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Chapter Two

Statistic Images

After study design, scanning, reconstruction, alignment, and possibly anatomical
normalisation and primary smoothing, the adjusted images are ready for analysis. Voxel-
by-voxel approaches proceed by analysing the data at each voxel, across the data, using
univariate techniques. This results in the computation of a statistic for each voxel, giving
an image of statistics, termed a statistic image.

There are various models which can be used when forming statistic images for
simple activation studies. In this chapter the problems of changing global CBF are
discussed, various models for single and multiple subject activation experiments
introduced, and their relative merits and shortcomings considered. Particular attention is
given to the models commonly used in practice. There is much disagreement in the
functional neuroimaging world as to the “right” model and statistic to use, so a chapter
discussing the issues is timely.

The case of the simple activation experiment with two conditions, “rest” and
“activation”, shall be used throughout, and the “V5” study data used as an example.
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50 Chapter Two: Statistic Images

“Raw” Data
The “raw” data we shall consider for statistical analysis are the scan images after

the pre-processing described in chapter 1. The images in fig.22 are of the first two scans
of the second subject in the “V5” study. Although acquired under each of the conditions,
there is only a small discernible difference between these two images, in the visual cortex
at the posterior of the brain.
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Figure 22

Counts (rA) images (after pre-processing as previously described) from the
first two scans of the first subject in the “V5” study, taken under:
(a) condition B (“rest”), and (b) condition A (“activation”). The images have
been normalised for global changes by proportional scaling to a gA

of 50ml/min/dl. The colour scale is graduated in units of normalised activity.
The AC-PC plane is shown, in standard Talairach co-ordinates.

Activation Study Design
Recall that in these simple activation studies each subject is scanned repeatedly

under “rest” (or “baseline”) (B) and “active” (A) conditions during the course of a single
scanning session of 2M scans. The order of allocation of conditions to the 2M scans for
each subject is usually either alternating (BABA… or ABAB… as in the “V5” study), or
alternating in pairs, beginning with a single scan under one condition (BAABBAAB … or
ABBAABBA …). In such multi-subject designs subjects are randomised to a presentation
order (B first or A first) in a balanced fashion.

Notation
 We shall only be considering voxels of the image space that correspond to brain

tissue in all the scans under consideration. These voxels, the intracerebral voxels, can be
identified for an individual by reference to a co-registered MRI scan. In the absence of
such a scan, the intracerebral volume can be fairly reliably identified directly from PET

images by thresholding them at a third of their maximum value. The volume so identified
usually includes the ventricles as well as the brain.
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Let Yijqk denote the rCBF (or rA) measurement at voxel k (k =1,…,K); of scan j
(j =1,…,M); under condition q (q = 0,1, 0 = “rest”); on subject i (i =1,…N). For brevity,
we shall allow ourselves to refer to the value associated with a particular volume element
simply as the value of the voxel.

Take W = {1,…,k,…,K}  to be the set of indices of the intracerebral voxels. In
addition to referring to voxels by their index, we shall refer to sets of voxels by the set of
their indices. Thus, for U⊆W, we shall take “the voxels in U” to mean the set of voxels
with indices in U, and similarly take “the region U” to mean the region of the image
space that is the union of the voxels (volume elements) with indices in U.



52 Chapter Two: Statistic Images

2.1. Global Changes

Global cerebral blood flow (gCBF) varies (fig.23). Different subjects have different
gCBF, and within a subject gCBF varies over the course of a scanning session, tending to
decrease as the subject becomes relaxed. If “counts” images of rA are being considered
as indicators of rCBF, then changes in administered dose and head fraction,20 as well as
changes in gCBF cause changes in gA. The latter two effects are confounded: If the head
fraction remains constant then changes in gCBF cause no change in gA for the same
administered dose. Clearly for reasons of specificity and sensitivity, differences in gCBF

(gA) must be accounted for when examining sets of rCBF (rA) images for changes.
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Figure 23
Global activity by subject for the “V5” subjects. Symbols indicate the
condition, “o” for condition B, “×” for condition A. Global activity was
measured as mean value of the intracerebral voxels as identified by 1/3rd

max. thresholding (see text).

“Dose ranging”
Although most centres use very accurate techniques for tracer administration, the

administered dose is sometimes deliberately adjusted during a scanning session. This is to
optimise the performance of the scanner, and to ensure that the total dose over the
scanning session is close to the maximum allowable. Such dose ranging was used in the
“V5” study.

                                               
20The head fraction is the fraction of the whole body blood flow occurring in the head. This is fairly
constant for an individual under normal conditions, but varies between subjects.
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2.1.1. Computation of gCBF
Global (and regional) cerebral blood flow is measured in units of millilitres per

minute per decilitre of brain tissue  (ml/min/dl). Let xijq denote the gCBF (gA) for scan j
under condition q on subject i. For rCBF (rA) images the gCBF (gA) is usually given as a
mean per voxel, computed by taking the average value of voxels corresponding to brain
tissue. The gCBF (gA) for scan j on subject i is:

xijq = 
1
K∑

k=1

K

 Yijqk = Yijq• (11)

2.1.2. Correcting for changes in gCBF: Normalised images
As changes in rCBF were sought, the pioneers of functional neuroimaging with PET

examined subtraction images, formed by subtracting a “rest” scan from an “active”
condition scan. This required that changes in gCBF be accounted for before the
subtraction.

In practice the voxel values for rCBF (rA) images are normalised by dividing by the
global flow (activity) and then multiplying by the normal gCBF of 50ml/min/dl, to give the
images a physiologically relevant scale (eqn.12). This proportional scaling method has
the apparent advantage of simplicity; the normalised images are easy to compute, and can
be interpreted as regional activity relative to the global level.

Y 'ijqk = Yijqk / (xijq / 50) (12)

 The assumption is that for a stable brain state, the rCBF depends proportionally on
the gCBF. Alternatively, the assumption can be discarded on the understanding that
relative values are to be analysed as indicators of neuronal activity.
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2.2. Single Subject Activation Experiments

We begin our discussion of the formation of statistic images with the single study
activation experiment. Dropping the subject index (i) from our notation, let Yjqk denote
the rCBF (rA) measurement at voxel k of scan j under condition q. Let xjq denote the
corresponding gCBF (gA).

2.2.1. Two sample t-statistic
The normalised images Y'jqk constitute M observations under each of the two

conditions for each voxel. If the stimulus of the “active” (q = 1) condition causes an
increase in neuronal activity at a particular voxel location, then the rCBF values at that
voxel should be increased in the “active” scans. The conditions are presented to the
subject in pairs (sometimes with randomly assigned order within pairs) to allow for time
effects, so an appropriate test would reflect this blocked design. However, in practice the
blocking is ignored, and a two sample t-test used rather than a paired test. We shall
return to this point later.

Computing the value Tk of the two sample t-statistic for each voxel gives an image
of statistics T = (T1,…,TK):
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Assuming Y'jqk ~ N(µq,σ2
k), then Tk ~ t2M-2  under Hk:µ0 = µ1. T is then referred to as a

t-statistic image with 2M-2 degrees of freedom, since each voxel k has associated value
distributed as a Student’s t-distribution with 2M-2 degrees of freedom under Hk. Since it
is activation we are interested in, it is usual to test against the one-sided alternative

hypothesis Hk:µk> 0. A p-value for each voxel can then be computed, and arranged into

an (unadjusted) p-value image, indicating evidence of activation.

Two sample model: Proportional regression
The model implicit in the use of normalised images is one of proportionality. The

two sample t-test on normalised images above is equivalent to a one way ANOVA for two
treatments at each voxel, with the model for the data at voxel k given by:

Y'jqk = αqk + ε'jqk where ε'jqk ~
iid N(0, σ 2

k ) (14)

For the purposes of this discussion, we shall take the normalised images Y'jqk to be
Yjqk/xjq , rather than Yjqk/(xjq /50) (eqn.12). Assuming that the global flow (activity) xjq
is measured with negligible error, multiplying the above model by xjq gives eqn.15, a
weighted proportional regression model, with condition dependent regression coefficient.
The proposed t-test is a test of equal slope in this model.

Yjqk = αqk xjq + εjqk where εjqk ~
iid N(0, xjq

2σ 2
k ) (15)
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It is apparent from the PET literature that many researchers overlook the weighting
of the error variance, and consider the two sample t-test model as equivalent to a
proportional regression model with homogeneous variance:

Yjqk = αqk xjq + εjqk where εjqk ~
iid N(0, σ' 2k ) (16)

In this form the model can be easily compared with other linear models.
Scheffé (1959, §1.5) notes that the method of least squares with inappropriate weights
still leads to unbiased estimates of the parameters, though not the same estimates. Clearly
estimates of the variance will be biased. Although an assumption of constant variance at
each voxel in models 15 and 16 cannot be true simultaneously, it is perhaps equally
feasible in either one, particularly for subjects whose gCBF (gA) remains roughly
constant, where there is little difference between the models.21 Thus, this oversight may
not be too serious.

                                               
21For example, consider the second subject in the “V5” study: The maximum absolute difference
between the two sample t-statistic and a t-statistic for equality of slope in eqn.16 (over all the voxels in
the AC-PC plane) is 0.300 (3dp).
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2.2.2. Friston’s model: AnCova
Friston et al. (1990) proposed a more general model for the relationship between

regional and global cerebral blood flow.

A standard linear regression model for cross sectional data
The actual relationship between regional and global CBF is unlikely to be linear, but

is possibly well approximated by a straight line for the normal range of global
values (see fig.24). Since the normal range of global values is far from zero, the
relationship is likely to be better approximated by an arbitrary line rather than one
constrained to the origin. For scans acquired under the rest condition (q = 0), Friston
proposed a standard simple regression model at each voxel:

Yj0k = αk + βk (xj0 - x ••) + εj0k where εj0k ~
iid N(0,σ 2

k ) (17)

The parameters in model 17 (intercept, regression coefficient and variance) are
distinct for each voxel, since the global changes in CBF are likely to affect distinct regions
differently22. Thus we have K simultaneous regressions, one for each voxel.
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Figure 24
Regional activity for voxel at Talairach co-ordinates (0,-80,0) plotted against
global activity, for the twelve scans of the second subject in the “V5” study.
The conditions are indicated by the symbols, “o” for condition A (the rest
condition) and “×” for condition B (the active condition). This voxel was
chosen because it is in the middle of the visual cortex, which is expected to
be stimulated by the activation condition.

