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Chapter Four

Two Stage Testing

In this chapter we consider a two stage approach to assessing multiple subject
activation studies. The experimental subjects are divided into two groups, a pilot group
and a study group. A statistic image is formed from the pilot group data, from which
interesting regions are identified. The study group data is then analysed over these
interesting regions, using ROI methods.

A simple two-dimensional simulation is presented, which compares the two-stage
approach with some of the voxel-by-voxel approaches described in ch.3.
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144 Chapter Four: Two Stage Testing

4.1. Two-Stage Testing

Consider a multiple subject activation study, in which subjects are scanned
repeatedly under two mental states which are to be compared. In the absence of any
prior hypotheses regarding the brain location engaged differently by the two states under
study, we have two avenues for analysis. The first involves a pilot study to identify
interesting regions of the brain. These are then examined in a study on new subjects
using ROI methods. This is the two-stage approach. Hypotheses are generated in stage
one, the pilot stage, and assessed in stage two, the study stage. The data used in each
stage are independent. The second option proceeds with an analysis that considers the
whole intracerebral volume, usually voxel-by-voxel. Most research to date has taken the
latter option, forming statistic images using the methods of ch.2, and assessing them with
the methods of ch.3.

However, the large multiple comparisons problem of a voxel-by-voxel approach
results in methods with low power. A voxel-by-voxel approach may be less powerful
than a two-stage approach using the same number of subjects. The small number of
comparisons in the study stage of a two-stage approach may make up for the smaller
study group and the possibility of spurious region hypotheses being identified in the pilot
stage, to produce a test more powerful than a voxel-by-voxel approach with the same
number of subjects.

It is this possibility which we shall explore in this chapter.

Two-Stage testing from subject difference images
Consider a simple activation experiment with N subjects, each scanned M times

under each of the two conditions, “rest” and “active”. Choose N1 subjects as the pilot
group, with the remaining N2 (= N-N1) subjects as the study group.

For simplicity, we shall consider the proportional scaling approach, with paired
t-statistics formed from subject difference images as described in §2.3.1. As noted in
§2.3.1.2., the paired t-statistic for multiple subject simple activation studies provides a
simple statistic that absorbs undesirable effects that otherwise require an extremely
complex model, but that the approach is hampered by the low degrees of freedom for
variance estimation.

Let Y'gijqk denote the rCBF (rA) measurement at voxel k =1,…,K, of scan j =1,…,M
under condition q = 0,1 (0 = “rest”, 1=“active”), on subject i = 1,…,Ng in group g =1,2
(1=“pilot”, 2=“study”), after normalisation for global changes by proportional scaling
(§2.1.2.) As usual, we shall refer to voxels by their index, k, to regions by the set of
indices of the voxels in that region, and use HU to mean the omnibus hypothesis over
region U, the intersection of the voxel hypotheses for voxels with indices k∈U.

The data for each subject is collapsed into a subject difference image,
∆∆gi = (∆gi1,…,∆giK).

∆gik = Y' gi•1k - Y' gi•0k (61)

We shall consider ∆gik ~ N(µk,σ2
k). As we shall see, distributional assumptions are not

necessary for the pilot group subject difference images, and weaker assumptions are
adequate for the study group difference images. The hypothesis of no activation is

Hk:µk= 0, with alternative hypothesis Hk:µk> 0. The omnibus hypothesis is HW, where

W = {1,…,K} is the set of (indices of) voxels under consideration.
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Stage 1: Region selection from pilot group data
The pilot group t-statistic image, T1 = (T11,…,T1K), is constructed from the pilot

group subject difference images as described in §2.3.1., giving, in the current notation:
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Any method for the selection of regions of interest will give a valid test. As well as
the pilot study statistic image, additional information can be used to aid region selection.
Anatomical information can be used to exclude white matter and ventricular regions from
selection. Clinicians prior beliefs can be incorporated, and the interesting regions chosen
manually. However, many experimenters prefer automated procedures that eliminate
operator judgement from analyses, giving reliable methods that always give the same
answer for any particular data. Further, for study by simulation, an automated method of
region identification is required.

