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Chapter Two

Statistic Images

After study design, scanninggconstructionalignment, and possibly anatomical
normalisation and primary smoothinge adjustedmagesare ready foanalysis. Voxel-
by-voxelapproaches proceed bpalysingthe data at eackoxel, across thdata,using
univariate techniques. This resultshe computation of a statistic for each vogeling
an image of statistics, termedgtatistic image

There are variousnodels which can based wherforming statisticimages for
simple activation studies. In this chaptére problems of changing globaisr are
discussed, various models for single and multiple subject activatperiments
introduced, and their relative merits and shortcomings considered. Particular attention is
given to the models commonlysed in practice. There much disagreement in the
functional neuroimaging world as tbe “right” model and statistic tase, so a chapter
discussing the issues is timely.

The case of the simple activati@xperiment withtwo conditions, “rest” and
“activation”, shall be used throughout, and the “V5” study data used as an example.
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“Raw” Data
The “raw” data weshall consider for statisticanalysisare the scamagesafter
the pre-processing described in chapter 1.ifiages in fig22 are of the firstwo scans
of the second subject in the “V5” study. Although acquired under each of the conditions,
there is only amall discerniblelifference betweethesetwo images, irthe visual cortex
at the posterior of the brain.
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Figure 22

Counts (n) images (after pre-processing as previously described) from the
first two scans of the firstsubject inthe “V5”study, takenunder:

(a) conditions (“rest”), and (b)conditionA (“activation”). The images have
been normalised for global changes by proportional scaling toaa ¢
of 50ml/min/dl. The colour scale is graduated in units of normalised activity.
Theac-pc plane is shown, in standard Talairach co-ordinates.

Activation Study Design

Recallthat in these siple activation studies each subject is scanned repeatedly
under “rest”(or “baseline”) g) and “active” A) conditions during the course ofmgle
scanning session ol2scans. Therder ofallocation of conditions to theM2 scans for
each subject issually eitheralternating ABA... or ABAB... as in the “V5” study), or
alternating in pairsheginning with a single scamder one conditionBAABBAAB ... Or
ABBAABBA ...). In such multi-subject designs subjeate randomised to a presentation
order 6 first or A first) in a balanced fashion.

Notation

We shall only beonsidering voxels afhe imagespace that correspond boain
tissue imall the scans under consideration. These voxelsytfaeerebral voxelscan be
identified for anindividual byreference to a co-registeretkl scan. In the absence of
such a scan, the intracerebvalume can bdairly reliably identifieddirectly from PET
images by thresholding them at a third of thesximumvalue. The volume slentified
usually includes the ventricles as well as the brain.
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Let Yjjqk denote theasF (or ra) measurement at voxkl (k =1,... K); of scanj
( =1,... M); under conditiorg (g = 0,1, 0 = “rest”); orsubjecti (i =1,...N). Forbrevity,
we shall allow ourselves to refer to the value associated with a particular \ebdumest
simply as the value of the voxel.

Take W ={1,...k,... K} to be the set ofndices ofthe intracerebral voxels. In
addition to referring to voxels by their index, slallrefer to sets of voxels lilie set of
their indices.Thus, for UIW, we shalltake “thevoxels in U” to mearthe set ovoxels
with indices in U, andimilarly take “the region U” tomeanthe region of thémage
space that is the union of the voxels (volume elements) with indices in U.
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2.1. Global Changes

Global cerebral blood flow @BF) varies (fig.23). Different subjects hadi#ferent
gcBF, and within a subjectapF variesover the course of scanning session, tending to
decrease as the subject becomes relaxed. If “coumtgjes of & arebeing considered
as indicators ofaBF, then changes in administergolse anchead fractiorf? as well as
changes in @BF cause changes imgThe lattertwo effects are confounded: If tiead
fraction remainsonstant then changes itBF cause no change imdor the same
administereddose.Clearly for reasons o$pecificity and sensitivity, differences ircBfF
(ga) must be accounted for when examining sets&s (rA) images for changes.
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Figure 23
Global activity by subject fothe “V5” subjects. Symbolsndicate the

condition, ©” for condition B, “x” for condition A. Global activity was
measured as mean value of the intracerelmgels as identified by 173
max. thresholding (see text).

“Dose ranging”

Although most centres usery accurate techniques ftmaceradministration, the
administered dose is sometimes deliberately adjusted during a scanning session. This is to
optimisethe performance of the scanner, and to erthatethe total dose over the
scanning session is closeth® maximumallowable. Sucldose rangingvas used in the
“V5” study.

20The head fractionis the fraction of thevhole body blood flow occurring in the head. This fairly
constant for an individual under normal conditions, but varies between subjects.
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2.1.1. Computation of gCBF

Global (and regional) cerebral blood flow is measured in unitmilbitres per
minuteper decilitre of brain tissue (ml/min/dl).et x;jq denote the gBF (ga) for scanj
under conditiorg on subject. For ICBF (rA) imagesthe gBF (gA) is usually given as a
meanper voxel, computed by taking the averagkie of voxels corresponding boain
tissue. The @BF (ga) for scan on subject is:

K
1 _
Xijg =K 2 Yiak = Yijge (11)
k=1

2.1.2. Correcting for changes in gCBF: Normalised images

As changes inaBF were sought, the pioneers of functionalroimaging wittPET
examinedsubtraction imagesformed by subtracting a “rest” scan from an “active”
condition scan. This requirethat changes in ggrF be accounted for before the
subtraction.

In practice thevoxel valuedor rcer (rA) imagesarenormalised by dividing by the
global flow (activity) and then multiplying by the normabg of 50ml/min/dI, to give the
images a physiologicallselevant scale (eqn.12Jhis proportional scalingmethod has
the apparent advantage of simplicity; the normalised images are easy to compute, and can
be interpreted as regional activity relative to the global level.

Y igk = Yijgk / *ijq / 50) (12)
The assumption ihat for astable brairstate, the@sr depends proportionally on

the CcBF. Alternatively, the assumption can be discarded on the understath@ing
relative values are to be analysed as indicators of neuronal activity.
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2.2. Single Subject Activation Experiments

We beginour discussion othe formation of statistitnages withthe single study
activation experiment. Dropping the subjitex () from our notationlet Yjq denote
the 1ICBF (rA) measurement at voxklof scanj under conditiorg. Let xq denote the

corresponding @BF (gA).

2.2.1. Two sampléd-statistic

The normalisedmagesY'qi constituteM observations under each of the two
conditions for each voxel. If the stuitas of the “active” § = 1) condition causes an
increase in neuronal activity at a particular voxel location, thencsr values athat
voxel should be increased the “active” scans. The conditions are presented to the
subject in pairs (sometimes with randomly assigireérwithin pairs) to allowfor time
effects, so an appropriate test would reflect this blocked design. However, in practice the
blocking is ignored, and &wo samplet-test used rathethan a pairedest. Weshall
return to this point later.

Computing thevalue T, of thetwo samplet-statistic for each voxelives an image
of statisticsT = (T,...,Tk):

Tk — Y-lk B Y'Ok (13)

v S!f(%vl +3)

1 M
2 - - 2_ 1 o~V
for S¢ the pooled variance estimat§¢ = o= Zqu jzl( jok qu)

AssumingY'jgk ~ N(uq,oﬁ), thenTy ~to.o under H:pg = q. T is then referred to as a
t-statisticimage with 21-2 degrees of freedormsince each voxét has associated value

distributed as a Studentglistribution with M-2 degrees of freedom undeg.tbince it
iS activation we are interestaad, it is usual tdest against the one-sided alternative

hypothesis_ H:w> 0. Ap-value for each voxel can then be computed, and arranged into
an (unadjusted)-value image, indicating evidence of activation.

Two sample model: Proportional regression

The modelimplicit in the use oformalised images sne of proportionality. The
two samplé-test on normalised images above is equivalentotmeavay ANOVA for two
treatments at each voxel, with the model for the data at kayetn by:

Yigk = Agk + €k wheregg ® N(0, 6}) (14)

For the purposes dhis discussion, wshalltake thenormalised image¥iq to be
Yiqk/Xjq » rather thar¥jq/(xq /50) (eqn.12) Assumingthat theglobal flow (activity)xq
is measured wittmegligible error, multiplyinghe abovenodel byxq gives eqril5, a
weighted proportional regression model, with condition dependent regression coefficient.
The proposedttest is a test of equal slope in this model.

Yiak = %qk g * Ejgk wheregjg = N(0, Xjq0K) (15)



Single Subject Activation Experiments 55

It is apparent from theeTliterature thamanyresearchers overlook the weighting
of the errorvariance, and consider thevo samplet-test model as equivalent to a
proportional regression model with homogeneous variance:

— i 2
quk = (qu qu + quk Wheresjqk ,gi_ N(O, o K ) (16)

In this form the model can beeasily compared withother Inear models.
Scheffé (195981.5) notes that the method of least squaiéls inappropriate weights
still leads to unbiased estimates of the parameters, though not the same e€lisaaies.
estimates of theariance Wl be biased. Although an assumption of consteamiance at
each voxel in models 15 and 16 cannottrioe simultaneously, it is perhagsually
feasible in eitherone, particularly for subjects whosecgF (gA) remains roughly
constant, where there litle difference betweethe models?! Thus, this oversight may
not be too serious.

2lFor example, consider the sed subject ithe “V5” study: The maximunabsolute difference
betweerthe two samplet-statisticand d-statistic for equality of slope iagn.16 (oveall thevoxels in
theac-pc plane) is 0.300 (3dp).
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2.2.2. Friston’s model: AnCova

Fristonet al (1990) proposed a mogeneral model fothe relationship between
regional and global cerebral blood flow.

A standard linear regression model for cross sectional data

The actual relationship between regional and globalis unlikely to be linear, but
is possibly wellapproximated by a straight line for theormal range ofglobal
values(seefig.24). Sincethe nomal range of global values is far fromero, the
relationship islikely to be betterapproximated by an arbitrary line rather than one
constrained to the origifkor scans acquired under thest condition € = 0), Friston
proposed a standard simple regression model at each voxel:

YjOk =0+ Bk (on -X,..) + stk Wherestk < N(0,0'kz) a7)

The parameters in model 17 (intercept, regressamificient and variance) are
distinct for each voxel, since the global changesmarelikely to affect distinct regions
differently22. Thus we hav& simultaneous regressions, one for each voxel.
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Figure 24
Regional activity for voxel at Talairach co-ordinates (0,-80,0) plotted against
global activity, forthe twelve scans of the secoraibject inthe “V5” study.