Covariate is mean of response variables
By way of an aside, note that if all the voxels used to compute the global values are

included in the ANCOVA analysis, then this imposes a loose constraint on the parameters.
Writing model 17 non-centred, and dropping the q = 0 subscripts (so that Yjk is the rCBF

(rA) value at voxel k of scan j obtained under the rest condition, with xj the
corresponding gCBF (gA)) we obtain the simultaneous regressions of eqn.17a:

Yjk = αk + βk xj + εjk where εjk ~iid N(0,σ 2
k ) (17a)

                                               
22Specifically, “it is physiologically likely that sensitivity of rCBF to gCBF in any one area depends on the
neuronal projections to that area”. (From Friston et. al., 1990.)
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Suppose that all K voxels are used to compute the global values, then, summing
eqn.17a over k =1,…,K we obtain:

K Yj• = K xj = ∑
k=1

K

αk + xj ∑
k=1

K

 βk + ∑
k=1

K

 εjk

⇔ xj = α • + xj β • + ε j•

Interpreting this as a regression of the xj’s on themselves, rather than an equation derived

from separate regressions, Clark & Carson (1993) asserted that α • must be zero, and β

• must be one. In fact this is true for the fitted values, as pointed out by Friston (1994).

Consider the fitted values for the simple regression of eqn.17a:

∑
k=1

K

 β̂k = ∑
k=1

K

 
∑

i
(xi - x •)(Yik - Y•k)

∑
i
(xi - x •)

2

= 
∑

i
(xi - x •)(K Yi• - K Y••)

∑
i
(xi - x •)

2
 = K

∑
k=1

K

 α̂k = ∑
k=1

K

 



Y•k - β̂k x •

= K Y•• - K x • = 0

So, α̂ • must be zero, and β̂ • must be one. Given the large number of voxels

under consideration, this restriction is hardly of any consequence to the regression at an
individual voxel. Since the model is a means to inference rather than an end in itself, most
ignore this subtlety. If global values are computed over more voxels than are considered
for the regression models, the problem disappears.

Considering the regression at a single voxel, one might be concerned that the
covariate is measured with error. This concern is ill founded. Firstly, regarding the
measured gCBF (gA) as a random variable with mean the true global value; its variance is
negligible compared to that of the estimated rCBF (rA) at a single voxel, since the global
value is the mean of the voxel values. Secondly, for fixed effects models it doesn’t matter
anyway: Scheffé (1959, p195) states (for fixed effects models), that if the distribution of
the response variables conditional on the explanatory variables is “assumed to hold for all
possible values of the observations on the [explanatory] variables, then, regardless of the
joint distribution of observations on the [explanatory] variables, the conditional
significance levels and conditional confidence coefficients are constant, and hence the
same unconditionally”.

One way ANCOVA model
To include activation scans in the model, Friston et al. (1990) proposed a

(balanced) one way analysis of covariance (ANCOVA) model. The model for voxel k is
then:

Yjqk = αqk + βk (xjq - x ••) + εjqk where εjqk ~
iid N(0,σ 2

k ) (18)
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The effect of an activation is assumed to be additive. rCBF (rA) is increased by local
neuronal activity by an amount independent of the underlying gCBF (gA). In this centred
model the images of condition effects ααq = (αq1,…,αqK) can be viewed as mean images

for the condition, adjusted to a gCBF (gA) of x •• .

The null hypothesis of no activation effect at voxel k: Hk: α0k = α1k , can then be
assessed. Since we are interested in activation, it is usual to test against the alternative

hypothesis Hk:α1k > α0k via a t-test of Hk: α1k-α0k = 0 against Hk:α1k -α0k > 0.

2.2.3. Model selection for single subject
The two test statistics proposed for a single subject activation experiment are the

two sample t-test on normalised data (eqn.13, p54), and the simple one way ANCOVA

(eqn.18, p57). The relationship between these two approaches can be seen in the
following taxonomy of possible models for a balanced single subject activation
experiment (eqns.19).

Taxonomy of single subject models

(1) Two sample t-test on
normalised images

Y’jqk = αqk + εjqk

(Yjqk = αqk xjq + xjqεjqk)
(2 parameters)

(3) One way ANCOVA

Yjqk = αqk + βk (xjqk -x••) + εjqk
(3 parameters)

(6) One way blocked ANCOVA

with condition dependent slopes
Yjqk = αqk + γjk + βqk (xjq -x••) + εjqk

Σj γjk = 0
(M+3 parameters)

(5) One way ANCOVA with
condition dependent slopes
Yjqk = αqk + βqk (xjq -x••) + εjqk

(4 parameters)

(4) One way blocked ANCOVA

Yjqk = αqk + γjk + βk (xjq -x••) + εjqk

Σj γjk = 0
(M+2 parameters)

(2) Paired t-test on
normalised images
Y’jqk = αqk + γjk + εjqk

Σj γjk = 0
(Yjqk = (αqk + γjk) xjq + xjqεjqk)

(2+M-1 parameters)

Key
Replication j = 1,…,M
Condition q = 0,1
Voxel k = 1,…,K

α : condition effect
γ : block effect
β : global effect

Equations (19)

Recall that j = 1,…,M indexes the replication for scans acquired under condition q = 0,1,
and k = 1,…,K indexes the voxels. Proportional scaling models have been written
without the scaling to gCBF of 50ml/min/dl. Arrows indicate logical extensions of
models. The dashed arrow indicates that model 19.5 is an extension of model 19.1 if the
variance weights are ignored. Clearly the parameters may be different in each model,
though the same symbols have been used. In all the models it is assumed that

εjqk ~
iid N(0,σ 2

k ), where σk is unique for each model.
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The block effect γjk (eqns.19.2, 19.4 & 19.6) would model regional changes in
neuronal activity (under both conditions) between successive pairs of scans that is not
accounted for by global changes, such as localised decreases in rCBF in areas associated
with anxiety.

A condition by replication interaction (αqjk) would be justifiable on physiological
terms as a habituation effect, modelling the reduced increase in brain activity as the
subject becomes accustomed to the task set in the “active” condition. However, as there
are no replications within treatment-block pairs, this cannot be considered, unless a
simple parameterised trend is assumed.

2.2.3.1. Model selection for images

Model selection in this context is rather problematical.

Simultaneous model for all voxel
We are seeking a model that will simultaneously describe the relationship between

rCBF and gCBF and design factors at all voxels. Separate regions may require separate
models. Fitting a richer model than is appropriate, with redundant terms, reduces the
degrees of freedom available for variance estimation, and hence reduces the power of
ensuing tests at that voxel. Fitting a smaller model than is appropriate leaves the omitted
effects in the residuals, introducing structure into the residuals in defiance of their
assumed independence, and leads to increased variance estimates with more degrees of
freedom than under the appropriate model. The validity of ensuing tests cannot be
guaranteed: If the appropriate model has few degrees of freedom available for variance
estimation then the spurious “extra” degrees of freedom from a smaller model may result
in more lenient tests despite the increase in variance.

The cautious approach is to choose, as the model for all the voxels, the richest of
the models appropriate for the voxels individually. Thus, consider a backward elimination
procedure (Draper and Smith, 1981, §6.3). Starting with a saturated model, discard
terms if there is insufficient evidence against the (omnibus) hypothesis that the terms in
question are all zero for all voxels at significance level α.

Multiple comparisons
There remains the large multiple comparisons problem in using univariate statistics

to compare models for each voxel. Multiple comparisons in this image setting is a major
topic of this thesis, and is explored in detail in later chapters.

Since we are interested in finding a model that fits for all the voxels, in comparing
two (nested) models the relevant question is: “Is there any evidence, at all, against the
omnibus hypothesis that the extra parameters in the richer model are zero for all voxels.”
If there is evidence, then the richer model should be chosen for all the voxels. Thus, an
omnibus multiple comparisons procedure with weak control over familywise error is
required. The exceedence proportion test of Worsley (§3.4.2.) will be used, with a
(probability) threshold of η = 0.01.

To facilitate the discussion, it is convenient to adopt some notation not fully
utilised until we formally discuss multiple comparisons in chapter 3 (§3.1.1.). Recall that
W={1,…,K} is the set of (indices of) voxels that correspond to the brain region of
interest, assumed to be the whole intracerebral volume. For computational reasons, we
shall examine the AC-PC plane only. Let WP8⊂W denote the (indices) of the intracerebral
voxels in this plane. If Hk, k∈U are a set of voxel hypotheses, then the intersection of
these hypotheses is the omnibus hypothesis over voxels U, which we shall denote HU.
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HW is then the overall omnibus hypothesis, and HWP8
 the omnibus hypothesis for the

AC-PC plane.

2.2.3.2. Model selection: Single subject activation studies

Model selection for “V5” subjects
For each of the “V5” subjects, table 25 gives p-values for the omnibus hypotheses

that all the additional parameters in the richer model are redundant, for comparisons of
all models in the taxonomy (eqns.19). For instance the column labelled “19.5 vs. 19.3”
contains omnibus p-values for the hypotheses Hk:β0k = β1k , k∈WP8, in model 19.5.

F-Statistic images for the hypotheses were computed voxel-by-voxel (for the
AC-PC plane only) by comparing the residual sums of squares under the two models, the
so called “extra sum of squares” likelihood ratio test (Draper and Smith, 1981, §2.7).
(Practicalities of computation are discussed in §2.5.) This F-statistic image was then
“transformed” to a standard Gaussian statistic image, replacing each voxel statistic with a
standard Gaussian ordinate with identical probability of being exceeded (see §3.3.3.).
The resulting Gaussian statistic image was then assumed to be a strictly stationary
discrete Gaussian random field, and the variance-covariance matrix of partial derivatives
estimated directly from the positive part of the image (see §3.3.5., and footnote23). The
omnibus p-value was then computed using Worsley’s exceedence proportion test
(§3.4.2.)  with a threshold of -Φ-1(0.01), at significance level α = 0.05.

The last comparison, labelled “19.5 vs. 19.1”, was effected by fitting the two-
sample t-test model for normalised images (eqn.19.1) via the proportional regression
model (in parentheses in the taxonomy), ignoring the weighting of the error terms. Thus
the validity of these comparisons is in doubt. (Recall discussion of the proportional
regression view of §2.2.1., p.54.)