The method we shall adopt is as follows. Threshold the pilot group t-statistic
image at a fairly low threshold, and note the clusters of voxels with supra-threshold
values. Choose the “most interesting” of these clusters, where the interest of a cluster is
measured in terms of the size of the region enclosed between the suprathreshold portion
of the statistic image and the threshold plane. We shall call this the excess weight of the
suprathreshold cluster. For a one-dimensional image, the excess weight is an
area (fig.58).
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Figure 58
Excess area for a supra-threshold cluster in a one-dimensional image.
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In detail, TSmaxNoR55 ROI are chosen as follows: T1 is thresholded at a level
u1 = tN1-1,1-η1

, the 1-η1 point of a Student’s t-distribution with N1 -1 degrees of

freedom. Suppose there are R' supra-threshold clusters of voxels, where cluster r consists
of voxels k ∈U'r, r =1,…R'. If R' ≤ TSmaxNoR then we are done: These R' clusters define
the ROI. If R' > TSmaxNoR, then compute the region excess weights as ωr (eqn.65), and
choose as ROI the regions defined by the TSmaxNoR clusters with greatest weights.

ωr = ∑ k∈U'r
 (T1k - u) × VoxSize  , (65)

where VoxSize  is the volume of a voxel.

If a low threshold (corresponding to “large” η1) is chosen, then the probability of there
being no supra-threshold clusters from the pilot group statistic image is very low. In the
unlikely event that this does happen, suitable courses of action may be to lower the
threshold (increase η1) until supra-threshold clusters are found, or to proceed with a
voxel-by-voxel analysis of the study group data.

Suppose R (= min{R',TSmaxNoR}) regions of interest are identified for examination
in the study stage, consisting of voxels with indices k ∈Ur, r =1,…R.

Stage 2: ROI analysis of study group
The study stage of the two-stage test is an ROI analysis of the study group data,

using the R regions of interest identified in the pilot stage. A t-test is performed for each
region, at a level adjusted for the number of regions under consideration by Bonferroni
(or Šidák) correction. The data for a region t-test are the means of the subject difference
images over that region.

For each study group subject, the mean of the subject difference image over each
region is computed, giving data Xir :

Xir  = 
1

card(Ur)
 ∑ k∈Ur

 ∆2ik

Here, card(Ur) is the cardinality of set Ur, the number of elements in Ur.
One sample t-statistics for each region, T2r, are computed in the usual way:
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Assume Xir  ~ N(µr,σ2
r ). Under the null hypothesis of no (overall) activation in

region r, HUr
:µr = 0, T2r ~ tN2-1, a Student’s t-distribution with N2-1 degrees of

freedom. The alternative hypothesis of activation is one-sided HUr
: µr >0. For a level α

test by Bonferroni correction, the R region t-statistics T2r are compared with the 1-α/R
point of Student’s t-distribution with N2-1 degrees of freedom. Unadjusted p-values for
each region are given by 1-Ft,N2-1(T2r), where Ft,df(•) is the CDF of Student’s
t-distribution with df degrees of freedom. These give Bonferroni adjusted p-values as the
smaller of 1 and R(1-Ft,N2-1(T2r)).

                                               
55Words in typewriter font, such as TSmaxNoR, are to be read as variable names.
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The Bonferroni correction here is unlikely to lead to particularly conservative tests
since the number of ROI is small, and since under the null hypotheses HUr

 , the region
t-statistics are unlikely to be highly correlated for reasonably separated ROI.
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4.2. Simulation Methods

To assess the usefulness of this two stage approach, a simulation study was carried
out. Sets of subject difference images were simulated, and the two-stage approach
compared with some of the voxel-by-voxel approaches previously described in ch.3.

4.2.1. Image space
The image space considered was a two-dimensional arrangement of K = 64×64

square pixels. In addition to the usual method of referring to pixels by their index, we
shall refer to pixels in pixel co-ordinates, referring to a pixel by X and Y displacements in
pixels from an origin chosen such that the “bottom left” pixel of the image space has co-
ordinates (1,1) (appendix A). The pixels were taken to be of dimensions 2mm×2mm.
This gives an image area of 4096 pixels, representing an area of 16384mm2, which is
similar to that of a central slice from a PET image. However, for convenience we shall
work in units of pixels, with one “pixel” representing 2mm when indicating a length.

