images better conform
to the assumptions of random field theory. The dimensions of the smoothing kernel are specified
in the units of the original data ([mm mm ms] for space-time, [Hz ms] for time-frequency). The
general guiding principle for deciding how much to smooth is the matched filter idea, which says
that the smoothing kernel should match the data feature one wants to enhance. Therefore, the
spatial extent of the smoothing kernel should be more or less similar to the extent of the dipolar
patterns that you are looking for (probably something of the order of magnitude of several cm).
In practice you can try to smooth the images with different kernels designed according to the
principle above and see what looks best. Smoothing in time dimension is not always necessary
as filtering the data has the same effect.

Once the images have been smoothed one can proceed to the second level analysis.



Chapter 14

3D source reconstruction:
Imaging approach

This chapter describes an Imaging approach to 3D source reconstruction.

14.1 Introduction

This chapter focuses on the imaging (or distributed) method for implementing EEG/MEG source
reconstruction in SPM. This approach results in a spatial projection of sensor data into (3D) brain
space and considers brain activity as comprising a very large number of dipolar sources spread
over the cortical sheet, with fixed locations and orientations. This renders the observation model
linear, the unknown variables being the source amplitudes or power.

Given epoched and preprocessed data (see chapter 12), the evoked and/or induced activity
for each dipolar source can be estimated, for a single time-sample or a wider peristimulus time
window.

The obtained reconstructed activity is in 3D voxel space and can be further analyzed using
mass-univariate analysis in SPM.

Contrary to PET/fMRI data reconstruction, EEG/MEG source reconstruction is a non trivial
operation. Often compared to estimating a body shape from its shadow, inferring brain activity
from scalp data is mathematically ill-posed and requires prior information such as anatomical,
functional or mathematical constraints to isolate a unique and most probable solution [11].

Distributed linear models have been around for more than a decade now [21] and the proposed
pipeline in SPM for an imaging solution is classical and very similar to common approaches in
the field. However, at least two aspects are quite original and should be emphasized here:

• Based on an empirical Bayesian formalism, the inversion is meant to be generic in the sense
it can incorporate and estimate the relevance of multiple constraints of varied nature; data-
driven relevance estimation being made possible through Bayesian model comparison [37,
78, 63, 33].

• The subject’s specific anatomy is incorporated in the generative model of the data, in a
fashion that eschews individual cortical surface extraction. The individual cortical mesh
is obtained automatically from a canonical mesh in MNI space, providing a simple and
efficient way of reporting results in stereotactic coordinates.

The EEG/MEG imaging pipeline is divided into four consecutive steps which characterize
any inverse procedure with an additional step of summarizing the results. In this chapter, we go
through each of the steps that need completing when proceeding with a full inverse analysis:

1. Source space modeling,

2. Data co-registration,

3. Forward computation,
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4. Inverse reconstruction.

5. Summarizing the results of inverse reconstruction as an image.

Whereas the first three steps are part of the whole generative model, the inverse reconstruc-
tion step consists in Bayesian inversion, and is the only step involving actual EEG/MEG data.

14.2 Getting started

Everything which is described hereafter is accessible from the SPM user-interface by choosing
the “EEG” application, 3D Source Reconstruction button. When you press this button a new
window will appear with a GUI that will guide you through the necessary steps to obtain an
imaging reconstruction of your data. At each step, the buttons that are not yet relevant for this
step will be disabled. When you open the window the only two buttons you can press are Load

which enables you to load a pre-processed SPM MEEG dataset and the Group inversion button
that will be described below. You can load a dataset which is either epoched with single trials
for different conditions, averaged with one event related potential (ERP) per condition, or grand-
averaged. An important pre-condition for loading a dataset is that it should contain sensors and
fiducials. This will be checked when you load a file and loading will fail in case of a problem.
You should make sure that for each modality present in the dataset as indicated by channel
types (either EEG or MEG) there is a sensor description. If, for instance, you have an MEG
dataset with some EEG channels that you don’t actually want to use for source reconstruction,
change their type to “LFP” or “Other” before trying to load the dataset (the difference is that
LFP channels will stil be filtered and available for artefact detection whereas Other channels
won’t). MEG datasets converted by SPM from their raw formats will always contain sensor and
fiducial descriptions. In the case of EEG for some supported channel setups (such as extended
10-20 or BioSemi) SPM will provide default channel locations and fiducials that you can use for
your reconstruction. Sensor and fiducial descriptions can be modified using the Prepare interface
and in this interface you can also verify that these descriptions are sensible by performing a
coregistration (see chapter 12 and also below for more details about coregistration).

When you successfully load a dataset you are asked to give a name to the present analysis
cell. In SPM it is possible to perform multiple reconstructions of the same dataset with different
parameters. The results of these reconstructions will be stored with the dataset if you press
the Save button. They can be loaded and reviewed again using the 3D GUI and also with the
SPM EEG Review tool. From the command line you can access source reconstruction results
via the D.inv field of the meeg object. This field (if present) is a cell array of structures and
does not require methods to access and modify it. Each cell contains the results of a different
reconstruction. In the GUI you can navigate between these cells using the buttons in the second
row. You can also create, delete and clear cells. The label you input at the beginning will be
attached to the cell for you to identify it.

14.3 Source space modeling

After entering the label you will see the Template and MRI button enabled. The MRI button will
create individual head meshes describing the boundaries of different head compartments based
on the subject’s structural scan. SPM will ask for the subject’s structural image. It might take
some time to prepare the model as the image needs to be segmented. The individual meshes
are generated by applying the inverse of the deformation field needed to normalize the individual
structural image to MNI template to canonical meshes derived from this template. This method
is more robust than deriving the meshes from the structural image directly and can work even
when the quality of the individual structural images is low.

Presently we recommend the Template button for EEG and a head model based on an in-
dividual structural scan for MEG. In the absence of individual structural scan combining the
template head model with the individual headshape also results in a quite precise head model.
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The Template button uses SPM’s template head model based on the MNI brain. The correspond-
ing structural image can be found under canonical\single subj T1.nii in the SPM directory.
When you use the template, different things will happen depending on whether your data is EEG
or MEG. For EEG, your electrode positions will be transformed to match the template head. So
even if your subject’s head is quite different from the template, you should be able to get good
results. For MEG, the template head will be transformed to match the fiducials and headshape
that come with the MEG data. In this case having a headshape measurement can be quite helpful
in providing SPM with more data to scale the head correctly. From the user’s perspective the
two options will look quite similar.

No matter whether the MRI or Template button was used the cortical mesh, which describes
the locations of possible sources of EEG and MEG signal, is obtained from a template mesh.
In the case of EEG the mesh is used as is, and in the case of MEG it is transformed with the
head model. Three cortical mesh sizes are available ”coarse”, ”normal” and ”fine” (5124, 8196
and 20484 vertices respectively). It is advised to work with the ”normal” mesh. Choose ”coarse”
if your computer has difficulties handling the ”normal” option. ”Fine” will only work on 64-bit
systems and is probably an overkill.

14.4 Coregistration

In order for SPM to provide a meaningful interpretation of the results of source reconstruction,
it should link the coordinate system in which sensor positions are originally represented to the
coordinate system of a structural MRI image (MNI coordinates). In general, to link between two
coordinate systems you will need a set of at least 3 points whose coordinates are known in both
systems. This is a kind of Rosetta stone that can be used to convert a position of any point from
one system to the other. These points are called “fiducials” and the process of providing SPM with
all the necessary information to create the Rosetta stone for your data is called “coregistration”.

There are two possible ways of coregistrating the EEG/MEG data into the structural MRI
space.

1. A Landmark based coregistration (using fiducials only).
The rigid transformation matrices (Rotation and Translation) are computed such that they
match each fiducial in the EEG/MEG space into the corresponding one in sMRI space. The
same transformation is then applied to the sensor positions.

2. Surface matching (between some headshape in MEG/EEG space and some sMRI derived
scalp tesselation).
For EEG, the sensor locations can be used instead of the headshape. For MEG, the head-
shape is first coregistrated into sMRI space; the inverse transformation is then applied to
the head model and the mesh.
Surface matching is performed using an Iterative Closest Point algorithm (ICP). The ICP
algorithm [12] is an iterative alignment algorithm that works in three phases:

• Establish correspondence between pairs of features in the two structures that are to
be aligned based on proximity;

• Estimate the rigid transformation that best maps the first member of the pair onto
the second;

• Apply that transformation to all features in the first structure. These three steps are
then reapplied until convergence is concluded. Although simple, the algorithm works
quite effectively when given a good initial estimate.

In practice what you will need to do after pressing the Coregister button is to specify the
points in the sMRI image that correspond to your M/EEG fiducials. If you have more fiducials
(which may happen for EEG as in principle any electrode can be used as a fiducial), you will be
ask at the first step to select the fiducials you want to use. You can select more than 3, but not
less. Then for each M/EEG fiducial you selected you will be asked to specify the corresponding
position in the sMRI image in one of 3 ways.
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• select - locations of some points such as the commonly used nasion and preauricular points
and also CTF recommended fiducials for MEG (as used at the FIL) are hard-coded in SPM.
If your fiducial corresponds to one of these points you can select this option and then select
the correct point from a list.

• type - here you can enter the MNI coordinates for your fiducial (1 × 3 vector). If your
fiducial is not on SPM’s hard-coded list, it is advised to carefully find the right point on
either the template image or on your subject’s own image normalized to the template. You
can do it by just opening the image using SPM’s Display/images functionality. You can
then record the MNI coordinates and use them in all coregistrations you need to do using
the “type” option.

• click - here you will be presented with a structural image where you can click on the
right point. This option is good for “quick and dirty” coregistration or to try out different
options.

You will also have the option to skip the current fiducial, but remember you can only do it if
you eventually specify more than 3 fiducials in total. Otherwise the coregistration will fail.

After you specify the fiducials you will be asked whether to use the headshape points if they
are available. For EEG it is advised to always answer “yes”. For MEG if you use a head model
based on the subject’s sMRI and have precise information about the 3 fiducials (for instance by
doing a scan with fiducials marked by vitamin E capsules) using the headshape might actually
do more harm than good. In other cases it will probably help, as in EEG.

The results of coregistration will be presented in SPM’s graphics window. It is important
to examine the results carefully before proceeding. In the top plot you will see the scalp, the
inner skull and the cortical mesh with the sensors and the fiducials. For EEG make sure that the
sensors are on the scalp surface. For MEG check that the head positon in relation to the sensors
makes sense and the head does not for instance stick outside the sensor array. In the bottom plot
the sensor labels will be shown in topographical array. Check that the top labels correspond to
anterior sensors, bottom to posterior, left to left and right to right and also that the labels are
where you would expect them to be topographically.

14.5 Forward computation (forward)

This refers to computing for each of the dipoles on the cortical mesh the effect it would have on
the sensors. The result is a N ×M matrix where N is the number of sensors and M is the number
of mesh vertices (that you chose from several options at a previous step). This matrix can be
quite big and it is, therefore, not stored in the header, but in a separate *.mat file which has
SPMgainmatrix in its name and is written in the same directory as the dataset. Each column in
this matrix is a so called “lead field” corresponding to one mesh vertex.

The lead fields are computed using the “forwinv” toolbox1 developed by Robert Oostenveld,
which SPM shares with FieldTrip. This computation is based on Maxwell’s equations and makes
assumptions about the physical properties of the head. There are different ways to specify these
assumptions which are known as “forward models”.

The “forwinv” toolbox can support different kinds of forward models. When you press Forward
Model button (which should be enabled after successful coregistration), you will have a choice of
several head models depending on the modality of your dataset. In SPM8 we recommend useing
a single shell model for MEG and “EEG BEM” for EEG. You can also try other options and
compare them using model evidence (see below). The first time you use the EEG BEM option
with a new structural image (and also the first time you use the Template option) a lengthy
computation will take place that prepares the BEM model based on the head meshes. The BEM
will then be saved in a quite large *.mat file with ending EEG BEM.mat in the same directory
with the structural image (”canonical” subdirectory of SPM for the template). When the head
model is ready, it will be displayed in the graphics window with the cortical mesh and sensor
locations you should verify for the final time that everything fits well together.

1forwinv: http://fieldtrip.fcdonders.nl/development/forwinv

http://fieldtrip.fcdonders.nl/development/forwinv
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The actual lead field matrix will be computed at the beginning of the next step and saved.
This is a time-consuming step and it takes longer for high-resolution meshes. The lead field file
will be used for all subsequent inversions if you do not change the coregistration and the forward
model.

14.6 Inverse reconstruction

To get started press the Invert button. The first choice you will see is between Imaging, VB-ECD
and Beamforming. For reconstruction based on an empirical Bayesian approach to localize either
the evoked response, the evoked power or the induced power, as measured by EEG or MEG press
the Imaging button. The other options are explained in greater detail elsewhere.

If you have trials belonging to more than one condition in your dataset then the next choice you
will have is whether to invert all the conditions together or to choose a subset. It is recommended
to invert the conditions together if you are planning to later do a statistical comparison between
them. If you have only one condition, or after choosing the conditions, you will get a choice
between “Standard” and “Custom” inversion. If you choose “Standard” inversion, SPM will
start the computation with default settings. These correspond to the multiple sparse priors
(MSP) algorithm [31] which is then applied to the whole input data segment.

If you want to fine-tune the parameters of the inversion, choose the “Custom” option. You will
then have the possibility to choose between several types of inversion differing by their hyperprior
models (IID - equivalent to classical minimum norm, COH - smoothness prior similar to methods
such as LORETA) or the MSP method .

You can then choose the time window that will be available for inversion. Based on our
experience, it is recommended to limit the time window to the activity of interest in cases when
the amplitude of this activity is low compared to activity at other times. The reason is that
if the irrelevant high-amplitude activity is included, the source reconstruction scheme will focus
on reducing the error for reconstructing this activity and might ignore the activity of interest.
In other cases, when the peak of interest is the strongest peak or is comparable to other peaks
in its amplitude, it might be better not to limit the time window to let the algorithm model
all the brain sources generating the response and then to focus on the sources of interest using
the appropriate contrast (see below). There is also an option to apply a hanning taper to the
channel time series in order to downweight the possible baseline noise at the beginning and end
of the trial. There is also an option to pre-filter the data. Finally, you can restrict solutions to
particular brain areas by loading a *.mat file with a K × 3 matrix containing MNI coordinates
of the areas of interest. This option may initially seem strange, as it may seem to overly bias
the source reconstructions returned. However, in the Bayesian inversion framework you can
compare different inversions of the same data using Bayesian model comparison. By limiting the
solutions to particular brain areas you greatly simplify your model and if that simplification really
captures the sources generating the response, then the restricted model will have much higher
model evidence than the unrestricted one. If, however, the sources you suggested cannot account
for the data, the restriction will result in a worse model fit and depending on how much worse it is,
the unrestricted model might be better in the comparison. So using this option with subsequent
model comparison is a way, for instance, to integrate prior knowledge from the literature or from
fMRI/PET/DTI into your inversion. It also allows for comparison of alternative prior models.

Note that for model comparison to be valid all the settings that affect the input data, like the
time window, conditions used and filtering should be identical.

SPM8 imaging source reconstruction also supports multi-modal datasets. These are datasets
that have both EEG and MEG data from a simultaneous recording. Datasets from the ”Neu-
romag” MEG system which has two kinds of MEG sensors are also treated as multimodal. If
your dataset is multimodal a dialogue box will appear asking to select the modalities for source
reconstruction from a list. If you select more than one modality, multiomodal fusion will be
performed. This option based on the paper by Henson et al. [44] uses a heuristic to rescale the
data from different modalities so that they can be used together.

Once the inversion is completed you will see the time course of the region with maximal
activity in the top plot of the graphics window. The bottom plot will show the maximal intensity
projection (MIP) at the time of the maximal activation. You will also see the log-evidence value
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that can be used for model comparison, as explained above. Note that not all the output of the
inversion is displayed. The full output consists of time courses for all the sources and conditions
for the entire time window. You can view more of the results using the controls in the bottom
right corner of the 3D GUI. These allow focusing on a particular time, brain area and condition.
One can also display a movie of the evolution of neuronal activity.

14.7 Summarizing the results of inverse reconstruction as
an image

SPM offers the possibility of writing the results as 3D NIfTI images, so that you can then proceed
with GLM-based statistical analysis using Random Field theory. This is similar to the 2nd level
analysis in fMRI for making inferences about region and trial-specific effects (at the between
subject level).

This entails summarizing the trial- and subject-specific responses with a single 3-D image in
source space. Critically this involves prompting for a time-frequency contrast window to create
each contrast image. This is a flexible and generic way of specifying the data feature you want
to make an inference about (e.g., gamma activity around 300 ms or average response between
80 and 120 ms). This kind of contrast is specified by pressing the Window button. You will then
be asked about the time window of interest (in ms, peri-stimulus time). It is possible to specify
one or more time segments (separated by a semicolon). To specify a single time point repeat the
same value twice. The next question is about the frequency band. If you just want to average
the source time course leave that at the default, zero. In this case the window will be weighted
by a Gaussian. In the case of a single time point this will be a Gaussian with 8 ms full width
half maximum (FWHM). If you specify a particular frequency or a frequency band, then a series
of Morlet wavelet projectors will be generated summarizing the energy in the time window and
band of interest.

There is a difference between specifying a frequency band of interest as zero, as opposed to
specifying a wide band that covers the whole frequency range of your data. In the former case
the time course of each dipole will be averaged, weighted by a gaussian. Therefore, if within your
time window this time course changes polarity, the activity can average out and in an ideal case
even a strong response can produce a value of zero. In the latter case the power is integrated
over the whole spectrum ignoring phase, and this would be equivalent to computing the sum of
squared amplitudes in the time domain.

Finally, if the data file is epoched rather than averaged, you will have a choice between
“evoked”, “induced” and “trials”. If you have multiple trials for certain conditions, the projec-
tors generated at the previous step can either be applied to each trial and the results averaged
(induced) or applied to the averaged trials (evoked). Thus it is possible to perform localization
of induced activity that has no phase-locking to the stimulus. It is also possible to focus on fre-
quency content of the ERP using the “evoked” option. Clearly the results will not be the same.
The projectors you specified (bottom plot) and the resulting MIP (top plot) will be displayed
when the operation is completed. “trials” option makes it possible to export an image per trial
which might be useful fot doing within-subject statistics.

The values of the exported images are normalized to reduce between-subject variance. There-
fore, for best results it is recommended to export images for all the time windows and conditions
that will be included in the same statistical analysis in one step. Note that the images exported
from the source reconstruction are a little peculiar because of smoothing from a 2D cortical sheet
into 3D volume. SPM statistical machinery has been optimized to deal with these peculiarities
and get sensible results. If you try to analyze the images with older versions of SPM or with a
different software package you might get different (less focal) results.

14.8 Rendering interface

By pressing the Render button you can open a new GUI window which will show you a rendering
of the inversion results on the brain surface. You can rotate the brain, focus on different time
points, run a movie and compare the predicted and observed scalp topographies and time series.
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A useful option is “virtual electrode” which allows you to extract the time course from any point
on the mesh and the MIP at the time of maximal activation at this point. Just press the button
and click anywhere in the brain.
An additional tool for reviewing the results is available in the SPM M/EEG Review function.

14.9 Group inversion

A problem encountered with MSP inversion is that sometimes it is “too good”, producing solutions
that were so focal in each subject that the spatial overlap between the activated areas across
subjects was not sufficient to yield a significant result in a between-subjects contrast. This could
be improved by smoothing, but smoothing compromises the spatial resolution and thus subverts
the main advantage of using an inversion method that can produce focal solutions.

To circumvent this problem we proposed a modification of the MSP method [60] that effectively
restricts the activated sources to be the same in all subjects with only the degree of activation
allowed to vary. We showed that this modification makes it possible to obtain significance levels
close to those of non-focal methods such as minimum norm while preserving accurate spatial
localization.

The group inversion can yield much better results than individual inversions because it intro-
duces an additional constraint for the ill-posed inverse problem, namely that the responses in all
subjects should be explained by the same set of sources. Thus it should be your method of choice
when analyzing an entire study with subsequent GLM analysis of the images.

Group inversion works very similarly to what was described above. You can start it by pressing
the “Group inversion” button right after opening the 3D GUI. You will be asked to specify a list
of M/EEG data sets to invert together. Then the routine will ask you to perform coregistration
for each of the files and specify all the inversion parameters in advance. It is also possible to
specify the contrast parameters in advance. Then the inversion will proceed by computing the
inverse solution for all the files and will write out the output images. The results for each subject
will also be saved in the header of the corresponding input file. It is possible to load this file into
the 3D GUI after the inversion and explore the results as described above.

14.10 Batching source reconstruction

There is a possibility to run imaging source reconstruction using the SPM8 batch tool. It can be
accessed by pressing the “Batch” button in the main SPM window and then going to “M/EEG
source reconstruction” in the “SPM” under “M/EEG”. There are three separate tools there: for
building head models, computing the inverse solution and computing contrasts and generating
images. This makes it possible for instance to generate images for several different contrasts from
the same inversion. All the three tools support multiple datasets as inputs. In the case of the
inversion tool group inversion will be done for multiple datasets.

14.11 Appendix: Data structure

The Matlab object describing a given EEG/MEG dataset in SPM is denoted as D. Within that
structure, each new inverse analysis will be described by a new cell of sub-structure field D.inv
and will be made of the following fields:

• method: character string indicating the method, either “ECD” or “Imaging” in present case;

• mesh: sub-structure with relevant variables and filenames for source space and head mod-
eling;

• datareg: sub-structure with relevant variables and filenames for EEG/MEG data registra-
tion into MRI space;

• forward: sub-structure with relevant variables and filenames for forward computation;

• inverse: sub-structure with relevant variable, filenames as well as results files;
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• comment: character string provided by the user to characterize the present analysis;

• date: date of the last modification made to this analysis.

• gainmat: name of the gain matrix file.



Chapter 15

Localization of Equivalent
Current Dipoles

This chapter describes source reconstruction based on “Variational Bayes Equivalent Current
Dipoles” (VB-ECDs). For more details about the implementation, please refer to the help and
comments in the routines themselves, as well as the original paper by [54].

15.1 Introduction

3D imaging (or distributed) reconstruction methods consider all possible source location simul-
taneously, allowing for large and widely spread clusters of activity. This is to be contrasted with
“Equivalent Current Dipole (ECD) approaches which rely on two different hypotheses:

• only a few (say less than 5) sources are active simultaneously, and

• those sources are very focal.

This leads to the ECD model where the observed scalp potential will be explained by a handful
of discrete current sources, i.e. dipoles, located inside the brain volume.

In contrast to the 3D imaging reconstruction, the number of ECDs considered in the model,
i.e. the number of “active locations, should be defined a priori. This is a crucial step, as the
number of sources considered defines the ECD model. This choice should be based on empirical
knowledge of the brain activity observed or any other source of information (for example by
looking at the scalp potential distribution). In general, each dipole is described by 6 parameters:
3 for its location, 2 for its orientation and 1 for its amplitude. Once the number of ECDs is fixed,
a non-linear optimisation algorithm is used to adjust the dipoles parameters (6 times the number
of dipoles) to the observed potential.

Classical ECD approaches use a simple best fitting optimisation using least square error cri-
teria. This leads to relatively simple algorithms but presents a few drawbacks:

• constraints on the dipoles are difficult to include in the framework;

• the noise cannot be properly taken into account, as its variance should be estimated along-
side the dipole parameters;

• it is difficult to define confidence intervals on the estimated parameters, which could lead
to over-confident interpretation of the results;

• models with different numbers of dipoles cannot be compared except through their goodness-
of-fit, which can be misleading.

As adding dipoles to a model will necessarily improve the overall goodness of fit, one could erro-
neously be tempted to use as many ECDs as possible and to perfectly fit the observed signal.
Through using Bayesian techniques, however, it is possible to circumvent all of the above limita-
tions of classical approaches.
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Briefly, a probabilistic generative model is built providing a likelihood model for the data1.
The model is completed by a set of priors on the various parameters, leading to a Bayesian model,
allowing the inclusion of user-specified prior constraints.

A “variational Bayes (VB) scheme is then employed to estimate the posterior distribution
of the parameters through an iterative procedure. The confidence interval of the estimated
parameters is therefore directly available through the estimated posterior variance of the param-
eters. Critically, in a Bayesian context, different models can be compared using their evidence
or marginal likelihood. This model comparison is superior to classical goodness-of-fit measures,
because it takes into account the complexity of the models (e.g., the number of dipoles) and,
implicitly, uncertainty about the model parameters. VB-ECD can therefore provide an objective
and accurate answer to the question: Would this data set be better modelled by 2 or 3 ECDs?

15.2 Procedure in SPM8

This section aims at describing how to use the VB-ECD approach in SPM8.

15.2.1 Head and forward model

The engine calculating the projection of the dipolar sources on the scalp electrode comes from
Fieldtrip and is the same for the 3D imaging or DCM. The head model should thus be prepared
the same way, as described in the chapter 14. For the same data set, differences between the
VB-ECD and imaging reconstructions would therefore be due to the reconstruction approach
only.

15.2.2 VB-ECD reconstruction

To get started, after loading and preparing the head model, press the ’Invert’ button2. The first
choice you will see is between ’Imaging’, ’VB-ECD’ and ’DCM’. The ’Imaging’ reconstruction
corresponds to the imaging solution, as described in chapter 14, and ’DCM’ is described in chapter
16. Then you are invited to fill in information about the ECD model and click on buttons in the
following order:

1. indicate the time bin or time window for the reconstruction, within the epoch length. Note
that the data will be averaged over the selected time window! VB-ECD will thus always be
calculated for a single time bin.

2. enter the trial type(s) to be reconstructed. Each trial type will be reconstructed separately.

3. add a single (i.e. individual) dipole or a pair of symmetric dipoles to the model. Each
“element (single or pair) is added individually to the model.

4. use “Informative or ‘Non-informative location priors. “Non-informative means flat priors
over the brain volume. With “Informative, you can enter the a priori location of the source3.

5. use “Informative or ‘Non-informative moment priors. “Non-informative means flat priors
over all possible directions and amplitude. With “Informative, you can enter the a priori
moment of the source4.

6. go back to step 3 and add some more dipole(s) to the model, or stop adding dipoles.

7. specify the number of iterations. These are repetitions of the fitting procedure with different
initial conditions. Since there are multiple local maxima in the objective function, multiple
iterations are necessary to get good results especially when non-informative location priors
are chosen.

1This includes an independent and identically distributed (IID) Normal distribution for the errors, but other
distributions could be specified.

2The GUI for VB-ECD can also be launched directly from Matlab command line with the instruction: D =
spm eeg inv vbecd gui.

3For a pair of dipoles, only the right dipole coordinates are required.
4For a pair of dipoles, only the right dipole moment is required.
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The routine then proceeds with the VB optimization scheme to estimate the model parameters.
There is graphical display of the intermediate results. When the best solution is selected the
model evidence will be shown at the top of the SPM Graphics window. This number can be used
to compare solutions with different priors.
Results are finally saved into the data structure D in the field .inv{D.val}.inverse and displayed
in the graphic window.

15.2.3 Result display

The latest VB-ECD results can be displayed again through the function D = spm eeg inv vbecd disp.
If a specific reconstruction should be displayed, then use: spm eeg inv vbecd disp(’Init’,D, ind).
In the GUI you can use the ’dip’ button (located under the ’Invert’ button) to display the dipole
locations.
In the upper part, the 3 main figures display the 3 orthogonal views of the brain with the dipole
location and orientation superimposed. The location confidence interval is described by the dot-
ted ellipse around the dipole location on the 3 views. It is not possible to click through the image,
as the display is automatically centred on the dipole displayed. It is possible though to zoom into
the image, using the right-click context menu.

The lower left table displays the current dipole location, orientation (Cartesian or polar coor-
dinates) and amplitude in various formats.

The lower right table allows for the selection of trial types and dipoles. Display of multiple
trial types and multiple dipoles is also possible. The display will center itself on the average
location of the dipoles.
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Chapter 16

Dynamic Causal Modelling for
M/EEG

16.1 Introduction

Dynamic Causal Modelling (DCM) is based on an idea initially developed for fMRI data: The
measured data are explained by a network model consisting of a few sources, which are interacting
dynamically. This network model is inverted using a Bayesian approach, and one can make
inferences about connections between sources, or the modulation of connections by task.

For M/EEG data, DCM is a powerful technique for inferring about parameters that one
doesn’t observe with M/EEG directly. Instead of asking ’How does the strength of the source in
left superior temporal gyrus (STG) change between condition A and B?’, one can ask questions
like ’How does the backward connection from this left STG source to left primary auditory cortex
change between condition A and B?’. In other words, one isn’t limited to questions about source
strength as estimated using a source reconstruction approach, but can test hypotheses about
what is happening between sources, in a network.

As M/EEG data is highly resolved in time, as compared to fMRI, the inferences are about
more neurobiologically plausible parameters. These relate more directly to the causes of the
underlying neuronal dynamics.

The key DCM for M/EEG methods paper appeared in 2006, and the first DCM studies
about mismatch negativity came out in 2007/2008. At its heart DCM for M/EEG is a source
reconstruction technique, and for the spatial domain we use exactly the same leadfields as other
approaches. However, what makes DCM unique, is that is combines the spatial forward model
with a biologically informed temporal forward model, describing e.g. the connectivity between
sources. This critical ingredient not only makes the source reconstruction more robust by implic-
itly constraining the spatial parameters, but also allows one to infer about connectivity.

Our methods group is continuing to work on further improvements and extensions to DCM.
In the following, we will describe the usage of DCM for evoked responses (both MEG and EEG),
DCM for induced responses (i.e., based on power data in the time-frequency domain), and DCM
for local field potentials (measured as steady-state responses). All three DCMs share the same
interface, as many of the parameters that need to be specified are the same for all three ap-
proaches. Therefore, we will first describe DCM for evoked responses, and then point out where
the differences to the other two DCMs lie.

This manual provides only a procedural guide for the practical use of DCM for M/EEG. If
you want to read more about the scientific background, the algorithms used, or how one would
typically use DCM in applications, we recommend the following reading. The two key methods
contributions can be found in [23] and [55]. Two other contributions using the model for testing
interesting hypotheses about neuronal dynamics are described in [56] and [25]. At the time of
writing, there were also three application papers published which demonstrate what kind of hy-
potheses can be tested with DCM [40, 39, 38]. Another good source of background information
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is the recent SPM book [27], where Parts 6 and 7 cover not only DCM for M/EEG but also
related research from our group. The DCMs for induced responses and steady-state responses
are covered in [18, 17] and [68, 65, 66]. Also note that there is a DCM example file, which
we put onto the webpage http://www.fil.ion.ucl.ac.uk/spm/data/eeg mmn/. After downloading
DCMexample.mat, you can load (see below) this file using the DCM GUI, and have a look at the
various options, or change some, after reading the description below.

16.2 Overview

In summary, the goal of DCM is to explain measured data (such as evoked responses) as the
output of an interacting network consisting of a several areas, some of which receive input (i.e.,
the stimulus). The differences between evoked responses, measured under different conditions,
are modelled as a modulation of selected DCM parameters, e.g. cortico-cortical connections [23].
This interpretation of the evoked response makes hypotheses about connectivity directly testable.
For example, one can ask, whether the difference between two evoked responses can be explained
by top-down modulation of early areas [40]. Importantly, because model inversion is implemented
using a Bayesian approach, one can also compute Bayesian model evidences. These can be used
to compare alternative, equally plausible, models and decide which is the best [57].

DCM for evoked responses takes the spatial forward model into account. This makes DCM a
spatiotemporal model of the full data set (over channels and peri-stimulus time). Alternatively,
one can describe DCM also as a spatiotemporal source reconstruction algorithm which uses addi-
tional temporal constraints given by neural mass dynamics and long-range effective connectivity.
This is achieved by parameterising the lead-field, i.e., the spatial projection of source activity to
the sensors. In the current version, this can be done using two different approaches. The first
assumes that the leadfield of each source is modelled by a single equivalent current dipole (ECD)
[55]. The second approach posits that each source can be presented as a ’patch’ of dipoles on the
grey matter sheet [22]. This spatial model is complemented by a model of the temporal dynamics
of each source. Importantly, these dynamics not only describe how the intrinsic source dynamics
evolve over time, but also how a source reacts to external input, coming either from subcortical
areas (stimulus), or from other cortical sources.

The GUI allows one to enter all the information necessary for specifying a spatiotemporal
model for a given data set. If you want to fit multiple models, we recommend using a batch script.
An example of such a script (DCM ERP example), which can be adapted to your own data, can
be found in the man/example scripts/ folder of the distribution. You can run this script on exam-
ple data provided by via the SPM webpage (http://www.fil.ion.ucl.ac.uk/spm/data/eeg mmn/).
However, you first have to preprocess these data to produce an evoked response by going through
the preprocessing tutorial (chapter 36) or by running the history subject1.m script in the
example scripts folder.

16.3 Calling DCM for ERP/ERF

After calling spm eeg, you see SPM’s graphical user interface, the top-left window. The button
for calling the DCM-GUI is found in the second partition from the top, on the right hand side.
When pressing the button, the GUI pops up. The GUI is partitioned into five parts, going from
the top to the bottom. The first part is about loading and saving existing DCMs, and selecting
the type of model. The second part is about selecting data, the third is for specification of the
spatial forward model, the fourth is for specifying connectivity, and the last row of buttons allows
you to estimate parameters and view results.

You have to select the data first and specify the model in a fixed order (data selection >
spatial model > connectivity model). This order is necessary, because there are dependencies
among the three parts that would be hard to resolve if the input could be entered in any order.
At any time, you can switch back and forth from one part to the next. Also, within each part,
you can specify information in any order you like.
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16.4 load, save, select model type

At the top of the GUI, you can load an existing DCM or save the one you are currently working
on. In general, you can save and load during model specification at any time. You can also
switch between different DCM analyses (the left menu). The default is ’ERP’ which is DCM
for evoked responses described here. Currently, the other two types are steady-state responses
(SSR) and induced responses (IND); both are also described in this manual. The menu on the
right-hand side lets you choose the neuronal model. Currently, there are four model types. The
first is ’ERP’, which is the standard model described in most of our papers, e.g. [23]. The second
is ’SEP’, which uses a variant of this model, however, the dynamics tend to be faster [62]. The
third is ’NMM’, which is a nonlinear neural mass model based on a first-order approximation,
and the fourth is ’MFM’, which is also nonlinear and is based on a second-order approximation.
The latter two options haven’t been described in the literature yet, but are under review.

16.5 Data and design

In this part, you select the data and model between-trial effects. The data can be either event-
related potentials or fields. These data must be in the SPM-format. On the right-hand side
you can enter trial indices of the evoked responses in this SPM-file. For example, if you want
to model the second and third evoked response contained within an SPM-file, specify indices 2
and 3. The indices correspond to the order specified by the condlist method (see 12). If the two
evoked responses, for some reason, are in different files, you have to merge these files first. You
can do this with the SPM preprocessing function merge (spm eeg merge), see 12. You can also
choose how you want to model the experimental effects (i.e. the differences between conditions).
For example, if trial 1 is the standard and trial 2 is the deviant response in an oddball paradigm,
you can use the standard as the baseline and model the differences in the connections that are
necessary to fit the deviant. To do that type 0 1 in the text box below trial indices. Alternatively,
if you type -1 1 then the baseline will be the average of the two conditions and the same factor
will be subtracted from the baseline connection values to model the standard and added to model
the deviant. The latter option is perhaps not optimal for an oddball paradigm but might be
suitable for other paradigms where there is no clear ’baseline condition’. When you want to
model three or more evoked responses, you can model the modulations of a connection strength
of the second and third evoked responses as two separate experimental effects relative to the first
evoked response. However, you can also choose to couple the connection strength of the first
evoked response with the two gains by imposing a linear relationship on how this connection
changes over trials. Then you can specify a single effect (e.g. -1 0 1). This can be useful when
one wants to add constraints on how connections (or other DCM parameters) change over trials.
A compelling example of this can be found in [38]. For each experimental effect you specify, you
will be able to select the connections in the model that are affected by it (see below).

Press the button ’data file’ to load the M/EEG dataset. Under ’time window (ms)’ you
have to enter the peri-stimulus times which you want to model, e.g. 1 to 200 ms.

You can choose whether you want to model the mean or drifts of the data at sensor level. Select
1 for ’detrend’ to just model the mean. Otherwise select the number of discrete cosine transform
terms you want to use to model low-frequency drifts (> 1). In DCM, we use a projection of the
data to a subspace to reduce the amount of data. The type of spatial projection is described in
[25]. You can select the number of modes you wish to keep. The default is 8.

You can also choose to window your data, along peri-stimulus time, with a hanning window
(radio button). This windowing will reduce the influence of the beginning and end of the time-
series.

If you are happy with your data selection, the projection and the detrending terms, you can
click on the > (forward) button, which will bring you to the next stage electromagnetic model.
From this part, you can press the red < button to get back to the data and design part.
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16.6 Electromagnetic model

With the present version of DCM, you have three options for how to spatially model your evoked
responses. Either you use a single equivalent current dipole (ECD) for each source, or you use a
patch on the cortical surface (IMG), or you don’t use a spatial model at all (local field potentials
(LFP)). In all three cases, you have to enter the source names (one name in one row). For ECD
and IMG, you have to specify the prior source locations (in mm in MNI coordinates). Note that
by default DCM uses uninformative priors on dipole orientations, but tight priors on locations.
This is because tight priors on locations ensure that the posterior location will not deviate to
much from its prior location. This means each dipole stays in its designated area and retains its
meaning. The prior location for each dipole can be found either by using available anatomical
knowledge or by relying on source reconstructions of comparable studies. Also note that the prior
location doesn’t need to be overly exact, because the spatial resolution of M/EEG is on a scale of
several millimeters. You can also load the prior locations from a file (’load’). You can visualize
the locations of all sources when you press ’dipoles’.

The onset-parameter determines when the stimulus, presented at 0 ms peri-stimulus time, is
assumed to activate the cortical area to which it is connected. In DCM, we usually do not model
the rather small early responses, but start modelling at the first large deflection. Because the
propagation of the stimulus impulse through the input nodes causes a delay, we found that the
default value of 60 ms onset time is a good value for many evoked responses where the first large
deflection is seen around 100 ms. However, this value is a prior, i.e., the inversion routine can
adjust it. The prior mean should be chosen according to the specific responses of interest. This is
because the time until the first large deflection is dependent on the paradigm or the modality you
are working in, e.g. audition or vision. You may also find that changing the onset prior has an
effect on how your data are fitted. This is because the onset time has strongly nonlinear effects (a
delay) on the data, which might cause differences in which maximum was found at convergence,
for different prior values. It is also possible to type several numbers in this box (identical or not)
and then there will be several inputs whose timing can be optimized separately. These inputs
can be connected to different model sources. This can be useful, for instance, for modelling a
paradigm with combined auditory and visual stimulation.

When you want to proceed to the next model specification stage, hit the > (forward) button
and proceed to the neuronal model.

16.7 Neuronal model

There are five (or more) matrices which you need to specify by button presses. The first three
are the connection strength parameters for the first evoked response. There are three types of
connections, forward, backward and lateral. In each of these matrices you specify a connection
from a source area to a target area. For example, switching on the element (2, 1) in the intrinsic
forward connectivity matrix means that you specify a forward connection from area 1 to 2.
Some people find the meaning of each element slightly counter-intuitive, because the column
index corresponds to the source area, and the row index to the target area. This convention is
motivated by direct correspondence between the matrices of buttons in the GUI and connectivity
matrices in DCM equations and should be clear to anyone familiar with matrix multiplication.

The one or more inputs that you specified previously can go to any area and to multiple areas.
You can select the receiving areas by selecting area indices in the C input vector.

The B matrix contains all gain modulations of connection strengths as set in the A-matrices.
These modulations model the difference between the first and the other modelled evoked re-
sponses. For example, for two evoked responses, DCM explains the first response by using the
A-matrix only. The 2nd response is modelled by modulating these connections by the weights in
the B-matrix.

16.8 Estimation

When you are finished with model specification, you can hit the estimate button in the lower left
corner. If this is the first estimation and you have not tried any other source reconstructions with
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this file, DCM will build a spatial forward model. You can use the template head model for quick
results. For this, you answer ’no’ to the question ’Redefine MRI fiducials?’, and ’yes’ to ’Use
headshape points?’ DCM will now estimate model parameters. You can follow the estimation
process by observing the model fit in the output window. In the matlab command window, you
will see each iteration printed out with expected-maximization iteration number, free energy F ,
and the predicted and actual change of F following each iteration step. At convergence, DCM
saves the results in a DCM file, by default named ’DCM ERP.mat’. You can save to a different
name, eg. if you are estimating multiple models, by pressing ’save’ at the top of the GUI and
writing to a different name.

16.9 Results

After estimation is finished, you can assess the results by choosing from the pull-down menu at
the bottom (middle).

With ERPs (mode) you can plot, for each mode, the data for both evoked responses, and the
model fit.

When you select ERPs (sources), the dynamics of each area are plotted. The activity of the
pyramidal cells (which is the reconstructed source activity) are plotted in solid lines, and the
activity of the two interneuron populations are plotted as dotted lines.

The option coupling (A) will take you to a summary about the posterior distributions of the
connections in the A-matrix. In the upper row, you see the posterior means for all intrinsic
connectivities. As above, element (i, j) corresponds to a connection from area j to i. In the
lower row, you’ll find, for each connection, the probability that its posterior mean is different
from the prior mean, taking into account the posterior variance.

With the option coupling(B) you can access the posterior means for the gain modulations of
the intrinsic connectivities and the probability that they are unequal to the prior means. If you
specified several experimental effects, you will be asked which of them you want to look at.

With coupling(C) you see a summary of the posterior distribution for the strength of the input
into the input receiving area. On the left hand side, DCM plots the posterior means for each
area. On the right hand side, you can see the corresponding probabilities.

The option Input shows you the estimated input function. As described by [23], this is a
gamma function with the addition of low-frequency terms.

With Response, you can plot the selected data, i.e. the data, selected by the spatial modes,
but back-projected into sensor space.

With Response (image), you see the same as under Results but plotted as an image in grey-
scale.

And finally, with the option Dipoles, DCM displays an overlay of each dipole on an MRI
template using the posterior means of its 3 orientation and 3 location parameters. This makes
sense only if you have selected an ECD model under electromagnetic model.

Before estimation, when you press the button ’Initialise’ you can assign parameter values as
initial starting points for the free-energy gradient ascent scheme. These values are taken from
another already estimated DCM, which you have to select.

The button BMS allows you do Bayesian model comparison of multiple models. It will open
the SPM batch tool for model selection. Specify a directory to write the output file to. For
the “Inference method” you can choose between “Fixed effects” and “Random effects” (see [80]
for additional explanations). Choose “Fixed effects” if you are not sure. Then click on “Data”
and in the box below click on “New: Subject”. Click on “Subject” and in the box below on
“New: Session”. Click on models and in the selection window that comes up select the DCM mat
files for all the models (remember the order in which you select the files as this is necessary for
interpretating the results). Then run the model comparison by pressing the green “Run” button.
You will see, at the top, a bar plot of the log-model evidences for all models. At the bottom, you
will see the probability, for each model, that it produced the data. By convention, a model can
be said to be the best among a selection of other models, with strong evidence, if its log-model
evidence exceeds all other log-model evidences by at least 3.
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16.10 Steady-State Responses

16.10.1 Model specification

DCM for steady state responses can be applied to M/EEG or intracranial data.
The data must first be prepared using the temporal pre-processing option; ’other’, then ’prep’.

Here you specify the data type (MEG, EEG or LFP), and select the channels for a DCM analysis.
In general you select all MEG/EEG channels and all or a subgroup of LFP channels from the
areas you are interested in. A sample script to convert raw txt data, called textitspm lfp txt2mat
can be found in the folder toolbox\Neural Models.

The top panel of the DCM for ERP window allows you to toggle through available analysis
methods. On the top left drop-down menu, select ’SSR’. The second drop-down menu in the
right of the top-panel allows you to specify whether the analysis should be performed using a
model which is linear in the states, for this you can choose ERP. Alternatively you may use a
conductance based model, which is non-linear in the states by choosing, ’NMM’ or ’MFM’. (see
[62] for a description of the differences).

The steady state (frequency) response is generated automatically from the time domain record-
ings. The time duration of the frequency response is entered in the second panel in the time-
window. The options for detrending allow you to remove either 1st, 2nd, 3rd or 4th order
polynomial drifts from channel data. In the subsampling option you may choose to downsample
the data before constructing the frequency response. The number of modes specifies how many
components from the leadfield are present in channel data. The specification of between trial
effects and design matrix entry is the same as for the case of ERPs, described above.

16.10.2 The Lead-Field

The cross-spectral density is a description of the dependencies among the observed outputs of
these neuronal sources. To achieve this frequency domain description we must first specify the
likely sources and their location. If LFP data are used then only source names are required. This
information is added in the third panel by selecting ’LFP’. Alternatively, x,y,z coordinates are
specified for ECD or IMG solutions.

16.10.3 Connections

The bottom panel then allows you to specify the connections between sources and whether these
sources can change from trial type to trial type.

On the first row, three connection types may be specified between the areas. For NMM and
MFM options these are Excitatory, Inhibitory or Mixed excitatory and inhibitory connections.
When using the ERP option the user will specify if connections are ’Forward’, ’Backward’ or
’Lateral’. To specify a connection, switch on the particular connection matrix entry. For example
to specify an Inhibitory connection from source 3 to source 1, turn on the ’Inhib’ entry at position
(3,1).

On this row the inputs are also specified. These are where external experimental inputs enter
the network.

The matrix on the next row allows the user to select which of the connections specified above
can change across trial types. For example in a network of two sources with two mixed connections
(1,2) and (2,1), you may wish to allow only one of these to change depending on experimental
context. In this case, if you wanted the mixed connection from source 2 to source 1 to change
depending on trial type, then select entry (2,1) in this final connection matrix.

16.10.4 Cross Spectral Densities

The final selection concerns what frequencies you wish to model. These could be part of a broad
frequency range e.g. like the default 4 - 48 Hz, or you could enter a narrow band e.g. 8 to 12 Hz,
will model the alpha band in 1Hz increments.

Once you hit the ’invert DCM’ option the cross spectral densities are computed automatically
(using the spectral-toolbox). The data for inversion includes the auto-spectra and cross-spectra
between channels or between channel modes. This is computed using a multivariate autoregressive
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model, which can accurately measure periodicities in the time-domain data. Overall the spectra
are then presented as an upper-triangular, s x s matrix, with auto-spectra on the main diagonal
and cross-spectra in the off-diagonal terms.

16.10.5 Output and Results

The results menu provides several data estimates. By examining the ’spectral data’, you will
be able to see observed spectra in the matrix format described above. Selecting ’Cross-spectral
density’ gives both observed and predicted responses. To examine the connectivity estimates you
can select the ’coupling (A)’ results option, or for the modulatory parameters, the ’coupling (B)’
option. Also you can examine the input strength at each source by selecting the ’coupling (C)’
option, as in DCM for ERPs. The option ’trial-specific effects’ shows the change in connectivity
parameter estimates (from B) from trial to trial relative to the baseline connection (from A).
To examine the spectral input to these sources choose the ’Input’ option; this should look like
a mixture of white and pink noise. Finally the ’dipoles’ option allows visualisation of the a
posteriori position and orientation of all dipoles in your model.

16.11 Induced responses

DCM for induced responses aims to model coupling within and between frequencies that are
associated with linear and non-linear mechanisms respectively. The procedure to do this is similar
to that for DCM for ERP/ERF. In the following, we will just point out the differences in how
to specify models in the GUI. Before using the technique, we recommend reading about the
principles behind DCM for induced responses [18].

16.11.1 Data

The data to be modelled must be single trial, epoched data. We will model the entire spectra,
including both the evoked (phase-locked to the stimulus) and induced (non-phase-locked to the
stimulus) components.

16.11.2 Electromagnetic model

Currently, DCM for induced responses uses only the ECD method to capture the data features.
Note that a difference to DCM for evoked responses is that the parameters of the spatial model
are not optimized. This means that DCM for induced responses will project the data into source
space using the spatial locations provided by you.

16.11.3 Neuronal model

This is where you specify the connection architecture. Note that in DCM for induced responses,
the A-matrix encodes the linear and nonlinear coupling strength between sources.

16.11.4 Wavelet transform

This function can be called below the connectivity buttons and allows one to transfer data into
the time-frequency domain using a Morlet Wavelet transform as part of the feature extraction.
There are two parameters: The frequency window defines the desired frequency band and the
wavelet number specifies the temporal-frequency resolution. We recommend values greater than
5 to obtain a stable estimation.

16.11.5 Results

Frequency modes

This will display the frequency modes, identified using singular value decomposition of spectral
dynamics in source space (over time and sources).
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Time-Frequency

This will display the observed time-frequency power data for all pre-specified sources (upper
panel) and the fitted data (lower panel).

Coupling (A-Hz)

This will display the coupling matrices representing the coupling strength from source to target
frequencies.

16.12 Phase-coupled responses

DCM for phase-coupled responses is based on a weakly coupled oscillator model of neuronal
interactions.

16.12.1 Data

The data to be modeled must be multiple trial, epoched data. Multiple trials are required so
that the full state-space of phase differences can be explored. This is achieved with multiple
trials as each trial is likely to contain different initial relative phase offsets. Information about
different trial types is entered as it is with DCM for ERP ie. using a design matrix. DCM for
phase coupling is intended to model dynamic transitions toward synchronization states. As these
transitions are short it is advisable to use short time windows of data to model and the higher
the frequency of the oscillations you are interested in, the shorter this time window should be.
DCM for phase coupling will probably run into memory problems if using long time windows or
large numbers of trials.

16.12.2 Electromagnetic model

Currently, DCM for phase-coupled responses will work with either ECD or LFP data. Note that
a difference to DCM for evoked responses is that the parameters of the spatial model are not
optimized. This means that DCM for phase-coupled responses will project the data into source
space using the spatial locations you provide.

16.12.3 Neuronal model

This is where you specify the connection architecture for the weakly coupled oscillator model. If
using the GUI, the Phase Interaction Functions are given by aijsin(φi − φj) where aij are the
connection weights that appear in the A-matrix and φi and φj are the phases in regions i and j.
DCM for phase coupling can also be run from a MATLAB script. This provides greater flexibility
in that the Phase Interaction Functions can be approximated using arbitrary order Fourier series.
Have a look in the example scripts to see how.

16.12.4 Hilbert transform

Pressing this button does two things. First, source data are bandpass filtered into the specified
range. Second, a Hilbert transform is applied from which time series of phase variables are
obtained.

16.12.5 Results

Sin(Data) - Region i

This plots the sin of the data (ie. sin of phase variable) and the corresponding model fit for the
ith region.
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Coupling (A),(B)

This will display the intrinsic and modulatory coupling matrices. The i, jth entry in A specifies
how quickly region i changes its phase to align with region j. The corresponding entry in B shows
how these values are changed by experimental manipulation.
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Display Image
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This is an interactive facility that allows orthogonal sections from an image volume to be
displayed. Clicking the cursor on either of the three images moves the point around which the
orthogonal sections are viewed. The co-ordinates of the cursor are shown both in voxel co-
ordinates and millimetres within some fixed framework. The intensity at that point in the image
(sampled using the current interpolation scheme) is also given. The position of the cross-hairs
can also be moved by specifying the co-ordinates in millimetres to which they should be moved.
Clicking on the horizontal bar above these boxes will move the cursor back to the origin (analogous
to setting the cross-hair position (in mm) to [0 0 0]).

The images can be re-oriented by entering appropriate translations, rotations and zooms
into the panel on the left. The transformations can then be saved by hitting the ”Reorient
images...” button. The transformations that were applied to the image are saved to the header
information of the selected images. The transformations are considered to be relative to any
existing transformations that may be stored. Note that the order that the transformations are
applied in is the same as in spm matrix.m.

The ”Reset...” button next to it is for setting the orientation of images back to transverse. It
retains the current voxel sizes, but sets the origin of the images to be the centre of the volumes
and all rotations back to zero.

The right panel shows miscellaneous information about the image. This includes:

Dimensions - the x, y and z dimensions of the image.

Datatype - the computer representation of each voxel.

Intensity - scale-factors and possibly a DC offset.

Miscellaneous other information about the image.

Vox size - the distance (in mm) between the centres of neighbouring voxels.

Origin - the voxel at the origin of the co-ordinate system

DIr Cos - Direction cosines. This is a widely used representation of the orientation of an
image.

There are also a few options for different resampling modes, zooms etc. You can also flip
between voxel space (as would be displayed by Analyze) or world space (the orientation that
SPM considers the image to be in). If you are re-orienting the images, make sure that world
space is specified. Blobs (from activation studies) can be superimposed on the images and the
intensity windowing can also be changed.

If you have put your images in the correct file format, then (possibly after specifying some
rigid-body rotations):
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The top-left image is coronal with the top (superior) of the head displayed at the top and the
left shown on the left. This is as if the subject is viewed from behind.

The bottom-left image is axial with the front (anterior) of the head at the top and the left
shown on the left. This is as if the subject is viewed from above.

The top-right image is sagittal with the front (anterior) of the head at the left and the top of
the head shown at the top. This is as if the subject is viewed from the left.

17.1 Image to Display

Image to display.
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Figure 17.1: The Display routine.
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Check Registration

Contents
18.1 Images to Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Orthogonal views of one or more images are displayed. Clicking in any image moves the centre
of the orthogonal views. Images are shown in orientations relative to that of the first selected
image. The first specified image is shown at the top-left, and the last at the bottom right. The
fastest increment is in the left-to-right direction (the same as you are reading this).

If you have put your images in the correct file format, then (possibly after specifying some
rigid-body rotations):

The top-left image is coronal with the top (superior) of the head displayed at the top and the
left shown on the left. This is as if the subject is viewed from behind.

The bottom-left image is axial with the front (anterior) of the head at the top and the left
shown on the left. This is as if the subject is viewed from above.

The top-right image is sagittal with the front (anterior) of the head at the left and the top of
the head shown at the top. This is as if the subject is viewed from the left.

18.1 Images to Display

Images to display.
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The image calculator is for performing user-specified algebraic manipulations on a set of
images, with the result being written out as an image. The user is prompted to supply images to
work on, a filename for the output image, and the expression to evaluate. The expression should
be a standard MATLAB expression, within which the images should be referred to as i1, i2, i3,...
etc.

19.1 Input Images

These are the images that are used by the calculator. They are referred to as i1, i2, i3, etc in the
order that they are specified.

19.2 Output Filename

The output image is written to current working directory unless a valid full pathname is given.
If a path name is given here, the output directory setting will be ignored.

19.3 Output Directory

Files produced by this function will be written into this output directory. If no directory is given,
images will be written to current working directory. If both output filename and output directory
contain a directory, then output filename takes precedence.
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19.4 Expression

Example expressions (f):
* Mean of six images (select six images)
f = ’(i1+i2+i3+i4+i5+i6)/6’
* Make a binary mask image at threshold of 100
f = ’i1>100’
* Make a mask from one image and apply to another
f = ’i2.*(i1>100)’
- here the first image is used to make the mask, which is applied to the second image
* Sum of n images
f = ’i1 + i2 + i3 + i4 + i5 + ...’
* Sum of n images (when reading data into a data-matrix - use dmtx arg)
f = ’sum(X)’

19.5 Options

Options for image calculator

19.5.1 Data Matrix

If the dmtx flag is set, then images are read into a data matrix X (rather than into separate
variables i1, i2, i3,...). The data matrix should be referred to as X, and contains images in rows.
Computation is plane by plane, so in data-matrix mode, X is a NxK matrix, where N is the number
of input images [prod(size(Vi))], and K is the number of voxels per plane [prod(Vi(1).dim(1:2))].

19.5.2 Masking

For data types without a representation of NaN, implicit zero masking assumes that all zero
voxels are to be treated as missing, and treats them as NaN. NaN’s are written as zero (by
spm write plane), for data types without a representation of NaN.

19.5.3 Interpolation

With images of different sizes and orientations, the size and orientation of the first is used for
the output image. A warning is given in this situation. Images are sampled into this orientation
using the interpolation specified by the hold parameter.

The method by which the images are sampled when being written in a different space.
Nearest Neighbour
- Fastest, but not normally recommended.
Bilinear Interpolation
- OK for PET, or realigned fMRI.
Sinc Interpolation
- Better quality (but slower) interpolation, especially
with higher degrees.

19.5.4 Data Type

Data-type of output image
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DICOM Import
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DICOM Conversion. Most scanners produce data in DICOM format. This routine attempts
to convert DICOM files into SPM compatible image volumes, which are written into the current
directory by default. Note that not all flavours of DICOM can be handled, as DICOM is a very
complicated format, and some scanner manufacturers use their own fields, which are not in the
official documentation at http://medical.nema.org/

20.1 DICOM files

Select the DICOM files to convert.

20.2 Directory structure for converted files

Choose root directory of converted file tree. The options are:
* Output directory: ./<StudyDate-StudyTime>: Automatically determine the project name

and try to convert into the output directory, starting with a StudyDate-StudyTime subdirectory.
This option is useful if automatic project recognition fails and one wants to convert data into a
project directory.

* Output directory: ./<PatientID>: Convert into the output directory, starting with a Pati-
entID subdirectory.

* Output directory: ./<PatientName>: Convert into the output directory, starting with a
PatientName subdirectory.

* No directory hierarchy: Convert all files into the output directory, without sequence/series
subdirectories

20.3 Output directory

Select a directory where files are written.
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20.4 Conversion options

20.4.1 Output image format

DICOM conversion can create separate img and hdr files or combine them in one file. The single
file option will help you save space on your hard disk, but may be incompatible with programs
that are not NIfTI-aware.

In any case, only 3D image files will be produced.

20.4.2 Use ICEDims in filename

If image sorting fails, one can try using the additional SIEMENS ICEDims information to create
unique filenames. Use this only if there would be multiple volumes with exactly the same file
names.
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MINC Conversion. MINC is the image data format used for exchanging data within the ICBM
community, and the format used by the MNI software tools. It is based on NetCDF, but due
to be superceded by a new version relatively soon. MINC is no longer supported for reading
images into SPM, so MINC files need to be converted to NIFTI format in order to use them. See
http://www.bic.mni.mcgill.ca/software/ for more information.

21.1 MINC files

Select the MINC files to convert.

21.2 Options

Conversion options

21.2.1 Data Type

Data-type of output images. Note that the number of bits used determines the accuracy, and the
amount of disk space needed.

21.2.2 Output image format

Output files can be written as .img + .hdr, or the two can be combined into a .nii file.
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ECAT 7 Conversion. ECAT 7 is the image data format used by the more recent CTI PET
scanners.

22.1 ECAT files

Select the ECAT files to convert.

22.2 Options

Conversion options

22.2.1 Output image format

Output files can be written as .img + .hdr, or the two can be combined into a .nii file.
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This is a utility for working with deformation fields. They can be loaded, inverted, combined
etc, and the results either saved to disk, or applied to some image.

23.1 Composition

Deformation fields can be thought of as mappings. These can be combined by the operation of
”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and y:B->C are two
mappings, where A, B and C refer to domains in 3 dimensions. Each element a in A points to
element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping from A to
C. The composition of these mappings is denoted by yox:A->C. Compositions can be combined
in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.
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23.1.1 Imported sn.mat

Spatial normalisation, and the unified segmentation model of SPM5 save a parameterisation of
deformation fields. These consist of a combination of an affine transform, and nonlinear warps
that are parameterised by a linear combination of cosine transform basis functions. These are
saved in * sn.mat files, which can be converted to deformation fields.

Parameter File

Specify the sn.mat to be used.

Voxel sizes

Specify the voxel sizes of the deformation field to be produced. Non-finite values will default to
the voxel sizes of the template imagethat was originally used to estimate the deformation.

Bounding box

Specify the bounding box of the deformation field to be produced. Non-finite values will default
to the bounding box of the template imagethat was originally used to estimate the deformation.

23.1.2 DARTEL flow

Imported DARTEL flow field.

Flow field

The flow field stores the deformation information. The same field can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).

Forward/Backwards

The direction of the DARTEL flow. Note that a backward transform will warp an individual
subject’s to match the template (ie maps from template to individual). A forward transform will
warp the template image to the individual.

Time Steps

The number of time points used for solving the partial differential equations. A single time point
would be equivalent to a small deformation model. Smaller values allow faster computations,
but are less accurate in terms of inverse consistency and may result in the one-to-one mapping
breaking down.

23.1.3 Deformation Field

Deformations can be thought of as vector fields. These can be represented by three-volume
images.

