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A: Co-ordinate Systems

A:1 Referring to voxels by position

Real co-ordinates, K=
= is the subset dfi3 which is imaged= is partitioned intd< voxels,¢ = {V k}f VK

K
0=, k=1,...K; Vkn Vg =@forkzk’; and UVk==.
k=1
Sometimes it is convenient to refer to a voxel inirage using Cartesian co-
ordinates. For amageY = (Yy,...,Yk), abusingthe notation somewhat, I&, be the
value of the voxel containing poixt

K
E Z Y {xOVi} for xO=
Y = Uymn .
0 forxd =

where = =03\ = the compliment oF in 03, and a logical expression in brackets}{

takes thevalue one if the argument isue and zero otherwise, as advocated
by Knuth (1992).

Voxel Co-ordinates

If the voxelsareidentical in shape and size, aak regularly arranged, then the
D-dimensional image is conveniendifored in éD-dimensionahrray. In this case/oxels
are mostonvenientlyreferred to by their array indicddsuallytheimage isstored in an
array such that increases in the row, column, and pidieescorrespond to increases in
theX, Y, andz directions respectively.

This co-ordinatesystem is referred to a®xelco-ordinates sincethe position of
each voxel is specified lipe displacement in each axial dimensimeasured in whole
numbers of voxels from a given origifor the standard orientation of the co-ordinate
axes inPET, the most left-posterior-lower voxel in the image space is (1,1,1) (fig.92).

15 |25 |35 |45 |55

14 |24 |34 |44 |54

1323|3343 |53

1,2 |1 22|32 ]| 42|52

11121 |31 |41 51

Figure 92
Voxel co-ordinates of voxels (pixels) at the left-lower of a two dimensional image.
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Suppose thakE is cuboid, orientedoarallel tothe axes, and partitioned into
K = xdimxydimxzdim cuboid voxels. Herexdim is the width X-dimension) of=,
measured in voxels. If the centre of the left-posterior-loweeel of = is at &,,Y0.Z).
and voxels are  ofuniform dimensionsh,xhyxh, then the voxel co-ordinates
xV = (x¥,yV,2) are related to the real co-ordinatesy:
X= (X!yia = (XVhX+XO’ yvhy+y01 ZVhZ+ZO)
for xYO[-0.5, xdim+0.5]%[-0.5, ydim+0.5]x[-0.5, zdin+0.5]
XV = ((xxg)/hy, y-yolhy, (zz9)/h;)
for x(O=

Denotevoxel co-ordinatesising bracketshus: Y, = Y(x), Wherex andx" are related
as above.

A:2 Tri-linear interpolation

Recall thatthe reconstructehinagesﬁ are estimates of, itself astepfunction

approximating the continuous functiafx). Thus, anmageY derived fromA can be
regarded as a stdpnction approximating an underlyirgpntinuous functior(x). In
manycases it is necessary to obtain estimaté§xQffor arbitrary locations, foexample
when re-sampling an imagdter a change of co-ordinate axes. In these situations some
form of interpolation of the image vectdis desirable.

If we view theimageY as approximatind(x) at the centres of the voxels, then for

locationsx other than theoxel centres, an estima¥x) of Y(x) can be obtained by
interpolating between thealues at neighbouring voxel locations. Tri-linear interpolation
is usually employed iRET image analysis. This the simplest form of interpolation for
three-dimensionalata. The interpolateehlue at a givepoint is alinear combination of
the values ofthe eighteighbouring voxels whose centefinethe cuboidcontaining
the point.

Let xV=x"y",2') be x in voxel co-ordinates, and let= (ty, t,, t,) =
xV- (X0 Vo' for @0Othe floor function, rounding the argumetdwards minus
infinity. Then, for(4 Citheceil function, rounding towards plus infinity:

Y(X) =
(1)) Yooz + (404 Yovoovozn)
+ (1)t)At) Y voyozg  +  QH)0)E) Yooz
+ A Y voyozg  + GQA)E) Yooz
+ (L)) (1) Yyvoovo,zn) + (L)) () Y(vo,mvo,z0]

Clearly interpolation oY introduces some smoothing.
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B: Smoothing Convolution

B:1 Smoothing convolution

For a continuousgunction Y(x), xOOP, smoothing is achieved by convolving the
function with a filter kernel ¥), to obtain a new functior Jf(x):