Toroidal image space
To avoid edge effects, a periodic boundary was assumed, equivalent to wrapping

the image space round a torus. The top and right of the image space were considered to
touch the bottom and left of the image space, respectively. In pixel co-ordinates, pixel
(x,64) was considered to be to the immediate left of pixel (x,1) (x =1,…,64), and pixel
(64,y) was considered to be immediately below pixel (1,y) (y =1,…,64) (fig.59).
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Figure 59
The toroidal image space.

The image space as the pixellated surface of a torus is shown on the left. On
the right are shown the neighbours of pixels in the “bottom left” of the 64×
64 image space, when considered as an unwrapped torus. The numbers in
the squares are the pixel co-ordinates of the pixel. Four pixels in an “L”
shaped cluster are shaded to indicate the orientation of the image space
when wrapped onto the torus.
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4.2.2. Simulating difference images

Subject difference images
N null subject difference images ∆gik (g = 1,2, i = 1,…,Ng, k = 1,…,K), were

generated by smoothing Gaussian white noise images with a (discretised) Gaussian
kernel of FWHM 5 pixels (10mm). The Gaussian white noise images were generated by
associating a zero mean, unit variance Gaussian variate with each pixel (fig.60).
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Figure 60
Example white noise image, shown (on the left), with X and Y axes

graduated in pixel co-ordinates, and (on the right) folded into a torus.

A Gaussian filter kernel of FWHM 5 pixels was implemented as a moving average
filter, with weights computed by evaluating a bivariate Gaussian PDF with zero mean and

variance-covariance matrix ΣΣ = 



52 0

0  52  
1

8ln(2), on a regular 17×17 array of points 1 unit

(pixel) apart, centred at the origin (fig.61). The smoothing weights were normalised to
sum to unity. (See appendix B for details of smoothing and Gaussian kernels.)
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Figure 61
Mesh plot of the (discretised) Gaussian filter kernel.

The vertices of the mesh correspond to the points of the lattice.
The X and Y axes graduated in pixel co-ordinates.
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The white noise images were smoothed with the Gaussian moving average filter,
which was applied respecting the toroidal structure of the image space. The resulting
image was normalised to give simulated difference images with unit variance, by division
by the square root of the sum of the squares of the weights of the filter kernel. The sum
of the squares of the weights of the filter kernel was found to be close to the theoretical
value for continuous two dimensional fields of l / (4π√|ΣΣ|), as given in appendix C:5.

The null difference images created thus, are strictly stationary discrete Gaussian
random fields with zero mean and unit variance. Furthermore, the PRF is equal to the
smoothing kernel used, a (discretised) Gaussian kernel of FWHM 10mm. The variance-
covariance matrix of partial derivatives of the field is ΛΛ=(2ΣΣ)-1 (appendix C:7). An
example of a simulated null difference image is shown in fig.62.
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Figure 62
Example simulated null difference image, shown (on the left), with X and Y
axes graduated in pixel co-ordinates, and (on the right) folded into a torus.

Signal
To simulate deviations from the omnibus hypothesis, a signal was added to each of

the null subject difference images. The signal is a PRF convolved with itself, scaled to
have maximum height SigAmp, and located at pixel (32,32). This is a fairly common focal
signal for use in PET simulation experiments. Since the PRF is a Gaussian kernel of FWHM

5 pixels (equivalent to 10mm), and hence variance-covariance matrix ΣΣ = 



52 0

0  52  
1

8ln(2),

the signal is a bivariate Gaussian kernel with mean (32,32)', and variance-covariance
matrix 2ΣΣ (appendix C:4), scaled to the appropriate height by multiplication by

SigAmp×2π |2ΣΣ|. The signal therefore has FWHM of 5√2 pixels (equivalent to 10√
2 mm).



Simulation Methods 151

The signal is discretised by evaluating it on the 64×64 lattice of voxel centres,
giving an image of the signal (fig.63), which was added to each of the simulated null
subject difference images by adding the values of the two images at each pixel.
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Figure 63
Mesh plot of the signal at unit amplitude.

X and Y axes graduated in pixel co-ordinates.

