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Chapter Four

Two Stage Testing

In this chapter we considerteo stage approach tassessing multiple subject
activation studies. The experimental subjecexdivided intotwo groups, a pilogroup
and a studygroup. A statistidmage is formed fronthe pilotgroup data, rom which
interesting regions ar&lentified. The studygroup data is themnalysedover these
interesting regions, usirgpI methods.

A simple two-dimensional simulation gesentedyhich compares the two-stage
approach with some of the voxel-by-voxel approaches described in ch.3.
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4.1. Two-Stage Testing

Consider amultiple subjectactivation study, inwhich subjectsare scanned
repeatedly undetwo mental stateswhich are to be compared. In the absence of any
prior hypotheses regarding thein location engagatifferently bythe two states under
study, we havewo avenues foranalysis.The firstinvolves a pilotstudy toidentify
interesting regions of thbrain. Theseare therexamined in astudy on new subjects
using ROI methods.This isthe two-stageapproach. Hypotheses are generated in stage
one, the pilot stage, and assessed in dtagethe study stage. The data use@ach
stage are independent. The second option proceeds wéhadysis thatonsiders the
whole intracerebral volumesually voxel-byvoxel. Most research to dabas taken the
latter option, forming statistic images using the methods of ch.2, and assessing them with
the methods of ch.3.

However, the large multiple comparisgm®blem of a voxel-by-voxehpproach
results in methods with lowower. A voxel-byvoxel approachmay be lespowerful
than a two-stage approacisingthe same number of subjects. Thmall number of
comparisons in the study stage ofwa-stage approacimay make up forthe smaller
study groupand thepossibility ofspurious region hypothesksing identified irthe pilot
stage, to produce a test mgrewerful than avoxel-by-voxelapproach with thsame
number of subjects.

It is this possibility which we shall explore in this chapter.

Two-Stage testing from subject difference images

Consider asimple activation experiment witiN subjects, each scanndtl times
under each of thewvo conditions, “rest” and “active”. Chood¢, subjects as the pilot
group, with the remaininly, (= N-N;) subjects as the study group.

For simplicity, we shallconsider the proportionacaling approach, with paired
t-statistics formed from subject differeniceages as described ir2.8.1. As noted in
82.3.1.2., the pairetistatistic for muiple subject simple activation studies provides a
simple statistic that absorbandesirable effectshat otherwise require aextremely
complex modelput that the approach limmpered by the low degrees of freedom for
variance estimation.

Let Y'gijqk denote theaBF (rA) measurement at voxek1,... K, of scan =1,...M
under conditiorg = 0,1 (0 = “rest”, 1="active”), osubjecti = 1,...Ng in groupg =1,2
(1="pilot”, 2="study”), after normalisation foglobal changes bproportionalscaling
(82.1.2.) As usual, wehall refer to voxels by their indek, to regions by the set of
indices ofthe voxels in hat regionand use Hto meanthe omnibus hypothesisver
region U, the intersection of the voxel hypotheses for voxels with irklidés

The data for eachsubject is collapsed into &ubject difference image

Agi = Bgi1,--- Agik)-
Agik = Y'gie1k = Y gieOk (61)

We shallconsiderAg;y, ~ N(u,0f). As we shallsee, distributional assumptioage not

necessary fothe pilotgroup subject difference images, amgeaker assumptions are
adequate for the study groujfference images. The hypothesis of no activation is

Hi M= O, with alternative hypothesEIJ:-pk> 0. Theomnibus hypothesis is,{{ where
W ={1,...,K} is the set of (indices of) voxels under consideration.
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Stage 1: Region selection from pilot group data
The pilotgroupt-statistic imageT; = (T14,..-,T1k), IS constructed from the pilot
group subject difference images as describe@.iB. 8., giving, in the current notation:

=Dk (62)

Tl
READ

Ny
where A,,, :Ni zAlik is thepilot group mean differencat voxelk,(63)
11=1

Ny _
and S = ﬁ z (Alik - Al,k)2 is the variance estimate (64)
1 =1

Any method for the selection of regions of interetit give a validtest. Aswell as
the pilot study statisticnage, additional information can be used to aid region selection.
Anatomical information can be used to exclude white matter and ventricular regions from
selection Cliniciansprior beliefscan be incorporated, and the interesting regions chosen
manually. However, many experimenters prefer automated procedubhed eliminate
operatorjudgement from analyses, giving relialofeethods that alays givethe same
answer forany particular data. Further, for study synulation, arautomated method of
region identification is required.