XOf(x) = jf(r) Y(x+r)dr (76)
Here integration is over the whole range.of he filter kernel, ), satisfies:
jf(x)dx =1

The kernel is a continuous functiamsually with a single locahaximum atthe origin,
and with value decreasing)xapecomes distant frofh

B:2 Moving average filter

The discrete analogue of convolutiorthat of amoving average filter. Although
technicallyincorrect, smoothing dimages is frequently described as “convolution with a
kernel”. Supposeour discretisation of theimage space =0 OOP is of K voxels
{Vk k=1,...K}, and letx, be the centre ofoxel k. Then for animage of voxel

values) = {Yy,...,Yx}, the smoothed version of this¥§ = {Y;,...,Yg}, given by:
Yie= DR _ e i) Yie (77)

For a particulavoxel, the smootheninage isobtained by positioning théter kernel on

the centre of the voxetvaluating it orthe lattice of points corresponding to the centres
of the voxels to obtairthe weightings forthe voxels, and thesummingthe weighted
voxel values.

Regular discretisation, constant weights, moving average

If the voxels are identical in size and shape, andegrdarly arranged, thehe set
of weights (f&, -x)) for any voxek will be identical (ignoring boundary effects).ths
case the weights can be computed in advagigiag an image ofhe filter kernel. The
weights can then bexplicitly normalised to sum to unitgnd the smoothing issample
moving average.

B:3 Edge effects & boundary truncation smoothing

Forvoxelsk close to the edge of thmagespace, thdilter kernel wherocated at
these voxels will have positive values outside the image space-kg). i non negative

for somexd = = 0P\ =. Forsuch a voxek, thesum ofthe weights - -x)) over all

voxelsk' is less than one. Thremaining “weight” ofthe smoothing kernel corresponds
to locations outside thenagespace fomwhich there are no voxels. Thaluesfor edge
voxels inthe smoothetmageare generallyreduced towards zero, auge effectThe
effect is as if a boundary of voxels witkrovaluewere placed round the edge of the
image. This scenario zero-boundary smoothing
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Truncated smoothing

If the image space adequately contains tmume of interest, inour case the
voxels corresponding tthe brain, thenthe zero-boundary edge effectnist of any
consequence. As can be seen from theinaages(ch.1l) thebrain fits just inside the
image space in thex andy directions, but is truncated in tlzedirection due to the
limited axial length of the tomograph.

The effect can be avoided by usimgundary-truncatiorsmoothing (eqn.78). Here
the weights of théilter kernelarenormalised at each voxel. The effect is abaeffilter
kernel is truncated when it reaches the edge of the image.

z f(xk-x )zk JTXexie) Yie (78)

B:4 Gaussian kernels

The filter kernelused is almostiniversallyGaussian, by which we med#mat it is
the probability density functionPpr) of a D-variate normal distribution witheromean
and variance-covariance matkixeqn.79).

f(x)= on D/Z\/_ p( Ixs~t ) (79)

The filters usually used are orthogonal, with variance-covariance matigts
zero off-diagonal elements. The filter is then completspecified bythe D-tuple
containingthe variances, and édlipsoidal inshape, with axegarallel totheimage axes.
The convolution integral factorises irbbone dimensionalcomponent integralsyhich
simplifies and speeds up computation.

Relationship offFwHM to variance-covariance matrix
As with imageresolution, the shape of the kernel is expressewitm.56 This is
related to thevariance for a GaussiaDF as follows: A univariate Gaussi@nF with

variances? hasmaxima 1/()\/51) atx=0. TherwHM | is then the width of thepr at
half this height, f{/2) = 1/(25\/51), sol = \/8In(2). This is extended tB-dimensional
orthogonal kernels in the obvious way. Bghericabrthogonal kernel witl = o2 Ipis
used then it is common to jquoteO\/8In(2) as theewHM. Some authors prefer to
specifyFwHM in terms of voxels.

Some common filters
Commonly used  three-dimensionafilters are 10mnx10mnx12mm, and
20mnmx20mnx24mm, with variance-covariance matrices of

BOZOO goZOO

= Hg 18)21022 8in (2) ands = Hg 28222? 8in (2) respectively.