The conditions are indicated by tegmbols, &” for condition A (the rest
condition)and %" for condition B (the active condition)This voxel was
chosen because it is the middle of the visual cortex, whichdgpected to
be stimulated by the activation condition.

Covariate is mean of response variables

By way of an aside, note that if all the voxels used to compute the global values are
included in the ACovA analysis, then this imposesoase constraint on the parameters.
Writing model 17non-centred, and dropping the= 0 subscriptgso thatYj is the CBF
(ra) value at voxelk of scanj obtained under the rest conditiowjth x the
corresponding ¢BF (gA)) we obtain the simultaneous regressions of eqn.17a:

ij =0+ Bk Xj + Sjk Wheresj'k i N(0,0kz) (17a)

225pecifically, “it is physiologically likely that sensitivity afBF to gcBF in any one area depends on the
neuronal projections to that area”. (From Fristéonal, 1990.)
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Suppose thadll K voxelsare used to compute thg@obal valuesthen, summing
egn.17a ovek =1,... K we obtain:

o K K K
K Yj =Kx=atx ) Bt ) ek
k=1 k=1 k=1
< Xj :F. +Xj E. +€j.

Interpreting this as a regression of #fie on themselves, rather than an equation derived
from separate regressions, Clark & Carson (1993) asserted thatust be zero, an@®
. must be one. In fact thistsie for the fittedvalues, as pointedut byFriston (1994).
Consider the fitted values for the simple regression of eqn.17a:

Kn K3 (- xa)(Yik- Yo
> B = > = ‘

k=1 e 2 - X.)2

306 - X)(KYi -KY..)

i 2.0 - X.)2 “
K K o
> G = HYu-Be x.[H
k=1 k=1

=KY..-K x,=0

N N
So, G. must bezero,and B. must be oneGiven the largenumber of voxels

under consideration, this restrictiorherdly of anyconsequence to the regression at an
individual voxel. Since the model is a means to inference rather than an end in itself, most
ignore this subtlety. If global valuese computed over mowexels tharare considered

for the regression models, the problem disappears.

Consideringthe regression at a single voxel, onmight be concerned that the
covariate is measured with error. This concerrl iSounded. Firstly, regarding the
measured @BF (gA) as a random variable with meidue trueglobal value; its variance is
negligiblecompared to that of thestimated ¢BF (rA) at a single voxel, sindhe global
value is the mean of the voxel values. Secondly, for fixed effects models it doesn’t matter
anyway: Scheffé (1959, p195jates (foifixed effectsmodels), that if the distribution of
the response variables conditional on the explanatory variables is “assumed to hold for all
possible values dhe observations on the [explanatorgtiables, then, regardless of the
joint distribution of observations omthe [explanatoryyariables, the conditional
significance levelsand conditional confidence coefficiemi® constant, and hence the
same unconditionally”.

One way AICovA model

To include activation scans ithe model, Frist@tal. (1990) proposed a
(balanced) on&vay analysis ofovariance (NCovA) model. The model for voxéd is
then:

Yigk = Ok * Bk Xjgq - X+o) +Ejqk  Wheregjq, < N(O,okz) (18)
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The effect of an activation is assumed to be addito@r (ra) is increased by local
neuronal activity by an amount independenthefunderlying @BF (ga). In this centred
modeltheimages of condition effects; = (0q,...,0qk) can be viewed as meanages

for the condition, adjusted to &®gfF(gA) of X.. .

The null hypothesis of no activation effect at vokelH,: ag, = a4, can then be
assessed. Since vage interested in activation, it is usuakestagainst the alternative

hypothesis + H:aq, > agg via at-test of H: aq-ag =0 against_l-u(:alk -0k > 0.

2.2.3. Model selection for single subject

Thetwo teststatistics proposed for a singlabject activation experimeate the
two samplet-test onnormaliseddata (eqn.13, p54), and thenple one way ANCOVA
(eqn.18, p57). The relationship between thtge approaches can be seen in the
following taxonomy of possible model®or a balanced single subject activation
experiment (egns.19).

Taxonomy of single subject models

(1) Two sample t-test on (3) One way AICOVA
normalised images Yigk = O + By (K =X.) + €
v 3 t
Yqu CX + sjqk (3 parameters)

qu qk qu + qu qu)

/ (2 parameters) >

(2) Paired t-teston (5) One way AICOVA with (4) One way blocked RCOVA
normalised images condition dependent slope¥§,, = o, + Y + B, (X, X.) + &g

Y7qk‘a "'ij+S quk‘a +qu(xlq X")+‘c' ZJij_o
z Vi = (4 parameters) (M+2 parameters)
= (0 Y% ) \, /
(2+M-1 parameters) (6) One way blocked RCOVA
Key with condition dependent slopes
Replication j=1,...M - X
Coﬁéitioln Jq =0,1 Yiaw = Ola+ Vi B (g X) + Eqe
Voxel k=1,..K 2 V=0

(M+3 parameters)
o : condition effect
y : block effect

B : global effect

Equations (19)

Recall thaj = 1,... M indexeghe replication for scans acquired under condjier0,1,

and k=1,...K indexesthe voxels. Proportionacaling models have beenmritten
without the scaling to gBrF of 50ml/min/dl. Arrows indcate logical extensions of
models. The dashextrowindicates that model 19.5 is an extension of model 19.1 if the
variance weightare ignoredClearly the parametenmay bedifferent in each model,
though thesame symbols have beersed. Inall the models it is assumethat

€iqk “ N(0,0,%), whereg is unique for each model.
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The block effectyy (eqns.12, 19.4 & 19.6would model regional changes in
neuronal activity (undebboth conditions) betweesuccessive pairs of scatisat is not
accounted for bglobal changes, such as localised decreasesmir areas associated
with anxiety.

A condition by replication interactiorug;,) would bejustifiable on physiological
terms as &abituation effect, modelling the reduced increase bmain activity as the
subject becomes accustomed totHsk set in théactive” condition. However, as there
are no replicationsvithin treatment-block pairs, this cannot be considetedgss a
simple parameterised trend is assumed.

2.2.3.1. Model selection for images
Model selection in this context is rather problematical.

Simultaneous model for all voxel

We areseeking a modehat wil simultaneously descrilibe relationship between
rcer and @BF and design factors ail voxels. Separate regiomsay require separate
models. Fitting a richer model thanappropriate, with redundant terms, reduces the
degrees of freedoravailablefor variance estimation, and hence redubespower of
ensuingtests at thatoxel. Fitting a smaller modéhan is appropriate leaves the omitted
effects in the residuals, introducirggructure into theresiduals in defiance of their
assumed independence, and leads to increased variance estimates with more degrees of
freedom than under the appropriate model. Vakdity of ensuingtests cannot be
guaranteed: If the appropriateodel has few degrees of freedarailablefor variance
estimation then the spurious “extra” degrees of freedom frema#ler modemayresult
in more lenient tests despite the increase in variance.

The cautious approach is to choose, agribdel forall the voxels, the richest of
the models appropriate for the voxels individually. Thus, consider a backward elimination
procedure (Draper an8mith, 1981, 86.3). Startingvith a saturated modedtliscard
terms if there ignsufficient evidencagainst th€omnibus) hypothesighat the terms in
guestion are all zero for all voxels at significance lavel

Multiple comparisons

Thereremaingthe largemultiple comparisons problem in using univariate statistics
to compare models for each voxdultiple comparisons in this imagetting is anajor
topic of this thesis, and is explored in detail in later chapters.

Since weare interested ifinding a model that fitfor all the voxels, ircomparing
two (nested) modelthe relevant questias: “Is thereany evidence, at alhgainst the
omnibus hypothesis that the extra parameters in the riobdelare zero foall voxels.”

If there is evidence, then the richmodel should be chosen falt the voxels. Thus, an
omnibus multiple comparisonsrocedure with weak control ovéamilywise error is
required. The exceedence proporti@st of Worsley (8.4.2.) will be usedwith a
(probability) threshold off = 0.01.

To facilitate the discussion, it is convenient adopt some notatiomot fully
utilised until we formallydiscuss multiple comparisonsahapter 3 (83.1.1.Recallthat
W={1,...,K} is the set of(indicesof) voxels thatorrespond to thérain region of
interest, assumed to be the whole intracerelmaime. For computational reasons, we
shall examinghe Ac-pPc plane onlyLet W,g[JW denote théindices) ofthe intracerebral
voxels in this plane. If |J kU are a set offoxel hypotheses, thehe intersection of
these hypotheses is thennibus hypothesiever voxels U, which we shatiienote H,.
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Hy is then theoverall omnibus hypothesis, and, Hthe omnibus hypothesifor the
AC-PCplane.

2.2.3.2. Model selection: Single subject activation studies

Model selection for “V5” subjects

For each of the “V5” subjects, table gbsesp-values for theamnibus hypotheses
that all the additional parameters the richemodelare redundant, for comparisons of
all models inthe taxonomy (egns.1%jor instance theolumn labelled “19.5%s. 19.3”
contains omnibup-values for the hypothesesg:Bok = B1k » KEWpg in model 19.5.

F-Statistic imagesfor the hypotheses were computexkel-by-voxel (for the
AcC-PC plane only) by comparinipe residual sums of squares undertthe models, the
so called‘extra sum of squaredikelihood ratio test (Drapeand Smith,1981, §2.7).
(Practicalities of computation are discussed 2rb§ This F-statisticimagewas then
“transformed” to a standard Gaussian statistic image, replacing each voxel statistic with a
standard Gaussian ordinate witientical probability of being exceedé¢skee 83.3.3.).
The resulting Gaussian statisttage was then assumed to be a strictly stationary
discrete Gaussian randoreld, and the variance-covarianoatrix of partial derivatives
estimated directly fronthe positivepart of theimage(see 83.3.5., anfbotnote?). The
omnibus p-value was then computedsing Worsley’'s exceedengeroportion test
(§83.4.2.) with a threshold of1(0.01), assignificance levetr = 0.05.

The last comparisorabelled “19.5vs. 19.1”, wasffected by fittingthe two-
samplet-test model for normalised image¢eqn.19.1)via the proportional regression
model (inparentheses in the taxonomigporing the weighting ofthe error termsThus
the validity of these comparisons is ooubt. (Recall discussion ofhe proportional
regression view of §2.2.1., p.54.)