23.1.4 Identity (Reference Image)

This option generates an identity transform, but this can be useful for changing the dimensions of
the resulting deformation (and any images that are generated from it). Dimensions, orientation
etc are derived from an image.

Image to base Id on

Specify the image file on which to base the dimensions, orientation etc.
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23.1.5 Identity (Bounding Box and Voxel Size)

Voxel sizes

Bounding box

23.1.6 Inverse

Creates the inverse of a deformation field. Deformations are assumed to be one-to-one, in which
case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ o y = y o y’ = Id,
where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:
* Ashburner J, Andersson JLR & Friston KJ (2000) ”Image Registration using a Symmetric

Prior - in Three-Dimensions.” Human Brain Mapping 9(4):212-225

Composition

Deformation fields can be thought of as mappings. These can be combined by the operation of
”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and y:B->C are two
mappings, where A, B and C refer to domains in 3 dimensions. Each element a in A points to
element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping from A to
C. The composition of these mappings is denoted by yox:A->C. Compositions can be combined
in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.

Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite
values will default to the voxel sizes of the template imagethat was originally used to estimate
the deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-
finite values will default to the bounding box of the template imagethat was originally used to
estimate the deformation.

DARTEL flow Imported DARTEL flow field.

Flow field The flow field stores the deformation information. The same field can be used
for both forward or backward deformations (or even, in principle, half way or exaggerated defor-
mations).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.
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Deformation Field Deformations can be thought of as vector fields. These can be represented
by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can be
useful for changing the dimensions of the resulting deformation (and any images that are generated
from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size)

Voxel sizes

Bounding box

Inverse Creates the inverse of a deformation field. Deformations are assumed to be one-to-one,
in which case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ o y = y o
y’ = Id, where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:
* Ashburner J, Andersson JLR & Friston KJ (2000) ”Image Registration using a Symmetric

Prior - in Three-Dimensions.” Human Brain Mapping 9(4):212-225

Composition Deformation fields can be thought of as mappings. These can be combined
by the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite

values will default to the voxel sizes of the template imagethat was originally used to estimate
the deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
Flow field The flow field stores the deformation information. The same field can be used

for both forward or backward deformations (or even, in principle, half way or exaggerated defor-
mations).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.
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Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size)
Voxel sizes
Bounding box
Inverse Creates the inverse of a deformation field. Deformations are assumed to be one-to-

one, in which case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ o y
= y o y’ = Id, where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:
* Ashburner J, Andersson JLR & Friston KJ (2000) ”Image Registration using a Symmetric

Prior - in Three-Dimensions.” Human Brain Mapping 9(4):212-225
Composition Deformation fields can be thought of as mappings. These can be combined by

the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values

will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
Flow field The flow field stores the deformation information. The same field can be used for

both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform will
warp an individual subject’s to match the template (ie maps from template to individual). A
forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be represented
by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can be useful
for changing the dimensions of the resulting deformation (and any images that are generated from
it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation etc.
Identity (Bounding Box and Voxel Size)
Voxel sizes
Bounding box
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Image to base inverse on Specify the image file on which to base the dimensions, orien-
tation etc.

Composition Deformation fields can be thought of as mappings. These can be combined by
the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.

Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values
will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.

Flow field The flow field stores the deformation information. The same field can be used for
both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation etc.

Identity (Bounding Box and Voxel Size)

Voxel sizes

Bounding box

Image to base inverse on Specify the image file on which to base the dimensions, orien-
tation etc.

Composition Deformation fields can be thought of as mappings. These can be combined by
the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
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The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5
save a parameterisation of deformation fields. These consist of a combination of an affine trans-
form, and nonlinear warps that are parameterised by a linear combination of cosine transform
basis functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values

will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
Flow field The flow field stores the deformation information. The same field can be used for

both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size) Voxel sizes
Bounding box

Inverse Creates the inverse of a deformation field. Deformations are assumed to be one-to-
one, in which case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ o y
= y o y’ = Id, where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:
* Ashburner J, Andersson JLR & Friston KJ (2000) ”Image Registration using a Symmetric

Prior - in Three-Dimensions.” Human Brain Mapping 9(4):212-225
Composition Deformation fields can be thought of as mappings. These can be combined by

the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.
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Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values

will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
Flow field The flow field stores the deformation information. The same field can be used for

both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation etc.
Identity (Bounding Box and Voxel Size)
Voxel sizes
Bounding box
Image to base inverse on Specify the image file on which to base the dimensions, orientation

etc.

Composition Deformation fields can be thought of as mappings. These can be combined
by the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite

values will default to the voxel sizes of the template imagethat was originally used to estimate
the deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
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Flow field The flow field stores the deformation information. The same field can be used
for both forward or backward deformations (or even, in principle, half way or exaggerated defor-
mations).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size)
Voxel sizes
Bounding box

Image to base inverse on

Specify the image file on which to base the dimensions, orientation etc.

23.1.7 Composition

Deformation fields can be thought of as mappings. These can be combined by the operation of
”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and y:B->C are two
mappings, where A, B and C refer to domains in 3 dimensions. Each element a in A points to
element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping from A to
C. The composition of these mappings is denoted by yox:A->C. Compositions can be combined
in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat

Spatial normalisation, and the unified segmentation model of SPM5 save a parameterisation of
deformation fields. These consist of a combination of an affine transform, and nonlinear warps
that are parameterised by a linear combination of cosine transform basis functions. These are
saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.

Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values
will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow

Imported DARTEL flow field.
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Flow field The flow field stores the deformation information. The same field can be used for
both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field

Deformations can be thought of as vector fields. These can be represented by three-volume
images.

Identity (Reference Image)

This option generates an identity transform, but this can be useful for changing the dimensions of
the resulting deformation (and any images that are generated from it). Dimensions, orientation
etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation etc.

Identity (Bounding Box and Voxel Size)

Voxel sizes

Bounding box

Inverse

Creates the inverse of a deformation field. Deformations are assumed to be one-to-one, in which
case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ o y = y o y’ = Id,
where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:

* Ashburner J, Andersson JLR & Friston KJ (2000) ”Image Registration using a Symmetric
Prior - in Three-Dimensions.” Human Brain Mapping 9(4):212-225

Composition Deformation fields can be thought of as mappings. These can be combined by
the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.
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Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5
save a parameterisation of deformation fields. These consist of a combination of an affine trans-
form, and nonlinear warps that are parameterised by a linear combination of cosine transform
basis functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values

will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
Flow field The flow field stores the deformation information. The same field can be used for

both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size) Voxel sizes
Bounding box

Inverse Creates the inverse of a deformation field. Deformations are assumed to be one-to-
one, in which case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ o y
= y o y’ = Id, where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:
* Ashburner J, Andersson JLR & Friston KJ (2000) ”Image Registration using a Symmetric

Prior - in Three-Dimensions.” Human Brain Mapping 9(4):212-225
Composition Deformation fields can be thought of as mappings. These can be combined by

the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.
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Parameter File Specify the sn.mat to be used.

Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values
will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.

Flow field The flow field stores the deformation information. The same field can be used for
both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation etc.

Identity (Bounding Box and Voxel Size)

Voxel sizes

Bounding box

Image to base inverse on Specify the image file on which to base the dimensions, orientation
etc.

Composition Deformation fields can be thought of as mappings. These can be combined
by the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.

Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite
values will default to the voxel sizes of the template imagethat was originally used to estimate
the deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.

Flow field The flow field stores the deformation information. The same field can be used
for both forward or backward deformations (or even, in principle, half way or exaggerated defor-
mations).
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Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size)

Voxel sizes

Bounding box

Image to base inverse on Specify the image file on which to base the dimensions, orientation
etc.

Composition

Deformation fields can be thought of as mappings. These can be combined by the operation of
”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and y:B->C are two
mappings, where A, B and C refer to domains in 3 dimensions. Each element a in A points to
element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping from A to
C. The composition of these mappings is denoted by yox:A->C. Compositions can be combined
in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.

Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite
values will default to the voxel sizes of the template imagethat was originally used to estimate
the deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-
finite values will default to the bounding box of the template imagethat was originally used to
estimate the deformation.

DARTEL flow Imported DARTEL flow field.

Flow field The flow field stores the deformation information. The same field can be used
for both forward or backward deformations (or even, in principle, half way or exaggerated defor-
mations).
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Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be represented
by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can be
useful for changing the dimensions of the resulting deformation (and any images that are generated
from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size)

Voxel sizes

Bounding box

Inverse Creates the inverse of a deformation field. Deformations are assumed to be one-to-one,
in which case they have a unique inverse. If y’:A->B is the inverse of y:B->A, then y’ o y = y o
y’ = Id, where Id is the identity transform.

Deformations are inverted using the method described in the appendix of:
* Ashburner J, Andersson JLR & Friston KJ (2000) ”Image Registration using a Symmetric

Prior - in Three-Dimensions.” Human Brain Mapping 9(4):212-225

Composition Deformation fields can be thought of as mappings. These can be combined
by the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5 save
a parameterisation of deformation fields. These consist of a combination of an affine transform,
and nonlinear warps that are parameterised by a linear combination of cosine transform basis
functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite

values will default to the voxel sizes of the template imagethat was originally used to estimate
the deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
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Flow field The flow field stores the deformation information. The same field can be used
for both forward or backward deformations (or even, in principle, half way or exaggerated defor-
mations).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size)
Voxel sizes
Bounding box

Image to base inverse on Specify the image file on which to base the dimensions, orien-
tation etc.

Composition Deformation fields can be thought of as mappings. These can be combined by
the operation of ”composition”, which is usually denoted by a circle ”o”. Suppose x:A->B and
y:B->C are two mappings, where A, B and C refer to domains in 3 dimensions. Each element a in
A points to element x(a) in B. This in turn points to element y(x(a)) in C, so we have a mapping
from A to C. The composition of these mappings is denoted by yox:A->C. Compositions can be
combined in an associative way, such that zo(yox) = (zoy)ox.

In this utility, the left-to-right order of the compositions is from top to bottom (note that the
rightmost deformation would actually be applied first). i.e. ...((first o second) o third)...o last.
The resulting deformation field will have the same domain as the first deformation specified, and
will map to voxels in the codomain of the last specified deformation field.

Imported sn.mat Spatial normalisation, and the unified segmentation model of SPM5
save a parameterisation of deformation fields. These consist of a combination of an affine trans-
form, and nonlinear warps that are parameterised by a linear combination of cosine transform
basis functions. These are saved in * sn.mat files, which can be converted to deformation fields.

Parameter File Specify the sn.mat to be used.
Voxel sizes Specify the voxel sizes of the deformation field to be produced. Non-finite values

will default to the voxel sizes of the template imagethat was originally used to estimate the
deformation.

Bounding box Specify the bounding box of the deformation field to be produced. Non-finite
values will default to the bounding box of the template imagethat was originally used to estimate
the deformation.

DARTEL flow Imported DARTEL flow field.
Flow field The flow field stores the deformation information. The same field can be used for

both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Forward/Backwards The direction of the DARTEL flow. Note that a backward transform
will warp an individual subject’s to match the template (ie maps from template to individual).
A forward transform will warp the template image to the individual.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
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faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down.

Deformation Field Deformations can be thought of as vector fields. These can be repre-
sented by three-volume images.

Identity (Reference Image) This option generates an identity transform, but this can
be useful for changing the dimensions of the resulting deformation (and any images that are
generated from it). Dimensions, orientation etc are derived from an image.

Image to base Id on Specify the image file on which to base the dimensions, orientation
etc.

Identity (Bounding Box and Voxel Size) Voxel sizes
Bounding box

23.2 Save as

Save the result as a three-volume image. ”y ” will be prepended to the filename. The result will
be written to the current directory.

23.3 Apply to

Apply the resulting deformation field to some images. The warped images will be written to the
current directory, and the filenames prepended by ”w”. Note that trilinear interpolation is used
to resample the data, so the original values in the images will not be preserved.

23.4 Output destination

23.4.1 Current directory

All created files (deformation fields and warped images) are written to the current directory.

23.4.2 Source directories

The combined deformation field is written into the directory of the first deformation field, warped
images are written to the same directories as the source images.

23.4.3 Source directory (deformation)

The combined deformation field and the warped images are written into the directory of the first
deformation field.

23.4.4 Output directory

The combined deformation field and the warped images are written into the specified directory.

23.5 Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:
- Fastest, but not normally recommended.
Bilinear Interpolation:
- OK for PET, realigned fMRI, or segmentations
B-spline Interpolation:
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- Better quality (but slower) interpolation [82], especially with higher degree splines. Can
produce values outside the original range (e.g. small negative values from an originally all positive
image).
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Chapter 24

FieldMap Toolbox

24.1 Introduction

This chapter describes how to use the FieldMap toolbox version 2.11 for creating unwrapped
field maps that can be used to do geometric distortion correction of EPI images [49, 50, 2]. The
methods are based on earlier work by Jezzard et al.,[52] and a phase-unwrapping algorithm by
Jenkinson [51]. The toolbox can be used via the SPM batch editor or in an interactive mode
so that the user can see the effect of applying different field maps and unwarping parameters
to EPI images. A voxel displacement map (VDM) is created that can be used with Realign &
Unwarp for doing a combined static and dynamic distortion correction or with an Apply VDM
function for doing a static distortion correction on a set of realigned images. Realign & Unwarp
is designed to work only with images acquired with the phase-encode direction aligned with the
anterior-posterior axis. Images acquired with phase-encode directions aligned with other axes can
be distortion corrected using the FieldMap toolbox and Apply VDM utility.

24.2 Presubtracted Phase and Magnitude Data

Calculate a voxel displacement map (VDM) from presubtracted phase and magnitude field map
data (Figure 24.1). This option expects a single magnitude image and a single phase image result-
ing from the subtraction of two phase images (where the subtraction is usually done automatically
by the scanner software). The phase image will be scaled between +/- PI.

24.2.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject

Data for this subject or field map session.

Phase Image Select a single phase image. This should be the result from the subtraction of
two phase images (where the subtraction is usually done automatically by the scanner software).
The phase image will be scaled between +/- PI.

Magnitude Image Select a single magnitude image. This is used for masking the phase
information and coregistration with the EPI data. If two magnitude images are available, select
the one acquired at the shorter echo time because it will have greater signal

FieldMap defaults FieldMap default values can be entered as a file or set of values.

1 FieldMap Version 2.0 can be downloaded as part SPM5: http://www.fil.ion.ucl.ac.uk/spm/software/

spm5/

FieldMap Version 1.1 for SPM2 can be downloaded from http://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap/
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http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap/
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Figure 24.1: FieldMap using the SPM8 User Interface.

Defaults values Defaults values
Echo times [short TE long TE] Enter the short and long echo times (in ms) of the data

used to acquire the field map.
Mask brain Select masking or no masking of the brain. If masking is selected, the magnitude

image is used to generate a mask of the brain.
Blip direction Enter the blip direction. This is the polarity of the phase-encode blips

describing the direction in which k-space is traversed along the y-axis during EPI acquisition
with respect to the coordinate system used in SPM. In this coordinate system, the phase encode
direction corresponds with the y-direction and is defined as positive from the posterior to the
anterior of the head.

The convention used to describe the direction of the k-space traversal is based on the coor-
dinate system used by SPM. In this coordinate system, the phase encode direction corresponds
with the y-direction and is defined as positive from the posterior to the anterior of the head.
The x-direction is defined as positive from left to right and the z-direction is defined as positive
from foot to head. The polarity of the phase-encode blips describes in which direction k-space is
traversed along the y-axis with respect to the coordinate system described here.

Total EPI readout time Enter the total EPI readout time (in ms). This is the time taken to
acquire all of the phase encode steps required to cover k-space (ie one image slice). For example,
if the EPI sequence has 64 phase encode steps, the total readout time is the time taken to acquire
64 echoes, e.g. total readout time = number of echos x echo spacing. This time does not include i)
the duration of the excitation, ii) the delay between, the excitation and the start of the acquisition
or iii) time for fat saturation etc.

EPI-based field map? Select non-EPI or EPI based field map. The field map data may
be acquired using a non-EPI sequence (typically a gradient echo sequence) or an EPI sequence.
The processing will be slightly different for the two cases. If using an EPI-based field map, the
resulting Voxel Displacement Map will be inverted since the field map was acquired in distorted
space.

Jacobian modulation? Select whether or not to use Jacobian modulation. This will adjust
the intensities of voxels that have been stretched or compressed but in general is not recommended
for EPI distortion correction

uflags Different options for phase unwrapping and field map processing
Unwrapping method Select method for phase unwrapping
FWHM FWHM of Gaussian filter used to implement weighted smoothing of unwrapped maps.
pad Size of padding kernel if required.
Weighted smoothing Select normal or weighted smoothing.
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mflags Different options used for the segmentation and creation of the brain mask.
Template image for brain masking Select template file for segmentation to create brain

mask
FWHM FWHM of Gaussian filter for smoothing brain mask.
Number of erosions Number of erosions used to create brain mask.
Number of dilations Number of dilations used to create brain mask.
Threshold Threshold used to create brain mask from segmented data.
Regularization Regularization value used in the segmentation. A larger value helps the

segmentation to converge.

Defaults File Select the ’pm defaults*.m’ file containing the parameters for the field map
data. Please make sure that the parameters defined in the defaults file are correct for your field
map and EPI sequence. To create your own customised defaults file, either edit the distributed
version and/or save it with the name ’pm defaults yourname.m’.

EPI Sessions If a single set of field map data will be used for multiple EPI runs/sessions, select
the first EPI in each run/session. A VDM file will created for each run/session, matched to the
first EPI in each run/session and saved with a unique name extension.

Session Data for this session.
Select EPI to Unwarp Select a single image to distortion correct. The corrected image will

be saved with the prefix u. Note that this option is mainly for quality control of correction so
that the original and distortion corrected images can be displayed for comparison. To unwarp
multiple images please use either Realign & Unwarp or Apply VDM.

Match VDM to EPI? Match VDM file to EPI image. This will coregister the field map data
to the selected EPI for each run/session.

In general, the field map data should be acquired so that it is as closely registered with the
EPI data as possible but matching can be selected if required. If a precalculated field map was
loaded then the user is prompted to select a magnitude image in the same space as the field map.
If real and imaginary images were selected, the toolbox automatically creates a magnitude image
from these images and saves it with the name mag NAME-OF-FIRST-INPUT-IMAGE.img.

Name extension for run/session specific VDM file This will be the name extension fol-
lowed by an incremented integer for run/session specific VDM files.

Write unwarped EPI? Write out distortion corrected EPI image. The image is saved with
the prefix u. Note that this option is mainly for quality control of correction so that the original
and distortion corrected images can be displayed for comparison. To unwarp multiple images
please use either Realign & Unwarp or Apply VDM.

Select anatomical image for comparison Select an anatomical image for comparison with
the distortion corrected EPI or leave empty. Note that this option is mainly for quality control
of correction.

Match anatomical image to EPI? Match the anatomical image to the distortion corrected
EPI. Note that this option is mainly for quality control of correction allowing for visual inspection
and comparison of the distortion corrected EPI.

24.3 Real and Imaginary Data

Calculate a voxel displacement map (VDM) from real and imaginary field map data. This option
expects two real and imaginary pairs of data of two different echo times. The phase images will
be scaled between +/- PI.



180 CHAPTER 24. FIELDMAP TOOLBOX

24.3.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject

Data for this subject or field map session.

Short Echo Real Image Select short echo real image

Short Echo Imaginary Image Select short echo imaginary image

Long Echo Real Image Select long echo real image

Long Echo Imaginary Image Select long echo imaginary image

Other inputs As for Presubtracted Phase and Magnitude Data.

24.4 Phase and Magnitude Data

Calculate a voxel displacement map (VDM) from double phase and magnitude field map data.
This option expects two phase and magnitude pairs of data of two different echo times.

24.4.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject

Data for this subject or field map session.

Short Echo Phase Image Select short echo phase image

Short Echo Magnitude Image Select short echo magnitude image

Long Echo Phase Image Select long echo phase image

Long Echo Magnitude Image Select long echo magnitude image

Other inputs As for Presubtracted Phase and Magnitude Data.

24.5 Precalculated FieldMap (in Hz)

Calculate a voxel displacement map (VDM) from a precalculated field map. This option expects
a processed field map (ie phase unwrapped, masked if necessary and scaled to Hz). Precalculated
field maps can be generated by the FieldMap toolbox and stored as fpm * files.

24.5.1 Data

Subjects or sessions for which individual field map data has been acquired.

Subject

Data for this subject or field map session.
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Precalculated field map Select a precalculated field map. This should be a processed field
map (ie phase unwrapped, masked if necessary and scaled to Hz) , for example as generated by
the FieldMap toolbox and are stored with fpm * prefix.

Select magnitude image in same space as fieldmap Select magnitude image which is in
the same space as the field map to do matching to EPI.

Other inputs As for Presubtracted Phase and Magnitude Data.

24.6 Apply VDM

Apply VDM (voxel displacement map) to resample voxel values in selected image(s). This allows
a VDM to be applied to any images which are assumed to be already realigned (e.g. including
EPI fMRI time series and DTI data).

The VDM can be been created from a field map acquisition using the FieldMap toolbox and
comprises voxel shift values which describe geometric distortions occuring as a result of magnetic
susceptbility artefacts. Distortions along any single dimension can be corrected therefore input
data may have been acquired with phase encode directions in X, Y (most typical) and Z.

The selected images are assumed to be realigned to the first in the time series (e.g. using
Realign: Estimate) but do not need to be resliced. The VDM is assumed to be in alignment with
the images selected for resampling (note this can be achieved via the FieldMap toolbox). The
resampled images are written to the input subdirectory with the same (prefixed) filename.

e.g. The typical processing steps for fMRI time series would be 1) Realign: Estimate, 2)
FieldMap to create VDM, 3) Apply VDM.

Note that this routine is a general alternative to using the VDM in combination with Realign
& Unwarp which estimates and corrects for the combined effects of static and movement-related
susceptibility induced distortions. Apply VDM can be used when dynamic distortions are not
(well) modelled by Realign & Unwarp (e.g. for fMRI data acquired with R->L phase-encoding
direction, high field fMRI data or DTI data).

24.6.1 Data

Subjects or sessions for which VDM file is being applied to images.

Session

Data for this session.

Images Select scans for this session. These are assumed to be realigned to the first in the time
series (e.g. using Realign: Estimate) but do not need to be resliced

Fieldmap (vdm* file) Select VDM (voxel displacement map) for this session (e.g. created via
FieldMap toolbox). This is assumed to be in alignment with the images selected for resampling
(note this can be achieved via the FieldMap toolbox).

24.6.2 Reslice Options

Apply VDM reslice options

Distortion direction

In which direction are the distortions? Any single dimension can be corrected therefore input
data may have been acquired with phase encode directions in Y (most typical), X or Z
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Reslice which images ?

All Images (1..n)

This applies the VDM and reslices all the images.

All Images + Mean Image

This applies the VDM reslices all the images and creates a mean of the resliced images.

Interpolation

The method by which the images are sampled when being written in a different space. Nearest
Neighbour is fastest, but not recommended for image realignment. Bilinear Interpolation is
probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally
gives better results [82, 83, 84]. Although higher degree methods provide better interpolation,
but they are slower because they use more neighbouring voxels.

Wrapping

This indicates which directions in the volumes the values should wrap around in. For example,
in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject’s nose
may poke into the back of the subject’s head. These are typically:

No wrapping - for PET or images that have already been spatially transformed. Also the
recommended option if you are not really sure.

Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space)
etc.

Masking

Because of subject motion, different images are likely to have different patterns of zeros from
where it was not possible to sample data. With masking enabled, the program searches through
the whole time series looking for voxels which need to be sampled from outside the original images.
Where this occurs, that voxel is set to zero for the whole set of images (unless the image format
can represent NaN, in which case NaNs are used where possible).

Filename Prefix

Specify the string to be prepended to the filenames of the distortion corrected image file(s).
Default prefix is ’u’.

24.7 Creating Field Maps Using the FieldMap GUI

The FieldMap Toolbox GUI is shown on the left Figure 24.2. It is divided into two parts. The
top part deals with creating the field map in Hz and the bottom part deals with creating the
voxel displacement map (VDM) and unwarping the EPI. The toolbox can be used by working
through the different inputs in the following order:

24.7.1 Create field map in Hz

Load defaults file

Select the defaults file from which to load default parameters. If necessary, the parameters
used to create the field map can be temporarily modified using the GUI. To change the default
parameters, edit pm defaults.m or create a new file called pm defaults NAME.m (as described in
Section 24.2.1).
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Figure 24.2: FieldMap GUI and Results.

Data Input Format

PM The acquired field map images are in phase and magnitude format. There may be a single
pair of phase and magnitude images (i.e. 2 images) in which case the phase image has been
created by the vendor sequence from two echo times acquisitions. Alternatively there may be
two pairs of phase and magnitude images, one for each echo time(ie 4 images). The units for the
phase images MUST BE RADIANS BETWEEN +pi and -pi. The user will be asked if this is
required when the images are selected.

RI The acquired field map images are in real and imaginary format. Two pairs of real and
imaginary image volumes, one for a shorter and one for a longer echo time (ie 4 images)2.

File Selection

Select NIfTI format images. Generally, the acquired scanner files will be in dicom format which
can be correctly converted using the DICOM converter in the corresponding version of SPM.
DICOM and other image formats can also be converted to using MRIcro3.

If the data input format is PM, load Phase and Magnitude images:

1. Single phase image OR phase of short echo-time image.

2. Single magnitude image OR magnitude of short echo-time image.

3. LEAVE EMPTY if input consists of a single phase and magnitude pair OR phase of long
echo-time image.

4. LEAVE EMPTY if input consists of a single phase and magnitude pair OR magnitude of
long echo-time image.

2 NB If using SPM2, the data input format can only be changed by editing the spm defaults.m file. This is
described in Section 24.2.1.

3MRIcro is freely available from http://www.cla.sc.edu/psyc/faculty/rorden/mricro.html.

http://www.cla.sc.edu/psyc/faculty/rorden/mricro.html
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OR If the data input format is RI, load Real and Magnitude images:

1. Real part of short echo-time image.

2. Imaginary part of short echo-time image.

3. Real part of long echo-time image.

4. Imaginary part of long echo-time image.

Short TE/Long TE (ms)

Specify the short and long echo times in ms associated with the field map acquisition. Both of
these values are required even if a single phase and magnitude image is used as input.

Mask brain

Specify yes to generate a brain mask using the magnitude data which will be used to exclude
regions of the field map outside of the brain.

Calculate

Calculate an unwrapped field map in Hz which is stored in memory. This represents the map
of phase changes associated with the measured field map data. The processing is described
in more detail in Section 24.10 and involves some or all of the following steps (as specified in
spm defaults.m):

1. Calculation of a Hz fieldmap from input data

2. Segmentation to exclude regions outside of the brain

3. Phase unwrapping

4. Smoothing and dilation of the processed fieldmap

The processed field map (in Hz) is displayed in the graphics window (top row, right Figure
24.1) and the field at different points can be explored. The field map in Hz is converted to a
VDM (voxel displacement map) using the parameters shown in the FieldMap GUI and saved with
the filename vdm5 NAME-OF-FIRST-INPUT-IMAGE.img in the same directory as the acquired
field map images. The VDM file is overwritten whenever the field map is recalculated or when
any parameters are changed. The resulting VDM file can be used for unwarping the EPI using
Realign & Unwarp in SPM8 (see Section 24.9).

Write

Write out the processed field map (in Hz) as a Nifti format image. The image will be saved with
the filename fpm NAME-OF-FIRST-INPUT-IMAGE.img in the same directory as the acquired
field map images.

Load Pre-calculated

Load a precalculated unwrapped field map (fpm .img). This should be a single image volume
with units of Hz in NIfTI format. The precalculated field map may have been created previously
using the FieldMap toolbox or by other means. Once loaded, the field map is displayed in the
graphics window (top row, right, Figure 24.1) and the field at different points can be explored.

Field map value (Hz)

Interrogate the value of the field map in Hz at the location specified by the mouse pointer in the
graphics window.
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24.7.2 Create voxel displacement map (VDM) and unwarp EPI

When any of the parameters below are changed, a new VDM is created and written out as
vdm5 NAME-OF-FIRST-INPUT-IMAGE.img. The vdm5 NAME-OF-FIRST-INPUT-IMAGE.mat
file is not updated unless ’Match VDM to EPI’ is selected as described in Section 24.7.2.

EPI-based field map - Yes/No

Select Yes if the field map is based on EPI data or No otherwise. Most scanner vendor field map
sequences are non-EPI.

Polarity of phase-encode blips - +ve/-ve

Select +ve or -ve blip direction.When images are acquired K-space can be traversed using positive
or negative phase-encode blips. This direction will influence the geometric distortions in terms of
whether the affected regions of the image are stretched or compressed.

The convention used to describe the direction of the k-space traversal is based on the coor-
dinate system used by SPM. In this coordinate system, the phase encode direction corresponds
with the y-direction and is defined as positive from the posterior to the anterior of the head.
The x-direction is defined as positive from left to right and the z-direction is defined as positive
from foot to head. The polarity of the phase-encode blips describes in which direction k-space is
traversed along the y-axis with respect to the coordinate system described here.

Apply Jacobian modulation - Yes/No

Select Yes to do Jacobian Modulation to adjust the intensities of voxels that have been stretched
or compressed. In general this is not recommended for unwarping EPI data at this stage.

Total EPI readout time (ms)

Enter the total time in ms for the readout of the EPI echo train which is typically 10s of ms.
This is the time taken to acquire all of the phase encode steps required to cover k-space (ie one
image slice). For example, if the EPI sequence has 64 phase encode steps, the total readout time
is the time taken to acquire 64 echoes: total readout time = number of echoes × echo spacing.
This time does not include i) the duration of the excitation, ii) the delay between the excitation
and the start of the acquisition or iii) time for fat saturation.

Load EPI image

Select a sample EPI image in NIfTI format. This image is automatically unwarped using the VDM
calculated with the current parameters. The warped and the unwarped image are displayed in
the graphics window underneath the field map (middle rows, right, Figure 24.1).

Match VDM to EPI

Select this option to match the field map magnitude data to the EPI image before it is used to
unwarp the EPI. In general, the field map data should be acquired so that it is as closely registered
with the EPI data as possible but matching can be selected if required. If a precalculated field
map was loaded then the user is prompted to select a magnitude image in the same space as
the field map. If real and imaginary images were selected, the toolbox automatically creates a
magnitude image from these images and saves it with the name mag NAME-OF-FIRST-INPUT-
IMAGE.img.

Write unwarped

Write unwarped EPI image with the filename uNAME OF EPI.img.
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Load structural

Load a structural image for comparison with unwarped EPI. This is displayed in the graphics
window below the other images (bottom row, right fig 1).

MatchStructural

Coregister the structural image to the unwarped EPI and write the resulting transformation
matrix to the header of the selected structural image.

Help

Call spm help to display FieldMap.man.

Quit

Quit the toolbox and closes all windows associated with it.

24.8 Using the FieldMap in Batch scripts

FieldMap preprocess.m which calls FieldMap create.m gives an example of how to run the
FieldMap toolbox without using the GUI. To run the script, make sure your Matlab path
includes the directory where the FieldMap toolbox is installed. This can be done using the Set
Path option under File in the Matlab windows manager or using the command:

addpath /whatever/spm/toolbox/FieldMap

To run the FieldMap batch script, in Matlab enter the following command:

VDM = FieldMap_preprocess(fm_dir,epi_dir, [te1, te2, epifm, tert, kdir, mask, match] );

where

fm dir - name of directory containing fieldmap images.(e.g. fm dir = ’/path/study1/subj1/fieldmap’)

epi dir - name of directory containing epi images. (e.g. epi dir = ’/path/study1/subj1/images’)

te1 - short echo time (in ms)

te2 - long echo time (in ms)

epifm - epi-based fieldmap - yes or no (1/0)

tert - total echo readout time (in ms)

kdir - blip direction (1/-1)

mask do brain segmentation to mask field map (1/0)

match match vdm file to first EPI in run (1/0).

NB: FieldMap will match the field map to the first epi image in the time series (after removing
the dummy scans). Therefore, epi dir must be the directory that contains the epi run that all
other images will be realigned to.

The script will create an fpm* file, a vdm5 * file and an unwarped version of the EPI saved
with the prescript “u”.

24.9 Using the VDM file with Unwarp

In SPM, select the Realign & Unwarp option. For the input data called Phase map (vdm* file),
select the vdm5 or vdm5 file for the subject and/or session. If you acquired more than one
session (or run) of EPI images, you need to select a different vdm5 * file for each one. For more
information about Unwarp see http://www.fil.ion.ucl.ac.uk/spm/toolbox/unwarp.

http://www.fil.ion.ucl.ac.uk/spm/toolbox/unwarp
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24.10 Appendices

24.10.1 Processing Hz field maps

Processing field maps involves a series of steps for which certain parameters in the spm defaults
file must be set.

1. If the acquired field map data comprises two complex images, the phase difference between
them is calculated.

2. The phase map is unwrapped using the method specified by spm def.UNWRAPPING METHOD
= ’Mark3D’ or ’Mark2D’ or ’Huttonish’. For a description of these different methods see
spm unwrap.m or FieldMap principles.man. The default option is ’Mark3D’.

3. A mask is created so that unwrapping only occurs in regions where there is signal. If
necessary, this mask can be expanded so that any voxel that hasn’t been unwrapped and
is less than spm def.PAD/2 voxels away from an unwrapped one will be replaced by an
average of the surrounding unwrapped voxels. This can be done by setting the parameter
spm def.PAD to a value greater than 0. The default value is 0 but a value ¿ 0 (eg 10) may
be necessary if normal smoothing is chosen instead of weighted smoothing (as explained in
the next step).

4. If required a mask can be generated to exclude regions of the fieldmap outside of the brain
(in addition to the unwrapping mask described above). This step uses SPM segmentation
for which the parameters in spm def.MFLAGS can be set. For example, if the segmenta-
tion fails, (maybe because the fieldmap magnitude image doesn’t have enough contrast),
spm def.MFLAGS.REG can be increased to say 0.05). The other parameters control mor-
phological operations to generate a smooth brain mask and have been set empirically.

5. The unwrapped phase map is scaled by 1/(2*PI*difference in echo time) to convert it to
Hz.

6. A weighted gaussian smoothing (weighted by the inverse of the noise) is performed on the
unwrapped phase-map if the parameter spm def.WS = 1. If spm def.WS = 0, a normal
smoothing is done. The weighted smoothing is particularly slow on large data sets ie high
resolution. If field maps are acquired at high resolution then it is recommended to use
spm def.WS = 0 and do some padding of the intensity mask eg spm def.PAD = 10. The
size of the Gaussian filter used to implement either weighted or normal smoothing of the
unwrapped maps is usually set to spm def.FWHM = 10.

24.10.2 Converting Hz field map to VDM

1. The field map in Hz is multiplied by the total EPI readout time (in ms, ) of the EPI image to
be unwarped, resulting in a VDM. The readout time is specified by spm def.TOTAL EPI READOUT TIME
(eg typically 10s of ms).The total EPI readout time is the time taken to acquire all of the
phase encode steps required to cover k-space (ie one image slice). For example, if the EPI
sequence has 64 phase encode steps, the total readout time is the time taken to acquire 64
echoes, e.g. total readout time = number of echoes × echo spacing. This time does not
include i) the duration of of the excitation, ii) the delay between the excitation and the
start of the acquisition or iii) time for fat saturation etc.

2. The VDM is multiplied by +/-1 to indicate whether the K-space traversal for the data
acquisition has a +ve or -ve blip direction. This will ensure that the unwarping is performed
in the correct direction and is specified by spm def.K SPACE TRAVERSAL BLIP DIR =
+/- 1.

3. The toolbox must know if the field map is based on an EPI or non-EPI acquisition. If using
an EPI-based field map, the VDM must be inverted since the field map was acquired in
warped space. This is specified by spm def.EPI BASED FIELDMAPS = 1 or 0.
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4. Jacobian Modulation can be applied to the unwarped EPI image. This modulates the
intensity of the unwarped image so that in regions where voxels were compressed, the
intensity is decresed and where voxels were stretched, the intensities are increased slightly.
The modulation involves multiplying the unwarped EPI by 1 + the 1-d derivative of the
VDM in the phase direction. An intensity adjustment of this nature may improve the
coregistration results between an unwarped EPI and an undistorted image. This is specified
by spm def.DO JACOBIAN MODULATION = 0 or 1.

5. When any of the above conversion parameters are changed or a new EPI is selected, a new
VDM is created and saved with the filename vdm5 NAME-OF-FIRST-INPUT-IMAGE.img.
Any previous copy of the .img file is overwritten, but the corresponding .mat file is retained.
It is done this way because the VDM may have already been coregiseterd to the EPI (as
described below). Then, for an EPI-based VDM, the match between the VDM and the EPI
will still be valid even if any of the above parameters have been changed. If the VDM is
non-EPI-based and any of the above parameters are changed, the match between the VDM
and the EPI may no longer be valid. In this case a warning is given to the user that it may
be necessary to perform the coregistration again.

24.10.3 Matching field map data to EPI data

1. If required, the fieldmap can be matched to the EPI. This is done slightly differently de-
pending on whether the field map is based on EPI or non-EPI data. If using an EPI field
map, the magnitude image is coregistered to the EPI. The resulting transformation matrix
is used to sample the VDM file in the space of the EPI before unwarping.

2. If using a non-EPI field map, the VDM is used to forward warp the magnitude image
which is then coregistered to the EPI. The forward warped image is saved with the filename
wfmag NAME-OF-FIRST-INPUT-IMAGE.img.
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This toolbox is currently only work in progress, and is an extension of the default unified
segmentation. The algorithm is essentially the same as that described in the Unified Segmentation
paper, except for (i) a slightly different treatment of the mixing proportions, (ii) the use of an
improved registration model, (iii) the ability to use multi-spectral data, (iv) an extended set of
tissue probability maps, which allows a different treatment of voxels outside the brain. Some of
the options in the toolbox do not yet work, and it has not yet been seamlessly integrated into the
SPM8 software. Also, the extended tissue probability maps need further refinement. The current
versions were crudely generated (by JA) using data that was kindly provided by Cynthia Jongen
of the Imaging Sciences Institute at Utrecht, NL.

This function segments, bias corrects and spatially normalises - all in the same model [9].
Many investigators use tools within older versions of SPM for a technique that has become
known as ”optimised” voxel-based morphometry (VBM). VBM performs region-wise volumetric
comparisons among populations of subjects. It requires the images to be spatially normalised,
segmented into different tissue classes, and smoothed, prior to performing statistical tests [86,
64, 7, 8]. The ”optimised” pre-processing strategy involved spatially normalising subjects’ brain
images to a standard space, by matching grey matter in these images, to a grey matter reference.
The historical motivation behind this approach was to reduce the confounding effects of non-brain
(e.g. scalp) structural variability on the registration. Tissue classification in older versions of SPM
required the images to be registered with tissue probability maps. After registration, these maps
represented the prior probability of different tissue classes being found at each location in an
image. Bayes rule can then be used to combine these priors with tissue type probabilities derived
from voxel intensities, to provide the posterior probability.

This procedure was inherently circular, because the registration required an initial tissue clas-
sification, and the tissue classification requires an initial registration. This circularity is resolved
here by combining both components into a single generative model. This model also includes

189
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parameters that account for image intensity non-uniformity. Estimating the model parameters
(for a maximum a posteriori solution) involves alternating among classification, bias correction
and registration steps. This approach provides better results than simple serial applications of
each component.

Note that on a 32 bit computer, the most memory that SPM or any other program can use at
any time is 4Gbytes (or sometimes only 2Gbytes). This is because the largest number that can
be represented with 32 bits is 4,294,967,295, which limits how much memory may be addressed
by any one process. Out of memory errors may occasionally be experienced when trying to work
with large images. 64-bit computers can usually handle such cases.

25.1 Data

Specify the number of different channels (for multi-spectral classification). If you have scans of
different contrasts for each of the subjects, then it is possible to combine the information from
them in order to improve the segmentation accuracy. Note that only the first channel of data is
used for the initial affine registration with the tissue probability maps.

25.1.1 Channel

Specify a channel for processing. If multiple channels are used (eg PD & T2), then the same
order of subjects must be specified for each channel and they must be in register (same position,
size, voxel dims etc..). The different channels can be treated differently in terms of inhomogeneity
correction etc. You may wish to correct some channels and save the corrected images, whereas
you may wish not to do this for other channels.

Volumes

Select scans from this channel for processing. If multiple channels are used (eg T1 & T2), then
the same order of subjects must be specified for each channel and they must be in register (same
position, size, voxel dims etc..).

Bias regularisation

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

An important issue relates to the distinction between intensity variations that arise because
of bias artifact due to the physics of MR scanning, and those that arise due to different tissue
properties. The objective is to model the latter by different tissue classes, while modelling the
former with a bias field. We know a priori that intensity variations due to MR physics tend
to be spatially smooth, whereas those due to different tissue types tend to contain more high
frequency information. A more accurate estimate of a bias field can be obtained by including prior
knowledge about the distribution of the fields likely to be encountered by the correction algorithm.
For example, if it is known that there is little or no intensity non-uniformity, then it would be
wise to penalise large values for the intensity non-uniformity parameters. This regularisation can
be placed within a Bayesian context, whereby the penalty incurred is the negative logarithm of a
prior probability for any particular pattern of non-uniformity.

Knowing what works best should be a matter of empirical exploration. For example, if your
data has very little intensity non-uniformity artifact, then the bias regularisation should be in-
creased. This effectively tells the algorithm that there is very little bias in your data, so it does
not try to model it.

Bias FWHM

FWHM of Gaussian smoothness of bias. If your intensity non-uniformity is very smooth, then
choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation
due to different tissue types. The model for intensity non-uniformity is one of i.i.d. Gaussian
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noise that has been smoothed by some amount, before taking the exponential. Note also that
smoother bias fields need fewer parameters to describe them. This means that the algorithm is
faster for smoother intensity non-uniformities.

Save Bias Corrected

This is the option to save a bias corrected version of your images from this channel, or/and the
estimated bias field. MR images are usually corrupted by a smooth, spatially varying artifact
that modulates the intensity of the image (bias). These artifacts, although not usually a problem
for visual inspection, can impede automated processing of the images. The bias corrected version
should have more uniform intensities within the different types of tissues.

25.2 Tissues

The data for each subject are classified into a number of different tissue types. The tissue types
are defined according to tissue probability maps, which define the prior probability of finding a
tissue type at a particular location. Typically, the order of tissues is grey matter, white matter,
CSF, bone, soft tissue and air/background (if using toolbox/Seg/TPM.nii).

25.2.1 Tissue

A number of options are available for each of the tissues. You may wish to save images of some
tissues, but not others. If planning to use DARTEL, then make sure you generate “imported”
tissue class images of grey and white matter (and possibly others). Different numbers of Gaussians
may be needed to model the intensity distributions of the various tissues.

Tissue probability map

Select the tissue probability image for this class. These should be maps of eg grey matter,
white matter or cerebro-spinal fluid probability. A nonlinear deformation field is estimated that
best overlays the tissue probability maps on the individual subjects’ image. The default tissue
probability maps are modified versions of the ICBM Tissue Probabilistic Atlases.These tissue
probability maps are kindly provided by the International Consortium for Brain Mapping, John
C. Mazziotta and Arthur W. Toga. http://www.loni.ucla.edu/ICBM/ICBM TissueProb.html.
The original data are derived from 452 T1-weighted scans, which were aligned with an atlas
space, corrected for scan inhomogeneities, and classified into grey matter, white matter and
cerebrospinal fluid. These data were then affine registered to the MNI space and down-sampled
to 2mm resolution.

Rather than assuming stationary prior probabilities based upon mixing proportions, additional
information is used, based on other subjects’ brain images. Priors are usually generated by
registering a large number of subjects together, assigning voxels to different tissue types and
averaging tissue classes over subjects. Three tissue classes are used: grey matter, white matter
and cerebro-spinal fluid. A fourth class is also used, which is simply one minus the sum of the
first three. These maps give the prior probability of any voxel in a registered image being of any
of the tissue classes - irrespective of its intensity.

The model is refined further by allowing the tissue probability maps to be deformed according
to a set of estimated parameters. This allows spatial normalisation and segmentation to be
combined into the same model.

Num. Gaussians

The number of Gaussians used to represent the intensity distribution for each tissue class can be
greater than one. In other words, a tissue probability map may be shared by several clusters.
The assumption of a single Gaussian distribution for each class does not hold for a number of
reasons. In particular, a voxel may not be purely of one tissue type, and instead contain signal
from a number of different tissues (partial volume effects). Some partial volume voxels could fall
at the interface between different classes, or they may fall in the middle of structures such as the
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thalamus, which may be considered as being either grey or white matter. Various other image
segmentation approaches use additional clusters to model such partial volume effects. These
generally assume that a pure tissue class has a Gaussian intensity distribution, whereas intensity
distributions for partial volume voxels are broader, falling between the intensities of the pure
classes. Unlike these partial volume segmentation approaches, the model adopted here simply
assumes that the intensity distribution of each class may not be Gaussian, and assigns belonging
probabilities according to these non-Gaussian distributions. Typical numbers of Gaussians could
be two for grey matter, two for white matter, two for CSF, three for bone, four for other soft
tissues and two for air (background).

Note that if any of the Num. Gaussians is set to non-parametric, then a non-parametric
approach will be used to model the tissue intensities. This may work for some images (eg CT),
but not others - and it has not been optimised for multi-channel data. Note that it is likely to be
especially problematic for images with poorly behaved intensity histograms due to aliasing effects
that arise from having discrete values on the images.

Native Tissue

The native space option allows you to produce a tissue class image (c*) that is in alignment with
the original (see Figure 5.1). It can also be used for “importing” into a form that can be used
with the DARTEL toolbox (rc*).

Warped Tissue

You can produce spatially normalised versions of the tissue class - both with (mwc*) and without
(wc*) modulation (see below). These can be used for voxel-based morphometry. All you need to
do is smooth them and do the stats.

“Modulation” is to compensate for the effect of spatial normalisation. When warping a series
of images to match a template, it is inevitable that volumetric differences will be introduced into
the warped images. For example, if one subject’s temporal lobe has half the volume of that of
the template, then its volume will be doubled during spatial normalisation. This will also result
in a doubling of the voxels labelled grey matter. In order to remove this confound, the spatially
normalised grey matter (or other tissue class) is adjusted by multiplying by its relative volume
before and after warping. If warping results in a region doubling its volume, then the correction
will halve the intensity of the tissue label. This whole procedure has the effect of preserving the
total amount of grey matter signal in the normalised partitions. Actually, in this version of SPM
the warped data are not scaled by the Jacobian determinants when generating the ”modulated”
data. Instead, the original voxels are projected into their new location in the warped images. This
exactly preserves the tissue count, but has the effect of introducing aliasing artifacts - especially
if the original data are at a lower resolution than the warped images. Smoothing should reduce
this artifact though.

Note also that the ”unmodulated” data are generated slightly differently in this version of
SPM. In this version, the projected data are corrected using a kind of smoothing procedure. This
is not done exactly as it should be done (to save computational time), but it does a reasonable
job. It also has the effect of extrapolating the warped tissue class images beyond the range of
the original data. This extrapolation is not perfect, as it is only an estimate, but it may still be
a good thing to do.

25.3 Warping & MRF

A number of warping options are provided, but the main one that you could consider changing is
the one for specifying whether deformation fields or inverse deformation fields should be generated.

25.3.1 MRF Parameter

When tissue class images are written out, a few iterations of a simple Markov Random Field
(MRF) cleanup procedure are run. This parameter controls the strength of the MRF. Setting the
value to zero will disable the cleanup.
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25.3.2 Warping Regularisation

The objective function for registering the tissue probability maps to the image to process, in-
volves minimising the sum of two terms. One term gives a function of how probable the data
is given the warping parameters. The other is a function of how probable the parameters are,
and provides a penalty for unlikely deformations. Smoother deformations are deemed to be more
probable. The amount of regularisation determines the tradeoff between the terms. Pick a value
around one. However, if your normalised images appear distorted, then it may be an idea to
increase the amount of regularisation (by an order of magnitude). More regularisation gives
smoother deformations, where the smoothness measure is determined by the bending energy of
the deformations.

25.3.3 Affine Regularisation

The procedure is a local optimisation, so it needs reasonable initial starting estimates. Images
should be placed in approximate alignment using the Display function of SPM before beginning.
A Mutual Information affine registration with the tissue probability maps (D’Agostino et al,
2004) is used to achieve approximate alignment. Note that this step does not include any model
for intensity non-uniformity. This means that if the procedure is to be initialised with the affine
registration, then the data should not be too corrupted with this artifact.If there is a lot of
intensity non-uniformity, then manually position your image in order to achieve closer starting
estimates, and turn off the affine registration.

Affine registration into a standard space can be made more robust by regularisation (penalising
excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate
amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains,
so greater zooms are likely to be needed). For example, if registering to an image in ICBM/MNI
space, then choose this option. If registering to a template that is close in size, then select the
appropriate option for this.

25.3.4 Sampling distance

This encodes the approximate distance between sampled points when estimating the model pa-
rameters. Smaller values use more of the data, but the procedure is slower and needs more
memory. Determining the “best” setting involves a compromise between speed and accuracy.

25.3.5 Deformation Fields

Deformation fields can be saved to disk, and used by the Deformations Utility. For spatially
normalising images to MNI space, you will need the forward deformation, whereas for spatially
normalising (eg) GIFTI surface files, you’ll need the inverse. It is also possible to transform data in
MNI space on to the individual subject, which also requires the inverse transform. Deformations
are saved as .nii files, which contain three volumes to encode the x, y and z coordinates.
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This toolbox is based around the “A Fast Diffeomorphic Registration Algorithm” paper [3] .
The idea is to register images by computing a “flow field”, which can then be “exponentiated”
to generate both forward and backward deformations. Currently, the software only works with
images that have isotropic voxels, identical dimensions and which are in approximate alignment
with each other. One of the reasons for this is that the approach assumes circulant boundary
conditions, which makes modelling global rotations impossible. Another reason why the images
should be approximately aligned is because there are interactions among the transformations that
are minimised by beginning with images that are already almost in register. This problem could
be alleviated by a time varying flow field, but this is currently computationally impractical.

Because of these limitations, images should first be imported. This involves taking the
“* seg sn.mat” files produced by the segmentation code of SPM5, and writing out rigidly trans-
formed versions of the tissue class images, such that they are in as close alignment as possible
with the tissue probability maps. Rigidly transformed original images can also be generated, with
the option to have skull-stripped versions.

The next step is the registration itself. This can involve matching single images together, or it
can involve the simultaneous registration of e.g. GM with GM, WM with WM and 1-(GM+WM)
with 1-(GM+WM) (when needed, the 1-(GM+WM) class is generated implicitly, so there is no
need to include this class yourself). This procedure begins by creating a mean of all the images,
which is used as an initial template. Deformations from this template to each of the individual
images are computed, and the template is then re-generated by applying the inverses of the
deformations to the images and averaging. This procedure is repeated a number of times.

Finally, warped versions of the images (or other images that are in alignment with them) can
be generated.

This toolbox is not yet seamlessly integrated into the SPM package. Eventually, the plan
is to use many of the ideas here as the default strategy for spatial normalisation. The toolbox
may change with future updates. There will also be a number of other (as yet unspecified)
extensions, which may include a variable velocity version (related to LDDMM). Note that the
Fast Diffeomorphism paper only describes a sum of squares objective function. The multinomial
objective function is an extension, based on a more appropriate model for aligning binary data
to a template.

26.1 Initial Import

Images first need to be imported into a form that DARTEL can work with. If the default segmen-
tation is used (ie the Segment button), then this involves taking the results of the segmentation
(* seg sn.mat) [9] , in order to have rigidly aligned tissue class images. Typically, there would
be imported grey matter and white matter images, but CSF images can also be included. The
subsequent DARTEL alignment will then attempt to nonlinearly register these tissue class im-
ages together. If the new segmentation routine is used (from the toolbox), then this includes the
option to generate “imported” tissue class images. This means that a seperate importing step is
not needed for it.

26.1.1 Parameter Files

Select ’ sn.mat’ files containing the spatial transformation and segmentation parameters. Rigidly
aligned versions of the image that was segmented will be generated. The image files used by the
segmentation may have moved. If they have, then (so the import can find them) ensure that they
are either in the output directory, or the current working directory.
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26.1.2 Output Directory

Select the directory where the resliced files should be written.

26.1.3 Bounding box

The bounding box (in mm) of the volume that is to be written (relative to the anterior commis-
sure). Non-finite values will be replaced by the bounding box of the tissue probability maps used
in the segmentation.

26.1.4 Voxel size

The (isotropic) voxel sizes of the written images. A non-finite value will be replaced by the
average voxel size of the tissue probability maps used by the segmentation.

26.1.5 Image option

A resliced version of the original image can be produced, which may have various procedures
applied to it. All options will rescale the images so that the mean of the white matter intensity
is set to one. The “skull stripped” versions are the images simply scaled by the sum of the grey
and white matter probabilities.

26.1.6 Grey Matter

Produce a resliced version of this tissue class?

26.1.7 White Matter

Produce a resliced version of this tissue class?

26.1.8 CSF

Produce a resliced version of this tissue class?

26.2 Run DARTEL (create Templates)

Run the DARTEL nonlinear image registration procedure. This involves iteratively matching all
the selected images to a template generated from their own mean. A series of Template*.nii files
are generated, which become increasingly crisp as the registration proceeds.

26.2.1 Images

Select the images to be warped together. Multiple sets of images can be simultaneously registered.
For example, the first set may be a bunch of grey matter images, and the second set may be the
white matter images of the same subjects.

Images

Select a set of imported images of the same type to be registered by minimising a measure of
difference from the template.

26.2.2 Settings

Various settings for the optimisation. The default values should work reasonably well for aligning
tissue class images together.
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Template basename

Enter the base for the template name. Templates generated at each outer iteration of the pro-
cedure will be basename 1.nii, basename 2.nii etc. If empty, then no template will be saved.
Similarly, the estimated flow-fields will have the basename appended to them.

Regularisation Form

The registration is penalised by some “energy” term. Here, the form of this energy term is
specified. Three different forms of regularisation can currently be used.

Outer Iterations

The images are averaged, and each individual image is warped to match this average. This is
repeated a number of times.

Outer Iteration Different parameters can be specified for each outer iteration. Each of them
warps the images to the template, and then regenerates the template from the average of the
warped images. Multiple outer iterations should be used for more accurate results, beginning with
a more coarse registration (more regularisation) then ending with the more detailed registration
(less regularisation).

Inner Iterations The number of Gauss-Newton iterations to be done within this outer
iteration. After this, new average(s) are created, which the individual images are warped to
match.

Reg params For linear elasticity, the parameters are mu, lambda and id. For membrane
energy, the parameters are lambda, unused and id.id is a term for penalising absolute displace-
ments, and should therefore be small. For bending energy, the parameters are lambda, id1 and
id2, and the regularisation is by (-lambda*Laplacian + id1)2̂ + id2.

Use more regularisation for the early iterations so that the deformations are smooth, and then
use less for the later ones so that the details can be better matched.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down. Earlier iteration could use fewer time points, but later ones
should use about 64 (or fewer if the deformations are very smooth).

Smoothing Parameter A LogOdds parameterisation of the template is smoothed using a
multi-grid scheme. The amount of smoothing is determined by this parameter.

Optimisation Settings

Settings for the optimisation. If you are unsure about them, then leave them at the default
values. Optimisation is by repeating a number of Levenberg-Marquardt iterations, in which the
equations are solved using a full multi-grid (FMG) scheme. FMG and Levenberg-Marquardt are
both described in Numerical Recipes (2nd edition).

LM Regularisation Levenberg-Marquardt regularisation. Larger values increase the the sta-
bility of the optimisation, but slow it down. A value of zero results in a Gauss-Newton strategy,
but this is not recommended as it may result in instabilities in the FMG.

Cycles Number of cycles used by the full multi-grid matrix solver. More cycles result in higher
accuracy, but slow down the algorithm. See Numerical Recipes for more information on multi-grid
methods.
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Iterations Number of relaxation iterations performed in each multi-grid cycle. More iterations
are needed if using “bending energy” regularisation, because the relaxation scheme only runs very
slowly. See the chapter on solving partial differential equations in Numerical Recipes for more
information about relaxation methods.

26.3 Run DARTEL (existing Templates)

Run the DARTEL nonlinear image registration procedure to match individual images to pre-
existing template data. Start out with smooth templates, and select crisp templates for the later
iterations.

26.3.1 Images

Select the images to be warped together. Multiple sets of images can be simultaneously registered.
For example, the first set may be a bunch of grey matter images, and the second set may be the
white matter images of the same subjects.

Images

Select a set of imported images of the same type to be registered by minimising a measure of
difference from the template.

26.3.2 Settings

Various settings for the optimisation. The default values should work reasonably well for aligning
tissue class images together.

Regularisation Form

The registration is penalised by some “energy” term. Here, the form of this energy term is
specified. Three different forms of regularisation can currently be used.

Outer Iterations

The images are warped to match a sequence of templates. Early iterations should ideally use
smoother templates and more regularisation than later iterations.

Outer Iteration Different parameters and templates can be specified for each outer iteration.

Inner Iterations The number of Gauss-Newton iterations to be done within this outer
iteration.

Reg params For linear elasticity, the parameters are mu, lambda and id. For membrane
energy, the parameters are lambda, unused and id.id is a term for penalising absolute displace-
ments, and should therefore be small. For bending energy, the parameters are lambda, id1 and
id2, and the regularisation is by (-lambda*Laplacian + id1)2̂ + id2.

Use more regularisation for the early iterations so that the deformations are smooth, and then
use less for the later ones so that the details can be better matched.

Time Steps The number of time points used for solving the partial differential equations.
A single time point would be equivalent to a small deformation model. Smaller values allow
faster computations, but are less accurate in terms of inverse consistency and may result in the
one-to-one mapping breaking down. Earlier iteration could use fewer time points, but later ones
should use about 64 (or fewer if the deformations are very smooth).
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Template Select template. Smoother templates should be used for the early iterations.
Note that the template should be a 4D file, with the 4th dimension equal to the number of sets
of images.

Optimisation Settings

Settings for the optimisation. If you are unsure about them, then leave them at the default
values. Optimisation is by repeating a number of Levenberg-Marquardt iterations, in which the
equations are solved using a full multi-grid (FMG) scheme. FMG and Levenberg-Marquardt are
both described in Numerical Recipes (2nd edition).

LM Regularisation Levenberg-Marquardt regularisation. Larger values increase the the sta-
bility of the optimisation, but slow it down. A value of zero results in a Gauss-Newton strategy,
but this is not recommended as it may result in instabilities in the FMG.

Cycles Number of cycles used by the full multi-grid matrix solver. More cycles result in higher
accuracy, but slow down the algorithm. See Numerical Recipes for more information on multi-grid
methods.

Iterations Number of relaxation iterations performed in each multi-grid cycle. More iterations
are needed if using “bending energy” regularisation, because the relaxation scheme only runs very
slowly. See the chapter on solving partial differential equations in Numerical Recipes for more
information about relaxation methods.

26.4 Normalise to MNI Space

Normally, DARTEL generates warped images that align with the average-shaped template. This
routine includes an initial affine regisration of the template (the final one generated by DARTEL),
with the TPM data released with SPM.

“Smoothed” (blurred) spatially normalised images are generated in such a way that the original
signal is preserved. Normalised images are generated by a “pushing” rather than a “pulling” (the
usual) procedure. Note that a procedure related to trilinear interpolation is used, and no masking
is done. It is therefore recommended that the images are realigned and resliced before they are
spatially normalised, in order to benefit from motion correction using higher order interpolation.
Alternatively, contrast images generated from unsmoothed native-space fMRI/PET data can be
spatially normalised for a 2nd level analysis.

Two “preserve” options are provided. One of them should do the equavalent of generating
smoothed “modulated” spatially normalised images. The other does the equivalent of smoothing
the modulated normalised fMRI/PET, and dividing by the smoothed Jacobian determinants.

26.4.1 DARTEL Template

Select the final Template file generated by DARTEL. This will be affine registered with a TPM
file, such that the resulting spatially normalised images are closer aligned to MNI space. Leave
empty if you do not wish to incorporate a transform to MNI space (ie just click “done’ on the file
selector, without selecting any images).