Correct rejections
Let V be the set of (indices of) the 9 pixels in the 3×3 square centred at (32,32)

(fig.64). If a test rejects HV, by rejecting the null hypotheses for any pixel in V, or by
rejecting the hypothesis for a region containing a pixel in V, then the test was considered
to have correctly identified the signal. The “true” power of a test at a given SigAmp was
defined as the probability of rejection of HV.
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Figure 64
3×3 square of voxels at the signal centre.

The numbers in the squares are the pixel co-ordinates of the pixel.
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4.2.3. Two-Stage test implementation

Pilot group t-statistic image
The first N1 simulated difference images were taken as the pilot group difference

images, and from these the pilot group t-statistic image, T1 (eqn.62), was
formed. (Fig.65)
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Figure 65
Example pilot group t-statistic image computed from N1 = 4 simulated null
subject difference images, shown (on the left), with X and Y axes graduated
in pixel co-ordinates, and (on the right) as a mesh plot.

This pilot group t-statistic image is then thresholded at level u1 = tN1-1,1-η1
. The

pixels with supra-threshold values are the interesting pixels.

Interesting cluster identification
The clusters of the interesting pixels were identified as connected subsets of pixels,

using a first order neighbourhood scheme. Under such a scheme, two pixels are
neighbours if they share a side. Two pixels are connected if they can be joined by a path
of pixels, in which each pixel in the path is a neighbour of the last. This cluster
identification was carried out respecting the toroidal nature of the image space.
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This results in a region map, an image where the value of each pixel is the number
of the cluster it is a member of, or zero if the pixel has sub-threshold pilot
t-statistic (fig.66)
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Figure 66
Example region map computed from the t-statistic image of fig.65,
thresholded at u1 = -t3,0.1 = 1.6377 (4dp). A region map is an integer image,
with pixel values indicating the cluster the pixel belongs to, zero indicating
membership of no clusters. For display, zero has been mapped to the
character ‘. ’, and the integers 1,2,3,… to the characters ‘A’,‘ B’,‘ C’,…. Note
how clusters A, D & R are defined across the edges of the image space, due
to its consideration as an unwrapped torus. The X and Y axes are graduated
in pixel co-ordinates.

For each of the R' clusters of pixels identified, the excess weight was computed by
eqn.65. If more than TSmaxNoR clusters of pixels were identified, then the TSmaxNoR with
largest excess weight were chosen to be the R ROI for the study stage. Otherwise, all R'
clusters were taken as the ROI for the study stage. In the unlikely event (for a low
threshold) that no interesting pixels were obtained, the whole image was considered as a
single region. In practice, something more useful would be done, but this was a
convenient conservative approach for the simulation experiment.

Stage 2
The study stage of the two stage test on the simulated subject difference images

was implemented as described in §4.1.

4.2.4. Voxel-by-voxel tests
Voxel-by-voxel approaches were applied to the t-statistic image, T = (T1,…,TK),

formed from all N simulated subject difference images, as described in §2.3.1. It was
assumed that ∆gik ~ N(µk,σ2

k); so under Hk:µk= 0, Tk~tN-1, a Student’s t distribution with
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N-1 degrees of freedom . As usual, one-sided alternative hypotheses were considered;

H k:µk> 0.

The voxel-by-voxel approaches considered were a simple Bonferroni approach and
Worsley’s expected Euler characteristic approach for t-fields. In addition, Worsley’s
expected Euler characteristic approach for Gaussian fields, and Friston’s supra-threshold
cluster size test were applied to the t-statistic image after it had been “Gaussianised”.

Bonferroni
The Bonferroni approach was described in §3.2.1. The critical level cα was

computed as the 1-α/K point of the t-distribution with N-1 degrees of freedom. The
t-statistic image was thresholded at this level, and pixels with supra-threshold t-statistics
had their null hypotheses rejected. Rejection of any pixel hypothesis implies rejection of
the omnibus hypothesis HW.

Worsley’s expected Euler  approach for t-fields
Worsley’s expected Euler characteristic method, for a two-dimensional strictly

stationary continuous random t-field was applied. The method for Gaussian fields was
described in §3.3.1., and the expected Euler characteristic of the excursion set of a
strictly stationary continuous random t-field is given in appendix D:3. For convenience,
we shall refer to this test as “Worsley’s Tmax” test.