Subject 19.2 vs.
19.1

19.5 vs.
19.3

19.4 vs.
19.3

19.6 vs.
19.5

19.6 vs.
19.4

19.5 vs. 19.1

n163 0.0051 0.7501 0.1797 0.1834 0.1328 0.6750
n164 0.1192 0.6541 0.1030 0.4404 0.6587 0.7668
n172 0.1701 0.8757 0.2190 0.1875 0.8555 0.2916
n180 0.0000 0.5243 0.1280 0.2215 0.7144 0.0000
n185 0.5705 0.7921 0.1173 0.2210 0.8616 0.7049
n191 0.2451 0.9352 0.0116 0.0521 0.8583 0.6350
n192 0.0821 0.3869 0.7890 0.8745 0.7358 0.0002
n197 0.6245 0.5737 0.6066 0.7731 0.6828 0.7373
n205 0.0625 0.2243 0.1878 0.0608 0.2792 0.1076
n210 0.0000 0.7742 0.0000 0.0004 0.5646 0.7960
n216 0.3817 0.2407 0.1683 0.6032 0.6446 0.2729
n221 0.0000 0.7214 0.0072 0.0216 0.3107 0.6834

Table (25)
p-values (to 4dp) for the omnibus hypotheses comparing the possible models
for individual subjects from the “V5” study. p-values less than α = 0.05 have
been emphasised with bold type.

In the taxonomy (eqns.19), there are two “saturated” models to start from, the
paired t-test model and the two way blocked ANCOVA with condition dependent slopes.
                                               
23These “Gaussianised” F-statistic images have a fairly smooth surface above the X-Y plane, but a
distinctly rougher one below. Since we are interested in high values of the Gaussian statistic image, the
smoothness was estimated using only voxels with associated positive values.
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Starting with the paired t-test model (eqn.19.2), we see that the two sample t-test model
is adequate for eight of the twelve subjects; there is evidence of a block effect in the
remaining five subjects. Considering the ANCOVA models, we see that there is
insufficient evidence of condition dependent slopes (19.5 vs.19.3 & 19.6 vs.19.4). This
leaves us with the one way blocked ANCOVA (eqn.19.4), within which there is significant
evidence of a block effect in three subjects.

Block effects?
The two models in routine use for the analysis of single subject activation data

(namely the two sample t-test model (§2.2.1.) and the one way ANCOVA (§2.2.2.)), do
not consider block effects. The paired t-test and the blocked ANCOVA leave very few
degrees of freedom for variance estimation (M-1 and M-2 respectively), and can
therefore be highly conservative.

In most cases the block effects are likely to be slight relative to the activation
effect, and can safely be ignored. Large block effects mask the condition effects, and add
to the variance (albeit in a structured manner), making the two sample t-test and the one
way ANCOVA conservative. For very large block effects the paired t-test and the blocked
ANCOVA may be more powerful than their one way counterparts, despite the low
degrees of freedom.

There remains the choice between proportional scaling and t-tests and an ANCOVA

approach.
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Proportional scaling vs. linear modelling for rest scans
It is difficult to compare the proportional scaling models and the ANCOVA models,

since they are not directly related. Friston et al. (1990) justified the ANCOVA approach
over proportional scaling by fitting a simple regression model (eqn.17) to the rest scans

and assessing Hk:α0k= 0 against Hk:α0k ≠ 0 with the usual t-statistic. (This disregards

the weighting of the variance terms implicit in the proportional scaling approach.) They
found significant evidence against the omnibus hypothesis HW at the 5% level using their
exceedence proportion test (§3.4.1.).24 This is perhaps to be expected, given the distance
of the data from the origin and the observation that the relationship between rCBF and
gCBF is unlikely to be linear.

However, if uncalibrated “counts” images of rA are used as indicators of rCBF, then
variations in the administered dose25 may cause variations in gA that swamp those caused
by changing gCBF, resulting in a relationship between rA and gA that is proportional. This
appears to be the case for the majority of the “V5” subjects, as illustrated in the
following table (table 26) of omnibus p-values for HWP8

, where Hk:α0k= 0 in eqn.17.

Subject p-value

n163 0.3560
n164 0.7534
n172 0.6295
n180 0.0000
n185 0.8810
n191 0.7327
n192 0.4809
n197 0.7051
n205 0.0009
n210 0.7171
n216 0.6045
n221 0.7086

Table (26)
p-Values (to 4dp) for the omnibus hypothesis HWP8

 of voxel hypothesis Hk:α0k = 0 for all
intracerebral voxels in the AC-PC plane, for the rest scans from each subject from the “V5”
study. The model is a simple regression (eqn.17). These p-values were computed in a
similar fashion to those in table 25 above. t-statistic images for the hypotheses were
computed voxel-by-voxel for the AC-PC plane of each subject. Since we are interested in a
two sided alternative hypothesis, the t-statistic image was “transformed” to a standard
Gaussian statistic such that the standard Gaussian ordinate associated with each voxel is
as likely to be exceeded (by a standard Gaussian random variable) as the t-statistic is to be
exceeded in absolute value by an appropriately distributed t random variable. (See
§3.3.3.). These Gaussian statistic images were then assessed by Worsley’s exceedence
proportion test as before, at threshold -Φ-1(0.01). p-values less than α = 0.05 have been
emphasised with bold type.

                                               
24Friston et al. (1990), due to having a limited amount of data, assessed the proportionality hypothesis
on only eight rCBF scans, these being the two “rest” scans on each subject from an experiment on four
subjects. Subject effects were not considered, the resulting correlations in the errors and probable
underestimation of the variance were ignored. (See Miller, 1986, §5.5.) However, Friston et al. report
that a test for proportionality test had been a routine part of their analysis method for a period of time,
and that HW was consistently rejected.
25For example, due to “dose ranging”, which was used in the “V5” study.
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2.2.4. Conclusions: Single subject statistic images

ANCOVA for calibrated rCBF data

For the analysis of single subject activation experiments with true (calibrated) rCBF

data, this author’s recommendation is the one way ANCOVA approach (as proposed by
Friston et al., 1990). If the ANCOVA model fits well, with regression coefficient far from
unity, then the t-test approach on normalised images may be insensitive to activation. If
the proportional regression model implicit in the two sample t-test on normalised data
(ignoring the weighting of the error terms) fits well, then the ANCOVA may be expected
to give a slightly conservative test, since it has an extra parameter to fit. Thus an
ANCOVA approach would appear to possess the best all round properties. The use of the
one way ANCOVA may result in a loss of power in the presence of large block effects, in
which case the one way blocked ANCOVA should be used.

The choice of a sensitive but robust method is particularly pertinent since any one
PET centre will analyse studies with a set method, rather than selecting a model for the
data at hand. The apparent complexity (to the statistically naive) of ANCOVA, and the
increased difficulty of computation of statistic images (as compared to a t-test), are the
main barriers to its routine use.

Proportional scaling for large variations in introduced dose
If no arterial sampling is undertaken, and relative activity is being examined as an

indicator of CBF, then a proportional model may well be appropriate. In this situation the
t-test on normalised data is likely to be more powerful then the one way ANCOVA, since
the t-test has an additional degree of freedom (of some consequence when the degrees of
freedom are so low), and since the assumption of constant regression coefficient across
conditions in the ANCOVA model is likely to be false.

Since the majority of functional mapping experiments use “counts” images of
relative activity, this conjecture deserves further examination on real data sets.
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2.3. Multiple Subject Activation Experiments

Consider now a multiple subject activation experiment. Recall our notation: Yijqk
denotes the rCBF (rA) measurement at voxel k =1,…,K, of scan j =1,…,M, under
condition q = 0,1 (0 = “rest”, 1= “active”), on subject i =1,…N; and xijq is the
corresponding gCBF (gA).

2.3.1. Proportional scaling approach
Proponents of the proportional scaling approach for the normalisation of rCBF (rA)

images for global changes, analyse multiple subject activation studies using a paired
t-statistic at each voxel, pairing the mean of the (normalised) rest scans with the mean of
the (normalised) active scans for each subject.

2.3.1.1. t-statistic on subject difference images

Specifically, the data for each subject is collapsed into a subject difference image
∆∆i = (∆i1,…,∆iK) by subtracting (for each voxel) the mean of the “rest” scans from the
mean of the “active” scans, after normalisation for global changes (eqn.20). This
constitutes the pairing, and t-statistic T = (T1,…,TK) is computed in the usual way
(eqn.21).

∆ik = Y' i•1k - Y' i•0k (20)

Tk = 
∆ •k

S 2
k /N

(21)

where ∆ •k = 
1
N ∑

i = 1

N

 ∆ik is the study mean difference at voxel k,(22)

and S 2
k  = 

1
N-1 ∑

i = 1

N

 



∆ik - ∆ •k
2
 is the variance estimate (23)

Distributional results

Assuming ∆ik ~ N(µk,σ2
k), then ∆ •k ~ N(µk, σ2

k / N), and S 2
k  ~ 

σ2 χ2
N - 1

N -1 . Under

Hk:µk= 0, Tk~tN-1, a Student’s t-distribution with N-1 degrees of freedom. For the one-

sided alternative hypotheses Hk:µk> 0, a p-value for each voxel can be computed,

giving an (unadjusted) p-value image indicating evidence of activation.
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2.3.1.2. Discussion of t-test on subject difference images

Robustness: Assumptions
The collapsing of the M scans for each condition to mean rest and activation

images Y' i•0k and Y' i•1k for each subject doubtless gives a robust test. The only

assumptions are ∆ik ~ N(µk,σ2
k), which appear to be reasonable for the “V5” study (see

§2.6.1.). Averaging the data lends increased credence to assumptions of normality, by
appeal to the Central Limit Theorem. No assumption needs to be made about the intra-
subject variation of rCBF values.

Robustness: Subject, block, habituation and linear trend effects absorbed
Since the test is paired, subject effects are also absorbed. The test assesses the

mean activation (after normalisation) over a scanning session, and thus block effects
cancel out, and habituation causes no problem. (Recall that each consecutive pair of scan
slots forms a block, and that habituation is a block by condition interaction.) Localised
linear time effects also cancel out, provided they are constant across subjects and that
subjects have been allocated to condition presentation order (ABAB… or BABA…) in a
balanced fashion. Global changes in images are removed by the proportional scaling.