Subject 19.2 vs. 19.5vs. 19.4 vs. 19.6 vs. 19.6vs. 195vs.19.1
19.1 19.3 19.3 19.5 19.4
nl63 0.0051 0.7501 0.1797 0.1834 0.1328 0.6750
nl64 0.1192 0.6541 0.1030 0.4404 0.6587 0.7668
nl72 0.1701 0.8757 0.2190 0.1875 0.8555 0.2916
n180 0.0000 0.5243 0.1280 0.2215 0.7144 0.0000
nl85 0.5705 0.7921 0.1173 0.2210 0.8616 0.7049
n191 0.2451 0.9352 0.0116 0.0521 0.8583 0.6350
nl192 0.0821 0.3869 0.7890 0.8745 0.7358 0.0002
nl197 0.6245 0.5737 0.6066 0.7731 0.6828 0.7373
n205 0.0625 0.2243 0.1878 0.0608 0.2792 0.1076
n210 0.0000 0.7742 0.0000 0.0004 0.5646 0.7960
n216 0.3817 0.2407 0.1683 0.6032 0.6446 0.2729
n221 0.0000 0.7214 0.0072 0.0216 0.3107 0.6834
Table (25)

p-values (to 4dp) fothe omnibusypotheses comparirtge possible models
for individual subjects from the “V5” studp-values less thaa = 0.05 have
been emphasised with bold type.

In the taxonomy (eqns.19), there & “saturated” models tstart from, the
pairedt-testmodel andhetwo way blocked ACovA with condition dependent slopes.

23These “Gaussianised®-statistic images have a fairly smooth surfat®vethe x-y plane, but a
distinctly rougher onéelow. Since we are interested lgh values ofthe Gaussian statistic image, the
smoothness was estimated using only voxels with associated positive values.
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Starting with the pairetitestmodel (eqn.12), we see that thisvo samplet-testmodel

is adequate for eight of the twelve subjects; thervidence of a block effect in the
remaining five subjects. Consideringhe ACOVA models, we sedhat there is
insufficient evidence otondition dependent slopes (19.5vs.19.3 & 19.6 w)1%his
leaves us with the one way blocked@ova (eqn.19.4), withirwhich there issignificant
evidence of a block effect in three subjects.

Block effects?

The two models in routine use fdhe analysis of singlesubject activation data
(namelythe two samplet-testmodel (8.2.1.) and the oneay ANCOVA (82.2.2.)), do
not consider block effects. The pairedestand the blocked MCovA leave very few
degrees of freedom for variance estimatidf-1( and M-2 respectively), and can
therefore be highly conservative.

In most cases the block effects #ikely to be slight relative tothe activation
effect, and casafely beignored. Large block effects mattle condition effects, and add
to thevariance (albeit in atructuredmanner), makinghe two samplet-testand the one
way ANCOVA conservative. For very large block effects the paitedtand the blocked
ANCovA may bemore powerful than their oneay counterparts, despite the low
degrees of freedom.

Thereremainsthe choice between proportiorsglaling and-testsand an ACovA
approach.
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Proportional scaling vs. linear modelling for rest scans

It is difficult to compare the proportionataling models anthe ANCovA models,
since theyare notdirectly related. Fristoptal. (1990)justified the ANCOVA approach
over proportionakcaling by fitting a simpleegression model (eqn.17) tioe rest scans

and assessingttg= 0 against F H:agk # 0 with the usuat-statistic. (This disregards

the weighting ofthe variance term#mplicit in the proportionascalingapproach.)They
found significant evidence agairtste omnibus hypothesis Hat the 5%evel usingtheir
exceedence proportion test (83.422 Jhis is perhaps to be expectgienthe distance
of the datafrom the origin andthe observation that threlationship betweercer and
gcBFis unlikely to be linear.

However, if uncalibrated “counts” images afare used as indicators afBF, then
variations in the administered désmay cause variations ilmdghat swamghose caused
by changing gBF, resulting in a relationship betweenand g thatis proportional This
appears to be the case for thnajority of the “V5” subjects, as illustrated in the
following table (table 26) of omnibysvalues for H, , where h:ag= 0 in eqn.17.

Subject p-value
nl63 0.3560
nl64 0.7534
nl72 0.6295
n180 0.0000
nl85 0.8810
n191 0.7327
nl192 0.4809
nl197 0.7051
n205 0.0009
n210 0.7171
n216 0.6045
n221 0.7086

Table (26)

p-Values (to 4dp) fothe omnibusypothesis kj,, of voxel hypothesis fiog, = 0 for all
intracerebral voxels in thec-pc plane,for the rest scans from eashbject fromthe “V5”
study. The model is a simple regression (eqn.17). Thesdues were computed in a
similar fashion to those imable 25 abovet-statistic images fothe hypotheses were
computed voxel-by-voxel fahe Ac-pc plane of eaclsubject. Since ware interested in a
two sided alternative hypothesis, thstatistic image was “transformed” tostandard
Gaussian statistic suthat the standard Gaussian ordinassociated with eacloxel is
as likely to be exceeddtly astandard Gaussian random variable) ag-#tatistic is to be
exceededin absolute valueby an appropriately distributetd random variable (See
83.3.3.). These Gaussian statistic imagese then assessed by Worsley's exceedence
proportion test as before, #itreshold ©(0.01). p-values lesshan o = 0.05 havebeen
emphasised with bold type.

24Fristonet al. (1990), due to having a limited amount of datssessethe proportionalityhypothesis
on onlyeight rcBF scans, these being th&o “rest” scans on each subject from experiment orfour
subjects. Subject effects wenet considered, the resulting correlations in the eaodsprobable
underestimation of the varianeeereignored.(SeeMiller, 1986, 8§5.5.)However,Fristonetal. report
that atest for proportionality tedtadbeen a routingart of theiranalysis method for a period of time,
and that |, was consistently rejected.

25For example, due to “dose ranging”, which was used in the “V5” study.
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2.2.4. Conclusions: Single subject statistic images
ANCoVA for calibrated ICBF data

For theanalysis of singlsubject activation experiments wittue (calibrated) €BF
data,this author’'s recommendationtlse oneway ANCovA approach (as proposed by
Fristonet al, 1990). If the ACovA model fits well, with regression coefficient feom
unity, thenthe t-test approach onormalised imagesiay be insensitive tactivation. If
the proportional regressianodel implicit inthe two samplet-test onnormaliseddata
(ignoring theweighting ofthe error termsiits well, thenthe ANCovA may beexpected
to give a slightlyconservativetest, since it has arextra parameter to fit. Thus an
ANCoVA approach would appear to possess thedlastiund properties. The use of the
oneway ANCOVA mayresult in a loss gbower in the presence tafrge block effects, in
which case the one way blocked@ovA should be used.

The choice of a sensitivaut robust method isarticularly pertinent sincany one
PET centre willanalysestudies with aset method, rather thaelecting a model for the
data at hand. The apparaamplexity (to the statistically naive) of ACovA, and the
increasedifficulty of computation of statisticnages(as compared to tatest), are the
main barriers to its routine use.

Proportional scaling for large variations in introduced dose

If no arterialsampling isundertaken, and relative activitybging examined as an
indicator ofcBF, then a proportional modeiay well beappropriate. In this situation the
t-test onnormaliseddata islikely to bemore powerful then the orveay ANCOVA, since
thet-test has an additional degree of freedom (of some consequencthadegrees of
freedom are so low), argincethe assumption of constant regressioafficient across
conditions in the ACovA model is likely to be false.

Since the majority of functional mapping experimenise “counts’images of
relative activity, this conjecture deserves further examination on real data sets.
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2.3. Multiple Subject Activation Experiments

Consider now a multiple subject activation experimBetallour notationYjiq
denotes the aBF (rA) measurement at voxed=1,...K, of scanj=1,...M, under
condition q=0,1 (0 ="rest”, 1="“active”), onsubjecti=1,...N; and Xjq is the
corresponding CBF (gA).

2.3.1. Proportional scaling approach

Proponents of the proportionsdalingapproach for theormalisation of €BF (ra)
imagesfor global changesanalyse multiple subjedctivation studies using a paired
t-statistic at each voxel, pairitige mean ofthe (normalised)estscans with thenean of
the (normalised) active scans for each subject.

2.3.1.1. t-statistic on subject difference images

Specifically,the data for eacbubject is collapsed intosbject difference image
A = (Ajq,---Ajk) by subtracting (for each voxel) theean ofthe “rest” scans from the
mean ofthe “active” scans, afterormalisation forglobal changes (ed®D). This
constitutes thepairing, andt-statistic T = (T4,...,Tk) iS computed in the usual way
(eqn.21).

D= Yok~ Y'ieok (20)
Do
Tk = (21)
\/SZN
N
— 1 : ,
where A .y N z Ay is thestudy mean differenc voxelk,(22)
i=1

N
1 — : . .
and Sk2 “N-1 z @xik - A -kB? Is the variance estimate (23)
i=1

Distributional results
X3 Und
N.1 - Ynder

Hi = 0, Ti~ty.1, @ Student’s-distribution withN-1 degrees of freedom. For the one-

Assuming Ay ~ N(iy,0f), then E.k ~N(y, of / N), and Sk2 ~

sided alternative hypothesg Hi> 0, ap-value for each voxel can be computed,
giving an (unadjusteg)-value image indicating evidence of activation.
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2.3.1.2. Discussion of t-test on subject difference images

Robustness: Assumptions
The collapsing othe M scans for each condition tmeanrestand activation

imagesvi.Ok and Vi.lk for each subject doubtleggves arobust test.The only

assumptions ara;y, ~ N(uk,oﬁ), whichappear to be reasonable for the “V5” study (see
§2.6.1.).Averagingthe datdends increased credence to assumptions of normality, by
appeal to the Centraimit Theorem. No assumption needs to be nam®it the intra-
subject variation ofaBF values.

Robustness: Subject, block, habituation and linear trend effects absorbed

Sincethe test igaired, subject effects are also absorbed. tEeeassesses the
mean activatior(after normalisationpver ascanning session, aridus blockeffects
cancel out, and habituation causes no problem. (Recall that each consecutive pair of scan
slots forms a block, anithat habituation is a block by condition interaction.) Localised
linear time effects also cancel out, provided they constant across subjects Hrat
subjects have been allocated to condition presentatier @BAB... Or BABA...) in a
balanced fashion. Global changes in images are removed by the proportional scaling.

Robustness: Random subject effects incorporated

If different subjects respond tine stimuludifferently (a condition by subject
interaction), then an appropriate modeIAi§~N(uik,0E), that is, a differenimean
activation for each subject. If the subjects aaedomly sampled from darget
population, them;, may betreated as a simple randaffect, pj, ~ N1, TE), wherepy

is the populatiormean activation effect. Thefs, ~ N(p, OE +TE), and thet-test on

subject difference images providesvadid test for ahypothesisedero mean activation
effect (H:p,=0) for the population.