56Recall that the Full Width at Half MaximuravgHm) is the width of the (point spread) function at half
its maximum.
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C:. Some Results For Smoothing Convolution

The following results for smoothing convolution of random fields are useful.

C:1 Smoothing convolution: commutative for even kernels

Let f1(x) and b(x) be anytwo everfunctions ofxOOP. Then 10f, = fo00f, that
is, smoothing convolution is commutative for even functions.

Proof:

f10f,(u) = j fo(V) fq(u+v)dv
b
= J fo(w-u) f1(w)dw under change of variables= u+v (1)
b
= J fo(u-w) f1(w)dw by even property of,f
b
= J fo(u+v) f1(-v)dv by change of variables= -w (1)
b
= J fo(u+v) f1(v)dv by even property of;f
b
= fotf1 ()
So {0f, =f,0f;, since convolution is commutativieor even kernels. The

Jacobeans for the changesvafiables (T)are det(p), the determinant of theegative
of theDxD identity matrix, which has absolute value 1.

C:2 Double smoothing convolution: Associative for even
kernels

Let X(x) be anyfunction,x00P, and let {(x) and b(x) be two everiilter kernels.
Then KOfq)Of, = XO(f10f)), that is, smoothing convolution is associative.

Proof:

(XOfy)Ofy = j fo(v) XOfy(x+v)dv = j fo(V) j f1(u) X(x+u+v)dudv

ob ob ob
= j fo(V) j f1(W-v) X(x+w)dwdv on change of variables = u+v
ob ob
= J j fo(V) fr(W-v) dv X(x+w)dw
ob ob
= J J fo(-u) f1(w+u) du X(x+w)dw on change of variablas= -v

gb ob
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= J J fo(u) f1(w+u) du X(x+w)dw by even property of,f
Ob ob

= j f10f (W) X(x+w)dw = XO(F,0f)
b

C:3 Double smoothing convolution: Order unimportant

Let X(x) be anyfunction,xJOP, and let {(x) and §(x) be twofilter kernels. Then
(XOfy)DOf, = (XOf,)Of4, that is the order of smoothing is unimportant.

Proof:
For evenfilter kernels { and % this result follows as a corollary dfe previous
two results. However, it holds for generpgff:

(XOfy)Ofy = j fo(v) XOfy(x+v)dv = j fo(V) j f1(u) X(x+u+v)dudv

ob ob ob
= j f1(u) j fo(V) X(x+u+v)dvdu = j f1(u) XOfy(x+u)du = (XOfy)Ofy
ob ob ob

C:4 Combining Gaussian kernels: Double smoothing

Let X(x) be anyfunction, xOOP, and let {(x) and H(x) be two Gaussiafilter
kernels with variance-covariance matriceg and 2, respectively. ThenX({fq)Of;
= (XOfy)Ofq = XO(f10f,) = XO(fo[0f1) = XOf where fk) is a Gaussian filter kernel with
variance-covariance matiBe2 +,.

Proof:

Sincethe kernels are even functionsxaf 0P, theassociativity and commutativity
propertiesgive (XUf1)Of, = (XOfy)Ofy = XO(f10fy) = XO(f,0f4). It remains toprove
that f[If, has the required fornThis can be done using Fourier transformsgigectly
as follows:

f,0f5(u) = viZotv+(u+ V) 21 (u+ \b])

e ez oA

1
~(en )P 2424 3

J’exp%—z[ (Z +22)v+u Zlu+2v21u]Edv

.
usingu' Z7'v = (UT211V) =V'27'u (sincext is symmetric)
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1
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(2m)°[z42)

ex
o

rodpoo

s em) ] el (e s
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Tz (51 +zz) su+uTEu

1
= X
(2m)°[z42)

[ expEL% %+ (=t + 251)_1211@T (2@ oz m i)+ (z 2‘21)_12‘iu%v
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O _ _ _a\-1/__ _ _ _ -\1__
xexpB-%ngzll(le+Zzl) (le+221)u—uTZf(le+Zzl) Ziu%
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(emP[zzy e \/
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x expB-%ngzll(&HZzl) Zzlu%

:(211)%\7|Zl||22| x\/‘21(22+21)_122‘ x expﬁ-%@ﬁ(zz(ﬂl+Z_21)21)_1u%

g e N e 4 o)

exp%—z[ (Z1+2)) 1u]%

(e /2J|zl+zz|
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C:5 Covariance function of smoothed white noise processes