Robustness: Random subject effects incorporated
If different subjects respond to the stimulus differently (a condition by subject

interaction), then an appropriate model is ∆ik ~ N(µik,σ2
k), that is, a different mean

activation for each subject. If the subjects are randomly sampled from a target
population, then µik may be treated as a simple random effect, µik ~ N(µk, τ2

k), where µk

is the population mean activation effect. Then ∆ik ~ N(µk, σ2
k + τ2

k), and the t-test on

subject difference images provides a valid test for a hypothesised zero mean activation
effect (Hk:µk=0) for the population.

Model for t-test on subject difference images
Since a paired t-test is equivalent to a two way blocked ANOVA with two

treatments, the t-statistic proposed may be viewed as the test statistic for Hk:α1k-α0k = 0
within the model:

Y' i•qk = αqk + γik + εiqk where εiqk ~
iid N(0,σ2

k) (24)

Further, it can be shown that the (two-sided) t-test on subject difference images is
equivalent to the F-test for no main effect in a two-way mixed effects ANOVA model for
the normalised images. In this model (eqn.25) the main effects (the condition effects α)
are assumed fixed, and the block effects (the subject effects γ) are assumed random. The
subject by condition interaction effects αγ are also considered random.

Y'ijqk = αqk + γik + αγqik + εijqk where εijqk ~iid N(0,σ2
k) (25)

The F-statistic for main effect is the ratio of the (mean) sums of squares for the
main effect and for the interaction (Scheffé, 1959; Miller, 1986). This F-statistic is the
square of the t-statistic of eqn.21.
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Drawbacks: Low degrees of freedom, assumption of proportionality
Most activation studies only have six to twelve subjects, leaving the proposed

t-statistic with very few degrees of freedom. As we shall see (§3.3.6.5.), the random field
methods for assessing the significance of statistic images don’t work well for t-statistic
images with low degrees of freedom. Considering the equivalent F-statistic for the
mixed-effects ANOVA model (eqn.25), greater degrees of freedom may be acquired by
dropping effects for which there is little evidence.

For the single subject experiment (§2.2.3.2., p60), we saw that the assumption of
proportionality inherent in the use of normalised images was most likely false for true
rCBF data, and that the use of normalised images and two sample t-statistics to assess
activation may not be as sensitive as an ANCOVA approach. This would suggest that (at
least for true rCBF data) that an ANCOVA approach could be more powerful than an
ANOVA on normalised images. We now turn our attention to ANCOVA models for
multiple subject activation experiments.
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2.3.2. ANCOVA models

2.3.2.1. Models

(2) Two-way condition by subject
design with subject dependent slopes

Yijqk = αqk + γik + βik (xijq-x•••) + εijqk

Σi γik = 0
(2N+1 parameters)

(5) Two-way condition by subject
design with interaction

Yijqk = αqk + γik + αγqik + βk (xijq-x•••) + εijqk

Σi γik = 0, Σi αγqik = 0,Σq αγiqk = 0
(2N+1 parameters)

(4) Two-way condition*replication
by subject design with subject

dependent slopes
Yijqk = α(jq)k + γik + βik (xijq-x•••) + εijqk

Σi γik = 0
(2N+2M-1 parameters)

(8) Two-way condition*replication by
subject design with

condition-replication dependent slopes
Yijqk = α(jq)k + γik + β(jq)k (xijq-x•••) + εijqk

Σi γik = 0
(N+4M-1 parameters)

(1) Two-way condition by subject design
Yijqk = αqk + γik + βk (xijq-x•••) + εijqk

Σi γik = 0
(N+2 parameters)

(3) Friston’s two-way condition*
replication by subject design

Yijqk = α(jq)k + γik + βk (xijq-x•••) + εijqk

Σi γik = 0
(2M+N parameters)

(6) Two-way condition by subject design
with interaction and subject dependent slopes

Yijqk = αqk + γik + αγqik + βik (xijq-x•••) + εijqk

Σi γik = 0, Σi αγqik = 0,Σq αγiqk = 0
(3N parameters)

(7) Two-way condition by subject design with
interaction and condition & subject dependent slopes

Yijqk = αqk + γik + αγqik + βiqk (xijq-x•••) + εijqk

Σi γik = 0, Σi αγqik = 0,Σq αγiqk = 0
(4N parameters)

“Friston” models
“Condition” models

Key
Subject i = 1,…,N
Replication j = 1,…,M
Condition q = 0,1
Voxel k = 1,…,K

α : condition effect
γ : subject effect
β : global effect

Equations (26)

Recall that j ( = 1,…,M) indexes the replication for scans acquired under condition
q ( = 0,1), on subject i ( = 1,…,N), and that k ( = 1,…,K) indexes the voxels.

In the taxonomy the parenthesised subscripts α(jq)k (in models 26.3, 26.4 & 26.8)
indicate that replication (j) and condition (q) are to be considered in combination as a
single factor. For each voxel k, there is a separate main effect, α, for each combination of
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condition (q) and replication (j). This arrangement was proposed by Friston et al. (1990,
1994b), and we shall refer to models 26.3, 26.4 & 26.8 as “Friston” models.

Arrows indicate logical extensions of models. Clearly the parameters may be
different in each model, though the same symbols have been used. In all the models it is

assumed that εjqk ~
iid N(0,σ 2

k ), where σk is unique for each model. Appropriate sum-to-

zero constraints have been suggested where necessary, to give unique parameter
estimates for fixed effects models. For consideration as mixed effects models it is usual
to either omit constraints altogether, or to only constrain random effects to sum to zero
over the levels of the fixed effects.

For models with condition dependent slope (26.7 & 26.8) the effect of activation

depends on the value of the covariate gCBF (gA), but is tested at x •••. The exact form of

this dependency must be examined to ascertain whether an effect is meaningful. (In its
simplest guise this is the “non-parallel lines” ANCOVA problem.)

Random effects for population inference
If these models are treated as fixed effects models, then we can only assume that

the scans are drawn from the “population” of all (hypothetical) realisations of scans of
these subjects, under identical conditions, and inference extends only to the current study
group, under identical conditions. This inference is of limited value in models with
subject dependent slopes or subject by condition interaction: For example, in models
26.5 & 26.6, a significant positive contrast of the condition effects (significant evidence
against Hk:α1k -α0k>0 for some voxel(s) k), indicates only that there is an evidence of an
average activation over all the subjects.

If the subjects in a study are randomly drawn from some population about which it
is desired to infer, then subject effects (and hence any subject by condition interaction
effects) should be considered as random, giving mixed effects models. Models
26.6 & 26.7 have subject dependent regression coefficients, which then should also be
considered random.

2.3.2.2. Model selection

Fixed effects for model selection
For the purpose of model selection, we propose that all effects be considered as

fixed. In model selection we are seeking a model for the subjects at hand. If there is
evidence of an effect for these subjects, that is, as a fixed effect, then such an effect
should be considered. When making inference about the population from which our
subjects were drawn, then the appropriate effects should be considered as random, in the
model previously chosen.

This fixed effects approach for model selection gives greater degrees of freedom
for testing the presence of certain effects that would be available were they considered
random from the outset, giving more powerful tests which are more straightforward to
perform. This is in line with the proposed model selection policy of considering the
richest model necessary, including effects if there is any evidence for them at all,
anywhere.26

                                               
26Recall §2.2.3.1. “Model selection for images”, p.59.
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2.3.2.3. Model selection for “V5” study

Omnibus p-values for comparisons of models
Omnibus p-values for pairwise comparisons of the models (eqns.26) for the “V5”

study data are given in table 27. As in the single subject case, these are omnibus p-values
for the hypotheses Hk that all additional parameters in the richer model are redundant,
for all (intracerebral) voxels in the AC-PC plane, k∈WP8. For instance, the row labelled
“26.3 vs. 26.1” contains the p-value for the omnibus hypothesis HWP8

, where
Hk:α(1q)k=…=α(Mq)k, q=0,1. F-Statistic images for the hypotheses were computed
voxel-by-voxel, “transformed” to a standard Gaussian statistic image, and p-values
obtained by Worsley’s exceedence proportion test with a threshold of -Φ-1(0.01). This is
the same procedure as used for the single subject model selection, where details were
given (text preceding table 25, §2.2.3.2., p.60).

Comparison p-value

26.2 vs. 26.1 0.0000
26.7 vs. 26.6 0.4404
26.6 vs. 26.5 0.0000
26.6 vs. 26.2 0.0000
26.4 vs. 26.3 0.0000
26.4 vs. 26.2 0.2988
26.3 vs. 26.1 0.0000
26.5 vs. 26.1 0.0000
26.8 vs. 26.3 0.0916

Table (27)
p-values (to 4dp) for the omnibus hypotheses (over the intracerebral voxels
in the AC-PC plane) comparing possible models for multiple subject simple
activation experiments (eqns.26) on the “V5” study data. p-values less than
α = 0.05 have been emphasised in bold face.

Leaving the “Friston” models aside for the moment, the proposed backwards
selection method (§2.2.3.1., p.59) starts with the richest model in the proposed
taxonomy, the two-way condition by subject design with interaction and subject &
condition dependent slopes, model 26.7, which we consider as a fixed effects model.
Since there is insufficient evidence against an omnibus hypothesis of constant slope
across conditions (“26.7 vs. 26.6” in table 27, Hk: βi0k = βi1k ∀ k∈WP8), we accept this
hypothesis (for the subjects at hand), and consider model 26.6.

Considering this two-way condition by subject design with interaction and subject
dependent slopes as a fixed effects model, we have significant evidence against the
omnibus hypotheses of no interaction (“26.6 vs. 26.2” in table 27, Hk: αγqik = 0 ∀
k∈WP8), and also have significant evidence against the omnibus hypothesis of constant
slope (Hk:βik=βk ∀ k∈WP8).

Our selection procedure stops here, at model 26.6. It is comforting to note that
comparisons “26.2 vs. 26.1” and “26.5 vs. 26.1”, with voxel hypotheses Hk:βik = βk ∀i
and Hk:αγqik = 0 ∀q,i respectively, also give significant evidence against the respective
omnibus hypotheses. This again indicates the presence of a subject dependent regression
parameter and a subject by condition interaction, respectively.