Model for t-test on subject difference images
Since a paired-test is equivalent to atwo way blockedANOVA with two

treatments, thestatistic proposed may be viewedlas teststatistic for H:oq-0gx = 0
within the model:

Y'ieqk = Ogk + Vik * Eigk whereg;g,  N(0,0%) (24)

Further, it can be showhat the (two-sidedi-test onsubject difference images is
equivalent tahe F-test for no maireffect in a two-waymixed effects AovA model for
the normalised images. In this model (eqn.2%® main effect§the conditioneffectsa)
are assumedxed, andthe block effectgthe subjeceffectsy) are assumed random. The
subject by condition interaction effectg are also considered random.

Yiigk = Ogk T Vik T OYgik * Eijgk whereejjgy * N(0.07) (25)

The F-statistic for main effect is the ratio of the (mean) sums of squares for the
main effect and for the interaction (Scheffé, 198@ler, 1986). This F-statistic is the
square of thé-statistic of eqn.21.
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Drawbacks: Low degrees of freedom, assumption of proportionality

Most activation studienly have six totwelve subjects|eaving the proposed
t-statistic with very few degrees of freedom. Asshallsee (83.3.6.5.), the randdield
methods for assessirige significance ofstatisticimagesdon’t work well for t-statistic
images withlow degrees of freedom. Considerthg equivalentF-statistic for the
mixed-effects AOvA model(eqn.25), greater degrees of freedoray beacquired by
dropping effects for which there is little evidence.

For the singlesubject experiment £82.3.2., p60), we saw that thesumption of
proportionality inherent in the use obrmalised imagewas mostikely false for true
rCBF data,andthat the use ohormalised images artdvo samplet-statistics to assess
activationmaynot be asensitive as an MCOVA approachThis wouldsuggest that (at
least fortrue ICBF data) that an RCovA approach could be more powerful than an
ANOVA on normalised images. Weow turn ourattention to AICovA models for
multiple subject activation experiments.



Multiple Subject Activation Experiments 67

2.3.2. ANCOVA models

2.3.2.1. Models
(4) Two-way condition*replication (8) Two-way condition*replication by
by subject design with subject subject design with
dependent slopes condition-replication dependent slopes
Yigk = Qg ¥ Vie T Bie (Kq7X..) + € Yiak = Qg + Vi + B KijgXen) + i
2 Y,=0 2 Y=0
(2N+2M-1 parameters) \ / (N+4M-1 parameters)
(3) Friston’s two-way condition*
replication by subject design
Yigk = Qg + Vie + B (Xijq-T(---) + &gk
2 V=0
(2M+N parameters)
................................................ A ... Frston”models
(1) Two-way condition by subject design  condition” models
Yigk = O ¥ Vie T By (Xq7%.) + €
2 v=0
/ (N+2 parameters)
(2) Two-way condition by subject (5) Two-way condition by subject
design with subject dependent slopes design with interaction
Yigk = O+ Vo B Oig™%..) + e Yiak = Og Vi + O¥gic + By (XigX...) + €
> V,,=0 Zyk—o 2,0y =0,2,0y,=0
(2N+1 parameters) (2N+1 parameters)

e
(6) Two-way condition by subject design
with interaction and subject dependent slopes
Y|qu = CX + Yi + Gquk + B|k (Xuq_zu) + 8ijqk

= Key

21 %= 0, z(3l(\.lx[Ye(11;l;1met(<:e)rs)Z a Ol 0 Subject i=1,..N
Replication j=1,...M

Condition q= 0,1
(7) Two-way condition by subject design with | Voxel k=1,..K
interaction and condition & subject_dependent slopes . condition effect

Yuqk = a VYt ayqlk + quk (leq-x- ) + euqk Y : subject effect

2 V=0, Z ay,=0,Z,ay,=0 B : global effect
(4N parameters)

Equations (26)

Recall that j (=1,...M) indexesthe replication for scans acquired under condition
g (=0,1), on subjeat( = 1,...N), and thak ( = 1,...K) indexes the voxels.

In the taxonomy the parenthesised subscoptg (in models 263, 26.4 & 26.8)
indicate thateplication {) and condition ) are to be considered gombination as a
single factor. For each voxelthere is a separate main effectfor eachcombination of
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condition €) and replication;. This arrangement wasoposed by Fristoat al (1990,
1994b), and we shall refer to models&6.4 & 26.8 as “Friston” models.

Arrows indicatelogical extensions of models. Cleatlye parametensay be
different in each modelhough thesame symbols have beesed. Inall the models it is

iid

Lk N(O,okz), wheregy is unique for each model. Appropriate sum-to-

zero constraints have been suggested winex@essary, to give uniquearameter
estimates fofixed effects modeld-or consideration awsixed effects models it is usual
to either omit constraints altogether, orotdy constrain random effects to sumzero
over the levels of the fixed effects.

For models with condition dependent slope (26.7 &26Gheeffect of activation

depends on the value of the covariatBrygA), but is tested aK.... The exact form of

this dependency must lexamined to ascertaiwhether an effect imeaningful.(In its
simplest guise this is the “non-parallel linesi@ovA problem.)

assumedhat &

Random effects for population inference

If these modelsire treated afxed effects modelghen we caronly assumehat
the scans are drawirom the “population” ofall (hypothetical) realisations of scans of
these subjects, under identical conditions, and inference exiagds the current study
group, underidentical conditions. This inference is lnited value in models with
subject dependent slopes or subject by condition interadtmmexample, in models
26.5 & 26.6, asignificant positive contrast d¢fie condition effectésignificant evidence
against H:a 4, -ag>0 for some voxel(s), indicates only thathere is an evidence of an
average activation over all the subjects.

If the subjects in a study ar@ndomlydrawn from some population aboumhich it
is desired to infer, then subject effects (and hamgesubject by condition interaction
effects) should be considered as randamving mixed effectsmodels. Models
26.6 & 26.7 have subject dependent regression coefficighish then should also be
considered random.

2.3.2.2. Model selection

Fixed effects for model selection

For the purpose ahodel selection, weropose thasll effects be considered as
fixed. In model selection ware seeking a model fothe subjects at hand. If there is
evidence of an effedor these subjectghatis, as a fixeeffect, then such an effect
should be considered. M¥n making inferencagbout the populatiofrom which our
subjects were drawthenthe appropriate effects should be considered as random, in the
model previously chosen.

This fixed effectsapproach for model selecti@ives greater degrees dfeedom
for testing the presence of certain effebtst would beavailablewere they considered
random fromthe outsetgiving more powerful testsvhich are more straightforward to
perform. This is inline with the prposedmodel selection policy of considering the
richest model necessarincluding effects ifthere isany evidencéor them adall,
anywhere$

26Recall §2.2.3.1. “Model selection for images”, p.59.
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2.3.2.3. Model selection for “V5” study

Omnibus p-values for comparisons of models

Omnibusp-values for pairwise comparisonstbe models (eqns.26) fahe “V5”
study data are given in table 27. As in the single subject case, thesendresp-values
for the hypotheses fHhatall additional parameters the richermodelare redundant,
for all (intracerebral) voxels ithe Ac-pc plane,kO0W,g Forinstance, theow labelled
“26.3 vs. 26.1" contains thep-value for the omnibus hypothesis i, where
Hi:a(1g)k=---=0(mgk: G=0,1. F-Statistic imagesfor the hypotheses were computed
voxel-by-voxel, “transformed” to a standard Gaussian statistic image p-aatlies
obtained by Worsley’s exceedemmeportion testvith a threshold of®™1(0.01). This is
the sameprocedure as used for the single subjaodel selection, where details were
given (text preceding table 25, §2.2.3.2., p.60).

Comparison p-value
26.2 vs. 26.1 0.0000
26.7 vs. 26.6 0.4404

26.6 vs. 26.5 0.0000
26.6 vs. 26.2 0.0000
26.4 vs. 26.3 0.0000
26.4 vs. 26.2 0.2988
26.3vs. 26.1 0.0000
26.5vs. 26.1 0.0000
26.8 vs. 26.3 0.0916

Table (27)
p-values (to 4dp) fothe omnibusypotheses (ovehe intracerebraloxels
in the Ac-pc plane) comparingossible models for multiplsubject simple
activation experiments (eqns.26) on the “\&{idydata.p-values lesshan
o = 0.05 have been emphasised in bold face.

Leaving the “Friston” models aside fothe moment, the proposed backwards
selection method 82.3.1., p.59) startsvith the richestmodel in the proposed
taxonomy, the two-way condition by subjetgsign with interaction and subject &
condition dependent slopes, model72Gvhich we consider as fxed effects model.
Since there isinsufficient evidenceagainst an omnibus hypothesis adnstant slope
across conditions (“26.7 vs. 26.6"table 27, H: Bigk = Bj1xk U KOW,g), we accepthis
hypothesis (for the subjects at hand), and consider model 26.6.

Considering this two-way condition by subjeeisign with interaction and subject
dependent slopes asfiaed effects model, we have significant evidemgainst the
omnibus hypotheses of no interactic6(6 vs. 26.2" intable 27, h: ayyyx =0 O
kOW,g), and also havsignificant evidence againgte omnibus hypothesis afonstant
slope (H:Bik=Bk U kWpy).

Our selection procedurstops here, amodel 266. It iscomforting tonote that
comparisons “26.2 vs. 26.1” and “26.5 vs.1Z6 with voxel hypotheses |3 = By L
and Hceaygik = 0Lq,i respectively, also givsignificant evidence againgte respective
omnibus hypotheses. This again indicaitespresence of a subject dependent regression
parameter and a subject by condition interaction, respectively.

Selected model for “V5” study
Although models have been comparedly over the Ac-pc plane (for
computational reasons), there ligle to suggest that comparisons over twlole
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intracerebral volume woulgive substantially differenesults. Thus, for these datwith
subjects considered as sampled from a populatien, appropriatenodel would be
model 266, with the subject effect (and hence the subject by condition interaction and
the slope parameters) considered as random.

This model is perhaps to Bxpected. Itseems unlikely thatlifferent subjects,
under the same conditionsillvexhibitthe same relationship between regional glutbal
values. Hence we have a subject effect and subject dependent regression parameter for
the global flow (activity).Similarly, it seems unlikelyhatdifferent subjects respond to a
stimulus withthe same increase irtBF (rA) (afterglobal changes have beaocounted
for), hence a subject by condition interaction. Model 26.6 would therefore appear to be
the minimal justifiable model.