26.4.2 Select according to

You may wish to spatially normalise only a few subjects, but have many scans per subject (eg
for fMRI), or you may have lots of subjects, but with a small and fixed number of scans for each
of them (eg for VBM). The idea is to chose the way of selecting files that is easier.
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Few Subjects

Select this option if there are only a few subjects, each with many or a variable number of scans
each. You will then need to specify a series of subjects, and the flow field and images of each of
them.

Subject Subject to be spatially normalized.

Flow Field DARTEL flow field for this subject.

Images Images for this subject to spatially normalise.

Many Subjects

Select this option if you have many subjects to spatially normalise, but there are a small and
fixed number of scans for each subject.

Flow fields The flow fields store the deformation information. The same fields can be used for
both forward or backward deformations (or even, in principle, half way or exaggerated deforma-
tions).

Images The flow field deformations can be applied to multiple images. At this point, you are
choosing how many images each flow field should be applied to.

Images Select images to be warped. Note that there should be the same number of images
as there are flow fields, such that each flow field warps one image.

26.4.3 Voxel sizes

Specify the voxel sizes of the deformation field to be produced. Non-finite values will default to
the voxel sizes of the template imagethat was originally used to estimate the deformation.

26.4.4 Bounding box

Specify the bounding box of the deformation field to be produced. Non-finite values will default
to the bounding box of the template imagethat was originally used to estimate the deformation.

26.4.5 Preserve

Preserve Concentrations (no ”modulation”): Smoothed spatially normalised images (sw*) repre-
sent weighted averages of the signal under the smoothing kernel, approximately preserving the
intensities of the original images. This option is currently suggested for eg fMRI.

Preserve Amount (”modulation”): Smoothed and spatially normalised images preserve the
total amount of signal from each region in the images (smw*). Areas that are expanded during
warping are correspondingly reduced in intensity. This option is suggested for VBM.

26.4.6 Gaussian FWHM

Specify the full-width at half maximum (FWHM) of the Gaussian blurring kernel in mm. Three
values should be entered, denoting the FWHM in the x, y and z directions. Note that you can
also specify [0 0 0], but any “modulated’ data will show aliasing (see eg Wikipedia), which occurs
because of the way the warped images are generated.
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26.5 Create Warped

This allows spatially normalised images to be generated. Note that voxel sizes and bounding
boxes can not be adjusted, and that there may be strange effects due to the boundary conditions
used by the warping. Also note that the warped images are not in Talairach or MNI space. The
coordinate system is that of the average shape and size of the subjects to which DARTEL was
applied. In order to have MNI-space normalised images, then the Deformations Utility can be
used to compose the individual DARTEL warps, with a deformation field that matches (e.g.) the
Template grey matter generated by DARTEL, with one of the grey matter volumes released with
SPM.

26.5.1 Flow fields

The flow fields store the deformation information. The same fields can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).

26.5.2 Images

The flow field deformations can be applied to multiple images. At this point, you are choosing
how many images each flow field should be applied to.

Images

Select images to be warped. Note that there should be the same number of images as there are
flow fields, such that each flow field warps one image.

26.5.3 Modulation

This allows the spatially normalised images to be rescaled by the Jacobian determinants of the
deformations. Note that the rescaling is only approximate for deformations generated using
smaller numbers of time steps.

26.5.4 Time Steps

The number of time points used for solving the partial differential equations. Note that Jacobian
determinants are not very accurate for very small numbers of time steps (less than about 16).

26.5.5 Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:
- Fastest, but not normally recommended.
Bilinear Interpolation:
- OK for PET, realigned fMRI, or segmentations
B-spline Interpolation:
- Better quality (but slower) interpolation [82], especially with higher degree splines. Can

produce values outside the original range (e.g. small negative values from an originally all positive
image).

26.6 Jacobian determinants

Create Jacobian determinant fields from flowfields.

26.6.1 Flow fields

The flow fields store the deformation information. The same fields can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).
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26.6.2 Time Steps

The number of time points used for solving the partial differential equations. Note that Jacobian
determinants are not very accurate for very small numbers of time steps (less than about 16).

26.7 Create Inverse Warped

Create inverse normalised versions of some image(s). The image that is inverse-normalised should
be in alignment with the template (generated during the warping procedure). Note that the
results have the same dimensions as the “flow fields”, but are mapped to the original images via
the affine transformations in their headers.

26.7.1 Flow fields

The flow fields store the deformation information. The same fields can be used for both forward
or backward deformations (or even, in principle, half way or exaggerated deformations).

26.7.2 Images

Select the image(s) to be inverse normalised. These should be in alignment with the template
image generated by the warping procedure.

26.7.3 Time Steps

The number of time points used for solving the partial differential equations. Note that Jacobian
determinants are not very accurate for very small numbers of time steps (less than about 16).

26.7.4 Interpolation

The method by which the images are sampled when being written in a different space. (Note
that Inf or NaN values are treated as zero, rather than as missing data)

Nearest Neighbour:
- Fastest, but not normally recommended.
Bilinear Interpolation:
- OK for PET, realigned fMRI, or segmentations
B-spline Interpolation:
- Better quality (but slower) interpolation [82], especially with higher degree splines. Can

produce values outside the original range (e.g. small negative values from an originally all positive
image).

26.8 Kernel Utilities

DARTEL can be used for generating matrices of dot-products for various kernel pattern-recognition
procedures.

The idea of applying pattern-recognition procedures is to obtain a multi-variate characteri-
sation of the anatomical differences among groups of subjects. These characterisations can then
be used to separate (eg) healthy individuals from particular patient populations. There is still a
great deal of methodological work to be done, so the types of kernel that can be generated here
are unlikely to be the definitive ways of proceeding. They are only just a few ideas that may be
worth trying out. The idea is simply to attempt a vaguely principled way to combine generative
models with discriminative models (see the “Pattern Recognition and Machine Learning” book
by Chris Bishop for more ideas). Better ways (higher predictive accuracy) will eventually emerge.

Various pattern recognition algorithms are available freely over the Internet. Possible ap-
proaches include Support-Vector Machines, Relevance-Vector machines and Gaussian Process
Models. Gaussian Process Models probably give the most accurate probabilistic predictions, and
allow kernels generated from different pieces of data to be most easily combined.
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26.8.1 Kernel from Images

Generate a kernel matrix from images. In principle, this same function could be used for gener-
ating kernels from any image data (e.g. “modulated” grey matter). If there is prior knowledge
about some region providing more predictive information (e.g. the hippocampi for AD), then it is
possible to weight the generation of the kernel accordingly. The matrix of dot-products is saved
in a variable “Phi”, which can be loaded from the dp *.mat file. The “kernel trick” can be used
to convert these dot-products into distance measures for e.g. radial basis-function approaches.

Data

Select images to generate dot-products from.

Weighting image

The kernel can be generated so that some voxels contribute to the similarity measures more than
others. This is achieved by supplying a weighting image, which each of the component images are
multiplied before the dot-products are computed. This image needs to have the same dimensions
as the component images, but orientation information (encoded by matrices in the headers) is
ignored. If left empty, then all voxels are weighted equally.

Dot-product Filename

Enter a filename for results (it will be prefixed by “dp ” and saved in the current directory).

26.8.2 Kernel from Flows

Generate a kernel from flow fields. The dot-products are saved in a variable “Phi” in the resulting
dp *.mat file.

Flow fields

Select the flow fields for each subject.

Regularisation Form

The registration is penalised by some “energy” term. Here, the form of this energy term is
specified. Three different forms of regularisation can currently be used.

Reg params

For linear elasticity, the parameters are ‘mu’, ‘lambda’ and ‘id’. For membrane and bending
energy, the parameters are ‘lambda’, unused and ‘id’. The term ‘id’ is for penalising absolute
displacements, and should therefore be small.

Dot-product Filename

Enter a filename for results (it will be prefixed by “dp ” and saved in the current directory.
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High-Dimensional Warping
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This toolbox is a Bayesian method for three dimensional registration of brain images [4] .
A finite element approach is used to obtain a maximum a posteriori (MAP) estimate of the
deformation field at every voxel of a template volume. The priors used by the MAP estimate
penalize unlikely deformations and enforce a continuous one-to-one mapping. The deformations
are assumed to have some form of symmetry, in that priors describing the probability distribution
of the deformations should be identical to those for the inverses (i.e., warping brain A to brain
B should not be different probablistically from warping B to A). A gradient descent algorithm is
used to estimate the optimum deformations.

Deformation fields are written with the same name as the moved image, but with ”y ” prefixed
on to the filename. Jacobian determinant images are also written (prefixed by ”jy ”).

27.1 Subjects

Specify pairs of images to match together.

27.1.1 Subject

Two images of the same subject, which are to be registered together. Prior to nonlinear high-
dimensional warping, the images should be rigidly registered with each other.

Reference Image

This is the reference image, which remains stationary.

205
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Moved Image

This is the moved image, which is warped to match the reference.

27.2 Bias Correction Options

MR images are usually corrupted by a smooth, spatially varying artifact that modulates the
intensity of the image (bias). These artifacts, although not usually a problem for visual inspection,
can impede automated processing of the images.

Before registering the images, an approximate bias correction is estimated for the moved
image. This is based on minimising the difference between the images an a symmetric way. Prior
to registering the images, they should be rigidly aligned together. The bias correction is estimated
once for these aligned images.

27.2.1 Iterations

Number of iterations for the bias correction

27.2.2 Bias FWHM

FWHM of Gaussian smoothness of bias. If your intensity nonuniformity is very smooth, then
choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation
due to different tissue types. The model for intensity nonuniformity is one of i.i.d. Gaussian noise
that has been smoothed by some amount, before taking the exponential. Note also that smoother
bias fields need fewer parameters to describe them. This means that the algorithm is faster for
smoother intensity nonuniformities.

27.2.3 Bias regularisation

We know a priori that intensity variations due to MR physics tend to be spatially smooth,
whereas those due to different tissue types tend to contain more high frequency information. A
more accurate estimate of a bias field can be obtained by including prior knowledge about the
distribution of the fields likely to be encountered by the correction algorithm. For example, if
it is known that there is little or no intensity non-uniformity, then it would be wise to penalise
large values for the intensity nonuniformity parameters. This regularisation can be placed within
a Bayesian context, whereby the penalty incurred is the negative logarithm of a prior probability
for any particular pattern of nonuniformity.

27.2.4 Levenberg-Marquardt regularisation

Levenberg-Marquardt regularisation keeps the bias correction part stable. Higher values means
more stability, but slower convergence.

27.3 Warping Options

There are a couple of user-customisable warping options.

27.3.1 Iterations

Number of iterations for the warping.

27.3.2 Warping regularisation

There is a tradeoff between the smoothness of the estimated warps, and the difference between the
registered images. Higher values mean smoother warps, at the expense of a lower mean squared
difference between the images.
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Data sets and examples
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Chapter 28

Auditory fMRI data

This data set comprises whole brain BOLD/EPI images acquired on a modified 2T Siemens
MAGNETOM Vision system. Each acquisition consisted of 64 contiguous slices (64×64×64
3×3mm×3 mm3 voxels). Acquisition took 6.05s, with the scan to scan repeat time (TR) set
arbitrarily to 7s.

96 acquisitions were made (TR=7s) from a single subject, in blocks of 6, giving 16 42s blocks.
The condition for successive blocks alternated between rest and auditory stimulation, starting
with rest. Auditory stimulation was bi-syllabic words presented binaurally at a rate of 60 per
minute. The functional data starts at acquisition 4, image fM00223 004. Due to T1 effects it is
advisable to discard the first few scans (there were no “dummy” lead-in scans). A structural image
was also acquired: sM00223 002. These images are stored in Analyze format and are available
from the SPM site 1. This data set was the first ever collected and analysed in the Functional
Imaging Laboratory (FIL) and is known locally as the mother of all experiments (MoAE).

To analyse the data, first create a new directory DIR, eg. c:\data\auditory, in which to
place the results of your analysis. Then create 3 subdirectories (i) jobs, (ii) classical and (iii)
bayesian. As the analysis proceeds these directories will be filled with job-specification files,
design matrices and models estimated using classical or Bayesian methods.

Start up Matlab enter your jobs directory and type spm fmri at the Matlab prompt.
SPM will then open in fMRI mode with three windows (1) the top-left or “Menu” window, (2)
the bottom-left or “Interactive” window and (3) the right-hand or “Graphics” window. Analysis
then takes place in three major stages (i) spatial pre-processing, (ii) model specification, review
and estimation and (iii) inference. These stages organise the buttons in SPM’s Menu window.

28.1 Spatial pre-processing

28.1.1 Realignment

Under the spatial pre-processing section of the SPM base window select Realign (Est & Res)
from the Realign pulldown menu. This will call up a realignment job specification in the batch
editor. Then

• Highlight data, select “New Session”, then highlight the newly created “Session” option.

• Select ”Specify Files” and use the SPM file selector to choose all of your functional images
eg. “fM000*.img”. There should be 96 files.

• Save the job file as eg. DIR\jobs\realign.mat.

• Press the RUN button in the batch editor (green arrow).

This will run the realign job which will write realigned images into the directory where the
functional images are. These new images will be prefixed with the letter “r”. SPM will then plot
the estimated time series of translations and rotations shown in Figure 28.2. These data are also

1Auditory fMRI dataset: http://www.fil.ion.ucl.ac.uk/spm/data/auditory/
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Figure 28.1: The SPM base window comprises three sections i) spatial pre-processing, (ii) model
specification, review and estimation and (iii) inference.
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Figure 28.2: Realignment of Auditory data.

saved to a file eg. rp fM00223 004.txt, so that these variables can be used as regressors when
fitting GLMs. This allows movements effects to be discounted when looking for brain activations.

SPM will also create a mean image eg. meanfM00223 004.img which will be used in the next
step of spatial processing - coregistration.

28.1.2 Coregistration

Select Coregister (Estimate) from the Coregister pulldown. This will call up the specifi-
cation of a coregistration job in the batch editor.

• Highlight “Reference Image” and then select the mean fMRI scan from realignment eg.
meanfM00223 004.img.

• Highlight “Source Image” and then select the structural image eg. sM00223 002.img.

• Press the Save button and save the job as coreg.job.

• Then press the RUN button.
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Figure 28.3: Mutual Information Coregistration of Auditory data.

SPM will then implement a coregistration between the structural and functional data that
maximises the mutual information. The image in figure 28.3 should then appear in the graphics
window. SPM will have changed the header of the source file which in this case is the structural
image sM00223 002.hdr.

The Check Reg facility is useful here, to check the results of coregistration. Press the
Check Reg button in the lower section of the base window and then the select the “Reference”
and “Source” Images specified above ie meanfM00223 004.img and sM00223 002.img. SPM will
then produce an image like that shown in Figure 28.4 in the Graphics window. You can then use
your mouse to navigate these images to confirm that there is an anatomical correspondence.

28.1.3 Segmentation

Press the Segment button. This will call up the specification of a segmentation job in the batch
editor. Highlight the Data field and then select the subjects registered anatomical image eg.
sM00223 002.img. Save the job file as segment.mat and then press RUN. SPM will segment the
structural image using the default tissue probability maps as priors.

Faster, though perhaps less optimal results can be obtained by eg. reducing the number of
Gaussians per class from [2 2 2 4] to eg. [1 1 1 4], increasing the sampling distance from eg. 3
to 4mm. These options can be edited under the “Custom” sub-menu and saved before the job is
run. The results obtained in figure 28.5 were obtained using the default values.

SPM will create, by default, gray and white matter images and bias-field corrected structural
image. These can be viewed using the CheckReg facility as described in the previous section.
Figure 28.5 shows the gray matter image, c1sM0023 002.img along with the original structural.
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Figure 28.4: Checking registration of functional and “registered” structural data.



214 CHAPTER 28. AUDITORY FMRI DATA

Figure 28.5: Gray matter image and “registered” structural image.

Figure 28.6 shows the structural and bias-corrected image, msM0023 002.img.
SPM will also write a spatial normalisation eg. sM00223 0020 seg sn.mat and inverse spa-

tial normalisation parameters sM00223 0020 seg inv sn.mat to files in the original structural
directory. These can be used to normalise the functional data.

28.1.4 Normalise

Select Normalise (Write) from the Normalise pulldown menu. This will call up the specifi-
cation of a normalise job in the batch editor.

• Highlight “Data”, select New “Subject”,

• Highlight “Parameter File” and select the sM00223 0020 seg sn.mat file that you created
in the previous section,

• Highlight images to write and select all of the realigned functional images rfM000*.img.
Note: This can be done efficiently by changing the filter in the SPM file selector to ^r.*.
SPM will then only list those files beginning with the letter r ie. those that have been
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Figure 28.6: Structural image (top) and bias-corrected structural image (bottom). Notice that the
original structural is darker at the top than at the bottom. This non-uniformity has been removed
in the bias-corrected image.
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realigned. You can then right click over the listed files, choose “Select all” and press
“Done”.

• Open “Writing Options”, and change “Voxel sizes” from [2 2 2] to [3 3 3].2

• Press “Save”, save the job as normalise.mat and then press the RUN button.

SPM will then write spatially normalised files to the functional data directory. These files
have the prefix w.

If you wish to superimpose a subject’s functional activations on their own anatomy3 you
will also need to apply the spatial normalisation parameters to their (bias-corrected) anatomical
image. To do this

• Select Normalise (Write), highlight “Data”, select “New Subject”.

• Highlight “Parameter File”, select the sM00223 0020 seg sn.mat file that you created in
the previous section, press “Done”.

• Highlight “Images to Write”, select the bias-corrected structural eg. msM00223 002.img,
press “Done”.

• Open “Writing Options”, select voxel sizes and change the default [2 2 2] to [1 1 3] which
corresponds to the original resolution of the images.

• Save the job as norm struct.mat and press the Run button.

28.1.5 Smoothing

Press the Smooth button4. This will call up the specification of a smooth job in the batch editor.

• Select “Images to Smooth” and then select the spatially normalised files created in the last
section eg. ^wrf.*.

• Highlight “FWHM” and change [8 8 8] to [6 6 6]. This will smooth the data by 6mm in
each direction.

• Save the job as smooth.mat and press the Run button.

An example of functional image and its smoothed version is displayed on Figure 28.7.

28.2 Model specification, review and estimation

To avoid T1 effects in the initial scans of an fMRI time series we recommend discarding the first
few scans. To make this example simple, we’ll discard the first complete cycle (12 scans, 04-15),
leaving 84 scans, image files 16-99. This is best done by moving these files to a different directory.

Press the “Specify 1st-level” button. This will call up the specification of an fMRI specification
job in the batch editor. Then

• Open the “Timing parameters” option.

• Highlight “Units for design” and select “Scans”.

• Highlight “Interscan interval” and enter 7.

• Highlight “Data and Design” and select “New Subject/Session”. Then open the newly
created “Subject/Session” option.

2This step is not strictly necessary. It will write images out at a resolution closer to that at which they were
acquired. This will speed up subsequent analysis and is necessary, for example, to make Bayesian fMRI analysis
computationally efficient.

3Beginners may wish to skip this step, and instead just superimpose functional activations on an “average
structural image”.

4The smoothing step is unnecessary if you are only interested in Bayesian analysis of your functional data.
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Figure 28.7: Functional image (top) and 6mm-smoothed functional image (bottom). These images
were obtained using SPM’s “CheckReg” facility.
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Figure 28.8: Design matrix: The filenames on the right-hand side of the design matrix indicate
the scan associated with each row.

• Highlight “Scans” and use SPM’s file selector to choose the 84 smoothed, normalised func-
tional images ie swrfM00223 016.img to swrfM00223 099.img. These can be selected easily
using the ^s.*’ filter, and select all (provided you have moved the scans 4 to 15 into a dif-
ferent directory). Then press “Done”.

• Highlight “Condition” and select “New condition”.

• Open the newly created “Condition” option. Highlight “Name” and enter “active”. High-
light “Onsets” and enter “6:12:84”. Highlight “Durations” and enter “6”.

• Highlight “Directory” and select the DIR/classical directory you created earlier.

• Save the job as specify.mat and press the Run button.

SPM will then write an SPM.mat file to the DIR/classical directory. It will also plot the
design matrix, as shown in Figure 28.8.

At this stage it is advisable to check your model specification using SPM’s review facility
which is accessed via the “Review” button. This brings up a “design” tab on the interactive
window clicking on which produces a pulldown menu. If you select the first item “Design Matrix”
SPM will produce the image shown in Figure 28.8. If you select “Explore” then “Session 1” then
“active”, SPM will produce the plots shown in Figure 28.9.

If you select the second item on the “Design” tab, “Design Orthogonality”, SPM will produce
the plot shown in Figure 28.10. Columns x1 and x2 are orthogonal if the inner product xT1 x2 = 0.
The inner product can also be written xT1 x2 = |x1||x2|cosθ where |x| denotes the length of x
and θ is the angle between the two vectors. So, the vectors will be orthogonal if cosθ = 0. The
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Figure 28.9: Exploring the design matrix in Figure 28.8: This shows the time series of
the “active” regressor (top left), a frequency domain plot of the active regressor (top right) and
the basis function used to convert assumed neuronal activity into hemodynamic activity. In this
model we used the default option - the canonical basis function. The frequency domain plot shows
that the frequency content of the “active” regressor is above the set frequencies that are removed
by the High Pass Filter (HPF) (these are shown in gray - in this model we accepted the default
HPF cut-off of 128s or 0.008Hz).
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Figure 28.10: Design Orthogonality: The description above the first column in the design
matrix Sn(1)Active*bf(1) means that this column refers to the first session of data (in this analysis
there is only 1 session), the name of this condition/trial is ‘Active’ and the trial information has
been convolved with the first basis function (the canonical hemodynamic response). The constant
regressor for session 1 is referred to as Sn(1)Constant. The orthogonality matrix at the bottom
indicates a degree of collinearity between regressors.

upper-diagonal elements in the matrix at the bottom of figure 28.10 plot cosθ for each pair of
columns in the design matrix. Here we have a single entry. A degree of non-orthogonality or
collinearity is indicated by the gray shading.

28.2.1 Estimate

Press the Estimate button. This will call up the specification of an fMRI estimation job in the
batch editor. Then

• Highlight the “Select SPM.mat” option and then choose the SPM.mat file saved in the
classical subdirectory.

• Save the job as estimate.job and press the Run button.

SPM will write a number of files into the selected directory including an SPM.mat file.

28.3 Inference

After estimation:
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Figure 28.11: The contrast manager

Figure 28.12: Left: A contrast is entered by specifying the numeric values in the lower window
and the name in the upper window. Right: After contrasts have been specified they can be selected.

• Press “Results”.

• Select the SPM.mat file created in the last section.

This will invoke the contrast manager.

28.3.1 Contrast manager

The contrast manager displays the design matrix (surfable) in the right panel and lists specified
contrasts in the left panel. Either “t-contrast” or “F-contrast” can be selected. To examine
statistical results for condition effects

• Select “Define new contrast”

One sided main effects for the active condition (i.e., a one-sided t-test) can be specified (in
this example) as “1” (active > rest) and “-1” (rest > active). SPM will accept correct contrasts
only. Accepted contrasts are displayed at the bottom of the contrast manager window in green,
incorrect ones are displayed in red. To view a contrast

• Select the contrast name e.g., “active > rest”.

• Press “Done”.

28.3.2 Masking

You will then be prompted with
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• Mask with other contrast ? [Yes/No].

• “Specify No”.

Masking implies selecting voxels specified by other contrasts. If ”yes”, SPM will prompt for
(one or more) masking contrasts, the significance level of the mask (default p = 0.05 uncorrected),
and will ask whether an inclusive or exclusive mask should be used. Exclusive will remove all
voxels which reach the default level of significance in the masking contrast, inclusive will remove
all voxels which do not reach the default level of significance in the masking contrast. Masking
does not affect p-values of the ”target” contrast, it only includes or excludes voxels.

28.3.3 Thresholds

You will then be prompted with

• Title for comparison ?

• Enter eg. “active > rest”.

• p value adjustment to control: [FWE/none].

• Select “FWE”.

• p value(family-wise error).

• Accept the default value, 0.05.

A Family Wise Error (FWE) is a false positive anywhere in the SPM. Now, imagine repeating
your experiment many times and producing SPMs. The proportion of SPMs containing FWEs is
the FWE rate. A value of 0.05 implies that 1 in 20 SPMs contains a false positive somewhere in
the image.

If you choose the “none” option above this corresponds to making statistical inferences at
the “voxel level”. These use “uncorrected” p values, whereas FWE thresholds are said to use
“corrected” p values. SPM’s default uncorrected p value is p=0.001. This means that the
probability of a false positive at each voxel is 0.001. So if, you have 50,000 voxels you can
expect 50, 000× 0.001 = 50 false positives in each SPM.

You will then be prompted with

• Extent Threshold {voxels} [0].

• Accept the default value, “0”.

Entering a value v here will produce SPMs with clusters containing at least v voxels. SPM
will then produce the SPM shown in Figure 28.13.

28.3.4 Files

A number of files are written to the working directory at this time. Images containing weighted
parameter estimates are saved as con 0002.hdr/img, con 0003.hdr/img, etc. in the working
directory. Images of T-statistics are saved as spmT 0002.hdr/img, spmT 0003.hdr/img etc., also
in the working directory.

28.3.5 Maximum Intensity Projections

SPM displays a Maximum Intensity Projection (MIP) of the statistical map in the graphics
window. The MIP is projected on a glass brain in three orthogonal planes. The MIP is surfable:
right-clicking in the MIP will activate a pulldown menu, left-clicking on the red cursor will allow
it to be dragged to a new position.
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Figure 28.13: SPM showing bilateral activation of auditory cortex.

Figure 28.14: SPM’s Interactive window during results assessment. The “p-values” section is used
to produce tables of statistical information. The visualisation section is used to plot responses at
a voxel or to visual activations overlaid on anatomical images. The “Multivariate” section, ie.
the “eigenvariate” button, is used to extract data for subsequent analyses such as assessment of
PsychoPhysiological Interactions (PPIs) or Dynamic Causal Models (DCMs).
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Figure 28.15: Volume table for “active > rest” effect. This table of values was created by pressing
the “Results-Fig” tab at the top of the graphics window and then pressing the “whole brain” button.
This displays the table of results in a separate window.

28.3.6 Design matrix

SPM also displays the design matrix with the selected contrast. The design matrix is also surfable:
right-clicking will show parameter names, left-clicking will show design matrix values for each scan.

In the SPM Interactive window (lower left panel) a button box appears with various options
for displaying statistical results (p-values panel) and creating plots/overlays (visualisation panel).
Clicking “Design” (upper left) will activate a pulldown menu as in the “Explore design” option.

28.3.7 Statistical tables

To get a summary of local maxima, press the “whole brain” button in the p-values section of
the interactive window. This will list all clusters above the chosen level of significance as well
as separate (>8mm apart) maxima within a cluster, with details of significance thresholds and
search volume underneath, as shown in Figure 28.15

The columns in volume table show, from right to left:

• x, y, z (mm): coordinates in MNI space for each maximum.

• peak-level: the chance (p) of finding (under the null hypothesis) a peak with this or a
greater height (T- or Z-statistic), corrected (FWE or FDR)/ uncorrected for search volume.

• cluster-level: the chance (p) of finding a cluster with this many (ke) or a greater number
of voxels, corrected (FWE or FDR)/ uncorrected for search volume.

• set-level: the chance (p) of finding this (c) or a greater number of clusters in the search
volume.

It is also worth noting that:

• The table is surfable: clicking a row of cluster coordinates will move the pointer in the MIP
to that cluster, clicking other numbers will display the exact value in the Matlab window
(e.g. 0.000 = 6.1971e-07).
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Figure 28.16: Estimated effect size.

• To inspect a specific cluster (e.g., in this example data set, the right auditory cortex), either
move the cursor in the MIP (by left-clicking and dragging the cursor, or right-clicking the
MIP background which will activate a pulldown menu).

• Alternatively, click the cluster coordinates in the volume table, or type the coordinates in
the co-ordinates section of the interactive window.

It is also possible to produce tables of statistical information for a single cluster of interest
rather than for the whole volume. Firstly, select the relevant cluster in the MIP and then press
the “current cluster” button in the p-values section of the interactive window. This will show
coordinates and voxel-level statistics for local maxima (>4mm apart) in the selected cluster. This
table is also surfable.

28.3.8 Plotting responses at a voxel

A voxel can be chosen with co-ordinates corresponding to those in the interactive window. The
responses at this voxel can then be plotted using the “Plot” button in the visualisation section
of the interactive window. This will provide you with five further options:

1. Contrast estimates and 90% CI: SPM will prompt for a specific contrast (e.g., active>rest).
The plot will show effect size and 90% confidence intervals. See eg. Figure 28.16.

2. Fitted responses: Plots adjusted data and fitted response across session/subject. SPM will
prompt for a specific contrast and provides the option to choose different ordinates (“an
explanatory variable”, “scan or time”, or “user specified”). If “scan or time”, the plot will
show adjusted or fitted data with errors added as shown in Figure 28.17.

3. Event-related responses: Plots adjusted data and fitted response across peri-stimulus time.

4. Parametric responses.

5. Volterra kernels.

For plotting event-related responses SPM provides three options

1. Fitted response and PSTH (peri-stimulus time histogram): plots mean regressor(s) (ie.
averaged over session) and mean signal +/- SE for each peri-stimulus time bin.

2. Fitted response and 90% CI: plots mean regressor(s) along with a 90% confidence interval.

3. Fitted response and adjusted data: plots regressor(s) and individual data (note that in this
example the data are shown in columns due to the fixed TR/ISI relationship).

Its worth noting that

• The values for the fitted response across session/subject for the selected plot can be displayed
and accessed in the Matlab window by typing “Y”. Typing “y” will display the adjusted
data.

• “Adjusted” data = adjusted for confounds (e.g., global flow) and high- and low pass filtering.
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Figure 28.17: Fitted responses.

Figure 28.18: Slices.

28.3.9 Overlays

The visualisation section of the interactive window also provides an overlay facility for anatomical
visualisation of clusters of activation. Pressing “Overlays” will activate a pulldown menu with
three options

1. Slices: overlay on three adjacent (2mm) transaxial slices. SPM will prompt for an image
for rendering. This could be a canonical image (see spm template.man) or an individual
T1/mean EPI image for single-subject analyses.

2. Sections: overlay on three intersecting (sagittal, coronal, transaxial) slices. These render-
ings are surfable: clicking the images will move the crosshair.

3. Render: overlay on a volume rendered brain, with options for using a smoothed brain, and
old (left) and new (right) style rendering.

Renderings can be saved as filename.img/hdr in the working directory by using the write
filtered option. In Figures 28.18, 28.19 and 28.20 the ‘active > rest’ activation has been superim-
posed on the spatially normalised, bias-corrected anatomical image wmsM00223 002.img created
earlier.

For the “Render” option we first created a rendering for this subject. This was implemented
by

• “Normalise (Write)” the two images c1sM00223 002.img and c2sM00223 002.img using the
“Parameter File ” sM00223 002 seg sn.mat and a voxel size of [1 1 3].

• Selecting “Xtract Surface” from the “Render” pulldown menu.

• Selecting the gray and white matter images wc1sM00223 002.img and wc2sM00223 002.img

created in the first step.

• Saving the results using the default options (Rendering and Surface).
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Figure 28.19: Sections.

SPM plots the rendered anatomical image in the graphics window and saves it as render -

wc1sM00223 002.mat. The surface image is saved as surf wc1sM00223 002.mat).
It is also possible to project and display the results on a surface mesh, we are going to

use here one of the canonical mesh distributed with SPM (in MNI space). Press “Overlays”
and choose “Render”, then go in the canonical folder of your SPM installation and select file
cortex 20484.surf.gii (this is a surface mesh stored using the GIfTI format) and you will
obtain a figure similar to 28.21.

28.3.10 Miscellaneous

Other options (in the results controls panel):

• clear: clears lower subpanel of Graphics window,

• exit: exits the results section,

• ?: launches help.

28.4 Bayesian analysis

28.4.1 Specification

Press the “Specify 1st-level” button. This will call up an fMRI specification job in the batch
editor. Then

• Open the fMRI model specification option.

• Load the “specify.mat” job file created for the classical analysis.

• Open “Subject/Session”, highlight “Scans”.

• Deselect the smoothed functional images using the “unselect all” option available from a
right mouse click in the SPM file selector (bottom window).
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Figure 28.20: Render.

Render (Acrobat Reader required)

Figure 28.21: 3D Rendering using canonical mesh.
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• Select the unsmoothed functional images using the ^w.* filter and ‘select all’ option available
from a right mouse click in the SPM file selector (top right window)5. The Bayesian analysis
uses a spatial prior where the spatial regularity in the signal is estimated from the data. It
is therefore not necessary to create smoothed images if you are only going to do a Bayesian
analysis.

• Press “Done”.

• Highlight “Directory” and select the DIR/bayesian directory you created earlier (you will
first need to deselect the DIR/classical directory).

• Save the job as specify bayesian.mat and press the “Run” button.

28.4.2 Estimation

Press the “Estimate” button. This will call up the specification of an fMRI estimation job in the
batch editor. Then

• Highlight the “Select SPM.mat” option and then choose the SPM.mat file saved in the
DIR/bayesian directory.

• Highlight “Method” and select the “Choose Bayesian 1st-level” option.

• Open the newly created “Bayesian 1st-level” option, highlight “AR model order” and select
0. This data set has a TR=7s, so is unlikely to have temporally autocorrelated errors.

• Save the job as estimate bayesian.job and press the “Run” butto.

SPM will write a number of files into the output directory including

• An SPM.mat file.

• Images of estimated regression coefficients Cbeta 0001.img and Cbeta 0002.img. These
filenames are prefixed with a C indicating that these are the mean values of the “Conditional”
or “Posterior” density.

• Images of error bars/standard deviations on the regression coefficients SDbeta 0001.img

and SDbeta 0002.img.

• An image of the standard deviation of the error Sess1 SDerror.img.

• An image mask.img indicating which voxels were included in the analysis.

28.4.3 Inference

After estimation:

• Press “Results”,

• Select the SPM.mat file created in the last section,

• Select “Define new contrast”,

• Enter the name “active > rest”,

• Enter the value “1”, press “Submit”, “OK”, “Done”,

• Mask with other contrast ? [Yes/No],

• Specify No,

• Title for comparison, accept the default,

5Remember not to select the first 12 scans, scans 4 to 15, as these may contain T1 effects. This can be done
during selection or by first moving the files to a different directory.
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• Effect size threshold for PPM,

• Enter the value 2,

• Posterior probability threshold for PPM,

• Enter the value 0.99,

• Extent threshold [0],

• Accept the default value,

• Plot effect size [Yes/No],

• Select the default ‘Yes’.

SPM will then plot a map of effect sizes at voxels where it is 99% sure that the effect size is
greater than 2% of the global mean. This is a large activation. Then use overlays, sections, select
the normalised structural image created earlier and move the cursor to the activation in the left
hemisphere. This should create the plot shown in Figure 28.22.

It is also possible to look for regions where responses in the active condition are different to
those at rest. Active responses could be greater or smaller.

• Press “Results”,

• Select the SPM.mat file created in the last section,

• Select “Define new contrast” and highlight the “F” radio button,

• Enter the name “active != rest”,

• Enter the value “1”, press “Submit”, “OK”, “Done”,

• Mask with other contrast ? [Yes/No],

• Specify “No”,

• Title for comparison, accept the default,

• Posterior probability threshold for PPM,

• Accept the default value6,

• Extent threshold [0],

• Accept the default value, 0,

• Plot effect size [Yes/No],

• Select the default “Yes”.

SPM will then plot a map of χ2 statistic values at above threshold voxels. Then use over-
lays, sections, select the normalised structural image created earlier and move the cursor to the
activation in the left hemisphere. This should create the plot shown in Figure 28.23

When you revisit the contrast manager this contrast will be referred to as a “P” contrast,
rather than an “F” contrast. This indicates that Bayes rule is used to make the inference. To
indicate that we are testing a two-sided effect it is advisable to make this clear when naming the
contrast (as we have done with the label “active != rest”).

6The default PPM threshold is set to 1 − 1/S where S is the number of voxels in the volume being analysed.
The rationale for this is that inference is based on an approximate posterior distribution, Q, which factorises across
voxels. The approximate posterior is chosen to best match the true posterior in the sense of KL-divergence. Given
the factorisation in Q, the expected number of false positives in the PPM is 1.
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Figure 28.22: Bayesian analysis: MIP and overlay of effect sizes at voxels where SPM is 99%
sure that the effect size is greater than 2% of the global mean.
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Figure 28.23: Two-sided Bayesian analysis: MIP and overlay of χ2 statistic values at above
threshold voxels. This shows regions where activity is different between active and rest conditions,
whether positive or negative.



Chapter 29

Face fMRI data

As another, more sophisticated example, consider the data from a repetition priming experiment
performed using event-related fMRI. Briefly, this is a 2×2 factorial study with factors “fame” and
“repetition” where famous and non-famous faces were presented twice against a checkerboard
baseline (for more details, see [48]). The subject was asked to make fame judgements by making
key presses. There are thus four event-types of interest; first and second presentations of famous
and non-famous faces, which we denote N1, N2, F1 and F2. The experimental stimuli and timings
of events are shown in Figures 29.1 and 29.2.

Images were acquired using continuous Echo-Planar Imaging (EPI) with TE=40ms, TR=2s
and 24 descending slices (64×64 3×3 mm2), 3mm thick with a 1.5mm gap. The data archive is
available from the SPM website1. This contains 351 Analyze format functional images sM03953 0005 *.img

of dimension 64×64×24 with 3×3×4.5 mm3 voxels. A structural image is also provided in Analyze
format (sM03953 0007.img).

To analyse the data, first create a new directory DIR eg. C:\data\face rep, in which to
place the results of your analysis. Then create 4 subdirectories (i) jobs, (ii) categorical, (iii)
parametric and (iv) bayesian. As the analysis proceeds these directories will be filled with
job-specification files, design matrices and models estimated using classical or Bayesian methods.

As well as the classical/Bayesian distinction we will show how this data can be analysed from
a parametric as well as a categorical perspective. We will look at the main effects of fame and
repetition and in the parameteric analysis we will look at responses as a function of “lag”, that
is, the number of faces intervening between repetition of a specific face.

Start up matlab, enter your jobs directory and type spm fmri at the Matlab prompt. SPM
will then open in fMRI mode with three windows (1) the top-left or “Menu” window, (2) the
bottom-left or “Interactive” window and (3) the right-hand or “Graphics” window. Analysis
then takes place in three major stages (i) spatial pre-processing, (ii) model specification, review
and estimation and (iii) inference. These stages organise the buttons in SPM’s base window.

29.1 Spatial pre-processing

29.1.1 Display

Display eg. the first functional image using the “Display” button. Note orbitofrontal and inferior
temporal drop-out and ghosting. This can be seen more clearly by selecting “brighten” from the
“Effects” tab in the “Colours” at the top of the Graphics window.

29.1.2 Realignment

Under the spatial pre-processing section of the SPM base window select Realign (Est & Res)
from the Realign pulldown menu. This will call up a realignment job specification in the batch
editor window. Then

• Highlight data, select “New Session”, then highlight the newly created “Session” option.

1Face Repetition dataset: http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/
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Figure 29.1: Face repetition paradigm: There were 2 presentations of 26 Famous and 26
Nonfamous Greyscale photographs, for 0.5s each, randomly intermixed. The minimal Stimulus
Onset Asynchrony (SOA)=4.5s, with probability 2/3 (ie 1/3 null events). The subject made one
of two right finger key presses denoting whether or not the subject thought the face was famous.

Figure 29.2: Time series of events.
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Figure 29.3: The SPM base window comprises three sections (i) spatial pre-processing, (ii) model
specification, review and estimation and (iii) inference.
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Figure 29.4: Signal dropout in EPI images.
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Figure 29.5: Realignment of face data: Movement less than the size of a voxel, which for this
data set is 3mm, is not considered problematic.

• Select “Specify Files” and use the SPM file selector to choose all of your functional images
eg. sM03953 0005 *.img.

• Save the job file as eg. DIR/jobs/realign.mat.

• Press the Run button in the batch editor window (green triangle).

This will run the realign job which will write realigned images into the directory where the
functional images are. These new images will be prefixed with the letter “r”. SPM will then plot
the estimated time series of translations and rotations shown in Figure 29.5. These data, the
realignment parameters, are also saved to a file eg. rp sM03953 0005 0006.txt, so that these
variables can be used as regressors when fitting GLMs. To prepare for this, copy the file into the
DIR/jobs directory and rename it movepars.txt. This allows movements effects to be discounted
when looking for brain activations.

SPM will also create a mean image eg. meansM03953 0005 0006.img which will be used in
the next step of spatial processing - coregistration.
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29.1.3 Slice timing correction

Press the Slice timing button. This will call up the specification of a slice timing job in the
batch editor window. Note that these data consist of N=24 axial slices acquired continuously
with a TR=2s (ie TA = TR - TR/N, where TA is the time between the onset of the first and
last slice of one volume, and the TR is the time between the onset of the first slice of one volume
and the first slice of next volume) and in a descending order (ie, most superior slice was sampled
first). The data however are ordered within the file such that the first slice (slice number 1) is
the most inferior slice, making the slice acquisition order [24 23 22 ... 1].

• Highlight “Data” and select “New Sessions”

• Highlight the newly create “Sessions” option, “Specify Files” and select the 351 realigned
functional images using the filter ^r.*.

• Select “Number of Slices” and enter 24.

• Select TR and enter 2.

• Select TA and enter 1.92 (or 2 - 2/24).

• Select “Slice order” and enter 24:-1:1.

• Select “Reference Slice”, and enter 12.

• Save the job as slice timing.mat and press the “Run” button.

SPM will write slice-time corrected files with the prefix “a” in the functional data directory.

29.1.4 Coregistration

Select Coregister (Estimate) from the Coregister pulldown menu. This will call up the
specification of a coregistration job in the batch editor window.

• Highlight “Reference Image” and then select the mean functional image meansM03953 0005 0006.img.

• Highlight “Source Image” and then select the structural image eg. sM03953 0007.img.

• Press the “Save” button and save the job as coreg.job

• Then press the “Run” button.

SPM will then implement a coregistration between the structural and functional data that
maximises the mutual information. The image in figure 29.6 should then appear in the graphics
window. SPM will have changed the header of the source file which in this case is the structural
image sM03953 0007.img.

29.1.5 Segmentation

Press the Segment button. This will call up the specification of a segmentation job in the batch
editor window. Highlight the “Data” field and then select the subjects coregistered anatomical
image eg. sM03953 0007.img. Save the job file as segment.mat and then press the Run button.
SPM will segment the structural image using the default tissue probability maps as priors. SPM
will create, by default, gray and white matter images and bias-field corrected structral image.
These can be viewed using the CheckReg facility as described in the previous section. Figure 29.7
shows the gray matter image, c1sM03953 0007.img, along with the original structural2.

SPM will also write a spatial normalisation eg. sM03953 0007 seg sn.mat file in the original
structural directory. This will be used in the next section to normalise the functional data.

2Segmentation can sometimes fail if the source (structural) image is not close in orientation to the MNI tem-
plates. It is generally advisable to manually orient the structural to match the template (ie MNI space) as close as
possible by using the “Display” button, adjusting x/y/z/pitch/roll/yaw, and then pressing the “Reorient” button.
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Figure 29.6: Mutual Information Coregistration of Face data.
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Figure 29.7: Gray matter (top) produced by segmentation of structural image (below).
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29.1.6 Normalise

Select Normalise (Write) from the Normalise pulldown menu. This will call up the specifi-
cation of a normalise job in the batch editor window.

• Highlight “Data”, select “New Subject”.

• Open “Subject”, highlight “Parameter File” and select the sM03953 0007 seg sn.mat file
that you created in the previous section.

• Highlight images to write and select all of the slice-time corrected, realigned functional
images arsM*.img. Note: This can be done efficiently by changing the filter in the SPM
file selector to ^ar.*. You can then right click over the listed files, choose “Select all”. You
might also want to select the mean functional image created during realignment (which
would not be affected by slice-time correction), i.e, the meansM03953 0005 006.img. Then
press “Done”.

• Open “Writing Options”, and change “Voxel sizes” from [2 2 2] to [3 3 3]3.

• Press “Save”, save the job as normalise.mat and then press the Run button.

SPM will then write spatially normalised files to the functional data directory. These files have
the prefix “w”.

If you wish to superimpose a subject’s functional activations on their own anatomy4 you
will also need to apply the spatial normalisation parameters to their (bias-corrected) anatomical
image. To do this

• Select Normalise (Write), highlight ‘Data’, select “New Subject”.

• Highlight “Parameter File”, select the sM03953 0007 seg sn.mat file that you created in
the previous section, press “Done”.

• Highlight “Images to Write”, select the bias-corrected structural eg. msM03953 0007.img,
press “Done”.

• Open “Writing Options”, select voxel sizes and change the default [2 2 2] to [1 1 1] which
better matches the original resolution of the images [1 1 1.5].

• Save the job as norm struct.mat and press Run button.

29.1.7 Smoothing

Press the Smooth button5. This will call up the specification of a smooth job in the batch editor
window.

• Select “Images to Smooth” and then select the spatially normalised files created in the last
section eg. war*.img.

• Save the job as smooth.mat and press Run button.

This will smooth the data by (the default) 8mm in each direction, the default smoothing
kernel width.

3This step is not strictly necessary. It will write images out at a resolution closer to that at which they were
acquired. This will speed up subsequent analysis and is necessary, for example, to make Bayesian fMRI analysis
computationally efficient.

4Beginners may wish to skip this step, and instead just superimpose functional activations on an “canonical
structural image”.

5The smoothing step is unnecessary if you are only interested in Bayesian analysis of your functional data.
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Figure 29.8: Functional image (top) and 8mm-smoothed functional image (bottom). These images
were plotted using SPM’s “CheckReg” facility.
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29.2 Modelling categorical responses

Before setting up the design matrix we must first load the Stimulus Onsets Times (SOTs) and
movement parameters into matlab. SOTs are stored in the sots.mat file in a cell array such that
eg. sot{1} contains stimulus onset times in TRs for event type 1, which is N1. Event-types 2, 3
and 4 are N2, F1 and F2.6

• At the Matlab command prompt type load sots

• Then type load movepars.txt

Now press the Specify 1st-level button. This will call up the specification of a fMRI
specification job in the batch editor window. Then

• In the “Timing paramaters” option,

• Highlight “Units for design” and select “Scans”,

• Highlight “Interscan interval” and enter 2,

• Highlight “Microtime resolution” and enter 24,

• Highlight “Microtime onset” and enter 12. These last two options make the creating of
regressors commensurate with the slice-time correction we have applied to the data, given
that there are 24 slices and that the reference slice to which the data were slice-time corrected
was the 12th (middle slice in time).

• Highlight “Data and Design” and select “New Subject/Session”.

• Highlight “Scans” and use SPM’s file selector to choose the 351 smoothed, normalised,
slice-time corrected, realigned functional images ie swarsM.img. These can be selected
easily using the ^swar.* filter, and select all. Then press “Done”.

• Highlight “Conditions” and select “New condition”7.

• Open the newly created “Condition” option. Highlight “Name” and enter “N1”. Highlight
“Onsets” and enter sot{1}. Highlight “Durations” and enter 0.

• Highlight “Conditions” and select “Replicate condition”.

• Open the newly created “Condition” option (the lowest one). Highlight “Name” and change
to “N2”. Highlight “Onsets” and enter sot{2}.

• Highlight “Conditions” and select “Replicate condition”.

• Open the newly created “Condition” option (the lowest one). Highlight “Name” and change
to “F1”. Highlight “Onsets” and enter sot{3}.

• Highlight “Conditions” and select “Replicate condition”.

• Open the newly created “Condition” option (the lowest one). Highlight “Name” and change
to “F2”. Highlight “Onsets” and enter sot{4}.

• Highlight “Multiple Regressors” and select the movepars.txt file8.

• Highlight “Factorial Design”, select “New Factor”, open the newly created “Factor” option,
highlight “Name” and enter “Fam”, highlight “Levels” and enter 2.

6Unlike previous analyses of these data in SPM99 and SPM2, we will not bother with extra event-types for the
(rare) error trials.

7It is also possible to enter information about all of the conditions in one go. This requires much less but-
ton pressing and can be implemented by highlighting the “Multiple conditions” option and then selecting the
all-conditions.mat file, which is also provided on the webpage.

8It is also possible to enter regressors one by one by highlighting “Regressors” and selecting “New Regressor”
for each one. Here, we benefit from the fact that the realignment stage produced a text file with the correct
number of rows (351) and columns (6) for SPM to add 6 regressors to model (linear) rigid-body movement effects.
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Figure 29.9: Design matrix.

• Highlight “Factorial Design”, select “New Factor”, open the newly created “Factor” option,
highlight “Name” and enter “Rep”, highlight “Levels” and enter 29.

• Open “Canonical HRF” under “Basis Functions”. Select “Model derivatives” and select
“Time and Dispersion derivatives”.

• Highlight “Directory” and select the DIR/categorical directory you created earlier.

• Save the job as categorical spec.mat and press the Run button.

SPM will then write an SPM.mat file to the DIR/categorical directory. It will also plot the
design matrix, as shown in Figure 29.9.

At this stage it is advisable to check your model specification using SPM’s review facility
which is accessed via the “Review” button. This brings up a “design” tab on the interactive
window clicking on which produces a pulldown menu. If you select the first item “Design Matrix”
SPM will produce the image shown in Figure 29.9. If you select “Explore” then “Session 1” then
“N1”, SPM will produce the plots shown in Figure 29.10.

9The order of naming these factors is important - the factor to be specified first is the one that “changes slowest”
ie. as we go through the list of conditions N1, N2, F1, F2 the factor “repetition” changes every condition and the
factor “fame” changes every other condition. So “Fam” changes slowest and is entered first.
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Figure 29.10: Exploring the design matrix in Figure 29.9. This shows the time series of the
“N1” regressor (top left), the three basis functions used to convert assumed neuronal activity into
hemodynamic activity (bottom left), and a frequency domain plot of the three regressors for the
basis functions in this condition (top right). The frequency domain plot shows that the frequency
content of the “N1” condition is generally above the set frequencies that are removed by the High
Pass Filter (HPF) (these are shown in gray - in this model we accepted the default HPF cut-off
of 128s or 0.008Hz).
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Figure 29.11: Contrast Manager containing default contrasts for categorical design.

29.2.1 Estimate

Press the Estimate button. This will call up the specification of an fMRI estimation job in the
batch editor window. Then

• Highlight the “Select SPM.mat” option and then choose the SPM.mat file saved in the
DIR/categorical directory.

• Save the job as categorical est.job and press Run button.

SPM will write a number of files into the selected directory including an SPM.mat file.

29.2.2 Inference for categorical design

Press “Results” and select the SPM.mat file from DIR/categorical. This will again invoke the
contrast manager. Because we specified that our model was using a “Factorial design” a number
of contrasts have been specified automatically, as shown in Figure 29.11.

• Select contrast number 5. This is a t-contrast Positive effect of condition 1 This
will show regions where the average effect of presenting faces is significantly positive, as
modelled by the first regressor (hence the 1), the canonical HRF. Press ‘Done”.

• Mask with other contrast ? [Yes/No]

• Specify No.

• Title for comparison ?

• Enter “Canonical HRF: Faces > Baseline”

• p value adjustment to control: [FWE/FDR/none]

• Select FWE

• Corrected p value(family-wise error)

• Accept the default value, 0.05
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Figure 29.12: MIP and Volume table for Canonical HRF: Faces > Baseline.

• Extent threshold {voxels} [0]

• Accept the default value, 0.

SPM will then produce the MIP shown in Figure 29.12.

29.2.3 Statistical tables

To get a summary of local maxima, press the “whole brain” button in the p-values section of
the interactive window. This will list all clusters above the chosen level of significance as well
as separate (>8mm apart) maxima within a cluster, with details of significance thresholds and
search volume underneath, as shown in Figure 29.12

The columns in volume table show, from right to left:

• x, y, z (mm): coordinates in MNI space for each maximum.

• peak-level: the chance (p) of finding (under the null hypothesis) a peak with this or a
greater height (T- or Z-statistic), corrected (FWE or FDR)/ uncorrected for search volume.

• cluster-level: the chance (p) of finding a cluster with this many(ke) or a greater number
of voxels, corrected (FWE or FDR)/ uncorrected for search volume.
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• set-level: the chance (p) of finding this (c) or a greater number of clusters in the search
volume.

Right-click on the MIP and select “goto global maximum”. The cursor will move to [39 -70
-14]. You can view this activation on the subject’s normalised, attenuation-corrected structural
(wmsM03953 0007img), which gives best anatomical precision, or on the normalised mean func-
tional (wmeansM03953 0005 0006.img), which is closer to the true data and spatial resolution
(including distortions in the functional EPI data).

If you select “plot” and choose “Contrast of estimates and 90% C.I” (confidence interval),
and select the “Average effect of condition” contrast, you will see three bars corresponding to
the parameter estimates for each basis function (summed across the 4 conditions). The BOLD
impulse response in this voxel loads mainly on the canonical HRF, but also significantly (given
that the error bars do not overlap zero) on the temporal and dispersion derivatives (see next
Chapter).

29.2.4 F-contrasts

To assess the main effect of repeating faces, as characterised by both the hrf and its derivatives, an
F-contrats is required. This is really asking whether repetition changes the shape of the impulse
response (e.g, it might affect its latency but not peak amplitude), at least the range of shapes
defined by the three basis functions. Because we have told SPM that we have a factorial design,
this required contrast will have been created automatically - it is number 3.

• Press “Results” and select the SPM.mat file in the DIR/categorical directory.

• Select the “F-contrast” toggle and the contrast number 3, as shown in Figure 29.13. Press
“Done”.

• Mask with other contrast ? [Yes/No].

• Specify “Yes”.

• Select contrast 5 - Positive effect of condition 1 (the T-contrast of activation versus
baseline, collapsed across conditions, that we evaluated above)

• uncorrected mask p-value ?

• Change to 0.001

• nature of mask?

• Select ’inclusive’

• Title for comparison ?

• Keep “Main effect of Rep (masked with ...)”

• p value adjustment to control: [FWE/none]

• Select none

• threshold (F or p value)

• Accept the default value, 0.001

• Extent threshold {voxels} [0]

• Accept the default value, 0
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Figure 29.13: Contrast manager showing selection of the first contrast “Main effect of Rep”
(repetition: F1 and N1 vs F2 and N2)

A MIP should then appear, the top half of which should look like Figure 29.14.
Note that this contrast will identify regions showing any effect of repetition (e.g, decreased

or increased amplitudes) within those regions showing activations (on the canonical HRF) to
faces versus baseline (at p<.05 uncorrected). Select “goto global max”, which is in right ventral
temporal cortex [42 -64 -8].

If you press plot and select “Event-related responses”, then “F1”, then “fitted response and
PSTH”, you will see the best fitting linear combination of the canonical HRF and its two deriva-
tives (thin red line), plus the “selectively-averaged” data (peri-stimulus histogram, PSTH), based
on an FIR refit (see next Chapter). If you then select the “hold” button on the Interactive win-
dow, and then “plot” and repeat the above process for the “F2” rather than “F1” condition, you
will see two estimated event-related responses, in which repetition decreases the peak response
(ie F2<F1), as shown in Figure 29.14.

You can explore further F-contrasts, which are a powerful tool once you understand them. For
example, the MIP produced by the “Average effect of condition” F-contrast looks similar to the
earlier T-contrast, but importantly shows the areas for which the sums across conditions of the
parameter estimates for the canonical hrf and/or its temporal derivative and/or its dispersion
derivative are different from zero (baseline). The first row of this F-contrast ([1 0 0 1 0 0 1 0
0 1 0 0]) is also a two-tailed version of the above T-contrast, ie testing for both activations and
deactivations versus baseline. This also means that the F-contrasts [1 0 0 1 0 0 1 0 0 1 0 0] and
[-1 0 0 -1 0 0 -1 0 0 -1 0 0] are equivalent. Finally, note that an F- (or t-) contrast such as [1 1
1 1 1 1 1 1 1 1 1], which tests whether the mean of the canonical hrf AND its derivatives for all
conditions are different from (larger than) zero is not sensible. This is because the canonical hrf
and its temporal derivative may cancel each other out while being significant in their own right.
The basis functions are really quite different things, and need to represent separate rows in an
F-contrast.

29.2.5 F-contrasts for testing effects of movement

To assess movement-related activation

• Press “Results”, select the SPM.mat file, select “F-contrast” in the Contrast Manager. Spec-
ify e.g. “Movement-related effects” (name) and in the “contrasts weights matrix” window,
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Figure 29.14: MIP for Main effect of Rep, masked inclusively with Canonical HRF: Faces >
Baseline at p<.001 uncorrected. Shown below are the best-fitting responses and peri-stimulus
histograms (PSTH) for F1 and F2.



29.3. MODELLING PARAMETRIC RESPONSES 251

or “1:12 19” in the “columns for reduced design” window.

• Submit and select the contrast, specify “mask with other contrasts?” (no), “title for com-
parison” (accept default), “corrected height threshold” (FWE), and “corrected p-value”
(accept default).

• When the MIP appears, select “sections” from the “overlays” pulldown menu, and select
the normalised structural image (wmsM03953 0007.img).

You will see there is a lot of residual movement-related artifact in the data (despite spatial
realignment), which tends to be concentrated near the boundaries of tissue types (eg the edge of
the brain; see Figure 29.15). (Note how the MIP can be misleading in this respect, since though
it appears that the whole brain is affected, this reflects the nature of the (X-ray like) projections
onto each orthogonal view; displaying the same datae as sections in 3D shows that not every
voxel is suprathreshold.) Even though we are not interested in such artifact, by including the
realignment parameters in our design matrix, we “covary out” (linear components) of subject
movement, reducing the residual error, and hence improve our statistics for the effects of interest.

29.3 Modelling parametric responses

Before setting up the design matrix, we must first load into Matlab the Stimulus Onsets Times
(SOTs), as before, and also the “Lags”, which are specific to this experiment, and which will be
used as parametric modulators. The Lags code, for each second presentation of a face (N2 and
F2), the number of other faces intervening between this (repeated) presentation and its previous
(first) presentation. Both SOTs and Lags are represented by Matlab cell arrays, stored in the
sots.mat file.

• At the Matlab command prompt type load sot. This loads the stimulus onset times and
the lags (the latter in a cell array called itemlag.

Now press the Specify 1st-level button. This will call up the specification of a fMRI
specification job in the batch editor window. Then

• Press “Load” and select the categorical spec.mat job file you created earlier.

• Open “Conditions” and then open the second “Condition”.

• Highlight “Parametric Modulations”, select “New Parameter”.

• Highlight “Name” and enter “Lag”, highlight values and enter itemlag{2}, highlight poly-
nomial expansion and “2nd order”.

• Now open the fourth “Condition” under “Conditions”.

• Highlight “Parametric Modulations”, select “New Parameter”.

• Highlight “Name” and enter “Lag”, highlight values and enter itemlag{4}, highlight poly-
nomial expansion and “2nd order”.

• Open “Canonical HRF” under “Basis Functions”, highlight “Model derivatives” and select
“No derivatives” (to make the design matrix a bit simpler for present purposes!).

• Highlight “Directory” and select DIR/parametric (having “unselected” the current defini-
tion of directory from the Categorical analysis).

• Save the job as parametric spec and press the Run button.

This should produce the design matrix shown in Figure 29.16.
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Figure 29.15: Movement-related activations. These spurious ‘activations’ are due to residual
movement of the head during scanning. These effects occur at tissue boundaries and boundaries
between brain and non-brain, as this is where contrast differences are greatest. Including these
regressors in the design matrix means these effects cannot be falsely attributed to neuronal activity.
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Figure 29.16: Design matrix for testing repetition effects parametrically. Regressor 2
indicates the second occurence of a nonfamous face. Regressor 3 modulates this linearly as a
function of lag (ie. how many faces have been shown since that face was first presented), and
regressor 4 modulates this quadratically as a function of lag. Regressors 6,7 and 8 play the same
roles, but for famous faces.
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29.3.1 Estimate

Press the Estimate button. This will call up the specification of an fMRI estimation job in the
batch editor window. Then

• Highlight the “Select SPM.mat” option and then choose the SPM.mat file saved in the
DIR/parametric directory.

• Save the job as parametric est.job and press the Run button.

SPM will write a number of files into the selected directory including an SPM.mat file.

29.3.2 Plotting parametric responses

We will look at the effect of lag (up to second order, ie using linear and quadratic terms) on
the response to repeated Famous faces, within those regions generally activated by faces versus
baseline. To do this

• Press “Results” and select the SPM.mat file in the DIR/parametric directory.