Selected model for “V5” study
Although models have been compared only over the AC-PC plane (for

computational reasons), there is little to suggest that comparisons over the whole



70 Chapter Two: Statistic Images

intracerebral volume would give substantially different results. Thus, for these data, with
subjects considered as sampled from a population, the appropriate model would be
model 26.6, with the subject effect (and hence the subject by condition interaction and
the slope parameters) considered as random.

This model is perhaps to be expected. It seems unlikely that different subjects,
under the same conditions, will exhibit the same relationship between regional and global
values. Hence we have a subject effect and subject dependent regression parameter for
the global flow (activity). Similarly, it seems unlikely that different subjects respond to a
stimulus with the same increase in rCBF (rA) (after global changes have been accounted
for), hence a subject by condition interaction. Model 26.6 would therefore appear to be
the minimal justifiable model.

It is interesting to note that model 26.6 reduces to a two-way mixed effects model
on omission of the regression terms (βik). This is precisely the model of the simple
t-statistic on subject difference images (eqn.25), which is applied to globally normalised
rCBF (rA) data.

In conclusion, model 26.6 is probably the most suitable of the proposed models for
most multiple subject simple activation data sets. Unfortunately, as a mixed effects model
it is rather complicated, and the presence of a main effect is difficult to test. The model
appears to fit into the Multilevel Modelling framework of Goldstein (1986). This
observation appears to create as many problems as it solves, and we shall not adopt this
line of investigation.

The ANCOVA model in widespread use is that proposed by Friston et al. (1990),
which we now consider.

2.3.2.4. SPM and Friston’s ANCOVA

Friston’s ANCOVA
Friston et al. (1990) proposed modelling activation studies with model 26.3, a

two-way ANCOVA with subject as blocking factor, and a combination of the condition
and replication as the main treatment factor. There is a separate main effect α for each
combination of condition (q) and replication (j) at each voxel (k). If all subjects are
presented with conditions in the same sequence, then the condition & replication factor is
equivalent to one indicating the sequential number of the scan within the session.
Alternatively, scans can be re-ordered to a common presentation order. We shall refer to
this condition & replication factor as the condition*replication factor.

With this model the hypothesis of no activation at voxel k is then expressed as a

contrast of the condition*replication effects: Hk: α (•1)k - α (•0)k = 0, where α (•q)k is

the mean of the condition*replication effects for scans acquired under condition q.

SPM
This model deserves special attention because of its widespread use.

Friston et al. (1991b) developed a software package for the analysis of functional PET

data. This “Statistical Parametric Mapping” (SPM) package was (and still is) the only
complete package for this type of work, and a large number of sites acquired the package
for routine use. The method implemented for creating statistic images for multiple
subject activation studies was the t-statistic for the above contrast of
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condition*replication effects in model 26.3. To most PET practitioners, this is the
ANCOVA.27

History
Originally, not appreciating the regression approach (using matrix methods),

Friston et al. considered only models for which computations via sums of squares were
readily available, and in this respect appear to have been limited to the models covered in
their primary reference for ANCOVA, that of Wildt & Ahtola (1978). This elementary
text covers inference for one-way (completely randomised) designs, two-way
(completely randomised block) designs without interaction for data without replication
within each cell (including a test of homogeneity of the regression parameter), and,
briefly, a two-way (factorial) design with interaction and constant regression parameter.

The omission, of Wildt & Ahtola, to consider replications within each
treatment/block combination perhaps explains why Friston et al. arranged their model
accordingly, considering condition and replication jointly as the treatment factor. This
arrangement has its advantages, as pointed out by Friston (1994b). In particular, it
provides a general model that allows analysis of various experiments with more than two
conditions, permits post-hoc (one-sided) testing of interactions between conditions, or of
time period/activation interactions via appropriate contrasts of the condition*replication
effects.

Discussion
Friston’s proposed model (26.3) is the largest model in the taxonomy for which

there is no difference in the analyses under fixed and random assumptions on the subject
effects. But is the model big enough?

Firstly, model (26.3) assumes a constant regression parameter across conditions
and subjects. As we have seen, homogeneity of regression parameter across conditions
within subjects appears reasonable, but not across subjects. Consider subject dependent
slopes for model 26.3, giving model 26.4. For voxel hypotheses Hk: β1k=…= βNk the
p-value for the omnibus hypothesis (over all the intracerebral voxels in the AC-PC plane),
assuming fixed effects, is 0.0000 (to 4dp), significant evidence against homogeneity of
regression (table 27, comparison “26.4 vs. 26.3”).28 The assumption of constant
condition*replication effect across subjects would also seem questionable, for the same
reasons that constant condition effect was questionable for the “condition” models, a
hypothesis we rejected for the “V5” study.

Thus, from a modelling point of view, Friston’s model (26.3) is inadequate for the
“V5” study, and perhaps for simple activation studies in general. Assuming constant
regression parameter and condition*replication effect substantially increases the degrees
of freedom available to test the significance of a condition effect, over what would be
available under a more appropriate mixed effects model (26.6), and quite possibly leads
to over-sensitive tests, a point noted by Ford (1994).

In the models considered when selecting an ANCOVA for group data the condition
effects were assumed to be constant across  replications. In Friston’s model they are not.

                                               
27The SPM package has recently been re-written, released in November 1994 as SPM94. In this version
any fixed effects model can be analysed. However, model 26.3 is still recommended
(Friston et al., 1994b).
28Friston et al. did not report such a test. Rather, they tested the homogeneity of regression across the
condition*replication combination factor. Using data from four subjects, each of whom were scanned
twice under each of three conditions, they found little evidence against the homogeneity hypothesis
(using their omnibus test). This is perhaps not surprising considering the size of the data set and that
between subject variation dominates any within subject variation of regression parameter. Similar results
are obtained for the “V5” study (table 27, comparison “26.8 vs. 26.3”, omnibus p=0.0916).
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To assess the importance of this, consider the voxel hypotheses Hk:α(1q)k=…=α(Mq)k ,
q = 0,1. For the “V5” study we find that there is evidence against this hypothesis in
Friston’s model (eqn.26.3, omnibus p = 0.0000 (4dp), comparison “26.3 vs. 26.1” in
table 27), but not when subject dependent slopes are considered (omnibus p = 0.2988 to
4dp in table 27, comparison “26.4 vs. 26.2”). We conclude that, for these data, there is
insufficient evidence against homogeneity of condition effect across replications when an
appropriate model is used.

2.3.3. Conclusions
An approach to global normalisation has to be chosen, and a model selected for

inference. In practice this has resulted in two methods being adopted almost exclusively,
namely the t-statistic on subject difference images (after normalisation for global changes
by proportional scaling), and Friston’s ANCOVA.

2.3.3.1. t-statistic on subject difference images

Advantages
The t-statistic is attractive for routine use because of its robustness and simplicity.

The assumptions required for its use are minimal and easy to verify. The statistic is easy
to compute. The formulation of the t-statistic in terms of subject difference images makes
the statistic accessible, and easy to visualise.

This simplicity hides a rather complicated model, a two-way mixed effects
ANOVA (eqn.25). In the “simple” t-statistic, subject, block and habituation effects cancel
out, as do (local) linear trend effects. (The latter provided they are constant across
subjects, and that subjects have been allocated to condition presentation order in a
balanced fashion.) Further, random subject by condition interaction is incorporated.

Disadvantages
The criticisms of the t-statistic are the insensitivity of the ensuing tests (usually in

comparison to Friston’s ANCOVA model, eqn.26.6), and the assumption of
proportionality implicit in global scaling for the normalisation of global effects.

Considering the ensuing tests, these are insensitive because of the low degrees of
freedom available. As we shall see in chapter 3 (§3.3.6.5.), methods for testing t-statistic
images using results for continuous random fields are conservative for t-statistic images
with low degrees of freedom. In itself, this increases confidence in any significant results.
However, there are other techniques available for testing statistic images with low
degrees of freedom that are sensitive, namely variance smoothing and the non-parametric
approach of chapter 6, or the use of “secondary smoothing” which we shall return to in
chapter 3 (§3.3.6.6.).

Turning to the assumption of proportionality. For true rCBF data the evidence
suggests that the relationship between regional and global flow over the normal range of
gCBF (across scans on the same individual under the same conditions) is not
proportional. For uncalibrated “counts” data the case is less clear cut, and depends on
the variability of the introduced activity. A proportional model appears to be acceptable
for the majority of the subjects in the “V5” experiment analysed here. Whether this is
true for other “counts” data sets remains to be seen. Nonetheless, the real question is
whether departures from proportionality compromise the validity of tests based on the
paired t-statistic. The opinion of this author is that the opposite is true, namely that
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departures from proportionality merely add to the error variance (in a random manner),
and thereby decrease the power of the approach.

In summary, the t-statistic, for subject difference images, leads to a robust test,
albeit a relatively insensitive one. Assurance can be placed in the results of a such an
analysis, even if the initial assumptions are not checked.

2.3.3.2. Friston’s ANCOVA

More accurate modelling of the relationship between regional and global values is
the only motivation for considering an ANCOVA approach. However, for the “V5” study,
model selection for the ANCOVA models leads to a model (26.6) that is complicated and
difficult to apply to data. The ANCOVA model in widespread use is that proposed by
Friston et al. (1990), a two-way condition*replication by subject design, with constant
regression slope.

Validity?
It has been shown that, from a modelling point of view, this model is inappropriate

for the “V5” study, and its inappropriateness for other similar studies conjectured at.
However, the key issue is how serious the routine use of this model is in terms of false
positives. The degrees of freedom available for testing in Friston’s ANCOVA are
substantially greater than those available within a more appropriate mixed effects model,
such as 26.6, but the effects omitted in Friston’s model inflate the variance term. The
validity of tests for activation based on this model depends on the actual magnitude and
structure of the omitted effects. In the presence of such effects, all that can be said is that
the assumptions of the model are not true, and therefore that the validity of ensuing tests
cannot be guaranteed.

Empirical validation
It would be interesting to compare the results of analyses using Friston’s model,

and models including subject effects, subject by condition interactions and subject
dependent slopes. This would give some insight into the importance of such terms, and
the consequences of their omission.

Ideally, one would like to apply the various models to a number of null data sets,
where the “rest” and “active” experimental conditions are identical.