It is interesting tanote thatmodel 26.6 reduces totao-way mixed effects model
on omission ofthe regression termB;y). This is preciseljthe model of the simple
t-statistic on subject differenemageseqn.25),which is applied to globally normalised
ICBF (rA) data.

In conclusion, model 26.6 is probalthe mostsuitable ofthe proposedhodels for
most multiple subject simple activation data sets. Unfortunatelynased effects model
it is rather complicated, and the presence of a main effdtficsilt to test. The model
appears tofit into the Multilevel Modelling framework of Goldstein (1986)This
observation appears to createnanyproblems as it solves, and skallnot adopthis
line of investigation.

The ANCovAa model in widespread usetisat proposed byristonetal. (1990),
which we now consider.

2.3.2.4. SPM and Friston’'s ANCOVA

Friston’'s ANCOVA

Fristonet al (1990) proposednodelling activation studies with model & a
two-way ANCoOVA with subject as blockingactor, and acombination ofthe condition
and replication as the main treatméattor. There is a separatein effecta for each
combination of conditionq) and replicationjf at each voxellk). If all subjects are
presented with conditions in the same sequence, then the condition & replication factor is
equivalent toone indicating the sequentialumber ofthe scarwithin the session.
Alternatively, scans can lbe-ordered to @ommon presentaticorder. Weshallrefer to
this condition & replication factor as the condition*replication factor.

With this modelthe hypothesis of no activation at voXels then expressed as a

contrast of thecondition*replication effects: '(-:lg(. 1)k - F(.O)k =0, whereg(.q)k S
the mean of the condition*replication effects for scans acquired under condition

SPM

This model deserves speciattention because of its widespread use.
Fristonet al (1991b) developed a software package forahalysis of functionabeT
data.This “Statistical Parametric Mappirig(sP™M) package was (anstill is) the only
complete package for this type of work, and a large number of sites acquired the package
for routine use. The methodnplementedfor creating statistianagesfor multiple
subject activation studies was thestatistic for the above contrast of
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condition*replication effects in model Z6 To moOSPET practitioners, this ighe
ANCOVA .27

History

Originally, not appreciating the regression approach (ugimgtrix methods),
Fristonetal. considereanly modelsfor which computationsszia sums okquares were
readily available, and in this respect appear to havelipgted to the models covered in
their primary referencéor ANCoVA, that of Wildt & Ahtola (1978).This elementary
text covers inference for one-way (completely randomised) designs, two-way
(completely randomised block) desigmghout interaction for data withoueplication
within eachcell (including atest of homogeneity of the regression parameter), and,
briefly, a two-way (factorial) design with interaction and constant regression parameter.

The omission, of Wildt & Ahtola, to consider replications within each
treatment/block combination perhapsplains whyFristonet al arranged theimodel
accordingly, considering condition and replicatjomtly asthe treatment factoihis
arrangement has its advantages, as poiotegd byFriston (1994b). In particular, it
provides a general modilatallows analysis ofarious experiments with more than two
conditions, permits post-hoc (one-sided) testing of interactions between conditions, or of
time period/activation interactionvg& appropriate contrasts of tleendition*replication
effects.

Discussion

Friston’s proposednodel (263) is the largesihodel inthe taxonomy fowhich
there is ndifference inthe analysesinderfixed and random assumptions on Hubject
effects. But is the model big enough?

Firstly, model (263) assumes a constant regression parameter across conditions
and subjects. As we have seen, homogeneity of regression parameter across conditions
within subjectsappears reasonable, gt acrossubjects. Consider subject dependent
slopes for model 28, giving model 264. Forvoxel hypotheses |f31,=...= Bnk the
p-value for theomnibus hypothesiverall the intracerebratoxels inthe Ac-pc plane),
assuming fixeceffects, is 0.000@to 4dp), significant evidence against homogeneity of
regression (table 27, comparison “26.4 vs32&8 The assumption of constant
condition*replication effect across subjects would aksem questionabl&r thesame
reasons that constanbndition effect was questionable for the “condition” models, a
hypothesis we rejected for the “V5” study.

Thus, from amodellingpoint of view, Friston’s model (28) isinadequate for the
“V5” study, and perhaps for simple activation studies in genAssuming constant
regression parameter and condition*replication eBabstantially increaseke degrees
of freedomavailable totest thesignificance of acondition effect, over what would be
availableunder a more appropriateixed effects model (26), and quite possiblieads
to over-sensitive tests, a point noted by Ford (1994).

In themodels considered when selecting arCAVA for group data theondition
effects were assumed to be constant across replications. In Fristal€stheyare not.

27The spMm packagehasrecently been re-written, releasedNiovember 1994 aspmd4. In thisversion

any fixed effects model can be analysetHowever, model 26.3 isstill recommended
(Fristonetal., 1994Db).

28Fristonet al. did not report such a test. Rathtirey testedhe homogeneity of regression across the
condition*replication combination factor. Using data fréour subjects, each of whom were scanned
twice under each of three conditionhey found little evidencagainst thehomogeneity hypothesis
(using theiromnibus test)This is perhaps not surprising considering the size of thesgatand that
between subject variation dominates any within subject variation of regression parameter. Similar results
are obtained for the “V5” study (table 27, comparison “26.8 vs. 26.3”, ompiil8916).
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To assess the importance of this, considevthel hypotheses (1= .- =0 Mgk »
g=0,1. For the'v5” study we find that there isevidence against this hypothesis in
Friston’s model (egn.28, omnibusp = 0.0000 (4dp),comparison “26.3 vs. 26.1” in
table 27), buhot when subject dependent slopes considere(bmnibusp = 0.2988 to

4dp in table 27, comparison “26.4 vs.29%. We concludethat, for these data, there is
insufficient evidencagainst homogeneity of condition effect across replications when an
appropriate model is used.

2.3.3. Conclusions

An approach taylobal normalisation has to be chosen, and a model selected for
inference. In practice this has resultetMmo methodsbeingadoptedalmostexclusively,
namelythet-statistic on subject differenamages(after normalisation foglobal changes
by proportional scaling), and Friston’siGOVA.

2.3.3.1. t-statistic on subject difference images

Advantages

Thet-statistic is attractive for routine use because of its robustnessngpitity.
The assumptions required for its useramgmal and easy to verifylhe statistic i®asy
to compute. The formulation of tltestatistic in terms of subject difference images makes
the statistic accessible, and easy to visualise.

This simplicity hides arather complicated model, a two-wawixed effects
ANOVA (eqn.25). In thésimple” t-statistic, subject, block and habituation effeztscel
out, as do(local) lineartrend effects. (The latter provided they are constant across
subjects, andhat subjects have been allocated to condition presentatider in a
balanced fashion.) Further, random subject by condition interaction is incorporated.

Disadvantages

The criticisms ofthe t-statistic are thénsensitivity ofthe ensuingtests(usually in
comparison to Friston’'s MCovA model, eqn.26), and the assumption of
proportionality implicit in global scaling for the normalisation of global effects.

Consideringthe ensuingtests, these aliesensitive because tie low degrees of
freedom available. As w&hallsee in chapter 3 (83.3.6.5.), methods for tegtstgtistic
images usingesults for continuous randoimlds are conservative fdrstatisticimages
with low degrees of freedom. In itself, this increases confideraxyisignificantesults.
However, there are othdechniquesavailablefor testing statistiomages with low
degrees of freedom that are sensithanelyvariance smoothing artde non-parametric
approach of chapter 6, or the use of “secondary smoothihigh we shalfeturn to in
chapter 3 (83.3.6.6.).

Turning to the assumption of proportionalifyor true ¢BrF data theevidence
suggests that theelationship between regional and global flover the normal range of
gCBF (across scans on thsame individualunder the same conditions) is not
proportional. Foruncalibrated “countstiata the case is lestear cut, and depends on
the variability of the introducedctivity. A proportional model appears to be acceptable
for the majority of the subjects in the “V5&xperiment analysedere. Whether this is
true for other “counts” data setemains to beseen. Nonetheless, the real question is
whether departures from proportionality comprontisevalidity of tests based on the
pairedt-statistic. The opinion of thiauthor is that the opposite is trugamely that
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departures from proportionalitperelyadd to the errovariance (in a random manner),
and thereby decrease the power of the approach.

In summary the t-statistic, for subjectlifference images, leads torabust test,
albeit a relatively insensitivene. Assurance can be placed in the results of a such an
analysis, even if the initial assumptions are not checked.

2.3.3.2. Friston’'s AICovA

More accuratenodelling ofthe relationship between regional and global values is
the only motivation for considering am80oVA approach. However, for the “V5” study,
model selection fothe ANCovA models leads to a model (B that iscomplicated and
difficult to apply todata. The ACovAa model in widespread use tisat proposed by
Fristonetal. (1990), a two-way condition*replication by subject design, with constant
regression slope.

Validity?

It has been showthat, from amodellingpoint of view, this model is inappropriate
for the “V5” study, and its inappropriateness &her similar studies conjectured at.
However, thekey issue ifiow serious the routine usetbfs model is in terms dalse
positives. The degrees of freedaawailable for testing in Friston’s MCOVA are
substantiallygreater than thosavailable within anore appropriatenixed effects model,
such as 26, but theeffects omitted in Friston’s modeiflate the variance term. The
validity of tests for activation based ¢tims model depends dhe actual magnitude and
structure of the omitted effects. In the presence of such efi#d¢teatcan be said ithat
the assumptions of tlreodelare not trueand thereforghat thevalidity of ensuing tests
cannot be guaranteed.

Empirical validation

It would be interesting to compare the resultamdlyses using Friston’s model,
and modelsincluding subject effects, subject lmpndition interactions and subject
dependent slopes. This woldtve some insight intthe importance of such terms, and
the consequences of their omission.

Ideally, one wouldlike to applythe variousnodels to a number ofull data sets,
where the “rest” and “active” experimental conditions are identical.

This has been done with Friston’s model in a few cdegstherwith Friston’s
“Bonferroni” method for testing statisticnages (Fristoetal., 1991d3}°. Only a few
false positives have be&wund,indicatingthat the methodeads to validests.Also, for
“gold standard” activation experiments whéne actual activation site is knovirom
previouswork, the activated areas aerrectly identified, wittonly a fewisolatedfalse
positives. For many this is sufficient empirical validation to justifthe approach.
However, methods admpirical validation such deeseonly address thessue ofvalidity
for the experimental paradigm at hand. The subjects must be assumed to be
representative of the population about which it is desired to infer.