• Press “Define new contrast”, enter the name “Famous Lag”, press the “F-contrast” radio
button, enter “1:6 9:15” in the “columns in reduced design” window, press “submit”, “OK”
and “Done”.

• Select the “Famous Lag” contrast.

• Mask with other contrast ? [Yes/No]

• Specify “Yes”.

• Select the “Positive Effect of Condition 1” T contrast.

• Change to an 0.05 uncorrected mask p-value.

• Nature of Mask ? inclusive.

• Title for comparison ?

• Accept what is offered

• p value adjustment to control: [FWE/none]

• Select None

• Threshold {F or p value}

• Accept the default value, 0.001

• Extent threshold {voxels} [0]

• Accept the default value, 0.

Figure 29.17 shows the MIP and an overlay of this parametric effect using overlays, sections and
selecting the wmsM03953 0007.img image. The effect is plotted in the time domain in figure 29.18.
This was obtained by

• Right clicking on the MIP and selecting “global maxima”.

• Pressing Plot, and selecting “parametric responses” from the pull-down menu.

• Which effect ? select “F2”.

This shows a quadratic effect of lag, in which the response appears negative for short-lags, but
positive and maximal for lags of about 40 intervening faces (note that this is a very approximate
fit, since there are not many trials, and is also confounded by time during the session, since longer
lags necessarily occur later (for further discussion of this issue, see the SPM2 example analysis of
these data on the webpage).



29.3. MODELLING PARAMETRIC RESPONSES 255

Figure 29.17: MIP and overlay of parametric lag effect in parietal cortex.
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Figure 29.18: Response as a function of lag.

29.4 Bayesian analysis

29.4.1 Specification

Press the Specify 1st-level button. This will call up an fMRI specification job in the batch
editor window. Then

• Load the categorical spec.mat job file created for the classical analysis.

• Open “Subject/Session”, highlight “Scans”.

• Deselect the smoothed functional images using the ‘unselect all’ option available from a
right mouse click in the SPM file selector (bottom window).

• Select the unsmoothed functional images using the ^wa.* filter and “select all” option
available from a right mouse click in the SPM file selector (top right window). The Bayesian
analysis uses a spatial prior where the spatial regularity in the signal is estimated from the
data. It is therefore not necessary to create smoothed images if you are only going to do a
Bayesian analysis.

• Press “Done”.

• Highlight “Directory” and select the DIR/bayesian directory you created earlier (you will
first need to deselect the DIR/categorical directory).

• Save the job as specify bayesian.mat and press the Run button.

29.4.2 Estimation

Press the Estimate button. This will call up the specification of an fMRI estimation job in the
batch editor window. Then

• Highlight the “Select SPM.mat” option and then choose the SPM.mat file saved in the
DIR/bayesian subdirectory

• Highlight “Method” and select the “Choose Bayesian 1st-level” option.

• Save the job as estimate bayesian.job and press the Run button.
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Figure 29.19: Bayesian analysis: Estimated AR(1) coefficient image indicating heterogeneity near
the circle of Willis
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SPM will write a number of files into the output directory including

• An SPM.mat file.

• Images Cbeta k.img where k indexes the kth estimated regression coefficient. These file-
names are prefixed with a “C”’ indicating that these are the mean values of the “Conditional”
or “Posterior” density.

• Images of error bars/standard deviations on the regression coefficients SDbeta k.img.

• An image of the standard deviation of the error Sess1 SDerror.img.

• An image mask.img indicating which voxels were included in the analysis.

• Images Sess1 AR p.img where p indexes the pth AR coefficient. See eg. Figure 29.19.

• Images con i.img and con sd i.img which are the mean and standard deviation of the ith
pre-defined contrast.

29.4.3 Inference

After estimation, we can make a posterior inference using a PPM. Basically, we identify regions
in which we have a high probability (level of confidence) that the response exceeds a particular
size (eg, % signal change). This is quite different from the classical inferences above, where we
look for low probabilities of the null hypothesis that the size of the response is zero.

To determine a particular response size (“size threshold”) in units of PEAK % signal change,
we first need to do a bit of calculation concerning the scaling of the parameter estimates. The
parameter estimates themselves have arbitrary scaling, since they depend on the scaling of the
regressors. The scaling of the regressors in the present examples depends on the scaling of the
basis functions. To determine this scaling, load the “SPM.mat” file and type in Matlab sf =

max(SPM.xBF.bf(:,1))/SPM.xBF.dt (alternatively, press “Design:Explore:Session 1” and select
any of the conditions, then read off the peak height of the canonical HRF basis function (bottom
left)).

Then, if you want a size threshold of 1% peak signal change, the value you need to enter for
the PPM threshold (ie the number in the units of the parameter estimates) is 1/sf (which should
be 4.75 in the present case).10

Finally, if we want to ask where is there a signal greater than 1% (with a certain confidence)
to faces versus baseline, we need to create a new contrast that takes the AVERAGE of the
parameter estimates for the canonical HRF across the four conditions (N1 to F2), rather than
the default Positive effect of condition 1 contrast, which actually calculates the SUM of
the parameter estimates for the canonical HRF across conditions (the average vs sum makes no
difference for the classical statistics).

• Press “Results”.

• Select the SPM.mat file created in the last section.

• Press “Define new contrast”, enter the name “AVERAGE Canonical HRF: Faces > Base-
line”, press the “T-contrast” radio button, enter the contrast [1 0 0 1 0 0 1 0 0 1 0 0]/4,
press “submit”, “OK” and “Done”.

• Mask with other contrast ? [Yes/No]

• Specify No

• Title for comparison

• Enter “AVERAGE Canonical HRF: Faces > Baseline”

• Effect size threshold for PPM

10Strictly speaking, this is the peak height of the canonical component of the best fitting BOLD impulse response:
the peak of the complete fit would need to take into account all three basis functions and their parameter estimates.
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Figure 29.20: Bayesian analysis: MIP and overlay of effect sizes at voxels where PPM is 95%
sure that the effect size is greater than 1% of the global mean. The cursor is at the location
x = 30, y = −82, z = −17mm

• Enter the value

• Posterior probability threshold for PPM

• Enter the value 0.95

• Extent threshold [0]

• Accept the default value

• Plot effect size [Yes/No]

• Select the default “Yes”

SPM will then plot a map of effect sizes at voxels where it is 95% sure that the effect size is
greater than 1% of the global mean. Then use overlays, sections, select the normalised structural
image created earlier and move the cursor to the activation in the left hemisphere. This should
create the plot shown in Figure 29.20.
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Chapter 30

Face group fMRI data

30.1 Introduction

These examples illustrate multisubject “random effects” analyses or “second-level” models of
fMRI data [72]1. The examples consist of three basic types of 2nd-level model:

1. M2c: Using contrast images for the canonical HRF only. This uses a single observation
(contrast image) per subject only and data are analysed using a “One-sample t-test”.

2. M2i: Using contrast images from an “informed” basis set, consisting of the canonical HRF
and its two partial derivatives with respect to time (onset latency) and dispersion. This
uses 3 observations (contrast images) per subject and data are analysed using a “One-way
ANOVA” with 3 levels.

3. M2f: Using contrast images from a very general “Finite Impulse Response” (FIR) basis
set, with 12 × 2 second timebins. This uses 12 observations (contrast images) per subject.
Data are analysed using a “One-way ANOVA” with 12 levels.

30.2 Data

The data come from the “implicit” condition of the Henson et al. study [48]. Although the 1st-
level design matrices (and therefore resulting contrast images) used do not correspond exactly to
those used in that study.

It is also the same study from which one subject is used to illustrate a single-subject fixed
effects analysis (see chapter 29 in this manual).

Unlike the single-subject fixed effects example dataset, only two event-types were modelled:
famous and nonfamous faces (initial and repeated presentations were collapsed together, as were
correct and incorrect responses). Briefly, greyscale photographs of 52 famous and 52 nonfamous
face were presented for 0.5s for fame judgment task (one of two right finger key presses). The
minimal SOA (SOAmin) was 4.5s, with all faces randomly intermixed together with a further 52
null events (ie 2/3 probability of a face every SOAmin).

Original images were continuous EPI (TE=40ms,TR=2s) 24 descending slices (64×64 3×3
mm2), 3mm thick, 1.5mm gap.

2nd-level models M2c and M2i derive from a 1st-level model (M1i), in which the events
were modelled with Nf=3 basis functions: the canonical HRF, its partial derivative with respect
to onset latency (“temporal derivative”) and its partial derivative with respect to dispersion
(“dispersion derivative”).

2nd-level model M2f derives from an alternative 1st-level model (M1f), in which the same
events were modelled with Nf=12 basis functions instead: corresponding to 2s timebins from
0-24s poststimulus (SPM’s “Finite Impulse Response” or FIR basis set).

1This chapter has been largely cannibalised from an earlier document, available from http://www.fil.ion.

ucl.ac.uk/spm/data/face_rfx/spm2_face_rfx.doc, which describes how to analyse this data using SPM2. That
document additionally describes the analysis of differential effects, which we have omitted here.
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http://www.fil.ion.ucl.ac.uk/spm/data/face_rfx/spm2_face_rfx.doc
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In both first-level models (M1i and M1f), the contrast images (con*.img’s) come from
session-specific contrasts within a large (multisession) 1st-level Fixed Effects design matrix, with
one session per subject. (Note that the resulting con*.img’s could equally well have been pro-
duced from 12 separate 1st-level models, one per subject.)

For each type of model, the main effect of faces versus baseline (eg, a [0.5 ... 0.5] contrast for
each basis function, or kron([0.5 0.5],eye(Nf)) more generally) was examined.

The 12 (subjects) con*.imgs from the 1st-level model using the canonical HRF (M1c) are in
the zipped file

• http://www.fil.ion.ucl.ac.uk/spm/data/face_rfx/cons_can.zip

The 12 (subjects) x 3 (basis functions) con*.imgs from the 1st-level model using the informed
basis (M1i) set are in the zipped file

• http://www.fil.ion.ucl.ac.uk/spm/data/face_rfx/cons_informed.zip

The 12 (subjects) x 12 (basis functions) x 2 (contrast-types) con*.imgs from the 1st-level
model using the FIR basis (M1f) set are in the zipped file

• http://www.fil.ion.ucl.ac.uk/spm/data/face_rfx/cons_fir.zip

Each contrast-type is examined in a separate SPM analysis. This chapter just describes
analysis of the main effect of faces versus baseline. To analyse the data, first create a new
directory DIR eg. c:\data\face group, in which to place the results of your analysis. Then
create 3 subdirectories (i) Canonical, (ii) Informed, and (iii) FIR. As the analysis proceeds these
directories will be filled with job-specification files, design matrices and estimated models.

30.3 Canonical HRF

For the main effect versus baseline, these happen to correspond to the contrast images numbered
3-14 in 1st-level model M1i, ie:

• con 0006.img (canonical HRF, subject 1)

• con 0007.img (canonical HRF, subject 2)

• ...

• con 0017.img (canonical HRF, subject 12)

These images comprise the data for M2c, which is simply a “One-sample t-test”. This can be
implemented as follows.

• Start up Matlab and type spm fmri at the prompt

• Press the “Specify 2nd-level” button. This will open the batch editor.

• In the “Design”, “One-sample t-test” option, select “Scans”.

• Choose “Select Files” and use the SPM file selector to choose contrast images 6 to 17.

• Highlight “Directory”, “Select files” and select the subdirectory canonical, to place the
design matrix in.

• Save the job file as eg. DIR/canonical.mat.

• Press the Run button (green arrow).

SPM will then show you the design matrix shown in Figure 30.1. This is simply a single
column of 1’s which will appear as a white box on a white background. This design is encoded
in the SPM.mat file that is written to the output directory. Then press “Estimate”, select the
SPM.mat file just created, and press the Run button. SPM will now estimate the parameters,
that is, the size of the population effect at each voxel. This is simply the average of the con*.imgs
you have specified.

http://www.fil.ion.ucl.ac.uk/spm/data/face_rfx/cons_can.zip
http://www.fil.ion.ucl.ac.uk/spm/data/face_rfx/cons_informed.zip
http://www.fil.ion.ucl.ac.uk/spm/data/face_rfx/cons_fir.zip
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Figure 30.1: Design matrix for canonical responses. This corresponds to a one-sample
t-test.
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• Now press the “Results” button.

• Select the SPM.mat file.

• In the contrast manager press “Define new contrast” (select F). Enter [1] in the contrast
section and enter “Faces vs Baseline: Canonical HRF’ as a “name”. Note: This [1] F-
contrast tests for both “activations” and “deactivations” versus the interstimulus baseline,
though in the present case, the regions are nearly all activations, as can be seen by entering
the same contrast weight [1], but as a T rather than F contrast.

• Press the “..submit” button. Press OK.

• Now press the “Done” button.

• Mask with other contrast(s) [No]

• Title for comparison: accept [Faces vs Baseline: Canonical HRF]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

SPM will now display the thresholded F-statistic image. This shows voxels that are signifi-
cantly active (correcting for multiple comparisons across all voxels) in the population from which
the subjects were drawn. They include bilateral posterior fusiform, SMA, and, at a more liberal
threshold, left motor cortex). You can then press the volume to get a table of stastical information
for clusters of activated voxels. SPM’s graphics window should look like Figure 30.2.

30.4 Informed basis set

For this example, 3 contrast images per subject are taken to the 2nd-level. These are

• con 0003.img (canonical HRF, subject 1)

• con 0004.img (canonical HRF, subject 2)

• ...

• con 0014.img (canonical HRF, subject 12)

• con 0015.img (temporal derivative, subject 1)

• con 0016.img (temporal derivative, subject 2)

• ...

• con 0026.img (temporal derivative, subject 12)

• con 0027.img (dispersion derivative, subject 1)

• con 0028.img (dispersion derivative, subject 2)

• ...

• con 0038.img (dispersion derivative, subject 12)

• ...

These images comprise the data for M2c, which is simply a “One-way ANOVA” with 3-levels.
This can be implemented as follows.

• Press the “Specify 2nd-level” button.
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Figure 30.2: Main population effect of faces vs baseline, as characterised using the Canonical
HRF.
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• In “Factorial design specification”, highlight “Design” and then choose “Full Factorial”.

• Under “Factors” create a single “New Factor”.

• In this “Factor”, type in “Basis” for Name and enter 3 under “Levels”.

• Highlight “Independence” and select “No”. SPM will then take into account possible cor-
relations between these repeated measures (see section on Nonsphericity below for further
discussion).

• Now highlight “Specify cells”, and create 3 new cells.

• For the first cell, set “Levels” to 1, and enter the canonical contrast images under scans (ie
contrast images numbered 0003 to 0014).

• For the second cell, set “Levels” to 2, and enter the temporal derivative contrast images
under scans (ie contrast images numbered 0015 to 0026).

• For the third cell, set “Levels” to 3, and enter the dispersion derivative contrast images
under scans (ie contrast images numbered 0027 to 0038.

• Highlight “Directory”, “Specify files” and select the subdirectory “informed”, to place the
design matrix in.

• Save the job file as eg. DIR/informed.mat.

• Press the Run button in the batch editor.

SPM will then show you the design matrix shown in Figure 30.3. This design is encoded in the
SPM.mat file that is written to the output directory. Then press “Estimate”, select the SPM.mat

file just created, and press the Run button. SPM will now estimate the parameters of the model
(and hyperparameters governing the nonsphericity).

30.4.1 Nonsphericity

Setting the independence option described above to “No” allows SPM to take into account possible
correlations between levels of the factor. Note that, by default, SPM assumes different variances
for different levels of the factor (you can change this by setting “Variance” to “Equal” under the
options for the factor).

In this way SPM can account for possible “non-sphericity” in the data. This is imple-
mented in SPM using a set of matrices (bases) that characterise the covariance matrix. The
first three correspond to the variance of each of the canonical, temporal and dispersion deriva-
tives: SPM.xVi.Vi{1}, SPM.xVi.Vi{2}, and SPM.xVi.Vi{3}.

The next three correspond to covariances: SPM.xVi.Vi{4} (covariance between canonical and
temporal derivative), SPM.xVi.Vi{5} (covariance between canonical and dispersion derivative),
and SPM.xVi.Vi{6} (covariance between temporal and dispersion derivatives).

After estimation the actual covariance values (hyper-parameters) are given by SPM.xVi.h (the
six entries correspond to the above bases). The corresponding estimated covariance matrix can be
shown by pressing Review→Design→Explore→Covariance Structure. The estimated covariance
for this data is shown in Figure 30.4. Note that these are “global” values which are scaled by a
voxel specific-value to achieve a model covariance that best matches the empirical covariance at
each voxel.

30.4.2 Informed Results

• Now press the “Results” button.

• Select the SPM.mat file.
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Figure 30.3: Design matrix for informed basis set. This corresponds to a one-way ANOVA
with three levels (but no constant term, since we want to test whether the basis functions are
different from zero, not whether they are different from each other).
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Figure 30.4: Estimated covariance matrix for informed basis set. The 6 differently valued
hyperparameters are shown in different shades of gray.
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• In the Contrast Manager press “Define new contrast” (select F). Enter eye(3) in the con-
trast section and enter “Faces vs Baseline: Informed” as a “name”. Note: In Matlab
eye(3) evaluates to the identity matrix [1 0 0; 0 1 0; 0 0 1].2

• Press the “..submit” button. Press OK.

• Now press the “Done” button.

• Mask with other contrast(s) [No]

• Title for comparison: accept [Faces vs Baseline: Informed]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

This contrast will reveal voxels that show some form of event-related response that can be
captured by (ie, lies in the space spanned by) the three basis functions (e.g, 30 -60 -27, Z=7.43),
as shown in Figure 30.5.

Note how the design matrix appears to be different after estimation. This is because it
has been pre-whitened (via the estimated nonsphericity). In particular, the (barely visible) off-
diagonal entries in the design matrix give an indication of the degree of correlation between
the basis functions across subjects. However, because the data have also been pre-whitened our
interpretation of the parameter estimates (the “betas”) is unchanged. Effectively the parameters
have been estimated using “Weighted Least Squares (WLS)”, where the weights relate to the
estimated error covariance structure. SPM implements WLS by pre-whitening the data and the
design matrix and then using “Ordinary Least Squares” (OLS).

Note also how this F-contrast (Figure 30.5) produces more significant results than the corre-
sponding F-contrast in the model with the canonical HRF shown in Figure 30.2. This suggests
significant additional information in the two derivatives of the canonical HRF. If you right-click
on the MIP and select “goto global maxima”, then press “plot”, select “Contrast estimates and
90% C.I.”, and select the “Faces vs Baseline: Informed” contrast, you will get three bars and their
confidence intervals, as in Figure 30.6. You can see that the canonical HRF (first bar) carries
most of the response vs baseline, but nonetheless, both the temporal and dispersion derivatives
(second and third bars) contribute significant additional effects (given that the error bars do not
overlap zero). Note that the size of the bars cannot be compared directly since they depend on
the (different) scaling of the three basis functions (their size RELATIVE TO the error bars is a
fairer way to compare the contributions of the different basis functions).

30.4.3 T- and F-contrasts

It is also informative to evaluate the T-contrast [1 0 0] (ie positive loadings on the canonical HRF
only). This is shown in Figure 30.7.

At a FWE correct p-value of 0.05, note more voxels (including now left motor cortex) and
higher Z-values (e.g, 39 -57 -30, Z=7.53) for this main effect vs baseline compared to the equivalent
T-contrast ([1]) in the model that uses only the canonical HRF (as in previous Section). The
main reason for this increased power is the increase in the degrees of freedom, which entails better
estimators of the underlying error (co)variance. The price of this increased power is a stronger
assumption about the nonsphericity, namely that it has the same structure across (activated)
voxels - the “pooling device”, see Glaser et al. (2003) [42].

Finally, evaluate the F-contrasts [0 1 0] and [0 0 1]. These are shown in Figures 30.8 and 30.9.
These contrasts reveal voxels that load (positively or negatively) on the temporal and dispersion
derivatives respectively. These contrasts reveal that there is significant variability (at p<.05
corrected) that is not captured by the canonical HRF alone (see below for more discussion; see
also to Henson et al (2000) [47].

2SPM will have produced some contrasts automatically, one of them being the “main effect of basis”. This
contrast is, however, not appropriate for our purposes.
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Figure 30.5: Main population effect of faces, as characterised with the informed basis set.
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Figure 30.6: Plotting the three basis functions for the global maximum showing reliable effects of
the canonical HRF and its time and dispersion derivatives.

Figure 30.7: Main population effect of faces, as characterised with the canonical HRF using a [1
0 0] t-contrast on the informed basis coefficients.
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Figure 30.8: Significantly non-zero temporal derivative coefficients. These voxels show responses
earlier or later than canonical responses.

Figure 30.9: Significantly non-zero dispersion derivative coefficients. These voxels show responses
narrower or wider than canonical responses.
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In other words, some regions have earlier or later, or wider or narrower, BOLD impulse
responses than the canonical HRF. This may reflect differences in vasculature (or even face-
related neural differences across regions).

On the other hand, note that most voxels in the above F-contrasts also show a positive loading
on the canonical HRF (ie the previous [1 0 0] T-contrast), as can be revealed by Inclusive (or
Exclusive) masking of the relevant contrasts. This is because the loadings on the derivatives
reflect deviations ABOUT the canonical form (via a first-order Taylor expansion; see eg. Henson
et al, 2002 [46]). Indeed, loadings on either derivative in the absence of a reliable loading (positive
or negative) on the canonical HRF would be difficult to interpret (i.e, the derivative waveforms
are probably too high frequency to reflect BOLD changes on their own).

One can also confirm this by going to various voxels in the above F-contrasts, pressing “plot”,
“contrast estimates” and selecting the “Can+Tem+Dis” F-contrast. The three bars indicate
the loadings (and 90% confidence intervals) on the three different basis functions. Note that a
positive estimate for the temporal derivative corresponds to an earlier response than the canonical
(and negative for later), while a positive estimate for the dispersion derivative corresponds to a
narrower (less dispersed) response (and negative for wider).

30.5 FIR basis set

For this example, 12 contrast images per subject are taken to the 2nd-level. These are the contrast
images:

• con fir bin01 sub01.img (FIR bin 1, subject 1)

• con fir bin01 sub02.img (FIR bin 1, subject 2)

• ...

• con fir bin02 sub01.img (FIR bin 2, subject 1)

• ...

These images comprise the data for M2f, which is simply a “One-way ANOVA” with 12-levels
(one for each time-bin). This can be implemented as follows.

• Start up Matlab and type spm fmri at the prompt.

• Press the “Specify 2nd-level” button.

• The options for “Factorial design specification”3 appear.

• Highlight “Design” and then choose “Full Factorial”.

• Under “Full Factorial” and ‘Factors’ create a single “New Factor”.

• In this “Factor”, type in “TimeBin” for “Name” and enter 12 under “Levels”.

• Highlight “Independence” and select “No”. SPM will then take into account possible cor-
relations between these repeated measures.

• Now highlight “Specify cells”, and create 12 new cells.

• For the first cell, set “Levels” to 1, and enter the contrast images for time bin 1 under scans.
This is most easily done by changing the filter to .*fir bin01.*.

• For the second cell, set “Levels” to 2, and, under scans, enter the contrast images for time
bin 2 This is most easily done by changing the filter to .*fir bin02.*.

• Similarly for Levels 3 to 12.

3In SPM2, this data was analysed using the “One-way ANOVA without a constant” design. This option is no
longer available in SPM5, as one-way ANOVA’s are considered as factorial designs with a single factor.
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Figure 30.10: Design matrix for FIR basis set. This corresponds to a one-way ANOVA with 12
levels.

• Highlight “Directory”, “Specify files” and select the subdirectory FIR, to place the design
matrix in.

• Save the job file as eg. DIR/fir.mat.

• Press the Run button in the batch editor.

SPM will then show you the design matrix shown in Figure 30.10. This design is encoded
in the SPM.mat file that is written to the output directory. Then press “Estimate”, select the
SPM.mat file just created, and press the button Run. SPM will now estimate the parameters of
the model.

30.5.1 Nonsphericity again

Setting the independence option to “No” allows SPM to take into account possible correlations
between levels of the factor. Note that, by default, SPM assumes different variances for different
levels of the factor (you can change this by setting “Variance” to “Equal” under the options for
the factor).
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Figure 30.11: Estimated covariance matrix for FIR basis set. The differently valued hyperparam-
eters are shown in different shades of gray. Notice that the most variable responses occur in the
third time bin (scans 25 to 36) corresponding to responses 4-6 seconds post stimulus, ie. at the
peak of the hemodynamic response, as expected.

In this way SPM can account for possible “non-sphericity” in the data. This is implemented
in SPM using a set of matrices (bases) that characterise the covariance matrix. The first 12
correspond to the variance of each of the responses in each of the 12 time bins. The ones that
follow correspond to covariances between different time bins.

After estimation the actual covariance values (hyper-parameters) are given by SPM.xVi.h. The
corresponding estimated covariance matrix can be shown by pressing Review→Design→Explore→Covariance
Structure. The estimated covariance for this data is shown in Figure 30.11. Note that these are
“global” values which are scaled by a voxel specific-value to achieve a model covariance that best
matches the empirical covariance at each voxel.

You can see the highest values on the leading diagonal occur for timebins 2-4 (scans 13-48).
This is where the peak response occurs, and the large values imply that, as expected, the variance
tends to increase with the mean. This “inhomogeniety of variance” is a problem for conventional
ANOVAs, but not here, where it is explicitly modelled.

Notice also the high values close to the diagonal, which reflect the positive correlation between
the error across adjacent timebins (as also expected).

30.5.2 FIR Results

• Now press the “Results” button.

• Select the SPM.mat file.

• In the contrast manager press “Define new contrast” (select F). Enter eye(12) in the
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contrast section and enter “Faces vs Baseline: FIR” as a “name’.4

• Press the “..submit” button. Press OK.

• Now press the “Done” button.

• Mask with other contrast(s) [No]

• Title for comparison: accept [Faces vs Baseline: FIR]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

Note how the design matrix, shown in Figure 30.12 appears to be different after estimation.
This is because it has been pre-whitened. In particular, the off-diagonal entries in the design
matrix give an indication of the degree of correlation between the time bins across subjects (this
is displayed explicitly in the covariance matrix in Figure 30.11).

The above contrast will reveal voxels that show any form of event-related response, within
the range 0-24s post-stimulus and with 2s resolution, as shown in Figure 30.12. Selecting a
voxel and plotting this contrast (using the plot button) will reveal that most voxels have a fairly
“canonical” shape over the 12 timebins. One can also test for more constrained shapes of event-
related responses within this model. For example, one can test for “canonical-shaped” responses
by evaluating a contrast whose weights trace out SPM’s canonical HRF (every 2s). To do this,
switch to the Matlab window for a moment and type:

• xBF.dt = 1

• xBF.name = ’hrf (with time and dispersion derivatives)’;

• xBF.length = 32;

• xBF.order = 1;

• xBF = spm_get_bf(xBF);

This returns the canonical and two derivatives in the matrix xBF.bf (type help spm get bf

for more info), with one value every 1 second. For convenience, then define:

• all = xBF.bf(2:2:24,:)’;

• can = all(1,:);

• tem = all(2,:);

• dis = all(3,:);

These commands downsample the basis functions every 2s, which is the bin-width of the FIR.
If you type corrcoef(all’), you will see that the basis functions are slightly correlated (in the
off-diagonal terms), due to this undersampling every 2s.

• In the contrast manager press “Define new contrast” (select T).

• Enter can as the contrast weights (defined in Matlab workspace as above), and “Can-
weighted FIR” as the name.

This produces the MIP in Figure 30.13. At a FWE correct p value of 0.05, there are many
more voxels compared to the equivalent T-contrast [1] in the model using only canonical HRF.
The main reason for this increased power is again the increase in the degrees of freedom, which
entails better estimators of the underlying error (co)variance (though if the FIR parameters were
estimated very inefficiently, the extra contrast images might add more noise, outweighing any
advantage of higher degrees of freedom). Again, this increased power comes with a stronger
assumption about the nonsphericity, namely that it has the same structure across (activated)
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Figure 30.12: Main population effect of faces, as characterised with the FIR basis set.
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Figure 30.13: Main population effect of faces, as characterised with a canonically weighted contrast
of FIR bases.

voxels [42]. One can also test the variance captured by the temporal and dispersion derivatives
by creating new contrasts (though as F rather than T contrasts) and simply typing “tem” and
“dis” respectively as the contrast weights.

More interesting is the ability to ask, within this model, how much event-related variance is
not captured by the canonical HRF. To do this, first create the variable in Matlab

• nullcan = eye(12) - pinv(can)*can;

This creates a matrix for an F-contrast that spans the “null space” of the canonical HRF.

• In the contrast manager press “Define new contrast” (select F).

• Enter nullcan as the contrast weights (defined in Matlab workspace as above), and “Null
space of canonical HRF” as the name.

You can see, in Figure 30.14 that several regions express variability not captured by the
canonical HRF. This is not surprising, because you will notice that many of these regions appeared
in the individual F-tests on the temporal and dispersion derivatives above, suggesting that what
is not captured by the canonical HRF is captured by its two derivatives.

Yet even more interesting is the ability to ask how much event-related variance is not captured
by the canonical HRF or its two derivatives (ie. not captured by SPM’s ‘informed’ basis set). To
do this, first create the variable in Matlab

• nullall = eye(12) - pinv(all)*all;

This creates a matrix for an F-contrast that spans the “null space” of all three informed basis
functions.

• In the contrast manager press “Define new contrast” (select F).

• Enter nullall as the contrast weights (defined in Matlab workspace as above), and “Null
space of informed basis set” as the name.

You will see, in Figure 30.15 that only 2 voxels (in one cluster with maximum -21 -18 27)
express variability not captured by the informed basis set. This reinforces the point that, while

4SPM will have produced some contrasts automatically, one of them being the “main effect of TimeBin”. This
contrast is, however, not appropriate for our purposes.
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Figure 30.14: Regions expressing variability across subjects not captured by canonical HRF.

Figure 30.15: Regions expressing variability across subjects not captured by informed basis set.
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there is certainly variability in the HRF across different brain regions, the canonical HRF and
its two derivatives are sufficient to capture the majority of this regional variability (at least on
average across the 12 subjects in this dataset). See [47] for further details.



Chapter 31

Verbal Fluency PET data

31.1 Introduction

These data come from a 5 subject PET study of a verbal fluency with two alternating word
generation conditions: A (baseline) - word shadowing; B - (activation) - paced orthographic
word generation. This involved responding with a word beginning with an aurally presented
letter. Both conditions were identically paced at 1 word every 2 seconds. The presentation order
alternated between AB and BA across subjects as shown in Table 31.1.

Scan: 1 2 3 4 5 6 7 8 9 10 11 12
Subject 1 A B A B A B A B A B A B
Subject 2 B A B A B A B A B A B A
Subject 3 A B A B A B A B A B A B
Subject 4 B A B A B A B A B A B A
Subject 5 A B A B A B A B A B A B

Table 31.1: Conditions for PET data: (A) word shadowing and (B) word generation.

The files are named ./p#/snrp#_##.{img,hdr} and are SPM compatible (Analyze) images
following realignment, normalization and smoothing with a 16mm isotropic Gaussian kernel with
# indicating the subject and ## the scan. The data set is available from the SPM website1.

To analyse the data, first create a new directory DIR, eg. c:\data\pet, in which to place the
results of your analysis. Then create 4 subdirectories (i) single, (ii) subject-condition, (iii)
subject-time and (iv) multiple. As the analysis proceeds these directories will be filled with
job-specification files, design matrices and estimated models.

31.2 Single subject

Firstly, we will analyse the data from a single subject. This can be implemented as follows.

• Start up Matlab and type spm pet at the prompt

• Press the “Basic models” button.

• In ‘Factorial design specification’, choose the ‘Flexible Factorial’ design.

• Highlight ‘Factors’ and create a new Factor and enter ’Word’ for the name.

• Then, under ’Specify Subject or all Scans and Factors’, highlight ‘Subjects’ and create a
new subject.

1Verbal Fluency PET dataset: http://www.fil.ion.ucl.ac.uk/spm/data/fluency/
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• Highlight ‘Scans’, select ‘Specify Files’ and use the SPM file selector to choose the 12 images
for that subject. This can be most easily achieved by specifying ‘.*snrp1.*’ as a filter in the
file selector.

• Under ‘Conditions’ enter the vector [1 2 1 2 1 2 1 2 1 2 1 2].

• Under ‘Main effects and interactions’, create a single main effect with factor number equal
to 1

• Under ‘Covariates’, create a new covariate and enter ‘Time’ for ‘Name’ and the vector ‘1:12’.

• Under ‘Global calculation’ choose ‘Mean’

• Under Global normalisation and Normalisation, choose ‘Proportional’ scaling.2

• Under Global normalisation and Overall grand mean scaling, select YES.

• Highlight Directory, Specify files and select the subdirectory ‘single’, to place the design
matrix in.

• Save the job file as eg. DIR/single design.mat.

• Press the Run button (green arrow).

SPM will then show you the design matrix shown in Figure 31.1. This design is encoded in the
SPM.mat file that is written to the output directory. Then press ‘Estimate’ and select the SPM.mat
file just created. SPM will now estimate the parameters, that is, the size of the population effect
at each voxel.

• Now press the ’Results’ button.

• Select the SPM.mat file.

• In the contrast manager press ’Define new contrast’ (select T). Enter [-1 1] in the contrast
section and enter ’activation’ as a ’name’.

• Press the ’..submit’ button. Press OK.

• Now press the ’Done’ button.

• Mask with other contrast(s) [No]

• Title for comparison [activation]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

You should see a blank MIP as, sadly, we rarely have enough sensitivity to find activations in
single subject PET data. This is why we scan multiple subjects.

31.3 Multiple subjects

The data set can be analysed in several ways which are discussed in [53].

2Normalisation using ANCOVA is advised for multi-subject studies unless differences in global flow are large eg.
due to variability in injected tracer dose. Because ANCOVA uses one degree of freedom for each subject/group,
proportional scaling may be preferable for single-subject studies.
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Figure 31.1: Design matrix for single-subject data. The first two columns model responses to word
shadowing and word generation. The third column models time-varying responses.
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31.3.1 Subject and Condition design

First we set up a design that allows us to test for the main effects of ‘Subject’ and ‘Condition’.
The design can be set-up as follows.

• Start up Matlab and type spm pet at the prompt

• Press the ‘Basic Models’ button.

• In ‘Factorial design specification’, under ‘Design’, choose the ‘Flexible Factorial’ design.

• Highlight ‘Factors’ and create a new Factor.

• Enter ’Subject’ for the name and select ’Equal’ under ‘Variance’.

• Then create another factor and call it ‘Word’

• Then, under ’Specify Subject or all Scans and Factors’, highlight ‘Subjects’ and create a 5
new subjects.

• For the first subject, highlight ‘Scans’, select ‘Specify Files’ and use the SPM file selector to
choose the 12 images for the first subject. This can be most easily achieved by specifying
.*snrp1.* as a filter in the file selector and then using a right click to ‘select all’.

• Under ‘Conditions’ enter the vector [1 2 1 2 1 2 1 2 1 2 1 2].

• Repeat the specification of scans and conditions for each of the four other subjects, remem-
bering that the order of conditions has been balanced across the group (see Table 31.1).

• Under ‘Main effects and interactions’, create two main effects, the first with factor number
1 (ie. Subject) and the second with factor number 2 (ie. Word).

• Under Masking, select ‘Relative’ for ‘Threshold Masking’ and accept the default value of
0.8. Voxels with mean value less than 0.8 of the mean are deemed extra-cranial and will be
excluded from the analysis.

• Under ‘Global calculation’ choose ‘Mean’

• Under, Global normalisation, and Normalisation, select ’ANCOVA’.

• Highlight Directory, Specify files and select the subdirectory ‘subject-condition’, to place
the design matrix in.

• Save the job file as eg. DIR/sc design.mat.

• Press the Run button.

SPM will then show you the design matrix shown in Figure 31.2. This design is encoded in the
SPM.mat file that is written to the output directory.

31.3.2 Subject and Time design

We now set up a design that allows us to test for the effects of Time (ie. scan number) and
Subject. If you have already specified the Subject and Conditions design, then you can set up
the Subject and Time design by editing the sc design.mat file (and just changing the name of
the second factor, Conditions vector and output directory - see below). Otherwise, the design
can be set-up as follows.

• Start up Matlab and type spm pet at the prompt

• Press the ‘Basic Models’ button.

• In ‘Factorial design specification’, under ‘Design’, choose the ‘Flexible Factorial’ design.

• Highlight ‘Factors’ and create a new Factor.
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Figure 31.2: Subjects and Conditions design for multiple-subject data. The first five columns
model effect and the next two columns model condition effects. The last colum models global
effects (ANCOVA).
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• Enter ’Subject’ for the name and select ’Equal’ under ‘Variance’.

• Then create another factor and call it ‘Time’. This factor extends over time for each subject.

• Then, under ’Specify Subject or all Scans and Factors’, highlight ‘Subjects’ and create a 5
new subjects.

• For the first subject, highlight ‘Scans’, select ‘Specify Files’ and use the SPM file selector to
choose the 12 images for the first subject. This can be most easily achieved by specifying
.*snrp1.* as a filter in the file selector and then using a right click to ‘select all’.

• Under ‘Conditions’ enter the vector [1:12].

• Repeat the specification of scans and conditions for each of the four other subjects.

• Under ‘Main effects and interactions’, create two main effects, the first with factor number
1 (ie. Subject) and the second with factor number 2 (ie. Time).

• Under Masking, select ‘Relative’ for ‘Threshold Masking’ and accept the default value of
0.8. Voxels with mean value less than 0.8 of the mean are deemed extra-cranial and will be
excluded from the analysis.

• Under ‘Global calculation’ choose ‘Mean’

• Under, Global normalisation, and Normalisation, select ’ANCOVA’.

• Highlight Directory, Specify files and select the subdirectory ‘subject-condition’, to place
the design matrix in.

• Save the job file as eg. DIR/st design.mat.

• Press the Run button.

SPM will then show you the design matrix shown in Figure 31.3. This design is encoded in the
SPM.mat file that is written to the output directory.

31.3.3 Subject by Condition design

This design models the interacts between ‘Subject’ and ‘Condition’. It allows effects to be assessed
separately for each subject. It will also allow us to implement a conjunction analysis over subjects.

If you have already specified the Subject and Conditions or Subject and Time designs then
this design can be more easily specified by editing the sc design.mat or st design.mat files (and
changing the name of the second factor, removing main effects, adding the interaction term and
specifying a new output directory - see below). Otherwise, the design can be set-up as follows.

• Start up Matlaband type spm pet at the prompt

• Press the “Basic Models” button.

• In ‘Factorial design specification’, under ‘Design’, choose the ‘Flexible Factorial’ design.

• Highlight ‘Factors’ and create a new Factor.

• Enter ’Subject’ for the name and select ’Yes’ under ANCOVA, as we will be implementing
ANCOVA-by-subject. Select ’Equal’ under ‘Variance’.

• Then create another factor and call it ‘Word’

• Then, under ’Specify Subject or all Scans and Factors’, highlight ‘Subjects’ and create a 5
new subjects.

• For the first subject, highlight ‘Scans’, select ‘Specify Files’ and use the SPM file selector to
choose the 12 images for the first subject. This can be most easily achieved by specifying
‘.*snrp1.*’ as a filter in the file selector and then using a right click to ‘select all’.
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Figure 31.3: Subjects and Time design for multiple-subject data. The first five columns model sub-
jects effects and the next 12 model time effects. The last column models global effects (ANCOVA).
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• Under ‘Conditions’ enter the vector [1 2 1 2 1 2 1 2 1 2 1 2].

• Repeat the specification of scans and conditions for each of the four other subjects, remem-
bering that the order of conditions has been balanced across the group (see Table 31.1).

• Under ‘Main effects and interactions’, create an interaction with factor numbers equal to
[1 2]. This will create a block in the design matrix that models interactions between the
factors ‘Subject’ and ‘Word’.

• Under Masking, select ‘Relative’ for ‘Threshold Masking’ and accept the default value of
0.8. Voxels with mean value less than 0.8 of the mean are deemed extra-cranial and will be
excluded from the analysis.

• Under ‘Global calculation’ choose ‘Mean’

• Highlight Directory, Specify files and select the subdirectory multiple, to place the design
matrix in.

• Save the job file as eg. DIR/multi design.mat.

• Press the Run button.

SPM will then show you the design matrix shown in Figure 31.4. This design is encoded in
the ‘SPM.mat’ file that is written to the output directory. Then press ‘Estimate’ and select the
SPM.mat file just created. SPM will now estimate the parameters, that is, the size of the effect
at each voxel. The rest of this chapter pursues the ‘Subject-by-Condition’ design.

31.3.4 Contrast manager

We can then examine relative activations, that is, regions which respond more strongly during
word generation than word shadowing, for each subject. For subject 2:

• Press the ’Results’ button.

• Select the SPM.mat file.

• In the contrast manager press ’Define new contrast’ (select T)

• Specify e.g. Subject 2: Gen > Shad (name) and ’0 0 -1 1’ (contrast).

• Press the ’..submit’ button. Press OK.

• Now press the ’Done’ button.

• Mask with other contrast(s) [No]

• Title for comparison [activation]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

This should produce the contrast in Figure 31.5. As shown, SPM will automatically pad ’0 0 -1
1’ with zeros at the end. To examine group effects:

• Press the ’Results’ button.

• Select the SPM.mat file.

• In the contrast manager press ’Define new contrast’ (select T)

• Specify e.g. All: Gen > Shad (name) and ’-1 1 -1 1 -1 1 -1 1 -1 1’ and select it (press
’Done’) (contrast).
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Figure 31.4: Subject by Condition design for multiple-subject data. The first ten columns model
interactions between ‘Subject’ and ‘Word’. The last five columns model out global effects for
each subject. Inclusion of these last five regressors implements a so-called ‘ANCOVA-by-subject’
normalisation.
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Figure 31.5: Activation contrast for subject 2. Note that the block of the design matrix encoding the
experimental conditions is now coloured differently. This is because we have allowed the variance
of responses over subjects to be different between word shadowing and generation conditions.
This ‘nonsphericity’ affects parameter estimation in a way that is implemented in SPM by first
‘colouring’ the design matrix and then implementing ordinary least squares. This, in no way
however, affects interpretation of effects.

• Mask with other contrast(s) [No]

• Title for comparison [activation]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

Before looking at the results we describe the masking and thresholding options in more detail.

31.3.5 Masking and thresholds

Masking implies selecting voxels specified by other contrasts. If ’yes’, SPM will prompt for (one
or more) masking contrasts, the significance level of the mask (default p = 0.05 uncorrected),
and will ask whether an inclusive or exclusive mask should be used. Exclusive will remove all
voxels which reach the default level of significance in the masking contrast, inclusive will remove
all voxels which do not reach the default level of significance in the masking contrast. Masking
does not affect p-values of the ’target’ contrast.

Selecting a height threshold for examine results uses either a threshold corrected for multiple
comparisons (’yes’), or uncorrected (’no’). The latter will produce many false positives (FPs) in
the SPM. On average, the number of false positives will be equal to the number of voxels in the
volume times the p-value (eg. 50, 000 × 0.001 = 50). If you correct for multiple comparisons,
however, then there will typically be only one FP anywhere in 20 SPMs. Correcting for multiple
comparisons is the recommended option.

Specifying an extent threshold x tells SPM not to plot clusters containing fewer than x voxels.
The default, x = 0 allows single voxel activations to be displayed.
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Figure 31.6: Activation contrast for all subjects.

31.3.6 MIPs and results tables

The above contrast specifications should configure the contrast manager to appear as in Fig-
ure 31.6 and will configure SPM’s graphics window to look like Figure 31.7.

SPM will also produce a number of files: images containing weighted parameter estimates
are saved as con_0002.hdr/img, con_0003.hdr/img, etc. in the output directory. Images of
T-statistics are saved as spmT_0002.hdr/img, spmT_0003.hdr/img, etc., also in the output di-
rectory. A number of further options are available from SPM Interactive window shown in Fig-
ure 31.8.

In the SPM Interactive window (lower left panel) a button box appears with various options
for displaying statistical results (p-values panel) and creating plots/overlays (visualisation panel).
Clicking ’Design’ (upper left) will activate a pulldown menu as in the ’Explore design’ option. To
get a summary of local maxima, press ’volume’. This will produce the table shown in Figure 31.9.
As in the previous example, this will list all clusters above the chosen level of significance as well
as separate (>8mm apart) maxima within a cluster, with details of significance thresholds and
search volume underneath. The columns show, from right to left:

• x, y, z (mm): coordinates in Talairach space for each maximum.

• peak-level: the chance (p) of finding (under the null hypothesis) a peak with this or a
greater height (T- or Z-statistic), corrected / uncorrected for search volume.

• cluster-level: the chance (p) of finding a cluster with this or a greater size (ke), corrected
/ uncorrected for search volume.

• set-level: the chance (p) of finding this or a greater number of clusters (c) in the search
volume.

Its also worth noting that

• The table is surfable: clicking a row of cluster coordinates will move the pointer in the MIP
to that cluster, clicking other numbers will display the exact value in the Matlab window
(e.g. 0.000 = 6.1971e-07).

• To inspect a specific cluster, either move the cursor in the MIP (by L-clicking & dragging
the cursor, or R-clicking the MIP background which will activate a pulldown menu).
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Figure 31.7: SPMs graphics window displays (Left) a maximum intensity projection (MIP) on
a glass brain in three orthogonal planes. The MIP is surfable: right-clicking in the MIP will
activate a pulldown menu, left-clicking on the red cursor will allow it to be dragged to a new
position, (Right) the design matrix (showing the selected contrast). The design matrix is also
surfable: right-clicking will show parameter names, left-clicking will show design matrix values
for each scan.

Figure 31.8: SPM’s interactive window.
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Figure 31.9: SPM results table. This appears below the MIP, shown in Figure 31.7, in the graphics
window.

• Alternatively, click the cluster coordinates in the volume table, or type the coordinates in
the lower left windows of the SPM Interactive window.

Selecting ’cluster’ will show coordinates and voxel-level statistics for local maxima (>4mm apart)
in the selected cluster. See Figure 31.10. The table is also surfable. Both in the ‘volume’ and
‘cluster’ options, p-values are corrected for the entire search volume.

31.3.7 Small volume correction

If one has an a priori anatomical hypothesis, eg. in the present example Broca’s area will likely
be activated during word generation, one may use the small volume correction option. Press the
“small volume” button in SPM Interactive (bottom left) window and select a suitable region,
e.g., a 30mm sphere with its centre at 44 16 0. The region can also be defined using mask images
derived from previous imaging data. The corrected p-values will change, as shown in Figure 31.11.

31.3.8 Extracting data from regions

To extract a time course for data in this region of interest (this uses the SPM function spm regions.m):

• Select “eigenvariate” from the “Multivariate” section in the Interactive window

• Select (’don’t adjust’)

• Specify ‘Broca’ for name of region and 0 for the VOI radius.

SPM displays a graph of the first eigenvariate of the data in or centered around the chosen
voxel, as shown in Figure 31.12. It also lists the eigenvariate values Y in the Matlab window.
Adjustment is with respect to the null space of a selected contrast. This means that any effects
not spanned by the chosen contrast are removed from the data, before extraction. Adjustment
can be omitted by selecting ‘don’t adjust’, as above.

SPM extracts the eigenvariate values in a region, rather than the mean values, as the former
is more robust to heterogeneity of response within a cluster. The mean value can be thought
of as a special case of the eigenvariate if the corresponding eigenvector weights all voxels in a
cluster equally. Effectively, the eigenvariate provides a weighted mean where atypical voxels are
downweighted.
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Figure 31.10: SPM results table for a single cluster with p-values corrected for the whole brain.

Figure 31.11: SPM results table for a single cluster with p-values corrected using the Small Volume
Correction (SVC) option. This used a 30mm sphere centred at 44 16 0. Note the reduced number
of voxels in the search volume (bottom right text in Figure) and more significant p-values as
compared to Figure 31.10.
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Figure 31.12: Data extracted from a Volume of Interest (VOI).

A file called VOI_regionname.mat is created in the working directory containing Y and VOI
details (in the data structure xY).

31.3.9 Inclusive Masking

We have so far looked at the average effect over the five subjects in our group using the ‘All:
Gen ¿ Shad’ contrast. To assess condition effects that are common to all subjects, one can either
mask (inclusively) the ‘All: Gen ¿ Shad’ contrast with the individual contrasts, or perform a
conjunction analysis. Firstly we’ll use the inclusive masking approach.

• Press the ’Results’ button.

• Select the SPM.mat file.

• Select the All: Gen > Shad contrast and press ‘Done’.

• Mask with other contrast(s) [Yes]

• Then hold down the [control] button whilst selecting all the individual contrasts. The
contrast manager should then appear as in Figure 31.13.

• Uncorrected mask p-value [0.05]

• Nature of mask [inclusive]

• Title for comparison [accept the default]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

This should produce the MIP and results table shown in Figure 31.14.

31.3.10 Conjunctions

To perform a conjunction approach across subjects:

• Press the ’Results’ button.

• Select the SPM.mat file.
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Figure 31.13: SPM can produce maps based on multiple contrasts by holding down [control] whilst
selecting contrasts. This can be used during masking and when making a conjunction inference.

• Then hold down the [control] button whilst selecting all the individual contrasts. The
contrast manager should then appear as in Figure 31.13 (except that, in the white text at
the bottom, it should indicate that a conjunction will be performed).

• Null hyp. to assess [Global]

• Mask with other contrasts [No]

• Title for comparison [accept the default]

• p value adjustment to control [FWE]

• Family-wise p-value [0.05]

• Extent threshold voxels [0]

SPM checks whether the contrasts are orthogonal and, if not, makes them so. Contrasts are
orthogonolized with respect to the first contrast specified.

SPM should produce the MIP and table of results shown in Figure 31.15. The p-value (cor-
rected or uncorrected) refers to the threshold of the conjunction. SPM will compute corresponding
thresholds for individual contrasts. For uncorrected thresholds, the individual threshold will be
p1/n, where p is the individual threshold and n is the number of contrasts in the conjunction.

Height, and not extent, is used to specify thresholding because the distributional approxima-
tions for the spatial extent of a conjunction SPM are not known (at present), so that inference
based on spatial extent is precluded.

Although the MIP’s of the masked group contrast and the conjunction are similar, for the
conjunction an intersection SPM or ’minimum T-field’ is computed. This intersection is the same
as thresholding a map of the minimum T-values. If the smallest T-value is above the specified
threshold then all the T-values associated with the component SPMs are above threshold.

Conjunction SPMs are very useful for testing multiple hypotheses (each component hypothesis
being specified by a contrast). In this example, we have chosen to use the Global Null Hypothesis.
The set of hypotheses tested jointly is that the first subject did not activate, the second subject
did not activate and so on.
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Figure 31.14: The SPM shows results from the inclusive masking approach. It shows all voxels
which are (a) significant at p < 0.05 corrected across all subjects and (b) significant at p < 0.05
uncorrected for each subject individually.
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Figure 31.15: Conjunction SPM.

SPM also provides an option to use the Conjunction Null hypothesis. This can be thought of
as enabling an inference that subject 1 activated AND subject 2 activated AND subject 3... etc.
For more discussion on this issue, see [36] and [69].

Gaussian field theory results are available for SPMs of minimum T- (or F-) statistics and
therefore corrected p-values can be computed. Note that the minimum T-values do not have the
usual Student’s T-distribution and small minimum T-values can be very significant.



Chapter 32

Dynamic Causal Modeling for
fMRI

32.1 Theoretical background

Dynamic Causal Modelling (DCM) is a method for making inferences about neural processes that
underlie measured time series, e.g. fMRI data. The general idea is to estimate the parameters of a
reasonably realistic neuronal system model such that the predicted blood oxygen level dependent
(BOLD) signal, which results from converting the modeled neural dynamics into hemodynamic
responses, corresponds as closely as possible to the observed BOLD time series. This section gives
a short introduction to the theoretical background of DCM for fMRI; details can be found in [32].
Note that DCMs can be formulated, in principle, for any measurement technique. Depending on
the spatio-temporal properties of a given measurement technique, one needs to define an adequate
state equation and an observation model. See Fig 32.1 for a summary of the differences between
DCM implementations for fMRI and Event-Related Potentials (ERPs).

Figure 32.1: A schematic overview of the differences between between the DCM implementations
for fMRI and ERPs (as measured by EEG or MEG). Whereas the state equation of DCM for
fMRI is bilinear and uses only a single state variable per region, that for ERPs is more complex
and requires 8 state variables per region. Moreover, DCM for ERPs models the delays of activity
propagation between areas. At the level of the observation model, DCM for fMRI is more complex
than DCM for ERPs. While the former uses a non-linear model of the hemodynamic response
that contains a cascade of differential equations with five state variables per region, the latter uses
a simple linear model for predicting observed scalp data.

299
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As in state-space models, two distinct levels constitute a DCM (see Figure 32.2). The hidden
level, which cannot be directly observed using fMRI, represents a simple model of neural dynamics
in a system of k coupled brain regions. Each system element i is represented by a single state
variable zi, and the dynamics of the system is described by the change of the neural state vector
over time.

The neural state variables do not correspond directly to any common neurophysiological mea-
surement (such as spiking rates or local field potentials) but represent a summary index of neural
population dynamics in the respective regions. Importantly, DCM models how the neural dynam-
ics are driven by external perturbations that result from experimentally controlled manipulations.
These perturbations are described by means of external inputs u that enter the model in two dif-
ferent ways: they can elicit responses through direct influences on specific regions (“driving”
inputs, e.g. evoked responses in early sensory areas) or they can change the strength of coupling
among regions (“modulatory” inputs, e.g. during learning or attention).

Overall, DCM models the temporal evolution of the neural state vector, i.e. , as a function of
the current state, the inputs u and some parameters that define the functional architecture and
interactions among brain regions at a neuronal level (n denotes “neural”):

ż1
ż2
..
żk

 = ż =
dz

dt
= F (z, u, θn) (32.1)

In this neural state equation, the state z and the inputs u are time-dependent whereas the
parameters are time-invariant. In DCM, F has the bilinear form

ż = Az +

m∑
j=1

ujBjz + Cu (32.2)

The parameters of this bilinear neural state equation, θn = {A,B1, ..., Bm, C}, can be expressed
as partial derivatives of F :

A =
∂F

∂z
=
∂ż

∂z
(32.3)

Bj =
∂2F

∂z∂uj
=

∂

∂uj

∂ż

∂z

C =
∂F

∂u

These parameter matrices describe the nature of the three causal components which underlie the
modeled neural dynamics: (i) context-independent effective connectivity among brain regions,
mediated by anatomical connections (k×k matrix A), (ii) context-dependent changes in effective
connectivity induced by the jth input uj (k×k matrices B1, ..., Bm), and (iii) direct inputs into the
system that drive regional activity (k×m matrix C). As will be demonstrated below, the posterior
distributions of these parameters can inform us about the impact that different mechanisms
have on determining the dynamics of the model. Notably, the distinction between “driving”
and “modulatory” is neurobiologically relevant: driving inputs exert their effects through direct
synaptic responses in the target area, whereas modulatory inputs change synaptic responses in
the target area in response to inputs from another area. This distinction represents an analogy,
at the level of large neural populations, to the concept of driving and modulatory afferents in
studies of single neurons.

DCM combines this model of neural dynamics with a biophysically plausible and experimen-
tally validated hemodynamic model that describes the transformation of neuronal activity into
a BOLD response. This so-called “Balloon model” was initially formulated by Buxton and col-
leagues and later extended by [34]. Briefly summarized, it consists of a set of differential equations
that describe the relations between four hemodynamic state variables, using five parameters (θh).
More specifically, changes in neural activity elicit a vasodilatory signal that leads to increases in
blood flow and subsequently to changes in blood volume v and deoxyhemoglobin content q. The
predicted BOLD signal y is a non-linear function of blood volume and deoxyhemoglobine content.
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Figure 32.2: Schematic summary of the conceptual basis of DCM. The dynamics in a system of
interacting neuronal populations (orange boxes), which are not directly observable by fMRI, is
modeled using a bilinear state equation (grey box). Integrating the state equation gives predicted
neural dynamics (z) that enter a model of the hemodynamic response (λ) to give predicted BOLD
responses (y) (green boxes). The parameters at both neural and hemodynamic levels are adjusted
such that the differences between predicted and measured BOLD series are minimized. Critically,
the neural dynamics are determined by experimental manipulations. These enter the model in
the form of “external” or “driving” inputs. Driving inputs (u1; e.g. sensory stimuli) elicit local
responses directly that are propagated through the system according to the intrinsic connections.
The strengths of these connections can be changed by modulatory inputs (u2; e.g. changes in
cognitive set, attention, or learning).

Details of the hemodynamic model can be found in other publications [34]. By combining the
neural and hemodynamic states into a joint state vector x and the neural and hemodynamic
parameters into a joint parameter vector θ = [θn, θh]T , we obtain the full forward model that is
defined by the neural and hemodynamic state equations

ẋ = F (x, u, θ) (32.4)

y = λ(x)

For any given set of parameters θ and inputs u, the joint state equation can be integrated and
passed through the output nonlinearity λ to give a predicted BOLD response h(u, θ). This can
be extended to an observation model that includes observation error e and confounding effects X
(e.g. scanner-related low-frequency drifts):

y = h(u, θ) +Xβ + e (32.5)

This formulation is the basis for estimating the neural and hemodynamic parameters from the
measured BOLD data, using a fully Bayesian approach with empirical priors for the hemodynamic
parameters and conservative shrinkage priors for the neural coupling parameters.

Details of the parameter estimation scheme, which rests on a Fisher scoring gradient ascent
scheme with Levenburg-Marquardt regularisation, embedded in an expectation maximization
(EM) algorithm, can be found in the original DCM publication (Friston et al. 2003). In brief,
under Gaussian assumptions about the posterior distributions, this scheme returns the posterior
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expectations ηθ|y and posterior covariance Cθ|y for the parameters as well as hyperparameters for
the covariance of the observation noise, Ce.

After fitting the model to measured BOLD data, the posterior distributions of the parameters
can be used to test hypotheses about the size and nature of effects at the neural level. Although
inferences could be made about any of the parameters in the model, hypothesis testing usually
concerns context-dependent changes in coupling (i.e. specific parameters from the B matrices;
see Fig. 32.5). As will be demonstrated below, at the single-subject level, these inferences concern
the question of how certain one can be that a particular parameter or, more generally, a contrast
of parameters, cT ηθ|y, exceeds a particular threshold γ (e.g. zero).

Under the assumptions of the Laplace approximation, this is easy to test (ΦN denotes the
cumulative normal distribution):

p(cT ηθ|y > γ) = ΦN

(
cT ηθ|y − γ
cTCθ|yc

)
(32.6)

For example, for the special case cT ηθ|y = γ the probability is p(cT ηθ|y > γ) = 0.5, i.e. it is equally
likely that the parameter is smaller or larger than the chosen threshold γ. We conclude this section
on the theoretical foundations of DCM by noting that the parameters can be understood as rate
constants (units: 1/s = Hz) of neural population responses that have an exponential nature. This
is easily understood if one considers that the solution to a linear ordinary differential equation of
the form ż = Az is an exponential function (see Fig. 32.3).

Figure 32.3: A short mathematical demonstration, using a simple linear first-order differential
equation as an example, explaining why the coupling parameters in a DCM are inversely propor-
tional to the half-life of the modelled neural responses and are therefore in units of 1/s = Hertz.

32.2 Bayesian model selection

A generic problem encountered by any kind of modeling approach is the question of model se-
lection: given some observed data, which of several alternative models is the optimal one? This
problem is not trivial because the decision cannot be made solely by comparing the relative fit of
the competing models. One also needs to take into account the relative complexity of the models
as expressed, for example, by the number of free parameters in each model.

Model complexity is important to consider because there is a trade-off between model fit and
generalizability (i.e. how well the model explains different data sets that were all generated from
the same underlying process). As the number of free parameters is increased, model fit increases
monotonically whereas beyond a certain point model generalizability decreases. The reason for
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this is “overfitting”: an increasingly complex model will, at some point, start to fit noise that
is specific to one data set and thus become less generalizable across multiple realizations of the
same underlying generative process.