This has been done with Friston’s model in a few cases, together with Friston’s
“Bonferroni” method for testing statistic images (Friston et al., 1991d)29. Only a few
false positives have been found, indicating that the method leads to valid tests. Also, for
“gold standard” activation experiments where the actual activation site is known from
previous work, the activated areas are correctly identified, with only a few isolated false
positives. For many this is sufficient empirical validation to justify the approach.
However, methods of empirical validation such as these only address the issue of validity
for the experimental paradigm at hand. The subjects must be assumed to be
representative of the population about which it is desired to infer.

It would be interesting to continue these investigations further.

                                               
29Friston’s “Bonferroni” method for testing statistic images is discussed in §3.3.2.
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2.4. Additional Comments

Inter-group comparisons
The single subject models (eqns.19, p58) are also used to assess changes in rCBF

patterns between groups, where each subject in each group is scanned once. Here there
is no notion of a block (a time pairing) and attention is restricted to models 19.1, 19.3 &
19.5; where q indexes the group, and j the subject within each group.

In this situation the inter-subject variation in gCBF is likely to be great. For
“counts” images of rA, variations in gA due to differences in gCBF may swamp those due
to changes in the administered dose.

In addition, there may be many physiological or neurological reasons to suggest
that the sensitivity of regional to global flow differ between the two groups for some
regions of the brain, particularly if the groups are distinguished by some physiological or
mental trait, as is usually the case. That is, the assumption of constant regression
coefficient in the one way ANCOVA model (eqn.19.3) may be inappropriate, in which
case 19.5 should be considered, and the presence of a condition effect interpreted with
caution. Also of concern is the possibility that mean gCBF differs between the groups.

Condition dependent gCBF
In allowing for changes in gCBF (gA) (either by proportional scaling or ANCOVA)

when assessing condition specific changes in rCBF (rA), it should be borne in mind that
changes in gCBF (gA) across conditions can adversely affect the analysis.

Since gCBF is calculated as the average rCBF across the intracerebral voxels, an
increase in rCBF in a particular brain region must cause an increase in gCBF, unless there
is a corresponding decrease in rCBF elsewhere in the brain. There are
physiological and neurological theories for such a corresponding decrease, explaining
how increased blood flow and/or neuronal activity in one region of the brain can inhibit
flow and/or activity in another. De-activation observed in the presence of  activation is
taken by some to represent some form of functional connectivity, the increased neuronal
activity in one area inhibiting activity in the other. This view is not universally held.

If gCBF varies with the condition then care must be taken. If gCBF is increased by a
large activation that doesn’t have a corresponding de-activation, comparison at a
common gCBF (gA) will make non-activated regions of the brain (whose rCBF (rA)
remained constant) falsely appear as de-activated, and the magnitude of the activation
will similarly be reduced. In these circumstances a better measure of background change
should be sought. Such an estimate can be obtained by examining the flow (activity) in
brain regions known to be unaffected by the stimulus. If such unaffected regions cannot
be specified, then another possibility would be to fit a background global value to each
rCBF (rA) scan. This could be achieved using the stochastic sign change criteria, the
background gCBF (gA) estimated as the threshold level which is crossed most frequently
by the rCBF (rA) image.

If gCBF varies considerably between conditions, as in pharmacological activation
experiments, then testing for a condition effect after allowing for global changes
compares the two brain states at a gCBF (gA) unattainable in at least one of the brain
states. This involves extrapolating the relationship between regional and global values
outside the range of the observed data, an extrapolation which might not be valid.
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As a precaution, it is usual to test for changes in gCBF across conditions. In the
“V5” study, there is insufficient evidence of a change in gA across conditions.30 John
Watson, the primary researcher in the “V5” study, considers the depressed background
of the t-statistic image for the “V5” study (See §2.6.1.) to indicate a true decrease of
rCBF induced by the large increases in the visual cortex (personal communication).

Outliers due to “dose ranging” in non-calibrated studies
In many studies arterial sampling is not carried out, and “counts” images of relative

activity rA are obtained as indicating rCBF. Here, dose ranging31 can lead to anomalous
gA for some scans, outliers adversely affecting the ANCOVA through large leverage. To
avoid this, images are sometimes scaled before ANCOVA according to the amount of
tracer introduced in a scan. If zijq is the measured amount of activity introduced into
subject i during scan j under condition q, then the adjusted images and global activities
are given by

Y'ijqk = ( )
Y

z z

ijqk

ijq i ••
, x'ijq = ( )

x

z z

ijq

ijq i ••

This clearly alters the variance assumptions. An alternative approach would be to
weight observations according to the administered dose. Outlying gA have no effect on
the proportional scaling approach, since the first step is to divide by the measured global
activity.

                                               
30Consider initially the model xijq = αq + γi + αγiq + εijq where εijq~

iid
N(o,σ2). This model is chosen since

it is analogous to the proposed ANCOVA design. Since the p-value for non-zero interaction terms is
0.977 (this test is valid whether subject effects are considered random or not), we assume no interaction
and consider the model xijq = αq + γi + εijq . The p-value for H:α0 = α1 is 0.106 (again, this is so
whether or not subject effects are considered random, see Miller, 1980, §4.5). Thus there is insufficient
evidence against H.
31Recall §2.1. (p52) for details.



76 Chapter Two: Statistic Images

2.5. A Multivariate Perspective

Abstract
In our discussion of linear models relating rCBF to design factors and gCBF, we

have not considered the computational problems of simultaneously fitting the model for
thousands of voxels.32 Viewing the problem from a multivariate perspective provides
efficient computation, and offers some insight into the problem. In this section we
demonstrate the relationship between the simultaneous general linear models for PET data
(which we term image regression), and multivariate regression. Some basic multivariate
regression theory is reviewed. Under an assumption of multivariate normality for the
rCBF images the PET scenario is a multivariate regression, but the high dimensionality of
the data precludes any multivariate analysis. It is for this reason that we concentrate on
simultaneous univariate tests.

Whilst there is nothing new in this section for the statistical reader, the advantages
of the multivariate perspective are only just dawning on the PET community, and this
section is included for the benefit of the reader in the latter category.

2.5.1. Sums of squares approaches
We have a single model to be fitted at each voxel. In a typical data set there are

77000 voxels, making individual fitting on a voxel-by-voxel basis using statistical
packages prohibitive. Working with the images as row vectors, and using matrix
manipulation routines, the appropriate sums of squares can be computed for all voxels
simultaneously. This is the approach taken in older versions of the SPM software
(Friston et al., 1991a), using the exposition of ANCOVA provided by Wildt &
Atholla (1978).

This approach is rather inelegant, being rather slow and requiring a purpose written
program for each possible design. Clearly direct fitting of general linear models for
images is possible by viewing the problem from a multivariate perspective and using
matrix methods. This point was noted by the author, passed on to Friston et al. (1994b),
and is implemented in SPM94.

                                               
32A substantial (and unseen) part of the work undertaken during this Ph.D. has been the development of
software for interactive analysis of PET image data. A number of the author’s routines are part of the SPM

software.
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2.5.2. Multivariate regression formulation
Consider the general linear model for the data at voxel k:

Yjk = xj1 β1k + … + xjQ βQk + εjk where εjk ~iid N(0,σ2
k) (27)

Where Yjk denotes the rCBF (rA) measurement at voxel k =1,…,K; of scan j =1,…,N; and
let xjq q = 1,…,Q be a set of Q explanatory variables for scan j, either covariates (such as
gCBF), dummy variables indicating levels of a factor, or a combination (for interactions
or for covariates with effect dependent on the level of a factor).

In matrix form the model is:
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Since the design matrix, X, is the same for every voxel, we can write all the voxel models
simultaneously in a multivariate linear model:
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Let Yj = (Yj1,…,YjK); ββq = (βq1,…,βqK) & εεj = (εj1,…,εjK) be the rCBF images,
the images of the coefficients, and images of the errors respectively, all as row vectors.
Then the matrices Y and ββ are stacks of the images, and stacks of the coefficient images
respectively:

{
{

{
Y

Y

YN K
N

Q K
Q

N K
N

× × ×
=

















=
















=
















1 1 1

M M Mββ
ββ

ββ
εε

εε

εε

Image regression
In multivariate regression it is usually assumed that the error vectors εεj are drawn

independently from a multivariate normal distribution with zero mean and variance-
covariance matrix Σ. In the present context of simultaneous regressions (eqn.27) we are
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only assuming that the marginal distributions are normal, εjk ~ N(0,σ2
k). It is for this

reason that we differentiate image regression from standard multivariate regression.

2.5.3. Multivariate regression
Since the difference between image regression and standard multivariate regression

lies only in the distributional assumptions, computation of least squares estimates in the
two situations is identical.

Least squares estimates
The usual matrix results for univariate regression continue to hold for multivariate

regression. (See Krzanowski, 1988, ch.15.) The least squares principle gives normal
equations:

XTY = (XTX) ββ̂

If X is of full rank then XTX is invertible and the p×K matrix of parameter estimates ββ̂
(each row is the image of a fitted parameter) is given by:

ββ̂ = (XTX)-1 XTY (28)

Since X is only of dimension N×Q computation of (XTX)-1 is not prohibitive. For
non-unique designs, constraints on the parameters can be imposed to give a design
matrix of full rank, leading to a unique least squares estimate, or an algebraic inverse can
be used to obtain least squares estimates. See Scheffé (1959). For ease of computation,
we shall take the former course of action, and henceforth assume that X has rank Q.

Fitted values, residuals

The N×K matrix of fitted values Ŷ (rows are fitted images) can be obtained as:

Ŷ = X ββ̂

and N×K matrix of residuals εε̂, estimates of the error matrix εε, as:

εε̂ = Y - Ŷ
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2.5.4. Image regression
That the multivariate formulation addresses the simultaneous regressions of image

regression can now be readily seen: Partitioning ββ̂ and Y in eqn.28 into ( )$ $ββ ββ1
L

K

and ( )Y Y1
L

K it is clear that the multivariate approach is simultaneously fitting the K

general linear models for each voxel. In particular, ββ̂k is the least squares estimate of ββk

for the regression at voxel k. Since we have assumed (univariate) normality, the

univariate theory then gives us that ββ̂k is also the maximum likelihood estimate of ββk

(Scheffé, 1959), with Q-variate normal distribution:

ββ̂k ~ NQ(ββ, σ2
k(X

TX)-1)

Note that the fitted parameters, considered together over all voxels, do not
necessarily have a multivariate normal distribution, since no multivariate assumption is
made about the data in the image regression setting.