The equation for the expected Euler characteristic of the excursion set of a strictly
stationary continuous random t-field thresholded at level u was set to α and solved to
obtain the critical threshold uα. The variance-covariance matrix of partial derivatives of

the component fields used was the theoretical value for a strictly stationary continuous
Gaussian field with zero mean and unit variance formed by convolving a white noise
Gaussian process with a Gaussian kernel with variance-covariance matrix ΣΣ. The value is 

ΛΛ = (2ΣΣ)-1 (appendix C:7). Recall ΣΣ = 



52 0

0  52  
1

8ln(2). As measurements are in pixels, the

size of the domain of the field, λ(Ω), is simply the number of pixels, K.
The t-statistic image was thresholded at this level, and pixels with supra-threshold

t-statistics had their null hypotheses rejected.

Gaussianised t-statistic image
The t-statistic image was transformed to a Gaussian statistic image, by replacing

each pixel t-statistic with a Gaussian variate with equal probability of being exceeded.
(See appendix E for details.) As noted in §3.3.3., although the resulting statistic image
has Gaussian marginal distributions under HW, it is not a discrete Gaussian field.
However, many practitioners apply tests for Gaussian random fields to such
“Gaussianised” statistic images, and we shall do likewise.

The variances of the partial derivatives of the Gaussianised statistic image were
estimated within the image. This was accomplished by taking numerical derivatives at
each voxel in the X and Y directions, as a difference in the pixel values, and computing
the sample variance of these numerical derivatives over the image space. Since the
(square) image space is considered as the unfolded surface of a torus, every pixel has
neighbouring pixels in both the X and Y directions. Assuming the covariances of the

partial derivatives are zero, this gives an estimate ΛΛ̂ of the variance-covariance matrix of
partial derivatives ΛΛ. Recall §3.3.5. for further details of estimating smoothness.

Worsley’s expected Euler approach for Gaussianised statistic image
Worsley’s expected Euler characteristic method for a two-dimensional strictly

stationary continuous Gaussian random field with (hypothesised) zero mean and unit
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variance, was applied to the Gaussianised t-statistic image as described in §3.3.1. For
convenience, we shall refer to this test as “Worsley’s Zmax” test.

The equation for the expected Euler characteristic of the excursion set of a 2D
strictly stationary continuous standard Gaussian random field thresholded at level
u (eqn.36), was set to α and solved to obtain the critical threshold uα. The estimated

variance-covariance matrix of partial derivatives for the Gaussianised t-statistic image, ΛΛ̂,
was used. Again, the size, λ(Ω), of the domain of the field is simply the number of pixels,
K.

The “Gaussianised” t-statistic image was thresholded at this level, and pixels with
supra-threshold statistics had their null hypotheses rejected. Rejection of any pixel
hypothesis implies rejection of the omnibus hypothesis.

Friston’s supra-threshold cluster size test on “Gaussianised” statistic image
The supra-threshold cluster size of Friston et al. (1994d) was described in §3.5.2.

The “Gaussianised” t-statistic image was thresholded at u = -Φ-1(ηF), and clusters of
supra-threshold pixels identified using the toroidal clustering algorithm used in the pilot
stage of the two stage test. For each cluster, the size in pixels was computed. We shall
refer to this test as “Friston’s Smax” test.

Using K as the size of the field, and the estimated variance-covariance matrix of

partial derivatives of the “Gaussianised” t-statistic, ΛΛ̂, the critical cluster size sα for a

level α test was computed (eqn.60). Since the size of the domain of the field and the
smoothness have been measured in pixels, the critical cluster size is also in pixels.

If a supra-threshold cluster of pixels, with set of indices U, had size greater than
the critical size sα, then the omnibus hypothesis HU for the pixels in that cluster was

rejected. If any regional hypothesis was rejected then the omnibus hypothesis HW was
rejected.
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4.3. Results

4.3.1. Simulation parameters
Simulations were carried out with the following parameters:

General
Simulations: NoSim = 2 000
Image dimensions: D = 2 dimensions
Image space: Toroidal array of 64 × 64 square pixels
Number of pixels: K = 64 × 64 = 4096
Numbers of subjects: N = 12
Level for testing: α = 0.05
Smoothing kernel: Gaussian kernel, FWHM of 5 pixels (=10mm)

Signal parameters
Signal shape: Gaussian PRF, FWHM 5√2 pixels,

Located at pixel (32,32)
Signal amplitudes: {0, 0.9, 1.1, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9, 2.1, 2.3}

(The same NoSim sets of N null subject difference
images were used for each signal amplitude.)