It would be interesting to continue these investigations further.

2%riston’s “Bonferroni” method for testing statistic images is discussed in §3.3.2.



74 Chapter Two: Statistic Images

2.4.Additional Comments

Inter-group comparisons

The single subject models (eqns.19, p&&) also used to assess changessR r
patterns between groups, where each subject ingraap isscanned once. Here there
is no notion of a block (Bme pairing) andttention is restricted to models.1919.3 &
19.5; whereg indexes the group, andhe subject within each group.

In this situationthe inter-subject variation ircgF is likely to begreat. For
“counts”images of &, variations in g due todifferences in gsrF mayswampthose due
to changes in the administered dose.

In addition, theremay be many physiological aeurological reasons to suggest
that thesensitivity of regional to global flow diffdsetween théwo groups forsome
regions of thédorain, particularly ithe groups ardistinguished by some physiological or
mental trait, as isusually the case. Thas, the assumption of constant regression
coefficient inthe oneway ANCovA model (eqn.18) may beinappropriate, irwhich
case 19.5 should be considered, and the presence of a condition effect inteigmeted
caution. Also of concern is the possibility that measrgliffers between the groups.

Condition dependent gCBF

In allowingfor changes in@pF (gA) (either by proportionagcaling or AICovVA)
when assessing condition specific changessr (rA), it should be borne imind that
changes in @BF (gA) across conditions can adversely affect the analysis.

Since @BF is calculated as the averagmr across the intracerebral voxels, an
increase iNCBF in a particular brain region musiuse an increase iC®F, unlesshere
is a corresponding decrease ircBF elsewhere in thebrain. There are
physiological and neurologic#éheories for such a corresponding decreagplaining
how increased blooffow and/orneuronal activity irone region of thérain caninhibit
flow and/or activity inanother. De-activation observed in the presence of activation is
taken by some to represent some form of functional connecthatyncreased neuronal
activity in one area inhibiting activity in the other. This view is not universally held.

If gCcBF varies withthe condition then care must be takencigmis increased by a
large activationthat doesn’'t have a corresponding de-activatioomparison at a
common @BF (gA) will make non-activated regions the brain (whose CBF (rA)
remainedconstant)falsely appear as de-activated, and the magnitude of the activation
will similarly be reduced. In these circumstances a better measure of backghaunge
should be sought. Such an estimate can be obtainexiahyiningthe flow (activity) in
brain regionknown to be unaffected by tisimulus. If such unaffected regions cannot
be specified, theanotherpossibility would be tofit a backgroundglobal value to each
rcer (rA) scan. This could be achieved usihg stochastisign change criteria, the
background gBF (ga) estimated as the threshdédel which iscrossed modtequently
by the cBF (ra) image.

If gCcBF varies considerably between conditions, as in pharmacological activation
experiments, then testing for a condition effect aéibowing for global changes
compares théwo brain states at a @gF (gA) unattainable in at least one of thin
states.This involvesextrapolating theelationship between regional and glokalues
outside the range of the observed data, an extrapolation which might not be valid.
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As a precaution, it is usual test forchanges in @8F across conditions. In the
“V5” study, there isinsufficient evidence of a change ia @cross condition®¥. John
Watson, theprimary researcher in the “V5” study, considers the depressed background
of the t-statisticimagefor the “V5” study (See 82.6.1.) todicate a true decrease of
rcBrF induced by the large increases in the visual cortex (personal communication).

Outliers due to “dose ranging” in non-calibrated studies

In many studies arterial sampling is not carried out, and “coimdgjes of relative
activity ra are obtained asdicating cBF. Here,dose rangingt can lead to anomalous
gA for some scans, outlieeglversely affectinghe ANCovA through large leverage. To
avoid this, imagesre sometimes scaled beforen@ovA according to the amount of
tracer introduced in a scan. 4f; is the measured amount attivity introduced into
subjecti during scarj under conditiorg, then the adjustedhages and global activities
are given by

Yijak Xijg
Yiiigk = > Xijq = ~
(4jq/4--5 (4Jq/4--5
This clearlyalters thevariance assumptions. An alternative approach would be to
weight observations according to th@ministeredlose.Outlying gz have no effect on

the proportionascalingapproachsincethe firststep is todivide bythe measuredlobal
activity.

i iq iq~N(0.0%). Thismodel is chosen since
it is analogous to theroposed ACovAa design. Since the p-valder non-zero interaction terms is
0.977 (this test is valid whethsubject effectsre considered random or not), we assume no interaction
and consider the modek;, =ag +y; + g, . The p-valuefor Hog=o4 is 0.106 (again, this is so
whether or nosubject effectare considered randomseeMiller, 1980, 84.5). Thus there is insufficient
evidence against H.
31Recall §2.1. (p52) for details.

30Consider initially the modety, =ag +Yy; + ayjq + &q Where;
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2.5. A Multivariate Perspective

Abstract

In our discussion of linear models relatinggF to design factors andcgr, we
have notconsidered the computatiorabblems of simultaneously fittingpe model for
thousands of voxeBs. Viewing the problem from a multivariate perspective provides
efficient computation, and offers sommsight into the problem. Irthis section we
demonstrate the relationship between the simultaneous general linear maetetsi&ha
(which we termimage regressign and multivariate regression. Sotvesic multivariate
regression theory is reviewed. Under an assumption of multivacateality for the
rCBF imagesthe PET scenarids a multivariate regressiobut thehigh dimensionality of
the data precludemny multivariate analysis. It fer this reason that we concentrate on
simultaneous univariate tests.

Whilst there is nothing new in this section tbe statistical reader, the advantages
of the multivariate perspectivare only just dawning orthe PET community, and this
section is included for the benefit of the reader in the latter category.

2.5.1. Sums of squares approaches

We have a single model to be fitted at each voxel. In a typatal set there are
77000 voxels,making individual fitting on a voxel-by-voxel basis usistatistical
packages prohibitive. Working witthe images asrow vectorsand using matrix
manipulationroutines, the appropriagums of squares can bemputed forall voxels
simultaneously. This ishe approach taken in older versions of ghe software
(Fristonetal., 1991a), using the exposition of NEOVA provided by Wildt &
Atholla (1978).

This approach is rather inelegant, being rather slow and requiring a purpose written
program for eactpossible design. Clearlglirect fitting of generalinear models for
images is possible by viewirtfpe problem from a multivariate perspective aming
matrix methodsThis point was noted by the author, passed oRristonetal. (1994b),
and is implemented isPVO4.

32A substantial (and unseen) part of therk undertaken during this Ph.D. hlasenthe development of
software for interactive analysis réTimage data. A number of the author’s routines are part cfrie
software.
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2.5.2. Multivariate regression formulation

Consider the general linear model for the data at \oxel
ij = le Blk + ... +XjQ BQk + sjk Wheresjk < N(0,0’%) (27)

WhereYj, denotes theasr (rA) measurement at voxek1,... K; of scan =1,...N; and
letXjq g =1,...Q be a set 0@ explanatory variables for scpreither covariates (such as
gcBF), dummy variables indicating levels ofactor, or acombination(for interactions
or for covariates with effect dependent on the level of a factor).

In matrix form the model is:

Y, O L X~ U U e, 0O
oxg oOF g Prg Fud
at U e
Nk 5‘1\11 XNQH %ng Nk
Yk = X Bk + gk

Since the design matriX, is the same for every voxel, we can waillehe voxel models
simultaneously in a multivariate linear model:

i %o
(vt ]| v¢) =g 0 (B 18¢) ¢ (] 1e)
%(Nl XNQH
P WP gu o %eg e Pag faofxf
: .. : =0]: 0O 0O: .. s : .. :
Q(Nl YNKQ %(Nl XNQH H3Q1 BQKH @Em SNK@
Y = X B + €

Let Yj = (Yj1,---,Yik): Bq= Bqr--- Bgw) & & = (€1 Ejk) be the cBF images,
theimages ofthe coefficients, and images die errorgespectivelyall asrow vectors.
Then the matrice¥ and are stacks of thenages, and stacks tife coefficient images
respectively:

Image regression

In multivariate regression it issually assumed théte error vectors; are drawn
independently from a multivariate normal distribution waétro mean and variance-
covariance matriz. In the present context simultaneous regressions (egn.27) we are
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only assuminghat themarginal distributionsare normalg;y ~ N(O,oﬁ). It is for this
reason that we differentiat@age regressiofrom standard multivariate regression.

2.5.3. Multivariate regression

Since the difference betweenageregression and standard multivariate regression
lies only inthe distributional assumptions, computation of least squares estimates in the
two situations is identical.

Least squares estimates

The usual matrix results for univariate regression continue to hohdultvariate
regression. (See Krzanowski, 1988, ch.15.) The least sqgparegple gives normal
equations:

XTY = (XTX) B

If X is of full rank thenXTX is invertible andhe pxK matrix of parameter estimatés
(each row is the image of a fitted parameter) is given by:

B=xXTX) Lt xTy (28)

SinceX is only of dimensiomNxQ computation of )(TX)'1 IS notprohibitive. For
non-unique designs, constraints on the parameters can be impogee@ @ design
matrix offull rank,leading to a unique leastijuares estimate, or an algebraic inverse can
be used to obtain least squares estimatesS&weffé (1959)For ease of computation,
we shall take the former course of action, and henceforth assuKehtmatanlQ.

Fitted values, residuals
TheNxK matrix of fitted valued (rows are fitted images) can be obtained as:

N\ N
Y=XB
andNxK matrix of residualé\, estimates of the error matgxas:

g=v-¥



A Multivariate Perspective 79

2.5.4. Image regression

That themultivariate formulation addresste® simultaneous regressionsiofage

regression can now bieadily seen: Partitioninf andY in eqn.28 into([f%1 || [EK)

and (Yl |- | YK)it is clear that the multivariate approach is simultaneously fitting the

general linear modefsr each voxel. In particulaﬁk is the least squares estimate3bf
for the regression avoxel k. Since we have assumed (univariate) normality, the

univariate theory thegives us hat ﬁk is also themaximum/likelihood estimate of3
(Scheffé, 1959), witlQ-variate normal distribution:

B ~ No(B, 2(X™)D)

Note that the fitted parameters, considered together aleroxels, do not
necessarily have a multivariate normal distribution, since no multivariate assumption is
made about the data in the image regression setting.

Distributional results

Theimageregression formulation allows easymputation of univariate results at
all the voxels simultaneously.