Therefore, the question “What is the optimal model?” can be reformulated more precisely as
“What is the model that represents the best balance between fit and complexity?”. In a Bayesian
context, the latter question can be addressed by comparing the evidence, p(y|m), of different
models. According to Bayes theorem

p(θ|y,m) =
p(y|θ,m)p(θ|m)

p(y|m)
(32.7)

the model evidence can be considered as a normalization constant for the product of the likelihood
of the data and the prior probability of the parameters, therefore

p(y|m) =

∫
p(θ|y,m)p(θ|m)dθ (32.8)

Here, the number of free parameters (as well as the functional form) are considered by the
integration. Unfortunately, this integral cannot usually be solved analytically, therefore an ap-
proximation to the model evidence is needed. One such approximation used by DCM, and many
other models in SPM, is to make use of the Laplace approximation 1.

As shown in [76], this yields the following expression for the natural logarithm (ln) of the model
evidence ( ηθ|y denotes the posterior mean, Cθ|y is the posterior covariance of the parameters, Ce
is the error covariance, θp is the prior mean of the parameters, and Cp is the prior covariance):

lnp(y|m) = accuracy(m)− complexity(m) (32.9)

=

[
−1

2
ln|Ce| −

1

2
(y − h(u, ηθ|y))TC−1e (y − h(u, ηθ|y))

]
−

[
1

2
ln|Cp| −

1

2
ln|Cθ|y|+

1

2
(ηθ|y − θp)TC−1p (ηθ|y − θp)

]
This expression properly reflects the requirement, as discussed above, that the optimal model

should represent the best compromise between model fit (accuracy) and model complexity. The
complexity term depends on the prior density, for example, the prior covariance of the intrinsic
connections.

Two models can then be compared using the Bayes factor:

BFij =
p(y|mi)

p(y|mj)
(32.10)

Given uniform priors over models, the posterior probability for model i is greater 0.95 if BFij is
greater than twenty.

This results in a robust procedure for deciding between competing hypotheses represented by
different DCMs. These hypotheses can concern any part of the structure of the modeled system,
e.g. the pattern of intrinsic connections or which inputs affect the system and where they enter.
Note, however, that this comparison is only valid if the data y are identical in all models. This
means that in DCM for fMRI, where the data vector results from a concatenation of the time series
of all areas in the model, only models can be compared that contain the same areas. Therefore,
model selection cannot be used to address whether or not to include a particular area in the
model. In contrast, in DCM for ERPs, the data measured at the sensor level are independent of
how many neuronal sources are assumed in a given model. Here, model selection could also be
used to decide which sources should be included.

32.3 Practical example

The following example refers to the “attention to visual motion” data set available from the SPM
web site2. This data set was obtained by Christian Buchel and is described in [13].

1This should perhaps more correctly be referred to as a fixed-form variational approximation, where the fixed
form is chosen to be a Gaussian. The model evidence is approximated by the negative free energy, F .

2Attention to visual motion dataset: http://www.fil.ion.ucl.ac.uk/spm/data/attention/

http://www.fil.ion.ucl.ac.uk/spm/data/attention/
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The archive contains the smoothed, spatially normalised, realigned, slice-time corrected images
in the directory functional. The directory structural contains a spatially normalised structural
image. All processing took place using SPM99, but the image files have been converted into NIfTI
format.

Making a DCM requires two ingredients: (i) a design matrix and (ii) the time series, stored
in VOI files. The regressors of the design matrix define the inputs for the DCM. Note that this
means that the design matrix that is optimal for a given DCM is often somewhat different than
the one for the corresponding GLM. DCM does not require the design matrix to be part of an
estimated model, however. It just needs to be defined.

32.3.1 Defining the GLM

The present experiment consisted of 4 conditions: (i) fixation (F), (ii) static (S, non-moving
dots), (iii) no attention (N, moving dots but no attention required), (iv) attention (A). The GLM
analyses by Christian showed that activity in area V5 was not only enhanced by moving stimuli,
but also by attention to motion. In the following, we will try to model this effect in V5, and
explain it as a context-dependent modulation or “enabling” of V5 afferents, using a DCM. First,
we need to set up the GLM analysis and extract our time series from the results. In this example,
we want to use the same design matrix for GLM and DCM, therefore we recombine the above
regressors to get the following three conditions:

1. photic: this comprises all conditions with visual input, i.e. S, N, and A.

2. motion: this includes all conditions with moving dots, i.e. N and A.

3. attention: this includes the attention-to-motion (A) condition only.

Now we need to define and estimate the GLM. This is not the main topic of this chapter so you
should already be familiar with these procedures, see 8 and 9 for more information. Here are the
relevant details for this data set that you need to set up the GLM:

• The onsets for the conditions can be found in the file factors.mat. They are named stat

(static), natt (no attention) and att (attention) and are defined in scans (not seconds).
They are blocks of 10 TRs each.

• The TR is 3.22 seconds.

• There are 360 scans.

Let’s specify a batch that will specify the model and estimate it.

1. The analysis directory should include

(a) A directory named functional, which includes the preprocessed fMRI volumes.

(b) A directory named structural, which includes a normalised T1 structural volume

(c) File factors.mat.

(d) You will also need to make a new directory called GLM that will contain the analysis.

2. In Matlab type

>> cd GLM

>> spm fmri

3. From the main SPM window, click on the Batch button.

4. From the SPM menu at the top of the Batch Editor, select “Stats > fMRI model specifica-
tion”.

5. Click Directory and choose the GLM directory that you made above.

6. Units for design [scans]
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7. Interscan interval [3.22]

8. Click Data & Design, Choose New ”Subject/Session”

9. Click Scans and choose all the functional scans snffM00587 00xx.img. There should be
360 *.img files.

10. Load the MAT-file containing the individual conditions in Matlab workspace:

>> load factors.mat

You can look at the loaded variables by typing the variable names. (stat = stationary,
natt = no attention, att = attention)

>> stat

>> natt

>> att

11. Create 3 New: Condition under Conditions so that:

• Condition 1: Name = Photic, Onsets = [att natt stat] and Durations = 10.

• Condition 2: Name = Motion, Onsets = [att natt] and Durations = 10.

• Condition 3: Name = Attention, Onsets = att and Durations = 10.

12. From the SPM menu at the top of the Batch Editor, select “Stats > model estimation”.

13. For Select SPM.mat, click on the Dependency button and choose the proposed item
(the output from the previous module).

14. You should now be able to press the Run green arrow at the top of the Batch Editor
window. This will specify and estimate the GLM.

32.3.2 Extracting time series

Once you have specified and estimated the GLM, you should define t-contrasts that test for
photic, motion, and attention, respectively. These serve to locate areas that show effects due to
visual stimulation (e.g. in V1), motion (e.g. V5) and attention (e.g. V5 and superior parietal
cortex, SPC). Because V5 shows both motion and attention effects, it is useful to mask the
motion-contrast inclusively with the attention-contrast when extracting time series for V5. You
should also compute the usual “effects of interest” F-contrast, this is needed for mean-correcting
the extracted time series (see below).

1. From the main SPM window, click on the Batch button.

2. Add a module “SPM > Stats > Contrast manager”.

3. For Select SPM.mat, enter the one that has been created in the previous step.

4. Under Contrast Sessions, choose one New: F-contrast and three New: T-contrast
and enter

• F-contrast: Name = Effects of interest, F contrast vector = eye(3).

• T-contrast: Name = Photic, T contrast vector = [1 0 0].

• T-contrast: Name = Motion, T contrast vector = [0 1 0].

• T-contrast: Name = Attention, T contrast vector = [0 0 1].

5. Press the Run green arrow at the top of the Batch Editor window. This will specify and
estimate these 4 contrasts.

Here is now a step-by-step example for extracting the V5 time series:
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1. Press Results.

2. Select the SPM.mat file.

3. Choose the t-contrast for the Motion condition.

4. Mask with other contrasts: Yes

5. Choose the t-contrast for the Attention condition.

6. Mask inclusively and choose a threshold of p ≤ 0.05 uncorrected.

7. Select the global maxima that looks V5-ish, e.g. [-36 -87 -3] (by overlaying the activa-
tions onto the normalised structural image you should be able to identify V5 more easily).

8. Press the eigenvariate button.

9. Name of region: V5

10. Adjust data for: Effects of interest (this effectively mean-corrects the time series)

11. VOI definition: sphere

12. VOI radius(mm): e.g. 8 mm

SPM now computes the first principal component of the time series from all voxels included in the
sphere. The result is stored (together with the original time series) in a file named VOI V5 1.mat

in the working directory (the “1” refers to session 1).
You can now proceed to select time series for V1 (using the Photic contrast) with an 8

mm sphere centered on the global maxima ([0 -93 18]). Same thing with SPC (using the
attention contrast with a p ≤ 0.001 uncorrected threshold) and a sphere centered on the local
maxima around [-27 -84 36]. This will create files VOI V1 1.mat and VOI SPC 1.mat.

32.3.3 Specifying and estimating the DCM

Now we have defined the inputs (via the design matrix) and the time series, we are ready to build
the DCM. We will look at a simplified version of the model described in [32]. In our example
here, we will model a hierarchically connected system comprising V1, V5 and SPC, i.e. reciprocal
connections between V1-V5 and V5-SPC, but not between V1-SPC. We will assume that (i) V1
is driven by any kind of visual stimulation (direct input “photic”), (ii) motion-related responses
in V5 can be explained through an increase in the influence of V1 onto V5 whenever the stimuli
are moving (i.e. “motion” acts as modulatory input onto the V 1 → V 5 connection) and (iii)
attention enhances the influence of SPC onto V5 (i.e. “attention” acts as modulatory input onto
the SPC → V 5 connection). This DCM is shown schematically in Figure 32.4, and can be made
as follows:

1. Press the large Dynamic Causal Modelling button.

2. Choose specify.

3. Select the SPM.mat file you just created when specifying the GLM.

4. Name for DCM ???.mat: e.g. mod bwd (for “attentional modulation of backward connec-
tion”).

5. Select all VOIs in order VOI V1 1, VOI V5 1, VOI SPC 1.

6. Include Photic: Yes

7. Include Motion: Yes

8. Include Attention: Yes
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Figure 32.4: DCM with attentional modulation of backwards connection. Dotted lines denote
modulatory connections.

9. Specify slice timings for each area. The default values are set to the last slice of the
data, which was the default in the original DCM version. For sequential (as opposed to
interleaved) data, this modelling option allows to use DCM in combination with any TR
(slice timing differences) [58]. Here, we proceed with the default values.

10. Enter 0.04 for “Echo Time, TE[s]”.

11. Modulatory effects: bilinear

12. States per region: one

13. Stochastic effects: no

14. Define the following intrinsic connections: V1 to V5, V5 to V1, V5 to SPC, SPC to V5, i.e.
a hierarchy with reciprocal connections between neighbouring areas. Note that the columns
specify the source of the connection and the rows specify its target. Your connectivity
matrix should look like the one in Fig. 32.5.

15. Specify Photic as a driving input into V1. See Fig. 32.5

16. Specify Motion to modulate the connection from V1 to V5. See Fig. 32.5

17. Specify Attention to modulate the connection from SPC to V5. See Fig. 32.5

A polite “Thank you” completes the model specification process. A file called DCM mod bwd.mat

will have been generated.
You can now estimate the model parameters, either by pressing the DCM button again and

choosing estimate, or by typing

>> spm_dcm_estimate(’DCM_mod_bwd’);

from the Matlab command line.
Once this is completed, you can review the results as follows:

1. Press the DCM button.

2. Choose review.

3. Select DCM mod bwd.mat



308 CHAPTER 32. DYNAMIC CAUSAL MODELING FOR FMRI

Figure 32.5: Specification of model depicted in Fig 32.4. Top left: Filled circles define the
structure of the intrinsic connections A such that eg. there are no connections from V1 to SPC
or from SPC to V1. Top right: The filled circle specifies that the input Photic connects to
region V1. Bottom left: The filled circle indicates that the input Motion can modulate the
connection from V1 to V5. This specifies a “modulatory” connection. Bottom right: The filled
circle indicates that Attention can modulate the connection from SPC to V5.
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Figure 32.6: DCM with attentional modulation of forwards connection. Dotted lines denote mod-
ulatory connections.

4. Threshold: 0

Now you have multiple options, e.g. you can revisit the fit of the model (“Outputs”) or look at
the parameter estimates for the intrinsic connections (“Intrinsic connections”) or for the param-
eters associated with the driving or modulatory inputs (“Effects of Photic”, “Effects of Motion”,
“Effects of Attention”).

Also, you can use the “Contrasts” option to determine how confident you can be that a
contrast of certain parameter estimates exceeds the threshold you chose in step 4. Of course,
you can also explore the model results at the level of the Matlab command line by loading the
model and inspecting the parameter estimates directly. These can be found in DCM.Ep.A (intrinsic
connections), DCM.Ep.B (modulatory inputs) and DCM.Ep.C (driving inputs).

32.3.4 Comparing models

Let us now specify an alternative model and compare it against the one that we defined and
estimated above. The change that we are going to make is to assume that attention modulates
the V 1→ V 5 connection (as opposed to the SPC → V 5 connection in the previous model). For
defining this model, you repeat all the steps from the above example, the only differences being
that the model gets a new name (e.g. mod_fwd) and that attention now acts on the forward
connection. This DCM is shown schematically in Figure 32.6.

Once you have estimated this new model, you can perform a Bayesian model comparison as
follows:

1. Press the “DCM” button.

2. Choose Compare.

3. In the Batch Editor window that opened, fill in the “BMS: DCM” module:

(a) Directory: choose current directory,

(b) Data: add a New Subject with a New Session and select the two models, e.g. in the
order DCM mod bwd.mat and DCM mod fwd.mat,

(c) Inference method: choose “Fixed effects (FFX)”.
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4. Press Run (the green triangle in the Batch Editor).

The Graphics window, Fig. 32.8, now shows a bar plot of the model evidence. You can see
that our second model is better than the first one.
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Figure 32.7: Plot of predicted and observed response, after convergence and conditional expectation
of the parameters.



312 CHAPTER 32. DYNAMIC CAUSAL MODELING FOR FMRI

Figure 32.8: Model 2 (shown in Fig 32.6) is preferred to model 1 (shown in Fig 32.4).



Chapter 33

Psychophysiological Interactions
(PPI)

33.1 Theoretical background

Psychophysiological interactions (PPI) and the related technique of physiophysiological interac-
tions (ΦPI) are based on extensions to statistical models of factorial designs. Table 1 illustrates
a classic 2× 2 factorial design.

Table 33.1. 2 x 2 factorial design in Table format
Factor A

Level 1 Level 2

F
ac
to
r
B

L
ev
el

1

A1/B1 A2/B1

L
ev
el

2

A1/B2 A2/B2

The equation for factorial design is given by 33.1.

y = (A2 −A1)β1 + (B2 −B1)β2 + (A2 −A1)(B2 −B1)β3 +Gβ4 + ε (33.1)

Notice that this equation includes both of the main effects terms (A2 − A1)β1 for factor A,
and (B2 − B1)β2 for factor B, as well as the interaction term (A2 − A1)(B2 − B1)β3. It also
contains a term for the confounds Gβ4 such as movement parameters, session effects, etc. The
inclusion of main effects when estimating interactions is very important, and their inclusion in
the design cannot be stressed enough. If the main effects are not included, then we cannot be
sure that estimates of the interaction term are not confounded by main effects.

To extend the concept of factorial designs to PPI’s the basic idea is to substitute (neural)
activity from one cerebral region for one of the factors. Equation 33.2 illustrates this concept
after substituting activity in area V1 for factor A.

y = V 1β1 + (B2 −B1)β2 + (V 1× (B2 −B1))β3 +Gβ4 + ε (33.2)

Similarly, for psychophysiological interactions activity from 2 cerebral regions (V1 and poste-
rior parietal (PP)) are used as the main effects, as shown in equation 33.3

y = V 1β1 + PPβ2 + (V 1× PP )β3 +Gβ4 + ε (33.3)

Again, notice that all 3 equations 33.1, 33.2 and 33.3 have 3 terms (aside from confounds and
error) – the two main effects and the interaction. Therefore, the design matrix must include at

313
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Figure 33.1: Example design matrix for a PPI (or (ΦPI)). The main effects are BOLD activity
from area V1, in column 2, and a psychological vector, e.g., attention vs. no attention (P), in
column 3. Inference would typically focus on the interaction term, in column 1, using a contrast
vector of [1 0 0 0]. In ΦPIs the third column would be BOLD activity from a second source
region rather than the psychological factor.

least 3 columns, one for each main effect and one for the interaction. A basic design matrix for
PPI’s is shown in Figure 33.1.

Both PPIs and ΦPIs can be conceived of as models of “contribution”. PPIs occupy middle-
ground between between models of functional vs. effective connectivity [28]. Functional connec-
tivity (FC) is defined as the temporal correlation between spatially separated neurophysiological
events [28]. FC analyses are typically model-free and do not specify a direction of influence, i.e.,
the influence of A on B is indistinguishable from the influence of B on A. In contrast, PPI’s are
based on regression models, and therefore a direction of influence is chosen based on the model.
Effective connectivity (EC) is defined as the influence one neural system has on another [26].
PPIs are closely related to EC models, but because PPIs are generally very simple (i.e., 1 source
region and 1 experimental factor, or 2 source regions in the case of ΦPIs) they are very limited
models of EC.

The interaction between the source region and experimental context (or two source regions)
can be interpreted in 2 different ways: 1) as demonstrating how the contribution of one region
to another is altered by the experimental context or task, or 2) as an example of how an area’s
response to an experimental context is modulated by input from another region, Figure 33.2.
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Figure 33.2: Two alternative interpretations of PPI effects. A) The contribution of one area (k)
to another (i) is altered by the experimental (psychological) context. B) The response of an area
(i) to an experimental (psychological) context due to the contribution of region (k). (Adapted
from [28])

33.2 Psycho-Physiologic Interaction Analysis: Summary of
Steps

Mechanistically, a PPI analysis involves the following steps.

1. Performing a standard GLM analysis.

2. Extracting BOLD signal from a source region identified in the GLM analysis.

3. Forming the interaction term (source signal x experimental treatment)

4. Performing a second GLM analysis that includes the interaction term, the source region’s
extracted signal and the experimental vector in the design. The inclusion of the source
region’s signal and the experimental vector is analogous to including the main effects in an
ANOVA in order to make an inference on the interaction.

Forming the proper interaction term turns out to be a challenge because of the unique charac-
teristics of fMRI (BOLD) data in which the underlying neural signal is convolved with a hemody-
namic response function. However, interactions in the brain take place at the neural and not the
hemodynamic level. Therefore, appropriate models of the interactions require the neural signal,
which is not measured directly, but instead must be derived by deconvolving the HRF. The PPI
software (spm peb ppi.m) was developed in order to provide robust deconvolution of the HRF
and the proper derivation of the interaction term [41].

33.3 Practical example

The dataset in this exercise is from one subject who was studied in the [15] report and refers to
the “attention to motion” dataset available from the SPM website1. It has already been described
in the previous chapter for DCM.

The goal is to use PPI to examine the change in effective connectivity between V2 and V5 while
the subject observes visual motion (radially moving dots) under the experimental treatments of
attending vs. not attending to the speed of the dots. The psychophysiologic interaction can be

1http://www.fil.ion.ucl.ac.uk/spm/data/attention/

http://www.fil.ion.ucl.ac.uk/spm/data/attention/
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conceived of as looking for a significant difference in the regression slopes of V1 vs. V5 activity
under the influence of the different attentional states [28].

33.3.1 GLM analysis - Design setup and estimation

This dataset has already been preprocessed (coregistered, normalised and smoothed) using an
earlier version of SPM.

1. The analysis directory should include

(a) A directory named functional, which includes the preprocessed fMRI volumes.

(b) A directory named structural, which includes a T1 structural volume

(c) Files: factors.mat, block regressors.mat, multi condition.mat and
multi block regressors.mat.

(d) You will also need to make 2 empty directories called GLM and PPI for performing the
analyses.

2. In Matlab type

>> cd GLM

>> spm fmri

3. Start the Batch system by clicking the Batch button.

4. From the SPM menu in the Batch window, click Stats and then select the modules fMRI
Model Specification, Model Estimation and Contrast Manager, Figure 33.3.

Figure 33.3: Batch Editor showing the fMRI Model Specification, Model Estimation and
Contrast Manager modules.

Fill in the fMRI Model Specification

5. Click Directory and choose the GLM directory that you made above.
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6. Units for design [scans]

7. Interscan interval [3.22]

8. Microtime resolution [16]

9. Microtime onset [1]

10. Click Data & Design. Then in the Current Item box click New: Subject/Session,
Figure 33.4.

Figure 33.4: Fill in the Data & Design

11. Click Scans and choose all the functional scans snffM00587 00xx.img. There should be
360 *.img files.

12. The experimental conditions can be defined either individually or using a multiple condition
mat-file. This exercise shows both methods for educational purposes. When doing an actual
analysis you can just follow one of the two approaches below.

Define conditions individually

13. Load the mat file containing the individual conditions:

>> load factors.mat

You can look at the loaded variables by typing the variable names. ( stat = stationary,
natt = no attention, att = attention)

>> stat

>> natt

>> att
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Figure 33.5: Current Module section of the Batch Editor showing 3 Conditions to be filled
in.

14. Click Conditions then in the Current Item box click New: Condition 3 times, Fig-
ure 33.5.

15. Condition 1: Name = Stationary, Onsets = stat, Durations = 10.

16. Condition 2: Name = No-attention, Onsets = natt, Durations = 10.

17. Condition 3: Name = Attention, Onsets = att, Durations = 10.

18. Next you will enter 3 regressors to model block effects. This will account for the fact that
the experiment took place over 4 runs that have been concatenated into a single session to
make the PPI analysis easier. Note: Only 3 of the 4 sessions need to be modeled by block
regressors because the fourth one is modeled by the mean column of the design matrix.

First load the regressors:

>> load block_regressor.mat

19. Click Regressors then click New: Regressor 3 times in the Current Item box,
Figure 33.6.

20. Regressor 1: Name = Block 1, Value = block1

21. Regressor 2: Name = Block 2, Value = block2

22. Regressor 3: Name = Block 3, Value = block3

Define conditions using multiple condition and multiple regressor files

23. If you would like to look at the organization of the variables in the multiple condition file,
first load it.

>> load multi_condition.mat

>> names

>> onsets

>> durations
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Figure 33.6: Current Module section of the Batch Editor showing 3 Regressors to be filled
in.

The variables in a multiple condition file must always be named: ’names’, ’onsets’, and
’durations’. Notice that these three variables are cell arrays. (Note: You only need to do
this step if you want to look at the organization of the variables. In contrast to defining
conditions individually, as shown above, when using a multiple condition file you do not
have to load the file in order to enter it into the design.)

24. To use the multiple conditions file in the design, click Multiple Conditions, then Specify
Files in the Options box and choose the multi condition.mat file.

25. Next you will enter the 3 regressors to model block effects by using a multiple regressor file.
To look at the organization of the multiple regressor variable, first load it. (Again you do
not have to load the multiple regressor file in order to use it. This step is just to allow you
to examine the file and the variables it contains.)

>> load multi_block_regressor.mat

>> R

Notice that this file contains a single variable, R, which is a 360 x 3 matrix. The number of
rows is equal to the number of scans, and each regressor is in a separate column.

26. To use the multiple regressor file, click Multiple Regressors then select the multi -

block regressor.mat file.

Complete the design setup

27. High-pass filter [192] (Note: most designs will use a high-pass filter value of 128. How-
ever, this dataset requires a longer high-pass filter in order not to lose the low frequency
components of the design.)

28. Factorial design is not used

29. The Basis function is the canonical HRF as shown and Model derivatives [No
derivatives]

30. Model Interactions (Volterra): [Do not model interactions]
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31. Global normalisation [None]

32. Explicit mask [None]

33. Serial correlations [AR(1)]

Model Estimation

34. Under Model estimation click Select SPM.mat then click the Dependency button and
choose fMRI model specification: SPM.mat File. The Method should be left as
Classical.

Contrast Manager

35. Under Contrast Manager click Select SPM.mat then click the Dependency button
and choose Model estimation: SPM.mat File

36. Click Contrast Sessions then click New: F-contrast once, and New: T-contrast
twice from the Current Item box.

37. Click Contrast vectors and then New: F contrast vector.

38. The F contrast vector can be entered as [eye(3), zeros(3,4)], which will produce:

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

39. For the first T-contrast, Name is Attention, and the T contrast vector is 0 -1 1 0 0 0 0

(Note the order of the conditions in the design matrix is: Stationary, NoAttMot and
AttMot).

40. For the second T-contrast Name is Motion, and the T contrast vector is: -2 1 1 0 0 0 0.

41. Click the Save icon on the toolbar and save the batch file.

Design estimation

42. If everything has been entered correctly the Run button should now be green. Click Run
to estimate the design.

43. The design matrix should look as shown in Figure 33.7, below.

33.3.2 GLM analysis - Results

1. Click Results and select the SPM.mat file.

2. Choose the Attention contrast

3. Mask with other contrasts [No]

4. Title for comparison [Attention]

5. p value adjustment to control [None]

6. threshold T or p value [0.0001]

7. & extent threshold voxels [10]
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Figure 33.7: Design matrix

Figure 33.8: Statistical parametric map for the Attention contrast

8. You should see an SPM that looks like the one shown below, Figure 33.8. Note the Superior
Parietal and Dorso-Lateral Prefrontal activations, among others. By selecting overlays
→ sections, and selecting the normalised structural image, you should be able to identify
the anatomy more accurately.

9. To look at the Motion contrast where Attention is greater than No Attention, click Re-
sults, choose the SPM.mat file and choose the Motion contrast.

10. apply masking [Yes]
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11. Select contrast for masking: Choose the Attention contrast

12. Uncorrected mask p-value [0.01]

13. Nature of Mask: [inclusive]

14. title for comparison: leave as the defaults, which is [Motion (masked [incl.] by Attention at
p=0.01)]

15. p value adjustment to control [FWE]

16. threshold T or p value [0.05]

17. & extent threshold voxels [3]

18. The masked motion contrast on the glass brain is shown below in Figure 33.9.

Figure 33.9: Statistical parametric map for the Motion contrast inclusively masked by the Atten-
tion contrast

33.4 GLM analysis - Extracting VOIs

1. First select the Motion contrast, but do not include masking. Use a p-value adjustment of
FWE with height threshold of 0.05 and a cluster threshold of 3.

2. Go to point [15 -78 -9]

3. Press eigenvariate

4. Name of region [V2]

5. Adjust data for [effects of interest]

6. VOI definition [sphere]

7. VOI radius(mm) [6]

This saves the extracted VOI data in the file VOI V2 1.mat in the working directory, and displays
Figure 33.10, below. The left side shows the location on a standard brain. The right side shows
the first eigenvariate of the extracted BOLD signal.
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Figure 33.10: First eigenvariate of the extracted BOLD signal in V2

Figure 33.11: Physio/Psycho-Physiologic module in the Batch Editor

33.5 PPI analysis - Create PPI variable

1. PPIs can be calculated either by pressing the PPIs button in the SPM Menu window, or
by selecting the Physio/Psycho-Physiologic menu item from the SPM → Stats menu
of the Batch Editor. This example uses the Batch Editor, Figure 33.11.

2. Choose the SPM.mat file in the GLM directory.

3. Type of analysis: Choose Psycho-Physiologic interaction, Figure 33.12.

Figure 33.12: Specifying a Psycho-Physiologic interaction.

4. Select VOI: Choose VOI V2 1.mat

5. Input variables and contrast weights: Must be specified as an n x 3 matrix, where n is
the number of conditions included in the PPI. The first column of the matrix indexes
SPM.Sess.U(i). The second column indexes SPM.Sess.U(i).nameii. It will generally be a
1 unless there are parametric effects. The third column is the contrast weight. In order
to include Attention - No-attention in the PPI, recall that the conditions were entered as:
Stationary, No-attention, Attention, therefore the matrix should be.

[2 1 -1; 3 1 1]

6. Name of PPI [ V2x(Att-NoAtt) ]

7. Display results: Yes
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After a few seconds the PPI will be calculated and a graphical window will appear, Fig-
ure 33.13. In the upper left, the details of the PPI setup calculation are given including the name
of the PPI, the chosen VOI file, and the included conditions and their contrast weights. The
main central graph shows the original BOLD signal (actually the eigenvariate) in blue and the
neuronal or deconvolved signal in green. These will look quite similar for block design data. The
graph in the lower left shows the task condition plot, dotted green line, and the convolved task
conditions (psych variable). In the lower right the PPI interaction term is plotted.

Figure 33.13: PPI output graphics

The PPI calculation will create a file PPI V2x(Att-NoAtt).mat in the current working di-
rectory. It contains the variable PPI.ppi (the interaction term), PPI.Y (the original VOI eigen-
variate) and PPI.P (the Attention - No Attention task vector). You will use these vectors in
setting up your psychophysiologic interaction GLM analysis. See spm peb ppi for a full descrip-
tion of the PPI data structure.

33.5.1 PPI GLM analysis - Design setup and estimation

1. Copy the file PPI V2x(Att-NoAtt) Mat-file to the PPI directory that you created at the
start of this exercise.

2. Change directory to the new one, i.e. cd PPI

3. At the Matlab prompt type
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>> load PPI_V2x(Att-NoAtt)

4. In the Batch Editor setup another GLM analysis by choosing the modules fMRI Model
Specification, Model Estimation and Contrast Manager as you did above, and fill
it in as follows.

5. Directory: Choose the PPI directory

6. Units for design [scans]

7. Interscan interval [3.22]

8. Add a New: Subject/Session under Data & Design

9. Click Scans and choose all the functional scans snffM00587 00xx.img. There should be
360 *.img files.

10. Click New: Regressor and add 6 regressors.

11. Regressor 1: Name = PPI-interaction, Value = PPI.ppi

12. Regressor 2: Name = V2-BOLD, Value = PPI.Y

13. Regressor 3: Name = Psych Att-NoAtt, Value = PPI.P

14. Regressor 4: Name = Block 1, Value = block1

15. Regressor 5: Name = Block 2, Value = block2

16. Regressor 6: Name = Block 3, Value = block3

17. High Pass Filter [192]

Model Estimation

18. Under Model estimation click Select SPM.mat then click the Dependency button and
choose fMRI model specification: SPM.mat File. The Method should be left as
Classical.

Contrast Manager

19. Under Contrast Manager click Select SPM.mat then click the Dependency button
and choose Model estimation: SPM.mat File

20. Click Contrast Sessions then click New: T-contrast

21. T-contrast, Name: PPI-Interaction, vector: 1 0 0 0 0 0 0

22. Save the batch file.

23. Run

The design matrix is shown below, Figure 33.14.
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Figure 33.14: Design matrix for the PPI analysis

33.5.2 PPI analysis - Results

1. Press the Results button and select the SPM.mat file in the PPI directory.

2. Choose the PPI-Interaction contrast

3. apply masking [No]

4. title for comparison [PPI-Interaction]

5. p value adjustment to control [None]

6. threshold T or p value [0.01]

7. & extent threshold voxels [10]

8. You should see an SPM that looks the same as the one shown below in the top part of
Figure 33.15. The resulting SPM shows areas showing differential connectivity to V2 due
to the effect of attention vs. no attention conditions. The effect in this subject is weak.

33.5.3 PPI analysis - Plotting

1. One region showing the psychophysiologic interaction is the V5region, which is located at
[39 -72 0] in this subject. Move the cursor to this point to view the area of activation, as
shown below, in the bottom half of Figure 33.15.

2. In order to plot the PPI graph showing the effect of attention, you need to extract a VOI
from the V5 region. To do this, you will return to the original GLM analysis.

3. Click Results, then select the GLM analysis SPM.mat file and the Motion contrast.

4. apply masking [No]
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Figure 33.15: PPI results

5. title for comparison [Motion]

6. p value adjustment to control [None]

7. threshold T or p value [0.001]

8. & extent threshold voxels [3]

9. Go to point [39 -72 0]

10. Press eigenvariate

11. Name of region [V5]

12. Adjust data for [effects of interest]

13. VOI definition [sphere]

14. VOI radius(mm) [6]

15. Now you will create 4 PPIs (Follow the steps under section 33.5, Create PPI Variable,
above). By using the PPI software machinery to create the interaction vectors, rather than
just multiplying the extracted V2 and V5 eigenvariates by the behavioral vectors, the PPI
vectors will be formed properly.

16. V2xNoAttention (Use the V2 VOI and include No-Attention with a contrast weight of 1,
do not include Stationary, Attention)
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17. V2xAttention (Use the V2 VOI and include Attention with a contrast weight of 1, do not
include Stationary, No-Attention)

18. V5xNoAttention (Use the V5 VOI and include No-Attention with a contrast weight of 1,
do not include Stationary, Attention)

19. V5xAttention (Use the V5 VOI and include Attention with a contrast weight of 1, do not
include Stationary, No-Attention)

20. Load the PPIs you just created with the following commands at the Matlab prompt:

>> v2noatt = load(’PPI_V2xNoAttention’);

>> v2att = load(’PPI_V2xAttention.mat’);

>> v5noatt = load(’PPI_V5xNoAttention.mat’);

>> v5att = load(’PPI_V5xAttention.mat’);

21. Plot the PPI datapoints with the following commands at the Matlab prompt:

>> figure

>> plot(v2noatt.PPI.ppi,v5noatt.PPI.ppi,’k.’);

>> hold on

>> plot(v2att.PPI.ppi,v5att.PPI.ppi,’r.’);

22. To plot the best fit lines type the following first for NoAttention

>> x = v2noatt.PPI.ppi(:);

>> x = [x, ones(size(x))];

>> y = v5noatt.PPI.ppi(:);

>> B = x\y;

>> y1 = B(1)*x(:,1)+B(2);

>> plot(x(:,1),y1,’k-’);

23. Then for Attention

>> x = v2att.PPI.ppi(:);

>> x = [x, ones(size(x))];

>> y = v5att.PPI.ppi(:);

>> B = x\y;

>> y1 = B(1)*x(:,1)+B(2);

>> plot(x(:,1),y1,’r-’);

>> legend(’No Attention’,’Attention’)

>> xlabel(’V2 activity’)

>> ylabel(’V5 response’)

>> title(’Psychophysiologic Interaction’)
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Figure 33.16: Graph demonstrating PPI interaction.
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Chapter 34

Bayesian Model Inference

This chapter describes the use of SPM’s Bayesian Model Inference capabilities. For a fuller
background on this topic see [75]. We illustrate the methods using a DCM for fMRI study of the
languange system.

34.1 Background

The neuroimaging data derive from an fMRI study on the cortical dynamics of intelligible speech
[59]. This study applied dynamic causal modelling of fMRI responses to investigate activity
among three key multimodal regions: the left posterior and anterior superior temporal sulcus
(subsequently referred to as regions P and A respectively) and pars orbitalis of the inferior frontal
gyrus (region F). The aim of the study was to see how connections among regions depended on
whether the auditory input was intelligible speech or time-reversed speech.

The basic DCM, from which all other models were derived, is shown in figure 34.1. Auditory
input enters region P and the three areas have full intrinsic connectivity. The modulatory input,
encoding whether or not the auditory stimulus was speech or reversed speech, was then allowed to
modulate a subset of connections in the model. These are the forward and backward connections
between P and F, and the forward and backward connections between P and A. As these are
either present or absent this results in 24 = 16 different DCMs.

34.2 Data

An archive containing 16 DCMs for each of 12 subjects can be downloaded from the SPM web
page. This archive is called dcm_bms.zip. When you extract the data onto your computer a
number of subdirectories will be created - one for each of the 12 subjects. The 16 DCMs for each
subject are then available in these subject-specific directories. You can load one of these into
SPM and examine the information contained therein.

These DCM files contain the usual information eg. the original time series from each region
of interest are available in DCM.xY(1) for region 1, wherein DCM.xY(1).name=’PSTS_6’ indicates
this is the posterior temporal region. The estimated parameter values are available in DCM.Ep.
You should note that these DCMs were specified and estimated using SPM revision 3894 (from
May 2010) and that these DCM structures differ from earlier SPM releases.

Also in the Zip archive is a file called model_space.mat. If you load model_space, you will
see that it contains a data structure called subj with subfields ’sess’ and then ’model’. If you type
eg. subj(1).sess(1).model(1) you will see four further subfields containing information about
the first DCM for subject 1. This comprises the filename (fname), the free energy approximation
to the model evidence (F), posterior mean parameters (Ep), and the posterior covariance of
parameters (Cp).

The use of a ‘model space’ file makes use of SPMs Bayesian model comparison (BMC) routines
much simpler. If this file is not specified it will be automatically generated (from the DCM files)
the first time you use the BMC routines (see below). Alternatively, you can easily create your
own model space file. To get the current file to work on your system you will need to change all of
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Figure 34.1: All DCMs were fully connected ie. there were endogenous connections between all
three regions (dotted lines) (i) left posterior temporal sulcus (region P), (ii) left anterior superior
temporal sulcus (region A) and (iii) pars orbitalis of the inferior frontal gyrus (region F). Auditory
input enters region P. The sixteen models differ in their modulatory connectivity (solid lines)

the filenames (fname) so that they correspond to the positions of the DCM files in your filespace.
You can do this with the model_space_filenames function (also provided in the Zip archive).

34.3 Analysis

After unzipping the archive, correct the model space filenames using the command
subj=model_space_filenames(subj,new_base_dir) where new_base_dir is the name of the
directory where you have unzipped the archive. This should be something like
’C:\blah\blah\blah\dcm-base-files’. Then save subj back in the model space file using
save model_space subj.

34.3.1 Single Family

Now open SPM and in the Menu window go to Batch, SPM, Stats, Bayesian Model Selection,
BMS:DCM. This will open SPM’s batch editor. Select an appropriate directory (eg. where you
unzipped the archive), highlight Load model space and select the model_space.mat file. For
inference method select ’FFX’. Save the batch job as ffx_all_models.mat, then press the green
play button to run the job. This will produce the figure 34.2, showing that model 6 is the best
model.

We can now go back and load the ffx_all_models.mat job in the batch editor (press the
Batch button) and change the inference methods to RFX. This will produce something like the
results in figure 34.3 (note that the RFX approach uses a sampling procedure with a different
random initial seed on each run, so the results can vary slighlty from run to run). Again, model
6 is the best model, but not by much. These RFX results will be stored in the same BMS.mat file
as the FFX results.

34.3.2 Bayesian Model Averaging

Now go back into the batch editor and reload the ffx_all_models.mat job. Highlight BMA,
and select Choose family (instead of ’Do not compute’). Accept the ’Winning Family’ option.
The BMA results will be saved in the same BMS.mat file as the previous analyses. Now go ahead
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Figure 34.2: Fixed effects model inference
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Figure 34.3: Random effects model inference
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and press the green play button. SPM will do the FFX model inference (again), but will also
implement a weighted average of the model parameters where the weights are given by the evidence
for each model, as described in [75]. After the averaging is complete, SPM will report the number
of models in Occams window. This should be 10 models (models 5,6,7,8,11,12,13,14,15,16).

To look at the BMA results, go to the Menu window and press the Dynamic Causal Modelling
button. Then select Average, select BMA, and then the BMS.mat file just created. Then select
FFX for the inference method. If you then highlight the tab (top left) to select the modulatory
variables you should get the plot shown in figure 34.4.

34.3.3 Family level inference

The results so far have made no use of SPM’s family inference procedure. Or rather, they have,
but have assumed that all models belong to the same family.

Open the ffx_all_models.mat batch file again, highlight Family inference and select Load
family. Highlight Load family and select the pf_family.mat file contained in the Zip archive.
This comprises two families (i) those with a forward connection from P to F (’PF’), and (ii)
those without it (’No PF’). Set the BMA option to Do not Compute. Select a new directory you
have created for this analysis (eg pf-family) and run the job. SPM will create the family level
inference plot shown in figure 34.5. This gives a 90% posterior probability to models with the P
to F connection.

We will now repeat the analysis but with RFX inference. You should see a result similar to
that shown in figure 34.6.

34.3.4 Summary Statistics and Group Analyses

The group mean DCM parameters can be easily obtained from the Matlab command window
by loading the BMS.mat file and then typing: BMS.DCM.ffx.bma.Ep.

The subject specific mean DCM parameters can be obtained as follows: BMS.DCM.ffx.bma.Eps(n),
where n is the subject number. For random-effects change ffx to rfx.

If we are interested in the modulatory connection from region 1 to region 3 (that is modulated
by the second input), then the mean value of this for Subject 10 is given by
BMS.DCM.ffx.bma.Eps(10).B(3,1,2) (which should be 0.7475). The mean connection values
for all subjects (12) can be gotten with the Matlab syntax
for i=1:12, b(i) = BMS.DCM.ffx.bma.Eps(i).B(3,1,2); end.

These subject specific mean parameters can then act as summary statistics for a standard
group analysis. For example to look for significant differences between eg. a control group and a
patient group in a modulatory parameter one would implement a two-sample t-test on data from
the appropriate entries in the mean_bs matrices. Similarly, if one has 3 groups one would use a
3-level ANOVA.

34.4 BMS.mat file

The BMS structure saved in BMS.mat file contains the following variables1:

BMS.DCM.ffx/rfx (fixed-effects (FFX) / random-effects (RFX) analysis)

.data path to model space.mat file (see below).

.F fname path to file containing the log evidence matrix, F, (if this option is specified).

.F matrix of log model evidences for all subjects and models, [nsub × nm].

.SF vector of summed log evidences over subjects [1 × nm].

.model results from model level inference (see below).

.family results from family level inference (see below).

.bma results from Bayesian model averaging (see below).

1nm = number of models; nfam = number of families; nsub = number of subjects; nsamp = number of samples;
dima/b/c/d = dimensions of a/b/c/d DCM parameters; np = number of model parameters; nsess = number of
sessions.
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Figure 34.4: Bayesian model averaging over all 16 models



34.4. BMS.MAT FILE 337

Figure 34.5: FFX family inference
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Figure 34.6: RFX family inference
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34.4.1 Model level results

Fixed-effects:

model
.prior model priors, p(m), [1 × nm].
.subj lme log model evidence matrix, [nsub × nm].
.like model likelihoods, p(Y |m), [1 × nm].
.posts model posterior probabilities, p(m|Y ), [1 × nm].

Random-effects (different from fixed-effects):

model
.alpha0 initial Dirichlet parameters (prior counts), α0, [1 × nm].
.exp r model posterior means, < r|Y >, [1 × nm].
.xp model exceedance probabilities, ψm [1 × nm].
.r samp samples from the model posterior density, p(r|Y ), [nsamp × nm].
.g post posterior model probabilities for subject n and model m, p(mn|Y ), [nsub × nm].

34.4.2 Family level results

Fixed-effects:

family
.names family names, ex: {‘F1’, ‘F2’, ‘F3’}.
.partition partition vector assigning each model to a family [1 × nm].
.infer inference method (‘ffx’ or ‘rfx’).
.prior family priors, p(fk), [1 × nfam].
.post family posterior probabilities, p(fk|Y ), [1 × nfam].
.like family likelihoods, p(Y |fk), [1 × nfam].

Random-effects (different from fixed-effects):

family
.Nsamp number of samples used in Gibbs sampling (default = 20000).
.prior family type of priors (‘F-unity’, α0 = 1, for each family, is the default;

other option, ‘M-unity’, α0 = 1, for each model) .
.alpha0 initial values of the Dirichlet parameters (prior counts), αprior(m), [1 × nfam].
.s samp samples from family posterior density, p(s|Y ), [nsamp × nfam].
.exp r family posterior means, < sk|Y >, [1 × nfam].
.xp family exceedance probabilities, ψk, [1 × nfam].

34.4.3 Bayesian model averaging (BMA)

Fixed-effects:
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bma
.nsamp number of samples used to average parameters (default = 10000).
.oddsr posterior odds ratio, πOCC , (number of models in Occams window,

default = 0).
.Nocc number of models in Occam’s window.
.Mocc index of models in Occam’s window, [1 × nm].
.indx index of models in Occam’s window (different for each subject in RFX),

[1 × nm].
.a samples from posterior density over DCM.a parameters [dima × nsamp].
.b samples from posterior density over DCM.b parameters [dimb × nsamp].
.c samples from posterior density over DCM.c parameters [dimc × nsamp].
.d samples from posterior density over DCM.d parameters [dimd × nsamp].
.mEp mean DCM parameters [1 × 1 struct].
.sEp standard deviation of DCM parameters [1 × 1 struct].
.mEps mean DCM parameters per subject [1 × nsub struct].
.sEps standard deviation DCM parameters per subject [1 × nsub struct].

Random-effects - same variables as in fixed-effects.

34.5 model space.mat file

This structure is created automatically if it doesn’t exist in the chosen directory and can be loaded
for subsequent analyses as a faster option to reading the DCM.mat files. The model space.mat
file contains the following structure:

subj(nsub).sess(nsess).model(nm)
.fname path to DCM.mat file.
.F log-evidence (free energy).
.Ep parameter estimates: conditional expectation,

[np × 1].
.Cp parameter estimates: conditional covariance,

[np × np].

For a detailed description of all the variables and methods please see [75] and [80].
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MEG source localisation

35.1 Overview

In this section we will generate some simulated data to show how the inversion algorithms compare
when the ground-truth is known.

35.2 Simulation

The code used to generate the simulated data is called simmegdip for faces.m and is located in
the man/example scripts directory. The simulation code takes the experimental setup: sensor
locations, triggers, head model, etc, from the SPM M/EEG dataset1:

cdbespm8_SPM_CTF_MEG_example_faces1_3D.mat

cdbespm8_SPM_CTF_MEG_example_faces1_3D.dat

you created in chapter 37 and replaces the channel data with simulated data. It also forces the
head model to be single-sphere. You can manipulate this code to change the number or locations
of the simulated dipoles by changing

dipolepositions = [ 52, -29, 13; -52, -29, 13]; % in mni space

or modify the signal vector in anyway to change the time series being simulated. At the simplest
level, the matrices dipamp and dipfreq define how each source behaves during a given condition.

% cond 1 cond 2

dipamp = [ 1 0;... % dip 1

1 0].*1e-1; % dip 2

dipfreq = [10 10;... % dip 1

20 20]; % dip 2

That is, the two dipoles are currently set to be on (at 10 and 20Hz) during the faces condition
and off during the scrambled condition.

You can run the script to create a new or modified dataset each time. If you run it with no
changes, it will generate the dataset simdata aud1020Hz.mat. This dataset is also available from
the Multimodal face-evoked dataset webpage.

This file has dipoles at [52, -29, 13] and [-52, -29, 13] in MNI space. The dipoles are energized
at 10Hz and 20Hz from 0.1 to 0.4 seconds (Figure 35.1). In each epoch the activation profile is
identical, the channel data will be slightly different due to the white noise added.

1Multimodal face-evoked dataset: http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
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Figure 35.1: Simulated source data

35.3 Imaging solutions for evoked or induced responses

On the main menu Click 3D Source Reconstruction. Press Load. Select the unaveraged file
simdata aud1020Hz.mat.

Moving left to right along the bottom panel you will notice that all of the buttons (MRI,
Co-register, Forward Model) are active. This means that the preprocessing stages have already
been carried out on these data (see multi-modal evoked responses chapter).

35.3.1 IID (minimum norm)

We will start off with the traditional minimum norm solution. This starts by assuming that all
source elements contribute something to the measured data. The constraint is that the total
power (in the sources) should be minimised. Press Invert. Under reconstruction method press
Imaging. For All conditions or trials press Yes. For model press Custom. Model inversion
IID. Under Time-window “0 600”. For PST Hanning select Yes. For High-pass (Hz) select 1 for
Low-pass (Hz) select 48. For Source priors, select No. Under Restrict solutions select No.

It appears (35.2) that the minimum norm solution has reconstructed only one of the sources.
Note, however, the location of the dotted line in the upper time-series window. The source
amplitude reconstruction is based on the location of this line (and conversely the time series
shown taken from the maximum image voxel). In the ms or mm box fill in “205” then press mip.
You should now see that the minimum norm solution is indeed bilateral, although rather diffuse
(Figure 35.3). Note the log-evidence 4620718 (in the most recent version of SPM the absolute
value of the log evidence may have changed, but it is this value relative to those following which
is important).

The grey line in the time-series plot shows the amplitude of this voxel in the other (’scrambled’)
condition. To toggle between the conditions being viewed you can press the condition 1/2

button. Then press the mip button to update the display. Often we will interested in the difference
between conditions over a specific time-frequency window, rather than at a single latency. Press
the Window button. At the Time window (ms) prompt type “0 600”. For the Frequency [band]

of interest (Hz) type “1 40”. For Power select induced (although for these data evoked will
work just as well). You will now see a glass brain showing a power plot for the current condition.
You can convert this image and the corresponding image from the other condition into a volume
by pressing Image (Figure 35.4).
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Figure 35.2: IID imaging source reconstruction
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Figure 35.3: IID imaging source reconstruction at 205ms
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Figure 35.4: Exported functional image from IID source reconstruction overlayed on the template
structural image.

35.3.2 Smooth priors (COH)

The COH option allows the mixture of two possible source covariance matrices: the minimum
norm prior above and a much smoother source covariance matrix in which adjacent sources are
correlated (over the scale of a few mm). Press Invert. Under reconstruction method press
Imaging. For All conditions or trials press Yes. For model press Custom. Model inversion
COH. Under Time-window “0 600”. For PST Hanning select Yes. For High-pass (Hz) select 1 for
Low-pass (Hz) select 48. For Source priors, select No. Under Restrict solutions select No.
You will see a plot similar to Figure 35.5 appear. The lower panel shows the glass brain in which
bilateral sources are apparent. The upper panel shows the time-series of the source with the
largest amplitude. In this case the peak activation is identified at location 59,-32 13. The 10Hz
time-course (associated with this source) is also clearly visible in the top panel. Log evidence is
5272712 (again this number may be different in your spm version).

35.3.3 MSP

In contrast to IID or COH, the greedy search routine used in MSP builds up successive combina-
tions of source configurations until the model evidence can no longer be improved. Press Invert.
Under reconstruction method press Imaging. For All conditions or trials press Yes. For
model press Custom. Model inversion MSP. Under Time-window “0-600”. For PST Hanning select
Yes. For High-pass (Hz) select 1 for Low-pass (Hz) select “48”. For Source priors, select
No. Under Restrict solutions select No. Note again the more focal sources (Figure 35.6) as
compared to the minimum norm solution; although the time-series estimation seems to have
suffered. Note the evidence 5464023.

We could now make a volume to compare with the minimum norm solution (Figure 35.4) 2.
Press the Window button. At the Time window (ms) prompt type “0 600”. For the Frequency

2Note that you need to copy the previously generated image files to a different directory to prevent them from
being overwritten
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Figure 35.5: COH imaging source reconstruction.
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Figure 35.6: MSP imaging source reconstruction.
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Figure 35.7: Exported functional image from MSP source reconstruction overlayed on the template
structural image.

[band] of interest (Hz) type “1 40”. For Power select induced (although for these data
evoked will work just as well). You will now see a glass brain showing a difference in power plot
between the two conditions. You can convert this into a volume by pressing Image (Figure 35.7).

35.3.4 Standard

The standard button is simply the use of the MSP greedy search using the whole time window
available in a band of 2-128Hz. following default options: MSP, all time, hanning windowed, filter
2-128Hz.

35.3.5 Model comparison

As we tested all the above models on the same data we can make a model comparison. Figure 35.8
shows that the MSP model improves upon IID and COH solutions.



35.4. BEAMFORMER ANALYSIS 349

Figure 35.8: Bayesian model evidence for different prior specifications.

35.4 Beamformer analysis

In this final stage we will look for differences between the conditions using the linear constrained
minimum variance beamformer. The main assumption in beamformer imaging is that there is
no covariance between the underlying sources. That is, the prior source covariance matrix is a
diagonal, the elements of which can be directly estimated from the sample covariance (Hillebrand
et al 2005). The current beamformer implementations differ from the above in that they test
points throughout the source space (i.e. not just on the cortical surface) and do not provide
model evidence. At present therefore the beamformer routines sit apart from the other imaging
reconstruction methods, but rely on the same coregistration and forward model selection.

35.4.1 LCMV beamformer

On the main SPM menu select the Toolbox pull-down menu. Under Beamforming select Volumetric
LCMV beamformer. Select file sim data aud1020Hz.mat. The first menu will ask you to select
the active condition. Select ’faces’ and click OK. You will then be asked at what time the con-
dition ’faces’ begins. At Offset (ms) from faces, type 0. At the duration prompt type 600.
i.e. we are using the same 0-600ms window as before. At the baseline condition prompt select
’scrambled’. Offset ms from scrambled should be set to 0ms also. We will be comparing the
same time window 0-600ms across epochs labelled either scrambled, or faces. At the number of
frequency bands prompt type “2”. The more frequency bands one computes at this stage the
smaller the overhead in time. For the first band type “15 25”, for the second try “1 48”. For
gridstep type “10” mm (number of voxels hence speed decreases by a factor of 8 each time this
is halved). Leave regularization at 0. Select yes for preview results. As you selected preview you
will see an image similar to Figure 35.9, in which we restricted our analyses to the frequency band
around one source. This is a t-statistic image showing the difference between the two conditions.
You can navigate through the image using the mouse and need to press any key to continue
processing. The second figure produced Figure 35.10 should be comparable with the previous
time-window analyses on the 1-48Hz band.

Now to compare the beamformer images with some of our other reconstructions:

You will find the volumetric images within the sub-directory ’’tstatBf images. You can use
the ’’checkReg button to compare these images with other volumes (produced above using the
Window’’/‘‘Image options. In Figure 35.11 the MSP and beamformer 0-600ms, 1-48Hz contrasts
are shown alongside an anatomical image from the spm/templates directory. If you would like to
observe the case where the beamformer breaks down due to correlated sources you could change
the frequency of the two dipoles used in the simulation to be identical (e.g. dipfreq=[20 20;20
20]) and look at how the beamformer images degrade, whereas the MSP schemes (COH,ARD
etc) should be relatively unaffected.
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Figure 35.9: LCMV beamformer results for 15-25Hz.
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Figure 35.10: LCMV beamformer results for 1-48Hz.
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Figure 35.11: Comparison of MSP and LCMV beamformer results.
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Figure 35.12: DICS beamformer results.

35.4.2 DICS beamformer

In Beamforming select Fieldtrip DICS beamformer. For a change we will simply test the faces
condition across two different time windows. Under Select conditions select ’faces’. For
Frequency range choose “1 48”. For Number of time windows enter “2”. For the first time
window enter “-0.2 0” (i.e. baseline). For the second enter “0.1 0.3”. Change the contrast vector
to “-1 1” i.e. it will subtract the first condition (baseline) from the second. For regularization’
select “0”, for preview results select yes. You will see something like Figure 35.12. Note that
this is not a statistical image, but simply the difference of the power in the pre- and post-stimulus
faces condition. As source estimates tend to be large near the centre of the head (as the lead
fields are small) these large differences remain in the final image. If you do proper statistical
test over trials the activations in the centre of the head should not appear because of their high
variability.

35.5 Dipole fitting to the average

Up until this point the analysis we have used could have been applied to either induced or evoked
changes in electrical activity. The only difference being that it would not have made much sense
to look at the MSPs for specific time-instants in the induced case and we would have proceeded
directly to look for changes in a time-frequency window. To examine the dipole fit routine we
will however concentrate on the averaged data file which will contain only evoked changes.

35.5.1 Load/preview the data

In the main menu click on the drop-down Display menu. Select M/EEG. For the dipole fitting we
are going to use averaged MEG data, this is prefixed with an “m” in SPM. You can generate this
file by averaging the epoched file that we have used until now. Select the file:

msimdata_aud1020Hz.mat

You will now see the simulated data. You will be looking at the “Trial 1 (..) Faces” trial,
but if you switch (top-right menu) to “Trial 2 (..) scrambled” you will see that our simulated
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Figure 35.13: Scalp maps for averaged simulated data.

sources are not active during this condition. If you now click on the field map button you will see
a cursor on the time-series plot and a field map for this time instant as in figure 3. Use the slider
at the bottom of the field map to vary the time instant plotted. At 205ms (Figure 35.13A) you
will notice that there are clearly two dipolar patterns, whereas at 235ms (Figure 35.13B) there is
only one. We will now move on to explore Bayesian dipole fitting to these two time instants.

35.5.2 Inversion

In the main menu window, select 3D Source Reconstruction. Click Load and select the averaged
simulated dataset above. Proceed by pressing the Invert button. Select the VB-ECD button.

Fitting a single dipole with no priors

At the time bin or average win prompt enter “235”. For Trial type number choose “1” (we
want to model the faces data). At the Add dipoles to model click Single. For location

prior click Non-info. For Moment prior click Non-info. At the Add dipoles to 1 or stop?

prompt click stop. At the Data SNR (amp) leave as default 5. Leave the default number of
iterations at “10”. You will see the 10 successive fits of the same data using a random starting
location and moment. At each fit maps of the predicted and simulated data along with free-energy
values and percent variance explained are shown. The final plot will be similar to Figure 35.14
where the model (i.e. dipole) which maximised the evidence (the best iteration is shown with a
red dot) is displayed. Note down the model evidence (in this case -4.3, but the absolute value
in your implementation may be different). The Bayesian dipole fit algorithm will be most useful
when one has some prior knowledge of the sources (such as location, orientation or symmetry).
Typical dipole fit algorithms fit 3 location parameters per dipole and then estimate the moment
through a pseudo-inverse. The VB-ECD algorithm however fits 6 parameters per dipole as the
moments are also allowed prior values. That is, if you have no prior knowledge then the Bayesian
method will be generally less robust than such fitting methods (as more parameters are being
fit). However it is when prior knowledge is supplied that the Bayesian methods become optimal.

Fitting a single dipole with reasonable and unreasonable priors

We will now provide some prior knowledge to the dipole fit perhaps led by the literature or a
particular hypothesis. In this case we know the answer, but let us specify a location a couple
of cm from where we know the source to be (at -52,-29,13mm) and try the fit again. At the
time bin or average win prompt enter “235”. For Trial type number choose “1” (we want
to model the faces data). At the Add dipoles to model click Single. For location prior

click Informative. For the location enter “-62 -20 10”. For prior location variance leave at
“100 100 100” mm2. This means that we are not sure about the source location to better than
10mm in each dimension. For Moment prior click Non-info. At the Add dipoles to 1 or
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Figure 35.14: Results of fitting a single dipole with noninformative priors.
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stop? prompt click stop. At the Data SNR (amp) leave as default 5. Leave the default number
of iterations at “10”. Again you will get a final fit location and model evidence (-3.8), which
should have improved (be more positive) on the evidence above. Now go through exactly the
same procedure as above but for the prior location enter “+62 -20 10”, i.e. on the wrong side of
the head. You will note that the algorithm finds the correct location but the evidence for this
model (with the incorrect prior) is much lower (-8.4). You could also try to fit a symmetric pair
to this latency dataset (see below), model evidence -150.

Fitting more dipoles

We will start by examining the time instant at which we can clearly see a two-dipolar field
pattern. At the time bin or average win prompt enter “205”. For Trial type number choose
“1”. At the Add dipoles to model click Single. For location prior click Informative. For
the location enter “62 -20 10”. For prior location variance enter “400 400 400” mm2, that is, the
prior standard deviation on the dipole location is 20mm in each direction. For Moment prior

click Non-info. At the Add dipoles to 1 or stop? prompt click Single. For location prior

click Informative. For the location enter “-62 -20 10”. For prior location variance enter “400 400
400” mm2. At the Add dipoles to 1 or stop? prompt click stop. At the Data SNR (amp)

leave as default 5. Leave the default number of iterations at “10”. Note down the final model
evidence (570).

Alternatively we can exploit the fact that we have prior knowledge that the dipoles will be
approximately left-right symmetric in location and orientation. At the time bin or average win

prompt enter “205”. For Trial type number choose “1”. At the Add dipoles to model click
Symmetric Pair. For location prior click Informative. For the location enter 62 -20 10.
For prior location variance enter “400 400 400” mm2. For Moment prior click Non-info. At the
Add dipoles to 2 or stop? prompt click stop. At the Data SNR (amp) leave as default 5.
Leave the default number of iterations at “10”. Note that the final locations are approximately
correct, but importantly the model evidence (-9.6) is much lower than previously. Given this
information one would accept the two distinct dipole model over the symmetric pair.