The method weshall adopt is adollows. Threshold the pilogroup t-statistic
image at a fairljlow threshold, andote the clusters ofoxels with supra-threshold
values. Choose the “most interesting” of these clusters, where the interest of a cluster is
measured in terms of tls&ze ofthe region enclosed between the suprathreshold portion
of the statistiamage andhe threshold plane. Wahall callthis the excess weightf the
suprathreshold cluster. For ane-dimensional imagethe excess weight is an
area (fig.58).

) /]
pixel value

Excess area

Figure 58
Excess area for a supra-threshold cluster in a one-dimensional image.
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In detail, TSmaxNoR> ROI are chosen as follows:; is thresholded at &vel
Uy =INy-1,14, the 1np point of a Student's-distribution with Ny -1 degrees of

freedom. Suppose there &esupra-threshold clusters of voxels, where clustensists
of voxelsk OU',, r =1,.. R. If R < TSmaxNoRthen we are done: TheReclustersdefine

therol. If R >TSmaxNoR then compute the region excess weighteagqn.65), and
choose agol the regions defined by thiemaxNoRclusters with greatest weights.

W = z KU, (Tqk - U) X VoxSize (65)
whereVoxSize is the volume of a voxel.

If a low threshold (corresponding to “largej) is chosen, then therobability ofthere
being nosupra-threshold clusters from the ppbup statistiamage is verjjow. In the
unlikely event thatthis does happensuitablecourses of actiomay be tdower the
threshold (increasgq) until supra-threshold clusters are found, or to proceed with a
voxel-by-voxel analysis of the study group data.

Supposer (= min{R',TSmaxNoR) regions of interest arielentifiedfor examination
in the study stage, consisting of voxels with indicesJ,, r =1,...R.

Stage 2:RoI analysis of study group

The study stage of the two-stamgst is arrol analysis ofthe study group data,
usingthe R regions of interestentified inthe pilot stage. A-test isperformed foreach
region, at devel adjusted for th@umber of regions under consideration by Bonferroni
(or Sidak) correction. The data for a regietest are theneans othe subjectlifference
images over that region.

For each studyroup subject, thenean ofthe subjectlifference imagever each
region is computed, giving daXg

1

Ir = card(Y) > kDU, Baik

Here, card({) is the cardinality of set JUthe number of elements in.U
One samplé-statistics for each regioffip,, are computed in the usual way:

X

X

Top = ——tt
g

N>

2_1;(Xir _)_(r )2

where § =

AssumeX;, ~N(ur,0r2). Under thenull hypothesis of no (overall) activation in
region r, Hy:Hr =0, Ty ~fy, 1, @ Student'st-distribution with N>-1 degrees of
freedom. The alternative hypothesis of activation is one-sﬁigp HA>0. For aevela
test byBonferroni correction, th® regiont-statisticsT,, are compared with the d/R
point of Student'd-distribution withN,-1 degrees of freedom. Unadjusieslalues for
each region aregiven by 1-fn,.1(Tor), where Fkgd+) is the CDF of Student's

t-distribution withdf degrees of freedom. Thegwe Bonferroni adjustep-values as the
smaller of 1 andR(1-R N -1(T2r))-

SWords in typewriter font, such &SmaxNoR are to be read as variable names.
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The Bonferroni correction hereuslikely tolead to particularly conservative tests
sincethe number ofrol is small,and sinceinder thenull hypotheses b the region
t-statistics are unlikely to be highly correlated for reasonably separated
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4.2. Simulation Methods

To assess thesefulness of thisvo stage approach,samulation studywvas carried
out. Sets ofsubject difference imagesere simulated, anthe two-stage approach
compared with some of the voxel-by-voxel approaches previously described in ch.3.

4.2.1. Image space

The image space considered was a two-dimensional arrangemet=d4x64
squarepixels. In addition tahe usual method of referring to pixels by thedex, we
shall refer to pixels ipixel co-ordinatesreferring to a pixel byx andy displacements in
pixels from an origin chosen such thia “bottomleft” pixel of theimagespace has co-
ordinates (1,1)appendix A). The pels were taken to be ofimensions 2mm2mm.
This gives an imagarea of 4096ixels, representing amrea of16384mnd, which is
similar tothat of a centraslice from aPET image.However, forconvenience wehall
work in units of pixels, with one “pixel” representing 2mm when indicating a length.