The residual sums of squares tbe voxels, arranged as iamge (XK row
vector), are given by:

R= diag(’»:\T @) (the diagonal elements of €, arranged as a row vector)

(Since the residuahatrix € is of dimensiorNxK, the esidual sums of squares is more
efficiently calculated directly, by summitige squares of thr@lementdor each voxel, i.e.

. . . /\
summing within columns, the squares of the elemergs of
Similarly, the image of variancesz (02,...,02), is estimated by as:

R

PO 1 S—
~ N - rankX)

N
LV (N - rankQ()) elementwise \/s2
with Vv ~ T XK- rank(X)

Here, thedivision operator is understood to aelement by element on matrices and
vectors. The“elementwise” qualification orthe tilde indicatesthat the distributional
result is to be interpreted applying tothe individual elements athe vector on théeft.

So, elementk of V, GE, is distributed asrﬁ/(N -rank(X)) times a chisquared variate on
N -rank(X) degrees of freedom.
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Consider afixed effects modeland auniquely specified desigperhaps by
imposed constraints) witlQ) (= rankX) ) parameters. Then, for a @x1) vector
defining an estimable functiod p:

JAY
XTB - XTB elementwise
N IN-Q
v xH(XTX) " x

Here the square root operator is understood to act element by element on a matrices. For
unique designs, with rank(=Q, all parametric functions areestimable (see
Scheffé, 1959, Th.4).

For fixed effects modelshe familiar “extra sum of squaredikelihood ratio test
(Draper and Smith, 1981, §2.7) for general linear hypotheses constraining the parameters
Bgk + is alsoeasily computed, provided the hypotheseg tbnstrain the parameters
identicallyfor each voxek. In this casehe model undethe null hypotheses is theame
for all voxels, and thE-statistics for each voxel are given simultaneously iR-atatistic
imageF by:

E= !R - RH! [ df elem_g_ntwise
- N

\

I:df, rank(X)

whereRy is the image of residual sums of squares undefalmtldf is the reduction in
degrees of freedom imposed by the constraints.

Thus, considering the regression &tivoxelstogether as aultivariate regression
enables simultaneous fitting tife models for each voxel, and allowasy computation
using a matrix manipulation package on a large comgiuter.

2.5.5. Multivariate regression revisited

We have concentrated on simultaneous univariate methods, and used the
multivariate perspective afmageregression for computationafficiency. As we shall
now demonstrate, a full multivariate analysis is precluded.

Multivariate hypothesis testing precluded
Consider the problem as a multivariate regression. Assumgaéhetror vectors;
are drawn from &-variate normal distribution with variance-covariance mariiJnder

this assumptiorthe joint distribution ofthe fitted parameteﬁhk is multivariate normal;
the expectedvalue of [/3\> is B, and the covariance betweeﬁhk and ﬁq- K IS
(D k% (XTX) g o - Thefull sum ofsquaress = €1 € 34 leads tomaximum likelihood
estimate of the variance-covarianogatrix = as Q:S/N, and unbiased estimate

5 = S(N -rank()).
Sincethe dimensionality othe dataK, far exceeds theumber of replicationsy,

. . . VAN . .
the estimated variance-covariamoatrix 2 haslinearly dependent rows/columns, and is

33The currentwork was undertaken using MLAB (The MathWorks Inc., Natick), a matrix
manipulation package with extensive programmangvisualisation features. The platfomsed was a

SUN SPARC2, with 48MB of RAM and 160Ms of virtual memory.

34S has a Wishart distribution witK -rank(X) degrees of freedoand parameteX, and isindependent

AN
of B.
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therefore singlar (see Healy,1986). This precludesany ofthe standardnultivariate

analyses, whose statistics are functions of the eigenvalﬁes of
For instance, foffixed effects modelghe likelihood ratio test for egenerallinear
hypothesis lead to Wilks’ Lambda as a test statistic (see Krzanowski, 1988):

/

whereﬁo is themaximumlikelihood estimate ok under thenull hypothesis. (This is the

~

2

~

N= Zo

multivariate analogue of the “extsam ofsquares principle”) Iﬁo is singular, then so is
ﬁ, and the statistic is not defined.
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2.6. Example—"V5” Study

Presentation of statistic images

Throughoutthis thesis, statistitnages shall beepicted bymeshplots of asingle
transverse plane, usually the-pc plane. This form is chosen in preference to grey-scale
images because detailstireimagesare shown morelearly. In particular, rugosities in
an image are readily discernible.

In these plots thex-y plane corresponds to the relevant transvesBee, with
scalesgraduated imillimetresaccording to the standafichlairach co-ordinatsystem
(to which theimages have been aligned). Thhe bottomleft of the meshcorresponds
to the posterior of therain, andhetop left to the left of the brain. The vertices of the
mesh are located above the voxel centres, with heights indicating the value of the statistic
at that voxel.

2.6.1. Proportional scaling approach

A proportionalscalingapproach vl be illustrated, using #&statistic formedrom
subject difference images, as describe®i3.8.

2.6.1.1. Statistic images
Below are mesh plots of tae-pPc planes of various statistic images for the “V5” data.
Subject difference image
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Figure 28
Mesh plot of subject differenémageA, for first subject inthe “V5” study.
(Eqn20) Thex-y plane is theac-pc plane. The heights of theertices
indicate the value dk,,. for the appropriateoxels.The z axis is graduated
normalised counts. The “flat” border at tleelges corresponds tmxels
outside the intracerebral volume, whose values have been set to zero.
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Study mean difference image
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Figure 29
Mesh plot of studyneandifference image fothe “V5” study.(Eqn22) The
z axis is graduated normalised counts. Aberc plane is shown.

Sample variance image
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Figure 30

Mesh plot of sample varianceaixel k, Skz, of thesubjectmeandifferences

for the “V5” study (egn.23). Thez axis is graduated normalised counts
(squared). Thec-pc plane is shownNote howthe sample variance image
is quite noisy, whereas the mean difference image of fig.29 is smooth.
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t-statistic image
15

10

/,//?'*:/7\‘\4'«‘\‘ \ \ P 2
e S
NN UV A NS
KA TITRD ‘\Q “\\\\ \k.,“),,;\ N(X) XN ?,,»‘\\l{
Al NN
P LIRS
At ':Q,';;I[ :;I "0 ‘ \
1/

1

i
o
i

)

(XSS
XA \
AR
w\\t\\«!§§vg'vl.?) Wi

\ S \\ ‘“\A
‘\_@\“\‘"/\\‘:g’g’\\\\\‘,\\‘l

-50

X -100

Figure 31

Mesh plot oft-statistic imageT for the “V5” study (eqn.21). Eachvoxel
statistic is distributed as a Student'sariate with 11 degrees of freedom,

under thehypothesis of no activation #tatvoxel, H:p= 0. Ay ~ N(l,,02)
is assumed. Thec-pc plane is shown. The roughness of the statistic image

is due to noise in the sample variance image (fig.30).

Unadjusted p-value image
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Figure 32

Mesh plot of (unadjusted) one-sidgdvalues forthe voxel hypotheses
H. =0 of no activation at voxet, computed fronthe t-statistic image
(with 11 degrees of freedom) of fig.3IThe p-value axis is graduated in
reverse to depict activated voxelshagh. Voxels outsidehe intracerebral

volume have been removed. TAepc plane is shown.
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2.6.1.2. A crude Bonferroni analysis

From thet-statisticimage andthe corresponding-value image (fig81 & 32
respectively), there would appear todsédence againshe hypotheses of no activation
for voxels atthe rear of thérain. (Voxel hypotheses \Hi =0, assuming
Aj ~ N(U,00)). The maximum t-statistic in theac-pc plane is13.692 (to 3dp) at
Talairach location (274,0), and thenaximumt-statistic in the wholdrain volume is
20.147 (to 3dp) at (-20,-80,12)with p-values of 1.48108 and 2.4%1010 (to 3sf)
respectively.

A crude Bonferroni assessment

At overall significance levebr for all the K voxels, a(highly conservative)
Bonferron#> correction for theK simultaneousests would reject Hif the p-value at
voxelk, P, was less than/K. This leads to Bonferroni singgtep adjusteg@-values of

I3k = min{K,, Py, 1}. The Bonferroni approach &vel a rejects thenull hypotheses for
voxels with adjustegb-values less than. Here, the intracerebrablume consists of
K = 77189 voxelsleading tothe adjusteg-value image of figure 33a. Thresholding the
p-value image att = 0.05 atthis value revealthat there i®vidence of activation at the
posterior of the brain (fig.33b).
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Figure 33
(a) Mesh plot of Bonferroni single step adjusted one-sigedhlues,
computed fromthe p-values of fig.32. Voxels outsidthe intracerebral
volume have been removed. (b) Voxels with adjugtedhlue below
level 0.05. The outline of the intracerebral area is superimposedad-he
plane is shown.

3%The” Bonferroni correction for multiple comparisons problems is discussed in §3.2.1.
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2.6.1.3. Empirical examination of assumptions

Q-Q plot for single voxel
The analysis ofthe “V5” study just seerelies onthe assumptiothat thesubject

difference images have normatlistributed voxel valuegy, ~ N(uk,oﬁ). Considering a

single voxel, this assumption can be examineglbtting the observedalues against
expected order statisticgiormal scores), in a@-Q probability plot (fig34). The
approximate linearity of this plot suggests that the assumption is reasonable.
Summarisinghe linearity viathe correlatiortoefficient leads to a spie Shapiro-Wilk

type test fornormality (Filliben, 1975)The null hypothesis is HKik ~N(u,0f). The
correlation here is 0.972 (to 3dp), above thgical threshol®® giving insufficient
evidence against the hypothesjsatithe 5% level.

v5pmd Q-Q plot for V5 study, (0,0,0)

Subject mean difference at Talairach origin

-2 -15 -1 -015 (5 O‘.5 1 1.5 2

expected order statistic
Figure 34

Q-Q plot for the data at the Talairach origin. Thalues ofthe subject

difference imagesp, for voxel k at (0,0,0) are plotted against the

corresponding expected order statistio®rmal scores) from astandard

normal distribution.