Let Z(x), xOOP, be thefield formed by convolving a weakly stationary continuous
white noise randorfields” X(x) of variancea? (Var[X(x)] = 2 Ox) with a kernel ),
Z(x) = XOf(x). ClearlyZ(x) is a strictly stationary continuous random field. Moreover,
the covariance function is §)(= o2 fOf(h)

Proof:
This result is easily proved directly from the convolution integral (eqn.76):
C(h) = Cov[Z(x),Z(x + h)]
= CO\{J'DD f(r )X (x +r ") "o fr ) Xk +h +r )d]
= J’DDf(r)Cov[J'DD f(r)X( +r')d ', Xk +h +r )]d

- J’DDf(r)J'DDf(r’)Cov[X(x +r 1), X +h +r )]ai 'd

= J’DDf(r)f(r +h)o?d
(since CovK(x+r"),X(x+h+r)]=c? if r'=h+r and is zero otherwise)

= g2 ff(h)
Corollary:
The field Z(x) formed by convolving a white noideeld of variancec? with a
Gaussian kernel ] with variance-covariance matrix Z,

f(x) = exp(x"ZIx/2) /\/(2mP [£]|, is a strictly stationary continuoufield with
covariance function:
C(h) = a?f0f(h)
= 02 exp(hT(22)1h/2) 1A/ (2r)P | =]

(a Gaussian kernel with variance-covariarcel® result 4)
2

-9 T(y)-1
RN exp(hT(2)1h/4)
2

So, forh = 0, Var[z(x)] = m

Corollary:
A strictly stationary continuous randofield with zero mean, variance?, and
auto-correlation function R} =exp(h'(Z)1h/4), can be obtained by convolving a

white noise randorfield of variancea?2PnP/2\/|£| with a Gaussian kernel of variance-
covariance matrig, f(x) = exp(x' = 1x/2) /4/(2m)P [Z].

57A randomprocessX(t) is white noise if EX(t)] = 0, and ifX(t;) andX(t,) are independenfpr all
pointst,t; & t, in the parameter space.
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C:6 Smoothness of smoothed Gaussian white noise fields

Thefield obtained by convolving a continuous white noise Gaussian rafieldm
(defined onOP) with a kernel ), is itself a strictlystationary continuous Gaussian
randomfield with zeromean. Ifthe variance ofthe white noise process is chosech
that theresultingfield has unit variance, then AdIEr981) shows that theariance-
covariance matrix of partial derivatives is:

o IGLIOM
oP

N =
J’f (x)dx

DD

C.7 Smoothness of (Gaussian) smoothed Gaussian white noise

The strictly stationary continuous standard Gaus&ano mean, unit variance)
randomfield formed by convolving a white noise Gaussian ranflelch with a Gaussian
kernel, f§&) = exp(x'=1x/2) //(2mP |Z|, has variance-covariance matrix of partial
derivativesA = 2172 = (Z)-1. By result 5, thevariance othe white noisdield must be

2PrP/2\[|2| for the smoothed field to have unit variance.

Proof:
This follows from the previous result by direct integration.

Corollary:

A strictly stationary continuous Gaussian randbefd with zero mean, unit
variance, variance-covariance matrix of partial derivativks and Gaussian
auto-correlation function can be obtained by convolving a white noise Gaussian random
field of variance(2m)®/2 /A[]A| with a Gaussian kernel with variance-covariance matrix

¥ = (2A)"L. This observation providese framework fosimulating Gaussian random
fields.

C.8 Secondary smoothing

Consider a strictly stationary continuous standard Gauggemo mean, unit
variance) randonfield Y(x), xOOP, with Gaussian auto-correlation function and
variance-covariance matrix of partial derivatives Let f(x) be a Gaussian kernel with
variance-covariance matrk Let Z = ¢'1/2 x YOf, where the constantis chosen such
that VarZ(x)] = 10x. ThenZ is also a strictly stationary standard Gaussian random
field, with variance-covariance matrix of partial derivativRg = (2 +AY'1)'1.

Furthermorec =1 |2AYZ + |D|.