Toroidal image space

To avoid edge effects, a periodic boundary was assumed, equivalent to wrapping
theimagespace round torus.Thetop and right of themagespace were considered to
touch the bottom ankkft of the imagespace, respectively. Ipixel co-ordinatespixel
(x,64) was considered to be to tinemediate left of pixelx1) (x =1,...,64), andixel
(64,y) was considered to be immediately below pixg) (¥,=1,...,64)(fig.59).

15 |25 |35 |45 |55

14 |24 |34 |44 |54

1323|3343 |53

22132 |42 |52

4,1 51

Figure 59

The toroidal image space.
The imagespace ashe pixellatedsurface of a torus is shown the left. On
the right areshown the neighbours of pixels in th®ttom left” of the 64
64 image space, when considered as an unwrapped torus. The numbers in
the squares are the pixel co-ordinates of the pixel. Four pixels in an “L”
shaped cluster are shaded to indicate the orientation of the ispage
when wrapped onto the torus.
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4.2.2. Simulating difference images

Subject difference images

N null subject difference imagefyy (9=1,2,i=1,...Ng, k=1,...K), were
generated by smoothing Gaussian white naisages with a (discretised) Gaussian
kernel ofFwHM 5 pixels (10mm). The Gaussian white ndieageswere generated by
associating a zero mean, unit variance Gaussian variate with each pixel (fig.60).

Figure 60
Example white noise image, shown (on the left), witndy axes
graduated in pixel co-ordinates, and (on the right) folded into a torus.

A Gaussian filter kernel afwHM 5 pixels wasmplemented as a moving average
filter, with weights computed by evaluating a bivariate Gaussiamvith zeromean and

200 1
variance-covariance matrkx= % 2E8in(2y on a regular 1¥17 array of points 1 unit

(pixel) apart, centred at tharigin (fig.61). The smoothing weightgere normalised to
sum to unity. (See appendix B for details of smoothing and Gaussian kernels.)
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Figure 61
Mesh plot of the (discretised) Gaussian filter kernel.
The vertices of the mesh correspond to the points of the lattice.
Thex andy axes graduated in pixel co-ordinates.
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The white noisemageswere smoothed with the Gaussiaoving average filter,
which was applied respectirige toroidal structure of thenage space. The resulting
imagewas normalised tgive simulated difference images with unit varianceditagion
by the squareoot ofthe sum ofthe squares of the weights of fiiter kernel. The sum
of the squares of the weights of fileer kernel was found to be close ttee theoretical
value for continuous two dimensional fields of | ft(£]), as given in appendix C:5.

The null difference imagesreated thus, are strictly stationary discrégussian
randomfields with zero mean and unit variancéurthermore, theRrF is equal to the
smoothing kernel used, a (discretised) Gaussian kermstiaf 10mm. The variance-
covariance matrix of partial derivatives tife field is A=(2Z)"1 (appendix C:7). An
example of a simulated null difference image is shown in fig.62.

Figure 62
Example simulated null difference image, shown (on the left), xvghdy
axes graduated in pixel co-ordinates, and (on the right) folded into a torus.

Signal

To simulate deviations fromhe omnibus hypothesis, a signvaas added to each of
the null subject difference images. The signal iBRE convolved with itself, scaled to
have maximum heiglsigAmp, and located at pixel (32,32). This i@y common focal
signal for use iET simulation experiments. Sintiee PRFis a Gaussian kernel BivHMm

200 1

5 pixels (equivalent to 10mm), and hence variance-covariance mair% 2E8in(2y
the signal is a bivariate Gaussian kernel with mé&#32)', and variance-covariance
matrix Z (appendix C:4), scaled tthe appropriate height Imgultiplication by

SigAmpx2m\/|25|. The signal therefore hasvHm of 5V2 pixels (equivalent to 10
2 mm).
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The signal isdiscretised by evaluating it che 6464 lattice of voxel centres,
giving an image othe signal (fig.63)which was added to each of teenulatednull
subject difference images by adding the values of the two images at each pixel.

X

Figure 63
Mesh plot of the signal at unit amplitude.
x andy axes graduated in pixel co-ordinates.