Two-Stage parameters
Pilot group size: N1 = 4
Study group size: N2 = N - N1 = 8
Pilot stage threshold:η1 = 0.1 u1 = tN2-1, 1-η1

 = 1.6377 (4dp)

Max number of ROI: TSmaxNoR = 5
Bonferroni parameters

Critical threshold: cα = tN-1, (1-α)/K = 6.9442 (4dp)

Worsley’s expected Euler test for t-fields
Critical threshold: 6.8048 (4dp)

Friston’s supra-threshold cluster size test
Threshold: ηF = 0.01 u = -Φ-1(ηF) = 2.3263

The only parameter that was varied was the signal amplitude, SigAmp.
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4.3.2. Size of tests
The null simulation, with a signal amplitude of zero, was undertaken to assess the

validity and relative sizes of the tests. Individual 95% CIs for the sizes of the various tests
for the simulated data are given in table 67. It appears that all the tests are valid, with
size at most the desired level α = 0.05. Worsley’s Tmax and the Bonferroni approach are
rather conservative, with test level well below the desired size.

Two-Stage (0.0457, 0.0623)

Bonferroni (0.0088, 0.0172)

Worsley’s Tmax (0.0122, 0.0218)

Worsley’s Zmax (0.0392, 0.0548)

Friston’s Smax (0.0346, 0.0494)

Table 67
Individual 95% CIs for the sizes of the tests on the simulated null data,
unadjusted for multiple comparisons. Computed from 2 000 simulations, to
4dp, using the normal approximation to the binomial.
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4.3.3. Power of two-stage test
Having demonstrated the validity of the tests under study, we move on to compare

the power of the two-stage method with the voxel-by-voxel methods.

True power curves
Estimated true power curves for the five tests are given in fig.68. Departures from

HW are parameterised by the amplitude of the added signal. Recall that the true power of
the test at a given SigAmp ( > 0) was defined as the probability of rejection of HV, where
V is the set of the 3×3 pixels at the centre of the signal. Thus, these curves do not show
the size of the omnibus test when SigAmp = 0. Rather, they show the probability of
detection of the centre of a signal which has amplitude zero, and as such are meaningless.
The point SigAmp = 0 is therefore omitted from these true power curves.
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Figure 68
Estimated power curves from the simulations. The power at a given SigAmp

( > 0) is the probability of rejection of HV, where V is the set of the 3×3
pixels at the centre of the signal. 2 000 simulated data sets were generated,
to which the tests were applied for each SigAmp

McNemar’s test
The tests were applied to the set of simulated subject difference images at each

signal amplitude. Thus, for any two tests on the data at one signal amplitude, the results
of the simulation are paired. To compare any two tests, the pairing should be exploited
using McNemar’s test.

Consider as an example the comparison of the two-stage test and Worsley’s Tmax
test over the 2 000 simulations, with SigAmp = 1.5. The results of the simulation are
summarised in the following 2×2 table:

1 = “reject” H
V

Worsley’s Tmax
0 1

Two-Stage 0 1014 232 1246
1 332 422 754

1346 654 2000

The cases where both tests reach the same conclusion (on the leading diagonal) give no
information regarding the relative sizes of the tests. McNemar’s test proceeds by
considering the cases where the two tests reach differing conclusions.
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Let the number of cases where the two tests differ be n, and let q be the number of
times the two-stage test rejects when Worsley’s Tmax does not, the value in cell (0,1) of
the table. Then, conditional on n, q is a binomial Bin(n, θ) variate, for some θ. The
hypothesis of equal probability of rejection for the two tests is H:θ =0.5. The one sided

alternative hypothesis H:θ > 0.5 assesses whether the two-stage test has greater

probability of rejecting the omnibus hypothesis than Worsley’s Tmax, while the two sided

hypothesis H:θ ≠ 0.5 tests for a difference in the probabilities of rejection of the two

tests. In this latter case the test with greater power may be decided by reference to the
results table, with negligible probability of type III error, the error of mistaking the
direction of a difference.