Finally we can take our best model so far, and try adding in an extra source. At the time bin

or average win prompt enter “205”. For Trial type number choose “1”. At the Add dipoles

to model click Single. For location prior click Informative. For the location enter “62 -20
10”. For prior location variance enter “400 400 400” mm2, that is, the prior standard deviation
on the dipole location is 20mm in each direction. For Moment prior click Non-info. At the Add

dipoles to 1 or stop? prompt click Single. For location prior click Informative. For
the location enter “-62 -20 10”. For prior location variance enter “400 400 400” mm2. At the Add

dipoles to 2 or stop? prompt click Single. We will add an extra dipole that can be anywhere
in the head, so for Location Prior click Non-info. For Moment Prior click non-info. At the
Add dipoles to 3 or stop? prompt click Stop. At the Data SNR (amp) leave as default 5.
Leave the default number of iterations at “10”. Note down the final model evidence (550). That
is, the evidence has now begun to decrease once more suggesting that the two distinct dipole
model is the best for these data.
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EEG Mismatch negativity data

This chapter describes the analysis of a 128-channel single subject EEG data set acquired from a
study of mismatch negativity in the auditory system [38]. We thank Marta Garrido for providing
us with these data. The experiment comprised an auditory oddball paradigm in which subjects
heard standard (500Hz) and deviant (550Hz) tones, occuring 80% (480 trials) and 20% (120 trials)
of the time, respectively, in a pseudo-random sequence subject to the constraint that two deviant
tones did not occur together.

EEG data were recorded with a Biosemi1 system at 128 scalp electrodes and a sampling rate
of 512Hz. Vertical and horizontal eye movements were monitored using EOG electrodes. See [38]
for full details of experimental stimuli and recording. To proceed with the data analysis, first
download the data set from the SPM website2. The data comprises a file called subject1.bdf

whose size is roughly 200MB. We will refer to the directory in which you have placed it as
DATA DIR. This chapter takes you through different stages of analysis:

• Preprocessing

• Sensor space analysis

• Source reconstruction

• Dynamic Causal Modelling

36.1 Preprocessing

There is also an example Matlab script under man\example scripts\history subject1.m in
the SPM distribution which repeats the preprocessing route we take here.

36.1.1 Convert

At the Matlab prompt type spm eeg, press the Convert button and select the subject1.bdf

file. At the prompt “Define settings ?” select “just read”.
SPM will now read the original Biosemi format file and create an SPM compatible data file,

called spm8 subject1.mat and spm8 subject1.dat in the directory containing the original data
file (DATA DIR).

36.1.2 Montage

In this step, we will identify the VEOG and HEOG channels, and also remove several channels that
don’t carry EEG data and are of no importance to the following. In this case we apply montage
as the first processing step to set all the channel types correctly for subsequent processing. This
is especially important for the EOG channels, which are derived from channels that would not
normally be filtered because SPM does not recognize them as containing M/EEG data. We

1BioSemi: http://www.biosemi.com/
2EEG MMN dataset: http://www.fil.ion.ucl.ac.uk/spm/data/eeg_mmn/
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generally recommend to remove all data channels that are no longer needed because it will reduce
the total file size. We will also convert the data to average reference montage by subtracting from
each channel the mean of all EEG channels. To do so, we use the montage tool in SPM, which is
a general approach for pre-multiplying the data matrix (channels × time) by another matrix that
linearly weights all channel data. This provides a very general method for data transformation
in M/EEG analysis.

The appropriate montage-matrix can be derived as follows. In our case, we would like to only
keep EEG channels 1 to 128 and subtract from each channel the average of all EEG channels.
In addition, there were three EOG channels (129, 130, 131), where the HEOG is computed as
the difference between channels 131 and 130, and the VEOG by the difference between channels
130 and 129. This matrix can be specified in SPM by either using a graphical interface, or by
supplying the matrix saved in a file. We will do the latter. The script to generate this file can be
found in the example scripts folder: montage subject1.m. Copy this script into DATA DIR and
run it. This will generate a file named MONT EXP.mat.

You now call the montage function by choosing Montage in the “Other” drop-down menu
and:

• Select the M/EEG-file spm8 subject1.mat

• ‘How to specify the montage ?’ Answer “file”.

• Then select the generated MONT EXP.mat file

• “Keep the other channels?” : “No”

This will remove the uninteresting channels from the data. The progress bar appears and SPM
will generate two new files Mspm8 subject1.mat and Mspm8 subject1.dat.

This step will also assign default locations to the sensors, as this information is not contained
in the original Biosemi *.bdf file. It is usually the responsibility of the user to link the data to
sensors which are located in a coordinate system. In our experience this is a critical step. SPM
provide tools (Prepare) for linking data and location information, leaving it the responsibility
of the user to verify the success of this process. Chapter 12 describes in detail how you can use
the Prepare tool from the “Other” drop-down menu to use digitized sensor location data.

36.1.3 Filter

Filtering the data in time removes unwanted frequency bands from the data. Usually, for evoked
response analysis, the low frequencies are kept, while the high frequencies are assumed to carry
noise. Here, we will use a highpass filter to remove ultra-low frequencies close to DC, and a
lowpass filter to remove high frequencies. We filter prior to downsampling because otherwise
high-amplitude baseline shifts present in the data will generate filtering artefacts at the edges of
the file.

• Click on Filter and select the Mspm8 subject1.mat file.

• Select a “highpass” filter with cutoff of 0.5 (Hz).

The progress bar will appear and the resulting filtered data will be saved in files fMspm8 subject1.mat

and fMspm8 subject1.dat.

• Click on Filter and select the fMspm8 subject1.mat file.

• Select a “lowpass” filter with cutoff of 30 (Hz).

The progress bar will appear and the resulting filtered data will be saved in files ffMspm8 subject1.mat

and ffMspm8 subject1.dat.
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36.1.4 Downsample

Here, we will downsample the data in time. This is useful when the data were acquired like
ours with a high sampling rate of 512 Hz. This is an unnecessarily high sampling rate for a
simple evoked response analysis, and we will now decrease the sampling rate to 200 Hz, thereby
reducing the file size by more than half. Select Downsample from the “Other” drop-down
menu and select the ffMspm8 subject1.mat file. Choose a new sampling rate of 200 (Hz). The
progress bar will appear and the resulting data will be saved to files dffMspm8 subject1.mat

and dffMspm8 subject1.dat. This step requires the Signal Processing Toolbox.

36.1.5 Epoch

To epoch the data click on Epoching. Select the dffMspm8 subject1.mat file. Choose the peri-
stimulus time window, first the start -100, then the end 400 ms. Choose 2 conditions. You can
call the first condition “standard”. A GUI pops up which gives you a complete list of all events
in the EEG file. The standard condition had 480 trials, so select the type with value 1 and press
OK. The second condition can be called “rare”. The rare stimulus was given 120 times and has
value 3 in the list. Select this trial type and press OK. Answer two times “no” to the questions
“review individual trials”, and “save trial definitions”. The progress bar will appear and the
epoched data will be saved to files edffMspm8 subject1.mat and edffMspm8 subject1.dat.

36.1.6 Artefacts

A number of different methods of artefact removal are implemented in SPM8. Here, we will
demonstrate a simple thresholding method. However, before doing so, we will look at the data in
the display:

• Choose “M/EEG” from the “Display” dropdown menu.

• Select the edffMspm8 subject1.mat file.

• Click on the “EEG” tab.

• Press the “scalp” radio button.

The time-series for the first trial will then appear in the topographical layout shown in Figure 36.1.
You will see that Channel 14, second-row from bottom, left hemisphere, contains (slightly)

higher variability data than the others . Right-click on the channel; this tells you that this channel
is “A14”. You will also see as an entry in this menu “bad: 0”. Select this entry, and click the left
button. This will make the menu disappear, but the channel now has a grey background. You
have marked this channel as bad. Click on “save”in the top-right corner. This channel will then
be ignored in subsequent processing. In fact this channel probably doesn’t need removing, but
we do so for teaching purposes only.

Now, click on Artefacts. A window of SPM8 batch interface will open. You might be already
familiar with this interface from other SPM8 functions. It is also possible to use the batch inter-
face to run the preprocessing steps that we have performed until now, but for artefact detection
this is the only graphical interface. Click on “File name” and select the edffMspm8 subject1.mat

file. Double click “How to look for artefacts” and a new branch will appear. It is possible to
define several sets of channels to scan and several different methods for artefact detection. We
will use simple thresholding applied to all channels. Click on “Detection algorithm” and select
“Threshold channels” in the small window below. Double click on “Threshold” and enter 80 (in
this case µV ). The batch is now fully configured. Run it by pressing the green button at the top
of the batch window.

This will detect trials in which the signal recorded at any of the channels exceeds 80 microvolts
(relative to pre-stimulus baseline). These trials will be marked as artefacts. Most of these artefacts
occur on the VEOG channel, and reflect blinks during the critical time window. The procedure
will also detect channels in which there are a large number of artefacts (which may reflect problems
specific to those electrodes, allowing them to be removed from subsequent analyses).

In this case, the Matlab window will show:
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Figure 36.1: Scalp topography of single trial MMN EEG data. Channel 14, second-row from
bottom, left hemisphere contains (slightly) higher variability data than the others. This channel
is to be marked as artefactual (ie. ’bad’).
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1 bad channels: A14

77 rejected trials: 3 4 5 7 8 9 10 12 28 29 88 [...]

Done ’M/EEG Artefact detection’

Done

A new file will also be created, aedffMspm8 subject1.mat.
There are also interactive artefact removal routines available from Toolbox→ MEEG tools→

Fieldtrip visual artifact rejection.

36.1.7 Averaging

To produce an ERP click on Averaging and select the aedffMspm8 subject1.mat file. At this
point you can perform either ordinary averaging or “robust averaging”. Robust averaging makes
it possible to supress artefacts automatically without rejecting trials or channels compltely, but
just the contaminated parts. For robust averaging answer “yes” to ‘Use robust averaging?”.
Answer “yes” to “Save weights”, and “yes” to “Compute weights by condition” 3 and press
“Enter” to accept the default “Offset of the weighting function”. A new dataset will be generated
maedffMspm8 subject1 and automatically opened in the reviewing tool so that you can examine
the ERP. There will also be an additional dataset named WaedffMspm8 subject1 this dataset
will contain instead of EEG data the weights used by robust averaging. This is useful to see
what was suppressed and whether there might be some condition-specific bias that could affect
the results.

The Graphics window will pop up and allow you to look at the averaged data. To look at the
ERP, click on the EEG tab, and press the “scalp” radio button. Now hold the Shift button down
on the keyboard whilst selecting trial 2 with the left mouse button in the upper right corner of
the graphics window. This will overlay responses to standard and rare trials on the same figure
axes.

Now press the “plus” icon at the top of this graphics window and select channel C23 (seventh
central channel down from the top) with a left mouse click. This will plot the ERPs shown in
Figure 36.2. This completes the preprocessing step.

36.1.8 History

The evoked response file (and every other SPM MEEG data file) contains a history-entry which
stores all of the above preprocessing steps. You can take this history and produce a script that
will re-run the same analysis which you entered using the GUI. See the “history” tab in the “info”
section when displaying the data. Chapter 12 provides more details on this.

36.2 Sensor space analysis

A useful feature of SPM is the ability to use Random Field Theory to correct for multiple statis-
tical comparisons across N-dimensional spaces. For example, a 2D space representing the scalp
data can be constructed by flattening the sensor locations and interpolating between them to
create an image of MxM pixels (when M is user-specified, eg M=32). This would allow one to
identify locations where, for example, the ERP amplitude in two conditions at a given timepoint
differed reliably across subjects, having corrected for the multiple t-tests performed across pix-
els. That correction uses Random Field Theory, which takes into account the spatial correlation
across pixels (i.e, that the tests are not independent). Here, we will consider a 3D example, where
the third dimension is time, and test across trials within this single subject. We first create a
3D image for each trial of the two types, with dimensions M×M×S, where S=101 is the number
of samples (time points). We then take these images into an unpaired t-test across trials (in a
2nd-level model) to compare “standard” and “rare” events. We can then use classical SPM to
identify locations in space and time in which a reliable difference occurs, correcting across the
multiple comparisons entailed. This would be appropriate if, for example, we had no a priori

3In this case we do not want to pool both conditions together because the number of standard and rare trials
are quite different.
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Figure 36.2: ERPs at channel C23 (CZ) for standard and rare tones. The ERP curve for rare
tones lies underneath that for standard tones between 100 and 180ms. This corresponds to the
mismatch negativity signal in this subject.

knowledge where or when the difference between standard and rare trials would emerge. The
appropriate images are created as follows

• Select the “Convert to image” option from the “Other” pulldown menu.

• Select the aedffMspm8 subject1.mat file.

• For “output image dimensions” accept the default of 32 (leading to a 32x32 pixel space).

• For “interpolate’ or “mask out” bad channels, select “interpolate”.

SPM will take some time as it writes out a NIfTI image for each trial (except rejected trials), in a
new directory called aedffMspm8 subject1, which will itself contain two subdirectories, one for
each trialtype, called type rare and type standard. In each trialtype subdirectory there will be
image and header files for each non-rejected trial of that type, e.g, trial0001.img/hdr. You can
press “Display: images” to view one of these images - it will have dimensions 32×32×101.

To perform statistics on these images:

• Create a new directory, eg. mkdir XYTstats.

• Press the “Specify 2nd level” button.

• Select “two-sample t-test” (unpaired t-test)

• Define the images for “Group 1” as all those in the subdirectory type standard (using
right mouse, and “select all”) and the images for “Group 2” as all those in the subdirectory
type rare.

• Finally, specify the new XYTstats directory as the output directory.

• Press the “save” icon, top left, and save this design specification as mmn design.mat and
press “save”.
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• Press the green “Run” button to execute the job4 This will produce the design matrix for
a two-sample t-test.

• Now press “Estimate” in SPMs main window, and select the SPM.mat file from the XYTstats
directory.

Now press “Results” and define a new F-contrast as [1 -1] (for help with these basic SPM functions,
see eg. chapter 28). Keep the default contrast options, but threshold at p < .05 FWE corrected
for the whole search volume and select “Scalp-Time” for the “Data Type”. Then press “whole
brain”, and the Graphics window should now look like that in Figure 36.3. This reveals a large
fronto-central region within the 2D sensor space and within the time epoch in which standard
and rare trials differ reliably, having corrected for multiple F-tests across pixels/time. An F-test
is used because the sign of the difference reflects the polarity of the ERP difference, which is not
of primary interest.

The cursor in Figure 36.3 has been positioned by selecting the second cluster in the results
table. This occurs at time point 160ms post stimulus.

Now:

• Press the right mouse button in the MIP

• Select “display/hide channels”

• Select the maedffMspm8 subject1.mat file.

This links the SPM.mat file with the M/EEG file from which the EEG images were created. It
is now possible to superimpose the channel labels onto the spatial SPM, and also to “goto the
nearest channel” (using options provided after a right mouse click, when navigating the MIP).

We have demonstrated sensor space analysis for single-subject data. More frequently, one
would compute ERP images for each subject, smooth them, and then perform paired t-tests over
subjects to look for condition differences. See [38] for a group analysis of MMN data.

Finally, if one had more constrained a priori knowledge about where and when the differences
would appear, one could perform a Small Volume Correction (SVC) based on, for example, a
box around fronto-central channels and between 100 and 200ms poststimulus. We also refer the
reader to chapter 13 for further details on sensor space analysis.

36.3 Source reconstruction

Source reconstruction comprises forward modeling and inverse modeling steps and is implemented
by pressing the 3D source reconstruction button in SPM’s top-left window. This brings up the
source localisation GUI shown in Figure 36.4. The following subsections detail each of the steps
in a source reconstruction analysis. We also advise the reader to consult the reference material
in chapter 14.

36.3.1 Mesh

The first step is to load the data and create a cortical mesh upon which M/EEG data will be
projected:

• Press the “Load” button in the souce localisation GUI and select the file maedffMspm8 subject1.mat.

• Enter “Standard” under “Comment/Label for this analysis” and press OK.

• Now press the “template” button.

• For “Cortical mesh”, select “normal”.

SPM will then form the “standard” or “canonical” cortical mesh shown in the Graphics window
which, after rotation, should look like Figure 36.5

4Note that we can use the default “nonsphericity” selections, i.e, that the two trial-types may have different
variances, but are uncorrelated.
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Figure 36.3: In this SPM the time axis is reflected in the two MIP windows in the top row, with
time proceeding from the bottom to the top of the page. The cursor has been positioned by selecting
the third cluster in the results table. This occurs at time point 160ms post stimulus. The design
matrix on the right hand side comprises two columns, the first for standard trials and the second
for rare ones.
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Figure 36.4: Graphical user interface for 3D source localisation. A complete localisation comprises
the following steps (i) creation of a cortical mesh, (ii) co-registration of the mesh with M/EEG
data, (iii) creation of a forward model, and (iv) results interrogation. As each of these steps is
completed the relevant part of the GUI becomes highlighted (text appears more solid).

Figure 36.5: The figure shows the canonical cortical mesh (blue), inner skull surface (red) and
scalp surface (light brown). The hardwired fiducials are shown in light blue. Transverse slices of
canonical MRI are also shown in black, with gray scale inlays showing anatomical detail.
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Figure 36.6: The figure shows the MRI fiducials (pink), the sensor fiducials (blue) and the locations
of sensors (green) in addition the the canonical cortical mesh (blue), inner skull surface (red) and
scalp surface (light brown).

36.3.2 Coregister

Now press the “Co-register” button. This will create further output in the Graphics window, the
upper panel of which should like like Figure 36.6.

In this coregister step we were not required to enter any further parameters. However, if
you are not using the template (or “canonical” mesh) or if at the “prepare” stage above you
loaded your own (non-standard) sensor positions then you will be asked for the locations in MNI
coordinates of the fiducial positions.

36.3.3 Forward model

Now press the “Forward model” button. Then select “EEG-BEM” in response to the “Which EEG
head model?” question. SPM will then use a Boundary Element Method (BEM) which will take
approximately 10 minutes to run. Upon completion SPM will write the single subj T1 EEG BEM.mat

file into the canonical subdirectory of your SPM distribution. The Graphics window should now
appear as in Figure 36.7. The next time you wish to use an EEG-BEM solution based on the
template mesh, SPM will simply use the date from the single subj T1 EEG BEM.mat file (so this
step will be much quicker the next time you do it). The same principle applies to EEG-BEM
solutions computed from meshes based on subjects individual MRIs.

36.3.4 Invert

Now press the Invert button and
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Figure 36.7: The figure shows the cortical mesh (blue), brain, skull and scalp surfaces. Electrode
positions are marked with asterisks.
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• Select an “Imaging” reconstruction.

• Select “Yes” for “All conditions or trials”.

• Select “Standard” for Model.

SPM will now compute a leadfield matrix and save it in the file SPMgainmatrix maedffMspm8 subject1 1.mat

placed in DATA DIR. This file can be replaced with one computed using other methods for comput-
ing the lead field (eg methods external to SPM). The forward model will then be inverted using
the Multiple Sparse Priors (MSP) algorithm (the progress of which is outputted to the Matlab
command window). SPM will produce, in the Graphics window, (i) a Maximum Intensity Pro-
jection (MIP) of activity in source space (lower panel) and (ii) a time series of activity for (upper
panel) each condition.

The “ms or mm” window has three functionalities (i) if you enter a single number this will
be interpreted as ms, (ii) if you enter two numbers this will be interpreted as a time window
for plotting movies (see below), (iii) if you enter 3 numbers this will be interpreted as MNI
coordinates for a time series plot.

Now enter “160” for “ms or mm” and press the MIP button, to see a MIP of activity in source
space at 160ms post-stimulus, and the time series of activities (top panel) at the position with
largest magnitude signal. The corresponding graphic is shown in Figure 36.8. By toggling the
“Condition” button, and pressing MIP each time, you can view the spatial distribution of activity
for the different conditions (at the selected time point).

36.4 Dynamic Causal Modeling

Many of the functionalities of DCM for M/EEG are described in more detail in the reference
chapter 16. In this chapter we demonstrate only the “DCM for ERP” model. Users are strongly
encouraged to read the accompanying theoretical papers [23, 55]. Briefly, DCM for ERP fits a
neural network model to M/EEG data, in which activity in source regions are described using
differential equations based on neural mass models. Activity in each region comprises three
populations of cells; pyramidal, local excitatory and local inhibitory. Fitting the model will then
allow you to plot estimated activity in each cell population in each region. It will also provide
estimates of the long range connections between regions, and show how these values are changed
by experimental manipulation (eg. rare versus standard trial types).

In the example scripts folder of the SPM distribution, we also provide an example script
that will run a DCM-for-ERP analysis of this data. This can be edited to implement your own
analysis.

Pressing the “DCM” button will open up the DCM GUI shown in Figure 36.9. We will now
complete the three model specification entries shown in Figure 36.10:

• Press the “new data” button and select the maedffMspm8 subject1.mat file.

• Enter the “between-trial effects” and design matrix information shown in Figure 36.10(a).

• Press the “Display” button.

This completes the data specification stage. Now:

• Press the right hand arrow to move on to the specification of the electromagnetic model.

• Instead of “IMG” select ”ECD” for the spatial characteristics of the sources.

• Now enter the names and (prior mean) locations of the sources shown in Figure 36.10(b).

• Pressing the “dipoles” button will create an interactive display in the graphics window
showing the prior source positions.

This completes the specification of the electromagnetic model. Now:

• Press the right hand arrow (next to the dipoles button) to move on to specification of the
neuronal model.
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Figure 36.8: Source reconstructed activity at 160ms post-stimulus. The upper trace shows re-
sponses to Condition 1 (Standards) with the red curve, and to Condition 2 (Rare) in gray.
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Figure 36.9: The Dynamic Causal Modeling GUI splits model specification into three reversible
phases (i) data and design, (ii) electromagnetic model and (iii) neuronal model. One can move
forwards and backwards in the model specification using the left and right arrow buttons (these
become highlighted when sufficient information has been entered to proceed to the next step).
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(a)

(b)

(c)

Figure 36.10: Specification of DCM for ERP model (a) Data and design, (b) electromagnetic
model and (c) neuronal model.
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Figure 36.11: Activity plots for three neuronal populations (solid lines for pyramidal cells, dotted
lines for others), in four areas (fifth not shown in this figure), for standard (blue) and rare (red)
trial types.

• Highlight the connectivity matrix radio buttons so that they correspond to those shown in
Figure 36.10(c).

• Press the (top left) ’save’ button and accept the default file name.

• Press ’Invert DCM’

SPM will plot the progess of the model estimation in the MATLAB command window. Plots
of data and the progressing model fit will be shown in SPM’s graphics window. The algorithm
should converge after five to ten minutes (in 64 iterations). Now select the “ERPs (sources)”
option from the pull down menu to the right of the “Estimated” button. This will produce
the plot shown in Figure 36.11. The values of the connections between areas can be outputted
by selecting eg ”Coupling(A)” from the pull-down menu in the DCM GUI. This will allow you
to interrogate the posterior distribution of model parameters. It is also possible to fit multiple
models, eg. with different numbers of regions and different structures, and to compare them using
Bayesian Model Comparison. This is implemented by pressing the BMS button (bottom right
hand corner of the DCM window).
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Multimodal face-evoked responses

37.1 Overview

This dataset contains EEG, MEG, functional MRI and structural MRI data on the same subject
with the same paradigm, which allows a basic comparison of faces versus scrambled faces.

It can be used to demonstrate, for example, 3D source reconstruction of various electrophys-
iological measures of face perception, such as the “N170” evoked response (ERP) recorded with
EEG, or the analogous “M170” evoked field (ERF) recorded with MEG. These localisations are
informed by the anatomy of the brain (from the structural MRI) and possibly by functional
activation in the same paradigm (from the functional MRI).

The demonstration below involves localising the N170 using a distributed source method
(called an “imaging” solution in SPM). The data can also be used to explore further effects, e.g.
induced effects (Friston et al, 2006), effects at different latencies, or the effects of adding fMRI
constraints on the localisation.

The EEG data were acquired on a 128 channel ActiveTwo system; the MEG data were acquired
on a 275 channel CTF/VSM system; the sMRI data were acquired using a phased-array headcoil
on a Siemens Sonata 1.5T; the fMRI data were acquired using a gradient-echo EPI sequence on
the Sonata. The dataset also includes data from a Polhemus digitizer, which are used to coregister
the EEG and the MEG data with the structural MRI.

Some related analyses of these data are reported in Henson et al (2005a, 2005b, 2007, 2009a,
2009b, in press), Kiebel and Friston (2004) and Friston et al (2006). To proceed with the data
analysis, first download the data set from the SPM website1. Most of the analysis below can be
implemented in Matlab 7.1 (R14SP3) and above. However, recoding condition labels using the
GUI requires features of SPM8 only available in Matlab 7.4 (R2007a) and above. The Signal
Processing toolbox is required for the filtering and downsampling steps.

37.2 Paradigm and Data

The basic paradigm involves randomised presentation of at least 86 faces and 86 scrambled faces
(Figure 37.1), based on Phase 1 of a previous study by Henson et al (2003). The scrambled faces
were created by 2D Fourier transformation, random phase permutation, inverse transformation
and outline-masking of each face. Thus faces and scrambled faces are closely matched for low-level
visual properties such as spatial frequency content. Half the faces were famous, but this factor is
collapsed in the current analyses. Each face required a four-way, left-right symmetry judgment
(mean RTs over a second; judgments roughly orthogonal to conditions; reasons for this task are
explained in Henson et al, 2003). The subject was instructed not to blink while the fixation cross
was present on the screen.

1Multimodal face-evoked dataset: http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
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Figure 37.1: One trial in the experiment. Trials involved either a Face (F) or Scrambled face (S).

37.2.1 Structural MRI

The T1-weighted structural MRI of a young male was acquired on a 1.5T Siemens Sonata via an
MDEFT sequence with resolution 1×1×1mm3 voxels, using a whole-body coil for RF transmission
and an 8-element phased array head coil for signal reception.

The images are in NIfTI format in the sMRI sub-directory, consisting of two files:

sMRI/sMRI.img

sMRI/sMRI.hdr

The structural was manually positioned to roughly match Talairach space, with the origin close
to the Anterior Commissure. The approximate position of 3 fiducials within this MRI space - the
nasion, and the left and right peri-aricular points - are stored in the file:

sMRI/smri_fid.txt

These were identified manually (based on anatomy) and are used to define the MRI space relative
to the EEG and MEG spaces, which need to be coregistered (see below). It doesn’t matter that
the positions are approximate, because more precise coregistration is implemented via digitised
surfaces of the scalp (“head shape functions”) that were created using the Polhemus 3D digitizer.

37.2.2 EEG data

The EEG data were acquired on a 128-channel ActiveTwo system, sampled at 2048 Hz, plus
electrodes on left earlobe, right earlobe, and two bipolar channels to measure HEOG and VEOG.
The 128 scalp channels are named: 32 A (Back), 32 B (Right), 32 C (Front) and 32 D (Left).
The data acquired in two runs of the protocol are contained in two Biosemi raw data files:

EEG/faces_run1.bdf

EEG/faces_run2.bdf

The EEG directory also contains the following files:
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EEG/condition_labels.txt

This text file contains a list of condition labels in the same order as the trials appear in the two
files - “faces” for presentation of faces and “scrambled” for presentation of scrambled faces. The
EEG directory also contains the following files:

EEG/electrode_locations_and_headshape.sfp

This ASCII file contains electrode locations, fiducials and headshape points measured with Pol-
hemus digitizer.

The 3 fiducial markers were placed approximately on the nasion and preauricular points and
digitised by the Polhemus digitizer. Later, we will coregister the fiducial points and the head
shape to map the electrode positions in the “Polhemus space” to the “MRI space”. Also included
as reference are some SPM batch files and SPM scripts (though these are recreated as part of the
demo):

EEG/batch_eeg_XYTstats.mat

EEG/batch_eeg_artefact.mat

EEG/eeg_preprocess.m

EEG/faces_eeg_montage.m

37.2.3 MEG data

The MEG data were acquired on a 275 channel CTF/VSM system, using second-order axial
gradiometers and synthetic third gradient for denoising and sampled at 480 Hz. There are actually
274 MEG channels in this dataset since the system it was recorded on had one faulty sensor. Two
runs (sessions) of the protocol have been saved in two CTF datasets (each one is a directory with
multiple files)

MEG/SPM_CTF_MEG_example_faces1_3D.ds

MEG/SPM_CTF_MEG_example_faces2_3D.ds

The MEG data also contains a headshape.mat file, containing the headshape recorded during
the MEG experiment with a Polhemus digitizer.

The locations of the 3 fiducials in the headshape.mat file are the same as the positions of 3
“locator coils” the locations of which are measured by the CTF machine, and used to define the
coordinates (in “CTF space”) for the location of the 274 sensors.

Also included as reference are two SPM batch files and two trial definition files (though these
are recreated as part of the demo):

MEG/batch_meg_preprocess.mat

MEG/batch_meg_TFstats.mat

MEG/trials_run1.mat

MEG/trials_run2.mat

37.2.4 fMRI data

The fMRI data were acquired using a gradient-echo EPI sequence on a 3T Siemens TIM Trio,
with 32, 3mm slices (skip 0.75mm) of 3× 3mm2 pixels, acquired in a sequential descending order
with a TR of 2s. There are 390 images in each of the two “Session” sub-directories (5 initial
dummy scans have been removed), each consisting of a NIfTI image and header file:

fMRI/Session1/fM*.{hdr,img}

fMRI/Session2/fM*.{hdr,img}

Also provided are the onsets of faces and scrambled faces (in units of scans) in the Matlab file:

fMRI/trials_ses1.mat

fMRI/trials_ses2.mat

and two example SPM batch files (see Section 37.6):

fMRI/batch_fmri_preproc.mat

fMRI/batch_fmri_stats.mat
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37.3 Getting Started

You need to start SPM8 and toggle “EEG” as the modality (bottom-right of SPM main window),
or start SPM8 with spm eeg. In order for this to work you need to ensure that the main SPM
directory is on your Matlab path.

37.4 EEG analysis

First change directory to the EEG subdirectory (either in Matlab or via the “CD” option in
the SPM “Utils” menu).

37.4.1 Convert

Press the Convert button and select the faces run1.bdf file. At the prompt “Define settings?”
select “just read”. SPM will now read the original Biosemi format file and create an SPM com-
patible data file, called spm8 faces run1.mat and spm8 faces run1.dat in the current Matlab
directory. After the conversion is complete the data file will be automatically opened in SPM8
reviewing tool. By default you will see the “info” tab. At the top of the window there is some
basic information about the file. Below it you will see several clickable tabs with additional in-
formation. The “history” tab lists the processing steps that have been applied to the file. At this
stage there is only one such step - conversion. The “channels” tab lists the channels in the file and
their properties, the “trial” tab lists the trials or in the case of a continuous file all the triggers
(events) that have been recorded. The “inv” tab is used for reviewing the inverse solutions and
is not relevant for the time being. Note that the detailed information in the tabs will not be
available for Matlab versions older than 7.4. At the top of the window there is another set of
tabs. If you click on the “EEG” tab you will see the raw EEG traces. They all look unusually flat
because the continuous data we have just converted contains very low frequencies and baseline
shifts. Therefore, if we try to view all the channels together, this can only be done with very low
gain. If you press the “intensity rescaling” button (with arrows pointing up and down) several
times you will start seeing EEG activity in a few channels but the other channels will not be
visible as they will go out of range. You can also use the controls at the bottom of the window to
scroll through the recording. If you press the icon to the right of the mini-topography icon, with
the rightwards pointing arrow, the display will move to the next trigger, shown as a vertical line
through the display. (New triggers/events can be added by the rightmost icon). At the bottom
of the display is a plot of the global field power across the session, with the black line indicating
the current timewindow displayed (the width of this timewindow can be controlled by the two
leftmost top icons).

37.4.2 Downsample

Here, we will downsample the data in time. This is useful when the data were acquired like ours
with a high sampling rate of 2048 Hz. This is an unnecessarily high sampling rate for a simple
evoked response analysis, and we will now decrease the sampling rate to 200 Hz, thereby reducing
the file size by more than ten fold and greatly speeding up the subsequent processing steps. This
step requires the Signal Processing toolbox. Select Downsample from the “Other” drop-down
menu and select the spm8 faces run1.mat file. Choose a new sampling rate of 200 (Hz). The
progress bar will appear and the resulting data will be saved to files dspm8 faces run1.mat and
dspm8 faces run1.dat. Note that this dataset and other intermediate datasets created during
preprocessing will not be automatically opened in the reviewing tool, but you can always review
them by selecting M/EEG from the “Display” drop down menu and choosing the corresponding
.mat file.

37.4.3 Montage

In this step, we will identify the VEOG and HEOG channels, remove several channels that don’t
carry EEG data and are of no importance to the following and convert the 128 EEG channels
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to “average reference” by subtracting the mean of all the channels from each channel2. We
generally recommend removal of data channels that are no longer needed because this will reduce
the total file size and conversion to average reference is necessary at present for source modelling
to work correctly. To do so, we use the montage tool in SPM, which is a general approach for
pre-multiplying the data matrix (channels × time) by another matrix that linearly weights all
channel data. This provides a very general method for data transformation in M/EEG analysis.

The appropriate montage-matrix can be specified in SPM by either using a graphical interface,
or by supplying the matrix saved in a file. We will do the latter. The script to generate this file is
faces eeg montage.m. Running this script will produce a file named faces eeg montage.mat.
In our case, we would like to keep only channels 1 to 128. To re-reference each of these to their
average, the script uses Matlab “detrend” to remove the mean of each column (of an identity
matrix). In addition, there were four EOG channels (131, 132, 135, 136), where the HEOG
is computed as the difference between channels 131 and 132, and the VEOG by the difference
between channels 135 and 136.

You now call the montage function by choosing Montage in the “Other” drop-down menu
and:

• Select the M/EEG-file dspm8 faces run1.mat.

• “How to specify the montage ?” Answer “file”.

• Then select the generated faces eeg montage.mat file.

• “Keep the other channels?” : “No”.

This will remove the uninteresting channels from the data. The progress bar appears and SPM
will generate two new files Mdspm8 faces run1.mat and Mdspm8 faces run1.dat.

37.4.4 Epoch

To epoch the data click on Epoching. Select the Mdspm8 faces run1.mat file. Choose the peri-
stimulus time window, first the start -200, then the end 600 ms. Choose 1 condition. There is
no information in the file at this stage to distinguish between faces and scrambled faces. We will
add this information at a later stage. You can give this condition any label, for instance “stim”.
A GUI pops up which gives you a complete list of all events in the EEG file. Each event has
type and value which might mean different things for different EEG and MEG systems. So you
should be familiar with your particular system to find the right trigger for epoching. In our case
it is not very difficult as all the events but one appear only once in the recording, whereas the
event with type “STATUS” and value 1 appears 172 times which is exactly the number of times
a visual stimulus was presented. Select this event and press OK. Answer two times “no” to the
questions “review individual trials”, and “save trial definitions”. The progress bar will appear and
the epoched data will be saved to files eMdspm8 faces run1.mat and eMdspm8 faces run1.dat.
The epoching function also performs baseline correction by default (with baseline -200 to 0ms).
Therefore, in the epoched data the large channel-specific baseline shifts are removed and it is
finally possible to see the EEG data clearly in the reviewing tool.

37.4.5 Reassignment of trial labels

Open the file eMdspm8 faces run1.mat in the reviewing tool (under “Display” button). The first
thing you will see is that in the history tab there are now 4 processing steps. Now switch to
the “trials” tab. You will see a table with 172 rows - exactly the number of events we selected
before. In the first column the label “stim” appears in every row. What we would like to do
now is change this label to “faces” or “scrambled” where appropriate. We should first open the
file condition labels.txt (in the EEG directory) with any text editor, such as Matlab editor
or Windows notepad. In this file there are exactly 172 rows with either “faces” or “scrambled”
in each row. Select and copy all the rows (Ctrl-A, Ctrl-C on Windows). Then go back to SPM

2Re-referencing EEG to the mean over EEG channels is important for source localisation. Note also that if
some channels are subsequently marked “bad” (see later), one should re-reference again, because bad channels are
ignored in any localisation.
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and the trials tab. Place the cursor in the first row and first column cell with the “stim” label
and paste the copied labels (Ctrl-V). The new labels should now appear for all rows. Press the
“update” button above the table and then the “SAVE” button at the top right corner of the
window. The new labels are now saved in the dataset.

37.4.6 Using the history and object methods to preprocess the second
file

At this stage we need to repeat the preprocessing steps for the second file faces run2.bdf.
You can do it by going back to the “Convert” section and repeating all the steps for this file,
but there is a more efficient way. If you have been following the instructions until now the file
eMdspm8 faces run1.mat should be open in the reviewing tool. If it is not the case, open it.
Go to the “history” tab and press the “Save as script” button. A dialog will appear asking for
the name of the Matlab script to save. Let’s call it eeg preprocess.m. Then there will be
another dialogue suggesting to select the steps to save in the script. Just press “OK” to save all
the steps. Now open the script in the Matlab editor. You will now need to make some changes
to make it work for the second file. Here we suggest the simplest way to do it that does not
require familiarity with Matlab programming. But if you are more familar with Matlab you’ll
definitely be able to do a much better job. First, replace all the occurences of “run1” in the file
with “run2”. You can use the “Find & Replace” functionalty (Ctrl-F) to do it. Secondly, erase
the line starting with S.timewindow (line 5). This line defines the time window to read, in this
case from the first to the last sample of the first file. The second file is slightly longer than the
first so we should let SPM determine the right time window automatically. Save the changes and
run the script by pressing the “Run” button or writing eeg preprocess in the command line.
SPM will now automatically perform all the steps we have done before using the GUI. This is
a very easy way for you to start processing your data automatically once you come up with the
right sequence of steps for one file. After the script finishes running there will be a new set of
files in the current directory including eMdspm8 faces run2.mat and eMdspm8 faces run2.dat.
If you open these files in the reviewing tool and go to the “trials” tab you will see that the trial
labels are still “stim”. The reason for this is that updates done using the reviewing tool are not
presently recorded in the history (with the exception of the “Prepare” interface, see below). You
can still do this update automatically and add it to your script. If you write D in the command
line just after running the script and press “Enter” you will see some information about the
dataset eMdspm8 faces run2. D is an object, this is a special kind of data structure that makes
it possible to keep different kinds of related information (in our case all the properties of our
dataset) and define generic ways of manipulating these properties. For instance we can use the
command:

D = conditions(D, [], importdata(’condition_labels.txt’)); D.save;

to update the trial labels using information imported from the condition labels.txt3 (the two
runs had identical trials). Now, conditions’ is a “method”, a special function that knows where
to store the labels in the object. All the methods take the M/EEG object (usually called D in SPM
by convention) as the first argument. The second argument is a list of indices of trials for which
we want to change the label. We specify an empty matrix which is interpreted as “all”. The third
argument is the new labels which are imported from the text file using a Matlab built-in function.
We then save the updated dataset on disk using the save method. If you now write D.conditions
or conditions(D) (which are two equivalent ways of calling the conditions method with just
D as an argument), you should see a list of 172 labels, either “faces” or “scrambled”. If you add
the commands above at the end of your automatically generated script, you can run it again and
this time the output will have the right labels.

37.4.7 Merge

We will now merge the two epoched files we have generated until now and continue working on the
merged file. Select the “Merge” command from the “Other” drop-down menu. In the selection

3You might need to change the full path to this text file inside the single quotes, depending on your current
directory and the directory of the original data.
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window that comes up click on eMdspm8 faces run1.mat and eMdspm8 faces run2.mat. Press
“done”. Answer “Leave as they are” to “What to do with condition labels?”. This means that
the trial labels we have just specified will be copied as they are to the merged file. A new dataset
will be generated called ceMdspm8 faces run1.{mat,dat}.

37.4.8 Prepare

In this section we will add the separately measured electrode locations and headshape points
to our merged dataset. In principle, this step is not essential for further analysis because SPM8
automatically assigns electrode locations for commonly used EEG caps and the Biosemi 128 cap is
one of these. Thus, default electrode locations are present in the dataset already after conversion.
But since these locations are based on channel labels they may not be precise enough and in
some cases may be completely wrong because sometimes electrodes are not placed in the correct
locations for the corresponding channel labels. This can be corrected by importing individually
measured electrode locations. Select Prepare from the “Other” menu and in the file selection
window select ceMdspm8 faces run1.mat. A menu will appear at the top of SPM interactive
window (bottom left window). In the “Sensors” submenu choose “Load EEG sensors”/“Convert
locations file”. In the file selection window choose the electrode locations and headshape.sfp

file (in the original EEG directory). Then from the “2D projection” submenu select “Project 3D
(EEG)”. A 2D channel layout will appear in the Graphics window. Select “Apply” from “2D
Projection” and “Save” from “File” submenu. Note that the same functionality can also be
accessed from the reviewing tool by pressing the “Prepare SPM file” button.

37.4.9 Artefact rejection

Here we will use SPM8 artefact detection functionality to exclude from analysis trials contami-
nated with large artefacts. Press the Artefacts button. A window of the SPM8 batch interface
will open. You might already be familiar with this interface from other SPM8 functions. It is also
possible to use the batch interface to run the preprocessing steps that we have performed until
now, but for artefact detection this is the only graphical interface and there is no way to configure
it with the usual GUI buttons. Click on “File name” and select the ceMdspm8 faces run1.mat

file. Double click “How to look for artefacts” and a new branch will appear. It is possible to
define several sets of channels to scan and several different methods for artefact detection. We
will use simple thresholding applied to all channels. Click on “Detection algorithm” and select
“Threshold channels” in the small window below. Double click on “Threshold” and enter 200 (in
this case µV ). The batch is now fully configured. Run it by pressing the green button at the top
of the batch window.

This will detect trials in which the signal recorded at any of the channels exceeds 200 microvolts
(relative to pre-stimulus baseline). These trials will be marked as artefacts. Most of these artefacts
occur on the VEOG channel, and reflect blinks during the critical time window. The procedure
will also detect channels in which there is a large number of artefacts (which may reflect problems
specific to those electrodes, allowing them to be removed from subsequent analyses).

In this case, the Matlab window will show:

There isn’t a bad channel.

39 rejected trials: 38 76 82 83 86 88 89 90 92 [...]

(leaving 305 valid trials). A new file will also be created, aceMdspm8 faces run1.{mat,dat}.

37.4.10 Exploring the M/EEG object

We can now review the preprocessed dataset from the Matlab command line by typing:

D = spm_eeg_load

and selecting the aceMdspm8 faces run1.mat file. This will print out some basic information
about the M/EEG object D that has been loaded into Matlab workspace.
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SPM M/EEG data object

Type: single

Transform: time

2 conditions

130 channels

161 samples/trial

344 trials

Sampling frequency: 200 Hz

Loaded from file ...\EEG\aceMdspm8_faces_run1.mat

Use the syntax D(channels, samples, trials) to access the data.

Note that the data values themselves are memory-mapped from aceMdspm8_faces_run1.dat

and can be accessed by indexing the D object (e.g, D(1,2,3) returns the field strength in the
first sensor at the second sample point during the third trial). You will see that there are 344
trials (D.ntrials). Typing D.conditions will show the list of condition labels consisting of 172
faces (“faces”) and 172 scrambled faces (“scrambled”). D.reject will return a 1× 344 vector of
ones (for rejected trials) and zeros (for retained trials). D.condlist will display a list of unique
condition labels. The order of this list is important because every time SPM needs to process
the conditions in some order, this will be the order. If you type D.chanlabels, you will see
the order and the names of the channels. D.chantype will display the type for each channel
(in this case either “EEG” or “EOG”). D.size will show the size of the data matrix, [130 161
344] (for channels, samples and trials respectively). The size of each dimension separately can
be accessed by D.nchannels, D.nsamples and D.ntrials. Note that although the syntax of
these commands is similar to those used for accessing the fields of a struct data type in Matlab
what’s actually happening here is that these commands evoke special functions called “methods”
and these methods collect and return the requested information from the internal data structure
of the D object. The internal structure is not accessible directly when working with the object.
This mechanism greatly enhances the robustness of SPM code. For instance you don’t need
to check whether some field is present in the internal structure. The methods will always do it
automatically or return some default result if the information is missing without causing an error.

Type methods(’meeg’) for the full list of methods performing operations with the object.
Type help meeg/method name to get help about a method.

37.4.11 Basic ERPs

Press the Averaging button and select the aceMdspm8 faces run1.mat file. At this point
you can perform either ordinary averaging or “robust averaging” (Wager et al., 2005). Robust
averaging makes it possible to suppress artefacts automatically without rejecting trials or channels
completely, but just the contaminated parts. Thus, in principle we could do robust averaging
without rejecting trials with eye blinks and this is something you can do as an exercise and see
how much difference the artefact rejection makes with ordinary averaging vs. robust averaging.
For robust averaging answer “yes” to “Use robust averaging?”. Answer “yes” to “Save weights”,
and “no” to “Compute weights by condition”4.

Finally, press “Enter” to accept the default “Offset of the weighting function”. A new
dataset will be generated maceMdspm8 faces run1.{mat,dat} (“m” for “mean”) and automat-
ically opened in the reviewing tool so that you can examine the ERP. There will also be an
additional dataset named WaceMdspm8 faces run1.{mat,dat}. This dataset will contain the
weights used by robust averaging. This is useful to see what was suppressed and whether there
might be some condition-specific bias that could affect the results.

Select “Contrast” from the “Other” pulldown menu on the SPM window. This function
creates linear contrasts of ERPs/ERFs. Select the maceMdspm8 faces run1.mat file, enter [1 −1]
as the first contrast and label it “Difference”, answer “yes” to “Add another”, enter [1/2 1/2] as
the second contrast and label it “Mean”. Press “no” to the question “Add another” and not to

4When there are approximately equal numbers of trials in each condition, as here, it is probably safer to
compute weights across all conditions, so as not to introduce artifactual differences between conditions. However,
if one condition has fewer trials than the others, it is likely to be safer to estimate the weights separately for each
condition, otherwise evoked responses in the rarer condition will be downweighted so as to become more similar
to the more common condition(s).
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Figure 37.2: Average (green) and differential (blue) ERPs for faces and scrambled faces at channel
B9 in wmaceMdspm8 faces run1.mat.

“weight by num replications”. This will create new file wmaceMdspm8 faces run1.{mat,dat}, in
which the first trial-type is now the differential ERP between faces and scrambled faces, and the
second trial-type is the average ERP for faces and scrambled faces.

To look at the differential ERP, again press “Display: M/EEG”, and select the wmaceMdspm8 -

faces run1.mat file. Switch to the “EEG” tab and to “scalp” display by toggling a radio button
at the top of the tab. The Graphics window should then show the ERP for each channel (for Trial
1 the “Difference” condition). Hold SHIFT and select Trial 2 to see both conditions superimposed.
Then click on the zoom button and then on one of the channels (e.g, “B9” on the bottom right
of the display) to get a new window with the data for that channel expanded, as in Figure 37.2.

The green line shows the average ERP evoked by faces and scrambled faces (at this occipi-
totemporal channel). A P1 and N1 are clearly seen. The blue line shows the differential ERP
between faces and scrambled faces. The difference is small around the P1 latency, but large and
negative around the N1 latency. The latter likely corresponds to the “N170” (Henson et al, 2003).
We will try to localise the cortical sources of the P1 and N170 in Section 37.4.13.

To see the topography of the differential ERP, click on Trial 1 again, press the “topography”
icon button at the top of the window and scroll the latency from baseline to the end of the epoch.
You should see a maximal difference around 180ms as in Figure 37.3 (possibly including a small
delay of about 8ms for the CRT display to scan to the centre of the screen).

37.4.12 3D SPMs (Sensor Maps over Time)

A feature of SPM is the ability to use Random Field Theory to correct for multiple statistical
comparisons across N-dimensional spaces. For example, a 2D space representing the scalp data
can be constructed by flattening the sensor locations (using the 2D layout we created earlier)
and interpolating between them to create an image of M ×M pixels (when M is user-specified,
eg M = 32). This would allow one to identify locations where, for example, the ERP amplitude
in two conditions at a given timepoint differed reliably across subjects, having corrected for the
multiple t-tests performed across pixels. That correction uses Random Field Theory, which takes
into account the spatial correlation across pixels (i.e, that the tests are not independent). This
kind of analysis is described earlier in the SPM manual, where a 1st-level design is used to create
the images for a given weighting across timepoints of an ERP/ERF, and a 2nd-level design can
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Figure 37.3: 2D topography for faces minus scrambled faces at 180ms.

then be used to test these images across subjects.

Here, we will consider a 3D example, where the third dimension is time, and test across
trials within the single subject. We first create a 3D image for each trial of the two types, with
dimensions M ×M × S, where S=161 is the number of samples. We then take these images
into an unpaired t-test across trials (in a 2nd-level model) to compare faces versus scrambled
faces. We can then use classical SPM to identify locations in space and time in which a reliable
difference occurs, correcting across the multiple comparisons entailed. This would be appropriate
if, for example, we had no a priori knowledge where or when the difference between faces and
scrambled faces would emerge5.

Select the “Convert to images” option in the “Other” menu in the SPM main window, and
select the aceMdspm8 faces run1.mat file. You will then be prompted for “output image dimen-
sions”, for which you can accept the default of 32 (leading to a 32× 32 pixel space). It will then
ask whether you want to interpolate or mask out bad channels, for which you select “interpolate”
(though it will make no difference here because there are no bad channels).

This will take some time as it writes out an image for each trial (except rejected trials), in
a new directory called aceMdspm8 faces run1, which will itself contain two subdirectories, one
for each trialtype. In each trialtype subdirectory there will be image and header files for each
non-rejected trial of that type, e.g, trial0002.{hdr,img}. You can press “Display: images” to
view one of these images - it will have dimensions 32 × 32 × 161, with the origin set at [16 18.6
41] (where 41 samples is 0ms), as in Figure 37.4.

Smoothing

Note that you can also smooth these images in 3D (i.e, in space and time) by pressing “Smooth
Images” from the “Others” pulldown menu. When you get the Batch Editor window, you can
enter a smoothness of your choice (eg [9 9 20], or 9mm by 9mm by 20ms). Note that you
should also change the default “Implicit masking” from “No” to “Yes”; this is to ensure that the
smoothing does not extend beyond the edges of the topography.

As with fMRI, smoothing can improve statistics if the underlying signal has a smoothness
close to the smoothing kernel (and the noise does not; the matched filter theorem). Smoothing

5Note that the 2D location in sensor space for EEG will depend on the choice of montage.
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Figure 37.4: 3D image for trial 2 of aceMdspm8 faces run1.mat. The bottom image is a 2D
x-y space interpolated from the flattened electrode locations (at one point in time). The two top
images are sections through x and y respectively, now expressed over time (vertical (z) dimension).



384 CHAPTER 37. MULTIMODAL FACE-EVOKED RESPONSES

may also be necessary if the final estimated smoothness of the SPMs (below) is not at least three
times the voxel size; an assumption of Random Field Theory. In the present case, the data are
already smooth enough (as you can check below), so we do not have to smooth further.

Stats

To perform statistics on these images, first create a new directory, eg. mkdir XYTstats.
Then press the “Specify 2nd level” button, to produce the batch editor window again. Select

the new XYTstats as the “Directory”, and “two-sample t-test” (unpaired t-test) as the “Design”.
Then select the images for “group 1 scans” as all those in the subdirectory “type faces” (using
right click, and “select all”) and the images for “group 2 scans” as all those in the subdirectory
“type scrambled”. You might want to save this batch specification, but then press “run”6.

This will produce the design matrix for a two-sample t-test.
Then press “Estimate”, and when it has finished, press “Results” and define a new F-contrast

as [1 -1]. Keep the default contrast options, but threshold at p < .05 FWE corrected for the
whole search volume and select “Scalp-Time” for the “Data Type”. Then press “whole brain”,
and the Graphics window should now look like that in Figure 37.5.

This will reveal “regions” within the 2D sensor space and within the -200ms to 600ms epoch
in which faces and scrambled faces differ reliably, having corrected for multiple F-tests across
pixels and time. There are a number of such regions, but the largest has maxima at [-13 -78 180]
and [21 -68 180], corresponding to left and right posterior sites at 180ms.

To relate these coordinates back to the original sensors, right-click in some white space in the
top half of the Graphics window, to get a menu with various options. First select “goto global
maxima”. The red cursor should move to coordinates [-13, -78, 180]. (Note that you can also
overlap the sensor names on the MIP by selecting “display/hide channels” - though it can get a
bit crowded!). Then right-click again to get the same menu, but this time select “go to nearest
suprathreshold channel”. You will be asked to select the original EEG/MEG file used to create
the SPM, which in this case is the aceMdspm8 faces run1.mat file. This should output in the
Matlab window:

spm_mip_ui: Jumped 4.25mm from [-13, -78, 180],

to nearest suprathreshold channel (A15) at [ -8, -78, 180]

In other words, it is EEG channel “A15” that shows the greatest face/scrambled difference over
the epoch (itself maximal at 180ms).

Note that an F-test was used because the sign of the difference reflects the polarity of the ERP
difference, which is not of primary interest (and depends on the choice of reference). Indeed, if you
plot the contrast of interest from the cluster maxima, you will see that the difference is negative
for the first posterior, cluster but positive for the second, central cluster. This is consistent with
the polarity of the differences in Figure 37.37.

If one had more constrained a priori knowledge about where and when the N170 would ap-
pear, one could perform an SVC based on, for example, a box around posterior channels and be-
tween 150 and 200ms poststimulus. See http://imaging.mrc-cbu.cam.ac.uk/meg/SensorSpm

for more details.
If you go to the global maximum, then press “overlays”, “sections” and select the “mask.img”

in the stats directory, you will get sections through the space-time image. A right click will reveal
the current scalp location and time point. By moving the cursor around, you can see that the
N170/VPP effects start to be significant (after whole-image correction) around 150ms (and may
also notice a smaller but earlier effect around 100ms).

37.4.13 3D “imaging” reconstruction

Here we will demonstrate a distributed source reconstruction of the N170 differential evoked
response between faces and scrambled faces, using a grey-matter mesh extracted from the subject’s

6Note that we can use the default “nonsphericity” selections, i.e, that the two trial-types may have different
variances, but are uncorrelated.

7The former likely corresponds to the “N170”, while the latter likely corresponds to the “VPP”, which may be
two signs of the same effect, though of course these effects depend on the choice of reference.

http://imaging.mrc-cbu.cam.ac.uk/meg/SensorSpm
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Figure 37.5: 3D sensor-time SPMF at p < .05 FWE corrected for the amplitude difference between
face and scrambled face trials. The x, y coordinates refer to position in the 32x32 electrode plane
(with units of mm); the z coordinate refers to peristimulus time in ms (to the nearest sampling of
5ms).
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Figure 37.6: Cortex (blue), inner skull (red), outer skull (orange) and scalp (pink) meshes with
transverse slices of the subject’s MRI.

MRI, and the Multiple Sparse Priors (MSP) method in which multiple constraints on the solution
can be imposed (Friston et al, 2008, Henson et al, 2009a).

Press the “3D source reconstruction” button, and press the “load” button at the top of the
new window. Select the wmaceMdspm8_faces_run1.mat file and type a label (eg ”N170 MSP”)
for this analysis8.

Press the “MRI” button, select the smri.img file within the sMRI sub-directory, and select
“normal” for the cortical mesh.

The “imaging” option corresponds to a distributed source localisation, where current sources
are estimated at a large number of fixed points (8196 for a “normal” mesh here) within a cortical
mesh, rather than approximated by a small number of equivalent dipoles (the ECD option).
The imaging approach is better suited for group analyses and (probably) for later-occuring ERP
components. The ECD approach may be better suited for very early sensory components (when
only small parts of the brain are active), or for DCMs using a small number of regions (Kiebel et
al, 2006).

The first time you use a particular structural image for 3D source reconstruction, it will take
some time while the MRI is segmented (and normalisation parameters determined). This will
create in the sMRI directory the files y smri.nii and smri seg8.mat for normalisation parameters
and 4 GIfTI (.gii) files defining the cortical mesh, inner skull, outer skull and scalp surface.

When meshing has finished, the cortex (blue), inner skull (red), outer skull (orange) and scalp
(pink) meshes will be shown in the Graphics window with slices from the sMRI image, as shown
in Figure 37.6. This makes it possible to visually verify that the meshes fit the original image
well. The field D.inv{1}.mesh field will be updated in Matlab . Press “save” in top right of
window to update the corresponding mat file on disk.

Both the cortical mesh and the skull and scalp meshes are not created directly from the
segmented MRI, but rather are determined from template meshes in MNI space via inverse
spatial normalisation (Mattout et al, 2007).

Press the “Co-register” button. You will first be asked to select at least 3 fiducials from a

8Note that no new M/EEG files are created during the 3D reconstruction; rather, each step involves updating
of the cell-array field D.inv, which will have one entry per analysis performed on that dataset (e.g, D.inv{1} in
this case).
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Figure 37.7: Graphical output of Co-registration of EEG data, showing (upper panel) cortex (blue),
inner skull (red) and scalp (black) meshes, electrode locations (green), MRI/Polhemus fiducials
(cyan/magneta), and headshape (red dots).

list of points in the EEG dataset (from Polhemus file): by default, SPM has already highlighted
what it thinks are the fiducials, i.e, points labelled “nas” (nasion), “lpa” (left preauricular) and
“rpa” (right preauricular). So just press “ok”.

You will then be asked for each of the 3 fiducial points to specify its location on the MRI
images. This can be done by selecting a corresponding point from a hard-coded list (“select”).
These points are inverse transformed for each individual image using the same deformation field
that is used to create the meshes. The other two options are typing the MNI coordinates for
each point (“type”) or clicking on the corresponding point in the image (“click”). Here, we will
type coordinates based on where the experimenter defined the fiducials on the smri.img. These
coordinates can be found in the smri fid.txt file also provided. So press “type” and for “nas”,
enter [0 91 -28]; for “lpa” press “type” and enter [-72 4 -59]; for “rpa” press “type” and enter
[71 -6 -62]. Finally, answer “no” to “Use headshape points?” (in theory, these headshape points
could offer better coregistration, but in this dataset, the digitised headshape points do not match
the warped scalp surface very well, as noted below, so just the fiducials are used here).

This stage coregisters the EEG sensor positions with the structural MRI and cortical mesh,
via an approximate matching of the fiducials in the two spaces, followed by a more accurate
surface-matching routine that fits the head-shape function (measured by Polhemus) to the scalp
that was created in the previous meshing stage via segmentation of the MRI. When coregistration
has finished, a figure like that in Figure 37.7 will appear in the top of the Graphics window, which
you can rotate with the mouse (using the Rotate3D Matlab Menu option) to check all sensors.
Finally, press “save” in top right of window to update the corresponding mat file on disk.

Note that for these data, the coregistration is not optimal, with several EEG electrodes appear-
ing inside the scalp. This may be inaccurate Polhemus recording of the headshape or inaccurate
surface matching for the scalp mesh, or “slippage” of headpoints across the top of the scalp (which
might be reduced in future by digitising features like the nose and ears, and including them in
the scalp mesh). This is not actually a problem for the BEM calculated below, however, because
the electrodes are re-projected to the scalp surface (as a precaution).

Press “Forward Model”, and select “EEG BEM”. The first time you do this, there will be
a lengthy computation and a large file smri EEG BEM.mat will be saved in the sMRI directory
containing the parameters of the boundary element model (BEM). In the Graphics window the
BEM meshes will be displayed with the EEG sensors marked with green asterisks as shown (after
rotating to a “Y-Z” view using Matlab rotate tool) in Figure 37.8. This display is the final
quality control before the model is used for lead field computation.

Press “Invert”, select “Imaging” (i.e, a distributed solution rather than DCM; Kiebel et al
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Figure 37.8: BEM meshes with the EEG sensors marked as asterisks.

(2006)), select “yes” to include all conditions (i.e, both the differential and common effects of
faces and scrambled faces) and then “Standard” to use the default settings.

By default the MSP method will be used. MSP stands for “Multiple Sparse Priors” (Friston
et al. 2008a), and has been shown to be superior to standard minimum norm (the alternative IID
option) or a maximal smoothness solution (like LORETA; the COH option) - see Henson et al
(2009a). Note that by default, MSP uses a “Greedy Search” (GS) (Friston et al, 2008b), though
the standard ReML (as used in Henson et al, 2007) can also be selected via the batch tool (this
uses Automatic Relevance Determination - ARD).

The “Standard” option uses default values for the MSP approach (to customise some of these
parameters, press “Custom” instead).

At the first stage of the inversion lead fields will be computed for all the mesh vertices and saved
in the file SPMgainmatrix wmaceMdspm8 faces run1 1.mat. Then the actual MSP algorithm will
run and the summary of the solution will be displayed in the Graphics window.

Press “save” to save the results. You can now explore the results via the 3D reconstruction
window. If you type 180 into the box in the bottom right (corresponding to the time in ms) and
press “mip”, you should see an output similar to Figure 37.9. This fit explains approx 96% of
the data.