Correct rejections

Let V be the set ofindicesof) the 9 pixels in thex3 square centred at (32,32)
(fig.64). If a testrejects H, by rejecting thenull hypotheses foany pixel in V, or by
rejecting the hypothesis for a region containimgxal in V, then thetestwas considered
to have correctlydentifiedthe signal. The “true” power of dest at agivenSigAmp was
defined as the probability of rejection of.H

31, 33 32,33 33,33

31, 32 32,32| 33,33

31,31 32,31 33,31

Figure 64
3x3 square of voxels at the signal centre.
The numbers in the squares are the pixel co-ordinates of the pixel.
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4.2.3. Two-Stage test implementation

Pilot group t-statistic image

The firstN; simulated difference imagegere taken as the pilgfroup difference
images, and from thes¢he pilotgroup t-statistic image, T; (eqn.62), was
formed. (Fig.65)

20

Figure 65
Example pilot groug-statistic image computed frohy, = 4 simulated null
subject difference images, shogan the left), withx andy axes graduated
in pixel co-ordinates, and (on the right) as a mesh plot.

This pilot group t-statisticimage isthen thresholded dével uy =ty,.1 1.4,- The
pixels with supra-threshold values areititeresting pixels

Interesting cluster identification

The clusters of the interesting pixels wekentified asconnected subsets of pixels,
using a firstorder neighbourhoodgcheme. Under such a schenwp pixels are
neighbours if they share a sidavo pixels areconnectedf they can be joined by @ath
of pixels, in which eactpixel in the path is a neighbour of the l|aghis cluster
identification was carried out respecting the toroidal nature of the image space.
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This results in @egion map an imagevhere thevalue of eaclpixel isthe number
of the cluster it is a member of, or zero if tipexel has sub-threshold pilot
t-statistic (fig.66)
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Figure 66
Example region mapcomputed fromthe t-statistic image of fig.65,
thresholded atiy = -t3 5 ;= 1.6377 (4dp). A region map is an integer image,
with pixel values indicatinghe cluster the pixddelongs to, zerindicating
membership of no clusters. For display, zéra@s been mapped to the
character.'’, and the integers 1,2,3,... to the charact&sB',' C,.... Note
how clustersA, D& R aredefined across thedges othe image space, due
to its consideration as an unwrapped torus. Xlaady axes are graduated

in pixel co-ordinates.

For each of th&® clusters of pixels identifiedhe excess weight was computed by
egn.65. If more thamsmaxNoRclusters of pixels were identified, then tt&naxNoRwith
largest excess weight were chosen to bdrtRel for the study stage. Otherwisdl R
clusters were taken as tm®! for the study stage. In thenlikely event (for a low
threshold) that no interesting pixels were obtained, the wimalgewas considered as a
single region. In practice, something marseful would bedone, butthis was a
convenient conservative approach for the simulation experiment.

Stage 2
The study stage of thevo stage test on thsimulated subject differendmages

was implemented as described 41§

4.2.4. Voxel-by-voxel tests

Voxel-by-voxel approachesere applied tothe t-statistic imageT = (Ty,...,Tk),
formed fromall N simulated subject difference images, as describe@.B18 It was

assumed thalg, ~ N(uk,oﬁ); so under k= 0, T ~tn.1, @ Student’s distribution with
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N-1 degrees of freedom . As usual, one-sided alternative hypotheses were considered,;
H k-Hk> 0.

The voxel-by-voxelapproaches considered were a simple Bonferroni approach and
Worsley's expected Euler characteristipproach fort-fields. In addition, Worsley’s

expected Euler characteristic approach for Gaussiais, and Friston’supra-threshold
cluster size test were applied to tkstatistic image after it had been “Gaussianised”.

Bonferroni
The Bonferroni approach was described 8128l. Thecritical level c, was

computed as the @/K point of thet-distribution withN-1 degrees of freedom. The
t-statisticimagewas thresholded at tHisvel, and pixels witlsupra-threshold statistics
had theimull hypotheses rejected. Rejectionaofy pixel hypothesisnplies rejection of
the omnibus hypothesis,H

Worsley’s expected Euler approach for t-fields

Worsley’s expected Euler characteristic methiod, a two-dimensionadtrictly
stationary continuous randotifield was applied. The method for Gausdietds was
described in 8.3.1., and the expected Euler characteristic ofettmirsionset of a
strictly stationary continuous randdrfield is given in appendi®:3. Forconvenience,
we shall refer to this test as “Worsle¥ g,y test.