Distributional results
The image regression formulation allows easy computation of univariate results at

all the voxels simultaneously.
The residual sums of squares for the voxels, arranged as an image (1×K row

vector), are given by:

R = diag(εε̂T εε̂) (the diagonal elements of εε̂T εε̂, arranged as a row vector)

(Since the residual matrix εε̂ is of dimension N×K, the residual sums of squares is more
efficiently calculated directly, by summing the squares of the elements for each voxel, i.e.

summing within columns, the squares of the elements of εε̂).

Similarly, the image of variances, v = (σ2
1,…,σ2

K), is estimated by v̂ as:

v̂ = 
R

N - rank(X)

with 
v̂ (N - rank(X))

v    ~elementwise
   χ2

N - rank(X)

Here, the division operator is understood to act element by element on matrices and
vectors. The “elementwise” qualification on the tilde indicates that the distributional
result is to be interpreted as applying to the individual elements of the vector on the left.

So, element k of v̂, σ̂2
k, is distributed as σ2

k/(N -rank(X)) times a chi-squared variate on

N -rank(X) degrees of freedom.
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Consider a fixed effects model, and a uniquely specified design (perhaps by
imposed constraints) with Q (= rank(X) ) parameters. Then, for x a (Q×1) vector
defining an estimable function xTββ:

xTββ̂ - xTββ

v̂ xT(XTX)-1x
 ~elementwise

  tN - Q

Here the square root operator is understood to act element by element on a matrices. For
unique designs, with rank(X) = Q, all parametric functions are estimable (see
Scheffé, 1959, Th.4).

For fixed effects models the familiar “extra sum of squares” likelihood ratio test
(Draper and Smith, 1981, §2.7) for general linear hypotheses constraining the parameters 
βqk , is also easily computed, provided the hypotheses Hk constrain the parameters
identically for each voxel k. In this case the model under the null hypotheses is the same
for all voxels, and the F-statistics for each voxel are given simultaneously in an F-statistic
image F by:

F = 
(R - RH) / df

v̂
  ~elementwise

  Fdf, rank(X)

where RH is the image of residual sums of squares under all Hk, and df is the reduction in
degrees of freedom imposed by the constraints.

Thus, considering the regression for all voxels together as a multivariate regression
enables simultaneous fitting of the models for each voxel, and allows easy computation
using a matrix manipulation package on a large computer.33

2.5.5. Multivariate regression revisited
We have concentrated on simultaneous univariate methods, and used the

multivariate perspective of image regression for computational efficiency. As we shall
now demonstrate, a full multivariate analysis is precluded.

Multivariate hypothesis testing precluded
Consider the problem as a multivariate regression. Assume that the error vectors εεj

are drawn from a K-variate normal distribution with variance-covariance matrix ΣΣ. Under

this assumption, the joint distribution of the fitted parameters β̂qk is multivariate normal;

the expected value of ββ̂ is ββ, and the covariance between β̂qk and β̂q' k'  is

(ΣΣ)k k' × ((XTX)-1)q q' . The full sum of squares S = εε̂T εε̂ 34 leads to maximum likelihood

estimate of the variance-covariance matrix ΣΣ as ΣΣ̂ = S/N, and unbiased estimate

ΣΣ̂ = S/(N -rank(X)).
Since the dimensionality of the data, K, far exceeds the number of replications, N,

the estimated variance-covariance matrix ΣΣ̂ has linearly dependent rows/columns, and is

                                               
33The current work was undertaken using MATLAB (The MathWorks Inc., Natick), a matrix
manipulation package with extensive programming and visualisation features. The platform used was a
SUN SPARC2, with 48MB of RAM and 160MB of virtual memory.
34S has a Wishart distribution with N -rank(X) degrees of freedom and parameter Σ, and is independent

of ββ̂.
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therefore singular (see Healy, 1986). This precludes any of the standard multivariate

analyses, whose statistics are functions of the eigenvalues of ΣΣ̂.
For instance, for fixed effects models, the likelihood ratio test for a general linear

hypothesis lead to Wilks’ Lambda as a test statistic (see Krzanowski, 1988):

Λ = $ $ΣΣ ΣΣ 00

where ΣΣ̂0 is the maximum likelihood estimate of ΣΣ under the null hypothesis. (This is the

multivariate analogue of the “extra sum of squares principle”) If ΣΣ̂0 is singular, then so is

ΣΣ̂, and the statistic is not defined.
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2.6. Example–“V5” Study

Presentation of statistic images
Throughout this thesis, statistic images shall be depicted by mesh plots of a single

transverse plane, usually the AC-PC plane. This form is chosen in preference to grey-scale
images because details in the images are shown more clearly. In particular, rugosities in
an image are readily discernible.

In these plots the X-Y plane corresponds to the relevant transverse slice, with
scales graduated in millimetres according to the standard Talairach co-ordinate system
(to which the images have been aligned). Thus the bottom left of the mesh corresponds
to the posterior of the brain, and the top left to the left of the brain. The vertices of the
mesh are located above the voxel centres, with heights indicating the value of the statistic
at that voxel.

2.6.1. Proportional scaling approach
A proportional scaling approach will be illustrated, using a t-statistic formed from

subject difference images, as described in §2.3.1.

2.6.1.1. Statistic images

Below are mesh plots of the AC-PC planes of various statistic images for the “V5” data.

Subject difference image
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Figure 28
Mesh plot of subject difference image ∆∆1 for first subject in the “V5” study.
(Eqn.20) The X-Y plane is the AC-PC plane.  The heights of the vertices
indicate the value of ∆1k. for the appropriate voxels. The Z axis is graduated
normalised counts. The “flat” border at the edges corresponds to voxels
outside the intracerebral volume, whose values have been set to zero.
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Study mean difference image
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Figure 29
Mesh plot of study mean difference image for the “V5” study. (Eqn.22) The
Z axis is graduated normalised counts. The AC-PC plane is shown.

Sample variance image
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Figure 30

Mesh plot of sample variance at voxel k, S 2
k , of the subject mean differences

for the “V5” study (eqn.23). The Z axis is graduated normalised counts
(squared). The AC-PC plane is shown. Note how the sample variance image
is quite noisy, whereas the mean difference image of fig.29 is smooth.
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t-statistic image
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Figure 31
Mesh plot of t-statistic image T for the “V5” study (eqn.21). Each voxel
statistic is distributed as a Student’s t variate with 11 degrees of freedom,
under the hypothesis of no activation at that voxel, Hk:µk= 0. ∆ik ~ N(µk,σ

2
k)

is assumed. The AC-PC plane is shown. The roughness of the statistic image
is due to noise in the sample variance image (fig.30).

Unadjusted p-value image
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Figure 32
Mesh plot of (unadjusted) one-sided p-values for the voxel hypotheses
Hk:µk= 0 of no activation at voxel k, computed from the t-statistic image
(with 11 degrees of freedom) of fig.31.  The p-value axis is graduated in
reverse to depict activated voxels as high. Voxels outside the intracerebral
volume have been removed. The AC-PC plane is shown.
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2.6.1.2. A crude Bonferroni analysis

From the t-statistic image and the corresponding p-value image (figs.31 & 32
respectively), there would appear to be evidence against the hypotheses of no activation
for voxels at the rear of the brain. (Voxel hypotheses Hk:µk= 0, assuming

∆ik ~ N(µk,σ2
k)). The maximum t-statistic in the AC-PC plane is 13.692 (to 3dp) at

Talairach location (2,-74,0), and the maximum t-statistic in the whole brain volume is
20.147 (to 3dp) at (-20,-80,12), with p-values of 1.48×10-8 and 2.47×10-10 (to 3sf)
respectively.

A crude Bonferroni assessment
At overall significance level α for all the K voxels, a (highly conservative)

Bonferroni35 correction for the K simultaneous tests would reject Hk if the p-value at
voxel k, Pk, was less than α/K. This leads to Bonferroni single step adjusted p-values of

P
~

k = min{KW Pk, 1}. The Bonferroni approach at level α rejects the null hypotheses for
voxels with adjusted p-values less than α. Here, the intracerebral volume consists of
K = 77189 voxels, leading to the adjusted p-value image of figure 33a. Thresholding the
p-value image at α = 0.05 at this value reveals that there is evidence of activation at the
posterior of the brain (fig.33b).
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Figure 33
(a) Mesh plot of Bonferroni single step adjusted one-sided p-values,
computed from the p-values of fig.32. Voxels outside the intracerebral
volume have been removed. (b) Voxels with adjusted p-value below
level 0.05. The outline of the intracerebral area is superimposed. The AC-PC

plane is shown.

                                               
35“The” Bonferroni correction for multiple comparisons problems is discussed in §3.2.1.
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2.6.1.3. Empirical examination of assumptions

Q-Q plot for single voxel
The analysis of the “V5” study just seen relies on the assumption that the subject

difference images have normally distributed voxel values: ∆ik ~ N(µk,σ2
k). Considering a

single voxel, this assumption can be examined by plotting the observed values against
expected order statistics (normal scores), in a Q-Q probability plot (fig.34). The
approximate linearity of this plot suggests that the assumption is reasonable.
Summarising the linearity via the correlation coefficient leads to a simple Shapiro-Wilk

type test for normality (Filliben, 1975). The null hypothesis is Hk: ∆ ik ~ N(µk,σ2
k). The

correlation here is 0.972 (to 3dp), above the critical threshold,36 giving insufficient
evidence against the hypothesis Hk at the 5% level.
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v5pmd Q-Q plot for V5 study, (0,0,0)

Figure 34
Q-Q plot for the data at the Talairach origin. The values of the subject
difference images ∆ik for voxel k at (0,0,0) are plotted against the
corresponding expected order statistics (normal scores) from a standard
normal distribution.