If Zy=(2Ay) L, then A,=(Z + 221 c= , and =y = (2A)1

A

Z+ZY
:Z+ZY
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Proof:
Since Y(x) can be generated by convolving a white noise Gaussian random

field X(x), of variance (222 //|Ay], with Gaussian kernel(k) with variance-
covariance matrixzy = (ZAY)'1 (corollary to result 7). Result 4 then givésat
VexZ(x) = YUf is equivalent to a field obtained by convolving a white noise rarfigdon

of variance(2m) D/2 /\/|A_Y|, with a Gaussian kernel £ f\f, with variance-covariance
matrixZ + Zy. Then, by result 7Z(x) has variance-covariance matrix of partial
derivativesA, = (2= + 25y)1 = (22 + AyDL. It remains to identifythe constarmt
SinceZ(x) is of unit varianceycxZ(x) has variance, but, regarding/cxZ(x) asX(fyO

f), result 5 gives its variance as:

=y % . 1

|Z + ZY| _« /|Z + (2/\Y)'1| _\/|2/\Y||Z + (2Ay)'1| _\/|2/\YZ +1p

C:.9 Effect of scaling on smoothness

Let Z(x), xOOP, be a strictly stationary continuous randbefd with variance-
covariance matrix of partial derivativAs. Then thdield Y(x) = cxY(x), for constant,
has variance-covariance matrix of partial derivatives: ¢ A.

Proof:
Trivial. Using the definition oA, and the chain rule for differentiation...

qval%.]  col%. %)
A :éb \,{a Axl AXZ] va{"%XZ] ---LWherex = (Xq, X, ...).

E Val{a%x 6%)(1] CO\{a%x D oxa Vox a%xz] E
A AR

ZE va{a%x] CO\{aYaxl a%xz] E
= (Vx) éb \f{"%xl % Xz] va{a%xz] % =2\
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D: Expected Euler Characteristics

D:1 The x2-field

The expected Euler characterisgi@\,(U,W)) of the excursiorset A (U,W) of a
homogeneous (strictly stationary) Chi-squared randleld U(x) with n degrees of
freedom, defined oxOW, a compact, convex subset 6P (with boundary ofzero
Lebesgue measure), for a thresholds, for D > 2 and undemild conditions on the
component fields:

A n-D
EX(AU.W)] = e
where B y(u) is a polynomial of degre -1 inu with integer coefficients:

Pon(t)=

=0 k=0

[iN

"Tig -l g (DD
HD—l—Zj—kE 20 j1k!

Terms with factorials of negatives in the denominator are taken as zero.
(Worsley, 1994, Theorem 3.5)

D:2 The F-field

For F(x) anF-field with n,m degrees of freedom, the expected Euler characteristic
of the excursiorset (overV, a compact, convex subset©P, with boundary ofzero
Lebesgue measure) above a threshadd form+n>D = 2:

_ MWAT (3 (m+ n- D)) nu
A= e () %@ ﬁt @

where Ky () is a polynomial of degre@ -1 innuw/mwith integer coefficients:

D-1

ZFE(m+n+ D+ j)

K u) = (-2)°*(D-1)
D,m,n() or(% m+ n— D))]l

]
D-1-2j rm — 1[|] n-1 % N uﬁ
-k

X
kZoEk -1-2j-

(Worsley, 1994, Theorem 4.6)
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D:3 Thet-field

For T(x) at-field with n degrees of freedom, the expected Euler characteristic of
the excursiorset (ove, a compact, convex subset GP, with boundary ofzero
Lebesgue measure) above a threshadd forn=>D = 2:

V2 L
EX(A(T,W))] = %@-"’%@ i QD,n(u)

where @, ,(u) is a polynomial of degrée -1 inu:

% :Z (2D T(0+D) o

D- 1—2] u

D-1-2) ((n+2 D+21))( )

(Worsley, 1994, Theorem 5.3)
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E: “Transform” Functions

Suppose is drawn from a distribution with Cumulative Distribution Functiox),F(
then an equivalent standard Gaussian vazigtene with equal extremum probability:

PR =Ft) - z=YF()

(The distribution function method for functions of random variables.) $ireceormal

distribution is continuousP(z) is strictly monotonic increasing. Thds! exists and a
uniquez is specified®1(F(+)) is thus a function “transforming” a randomriable from

one distribution to a standard Gaussian distribution, and has become (kmeem as a
transform function

Transform function for Students’ t-distribution

The computing environments used by nrist centres tcanalyse images do not
have built in statistical distribution functiorepgs, CDFs, inversecDFs), sothey must be
explicitly coded.Sincethe evaluation of these functiondbecoming dost art inthese
days of comprehensive tables and sophisticated statistics packages, we review the
computations for Studentslistribution.