The equation for the expected Euler characteristic of the excseiaf astrictly
stationary continuous randofield thresholded akevel u was set tax and solved to
obtain thecritical thresholdu,. The variance-covariance matrix of partial derivatives of

the componentields used was the theoreticahluefor a strictly stationary continuous
Gaussian fieldvith zero mean and unit variance formed by convolving a white noise
Gaussian process with a Gaussian kernel with variance-covarianceZmatrexvalue is

2 1
A = (22)1 (appendix C:7). Recall = % 22 8in(2) As measurements arepixels, the

size of the domain of the field(Q), is simply the number of pixelk,
The t-statisticimagewas thresholded at thisvel, and pixels witlsupra-threshold
t-statistics had their null hypotheses rejected.

Gaussianised t-statistic image

The t-statisticimagewas transformed to a Gaussian statistic imageefgcing
eachpixel t-statistic with a Gaussian variate with egpedbability of being exceeded.
(Seeappendix Efor details.) As noted in 83.3.3., although thsulting statistiGmage
has Gaussian marginal distributionader H,, it is not a discrete Gasian field.
However, many practitioners apply tests for Gaussian randorfields to such
“Gaussianised” statistic images, and we shall do likewise.

The variances othe partialderivatives ofthe Gaussianised statistimage were
estimated withirnthe image. This was accomplished by takimgmerical derivatives at
each voxel irthe x andy directions, as a difference the pixel valuesand computing
the sample variance ofhesenumerical derivative®ver theimage space. Since the
(square)imagespace is considered as the unfolded surfacetofus, every pixel has
neighbouring pixels iboth thex andy directions.Assumingthe covariances of the

partial derivativesire zerothis gives an estimatk of the variance-covarianceatrix of
partial derivativeg\. Recall 8.3.5. for further details of estimating smoothness.

Worsley’s expected Euler approach for Gaussianised statistic image
Worsley's expected Euler characteristic metiiod a two-dimensionadtrictly
stationary continuous Gaussian randbeid with (hypothesisedyero mean and unit
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variance, was applied thve Gaussianised-statisticimage as described i88.1. For
convenience, we shall refer to this test as “Worslgy's,’ test.

The equation for the expected Euler characteristic of the excuwsioof a 2
strictly stationary continuous standard Gaussian randlelesh thresholded atlevel
u(egn.36), was set ta and solved to obtain theitical thresholdu,. The estimated

variance-covariance matrix of partial derivatives for the Gaussiarssatistic image/f\\,
was used. Again, the siz€Q), of the domain of the field is simply thember of pixels,
K.

The “Gaussianisedstatisticimagewas thresholded at thisvel, and pixels with
supra-threshold statistics had theull hypotheses rejected. Rejection afy pixel
hypothesis implies rejection of the omnibus hypothesis.

Friston’s supra-threshold cluster size test on “Gaussianised” statistic image

The supra-threshold cluster size of Fristbal. (1994d) was described i13.%5.2.
The “Gaussianisedt-statisticimage was thresholded at= -CD'1(r]F), and clusters of
supra-threshold pels identified usinghe toroidal clusteringlgorithm used ithe pilot
stage of thewo stage test. For each cluster, giee in pixels wasomputed. Weshall
refer to this test as “FristonS,,5 test.

Using K as thesize ofthe feld, andthe estimated variance-covariameatrix of

partial derivatives othe “Gaussianisedt-statistic, A, the critical cluster sizes, for a

level a testwas computed (eqn.60). Sinttee size ofthe domain ofthe field and the

smoothness have been measured in pixels, the critical cluster size is also in pixels.
If a supra-threshold cluster pixels, withset ofindices U, had sizgreaterthan

the critical sizesy, then theomnibus hypothesis Hfor the pixels in that cluster was

rejected. Ifany regional hypothesigas rejected then tlemnibus hypothesis 4 was
rejected.
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4.3. Results

4.3.1. Simulation parameters

Simulations were carried out with the following parameters:

General

Simulations: NoSim = 2 000

Image dimensions: D = 2 dimensions

Image space: Toroidal array of 8464 square pixels

Number of pixels: K =64x 64 = 4096

Numbers of subjects:N =12

Level for testing: a =0.05

Smoothing kernel: Gaussian kerrreljHm of 5 pixels (=10mm)
Signal parameters

Signal shape: GaussiarF, FWHM 5V2 pixels,

Located at pixel (32,32)
Signal amplitudes:  {0,0.9,1.1,1.3,14,1.5,1.6,1.7,1.9, 2.1, 2.3}
(The samelosim sets ofN null subject difference
images were used for each signal amplitude.)
Two-Stage parameters
Pilot group size: N =4
Study group size: No=N-N; =8
Pilot stage threshold:n; = 0.1 up =t\_1 14, = 1.6377 (4dp)
Max number oROI:  TSmaxNoR= 5
Bonferroni parameters
Critical threshold: ¢y =tn.1, (1)K = 6.9442 (4dp)

Worsley’s expected Euler test feiields
Critical threshold: 6.8048 (4dp)
Friston’s supra-threshold cluster size test
Threshold: Ne=0.01 u=-o(n) =2.3263

The only parameter that was varied was the signal amplgigdenp.
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4.3.2. Size of tests

157

The null simulation,with a signal amplitude afero, was undertaken &ssess the
validity and relative sizes of the tests. Individual 9584or the sizes of the various tests
for the simulateddata aregiven in table 67. lappears thaall the tests argalid, with
size atmost the desirefévela = 0.05.Worsley'sT,,5x and the Bonferroni approach are
rather conservative, with test level well below the desired size.

Two-Stage

(0.0457, 0.0623)

Bonferroni

(0.0088, 0.0172)

Worsley'sTmax

(0.0122, 0.0218)

Worsley’'sZyax

(0.0392, 0.0548)

Friston’sSpax

Table 67

(0.0346, 0.0494)

Individual 95%cis for the sizes of the tests on the simulated data,
unadjusted for multiple comparisons. Computed from 2 000 simulations, to
4dp, using the normal approximation to the binomial.
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4.3.3. Power of two-stage test

Havingdemonstrated thealidity of the tests under study, wieove on to compare
the power of the two-stage method with the voxel-by-voxel methods.

True power curves

Estimatedrue powercurves for thdive tests aregiven in fig68. Departurefrom
H,, are parameterised by tamplitude ofthe addedignal. Recalthat the true power of
the test at @ivenSigAmp ( > 0) wasdefined aghe probability of rejection of K where
V is the set of the>& pixels atthe centre of theignal. Thus, these curves dwt show
the size ofthe omnibustest when SigAmp = 0. Rather, they show thgrobability of
detection of the centre of a signal which has amplitude zero, and as suela@airgless.
The pointsigAmp = 0 is therefore omitted from these true power curves.

19 * * ¥oo0f
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Figure 68
Estimated power curves frothe simulations. Thpower at a giversigAmp
(> 0) is theprobability of rejection of ti where V is the set of thex3
pixels at the centre of the signal. 2 000 simulated sleti? were generated,
to which the tests were applied for eaaamp

McNemar’s test

The tests werapplied tothe set okimulated subject difference images at each
signal amplitude. Thus, f@anytwo tests on the data at one sigaaiplitude, the results
of the simulationare paired. To compaesnytwo teststhe pairing should be exploited
using McNemar’s test.

Consider as an examplee comparison of thigvo-stage tesand Worsley’sT y,ax
test over the 2 008imulations, withsigAmp = 1.5. The results of theimulation are
summarised in the followingx2 table:

1="reject’H, | Worsley'sT .
0 1
Two-Stage O 1014 232 1246
1 332 422 754
1346 654 2000

The cases where both tests reachstimae conclusiofon theleading diagonal) give no
information regardingthe relative sizes ofthe testsMcNemar’s test proceeds by
considering the cases where the two tests reach differing conclusions.
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Let thenumber of cases whetige two testsdiffer ben, and letg be thenumber of
timesthe two-stage tesejects when Worsley’s,,,, does not, thealue in cell(0,1) of
the table. Then, conditional am q is a binomialBin(n, 8) variate, for somé. The
hypothesis of equal probability of rejectitor thetwo tests is H3 =0.5. The onesided

alternative hypothesis_ 19 > 0.5 assesses whether theo-stage testhas greater
probability of rejecting the omnibus hypothesian Worsley'sT 5, Whilethetwo sided
hypothesis_He # 0.5 tests for alifference inthe probabilities of rejection ofhe two

tests. Inthis latter cas¢he testwith greater powemay bedecided by reference to the
results table, witmegligible probability oftype Il error, the error ofmistaking the
direction of a difference.