Note the hot-spots in bilateral posterior occipitotemporal cortex, bilateral mid-fusiform, and
right lateral ventral temporal. The timecourses come from the peak voxel. The red curve shows
the condition currently being shown (corresponding to the “Condition 1” toggle bar in the recon-
struction window); the grey line(s) will show all other conditions. “Condition 1” is the differential
evoked responses for faces vs scrambled; if you press the “condition 1” toggle, it will change to
“Condition 2” (average evoked response for faces and scrambled faces), type “100”ms for the
P100, then press “mip” again and the display will update (note the colours of the lines have now
reversed from before, with red now corresponding to average ERP).

If you toggle back to “Condition 1” and press “movie”, you will see changes in the source
strengths for the differential response over peristimulus time (from the limits 0 to 300ms currently
chosen by default). If you press “render” you can get a very neat graphical interface to explore
the data (the buttons are fairly self-explanatory).

You can also explore other inversion options, such as COH and IID (available for the “custom”
inversion), which you will notice give more superficial solutions (a known problem with standard
minimum norm approaches). To do this quickly (without repeating the MRI segmentation, coreg-
istration and forward modelling), press the “new” button in the reconstruction window, which
by default will copy these parts from the previous reconstruction.

In this final section we will concentrate on how to prepare source data for subsequent statistical
analysis (eg with data from a group of subjects).

Press the “Window” button in the reconstruction window, enter “150 200” as the timewindow
of interest and keep “0” as the frequency band of interest (0 means all frequencies). The Graphics
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Figure 37.9: Graphical output of an MSP estimation of the differential ERP between faces and
scrambled faces at 180ms.
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window will then show the mean activity for this time/frequency contrast (top plot) and the
contrast itself (bottom plot; note additional use of a Hanning window).

Then press “Image” and SPM will write 3D NIfTI images corresponding to the above contrast
for each condition:

wmaceMdspm8_faces_run1_1_t150_200_f_1.nii

wmaceMdspm8_faces_run1_1_t150_200_f_2.nii

The last number in the file name refers to the condition number; the number following the dataset
name refers to the reconstruction number (i.e. the number in red in the reconstruction window,
i.e, D.val, here 1). The reconstruction number will increase if you create a new inversion by
pressing “new”.

The smoothed results for Condition 1 (i.e, the differential evoked response for faces vs scram-
bled faces) will also be displayed in the Graphics window, see Figure 37.10 (after moving the
cursor to the right posterior hotspot), together with the normalised structural. Note that the
solution image is in MNI (normalised) space, because the use of a canonical mesh provides us
with a mapping between the cortex mesh in native space and the corresponding MNI space.

You can also of course view the image with the normal SPM “Display:image” option (just the
functional image with no structural will be shown), and locate the coordinates of the “hotspots”
in MNI space. Note that these images contain RMS (unsigned) source estimates (see Henson
et al, 2007). Given that one has data from multiple subjects, one can create a NIFTI file for
each. Group statistical analysis can the be implemented with eg. second level t-tests as described
earlier in the chapter.

Figure 37.10: 3D reconstruction saved as a smoothed NIfTI image of the differential evoked re-
sponse for faces vs scrambled faces around the N170.

37.5 MEG analysis

37.5.1 Preprocessing the MEG data

First change directory to the MEG subdirectory (either in Matlab or via the “CD” option in
the SPM “Utils” menu)
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37.5.2 Adjust trigger latency

For the EEG data, the faces were displayed directly via a CRT monitor. For the MEG data on
the other hand, the faces were displayed inside the MSR via a projector. This projector produces
a delay of 1.5 screen refreshes, which at 60Hz, is 25ms. This means that the subject actually saw
the stimuli 25ms after the trigger was sent to the MEG acquisition machine. To correct for this
visual delay, we will illustrate how to manipulate “trial” structures9. First, we need to read in
the triggers from the MEG data (unlike the EEG dataset, the MEG dataset contains information
about trial type so we can define the correct condition labels already at this stage). To do this,
type the following in the Matlab window:

[trl, conditionlabels, S] = spm_eeg_definetrial;

and follow these steps:

• Select the SPM CTF MEG example faces1 3D.ds/SPM CTF MEG example faces1 3D.meg4 file.

• Enter -200 for “Start of trial in PST [ms]” and 600 to “End of trial in PST [ms]”.

• Enter 2 for “How many conditions?”.

– Enter “faces” for “Label of condition 1”. A dialog with a list of events will come up
and Select the event with type UPPT001 up and Value 1.

– Enter “scrambled” for “Label of condition 2”. Select the even with type UPPT001 up

and Value 2.

• Answer “no” to the question about reviewing trials.

• Answer “yes” to the prompt to save the trial definition.

• Enter a filename like trials run1.mat and save in the MEG directory.

Then type load trials run1.mat in Matlab to see the contents of the file you just saved.
It contains two variables, trl and conditionlabels. The trl variable contains as many rows
as triggers were found (across all conditions) and three columns: the initial sample of the epoch,
the final sample of the epoch and the offset in samples corresponding to a peristimulus time of 0.
The sampling rate for the MEG data was 480Hz (as can be found in the S.fsample field of the
structure S returned by the spm eeg definetrial call above). Thus the figure of -96 samples in
the third column corresponds to the 200ms baseline period that you specified. Now we need to
shift the initial and final samples of the epochs by 25ms. You can do this by typing:

trl(:,1:2) = trl(:,1:2) + round(25*S.fsample/1000);

save trials_run1 trl conditionlabels

The new trial definition is thus resaved, and we can use this file when next converting the
data.

37.5.3 Convert

Press the Convert button, and in the file selection window again select the SPM CTF MEG example -

faces1 3D.ds subdirectory and the SPM CTF MEG example faces1 3D.meg4 file. At the prompt
“Define settings?” select “yes”. Here we will use the option to define more precisely the part of
data that should be read during conversion. Answer “trials” to “How to read?”, and “file” to
“Where to look for trials?”. Then in the file selector window, select the new trials run1.mat

file. Press “no” to “Read across trials?” and select “meg” for “What channels?”. Press “no” to
avoid saving the channel selection. Press “Enter” to accept the default suggestion for the name
of the output dataset. Two files will be generated espm8 SPM CTF MEG example faces1 3D.mat

and espm8 SPM CTF MEG example faces1 3D.dat. After the conversion is complete the data file
will be automatically opened in the SPM8 reviewing tool. If you click on the “MEG” tab you
will see the MEG data which is already epoched. By pressing the “intensity rescaling” button
(with arrows pointing up and down) several times you will start seeing MEG activity.

9Alternatively, you could correct by 1 refresh, to match the delay in the EEG data.
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37.5.4 Baseline correction

We need to perform baseline correction as it is not done automatically during conversion. This will
prevent excessive edge artefacts from appearing after subsequent filtering and downsampling. Se-
lect Baseline correction from the “Other” drop-down menu and select the espm8 SPM CTF MEG example faces1 3D.mat

file. Enter [−200 0] for “Start and stop of baseline [ms]”. The progress bar will appear and the
resulting data will be saved to dataset bespm8 SPM CTF MEG example faces1 3D.{mat,dat}.

37.5.5 Downsample

Select Downsample from the “Other” drop-down menu and select the bespm8 SPM CTF MEG -

example faces1 3D.mat file. Choose a new sampling rate of 200 (Hz). The progress bar will ap-
pear and the resulting data will be saved to dataset dbespm8 SPM CTF MEG example faces1 3D.{mat,dat}.

37.5.6 Batch preprocessing

Here we will preprocess the second half of the MEG data using using the SPM8 batch facility
to demonstrate this third (after interactive GUI and Matlab script) possibility. First though, we
have to correct the visual onset latency for the second run, repeating the above steps that you
did for the first run:

[trl, conditionlabels, S] = spm_eeg_definetrial;

and select the SPM CTF MEG example faces2 3D.ds subdirectory and the SPM CTF MEG example -

faces2 3D.meg4 file. Then enter -200 for “Start of trial in PST [ms]” and 600 to “End of trial in
PST [ms]”. Enter 2 for “How many conditions?”. Enter “faces” for “Label of condition 1”. A
dialog with a list of events will come up. Select the event with type “UPPT001 up” and Value 1.
Enter scrambled for “Label of condition 2”. Select the event with type “UPPT001 up” and Value
2. Answer “no” to the question about reviewing trials, but “yes” to the prompt to save the trial
definition. Enter a filename like trials run2.mat and save in the MEG directory. Then type:

load trials_run2

trl(:,1:2) = trl(:,1:2)+round(25*S.fsample/1000);

save trials_run2 trl conditionlabels

Now press the Batch button (lower right corner of the SPM8 menu window). The batch
tool window will appear. We will define exactly the same settings as we have just done using
the interactive GUI. From the “SPM” menu, “M/EEG” submenu select “M/EEG Conversion”.
Click on “File name” and select the SPM CTF MEG example faces2 3D.meg4 file from SPM CTF -

MEG example faces2 3D.ds subdirectory. Click on “Reading mode” and switch to “Epoched”.
Click on “Epoched” and choose “Trial file”, double-click on the new “Trial file” branch and then
select the trials run2.mat file. Then click on “Channel selection” and select MEG from the
menu below. Finally enter espm8 SPM CTF MEG example faces2 3D for “Output filename” to be
consistent with the file preprocessed interactively.

Now select “M/EEG Baseline correction” from the “SPM” menu, “M/EEG” submenu. An-
other line will appear in the Module list on the left. Click on it. The baseline correction con-
figuration branch will appear. Select “File name” with a single click. The file that we need to
downsample has not been generated yet but we can use the “Dependency” button. A dialog
will appear with a list of previous steps (in this case just the conversion) and we can set the
output of one of these steps as the input to the present step. Now just enter enter −200 0 for
“Baseline”. Similarly we can now add “M/EEG Downsampling” to the module list, define the
output of baseline correction step for “File name” and 200 for the “New sampling rate”. This
completes our batch. We can now save it for future use (e.g, as batch meg preprocess and run it
by pressing the green “Run” button. This will generate all the intermediate datasets and finally
dbespm8 SPM CTF MEG example faces2 3D.{mat,dat}.
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37.5.7 Merge

We will now merge the two epoched files we have generated until now and continue work-
ing on the merged file. Select the Merge command from the “Other” drop-down menu. In
the selection window that comes up click on dbespm8 SPM CTF MEG example faces1 3D.mat and
dbespm8 SPM CTF MEG example faces2 3D.mat. Press “done”. Answer “Leave as they are” to
“What to do with condition labels?”. A new dataset will be generated called cdbespm8 SPM CTF -

MEG example faces1 3D.{mat,dat}.

37.5.8 Reading and preprocessing data using Fieldtrip

Yet another even more flexible way to pre-process data in SPM8 is to use the Fieldtrip tool-
box (http://www.ru.nl/neuroimaging/fieldtrip/) that is distributed with SPM. All the pre-
processing steps we have done until now can also be done in Fieldtrip and the result can
then be converted to SPM8 dataset. An example script for doing so can be found in the
man\example scripts\spm ft multimodal preprocessing.m. The script will generate a merged
dataset and save it under the name ft SPM CTF MEG example faces1 3D.{mat,dat}. The rest
of the analysis can then be done as below. This option is more suitable for expert users well
familiar with Matlab. Note that in the script ft prefix is added to the names of all Fieldtrip
functions. This is a way specific to SPM8 to call the functions from Fieldtrip version included in
SPM distribution and located under external\fieldtrip.

37.5.9 Prepare

In this section we will add the separately measured headshape points to our merged dataset.
This is useful when one wants to improve the coregistration using head shape measured outside
the MEG. Also in some cases the anatomical landmarks detectable on the MRI scan and actual
locations of MEG locator coils do not coincide and need to be measured in one common coordinate
system by an external digitizer (though this is not the case here). First let’s examine the contents
of the headshape file. If you load it into Matlab workspace (type load headshape.mat), you
will see that it contains one Matlab structure called shape with the following fields:

• .unit - units of the measurement (optional)

• .pnt - Nx3 matrix of headshape points

• .fid - substruct with the fields .pnt - Kx3 matrix of points and .label -Kx1 cell array of
point labels.

The difference between shape.pnt and shape.fid.pnt is that the former contains unnamed
points (such as continuous headshape measurement) whereas the latter contains labeled points
(such as fiducials). Note that this Polhemus space (which will define the “head space”) has the
X and Y axes switched relative to MNI space.

Now select Prepare from the “Other” menu and in the file selection window select cdbespm8 -

SPM CTF MEG example faces1 3D.mat. A menu will appear at the top of SPM interactive window
(bottom left window). In the “Sensors” submenu choose “Load MEG Fiducials/Headshape”. In
the file selection window choose the headshape.mat file and save the dataset with File/Save.

If you do not have a separately measured headshape and are planning to use the original
MEG fiducials for coregistration, this step is not necessary. As an exercise, you can skip it for
the tutorial dataset and later do the coregistration without the headshape and see if it affects the
results.

37.5.10 Basic ERFs

Press the Averaging button and select the cdbespm8 SPM CTF MEG example faces1 3D.mat file.
Answer “yes” to “Use robust averaging?”. You can either save the weights if you want to examine
them or not save if you want the averaging to work faster since the weights dataset that needs
to be written is quite large. Answer “no” to “weight by condition” and accept the default

http://www.ru.nl/neuroimaging/fieldtrip/
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Figure 37.11: SPM Display window for mean, smoothed ERF (mcdbespm8 SPM CTF MEG -

example faces1 3D.mat) for all 275 MEG channels.

“Offset of the weighting function”. A new dataset will be created in the MEG directory called
mcdbespm8 SPM CTF MEG example faces1 3D.{mat,dat} (“m” for “mean”).

As before, you can display these data by “Display: M/EEG” and selecting the mcdbespm8 -

SPM CTF MEG example faces1 3D.mat. In the MEG tag with the scalp radio button selected,
hold the Shift key and select trial-type 2 with the mouse in the bottom right of the window to
see both conditions superimposed (as Figure 37.11).

Select “Contrast” from the “Other” pulldown menu on the SPM window. This function creates
linear contrasts of ERPs/ERFs. Select the mcdbespm8 SPM CTF MEG example faces1 3D.mat file,
enter [1−1] as the first contrast and label it “Difference”, answer “yes” to “Add another”, enter
[1/2 1/2] as the second contrast and label it “Mean”. Press “no” to the question “Add another”
and not to “weight by num replications”. This will create new file wmcdbespm8 SPM CTF MEG -

example faces1 3D.mat, in which the first trial-type is now the differential ERF between faces
and scrambled faces, and the second trial-type is the average ERF for faces and scambled faces.

To see the topography of the differential ERF, select “Display: M/EEG”, MEG tab and click
on Trial 1, press the “topography” button at the top of the window and scroll to 180ms for the
latency to produce Figure 37.12.
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Figure 37.12: 2D topography of the ERF of faces minus scrambled faces at 180ms.

You can move the slider left and right to see the development of the M170 over time.

37.5.11 Time-Frequency Analysis

SPM can use several methods for time-frequency decomposition. We will use Morlet wavelets for
our analyses.

Select the time-frequency option under the “Other” pull-down menu. SPM batch tool
with time-frequency configuration options will apear. Double-click on “File name” and select
the cdbespm8 SPM CTF MEG example faces1 3D.mat file. Then click on “Channel selection” and
in the box below click on “Delete: All(1)” and then on “New: Custom channel”. Double-click
on “Custom channel” and enter “MLT34”.10 Double-click on “Frequencies of interest” and type
[5:40] (Hz). Click on “Spectral estimation” and select “Morlet wavelet transform”. Change
the number of wavelet cycles from 7 to 5. This factor effectively trades off frequency vs time
resolution, with a lower order giving higher temporal resolution. Select “yes” for “Save phase?”.

This will produce two new datasets, tf cdbespm8 SPM CTF MEG example faces1 3D.{mat,dat}
and tph cdbespm8 SPM CTF MEG example faces1 3D.{mat,dat}. The former contains the power
at each frequency, time and channel; the latter contains the corresponding phase angles.

Here we will not baseline correc the time-frequency data because for frequencies as low as 5Hz,
one would need a longer pre-stimulus baseline, to avoid edge-effects11. Later, we will compare
two trial-types directly, and hence any pre-stimulus differences will become apparent.

Press the Averaging button and select the tf cdbespm8 SPM CTF MEG example faces1 -

3D.mat file. You can use straight (or robust if you prefer) averaging to compute the average time-
frequency representation. A new file will be created in the MEG directory called mtf cdbespm8 -

SPM CTF MEG example faces1 3D.{mat,dat}. Note that you can use the reviewing tool to review
the time-frequency datasets.

This contains the power spectrum averaged over all trials, and will include both “evoked”
and “induced” power. Induced power is (high-frequency) power that is not phase-locked to the

10You can of course obtain time-frequency plots for every channel, but it will take much longer (and result in a
large file).

11For example, for 5Hz, one would need at least N/2 x 1000ms/5, where N is the order of the Morlet wavelets
(i.e, number of cycles per Gaussian window), e.g, 600ms for a 6th-order wavelet.
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Figure 37.13: Total power spectra for faces (left) and scrambled faces (right) for channel MLT34

stimulus onset, which is therefore removed when averaging the amplitude of responses across trials
(i.e, would be absent from a time-frequency analysis of the mcdbespm8 SPM CTF MEG example -

faces1 3D.mat file).

The power spectra for each trial-type can be displayed using the usual Display button and
selecting the mtf cdbespm8 SPM CTF MEG example faces1 3D.mat file. This will produce a plot
of power as a function of frequency (y-axis) and time (x-axis) for Channel MLT34. If you use the
“trial” slider to switch between trial(types) 1 and 2, you will see the greater power around 150ms
and 10Hz for faces than scrambled faces (click on the magnifying glass icon and on the single
channel to get scales for the axes, as in Figure 37.13). This corresponds to the M170 again.

We can also look at evidence of phase-locking of ongoing oscillatory activity by averaging the
phase angle information. We compute the vector mean (by converting the angles to vectors in
Argand space), which yelds complex numbers. We can generate two kinds of images from these
numbers. The first is an image of the angles, which shows the mean phase of the oscillation
(relative to the trial onset) at each time point. The second is an image of the absolute values
(also called “Phase-Locking Value”, PLV) which lie between 0 for no phase-locking across trials
and 1 for perfect phase-locking.

Press the Averaging button and select the tph cdbespm8 SPM CTF MEG example faces1 -

3D.mat file. This time you will be prompted for either “angle” or “abs(PLV)” average, for which
you should select “abs(PLV)”. The Matlab window will echo:

mtph_cdbespm8_SPM_CTF_MEG_example_faces1_3D.mat: Number of replications per contrast:

average faces: 168 trials, average scrambled: 168 trials

and a new file will be created in the MEG directory called mtph cdbespm8 SPM CTF MEG -

example faces1 3D.mat.

If you now display the file mtph cdbespm8 SPM CTF MEG example faces1 3D.mat file, you will
see PLV as a function of frequency (y-axis) and time (x-axis) for Channel MLT34. Again, if you
use the “trial” slider to switch between trial(types) 1 and 2, you will see greater phase-locking
around for faces than scrambled faces at lower frequencies, as in Figure 37.14. Together with the
above power analysis, these data suggest that the M170 includes an increase both in power and
in phase-locking of ongoing oscillatory activity in the alpha range (Henson et al, 2005b).

37.5.12 2D Time-Frequency SPMs

Analogous to Section 37.4.12, we can also use Random Field Theory to correct for multiple
statistical comparisons across the 2-dimensional time-frequency space.

Select Convert to images in the “Other” pulldown menu, and select the tf cdbespm8 -

SPM CTF MEG example faces1 3D.mat file. Usually you would be asked whether you want to
average over channels or frequencies. In this case there is only one channel in this dataset, so the
“channels” option will be selected automatically.
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Figure 37.14: Phase-Locking Values for faces (left) and scrambled faces (right) for channel MLT34

This will create 2D time-frequency images for each trial of the two types with dimensions 36×
161×1, as for the example shown in Figure 37.15. These images can be found in the subdirectories
1ROI TF trialtype faces and 1ROI TF trialtype scrambled of the new directory created tf -

cdbespm8 SPM CTF MEG example faces1 3D, and examined by pressing “Display: images” on the
main SPM window.

As in Section 37.4.12, these images can be further smoothed in time and frequency if desired.
Then as in Section 37.4.12, we then take these images into an unpaired t-test across trials to

compare faces versus scrambled faces. We can then use classical SPM to identify times and fre-
quencies in which a reliable difference occurs, correcting across the multiple comparisons entailed
(Kilner et al, 2005).

First create a new directory, eg. mkdir TFstatsPow.
Then press the specify 2nd level button, select “two-sample t-test” (unpaired t-test),

and define the images for “group 1” as all those in the subdirectory trialtype faces (us-
ing right click, and “select all”) and the images for “group 2” as all those in the subdirectory
trialtype scrambled. Finally, specify the new TFstatsPow directory as the output directory.
(Note that this will be faster if you saved and could load an SPM job file from Section 37.4.12
in order to just change the input files and output directory.) Then add an “Estimate” module
from the “SPM” tab, and select the output from the previous factorial design specification stage
as the dependency input. Press “Run” (green arrow button).

Press Results and define a new T-contrast as [1 − 1]. Keep the default contrast options,
but threshold at p < .05 FWE corrected for the whole search volume, and then select “Time-
Frequency” for the “Data Type”. Then press “whole brain”, and the Graphics window should
now look like that in Figure 37.16.

This will list two “regions” within the 2D time-frequency space in which faces produce greater
power than scrambled faces, having corrected for multiple T-tests across pixels. The larger one
has a maximum at 5 Hz and 185 ms post-stimulus, corresponding to the M170 seen earlier in the
averaged files (but now with a statistical test of its significance, in terms of evoked and induced
power). The second, smaller region has a maximum at 12 Hz and 100 ms, possibly corresponding
to a smaller but earlier effect on the M100 (also sometimes reported, depending on what faces
are contrasted with).

37.5.13 “Imaging” reconstruction of total power for each condition

In Section 37.4.13 we localised the differential evoked potential difference in EEG data corre-
sponding to the N170. Here we will localise the total power of faces, and of scrambled faces, ie
including potential induced components (see Friston et al, 2006).

Press the “3D source reconstruction” button, and press the “load” button at the top of the
new window. Select the cdbespm8 SPM CTF MEG example faces1 3D.mat file and type a label (eg
M170) for this analysis.

Press the “MRI” button, select the smri.img file within the sMRI sub-directory and select the
“normal” mesh.
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Figure 37.15: 3D image for trial 2 within 1ROI TF trialtype faces subdirectory. The bottom
left section is through frequency (x) and time (y) (the other images are strips because there is only
one value in the z dimension, i.e, this is really a 2D image).
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Figure 37.16: 2D time-frequency SPMT at p < .05 FWE-corrected for the power difference between
face and scrambled faces at Channel MLT34.

If you have not used this MRI image for source reconstruction before, this step will take some
time while the MRI is segmented and the deformation parameters computed (see Section 37.4.13
for more details on these files). When meshing has finished, the cortex (blue), inner skull (red)
and scalp (orange) meshes will also be shown in the Graphics window with slices from the sMRI
image. This makes it possible to verify that the meshes indeed fit the original image well. The field
D.inv{1}.mesh will be updated. Press “save” in top right of window to update the corresponding
mat file on disk.

Both the cortical mesh and the skull and scalp meshes are not created directly from the
segmented MRI, but rather are determined from template meshes in MNI space via inverse
spatial normalisation (Mattout et al, 2007; Henson et al, 2009a).

Press the “Co-register” button. You will be asked for each of the 3 fiducial points to specify
its location on the MRI images. This can be done by selecting a corresponding point from a
hard-coded list (“select”). These points are inverse transformed for each individual image using
the same deformation field that is used to create the meshes. The other two options are typing
the MNI coordinates for each point (“type”) or clicking on the corresponding point in the image
(“click”). Here, we will type coordinates based on where the experimenter defined the fiducials
on the smri.img. These coordinates can be found in the smri fid.txt file also provided. So
press “type” and for “nas”, enter [0 91 -28]; for “lpa” press “type” and enter [-72 4 -59]; for “rpa”
press “type” and enter [71 -6 -62]. Finally, answer “no” to “Use headshape points?” (see EEG
Section 37.4.13).

This stage coregisters the MEG sensor positions with the structural MRI and cortical mesh,
via an approximate matching of the fiducials in the two spaces, followed by a more accurate
surface-matching routine that fits the head-shape function (measured by Polhemus) to the scalp
that was created in the previous meshing stage via segmentation of the MRI. When coregistration
has finished, the field D.inv{1}.datareg will be updated. Press “save” in top right of window to
update the corresponding mat file on disk. With the Matlab Rotation tool on (from the “Tools”
tab in the SPM Graphics window, if not already on), right click near the top image and select
“Go to X-Z” view. This should produce a figure like that in Figure 37.17, which you can rotate
with the mouse to check all sensors. Note that the data are in head space (not MNI space), in
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Figure 37.17: Graphical output of registration of MEG and sMRI data, showing (upper panel)
cortex (blue) and scalp (black) meshes, sensor locations (green), MRI and Polhemus fiducials
(cyan/magneta), and headshape (red dots).

this case corresponding to the Polhemus space in which the X and Y dimensions are swapped
relative to MNI space.

Press the “Forward Model” button. Choose “MEG Local Spheres” (you may also try the other
options; see Henson et al, 2009a). A figure will be displaying showing the local (overlapping)
spheres fit to each sensor, and final the set of all spheres.

Press “Invert”, select “Imaging”, select “yes” to “All conditions or trials?”, and “Standard”
for the model (i.e, to use defaults; you can customise a number of options if you press Custom
instead) (see Friston et al, 2008, for more details about these parameters). There will be lead field
computation followed by the actual inversion. A summary plot of the results will be displayed at
the end.

You can now explore the results via the 3D reconstruction window. If you type 180 into the
box in the bottom right (corresponding to the time in ms) and press “mip”, you should see several
ventral temporal hotspots, as in Figure 37.18. Note that this localisation is different from the
previous EEG localisation because 1) condition 1 now refers to faces, not the difference between
faces and scrambled faces, and 2) the results reflect total power (across trials), induced and evoked,
rather than purely evoked12. The timecourses come from the peak voxel (with little evidence of
a face/scrambled difference for this particular maximum). The red curve shows the condition
currently being shown (corresponding to the “Condition 1” toggle bar in the reconstruction
window); the grey curve(s) will show all other conditions. If you press the ”condition 1” toggle, it
will change to Condition 2, which is the total power for scrambled faces, then press “mip” again
and the display will update (note the colours of the lines have now reversed from before, with red
now corresponding to scrambled faces).

If press “movie”, you will see the changes in the source strengths over peristimulus time (from
the limits 0 to 300ms currently chosen by default).

If you press “render” it will open a graphical interface that is very useful to explore the data
(the buttons are fairly self-explanatory).

You can also explore the other inversion options, like COH and IID, which you will note give
more superficial solutions (a known problem with standard minimum norm; see also Friston et
al, 2008; Henson et al, 2009a). To do this quickly (without repeating the MRI segmentation,
coregistration and forward modelling), press the “new” button in the reconstruction window,
which by default will copy these parts from the previous reconstruction.

In the following we will concentrate on how one prepares this single subject data for subsequent
entry into a group analysis.

Press the “Window” button in the reconstruction window, enter “150 200” as the timewindow
of interest and “5 15” as the frequency band of interest (from the SPM time-frequency analysis, at
least from one channel). Then choose the “induced” option. After a delay (as SPM calculates the

12Though in reality, most of the power is low-frequency and evoked
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Figure 37.18: Graphic output for MSP-estimated activity at 159ms for faces.
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power across all trials) the Graphics window will show the mean activity for this time/frequency
contrast (for faces alone, assuming the condition toggle is showing “condition 1”).

If you then press “Image”, SPM will write 3D NIfTI images corresponding to the above
contrast for each condition:

cdbespm8_SPM_CTF_MEG_example_faces1_3D_1_t150_200_f5_15_1.nii

cdbespm8_SPM_CTF_MEG_example_faces1_3D_1_t150_200_f5_15_2.nii

The last number in the file name refers to the condition number; the number following the
dataset name refers to the reconstruction number (i.e. the number in red in the reconstruction
window, i.e, D.val, here 1).

The smoothed results for Condition 1 will also be displayed in the Graphics window, together
with the normalised structural. Note that the solution image is in MNI (normalised) space,
because the use of a canonical mesh provides us with a mapping between the cortex mesh in
native space and the corresponding MNI space.

You can also of course view the image with the normal SPM “Display:image” option, and
locate the coordinates of the “hotspots” in MNI space. Note that these images contain RMS
(unsigned) source estimates (see Henson et al, 2007).

If you want to see where activity (in this time/freq contrast) is greater for faces and scrambled
faces, you can use SPM ImCalc facility to create a difference image of cdbespm8 SPM CTF MEG -

example faces1 3D 1 t150 200 f5 15 1.nii - cdbespm8 SPM CTF MEG example faces1 3D 1 -

t150 200 f5 15 2.nii: you should see bilateral fusiform. For further discussion of localising
a differential effect (as in Section 37.4.13 with ERPs), vs taking the difference of two localisa-
tions, as here, see Henson et al (2007). The above images can then be used at the second level
(assuming one also has data from other subjects) to look for effects that are consistent over a
group of subjects.

37.6 fMRI analysis

Only the main characteristics of the fMRI analysis are described below; for a more detailed
demonstration of fMRI analysis, read previous tutorial chapters describing fMRI analyses.

Toggle the modality from EEG to fMRI, and change directory to the fMRI subdirectory (either
in Matlab or via the “CD” option in the SPM “Utils” menu)

37.6.1 Preprocessing the fMRI data

Press the Batch button and then:

• Select Spatial: Realign: Estimate & Reslice from the SPM menu, create two sessions,
and select the 390 fM*.img EPI images within the corresponding Session1 / Session 2
subdirectories (you can use the filter ^fM.*). In the “Resliced images” option, choose
“Mean Image Only”.

• Add a Spatial: Coreg: Estimate module, and select the smri.img image in the sMRI

directory for the “Reference Image” and select a “Dependency” for the “Source Image”,
which is the Mean image produced by the previous Realign module. For the “Other Images”,
select a “Dependency” which are the realigned images (two sessions) from Realign.

• Add a Spatial: Segment module, and select the smri.img image as the “Data”.

• Add a Spatial: Normalise: Write module, make a “New: Subject”, and for the “Pa-
rameter File”, select a “Dependency” of the “Norm Params Subj->MNI” (from the prior
segmentation module). For the “Images to Write”, select a “Dependency” of the “Coreg:
Estimate: Coregistered Images” (which will be all the coregistered EPI images) and “Seg-
ment: Bias Corr Images” (which will be the bias-corrected structural image). Also, change
the “Voxel sizes” to [3 3 3], to save diskspace.

• Add a Spatial: Smooth module, and for “Images to Smooth”, select a “Dependency” of
“Normalise: Write: Normalised Images (Subj 1)”.
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• Save the batch file (e.g, as batch fmri preproc.mat, and then press the “Run” button.

These steps will take a while, and SPM will output some postscript files with the movement
parameters and the coregistration results (see earlier chapters for further explanation). The result
will be a series of 2 sets of 390 swf*.img files that will be the data for the following 1st-level
fMRI timeseries analysis.

37.6.2 Statistical analysis of fMRI data

First make a new directory for the stats output, e.g, a Stats subdirectory within the fMRI
directory.

Press the batch button and then:

• Select “Stats: fMRI model specification” from the SPM module menu, and select the new
Stats subdirectory as the “Directory”.

• Select “Scans” for “Units of design”.

• Enter 2 for the “Interscan interval” (i.e, a 2s TR).

• Create a new session from the “Data & Design” menu. For “Scans”, select all the swf*.img

files from the Session1 subdirectory (except the mean). Under “Multiple Conditions”,
click “Select File”, and select the trials ses1.mat file that is provided with these data.
(This file just contains the onsets, durations and names of every event within each session.).
For “Multiple regressors”, click “Select File”, and select the rp*.txt file that is also in the
Session1 subdirectory (created during realignment).

• Repeat the above steps for the second session.

• Under “Basis Functions”, ”Canonical HRF” add the “Time and Dispersion” derivatives.

• Then add a “Stats: Model estimation” module, and for the “Select SPM.mat”, choose the
“Dependency” of the SPM.mat file from the previous “fMRI model specification” module.

• Add a “Stats: Contrast Manager” module, and for the “Select SPM.mat”, choose the
“Dependency” of the SPM.mat file from the previous “Model Estimation module”.

• Under “Contrast Sessions”, create a new F-contrast with a “Name” like faces vs scrambled

(all BFs) and then enter [eye(3) -eye(3) zeros(3,6)]. This will produce a 3x12 ma-
trix that picks out the three basis functions per condition (each as a separate row), summing
across the two conditions (with zeros for the movement parameter regressors, which are of
no interest). Then select “Replicate (average over sessions)”.

• Under “Contrast Sessions”, create a new F-contrast with a “Name” like faces + scrambled

vs Baseline (all BFs) and then enter the Matlab[eye(3) eye(3) zeros(3,6)]. Again,
select “Replicate (average over sessions)”.

• Save the batch file (e.g, as batch fmri stats.mat, and then press the “Run” button.

When this has finished, press Results and select the SPM.mat file that should have been
created in the new Stats directory. The Contrast Manager window will appear, and you can
select the “faces vs scrambled (all BFs)” contrast. Do not mask, keep the title, threshold at p < .05
FWE corrected, use an extent threshold of 60 voxels, and you should get the MIP and table of
values (once you have pressed “whole brain”) like that in Figure 37.19. This shows clusters in
bilateral midfusiform (FFA), right occipital (OFA), right superior temporal gyrus/sulcus (STS),
in addition to posterior cingulate and anterior medial prefrontal cortex. These clusters show a
reliable difference in the evoked BOLD response to faces compared with scrambled faces that
can be captured within the “signal space” spanned by the canonical HRF and its temporal and
dispersion derivatives. Note that this F-contrast can include regions that show both increased
and decreased amplitude of the fitted HRF for faces relative to scrambled faces (though if you
plot the “faces vs scrambled” contrast estimates, you will see that the leftmost bar (canonical
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HRF) is positive for all the clusters, suggesting greater neural activity for faces than scrambled
faces (also apparent if you plot the event-related responses)).

There is some agreement between these fMRI effects and the localisation of the differential
ERP for faces vs scrambled faces in the EEG data (see earlier section). Note however that the
fMRI BOLD response reflects the integrated neural activity over several seconds, so some of the
BOLD differences could arise from neural differences outside the 0-600ms epoch localised in the
EEG data (there are of course other reasons too for differences in the two localisations; see, eg,
Henson et al, under revision).

You can also press Results and select the “faces + scrambled vs Baseline (all BFs)” contrast.
Using the same threshold of p < .05 FWE corrected, you should see a large swathe of activity over
most of the occipital, parietal and motor cortices, reflecting the general visuomotor requirements
of the task (relative to interstimulus fixation). The more posterior ventral occipital/temporal
BOLD responses are consistent with the MEG localisation of faces (or scrambled faces) versus
baseline, though note that the more anterior ventral temporal activity in the MEG localisation
is not present in the fMRI data, which suggests (but does not imply) that the MEG localisation
may be erroneous.

These contrasts of fMRI data can now be used as spatial priors to aid the localisation of EEG
and/or MEG data, as in the next section.

37.7 Multimodal fusion

Here, we will illustrate here two types of multimodal integration:

1. “Fusion” of the EEG and MEG data (Henson et al, 2009b),

2. Use of the fMRI data as spatial priors on the MEG/EEG data (Henson et al, in press).

37.7.1 EEG and MEG fusion

Make a new directory called “Fused’, and change into it.

Merging the EEG and MEG datafiles

The first step is to combine the MEG and EEG data into a single SPM file. We will use the
(weighted) averaged files for each modality.

Press “Fuse” from the “Others” pulldown menu, and select the wmcdbespm8 SPM CTF MEG -

example faces1 3D.mat in the MEG directory and the wmaceMdspm8 faces run1.mat in the
EEG directory. This will create a new file called uwmcdbespm8 SPM CTF MEG example faces1 -

3D.mat in the new Fused directory. Note that the two files need to have the same number of
trials, conditions, samples, etc. Display the new file, and you will see the EEG and MEG data
within their respective tabs.

We have to do one extra bit of “preparation” for the EEG data. Because in general, one might
want to merge more than one EEG file, integrating all their locations could be tricky. So the simple
answer is to clear all locations and force the user to re-specify them. So (as in earlier EEG section),
select Prepare from the “Other” menu and select uwmcdbespm8 SPM CTF MEG example faces1 -

3D.mat. Then in the SPM Interactive window, on the “Sensors” submenu, choose “Load EEG
sensors”/“Convert locations file”, and select the electrode locations and headshape.sfp file
(in the original EEG directory). Then from the “2D projection” submenu select “Project 3D
(EEG)”. A 2D channel layout will appear in the Graphics window. Select “Apply” from “2D
Projection” and “Save” from “File” submenu.

3D fused “imaging” reconstruction

Now we can demonstrate simultaneous reconstruction of the MEG and EEG data, as described
in Henson et al (2009b). This essentially involves scaling each type of data and gain matrix,
concatenating them, and inverting using the normal methods, but with separate sensor error
covariance terms for each modality.
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Figure 37.19: SPM{F} for faces vs scrambled faces.
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• Press the “3D source reconstruction” button, and load the uwmcdbespm8 SPM CTF MEG -

example faces1 3D.mat file. Type a label (eg “N/M170”).

• Press the “MRI” button, select the smri.img file within the sMRI sub-directory, and select
“normal” for the cortical mesh. Because this MRI was normalised previously, this step
should not take long, finishing with display of the cortex (blue), inner skull (red), outer
skull (orange) and scalp (pink) meshes.

• Press the “Co-register” button. Press “type” and for “nas”, enter [0 91 -28] for “lpa”
press “type” and enter [-72 4 -59] for “rpa” press “type” and enter [71 -6 -62]. Finally,
answer “no” to “Use headshape points?”. Then select either “EEG” or “MEG” to display
corresponding data registration. Note that the MEG data will have been coregistered to
the EEG data in the headspace. If you want to display the other modality afterwards, just
press the “display” button below the “Co-register” button.

• Press “Forward Model”, and select “EEG BEM” for the EEG and “Local Spheres” for the
MEG. Then select either “EEG” or “MEG” to display corresponding forward model. (If
you want to display the other modality afterwards, just press the “display” button below
the “Forward Model” button). In the Graphics window the meshes will be displayed with
the sensors marked with green asterisks.

• Press “save” to save progress.

• Press “Invert”, select “Imaging”. Because the fMRI data (see below) already come from
a contrast of faces versus scrambled faces, we will only invert the differential ERP/ERFs.
So press “no” to the question about invert ”all conditions or trials”, press ”yes” to invert
the Difference (between faces and scrambled) but ”no” to invert the Mean (of faces and
scrambled versus baseline).

Then press “Standard” to use the default inversion settings (MSP), and then to select both
the “EEG” and “MEG” modalities in the new “Select modalities” window, in order to fuse
them (simultaneously invert both).

Lead fields will first be computed for all the mesh vertices and saved in the file SPMgainmatrix uwmcdbespm8 SPM CTF MEG example faces1 3D 1.mat.
This will take some time. Then the actual MSP algorithm will run and the summary of the
solution will be displayed in the Graphics window.

• Press “save” to save the results. You can now explore the results via the 3D reconstruction
window. If you type 180 into the box in the bottom right (corresponding to the time in ms)
and press “mip”, you should see an output similar to Figure 37.20.

Note that because we have inverted only the differential ERP/ERF, these results cannot be
compared directly to the unimodal inversions in the previous sections of this chapter. For a fairer
comparison:

• Press the “new” button and type “N170” as the label, press “Invert” again (note that all
forward models are copied by default from the first inversion) and select the same options as
above, except that when asked “Select modalities”, select just “EEG”. This should produce
the results in Figure 37.21. Notice the more posterior maxima.

• Press the “new” button and type “M170” as the label, press “Invert” again and select the
same options as above, except that when asked “Select modalities”, select just “MEG” this
time. This should produce the results in Figure 37.22. Notice the more anterior and medial
activity.

By comparing these figures, you can see that the multimodal fused inversion (first inversion)
combines aspects of both the unimodal inversions. Unfortunately one cannot simply compare the
multi-modal vs uni-modal reconstructions via the log-evidence, because the data differs in each
case (rather, one could use an estimate of the conditional precision of the sources, as in Henson
et al, 2009b). With multiple subjects though, one could compare statistics across subjects using
either multimodal or unimodal inversions.
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Figure 37.20: Graphical output of an MSP estimation of the differential evoked response between
faces and scrambled faces at 180ms, after fusing both EEG and MEG data.
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Figure 37.21: Graphical output of an MSP estimation of the differential evoked response between
faces and scrambled faces at 180ms, after inverting just EEG data.
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Figure 37.22: Graphical output of an MSP estimation of the differential evoked response between
faces and scrambled faces at 180ms, after inverting just MEG data.
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37.7.2 EEG, MEG and fMRI fusion

Now we can examine the effects of using the fMRI data in Section 37.6 as spatial priors on the
sources (Henson et al, in press). But first we need to create an 3D volumetric image of the clusters
that we wish to use as spatial priors. These clusters can be defined by thresholding an SPM for
a given fMRI contrast: here we will use the contrast in Section 37.6 of faces versus scrambled
faces (using all three basis functions). So press “Results” and select the “SPM.mat” file from
the “fMRI/Stats” directory. Select the previous faces vs scrambled F-contrast, do not mask or
change title, use FWE correction at 0.05 and a 60-voxel extent to reproduce the SPM{F} shown
in Figure 37.19 (if you are still in SPM’s “EEG” mode, you will also be asked the type of images,
for which you reply “Volumetric 2D/3D”).

Now press the “save” button in the Interactive window and enter a filename like FacesVs-

Scrambled FWE05 60. This will produce a 3D image (which you can display as normal) in which
all subthreshold voxels are set to zero (ie, where only 6 clusters containing non-zero voxel values
are left).

Now we can use this cluster image in a new inversion:

• Press the “new” button to create a fourth inversion, and type “N/M170+fMRI” as the
label.

• Press “Invert”, select “Imaging”, press ”no” for ”all conditions or trials”, and select only
the Difference (not Mean), as before ...

• ... but this time, press “Custom” rather than “Standard” to get more flexibility in the
inversion settings. Select “GS” for the type of inversion (the default MSP with a Greedy
Search), enter default time window of “-200 to 600”, “yes” to a Hanning window, “0” for
the highpass and “48” for the lowpass, and then press “yes” to the question of “Source
priors?”...

• ... select the FacesVsScrambled FWE05 60.img file in the “fMRI/Stats” directory, and
select “MNI” for the “Image space” (because the fMRI images were spatially normalised).

• Say “No” to “Restrict solutions”, and then select both the “EEG” and “MEG” modalities
in the “Select modalities” window, in order to fuse them (together with the fMRI priors).

Note that, once the inversion has finished, a new image will be created (in the “fMRI/Stats”
directory) called cluster FacesVsScrambled FWE05 60.img, which contains the six binary
priors, as will a GIfTI version called priors uwmcdbespm8 SPM CTF MEG example faces1 -

3D 4.func.gii. If you want to display each spatial prior on the cortical mesh, first make
sure you save the current reconstruction, and then type in the Matlab window:

D = spm_eeg_load(’uwmcdbespm8_SPM_CTF_MEG_example_faces1_3D.mat’);

val = 4; % Fourth inversion; assuming you have followed the above steps

G = gifti(D.inv{val}.mesh.tess_mni);

P = gifti(D.inv{val}.inverse.fmri.texture);

for i=1:size(P.cdata,2);

figure, plot(G,P,i);

end

Finally, a new Matlab file called priors uwmcdbespm8 SPM CTF MEG example faces1 3D -

4.mat will also be saved to the current directory, which contains the information necessary to
construct the covariance components for subsequent inversion. So if you want to use these
fMRI priors in another inversion, next time you are prompted for the “Source priors?”,
rather than selecting an image (“img” file) as we did above, you can select this “mat” file,
so SPM will not need to recreate the covariance matrices from the image file, but can use
the covariance matrices directly.

• Again, type 180 into the box in the bottom right and press “mip”. This should produce
the output in Figure 37.23. Notice how the more posterior midfusion clusters (particularly
on the left) have become stronger (where there were fMRI priors). (Note also that fMRI
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Figure 37.23: Graphical output of an MSP estimation of the differential evoked response between
faces and scrambled faces at 180ms, after fusing EEG, MEG and fMRI data.



412 CHAPTER 37. MULTIMODAL FACE-EVOKED RESPONSES

priors have generally been found to have a greater effect on IID or COH inversions, given
the implicit flexibility of MSP priors, Henson et al, in press).

• Press “save”.

You can repeat the above steps to use the common fMRI effect of faces and scrambled faces
versus baseline (though at a higher threshold perhaps) as an alternative set of spatial priors
for inverting either the differential evoked MEG/EEG response, or the mean evoked MEG/EEG
response vs baseline.
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Chapter 38

DCM for Induced Responses

This chapter shows an example of Dynamic Causal Modelling for Induced Responses (DCM-IR)
[18]. The example is based on the analysis described by Chen et al. [17]. The purpose of the
analysis is to look at the effective connectivity between cortical areas involved in the processing of
faces and specifically at non-linearities in the connections expressed as cross-frequency coupling.
DCM-IR is an example of a phenomenological rather than physiological DCM. The advantage of
this approach is that it can directly model a particular feature extracted from the data, namely
event-related spectral perturbations. This feature has been a popular object of study in the
neuroscience literature. However, since computing event-related power involves discarding phase
information, it is not possible to model this feaure with a physiologically realistic model such as
the one used in DCM for evoked responses. An important feature of DCM for induced responses
is that it models the full time-frequency spectrum. This differs from typical approaches, where a
few specific frequency bands are selected a priori. DCM-IR models spectral dynamics in terms
of a mixture of frequency modes (obtained with singular value decomposition). The dynamics of
each mode are encoded by the evolution of a state. It is this multi-state vector, for each source,
that captures how the energy in different frequencies interacts, either linearly or non-linearly,
among sources.

38.1 Data

We will use the epoched and merged MEG dataset from Chapter 37.5 saved in the files:

cdbespm8_SPM_CTF_MEG_example_faces1_3D.mat

cdbespm8_SPM_CTF_MEG_example_faces1_3D.dat

See 37.5.1 for the instructions for how to generate these files from raw MEG data. DCM-IR
also requires a head model and coregistration. If you have performed “Imaging” reconstruction
of differential power 37.5.13 and saved the results, the head model should already be defined.
Otherwise, you will be asked to define the head model while configuring the DCM (see below).

38.2 Getting Started

You need to start SPM and toggle “EEG” as the modality (bottom-right of SPM main window),
or start SPM with spm eeg. In order for this to work you need to ensure that the main SPM
directory is on your Matlab path.

38.3 Setting up DCM

After calling spm eeg, you see SPM’s graphical user interface, the top-left window. The button
for calling the DCM-GUI is found in the second partition from the top, on the right hand side.
When pressing the button, the GUI pops up (Figure 38.1). The GUI is partitioned into five parts,
going from the top to the bottom. The first part is about loading and saving existing DCMs, and

415
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selecting the type of model. The second part is about selecting data, the third is for specification
of the spatial forward model, the fourth is for specifying connectivity, and the last row of buttons
allows you to estimate parameters and view results.

You have to select the data first and specify the model in a fixed order (data selection >
spatial model > connectivity model). This order is necessary, because there are dependencies
among the three parts that would be hard to resolve if the input could be entered in any order.
At any time, you can switch back and forth from one part to the next. Also, within each part,
you can specify information in any order you like.

38.3.1 load, save, select model type

At the top of the GUI, you can load an existing DCM or save the one you are currently working
on. In general, you can save and load during model specification at any time. You can also
switch between different DCM analyses (the left menu). The default is “ERP” which is DCM
for evoked responses. You should switch to “IND” which is the option for DCM-IR. The menu
on the right-hand side lets you choose the neuronal model. Once you switch to “IND”, it will be
disabled since neuronal models are not relevant for DCM-IR, which is a phenomenological DCM.

38.3.2 Data and design

In this part, you select the data and model between-trial effects. Press “new data” and select the
data file cdbespm8 SPM CTF MEG example faces1 3D.mat.The data file will usually be an epoched
file with multiple trials per condition. These data must be in SPM-format. On the right-hand
side you can enter trial indices of the evoked responses in this SPM-file. For example, if you want
to model the first and second condition contained within an SPM-file, specify indices 1 and 2.
You can type:

D = spm_eeg_load(‘cdbespm8_SPM_CTF_MEG_example_faces1_3D.mat’);D.condlist

in the command line to see the list of condition labels in the order that corresponds to these
indices. This order is defined in the dataset and can be modified by selecting “Sort Conditions”
from the “Other” submenu in main SPM window (spm eeg sort conditions). SPM should echo:

ans =

’faces’ ’scrambled’

meaning that index 1 corresponds to presentation of faces and index 2 - to presentation of scram-
bled faces. The box below the list of indices allows specifying experimental effects on connectivity.
The specification can be quite generic as in the design matrix for a General Linear Model (GLM).
Our case is quite simple though. We have a baseline condition which is “scrambled” and we would
like to know how the condition of interest “faces” differs from it. We will therefore enter:

1 0

in first row of the box, which means that there will be some additive modulation of connections
that we will define later for “faces” (some coefficient multiplied by 1) and this modulation will
not be there for “scrambled” (the same coefficient multiplied by 0). If we now click somewhere
outside the box, a default name will be assigned to this effect - “effect1”. It will appear in the
small text box next to the coefficients box. It is possible to change this name to something else
e.g. “face”.

Now we can select the peristimulus time window we want to model. These are the two test
boxes in the top left corner of the panel. Enter -50 in the left box and 300 in the right box to
select the segment -50 to 300 ms relative to the presentation of the visual stimulus.

You can choose whether you want to remove low-frequency drifts of the data at sensor level.
If you don’t, select 1 for “detrend”, to just remove the mean. Otherwise select the number of
discrete cosine transform terms you want to remove. You can also subsample your data (prior
to computing the time-frequency decomposition) using the “subsample” option. In general, it is
advised to filter out drifts and downsample the data during preprocessing. The options here are
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Figure 38.1: DCM window configured analysing induced responses and the FnBn model specified.
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just to play around with, clean up or reduce the data to see what effect it might have without
running additional processing steps outside DCM.

Press the “Display” button to look at the selected data. You will see the evoked responses for
the two conditions (Figure 38.2) which help you get some idea about your choice of time window.
It is possible to change the “detrend” and “subsample” values or the time window and press
“Display’ again to see what effect these changes have.

An important parameter for DCM-IR is the number of modes. These are the frequency modes
mentioned above. The idea is that the main features of the time-frequency image can be repre-
sented by a small number of components with fixed frequency profiles that are modulated over
time. These components can be determined automatically using “Singular Value Decomposi-
tion” (SVD). Generally SVD preserves information from the original time-frequency image and
produces as many components as there are frequency bins. However, usually only the first few
components are physiologically relevant and the rest are just noise. Using a small number of
components will greatly speed-up DCM model inversion. You cannot know in advance what the
optimal number of components for your data is. What you can do is try once with a relatively
large number (e.g. 8) and then see from the time and frequency profile of the later components
(in the Results view, see below) whether they are important. Then you can reduce the number
and try again. For the example here it is sufficient to use 4 modes so change the number in
“modes” from 8 to 4.

If you are happy with your data selection, the subsampling and the detrending terms, you can
click on the > (forward) button, which will bring you to the next stage electromagnetic model.
From this part, you can press the red < button to get back to the data and design part.

38.3.3 Electromagnetic model

With DCM-IR, you have two options for how to extract the source data for time-frequency
analysis. Firstly, you can use 3 orthogonal single equivalent current dipoles (ECD) for each
source and invert the resulting source model to get source waveforms. This option is suitable
for multichannel EEG or MEG data. Alternatively, you can treat each channel as a source
(LFP option). This is appropriate when the channels already contain source data either recorded
directly with intracranial electrodes or extracted (e.g. using a beamformer).

Note that a difference with DCM for evoked responses is that the parameters of the spatial
model are not optimized. This means that DCM-IR will project the data into source space using
the spatial locations you provide.

We will use the ECD option. This requires specifying a list of source names in the left large
text box and a list of MNI coordinates for the sources in the right large text box. Enter the
following in the left box:

lOFA

rOFA

lFFA

rFFA

Now enter in the right text box:

-39 -81 -15

42 -81 -15

-39 -51 -24

42 -45 -27

These correspond to left Occipital Face Area, right Occipital Face Area, left Fusiform Face
Area and right Fusiform Face Area respectively. See [18] for more details.

The onset-parameter determines when the stimulus, presented at 0 ms peri-stimulus time, is
assumed to trigger the cortical induced response. In DCM, we usually do not model the rather
small early responses, but start modelling at the first large deflection. Because the propagation
of the stimulus impulse through the input nodes causes a delay, we found that the default value
of 60 ms onset time is a good value for many responses where the first large deflection is seen
around 100 ms. However, this value is a prior, i.e. the inversion routine can adjust it. The prior
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Figure 38.2: Averaged evoked responses after configuring the ’Data and design’ section.
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mean should be chosen according to the specific responses of interest. This is because the time
until the first large deflection is dependent on the paradigm or the modality you are working in,
e.g. audition or vision. You may also find that changing the onset prior has an effect on how your
data are fitted. This is because the onset time has strongly nonlinear effects (a delay) on the data,
which might cause differences in the maximum found at convergence, for different prior values.
Note, that it is possible to enter more than one number in the “onset[s] (ms)” box. This will add
several inputs to the model. These inputs can then be connected to different nodes and/or their
timing and frequency profiles can be optimized separately.

When you want to proceed to the next model specification stage, hit the > (forward) button
and proceed to the neuronal model. If you have not used the input dataset for 3D source recon-
struction before you will be asked to specify the parameters of the head model at this stage. See
37.5.13.

38.4 Neuronal model

There are 4 (or more) matrices which you need to specify by button presses. In the first row
there are matrices that define the connectivity structure of the model and in the second row there
are matrices that specify which connections are affected by experimental effects. All the matrices
except one are square. In each of these square matrices you specify a connection from a source
area to a target area. For example, switching on the element (2, 1) means that you specify a
connection from area 1 to 2 (in our case from lOFA to rOFA). Some people find the meaning of
each element slightly counter-intuitive, because the column index corresponds to the source area,
and the row index to the target area. This convention is motivated by direct correspondence
between the matrices of buttons in the GUI and connectivity matrices in DCM equations and
should be clear to anyone familiar with matrix multiplication.

The leftmost matrix in the first row specifies the linear connections. These are the connections
where frequency dynamics in one source affects the dynamics at the same frequencies in another
source. Note that all connections in the model should be at least linear, so if you think some
connection should be present in the model, the corresponding button in this matrix should be
on. Also the buttons on the leading diagonal of the matrix are always on because each node
in the model has a linear intrinsic connection with negative sign. This means that the activity
has a tendency to dissipate. To the right of the linear connectivity matrix there is a nonlinear
connectivity matrix. The idea here is the same, just remember to enable the corresponding linear
connection as well. When a connection is nonlinear, a frequency mode in the source node can
affect all the frequency modes in the target node. Intrinsic connections can be made non-linear
as well. It is actually recommended to always make the intrinsic connections non-linear unless
there is a good theoretical reason not to do it. Since we are mainly interested in non-linearities
in the extrinsic connections we would like to be over-conservative and first explain away anything
that can be explained by non-linearities in the intrinsic connnections.

The rightmost matrix in the first row is the input matrix. It is usually not square, and in the
case of a single input, as we have here, is reduced to a column vector. The entries of this vector
specify which areas receive the external input (whose onset time we specified above). In the case
of several inputs the input matrix will have several columns.

The matrix (matrices) in the second row specify which of the connections defined in the first
row can be modified by experimental effects. A connection which is not modified will have the
same value for all conditions. If you don’t allow modification of any of the connections, then
exactly the same model will be fitted to all conditions. For the purpose of allowing modification
by experimental effects, it does not matter whether a connection is linear or non-linear. Hence,
there is one modulation matrix per experimental effect (defined in the “Data and design” panel).
In our case there is only one effect - faces vs. scrambled faces. Also self connections can be
modified by experimental effects, thus the diagonal entries of the second row matrices can also
be toggled.

Figure 38.3 is taken from the paper of Chen et al. [17] and shows several alternative models
that could apply to the data. We will start by specifying the model with nonlinear forward and
backward connections (FnBn) and with effect of condition on these connections. The correspond-
ing button configuration is shown in Figure 38.4. Compare the depiction of FnBn model in
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Figure 38.3: Four different DCM-IR models proposed by Chen et al. [17]

Figure 38.3 with the specification in Figure 38.4 to see the correspondence. Note that the effect
of condition is not shown in Figure 38.3. Now copy the specification to the DCM GUI.

At the bottom of this panel there are additional radio buttons for options that are not relevant
for DCM-IR. Below these buttons there are controls for specifying the parameters of the wavelet
transform for computing the time-frequency decomposition. We will keep the default frequency
window 4 to 48 Hz and increase the number of wavelet cycles to 7. You can press the Wavelet
transform button to preview the time-frequency plots and optimize the parameters if necessary
before inverting the model.

38.5 Estimation

When you have finished model specification, you can hit the invert DCM button in the lower left
corner. DCM will now estimate the model parameters. You can follow the estimation process
by observing the model fit in the output window. Note that in DCM-IR there is no difference

Figure 38.4: Connectivity configuration for the FnBn model.
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between the hidden states and the predicted responses because the dynamics of the hidden states
fit directly the time course of frequency modes (shown as dotted lines in the middle plot). This
is different from DCM for ERP where the hidden states correspond to neural dynamics and a
subset of the hidden states (activation of pyramidal cells) are projected via the forward model to
generate predictions of sensor data. In the Matlab command window, you will see each iteration
print an expectation-maximization iteration number, free energy F , and the predicted and actual
change of F following each iteration step. At convergence, DCM saves the results in a DCM file,
by default named DCM *.mat where * corresponds to the name of the original SPM MEG file
you specified. You can save to a different name, e.g. if you are estimating multiple models, by
pressing ’save’ at the top of the GUI and writing to a different name.

38.6 Results

After estimation is finished, you can assess the results by choosing from the pull-down menu at
the bottom (middle).

38.6.1 Frequency modes

This will display the frequency profiles of the modes, identified using singular value decomposition
of spectral dynamics in source space (over time and sources).

38.6.2 Time modes

This will display the observed time courses of the frequency modes (dashed lines) and the model
predictions (solid lines). Here you can also see whether the activity picked up by the minor modes
is noise, which is helpful for optimizing the number of modes.

38.6.3 Time-Frequency

This will display the observed time-frequency power data for all pre-specified sources (upper
panel) and the fitted data features (lower panel).

38.6.4 Coupling (A-Hz)

This will display the coupling matrices representing the coupling strength from source to target
frequencies. These matrices are obtained by multiplying the between-mode matrices estimated
with the frequency profiles of the modes (see [18]). The arrangement of the matrices corresponds
to arrangements of the buttons in the connectivity matrices above.

38.6.5 Coupling (B-Hz)

This presentation of results is similar to the above and reports modification of coupling by con-
dition (eg. in our example it shows which frequency couplings are different for faces as opposed
to scrambled faces).

38.6.6 Coupling (A-modes)

This will display the coupling matrices between modes and the conditional probabilities that the
coefficients are different from zero. This representation is useful for diagnostics when something
is wrong with the inversion, but the physiological interpretation is less straightforward.

38.6.7 Coupling (B-Hz)

This presentation is similar to the above and reports the modification of coupling by condition.
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Figure 38.5: Connectivity configurations for the alternative models. Left to right: FlBl, FlBn,
FnBl.

38.6.8 Input (C-Hz)

This shows the frequency profiles of the inputs estimated. This is again a multiplication between
the mode-specific coefficients and the frequency profiles of the modes.

38.6.9 Input (u-ms)

This shows the time courses of the inputs.

38.6.10 Dipoles

This shows the positions of the sources as specified in the “Electromagnetic model” section.

38.6.11 Save as img

Here you can save the cross-frequency coupling matrices as images. If you are analyzing a group of
subjects you can then enter these images into parametric statistical tests to find common features
in coupling and coupling changes accross subjects. The image names will include identifiers
like “A12” or “B31” which relate to the source connection matrices; either the basic (A) or
experimental effects (B).