36A high correlation is consistent with normality. ThenITAB referencemanual (“arithmetic’section,
Nscorescommand) givesritical values of 0.918@nd 0.9383below which the correlatiorcoefficient
must fall to suggest evidenagainst the nulhypothesis of normality ahe 5%level, for samples of
sizes 10 and 15 respectively.
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Correlation coefficient of Q-Q plots forc-Pc plane

Summarising the linearity af-Q plots usinghe correlatiorcoefficient allows us to
examine the assumption oveill other voxels simultaneously. Fi86 shows the
correlation coefficients soomputed for thexc-pC plane. Less than 5% of tlvexels
have correlation coefficient less thidue critical valuefor asample of size 12 dhe 5%
level, an exceedengeroportion indicating insufficient evidencagainst the omibus

hypothesis of normality/, ~ N(uk,oﬁ)) at allvoxels. However, it should be borne in
mind that these Shapiro-Wilk type tests have extremely low power.
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Figure 35
Mesh plot showing the correlatidretweenthe datap, (subject difference
images) at eachioxel k and theexpected order statistics fromstandard
Normal distribution. Theac-pc plane is shown.(Voxels outside the
intracerebralolume have been removed.) Nobat thez-axis is truncated
at 0.75.
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2.6.2. Friston's ANCOVA

In 82.3.2.4.,, thetwo way WCoOvA design (model 28) proposed by
Fristonetal., (1990) was discussed. Tlustrate this discussion, considapplying the
method to the “V5” study data.

Recall thatthe hypothesis of no activation at voxelis then expressed as an

appropriate contrast of the condition*replication eﬁectga(. 1)k - F(.O)k =0, where

F(.q)k is the mean ofthe condition*replication effects for scans acquired under

condition g. Fitting themodel tothe “V5” data ancevaluatingthe contrast for the
estimated effects leads-atatisticimage with120 degrees of freedom, the-pPcC plane
of which is depicted below (fig.36).
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Figure 36
Mesh plot oft-statistic forthe contrast of condition*replicaticeffects in
Friston’s ANCOVA (model 26), computed foithe “V5” studydata. Each
voxel statistic is distributed as a Student’svith 120 degrees of freedom,

under thehypothesis of no activation #tatvoxel: H: a .y - O o) =
The model is assumed to fit. The-pC plane is shown.
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Unadjusted p-value image
Referring theset-statistics to a Student's-distribution with 120 degrees of
freedom gives the unadjustpdialue image below (fig.37).
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Figure 37
Mesh plot of (unadjusted) one-sidpdralues computed frornhe t-statistic
image of fig.36. Voxels outside the intracerebral volume have been removed.
TheAac-pc plane is shown.

Adjusted p-value image

Adjusting the one-sidegb-values for theK = 77189 intracerebraloxels leads to
Bonferroni single step one-sided adjustedalues (fig.3&). As can be seen, the
significantregion for alevel a = 0.05 test isnuch larger thaifor a proportionakcaling
approach witht-statistic computed from subjedifference images (fi§8b, compare
with fig.33b, p86)
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Figure 38
(a) Mesh plot of Bonferroni single step adjusted one-sigedhlues,
computed fromthe p-values of fig.37. Voxels outsidthe intracerebral
volume have been removed. (b) Voxels with adjugtedhlue below
level 0.05. The outline of the intracerebral area is superimposedad-he
plane is shown.
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2.7. Pooled Variance

The low numbers of subjects and replicatigges subject IPET experiments
frequently leaves very fewegrees of freedom for the estimation of variafdes is
particularly a problem in single subject analyses, and iadtagistic approach, where the
data foreach subject is collapsed intalifference image. These givessts at the voxel
level with very lowdegrees of freedom, and hence Ipower. In addition, as wshall
see in chapter 3, the itiple comparisons procedures based on randieids are
conservative when the voxel statistics have low degrees of freedom.

Homogeneous variance

If it may be assumedthat the variance isthe same atall the voxels under
consideration Homoscedasticijy then Worsleyet al (1992) advocate pooling the
variance estimateacrossall the voxels. Consider tlexample of a multiple subject
simple activation study, to be assessed using proportsoasihg and a-statistic on
subject differencenages (8.3.1.). Assumed, ~ N(uk,oz), Thatis, that thevariance of

the subjectdifference imagescross subjects is constant across the vosaiee Sk2

(eqn.23) is computed for each voxsingthe same number of observatioftie number
of subjectsN) the degrees of freedom is tekamefor each voxel. The pooleshmple

variance is simply the mean over all the vox&s’ . Thet-statisticimage isthen formed

usingg.2 in place ofSk2 in egn.21, and isssentiallyjust a normalised meatfference
image:

>

k (29)

V&

Pooled variance regarded as known
Sample variance estimates iatlividual voxelsare notindependent, since the
subject difference images; are smooth. Thus, the distribution of the poaddadple

Tk:

variance S.2 cannot be determined. However, if the estimate is formed by pooling over

a very large number of voxels, atite smoothness of the subjdidference images is
much less irextent than thelimensions othe volumecovered by these voxels, then the
estimateeffectively haslarge enough degrees of freeddhat it can be regarded as
known. Worsleyet al (1992) argue a®llows (p901,c2): “...If we canfind R voxels
sufficiently separated so that they are independent, theeffdwtivedegrees of freedom
is at least -1)R. Typically R=300 andN=10, so theeffective degrees of freedom is
large enough...” The value Bfused is th@umber ofresolution elements concept we
shall return to when reviewing Worsley’s methofbr assessinthe significance of
statistic images &3.1.).

Distributional results: Gaussian statistic images
Regarding thevariance as estimated almost exacfly;~ N(y,1), giving a
Gaussian statistic imag&he hypothesis of no activation is theg= 0, to be tested

against the one-sided aIternath(:l:tlk> 0. A one-sided p-value is ther®(T)).
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2.7.1. Example-“V5” Study

Assuming homogeneity of variandes. thatoﬁ =02 for all voxelsk=1,...K in
the “V5” study (K=77189), the pooled estimate of the commeariance is
'S.2=0.812 (to 3dp). From the (voxedample variance image (f8f, p84) it appears
that the sample variance is not constant.

Chi-squared statistic image for homogeneity of variance
To assess the assumption of homogeneity of variance, consider theChisual

squared statistic for testing 42 = 02 whereo? is known:

(n-1) §¢

a2

Ck:

Taking S.? asa?, under H Ck:~Xﬁ_1. Since it is underestimation of variartbat is of
consequence, consider the one sided alternb;ipethesis_l-k:oﬁ >g2 (but note that

with S.2 asa?, of >02 for some voxelimplies 0% < 02 for others). For th&V5” data

this givesthe statistigmageC, theAc-pcC plane of which iglepicted in figure 39. Over
the whole intracerebrafolume,6.63% (to 2dp) of theoxels have associated statistics
significant atthe 1%level (unadjusted for multiple comparisongjhis exceedence
proportiongives ap-value of 0.0000 (tddp) for theomnibus hypothesis{§ computed
by Worsley’s exceedeng®oportion test’ Thus we mayonclude that theariance is
not homogeneous for the “V5” data.
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Figure 39
Mesh plot of Chi-squared statisti; indicating evidence against
homogeneity of variance. The-pc plane is shown.

37The Chi-squared statistic imageas “transformed” to atandard Gaussian statistic image. (By
replacing eaclvoxel statistic with the standard Gaussian ordinate, with idengicabability of being
exceeded. See38.3.). The resulting Gaussian statistic imagas then assumed to be a strictly
stationary discrete Gaussian random fieldd thevariance-covariancenatrix of partial derivatives
estimated directly from theositive part of the imaggsee 8.3.5.). The omnibug-value wasthen
computed using Worsley’s exceedence proportion test (83.4.2.), with a thresm1a(0f01).
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2.7.2. Inappropriate use of pooled variance

The assumption of constamariance has often been made whamalysing
activation studies. One reason for thighat theresulting Gaussian statistimage is
more amenable to analysis, asskallsee in chapter 3. Thalidity of thisassumption is
seldom checke#f andmanyexperimentsare analysed falsely assumilgmogeneity of
variance. One of thpitfalls is hat variancemay beunderestimated, leading talsely
inflatedt-statistics, and possibly false positives. To illustrate, consider the use of a pooled
variance estimate for the “V5” data.

Underestimation of variance at site of activation

From thesample variance image (figure 3i84) (or equivalently fromthe Chi-
squared statistitnagefor homogeneous variance, figure 39), it appgasthesample
variance is increased #ite posterior of therain. When considerintpe straightforward
t-statistic imagecomputed with voxelevel samplevariance, the posterior of theain
was identified asactivated (figure 32 antbllowing text, p85). Thus theariance is
increased at the site of the activatforThe use of a pooled variantstatistic inthis
casefalsely inflatesthe statistic at the site of the activation, as can be sdigura 40
(compare withfigure 31, p85). In additionsince the variance isnow assumed to be
known, thevoxel p-values are greatly increasedsignificance (figure 41gomparewith
figure 33,p86). The inappropriate use of a pooled variance estimateasdylead to
false positives.
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Figure 40
Mesh plot oft-statistic imagel' computed withpooled variance estimater
“V5” study. (Eqn.29) Each voxel statistic is distributed as standard Gaussian
variate under théypothesis of no activation #tatvoxel, H:u,= 0, where
Ay ~N(,,0%) is assumed. Thec-pc plane is shown.

38Researchers usually use pre-written analysis softtiatedo notinclude such checks. Furthermore,

many of the tests themselves have low power, and can only detect gross deviations from the assumptions.
3%This is perhaps to bexpectedThe “rest’and “active” conditions inthe “V5” study both involve

visual stimuli, so the non-visual areas of the brain should refaigin stable. In the visual areas of the

brain, different subjectcan beexpected to exhibit different increaseshiood flow betweerthe two
conditions, so meadifference imagesan beexpected to vary across subjects mor¢hin challenged

area than in those unaffected by the conditions.
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Figure 41
(a) Mesh plot of Bonferroni single step adjusted one-sigedlues, for the
pooled variancet-statistic image of figure 40. Voxels outside the
intracerebralvolume have been removed. (b) Voxels with adjugtediue
below level0.05. The outline of the intracerebral area is superimposed. The
AcC-PC plane is shown.

Underestimation of variance for grey matter due to white matter and ventricles

A further cause for underestimation of variancdus to the non-homogeneity of
the brain itself. The brain consists of grey matter and whtatter, andventriclesthat
are filed with spinal fluid. Highlevel processing takes place in the grey matter on the
surface of the brain, so it is only the grey matter that is interesting. Freely diffusible blood
flow tracers get into the spinélid, but only in smallquantities, so theentricular
regions of thebrain appear to have a constant but lowsr (rA) when measured with
PET, and hence exhiblow variation between subject difference images. The ventricles
are ofsufficient sizeghat avariance estimate pooleder the whole intracerebrablume
underestimates the variance in grey matter regions.