Results table

To assess thsignificance ofthe differences inthe power curves dig.68, one-
sided p-values from McNemar'dsest comparing thetrue power of the two-stage
approach with each of the four pixel-by-pixel methods in turn were computed:

Ont-statistic image On “Gaussianised”
computed for all subjects t-statistic image
Signal | Bonferroni | Worsley's| Worsley's | Friston’s
SigAmp Tmax Zmax Smax
0.1 0.0625 0.0625 0.1875 0.9824
0.3 0.0003 0.0003 0.0038 0.9552
0.5 0.0000 0.0000 0.0011 0.9942
0.7 0.0000 0.0000 0.0028 1.0000
0.9 0.0000 0.0000 0.0622 1.0000
1.1 0.0000 0.0000 0.9849 1.0000
1.3 0.0000 0.0000 1.0000 1.0000
15 0.0000 0.0000 1.0000 1.0000
1.7 0.0004 0.1406 1.0000 1.0000
1.9 0.1344 0.9155 1.0000 1.0000
2.1 0.9837 1.0000 1.0000 1.0000
2.3 1.0000 1.0000 1.0000 1.0000
2.5 1.0000 1.0000 1.0000 1.0000
2.7 1.0000 1.0000 1.0000 1.0000
2.9 1.0000 1.0000 1.0000 1.0000
3.1 1.0000 1.0000 1.0000 1.0000
Table 69

One sidegp-values from McNemar'’s test comparitige two-stage approach
with each of the pixel-by-pixel approachedateach set of 2 000 simulated
difference images at easlyamp. p-values given to 4dp

These (unadjustegbvalues show thsignificance ofthe difference betweethe power
curves of fig.68, at each signal amplitude.
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4.4. Conclusions

4.4.1. Discussion

Power

From the simulation results, it appears that the two-stage approacmase
powerful for thesimulateddata than th&onferroni or Worsley'S 5« method forslight
signals, but not formore *“obvious” strongersignals. Thetwo methods for
“Gaussianised” statistiomages considered, Worsley'&,,5x and Friston’smaximum
supra-threshold cluster size test, are more powerful than the two-stage procedure.

There are three features of the two-stage approach to consider. Firsflystthe
stage, withonly N;=4 subjectsdata may not identify the activated region as an
interestingrol for the second stage. Secondlywa-stage approadhmas a smaller study
group than a single stage method. These drawbaels beovercome by the third
feature, that the number of comparisons in the study stage is small.

The first point wouldexplain whythe two-stage outperfornWorsley’sZ,,,, and
the Bonferroni approaches femall signalamplitudesbut not forlarger ones: Thérst
stage “misses” the signal sometimes.

Robustness of two-stage

A key feature othe two-stage approachiis robustness. Thenly assumption is
of normality of the means ofthe identified ROI in the N, study stage subjects, an
assumption which seems in litttoubt. (Recall the discussion of normality of voxel
values of €BF scans given in$3.6.2.)

In contrast, the axel-by-voxelmethodsrely on manyassumptions, discussed in
ch.3, which abestonly approximate théruth for real PET data. Theeffects on thesize
and power of the tests of departures from the assumptionlyisnown in a fewlimited
situations.

Of additional concern ighe application of methods for Gaussian randuetts to
“Gaussianised’t-fields. Althoughthe simulation atzero amplitude gavensufficient
evidence against a hypothesis sife =a for methods on‘Gaussianised’t-statistic
images, recall 33.3.) thatWorsley(1994b) foundhis Z,,,x approachapplied to
“Gaussianised” three-dimensiortadtatisticimages to be invalid, with sizgreaterthan
nominal level.

The simulation method used hergives ideal conditiondor the randontield
approaches. The simulatétatisticimagesgenerated are strictly stationary discrete
Gaussian randorirelds, withzeromean and unit varianc&he “Gaussianised” statistic
imagesare strictly stationary, andave Gaussian marginal distributions waro mean
and unit variance, even if they are not discrete Gaussian fields.

Prospects for two-stage

The two-stage approachas prospects. The prototype two-stagdégorithm
presented here is robust, and is nmemesitive than Worsley'g,,,4 randomfield method
for the simulateddata. However, itshould be borne imind that singlethreshold
methods such as WorsleyTs, 5« maintainstrong control overFwe at thevoxel level,
which may be more desirable than a slight increase in sensitivity.