For the t-distribution with df degrees of freedom, th@umulative Distribution
Function R(*) can be expressed in terms of theompleteBeta function, J(a,b), as
follows:

u2|:| 2

F— L He B
\/ﬁﬁid%,%j_[om X[ %
[l

Heref(a,b) is Beta function:

B(a,b) =% = j (1) uel (1-u)P1 du a,b>0

and the incomplete Beta function is:

[E%X(:S) ) B(al,b) J )(; bt (1™ du ab> 0

As is well known, thebr of the normal distribution is related to the error function:

l(a,b) =

o) =3 +3en 350 el =F [* e
=  oYp) =2 erfl2p-1) O<ps<1

The incompletdetafunction and thénverse ofthe errorfunction aresupplied in
many engineering andmnaging packages. Alternatively, varioymiblished solutions for
their approximation exist. Thus the “transform” function for Studedistribution can
be painlesslycoded. See “Numerical Reeg’ (Presd.al) for algorithms and
relationships for other distributions.
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F: Ordering Theorem

Theorem

Considertwo sets ofeal numbersX={x}{,, Y:{yj}Jr‘:l, suchthat x; <y; [
i =1,...n. OrderX andY from largest to smallest, with ties broken arbitramjiing
ordered set¥={x;} L1, Y={yy}{L1, wherex; 2x, & yy 2y, O1<i<j<n.

Then,x(i) <Y Oi=1,...n.

Proof:
SUppos&y =X, Yoy =Y,
and S ={ij:1=1,...k} theklargesty, and
Syk={ii:1=1,...K}, theklargesty;.
k=1
Yo 7Y, =3 by definition of maximum
= by hypothesis
= X1) by definition ofx;_
k>1
If i O Sy.q thenyyy 2y, (ik O Sy O yj, notink-1 largesty)
2 X, by hypothesis
= X by definition ofx;

otherwisejy O Sy .1, anddi' such that' 0 Sy .1 buti' O Sy).1 T

theny,, =2y; becausé U Sy .1
> Xj by hypothesis
> X becausé [J Sy .1

t S k-1 hask-1 membersbut iy is not one othem, by definitionHowever,
Sy k-1 hask-1 memberspne ofwhich isi,. Therefore .1 must contain an
element not contained iy ;.
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G: Smoothness of-Fields

Let X1(x),....X4(X) xOWOOP be independentidentically distributed, strictly
stationary Gaussian randdiields with zero mean and variana®. Suppose that the
variance-covariance matrix of partial derivatives of the fiefd is

Consider the-field T(x) with n-1 degrees of freedom formed as tme-sample
t-statistic of X1(x),...,.X,(x)} at each poinkJW:

__MKx)
T =3xmvn

where M(x) :% % Xi(x)

and S(X)z‘_ Z(X () - M(x))°

Let A; be the variance-covariano®atrix of partial derivatives dhe t-field. This
can be related t@\ using a simplification othe argument used in the apprnof
Worsleyetal. (1992).(With thanks to Dr. Worsley for pointing thisit.) The argument
is as follows:

Since X4(x),....Xp(X) and their partial derivativeare all independent Gaussian
random variables withzero expectations(Adler, 1981p.31), conditioning on
X1(X), ..., Xn(X), we have

|:|n
A= Va%@z Var%%%%l%
=E Inlg%gVar%%

From the definition of(x) we have
T 9 M 1 n2ZM(X -M)

ox; ~ xS/t T lZST gy S3

and so

nM 2

: 1, M
E%Q 52" (n-1s?
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Hence

01 nm?2 O
A =EG5+— ——0A0
5 (n-1)S™O
=AM\ say.