Results table
To assess the significance of the differences in the power curves of fig.68, one-

sided p-values from McNemar’s test comparing the true power of the two-stage
approach with each of the four pixel-by-pixel methods in turn were computed:

On t-statistic image
computed for all subjects

On “Gaussianised”
t-statistic image

Signal
SigAmp

Bonferroni Worsley’s
Tmax

Worsley’s
Zmax

Friston’s
Smax

0.1 0.0625 0.0625 0.1875 0.9824
0.3 0.0003 0.0003 0.0038 0.9552
0.5 0.0000 0.0000 0.0011 0.9942
0.7 0.0000 0.0000 0.0028 1.0000
0.9 0.0000 0.0000 0.0622 1.0000
1.1 0.0000 0.0000 0.9849 1.0000
1.3 0.0000 0.0000 1.0000 1.0000
1.5 0.0000 0.0000 1.0000 1.0000
1.7 0.0004 0.1406 1.0000 1.0000
1.9 0.1344 0.9155 1.0000 1.0000
2.1 0.9837 1.0000 1.0000 1.0000
2.3 1.0000 1.0000 1.0000 1.0000
2.5 1.0000 1.0000 1.0000 1.0000
2.7 1.0000 1.0000 1.0000 1.0000
2.9 1.0000 1.0000 1.0000 1.0000
3.1 1.0000 1.0000 1.0000 1.0000

Table 69
One sided p-values from McNemar’s test comparing the two-stage approach
with each of the pixel-by-pixel approaches at for each set of 2 000 simulated
difference images at each SigAmp. p-values given to 4dp

These (unadjusted) p-values show the significance of the difference between the power
curves of fig.68, at each signal amplitude.
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4.4. Conclusions

4.4.1. Discussion

Power
From the simulation results, it appears that the two-stage approach is more

powerful for the simulated data than the Bonferroni or Worsley’s Tmax method for slight
signals, but not for more “obvious” stronger signals. The two methods for
“Gaussianised” statistic images considered, Worsley’s Zmax and Friston’s maximum
supra-threshold cluster size test, are more powerful than the two-stage procedure.

There are three features of the two-stage approach to consider. Firstly, the first
stage, with only N1= 4 subjects data may not identify the activated region as an
interesting ROI for the second stage. Secondly, a two-stage approach has a smaller study
group than a single stage method. These drawbacks may be overcome by the third
feature, that the number of comparisons in the study stage is small.

The first point would explain why the two-stage outperforms Worsley’s Zmax and
the Bonferroni approaches for small signal amplitudes but not for larger ones: The first
stage “misses” the signal sometimes.

Robustness of two-stage
A key feature of the two-stage approach is its robustness. The only assumption is

of normality of the means of the identified ROI in the N2 study stage subjects, an
assumption which seems in little doubt. (Recall the discussion of normality of voxel
values of rCBF scans given in §3.3.6.2.)

In contrast, the voxel-by-voxel methods rely on many assumptions, discussed in
ch.3, which at best only approximate the truth for real PET data. The effects on the size
and power of the tests of departures from the assumptions is only known in a few limited
situations.

Of additional concern is the application of methods for Gaussian random fields to
“Gaussianised” t-fields. Although the simulation at zero amplitude gave insufficient
evidence against a hypothesis of size = α for methods on “Gaussianised” t-statistic
images, recall (§3.3.3.) that Worsley (1994b) found his Zmax approach applied to
“Gaussianised” three-dimensional t-statistic images to be invalid, with size greater than
nominal level α.

The simulation method used here gives ideal conditions for the random field
approaches. The simulated t-statistic images generated are strictly stationary discrete
Gaussian random fields, with zero mean and unit variance. The “Gaussianised” statistic
images are strictly stationary, and have Gaussian marginal distributions with zero mean
and unit variance, even if they are not discrete Gaussian fields.