Clearlyfurther examination ahe two-stage approachnscessary before it can be
adopted (or rejected) as a test for functional mapping experiments.
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4.4.2. Further work

As with all simulationexperiments, there is a continuumpoksible configurations
that can be explored. THenited two-dimensional simulatiostudy presented ithis
chaptergives aroughidea ofthe potential of the two-stage approach.gain abetter
idea, the following improvements could be considered:

Three-dimensions

Firstly, it is desirable to matcthe parameters of tlegmulation to the real
situation. The most obvious drawback of the curneotk in this respect is the
two-dimensional imagspace used (thgxellated surface of #orus),when CBF images
are threadimensional. Thatep from a single® slice to a full ® volumerepresents a
vast increase in the fiple comparisons problem. In ch.3, Worsle¥s ., approach
was seen to be more conservative in taiegensions than itwo. Thus, the two-stage
approach in three-dimensions may be more favourable than in two-dimensions.

A simulation with an imagsepace witrsimilar dimensionsshape, and voxel size to
the intracerebral area RET, perhaps along thees ofthe simulation of ch.3would be
desirable for its relevance.

Pilot group sizes

The choice of pilotgroup size (N;) is critical to the power of the two-stage
method. In this chapter, only a single pgobupsize of 4 subjects from am experimental
group ofsize 12 was considered. Simulation studieghef two-stage method for a
variety of experimentajroup sizes would be usefdibr determiningthe optimum pilot
group size.

Region selection method

Another criticalaspect of a two-stagagorithm isthe method of regioselection
from the pilot group data. As discussed earlier, any selection method |lea@ddiddest,
provided that the pilot and study stages are independentisTkia¢ ROI statistics are
independent of the pilot group statistic image and other criteria used to sefemnt the

The selection of regions of interest by suprathreshold cluster excess weight,
proposed here, is attractive becausmihbineghe size and magnitude of an excursion
above the threshold. Ariticism of supra-threshold clusteaize methods is that &ery
intense focal activation isot considered as “interesting” as an activatidrich barely
exceeds the threshold, buhich does so for a larger cluster of voxelearly there is
scope for investigation into better methods for region selection.

It has been noted previously thatatistic images with low degrees of freedom are
exceptionally “noisy” (8.3.6.5.).This noise is reflected ithe shapes of thdentified
ROI. (Consider thexample region map diy.66.) Since it inot necessary to know the
marginal distributional ofhe pixel values inthe pilotgroup statistiamage, any image
processing tool could be used“tteanup” theimage, and enhandbe regiorselection
method. Smoothing decreases fieel variance, but leavesignalsgreater inspatial
extent than thédlter kernelintact, making themmore obviousalbeit atthe expense of
resolution. Alternativelysincethe high frequency spatial noise ithe statistiGmage is

inherited from the variance ima@é (eqn.64), the variance imagself could bespatially

smoothed prior to formation of the pilgtoup statistigmage, aroption pursued in ch.6
with the non-parametric approach described there.

Number ofRrRol

Perhaps as important as the actual method of region selection, is thewwotued
of regions to be choseoo few, and therobability of missing aactivated region may
be toogreat.Too many,and the corrections for theuitiple comparisons ithe study
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stagemay leave the testwith low power. In the twalimensional simulation study
presented above, at masmaxNoR= 5 ROl were chosen. Comparisons of frewer of
the two-stage method fakifferent numbers okol would helpchoose an optimalalue,
and assess the sensitivity of the method to changes in this parameter.

Multiple signals, signal shape

Connected with the last point on thember ofRol, is theissue ofthe number of
signals. Thesimulation studywas carriedut with a single focal signal. Imostsimple
activation studies there aomly one ortwo sites of activation, but moreomplicated
paradigmsmayresult inmanyactivations. Further, ithay be asecondary activatiothat
is of interest, as in the “V5” studyor a B PET activation experiment witimultiple
activations,TSmaxNoR= 5 ROl is possibly tocssmall. Aworstcase scenario might be to
consider a signal consisting o orthree Gaussiathumps” of different amplitudes,
and examine the power of the two-stage approach for various numigers Bdirther, it
might be interesting to vary the shape and spatial extent of the signal.

Real data
Finally, it would be interesting to apply the method to pealdata sets.