                                               
36A high correlation is consistent with normality. The MINITAB  reference manual (“arithmetic” section,
NSCORES command) gives critical values of 0.9180 and 0.9383 below which the correlation coefficient
must fall to suggest evidence against the null hypothesis of normality at the 5% level, for samples of
sizes 10 and 15 respectively.
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Correlation coefficient of Q-Q plots for AC-PC plane
Summarising the linearity of Q-Q plots using the correlation coefficient allows us to

examine the assumption over all other voxels simultaneously. Fig.35 shows the
correlation coefficients so computed for the AC-PC plane. Less than 5% of the voxels
have correlation coefficient less than the critical value for a sample of size 12 at the 5%
level, an exceedence proportion indicating insufficient evidence against the omnibus
hypothesis of normality (∆ik ~ N(µk,σ2

k)) at all voxels. However, it should be borne in

mind that these Shapiro-Wilk type tests have extremely low power.
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Figure 35
Mesh plot showing the correlation between the data ∆ik (subject difference
images) at each voxel k and the expected order statistics from a standard
Normal distribution. The AC-PC plane is shown. (Voxels outside the
intracerebral volume have been removed.) Note that the Z-axis is truncated
at 0.75.
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2.6.2. Friston’s ANCOVA

In §2.3.2.4., the two way ANCOVA design (model 26.3) proposed by
Friston et al., (1990) was discussed. To illustrate this discussion, consider applying the
method to the “V5” study data.

Recall that the hypothesis of no activation at voxel k is then expressed as an

appropriate contrast of the condition*replication effects: Hk: α (•1)k - α (•0)k = 0, where

α (•q)k is the mean of the condition*replication effects for scans acquired under

condition q. Fitting the model to the “V5” data and evaluating the contrast for the
estimated effects leads a t-statistic image with 120 degrees of freedom, the AC-PC plane
of which is depicted below (fig.36).

t-Statistic image
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Figure 36
Mesh plot of t-statistic for the contrast of condition*replication effects in
Friston’s ANCOVA (model 26.3), computed for the “V5” study data. Each
voxel statistic is distributed as a Student’s t with 120 degrees of freedom,

under the hypothesis of no activation at that voxel: Hk: α (•1)k - α (•0)k = 0

The model is assumed to fit. The AC-PC plane is shown.
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Unadjusted p-value image
Referring these t-statistics to a Student’s t-distribution with 120 degrees of

freedom gives the unadjusted p-value image below (fig.37).
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Figure 37
Mesh plot of (unadjusted) one-sided p-values computed from the t-statistic
image of fig.36. Voxels outside the intracerebral volume have been removed.
The AC-PC plane is shown.

Adjusted p-value image
Adjusting the one-sided p-values for the K = 77189 intracerebral voxels leads to

Bonferroni single step one-sided adjusted p-values (fig.38a). As can be seen, the
significant region for a level α = 0.05 test is much larger than for a proportional scaling
approach with t-statistic computed from subject difference images (fig.38b, compare
with fig.33b, p86)
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Figure 38
(a) Mesh plot of Bonferroni single step adjusted one-sided p-values,
computed from the p-values of fig.37. Voxels outside the intracerebral
volume have been removed. (b) Voxels with adjusted p-value below
level 0.05. The outline of the intracerebral area is superimposed. The AC-PC

plane is shown.
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2.7. Pooled Variance

The low numbers of subjects and replications per subject in PET experiments
frequently leaves very few degrees of freedom for the estimation of variance. This is
particularly a problem in single subject analyses, and in the t-statistic approach, where the
data for each subject is collapsed into a difference image. These gives tests at the voxel
level with very low degrees of freedom, and hence low power. In addition, as we shall
see in chapter 3, the multiple comparisons procedures based on random fields are
conservative when the voxel statistics have low degrees of freedom.

Homogeneous variance
If it may be assumed that the variance is the same at all the voxels under

consideration (homoscedasticity), then Worsley et al. (1992) advocate pooling the
variance estimates across all the voxels. Consider the example of a multiple subject
simple activation study, to be assessed using proportional scaling and a t-statistic on
subject difference images (§2.3.1.). Assume ∆ik ~ N(µk,σ2), That is, that the variance of

the subject difference images across subjects is constant across the voxels. Since S 2
k

(eqn.23) is computed for each voxel using the same number of observations (the number
of subjects, N) the degrees of freedom is the same for each voxel. The pooled sample

variance is simply the mean over all the voxels, S 2
•  . The t-statistic image is then formed

using S 2
•  in place of S 2

k  in eqn.21, and is essentially just a normalised mean difference

image:

T
S n

k
k=

•

∆
2

(29)

Pooled variance regarded as known
Sample variance estimates at individual voxels are not independent, since the

subject difference images ∆∆i are smooth. Thus, the distribution of the pooled sample

variance S 2
•  cannot be determined. However, if the estimate is formed by pooling over

a very large number of voxels, and the smoothness of the subject difference images is
much less in extent than the dimensions of the volume covered by these voxels, then the
estimate effectively has large enough degrees of freedom that it can be regarded as
known. Worsley et al. (1992) argue as follows (p901, c2): “…If we can find R voxels
sufficiently separated so that they are independent, then the effective degrees of freedom
is at least (N-1)R. Typically R≈300 and N≈10, so the effective degrees of freedom is
large enough…” The value of R used is the number of resolution elements, a concept we
shall return to when reviewing Worsley’s method for assessing the significance of
statistic images (§3.3.1.).

Distributional results: Gaussian statistic images
Regarding the variance as estimated almost exactly, Tk:~ N(µk,1), giving a

Gaussian statistic image. The hypothesis of no activation is then Hk:µk= 0, to be tested

against the one-sided alternative Hk:µk> 0. A one-sided p-value is then 1-Φ(Tk).
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2.7.1. Example–“V5” Study

Assuming homogeneity of variance, i.e. that σ2
k = σ2 for all voxels k = 1,…,K in

the “V5” study (K=77189), the pooled estimate of the common variance is

S 2
•  = 0.812 (to 3dp). From the (voxel) sample variance image (fig.30, p84) it appears

that the sample variance is not constant.

Chi-squared statistic image for homogeneity of variance
To assess the assumption of homogeneity of variance, consider the usual Chi-

squared statistic for testing Hk:σ
2
k = σ2 where σ2 is known:

Ck = 
(n-1) S 2

k

σ2  

Taking S 2
•  as σ2, under Hk Ck~:χ2

n-1. Since it is underestimation of variance that is of

consequence, consider the one sided alternative hypothesis Hk:σ
2
k >σ2 (but note that

with S 2
•  as σ2, σ2

k >σ2 for some voxels implies σ2
k < σ2 for others). For the “V5” data

this gives the statistic image C, the AC-PC plane of which is depicted in figure 39. Over
the whole intracerebral volume, 6.63% (to 2dp) of the voxels have associated statistics
significant at the 1% level (unadjusted for multiple comparisons). This exceedence
proportion gives a p-value of 0.0000 (to 4dp) for the omnibus hypothesis HW, computed
by Worsley’s exceedence proportion test.37 Thus we may conclude that the variance is
not homogeneous for the “V5” data.
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Figure 39
Mesh plot of Chi-squared statistic C, indicating evidence against

homogeneity of variance. The AC-PC plane is shown.

                                               
37The Chi-squared statistic image was “transformed” to a standard Gaussian statistic image. (By
replacing each voxel statistic with the standard Gaussian ordinate, with identical probability of being
exceeded. See §3.3.3.). The resulting Gaussian statistic image was then assumed to be a strictly
stationary discrete Gaussian random field, and the variance-covariance matrix of partial derivatives
estimated directly from the positive part of the image (see §3.3.5.). The omnibus p-value was then
computed using Worsley’s exceedence proportion test (§3.4.2.), with a threshold of -Φ-1(0.01).
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2.7.2. Inappropriate use of pooled variance
The assumption of constant variance has often been made when analysing

activation studies. One reason for this is that the resulting Gaussian statistic image is
more amenable to analysis, as we shall see in chapter 3. The validity of this assumption is
seldom checked,38 and many experiments are analysed falsely assuming homogeneity of
variance. One of the pitfalls is that variance may be underestimated, leading to falsely
inflated t-statistics, and possibly false positives. To illustrate, consider the use of a pooled
variance estimate for the “V5” data.

Underestimation of variance at site of activation
From the sample variance image (figure 30, p84) (or equivalently from the Chi-

squared statistic image for homogeneous variance, figure 39), it appears that the sample
variance is increased at the posterior of the brain. When considering the straightforward
t-statistic image, computed with voxel level sample variance, the posterior of the brain
was identified as activated (figure 32 and following text, p85). Thus the variance is
increased at the site of the activation39. The use of a pooled variance t-statistic in this
case falsely inflates the statistic at the site of the activation, as can be seen in figure 40
(compare with figure 31, p85). In addition, since the variance is now assumed to be
known, the voxel p-values are greatly increased in significance (figure 41, compare with
figure 33, p86). The inappropriate use of a pooled variance estimate can easily lead to
false positives.
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Figure 40
Mesh plot of t-statistic image T computed with pooled variance estimate for
“V5” study. (Eqn.29) Each voxel statistic is distributed as standard Gaussian
variate under the hypothesis of no activation at that voxel, Hk:µk= 0, where
∆ik ~ N(µk,σ

2) is assumed. The AC-PC plane is shown.

                                               
38Researchers usually use pre-written analysis software that do not include such checks. Furthermore,
many of the tests themselves have low power, and can only detect gross deviations from the assumptions.
39This is perhaps to be expected. The “rest” and “active” conditions in the “V5” study both involve
visual stimuli, so the non-visual areas of the brain should remain fairly stable. In the visual areas of the
brain, different subjects can be expected to exhibit different increases in blood flow between the two
conditions, so mean difference images can be expected to vary across subjects more in the challenged
area than in those unaffected by the conditions.
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Figure 41
(a) Mesh plot of Bonferroni single step adjusted one-sided p-values, for the
pooled variance t-statistic image of figure 40. Voxels outside the
intracerebral volume have been removed. (b) Voxels with adjusted p-value
below level 0.05. The outline of the intracerebral area is superimposed. The
AC-PC plane is shown.

Underestimation of variance for grey matter due to white matter and ventricles
A further cause for underestimation of variance is due to the non-homogeneity of

the brain itself. The brain consists of grey matter and white matter, and ventricles that
are filled with spinal fluid. High level processing takes place in the grey matter on the
surface of the brain, so it is only the grey matter that is interesting. Freely diffusible blood
flow tracers get into the spinal fluid, but only in small quantities, so the ventricular
regions of the brain appear to have a constant but low rCBF (rA) when measured with
PET, and hence exhibit low variation between subject difference images. The ventricles
are of sufficient size that a variance estimate pooled over the whole intracerebral volume
underestimates the variance in grey matter regions.