Prospects for two-stage
The two-stage approach has prospects. The prototype two-stage algorithm

presented here is robust, and is more sensitive than Worsley’s Tmax random field method
for the simulated data. However, it should be borne in mind that single threshold
methods such as Worsley’s Tmax maintain strong control over FWE at the voxel level,
which may be more desirable than a slight increase in sensitivity.

Clearly further examination of the two-stage approach is necessary before it can be
adopted (or rejected) as a test for functional mapping experiments.
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4.4.2. Further work
As with all simulation experiments, there is a continuum of possible configurations

that can be explored. The limited two-dimensional simulation study presented in this
chapter gives a rough idea of the potential of the two-stage approach. To gain a better
idea, the following improvements could be considered:

Three-dimensions
Firstly, it is desirable to match the parameters of the simulation to the real

situation. The most obvious drawback of the current work in this respect is the
two-dimensional image space used (the pixellated surface of a torus), when rCBF images
are three-dimensional. The step from a single 2D slice to a full 3D volume represents a
vast increase in the multiple comparisons problem. In ch.3, Worsley’s Zmax approach
was seen to be more conservative in three-dimensions than in two. Thus, the two-stage
approach in three-dimensions may be more favourable than in two-dimensions.

A simulation with an image space with similar dimensions, shape, and voxel size to
the intracerebral area in PET, perhaps along the lines of the simulation of ch.3, would be
desirable for its relevance.

Pilot group sizes
The choice of pilot group size (N1) is critical to the power of the two-stage

method. In this chapter, only a single pilot group size of 4 subjects from am experimental
group of size 12 was considered. Simulation studies of the two-stage method for a
variety of experimental group sizes would be useful for determining the optimum pilot
group size.

Region selection method
Another critical aspect of a two-stage algorithm is the method of region selection

from the pilot group data. As discussed earlier, any selection method leads to a valid test,
provided that the pilot and study stages are independent. That is, the ROI statistics are
independent of the pilot group statistic image and other criteria used to select the ROI.

The selection of regions of interest by suprathreshold cluster excess weight,
proposed here, is attractive because it combines the size and magnitude of an excursion
above the threshold. A criticism of supra-threshold cluster size methods is that a very
intense focal activation is not considered as “interesting” as an activation which barely
exceeds the threshold, but which does so for a larger cluster of voxels. Clearly there is
scope for investigation into better methods for region selection.

It has been noted previously that t-statistic images with low degrees of freedom are
exceptionally “noisy” (§3.3.6.5.). This noise is reflected in the shapes of the identified
ROI. (Consider the example region map of fig.66.) Since it is not necessary to know the
marginal distributional of the pixel values in the pilot group statistic image, any image
processing tool could be used to “clean up” the image, and enhance the region selection
method. Smoothing decreases the pixel variance, but leaves signals greater in spatial
extent than the filter kernel intact, making them more obvious, albeit at the expense of
resolution. Alternatively, since the high frequency spatial noise in the statistic image is

inherited from the variance image S2
1 (eqn.64), the variance image itself could be spatially

smoothed prior to formation of the pilot group statistic image, an option pursued in ch.6
with the non-parametric approach described there.

Number of ROI

Perhaps as important as the actual method of region selection, is the actual number
of regions to be chosen. Too few, and the probability of missing an activated region may
be too great. Too many, and the corrections for the multiple comparisons in the study
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stage may leave the test with low power. In the two-dimensional simulation study
presented above, at most TSmaxNoR = 5 ROI were chosen. Comparisons of the power of
the two-stage method for different numbers of ROI would help choose an optimal value,
and assess the sensitivity of the method to changes in this parameter.

Multiple signals, signal shape
Connected with the last point on the number of ROI, is the issue of the number of

signals. The simulation study was carried out with a single focal signal. In most simple
activation studies there are only one or two sites of activation, but more complicated
paradigms may result in many activations. Further, it may be a secondary activation that
is of interest, as in the “V5” study. For a 3D PET activation experiment with multiple
activations, TSmaxNoR = 5 ROI is possibly too small. A worst case scenario might be to
consider a signal consisting of two or three Gaussian “humps” of different amplitudes,
and examine the power of the two-stage approach for various numbers of ROI. Further, it
might be interesting to vary the shape and spatial extent of the signal.

Real data
Finally, it would be interesting to apply the method to real PET data sets.