38.7 Model comparison

You can now compare the fully nonlinear model with alternative models (eg. those shown in
Figure 38.3). You can start by saving the DCM you have already specified under a different
name using the Save button. Then just modify the connectivity matrices and reinvert the DCM
by pressing the “Estimated” button (but not using previous posterior or prior estimates). As
an exercise, you can specify the other models from Figure 38.3 yourself. If in doubt look at
Figure 38.5 for the three alternative models. Once you have specified and inverted the three
additional models, you can perform Bayesian model comparison.

Press the BMS button. This will open the SPM batch tool for model selection. Specify
a directory to write the output file to. For the “Inference method” select “Fixed effects” (see
[80] for additional explanations). Then click on “Data” and in the box below click on “New:
Subject”. Click on “Subject” and in the box below on “New: Session”. Click on models and
in the selection window that comes up select the DCM mat files for all the models (remember
the order in which you select the files as this is necessary for interpreting the results). Then
run the model comparison by pressing the green “Run” button. You will see, at the top, a bar
plot of the log-model evidences for all models 38.6. At the bottom, you will see the posterior
probability, for each model, given the data. By convention, a model can be said to be the best
among a selection of other models, with strong evidence, if its log-model evidence exceeds all
other log-model evidences by at least 3. In our case the FnBn model is superior to the other
models as was found in the original paper [17] for a different group of subjects.
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Figure 38.6: Bayesian comparison of the four DCM-IR models shown in Figure 38.3.
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DCM for Phase Coupling

This chapter presents an extension of the Dynamic Causal Modelling (DCM) framework to the
analysis of phase-coupled data. A weakly coupled oscillator approach is used to describe dynamic
phase changes in a network of oscillators. The influence that the phase of one oscillator has on
the change of phase of another is characterised in terms of a Phase Interaction Function (PIF) as
described in [74]. SPM supports PIFs specified using arbitrary order Fourier series. However, to
simplify the interface, one is restricted to simple sinusoidal PIFs with the GUI.

39.1 Data

We will use the merged epoched MEG dataset from Chapter 37.5:

cdbespm8_SPM_CTF_MEG_example_faces1_3D.mat

cdbespm8_SPM_CTF_MEG_example_faces1_3D.dat

See 37.5.1 for instructions on how to generate this file from raw MEG data. DCM-Phase
requires a head model and coregistration. If you have been following the previous chapters of
this tutorial, these should already be available in the dataset. Otherwise, you should perform the
’Prepare’ and ’3D Source reconstruction’ steps described earlier in the chapter, with the latter
comprising the MRI, Co-register, Forward and Save sub-steps (see 37.5.13).

39.2 Getting Started

You need to start SPM and toggle “EEG” as the modality (bottom-right of SPM main window),
or start SPM with spm eeg. In order for this to work you need to ensure that the main SPM
directory is on your Matlab path. After calling spm eeg, you see SPM’s graphical user interface,
the top-left window. The button for calling the DCM-GUI is found in the second partition from
the top, on the right hand side. When pressing the button, the GUI pops up (Figure 38.1).

39.3 Data and design

You should switch the DCM model type to “PHASE” which is the option for DCM-Phase. Press
“new data” and select the data file cdbespm8 SPM CTF MEG example faces1 3D.mat. This is an
epoched data file with multiple trials per condition. On the right-hand side enter the trial indices

1 2

for the ’face’ and ’scrambled’ evoked responses (we will model both trial types). The box below
this list allows for specifying experimental effects on connectivity. Enter

1 0

425
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in the first row of the box. This means that “face” trial types can have different connectivity
parameters than ”scrambled” trial types. If we now click somewhere outside the box, a default
name will be assigned to this effect - “effect1”. It will appear in the small text box next to the
coefficients box. It is possible to change this name to something else e.g. “face”. Now we can
select the peristimulus time window we want to model. Set it to:

1 300

ms. Select 1 for “detrend”, to remove the mean from each data record. The sub-trials option
makes it possible to select just a subset of trials for the analysis (select 2 for every second trial,
3 - for every third etc.). This is useful because DCM-Phase takes quite a long time to invert for
all the trials and you might want to first try a smaller subset to get an idea about the possible
results. Here we will assume that you used all the trials (sub-trials was set to 1). You can now
click on the > (forward) button, which will bring you to the next stage electromagnetic model.
From this part, you can press the red < button to get back to the data and design part.

39.4 Electromagnetic model

With DCM-Phase, there are two options for how to extract the source data. Firstly, you can
use 3 orthogonal single equivalent current dipoles (ECD) for each source, invert the resulting
source model to get 3 source waveforms and take the first principal component. This option is
suitable for multichannel EEG or MEG data. Alternatively, you can treat each channel as a
source (LFP option). This is appropriate when the channels already contain source data either
recorded directly with intracranial electrodes or extracted (e.g. using a beamformer).

Note that a difference to DCM for evoked responses is that the parameters of the spatial
model are not optimized. This means that DCM-Phase (like DCM-IR) will project the data into
source space using the spatial locations you provide.

We will use the ECD option and specify just two source regions. This requires specifying a
list of source names in the left large text box and a list of MNI coordinates for the sources in the
right large text box. Enter the following in the left box:

LOFA

LFFA

Now enter in the right text box:

-39 -81 -15

-39 -51 -24

These correspond to left Occipital Face Area, and left Fusiform Face Area. The onset-
parameter is irrelevant for DCM-Phase. Now hit the > (forward) button and proceed to the
neuronal model. Generally, if you have not used the input dataset for 3D source reconstruction
before you will be asked to specify the parameters of the head model at this stage. See 37.5.13.

39.5 Neuronal model

We will now define a coupled oscillator model for investigating network synchronization of alpha
activity. To this end, we first enter the values 8 and 12 to define the frequency window. The
wavelet number is irrelevant for DCM-Phase. After source reconstruction (using a pseudo-inverse
approach), source data is bandpass filtered and then the Hilbert transform is used to extract the
instantaneous phase. The DCM-Phase model is then fitted used standard routines as described
in [74].

Figure 39.1 shows the four models we will apply to the M/EEG data. We will first fit
model 4. This model proposes that alpha activity in region LOFA changes its phase so as to
synchronize with activity in region LFFA. In this network LFFA is the master and LOFA is the
slave. Moreover, the connection from LFFA to LOFA is allowed to be different for scrambled
versus unscrambled faces.
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Figure 39.1: Four different DCM-Phase models

Figure 39.2: Radio button configurations for DCM-Phase model 4

The connectivity for Model 4 can be set up by configuring the radio buttons as shown in
Figure 39.2. You can now press the Invert DCM button. It can take up to an hour to estimate
the model parameters depending on the speed of your computer.

39.6 Results

After estimation is finished, you can assess the results by choosing from the pull-down menu at the
bottom (middle). The Sin(Data)-Region i option will show the sin of the phase data in region
i, for the first 16 trials. The blue line corresponds to the data and the red to the DCM-Phase
model fit. The Coupling(As) and Coupling(Bs) buttons display the estimated endogenous and
modulatory activity shown in Figure 39.3.

If one fits all the four models shown in Figure 39.1 then they can be formally compared using
Bayesian Model Selection. This is implemented by pressing the BMS button. You will need to
first create a directory for the results to go in e.g. BMS-results. For ’Inference Method’ select
FFX (the RFX option is only viable if you have models from a group of subjects). Under ’Data’,
Select ’New Subject’ and under ’Subject’ select ’New Session’. Then under ’Models’ select the
DCM.mat files you have created. Then press the green play button. This will produce the results
plot shown in Figure 39.4. This leads us to conclude that LFFA and LOFA act in master slave
arrangement with LFFA as the master.

39.7 Extensions

In the DCM-Phase model accessible from the GUI, it is assumed that the phase interaction
functions are of simple sinusoidal form ie. aij sin(φj − φi). The coefficients aij are the values
shown in the endogenous parameter matrices in eg. Figure 39.3. These can then be changed
by an amount bij as shown in the modulatory parameter matrices. It is also possible to specify
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Figure 39.3: The figure shows the estimated parameters for endogenous coupling (left column)
and modulatory parameters (right column) for the 4th DCM.

Figure 39.4: Bayesian comparison of the four DCM-Phase models shown in Figure 39.1.
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and estimate DCM-Phase models using matlab scripts. In this case it is possible to specify more
generic phase interaction functions, such as arbitrary order Fourier series. Examples are given in
[74].
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Chapter 40

DCM for Steady State Responses:
Anaesthesia Depth in Rodent
Data

40.1 Overview

This chapter describes the analysis of a 2-channel Local Field Potential (LFPs) data set using
dynamic causal modelling. The LFPs were recorded from a single rodent using intracranial
electrodes [67]. We thank Marc Tittgemeyer for providing us with this data. The theory behind
DCM for steady state responses (DCM-SSR) is described in [68].

We measured local field potentials from primary (A1) and secondary auditory (A2) cortex in a
rodent following the application of four different doses of the anaesthetic agent Isoflurane; 1.4, 1.8,
2.4 and 2.8mg. The rodent was presented with a white noise auditory input for several minutes
at each anaesthetised level and time series recordings were obtained for the entire epoch. We
performed a steady state DCM analysis using different models, defined according to the extrinsic
connections between A1 and A2.

Using Bayesian model comparison we found very strong evidence (Bayes Factor1,2 > 100)
in favour of a model comprising a network of two neural masses connected by forward (excita-
tory) and backward (inhibitory + excitatory) connections (m1). This outperformed both a model
comprising two neural masses with forward (excitatory) connections only (m2) and a model com-
prising two neural masses and lateral (inhibitory + excitatory + excitatory) connections only (m3).
Within this best performing model we observed changes in forward and backward connections
dependent on dose. The strength of inhibitory backward connections increased with successive
anaesthetic dose, constituting a greater GABAergic influence postsynaptically for higher doses.
Conversely, the solely excitatory forward connections reduced in strength with successive doses

In what follows, these results will be recreated step-by-step using SPM8.
To proceed with the data analysis, first download the data set from the SPM website1.

The data comprises a data file called dLFP white noise r24 anaes.dat and its corresponding
mat file dLFP white noise r24 anaes.mat. This has been converted from ASCII data using
spm lfp txt2mat anaes.m also on the website and subsequently downsampled to 125 Hz. The
conversion script can be altered to suit your own conditions/sampling parameters.

40.2 The data

• To check data parameters after conversion using ASCII files: in the SPM M/EEG GUI
press Display/M/EEG.

• In our data set we can see there are five trials: four depths of anaesthetic: Iso14, Iso18,
Iso24 and Iso28 and one awake trial awake.

1Anaesthesia Depth in Rodent Dataset: http://www.fil.ion.ucl.ac.uk/spm/data/dcm_ssr/
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• We can also see that the data are clean for both the A1 and A2 channels, to view this press
other, as the data are LFP type.

• We are now ready to begin the DCM analysis. To open the DCM GUI press DCM in the
SPM M/EEG GUI.

40.3 Dynamic Causal Modelling of Steady State Responses

• Before you begin any DCM analysis you must decide on two things: the data feature from
your time series and the model you wish to use.

• For our long time series we will examine the steady state and so in the top panel of the
DCM GUI select SSR in the data drop-down menu.

• Next in the second drop down menu we select our model. For this LFP data we employ the
LFP model and so this is then selected.

• Then we are ready to load our data: press new data and select the file dLFP white noise r24 anaes.mat.

• Press the red arrow to move forward.

• The second panel allows you to specify the data and design. We will use the first 30sec
of the time series for our analysis. To specify this timing enter 1 and 30000 in the time
window.

• Next we select the detrending parameters which we set to 1 for detrend, 1 for subsample
(as the data has already been downsampled) and 2 for the modes (in this case this is the
same as the number of channels) using the drop down menus.

• We can then specify which trials we want to use. Since we are interested in the anaesthetized
trials we enter 1 2 3 4 under the trials label and effect1 effect2 effect3 in the between
trial effects panel. Next we specify the design matrix. This is entered numerically in the
large panel. Since we have 4 trials and 3 between trial effects (one less) we enter a matrix
with rows:[ 0 1 0 0 ] (row 1), [0 0 1 0] (row 2) and [0 0 0 1] (row 3). This will allow us to
examine “main effect” differences between the four conditions.2

• Press the red arrow to move forward.

• The third panel contains the spec for the electromagnetic model. This is very simple for
LFPs. In the drop down menu select LFP. In the source names panel, enter A1 and A2.
You are finished.

• Press the red arrow to move forward.

• At this point all that is left to specify is the neuronal model. We wish to compare three
different models so we can save the specifications so far using the save button and reload
the above specs for all three neuronal models.

• To specify the neuronal model, load the DCM (that you just saved) as it has been so far
specified.

• Our first model is the forward model. So we specify forward connections from A1 to A2
and forward connections from A2 to A1 (Fig 40.2)

• We also specify the input. In our experiment we assume input at both sources.

2The effect of anaesthesia could also be specified as a single linear effect, for instance by using a vector of mean-
corrected anaesthetic concentrations: [14 18 24 28] - mean([14 18 24 28]) = [-7 -3 3 7]. Here we specified 3 separate
effects to show that even when the effects are specified separately, there is a consistent trend in connectivity
changes with the increase in anaesthetic concentration.
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Figure 40.1: Screenshot of data exploration table. By displaying the converted file
LFP white noise r24 anaes.mat one can check the data quality, length, trials and sampling pa-
rameters.
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Figure 40.2: Model Specifications A: forward model, B: forward-backward model, C: lateral model.

• We finally specify the B effects where we enter our hypothesis of connectivity changes
between trial 1 (Iso1.4mg) trial 2 trial 3 and trial 4. Changes will be specified relative to
trial 1.

• We enter the off diagonal entries to correspond to forward connections (as entered in the
above panel) and the main diagonal entries to specify intrinsic connectivity changes with
A1 and A2 due to (anaesthetic) condition.

• Finally we enter the frequencies we are interested in: we will fit frequencies from 4 to 48
Hz.

• To invert the model press invert DCM.

• Repeat the procedure after loading the saved specs and repeating for new neuronal models
as per Fig 40.2.

40.4 Results

• Once all models have run, we compare their evidences to find to best or winning model.

• To do this press the BMS button. This will open the SPM batch tool for model selection.
Specify a directory to write the output file to. For the Inference method select Fixed

effects (see [80] for additional explanations). Then click on Data and in the box below
click on New: Subject. Click on Subject and in the box below on New: Session. Click
on models and in the selection window that comes up select the DCM mat files for all the
models (remember the order in which you select the files as this is necessary for interpreting
the results). Then run the model comparison by pressing the green Run button. You will
see, at the top, a bar plot of the log-model evidences for all models 38.6. At the bottom,
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Figure 40.3: Off diagonal bar charts show forward (A1 to A2) and backward (A2 to A1) connec-
tions strengths for trials 1 (1.4 Iso), 2 (1.8 Iso), 3 (2.4 Iso) and 4 (2.8 Iso)

you will see the probability, for each model, that it produced the data. By convention, a
model can be said to be the best among a selection of other models, with strong evidence,
if its log-model evidence exceeds all other log-model evidences by at least 3. You can also
compare model evidences manually if you load the DCMs into Matlab’s workspace and find
the evidence in the structure under DCM.F

• We can then examine the fits and posterior parameters of the winning model by loading it
into the DCM GUI and selecting options from the drop down results menu.

• In the ”trial specific effects” window we are interested particularly in the off-diagonal entries
specifying trial specific extrinsic connectivities. Here for the f-b model we see increasing
inhibitory (backward) connectivity and decreasing (forward) connectivity for increasing
Isoflorane levels (Fig 40.3.
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Chapter 41

Using DARTEL

DARTEL1 is a suite of tools for achieving more accurate inter-subject registration of brain images.
It consists of several thousand lines of code. Because it would be a shame if this effort was wasted,
this guide was written to help encourage its widespread use. Experience at the FIL would suggest
that it offers very definite improvements for VBM studies – both in terms of localisation2 and
increased sensitivity3.

41.1 Using DARTEL for VBM

The following procedures could be specified one at a time, but it is easier to use the batching
system. The sequence of jobs (use the TASKS pull-down from the Graphics window to select
BATCH ) would be:

• Module List

– SPM→Spatial→Segment: To obtain * seg sn.mat files for “importing” the data
into a form that DARTEL can use for registering the subject’s scans.

– SPM→Tools→DARTEL Tools→Initial Import: Uses the * seg sn.mat files to
generate roughly (via a rigid-body) aligned grey and white matter images of the sub-
jects.

– SPM→Tools→DARTEL Tools→Run DARTEL (create Template): Determine
the nonlinear deformations for warping all the grey and white matter images so that
they match each other.

– SPM→Tools→DARTEL Tools→Normalise to MNI Space: Actually generate
the smoothed “modulated” warped grey and white matter images.

Alternatively, the New Segment procedure could be used. Although still at the slightly
experimental stages of development, this procedure has been found to be generally more robust
than the implementation of “Unified Segmentation” from SPM→Spatial→Segment (which is the
version from the Segment button - the same as that in SPM5). The new segmentation can require
quite a lot of memory, so if you have large images (typically greater than about 256× 256× 150)
and trying to run it on a 32 bit computer or have relatively little memory installed, then it
may throw up an out of memory error. The new segmentation procedure includes the option to
generate DARTEL “imported” data, so the Initial Import step is skipped.

• Module List

– SPM→Tools→New Segment: To generate the roughly (via a rigid-body) aligned
grey and white matter images of the subjects.

1DARTEL stands for “Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra”. It may
not use a true Lie Algebra, but the acronym is a nice one.

2Less smoothing is needed, and there are fewer problems relating to how to interpret the differences.
3More sensitivity could mean that fewer subjects are needed, which should save shed-loads of time and money.
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– SPM→Tools→DARTEL Tools→Run DARTEL (create Template): Determine
the nonlinear deformations for warping all the grey and white matter images so that
they match each other.

– SPM→Tools→DARTEL Tools→Normalise to MNI Space: Actually generate
the smoothed “modulated” warped grey and white matter images.

The segmentation and importing steps of these two alternative processing streams are de-
scribed next.

41.1.1 Using Spatial→Segment and DARTEL Tools→Initial Import

The first step is to classify T1-weighted scans4 of a number of subjects into different tissue types
via the Segmentation routine in SPM. The SPM→Spatial→Segment pull-down can be used here:

• Segment

– Data: Select all the T1-weighted images, one per subject. It is usually a good idea
to have roughly aligned them to MNI space first. The Display button can be used
to reorient the data so that the mm coordinate of the AC is within about 3cm from
[0, 0, 0], and the orientation is within about 15o of MNI space. The Check Reg button
can be used to see how well aligned a number of images are.

– Output Files: It is suggested that Native Space grey (and possibly white) matter
images are created. These are c1*.img and c2*.img. The Segmentation produces a
* seg sn.mat and a * seg inv sn.mat for each image. It is the * seg sn.mat files that
are needed for the next step.

– Custom: Default settings can usually be used here.

The resulting * seg sn.mat files encode various parameters that allow the data to be “im-
ported” into a form that can be used by the main DARTEL algorithm. In particular, Pro-
crustes aligned maps of grey and white matter can be generated. Select SPM→Tools→DARTEL
Tools→Initial Import :

• Initial Import

– Parameter Files: Select all the * seg sn.mat files generated by the previous step. The
T1-weighted scans need not be selected, as the import routine will try to find them.
If the image files have not been moved since the segmentation, then their location can
be determined by the contents of the * seg sn.mat files. If they have been moved, then
the routine looks for the files in the current directory, or the output directory.

– Output Directory: Specify where the imported data should be written.

– Bounding box: This is the bounding box for the imported data. If the values are not
finite (eg, if they are [NaN,NaN,NaN ;NaN,NaN,NaN ]) then the bounding box for
the tissue probability maps, used as priors for the segmentation, will be assumed. Note
that the deformations that DARTEL estimates will wrap around at the boundaries, so
it is usually a good idea to ensure that the whole brain is easily enclosed within the
bounding box.

– Voxel size: These specify the resolution of the imported data. [1.5, 1.5, 1.5] are reason-
able values here. If the resolution is finer than this, then you may encounter memory
problems during the actual DARTEL registration. If you do want to try working at a
higher resolution, then consider changing the bounding box (but allow for the strange
behaviour at the edges).

– Image option: No imported version of the image is needed - usually only the grey
and white matter tissue classes are used (ie choose None).

– Grey Matter: Yes, you need this.

– White Matter: Yes, you also need this.

4Other types of scan may also work, but this would need some empirical exploration.
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– CSF: The CSF is not usually segmented very reliably because the segmentation only
has tissue probability maps for GM WM an CSF. Because there are no maps for bone
and other non-brain tissue, it is difficult for the segmentation algorithm to achieve a
good CSF segmentation. Because of the poor CSF segmentation, it is not a good idea
to use this tissue class for the subsequent DARTEL registration.

41.1.2 Using Tools→New Segment

Note: This subsection will be elaborated on later.
There is a new segmentation option in SPM8, which can be found within Tools→New Segment.

If this option is used, then the “imported” tissue class images (usually rc1.nii and rc2.nii) would
be generated directly and the initial import step is skipped. It is also suggested that Native Space
versions of the tissues in which you are interested are also generated. For VBM, these are usually
the c1*.nii files, as it is these images that will eventually be warped to MNI space. Both the
imported and native tissue class image sets can be specified via the Native Space options of the
user interface.

41.1.3 Using DARTEL Tools→Run DARTEL (create Template)

The output of the previous step(s) are a series of rigidly aligned tissue class images (grey matter
is typically encoded by rc1*.nii and white matter by rc2*.nii – see Fig 41.1). The headers of
these files encode two affine transform matrices, so the DARTEL tools are still able to relate
their orientations to those of the original T1-weighted images. The next step is to estimate the
nonlinear deformations that best align them all together. This is achieved by alternating between
building a template, and registering the tissue class images with the template, and the whole
procedure is very time consuming. Specify SPM→Tools→Dartel Tools→Run DARTEL (create
Template).

• Run DARTEL (create Template)

– Images

∗ Images: Select all the rc1*.nii files generated by the import step.

∗ Images: Select all the rc2*.nii files, in the same subject order as the rc1*.nii files.
The first rc1*.nii is assumed to correspond with the first rc2*.nii, the second with
the second, and so on.

– Settings: Default settings generally work well, although you could try changing them
to see what happens. A series of templates are generated called Template basename 0.nii,
Template basename 1.nii etc. If you run multiple DARTEL sessions, then it may be a
good idea to have a unique template basename for each.

The procedure begins by computing an initial template from all the imported data. If u rc1*.nii
files exist for the images, then these are treated as starting estimates and used during the creation
of the initial template. If any u rc1*.nii files exist from previous attempts, then it is usually
recommended that they are removed first (this sets all the starting estimates to zero). Template
generation incorporates a smoothing procedure, which may take a while (several minutes). Once
the original template has been generated, the algorithm will perform the first iteration of the
registration on each of the subjects in turn. After the first round of registration, a new template
is generated (incorporating the smoothing step), and the second round of registration begins.
Note that the earlier iterations usually run faster than the later ones, because fewer “time-steps”
are used to generate the deformations. The whole procedure takes (in the order of) about a week
of processing time for 400 subjects.

The end result is a series of templates (see Fig 41.2), and a series of u rc1*.nii files. The
first template is based on the average5 of the original imported data, where as the last is the
average of the DARTEL registered data. The u rc1*.nii files are flow fields that parameterise

5They are actually more similar to weighted averages, where the weights are derived from the Jacobian de-
terminants of the deformations. There is a further complication in that a smoothing procedure is built into the
averaging.
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Figure 41.1: Imported data for two subjects (A and B). Top row: rc1A.nii and rc2A.nii. Bottom
row: rc1B.nii and rc2B.nii.



41.1. USING DARTEL FOR VBM 441

Figure 41.2: Different stages of template generation. Top row: an intermediate version of the
template. Bottom row: the final template data.
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the deformations. Note that all the output usually contains multiple volumes per file. For the
u rc1*.nii files, only the first volume is visible using the Display or Check Reg tools in SPM. All
volumes within the template images can be seen, but this requires the file selection to be changed
to give the option of selecting more than just the first volume (in the file selector, the widget that
says “1” should be changed to “1:2”).

41.1.4 Using DARTEL Tools→Normalise to MNI Space

The next step is to create the Jacobian scaled (“modulated”) warped tissue class images, by select-
ing SPM→Tools→DARTEL Tools→Normalise to MNI Space. The option for spatially normalis-
ing to MNI space automatically incorporates an affine transform that maps from the population
average (DARTEL Template space) to MNI space, as well as incorporating a spatial smoothing
step.

• Normalise to MNI Space

– DARTEL Template: Specify the last of the series of templates that was created by
Run DARTEL (create Template). This is usually called Template 6.nii. Note that the
order of the N volumes in this template should match the order of the first N volumes
of the toolbox/DARTEL/TPM.nii file.

– Select according to either Few Subjects or Many Subjects. For VBM, the Many
Subjects option would be selected.

∗ Flow Fields: Specify the flow fields (u rc1*.nii) generated by the nonlinear reg-
istration.

∗ Images: You may add several different sets of images.

· Images: Select the c1*.nii files for each subject, in the same order as the flow
fields are selected.

· Images: This is optional, but warped white matter images can also be gen-
erated by selecting the c2*.nii files.

– Voxel sizes: Specify the desired voxel sizes for the spatially normalised images (NaN,
NaN, NaN gives the same voxel sizes as the DARTEL template).

– Bounding box: Specify the desired bounding box for the spatially normalised images
(NaN, NaN, NaN; NaN NaN NaN gives the same bounding box as the DARTEL
template).

– Preserve: Here you have a choice of Preserve Concentrations (ie not Jacobian scaled)
or Preserve Amount (Jacobian scaled). The Preserve Amount would be used for VBM,
as it does something similar to Jacobian scaling (modulation).

– Gaussian FWHM: Enter how much to blur the spatially normalised images, where
the values denote the full width at half maximum of a Gaussian convolution kernel, in
units of mm. Because the inter-subject registration should be more accurate than when
done using other SPM tools, the FWHM can be smaller than would be otherwise used.
A value of around 8mm (ie [8, 8, 8]) should be about right for VBM studies, although
some empirical exploration may be needed. If there are fewer subjects in a study, then
it may be advisable to smooth more.

The end result should be a bunch of smwc1*.nii files6 (possibly with smwc2*.nii if white matter
is also to be studied).

6The actual warping of the images is done slightly differently, with the aim that as much of the original signal is
preserved as possible. This essentially involves pushing each voxel from its position in the original image, into the
appropriate location in the new image - keeping a count of the number of voxels pushed into each new position.
The procedure is to scan through the original image, and push each voxel in turn. The alternative (older way)
was to scan through the spatially normalised image, filling in values from the original image (pulling the values
from the original). The results of the pushing procedure are analogous to Jacobian scaled (“modulated”) data. A
minor disadvantage of this approach is that it can introduce aliasing artifacts (think stripy shirt on TV screen) if
the original image is at a similar - or lower - resolution to the warped version. Usually, these effects are masked
by the smoothing.
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Figure 41.3: Pre-processing for VBM. Top row: Imported grey matter (rc1A.nii and rc1B.nii).
Centre row: Warped with Preserve Amount option and zero smoothing (“modulated”). Bottom
row: Warped with Preserve Amount option smoothing of 8mm (smwc1A.nii and smwc1B.nii).
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The final step is to perform the statistical analysis on the preprocessed data (smwc1*.nii files),
which should be in MNI space. The next section says a little about how data from a small number
of subjects could be warped to MNI space.

41.2 Spatially normalising functional data to MNI space

Providing it is possible to achieve good alignment between functional data from a particular
subject and an anatomical image of the same subject (distortions in the fMRI may prevent
accurate alignment), then it may be possible to achieve more accurate spatial normalisation
of the fMRI data using DARTEL. There are several advantages of having more accurate spatial
normalisation, especially in terms of achieving more significant activations and better localisation.

The objectives of spatial normalisation are:

• To transform scans of subjects into alignment with each other. DARTEL was developed to
achieve better inter-subject alignment of data.

• To transform them to a standard anatomical space, so that activations can be reported
within a standardised coordinate system. Extra steps are needed to achieve this aim.

The option for spatially normalising to MNI space automatically incorporates an affine trans-
form that maps from the population average (DARTEL Template space) to MNI space. This
transform is estimated by minimising the KL divergence between the final template image gen-
erated by DARTEL and tissue probability maps that are released as part of SPM (in the new
segmentation toolbox). MNI space is defined according to affine matched images, so an affine
transform of the DARTEL template to MNI space would appear to be a reasonable strategy.

For GLM analyses, we usually do not wish to work with Jacobian scaled data. For this reason,
warping is now combined with smoothing, in a way that may be a bit more sensible than simply
warping, followed by smoothing. The end result is essentially the same as that obtained by doing
the following with the old way of warping

• Create spatially normalised and “modulated” (Jacobian scaled) functional data, and smooth.

• Create spatially normalised maps of Jacobian determinants, and smooth by the same
amount.

• Divide one by the other, adding a small constant term to the denominator to prevent
divisions by zero.

This should mean that signal is averaged in such a way that as little as possible is lost. It also
assumes that the procedure does not have any nasty side effects for the GRF assumptions used
for FWE corrections.

Prior to spatially normalising using DARTEL, the data should be processed as following:

• If possible, for each subject, use SPM→Tools→FieldMap to derive a distortion field that
can be used for correcting the fMRI data. More accurate within-subject alignment between
functional and anatomical scans should allow more of the benefits of DARTEL for inter-
subject registration to be achieved.

• Use either SPM→Spatial→Realign→Realign: Estimate Reslice or SPM→Spatial→Realign
Unwarp. If a field map is available, then use the Realign Unwarp option. The images
need to have been realigned and resliced (or field-map distortion corrected) beforehand -
otherwise things are not handled so well. The first reason for this is that there are no
options to use different methods of interpolation, so rigid-body transforms (as estimated by
Realign but without having resliced the images) may not be well modelled. Similarly, the
spatial transforms do not incorporate any masking to reduce artifacts at the edge of the
field of view.

• For each subject, register the anatomical scan with the functional data (using SPM →
Spatial → Coreg → Coreg: Estimate). No reslicing of the anatomical image is needed.
Use SPM→Util→Check Registration to assess the accuracy of the alignment. If this step
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is unsuccessful, then some pre-processing of the anatomical scan may be needed in or-
der to skull-strip and bias correct it. Skull stripping can be achieved by segmenting the
anatomical scan, and masking a bias corrected version (which can be generated by the
segmentation option) by the estimated GM, WM and CSF. This masking can be done us-
ing SPM→Util→Image Calculator (ImCalc button), by selecting the bias corrected scan
(m*.img), and the tissue class images (c1*.img, c2*.img and c3*.img) and evaluating “i1.×
((i2+i3+i4)>0.5)”. If segmentation is done before coregistration, then the functional data
should be moved so that they align with the anatomical data.

• Segment the anatomical data and generate “imported” grey and white matter images.
If SPM→Tools→New Segment is used, then make sure that “imported” grey and white
matter images are created. If SPM→Spatial→Segment (the SPM5 segmentation routine,
which is the one under the Segment button), then an additional SPM→Tools→DARTEL
Tools→Initial Import will be needed.

• To actually estimate the warps, use SPM→Tools→DARTEL Tools→Run DARTEL (create
Templates) in order to generate a series of templates and a flow field for each subject.

In principle (for a random effects model), you could run the first level analysis using the
native space data of each subject. All you need are the contrast images, which can be warped
and smoothed. Alternatively, you could warp and smooth the reslices fMRI, and do the statistical
analysis on the spatially normalised images. Either way, you would select SPM→Tools→DARTEL
Tools→Normalise to MNI Space:

• Normalise to MNI Space

– DARTEL Template: Template 6.nii,1 is usually the grey matter component of the
final template of the series. An affine transform is determined using this image.

– Select according to either Few Subjects or Many Subjects. For fMRI analyses, the
Few Subjects option would be selected, which gives the option of selecting a flow field
and list of images for each subject.

∗ Subject

· Flow Field: Specify the flow field (“u c1*.nii”) for this subject.

· Images: Select the images for this subject that are to be transformed to MNI
space.

– Voxel sizes: Specify the desired voxel sizes for the spatially normalised images (NaN,
NaN, NaN gives the same voxel sizes as the DARTEL template).

– Bounding box: Specify the desired bounding box for the spatially normalised images
(NaN, NaN, NaN; NaN NaN NaN gives the same bounding box as the DARTEL
template).

– Preserve: Here you have a choice of Preserve Concentrations (ie not Jacobian scaled)
or Preserve Amount (Jacobian scaled). The Preserve Concentrations option would
normally be used for fMRI data, whereas Preserve Amount would be used for VBM.

– Gaussian FWHM: Enter how much to blur the spatially normalised images, where
the values denote the full width at half maximum of a Gaussian convolution kernel, in
units of mm.

An alternative approach is now presented, which does not attempt to make optimal use of the
available signal.

41.2.1 An alternative approach for using DARTEL to spatially nor-
malise to MNI Space

During spatial normalisation of a brain image, some regions need to expanded and other regions
need to contract in order to match the template. If some structure is excessively shrunk by
DARTEL (because it has the freedom to estimate quite large deformations), then this will lead
to a systematic reduction in the amount of BOLD signal being detected from that brain region.
For this reason, the normalise to MNI space option would generally be preferred when working
with functional data that is to be smoothed.
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Affine transform of DARTEL template to MNI space

DARTEL works with images that are of average size. When DARTEL is used to generate an
average shaped template (represented by a series of tissue probability maps) from a group of
scans of various individuals, the result is of average size. Brains normalised to MNI space are
slightly larger than average. In order to spatially normalise to MNI space, the deformation that
maps from MNI space to the space of the group average is required. Because the MNI space was
derived by affine registration of a number of subjects to a common coordinate system, in most
cases it should be possible to achieve a reasonable match of the template generated by DARTEL
using only an affine spatial normalisation. This can be achieved by matching the grey matter
component of the template with a grey matter tissue probability map in MNI space. The spatial
normalisation routine in SPM can be used to achieve this.

• Normalise: Estimate

– Data

∗ Subject

· Source Image: Template 6.nii,1 is usually the grey matter component of the
final template of the series.

· Source Weighting Image: <None>

– Estimation Options

∗ Template Image: Should be the apriori/grey.nii file distributed in SPM.

∗ Template Weighting Image: <None>

∗ Source Image Smoothing: 8mm (the same as the apriori/grey.nii file has been
smoothed).

∗ Template Image Smoothing: 0mm (because the data in the apriori folder are
already smoothed by 8mm.)

∗ Affine Regularisation: Usually, you would specify “ICBM space template”.

∗ Nonlinear Frequency Cutoff: Set this to infinity (enter “Inf”) for affine regis-
tration.

∗ Nonlinear Iterations: Setting this to zero will also result in affine-only spatial
normalisation.

∗ Nonlinear Regularisation: Setting this to infinity is another way of doing affine-
only spatial normalisation.

For some populations of subjects, an affine transform may not be adequate for achieving good
registration of the average shape to MNI space. Nonlinear spatial normalisation may be more
appropriate for these cases. As ever, determining which procedure is better would involve a degree
of empirical exploration.

Combining deformations

Once you have the spatial transformation that maps from MNI space to the space of the DARTEL
template, it is possible to combine this with the DEFORMATIONS estimated by DARTEL.
Rather than warping the image data twice (introducing interpolation artifacts each time), the two
spatial transforms can be combined by composing them together. The required deformation, for
spatially normalising an individual to MNI space, is a mapping from MNI space to the individual
image. This is because the spatially normalised images are generated by scanning through the
(initially empty) voxels in the spatially normalised image, and figuring out which voxels in the
original image to sample from (as opposed to scanning through the original image and putting
the values into the right places in the spatially normalised version).

The desired mapping is from MNI space to DARTEL template to individual scan. If A is
the mapping from MNI to template, and B is the mapping from template to individual, then
this mapping is B ◦ A, where “◦” denotes the composition operation. Spatially normalising via
the composed deformations can be achieved through the Deformations utility from the TASKS
pull-down (it is in Utils).
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• Deformations

– Composition

∗ DARTEL flow

· Flow field: Specify the u rc1*.nii flow field for that subject.

· Forward/Backwards: This should be set to “Backward” to indicate a map-
ping from template to individual.

· Time Steps: This is the number of time steps used by the final iterations of
the DARTEL registration (usually 64).

∗ Imported sn.mat

· Parameter File: Select the spatial normalisation parameters that would
spatially normalise the Template 6.nii file.

· Voxel sizes: These are set to “NaN” (not a number) by default, which would
take the voxel sizes for the apriori/grey.nii file. Alternatively, you could specify
your favourite voxel sizes for spatially normalised images.

· Bounding box: Again, these are set to non-finite values by default, which
results in the same bounding box as the apriori/grey.nii file. To specify your
favourite bounding box, enter [xmin, ymin, zmin;xmax, ymax, zmax] (in units of
mm, relative to the AC).

– Save as: You can save the composed deformations as a file. This would be called
y *.nii, which contains three volumes that encode the x, y and z components of the
mapping. Note that only the first (x) component can be visualised in SPM. These
things were not really designed to be visualised as images anyway.

– Apply to: Specify the images for that subject that you would like spatially nor-
malised. Note that the spatially normalised images are not masked (see the Chapter
on Realignment for more information here). If realignment parameters are to be incor-
porated into the transformation, then this could cause problems at the edges. These
can be avoided by reslicing after realignment (which is the default option if you “Re-
align Unwarp”). Alternatively, some form of additional masking could be applied to
the spatially normalised images, prior to smoothing.

– Interpolation: Specify the form of interpolation.

The above procedure would be repeated for each subject in the study.

41.3 Warping Images to Existing Templates

If templates have already been created using DARTEL, then it is possible to align other images
with such templates. The images would first be imported in order to generate rc1*.nii and rc2*.nii
files. The procedure is relatively straight-forward, and requires the SPM→Tools→DARTEL
Tools→Run DARTEL (existing Template) option to be specified. Generally, the procedure would
begin by registering with a smoother template, and end with a sharper one, with various inter-
mediate templates between.

• Run DARTEL (existing Templates)

– Images

∗ Images: Select the rc1*.nii files.

∗ Images: Select the corresponding rc2*.nii files.

– Settings: Most settings would be kept at the default values, except for the speci-
fication of the templates. These are specified in within each of the Settings→Outer
Iterations→Outer Iteration→Template fields. If the templates are Template *.nii, then
enter them in the order of Template 1.nii, Template 2.nii, ... Template 6.nii.

Running this option is rather faster than Run DARTEL (create Template), as templates are
not created. The output is in the form of a series of flow fields (u rc1*.nii).
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41.4 Warping one individual to match another

Sometimes the aim is to deform an image of one subject to match the shape of another. This can
be achieved by running DARTEL so that both images are matched with a common template, and
composing the resulting spatial transformations. This can be achieved by aligning them both with
a pre-existing template, but it is also possible to use the Run DARTEL (create Template) option
with the imported data of only two subjects. Once the flow fields (u rc1*.nii files) have been
estimated, then the resulting deformations can be composed using SPM→Utils→Deformations.
If the objective is to warp A.nii to align with B.nii, then the procedure is set up by:

• Deformations

– Composition

∗ DARTEL flow

· Flow field: Specify the u rc1A Template.nii flow field.

· Forward/Backwards: Backward.

· Time Steps: Usually 64.

∗ DARTEL flow

· Flow Field: Specify the u rc1B Template.nii flow field.

· Forward/Backwards: Forward.

· Time Steps: Usually 64.

∗ Identity

· Image to base Id on: Specify B.nii in order to have the deformed image(s)
written out at this resolution, and with the same orientations etc (ie so there
is a voxel-for-voxel alignment, rather than having the images only aligned
according to their “voxel-to-world” mappings).

– Save as: You can save the composed deformations as a file. This would be called
y *.nii, which contains three volumes that encode the x, y and z components of the
mapping.

– Apply to: Specify A.nii, and any other images for that subject that you would like
warped to match B.nii. Note that these other images must be in alignment according
to Check Reg.

– Interpolation: Specify the form of interpolation.

Suppose the image of one subject has been manually labelled, then this option is useful for
transferring the labels on to images of other subjects.



41.4. WARPING ONE INDIVIDUAL TO MATCH ANOTHER 449

Figure 41.4: Composition of deformations to warp one individual to match another. Top-left:
Original A.nii. Top-right: A.nii warped to match B.nii. Bottom-left: Original B.nii. Bottom-
right: B.nii warped to match A.nii.
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Chapter 42

Batch tutorial

Details about the algorithms used for data processing are given in the other sections of this
manual. This section explains how a sequence of processing steps can be run at once without
MATLAB programming. SPM8 includes matlabbatch1 which has been derived from the SPM5
batch system, but is also available as a separate package.

In matlabbatch, each data processing step is called “module”. There are e.g. modules for spa-
tial processing of MRI data (realignment, normalisation, smoothing), statistics (fMRI or factorial
design specification, model estimation, contrast specification). A batch describes which modules
should be run on what kind of data and how these modules depend on each other.

Compared to running each processing step interactively, batches have a number of advantages:

Documentation Each batch can be saved as a MATLAB script. All parameters (including
default settings) are included in this script. Thus, a saved batch contains a full description
of the sequence of processing steps and the parameter settings used.

Reproducibility Batches can be saved, even if not all parameters have been set. For a multi-
subject study, this allows to create template batches. These templates contain all settings
which do not vary across subjects. For each subject, they can be loaded and only subject-
specific parts need to be completed.

Unattended execution Instead of waiting for a processing step to complete before entering the
results in the next one, all processing steps can be run in the specified order without any
user interaction.

Multiple batches Multiple batches can be loaded and executed together.

42.1 Single subject

In this tutorial we will develop a batch for spatial processing and fMRI statistics of a single
subject of the “Face” example dataset (see chapter 29). To follow this tutorial, it is not necessary
to download the example dataset, except for the last step (entering subject dependent data).

To create a batch which can be re-used for multiple subjects in this study, it is necessary to
collect/define

• study specific input data (e.g. MRI measurement parameters, time constants of the func-
tional experiment, number of sessions),

• necessary processing steps,

• data flow between processing steps.

Subject specific input data (original functional and structural MRI data, subject specific experi-
ment parameters) should be entered after the batch template has been saved.

1http://sourceforge.net/projects/matlabbatch
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42.1.1 Study specific input data

This dataset consists of fMRI data acquired in a single session and a structural MRI. See sec-
tion 42.2 to learn how to deal efficiently with multi-session data. MRI parameters and experiment
details are described in chapter 29.

42.1.2 Necessary processing steps

Helper modules

Some SPM modules produce graphics output which is captured in a PostScript file in the current
working directory. Also, a new directory needs to be created for statistics. The “BasicIO” menu
provides a collection of modules which are useful to organise a batch. We will need the following
modules:

• Named directory selector

• Change directory

• Make directory

SPM processing

For a classical SPM analysis, the following processing steps are necessary:

• Realignment

• Slice timing correction

• Coregistration

• Segmentation

• Normalisation

• Smoothing

• fMRI design

• Model estimation

• Contrasts

• Results report

42.1.3 Add modules to the batch

The helper modules and the SPM processing modules can be assembled using the GUI. Click
the “BATCH” button in the SPM Menu window. First, add the helper modules, followed by the
SPM modules in the order listed above. Do not configure any details until you have selected all
modules.

42.1.4 Configure subject-independent data

Now, go through the batch and configure all settings that are subject-independent (e.g. the name
of the analysis directory, slice timing parameters) as described in chapter 29. Do not enter any
data that is specific for a certain subject. The values that need to be entered are not repeated
here, please refer to the corresponding sections in chapter 29.

The file man/batch/face_single_subject_template_nodeps.m contains the batch after all
modules have been added and subject-independent data has been entered.
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Figure 42.1: BasicIO and SPM application menus

Named Directory Selector

Input Name Give this selection a name (e.g. “Subject directory”) - this name will be shown in
the dependency list of this batch.

Directories Add a new directory selector, but do not enter a directory itself.

Change Directory

Nothing to enter now.

Make Directory

New Directory Name “categorical” - the name of the analysis directory. This directory will
be created at batch run-time in the subject directory.

Realign: Estimate & Reslice

Data Add a new “Session” item. Do not enter any files for this session now.

Slice Timing

Data Add a new “Session” item. Do not enter any files for this session now.

Timing options Enter data for “Number of slices”, “TR”, “TA”, “Slice order”, “Reference
slice”.

Coreg: Estimate

Nothing to enter now.

Segment

Nothing to enter now.
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Normalise: Write

Data Add a new “Subject”. Do not enter any files now.

Writing Options Adjust bounding box, voxel sizes, interpolation

Smooth

FWHM Enter FWHM

fMRI model specification

Enter all data which is constant across subjects.

Timing parameters Enter values for “Units for design”, “Interscan interval”, “Microtime res-
olution”, “Microtime onset”

Data & Design Add a new “Session” item. Do not enter scans, conditions or regressors yet.
They will be added as dependencies or subject specific inputs. If you want to make sure to
remember this, you can highlight “Multiple conditions” and select “Clear Value” from the
“Edit” menu. Do the same for “Multiple regressors”. This will mark both items with an
<-X, indicating that something must be entered there.

Factorial design Enter the specification for both factors.

Basis functions Select the basis function and options you want to use.

Model estimation

Nothing to be entered yet for classical estimation.

Contrast manager

If you have selected the “Factorial design” option as described above, SPM will automatically
create some contrasts for you. Here, you can create additional T- or F-contrasts. As an example,
we will add an “Effects of interest” F-contrast.

Contrast session Add a new “F-contrast” item.

Name Enter a name for this contrast, e.g. “Effects of interest”.

Contrast vectors Add a new “Contrast vector” item. F-contrasts can have multiple rows. You
can either enter a contrast matrix in an “F contrast vector” entry, or enter them row by
row. To test for the effects of interest (1 basis function and 2 derivatives for each of the
four conditions) enter eye(12) as F contrast vector.

Replicate over sessions This design does not have multiple sessions, so it is safe to say “No”
here.

Results report

Reviewing individual results for a large number of subjects can be very time consuming. Results
report will print results from selected contrasts to a PostScript file.

Contrast(s) Enter Inf to print a report for each of the defined contrasts.

42.1.5 Data flow

In chapter 29, each processing step was performed on its own. In most cases, output data was
simply passed on from one module to the next. This scheme is illustrated in figure 42.2. Only the
coloured items at the top of the flow chart are subject specific and need to be entered in the final
batch. All arrow connections are subject-independent and can be specified in the batch template.



42.1. SINGLE SUBJECT 457

Figure 42.2: Flow chart for batch
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Add dependencies

Based on the data flow in figure 42.2, modules in the batch can now be connected. The batch
containing all dependencies can be found in man/batch/face_single_subject_template.m.

Figure 42.3: Dependency selection

Again, start editing at the top of the batch:

Named Directory Selector

Nothing to enter now.

Change Directory

Directory Press “Dependency” and select “Subject directory(1)”. At run time, SPM will change
to this directory before batch processing continues.

Make Directory

Parent Directory Press “Dependency” and select “Subject directory(1)”. The “categorial”
directory will be created in this directory.

Realign: Estimate & Reslice

Nothing to enter now.

Slice Timing

Session Press “Dependency” and select “Resliced Images (Sess 1)”.

Coreg: Estimate

Reference Image Press “Dependency” and select “Mean Image”.
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Segment

Data Press “Dependency” and select “Coregistered Images”. At run time, this will resolve to
the coregistered anatomical image.

Normalise: Write

Parameter File Press “Dependency” and select “Norm Params File Subj→MNI (Subj 1)”.

Images to Write Press “Dependency” and select “Slice Timing Corr. Images (Sess 1)”.

Smooth

Images to Smooth Press “Dependency” and select “Normalised Images (Subj 1)”

fMRI model specification

Directory Press “Dependency” and select “Make Directory ’categorical’ ”

Scans Press “Dependency” and select “Smoothed Images”. Note: this works because there is
only one session in our experiment. In a multisession experiments, images from each session
may be normalised and smoothed using the same parameters, but the smoothed images
need to be split into sessions again. See section 42.2 how this can be done.

Multiple regressors Press “Dependency” and select “Realignment Param File (Sess 1)”.

Model estimation

Select SPM.mat Press “Dependency” and select “SPM.mat File (fMRI Design&Data)”.

Contrast manager

Select SPM.mat Press “Dependency” and select “SPM.mat File (Estimation)”.

Results report

Select SPM.mat Press “Dependency” and select “SPM.mat File (Contrasts)”.

42.1.6 Entering subject-specific data

Now, only 4 modules should have open inputs left (marked with <-X). These inputs correspond
to data which vary over the subjects in your study:

Named Directory Selector Subject directory

Realign: Estimate & Reslice Raw EPI data for the fMRT session

Coreg: Estimate Anatomical image to be coregistered to mean EPI

fMRI model specification Names, conditions and onsets of your experimental conditions,
specified in a multiple conditions .mat file.

Using the GUI, you can now perform these steps for each subject:

1. load the template batch

2. enter subject-specific data

3. save batch under a subject specific name.

After that, all batches for all subjects can be loaded and run at once.
This process can be automated using some basic MATLAB scripting. See section 42.2.3 for

details.



460 CHAPTER 42. BATCH TUTORIAL

Figure 42.4: All stages of batch entry
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42.2 Advanced features

42.2.1 Multiple sessions

If an fMRI experiment has multiple sessions, some processing steps need to take this into account
(slice timing correction, realignment, fMRI design), while others can work on all sessions at once
(normalisation, smoothing).

Two modules in BasicIO help to solve this problem:

Named File Selector Files can be entered here session by session. Note that this file selector
selects all files (not restricted to images) by default. To select only images, set the filter
string to something like .*nii$ or .*img$.

File Set Split This module splits a list of files based on an index vector. Named file selector
provides such an index vector to split the concatenation of all selected images into individual
sessions again.

42.2.2 Processing multiple subjects in GUI

There are different ways to process multiple subjects in the batch editor:

• Add the necessary processing steps when creating the job.

• Create a per-subject template, save it and load it multiple times (i.e. in the file selector,
add the same file multiple times to the list of selected files).

• Use “Run Batch Jobs” from “BasicIO”

Figure 42.5: Using “Run Batch Jobs”

In all cases, the data for all subjects has to be entered through the GUI, and computa-
tion will be done for all subjects at once after all data is entered. There is an example job
face_multi_subject_template.m that demonstrates the usage of “Run Batch Jobs” to run the
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single subject template job described above. Note that the order and type of inputs in the sin-
gle subject template is important. Also, consistency checks are limited. If inconsistent data is
entered, the job will fail to execute and return an error message.

To run this job for multiple subjects, simply repeat the “Runs” item as many times as necessary
and fill in the required data.

42.2.3 Command line interface

The command line interface is especially useful to run multiple jobs at once without user in-
teraction, e.g. to process multiple subjects or to combine separate processing steps. There is a
“high-level” interface using spm_jobman, which combines “low-level” callbacks to cfg_util.

SPM startup in command line mode

During normal startup, SPM performs important initialisation steps. Without initialisation, SPM
and its batch system will not function properly. Consequently, an initialisation sequence needs
to be run before any batch job can be submitted.

MATLAB has several command line options to start without its GUI (-nodesktop) or even
without any graphics output to a screen (-nodisplay). See MATLAB documentation for details.

To run SPM in -nodisplay mode, the file spm_defaults.m has to be modified. The line
defaults.cmdline = 0; must be changed to defaults.cmdline = true;. In command line
mode, SPM will not open any figure window except the “Graphics” window.

Within MATLAB, the following commands are sufficient to set up SPM

1. spm(’defaults’, MODALITY) where MODALITY has to be replaced by the desired modality
(e.g. ’fmri’)

2. spm_jobman(’initcfg’)

After executing these commands, any SPM functions and batch jobs can be run in the same
MATLAB session.

Complete and run a pre-specified job

spm_jobman(’serial’, job[,’’, input1, input2 ...])

This interface is called the “serial” interface. It takes a job, and asks for the input to any open
configuration items one after another. If a list of inputs is supplied, these will be filled in (if they
are appropriate). After all inputs are filled, the job will be run. Note that only items without
a pre-set value will be filled (marked with <-X in the GUI). To force a item to to be filled, use
“Edit:Clear Value” in the GUI or set its value to ’<UNDEFINED>’ in the harvested job.

The job argument is very flexible, it can e.g. be a job variable, the name of a script creating
a job variable, even a cell list of any mixture of variables and scripts. All job snippets found will
be concatenated into a single job, the missing inputs will be filled and the resulting job will be
run.

The batch system can generate a script skeleton for any loaded job. From the batch GUI,
this feature is accessible via “File:Save Batch and Script”. This skeleton consists of a commented
list of necessary inputs, a for loop to enter inputs for multiple runs or subjects and the code to
initialise and run the job. An example is available in face_single_subject_script.m:

% List of open inputs

% Named Directory Selector: Directory - cfg_files

% Realign: Estimate & Reslice: Session - cfg_files

% Coreg: Estimate: Source Image - cfg_files

% fMRI model specification: Multiple conditions - cfg_files

nrun = X; % enter the number of runs here

jobfile = {fullfile(spm(’dir’),’man’,’batch’,’face_single_subject_template.m’)};

jobs = repmat(jobfile, 1, nrun);

inputs = cell(4, nrun);

for crun = 1:nrun
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% Named Directory Selector: Directory - cfg_files

inputs{1, crun} = MATLAB_CODE_TO_FILL_INPUT;

% Realign: Estimate & Reslice: Session - cfg_files

inputs{2, crun} = MATLAB_CODE_TO_FILL_INPUT;

% Coreg: Estimate: Source Image - cfg_files

inputs{3, crun} = MATLAB_CODE_TO_FILL_INPUT;

% fMRI model specification: Multiple conditions - cfg_files

inputs{4, crun} = MATLAB_CODE_TO_FILL_INPUT;

end

spm(’defaults’,’fmri’);

spm_jobman(’serial’,jobs,’’,inputs{:});

The skeleton needs to be adapted to the actual data layout by adding MATLAB code which
specifies the number of runs and the input data in the for loop.

Another example script and batch is available for the multimodal dataset, called multimodal_fmri_script.m

and multimodal_fmri_template.m.

42.2.4 Modifying a saved job

In some cases, instead of using the serial interface it may be more appropriate to modify the
fields of a saved or harvested job. By default, jobs are saved as MATLAB .mat files, but they
can also be saved as .m files. These files contain a number of MATLAB commands, which will
create a variable matlabbatch. The commands can be modified to set different values, add or
remove options.
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Chapter 43

Developer’s guide

43.1 SPM5 to Matlabbatch transition guide

This is a short overview to describe code organisation and interfaces between SPM and the batch
system.

43.1.1 Code Reorganisation

The following paths have changed:

• fullfile(spm(’dir’),’matlabbatch’) Core batch system.

• fullfile(spm(’dir’),’config’) New SPM config files.

• fullfile(spm(’dir’),’oldconfig’) Old SPM config files (unused)

• spm_jobman.m and spm_select.m replaced with compatibility code

• spm_Menu.fig Callbacks adapted

Configuration code has been generated automatically from the existing SPM configuration
using cfg_struct2cfg and gencode. This sometimes results in redundant/duplicate code. Also,
conditional constructs like if, case may not have been considered.

Some assignments to configuration items are guarded by validity checks. Usually, there will be
a warning issued if a wrong value is supplied. Special care needs to be taken for .prog, .vfiles,
.vout, .check functions or function handles. The functions referenced here must be on MATLAB
path before they are assigned to one of these fields. For toolboxes, this implies that toolbox paths
must be added at the top of the configuration file.

43.1.2 Interfaces between SPM and Matlabbatch

Unchanged harvested job structure.

Changed Top-level node in SPM config now called spmjobs instead of jobs. New overall top-
level node matlabbatch. spm_jobman will convert and load SPM5 style batch jobs into the
new batch system.

Changed Configuration file syntax - instead of structs, configuration items are now objects.
Structs of type <type> are now represented as objects of class cfg_<type>. Existing SPM5
configuration can be imported using cfg_struct2cfg. There is a new class cfg_exbranch
which is used for branches that have a .prog field.

Deprecated Virtual files have been replaced by dependencies. These require computations to
return a single output argument (e.g. a cell, struct). Parts of this output argument can be
passed on to new inputs at run-time. Virtual files are treated as a special output argument.

Added Interface to the batch system

465
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• cfg_util Configuration management, job management, job execution

• cfg_serial A utility to fill missing inputs and run a job (optionally with a GUI input
function)

• cfg_ui GUI - inspired by spm_jobman, but modified to work around some MATLAB
GUI “features” (like input widgets loosing focus before editing has finished).

43.2 Configuration Code Details

Configuration code has been split into two files per configuration:

spm cfg *.m Configuration classes, .check, .vout subfunctions

spm run *.m Run-time code, takes job structure as input and returns output structure as
specified in .vout.

In a few cases (where there was no additional magic in the code), run-time code has been in-
tegrated into the main SPM code. This may be useful to run test batches without using the
configuration/batch system.

43.2.1 Virtual Outputs

Virtual outputs are described by arrays of cfg_dep objects. These objects contain a “source” and
a “target” part. Functions may have more than one virtual output (e.g. one output per session,
a collection of results variables). One cfg_dep object has to be created for each output.

Only two fields in the “source” part need to be set in a .vout callback:

sname A display name for this output. This will appear in the dependencies list and should
describe the contents of this dependency.

src output A subscript reference that can be used to address this output in the variable returned
at run-time.

tgt spec (optional) A description on what kind of inputs this output should be displayed as
dependency. This is not very convenient yet, the match and cfg_findspec methods are
very restrictive in the kind of expressions that are allowed.

The .vout callback will be evaluated once the configuration system thinks that enough in-
formation about the structure of the outputs is available. This condition is met, once all in-tree
nodes cfg_(ex)branch, cfg_choice, cfg_repeat have the required number of child nodes.

The .vout callback is called with a job structure as input, but its code should not rely on the
evaluation of any contents of this structure (or at least provide a fallback). The contents of the
leaf nodes may not be set or may contain a dependency object instead of a value during evalution
of .vout.

The “target” part will be filled by the configuration classes, the src_exbranch field is set in
cfg_util.

43.2.2 SPM Startup

The top level configuration file for SPM is spm_cfg.m. It collects SPM core configuration files and
does toolbox autodetection. If a toolbox directory contains *_cfg_*.m files, they will be loaded.
Otherwise, if there are only SPM5-style *_config_*.m files, the configuration will be converted
at run-time using cfg_struct2cfg.

43.2.3 Defaults Settings

In Matlabbatch, there are different ways to set defaults:

1. in the configuration file itself,
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2. in a defaults file, which has a structure similar to a harvested job,

3. using a .def field for leaf items.

Defaults set using option 1 or 2 will only be updated at SPM/matlabbatch startup. Defaults set
using option 3 will be set once a new job is started. These defaults take precedence over the other
defaults.

In core SPM, these defaults refer to spm_get_defaults, which accesses spm_defaults. Tool-
boxes may use their own callback functions.

43.2.4 Toolbox Migration

In the fullfile(spm(’dir’),’toolbox’) folder there exists a migration utility spm_tbx_config2cfg.m.
This utility will create a *_cfg_*.m and a *_def_*.m file based on the configuration tree given
as input argument.

Toolboxes should set their defaults using the .def fields, using a mechanism similar to
spm_get_defaults. This allows for flexibility without interfering with SPMs own defaults.

43.3 Utilities

43.3.1 Batch Utilities

Matlabbatch is designed to support multiple applications. A standard application “BasicIO”
is enabled by default. Among other options, it contains file/file selection manipulation utilities
which can be used as as dependency source if multiple functions require the same set of files as
input argument. For debugging purposes, “Pass Output to Workspace” can be used to assign
outputs of a computation to a workspace variable.

The cfg_confgui folder contains an application which describes all configuration items in
terms of configuration items. It is not enabled by default, but can be added to the batch system
using cfg_util(’addapp’...). This utility can be used generate a batch configuration file with
the batch system itself.

43.3.2 MATLAB Code Generation

The gencode utility generates MATLAB .m file code for any kind of MATLAB variable. This is
used to save batch files as well as to generate configuration code.

43.3.3 Configuration Management

The backend utility to manage the configuration data is cfg_util. It provides callbacks to add
application configurations, and to load, modify, save or run jobs. These callbacks are used by
two frontends: cfg_ui is a MATLAB GUI, while cfg_serial can be used both as a GUI and in
script mode. In script mode, it will fill in job inputs from an argument list. This allows to run
predefined jobs with e.g. subject dependent inputs without knowing the exact details of the job
structure.
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