This can be furthesimplified usingthe fact that) = [nM2 + (n -1)S%]/02 has ax?
distribution withn degrees of freedom, independentTofandthat E[1U?] = 1/(n-2),

giving
T2+n-1
An= E%n D @o- 2)@

Integrating over the density ®fgives:

+o°t2+n—1 +o°t2+n—1
M=Bn ) p-2m0d = 2H - g0 d
—0 0

where §(¢) is thePDF of a Student’'s-distribution withn-1 degrees of freedom. The
integral is finite only fon>4 (df =3).

Values ofA, for n=4,...,199 arggiven to4dp in thefollowing table,computed
using an adaptive recursixewton-Cotes eighpanel rule. NotehatA, tends to rom
above as tends to infinity.

Ap +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 - ) 00 o 20.9819 4.3698 2.66382.0859 1.8015 1.6342
10 | 1.5243 1.4467 1.3891 1.3446 1.3092 1.2804 1.2562363 1.2191 1.2042
20 |1.1912 1.1798 1.1696 1.1605 1.1524 1.1450 1.13B3323 1.1267 1.1215
30 |1.1168 1.1124 1.1083 1.1045 1.1010 1.0977 1.0946918 1.0890 1.0865
40 |1.0840 1.0818 1.0796 1.0775 1.0756 1.0737 1.0720703 1.0687 1.0671
50 |1.0657 1.0643 1.0629 1.0616 1.0604 1.0592 1.05B0569 1.0559 1.0549
60 |1.0539 1.0529 1.0520 1.0511 1.0503 1.0494 1.04BO®479 1.0471 1.0464
70 |1.0457 1.0450 1.0443 1.0437 1.0431 1.0424 1.0419413 1.0407 1.0402
80 |1.0396 1.0391 1.0386 1.0381 1.0376 1.0372 1.036D363 1.0358 1.0354
90 |1.0350 1.0346 1.0342 1.0338 1.0335 1.0331 1.032D324 1.0320 1.0317
100 | 1.0314 1.0310 1.0307 1.0304 1.0301 1.0298 1.02D9292 1.0289 1.0287
110 |1.0284 1.0281 1.0279 1.0276 1.0274 1.0271 1.0269266 1.0264 1.0262
120 | 1.0259 1.0257 1.0255 1.0253 1.0251 1.0249 1.0240245 1.0243 1.0241
130 | 1.0239 1.0237 1.0235 1.0233 1.0231 1.0230 1.02r®226 1.0224 1.0223
140 | 1.0221 1.0219 1.0218 1.0216 1.0215 1.0213 1.021.2210 1.0209 1.0207
150 | 1.0206 1.0205 1.0203 1.0202 1.0200 1.0199 1.0198196 1.0195 1.0194
160 |1.0193 1.0191 1.0190 1.0189 1.0188 1.0187 1.01B6&184 1.0183 1.0182
170 |1.0181 1.0180 1.0179 1.0178 1.0177 1.0176 1.01¥®174 1.0173 1.0172
180 |1.0171 1.0170 1.0169 1.0168 1.0167 1.0166 1.0169164 1.0163 1.0162
190 |1.0162 1.0161 1.0160 1.0159 1.0158 1.0157 1.016P156 1.0155 1.0154
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H: Poline’s Bivariate Approach

Poline & Mazoyer(1994a) address thoblem of intense focal activatiobsing
missed bysuprathreshold cluster sirestswith low thresholds, byncluding the mean
voxel value of the suprathreshold cluster into the testing procedure.

Methodology

The bivariate parameter space P*=x0* ={{0,1,...} x[0,0)} for the size (in
voxels) and magnitude of a suprathreshold cluster is partitioned into rejection and
acceptance regions by an “iso-cumulative” cuhet. C§,m be thenumber of clusters
with size >s and mean voxel valuem in an single statistic image, with expected value
E[C(s,m]. Let By(sm) = {(s,m)TP: E[CE,m)] < E[C(sm)]} O P for mUIP. The
boundary of this region §im)0P: E[CE,m)] = E[C(s;m)} is an iso-cumulativecurve,
so called sincéor each pointg,m) on the curve, the expectedmber of clusters with
size>s and mean voxel valuer® is constant. Let §m) be the number of
suprathreshold clusters in mmage withattributes §,m)UP,¢(s;m). The rejection region
for a level o test is then Rnyi(sy. My). where §,, my) are chosen suchhat
Pr( I(s5,my) 2 1) =a under H,. The rejection region is unique, although, (n,) are
not.

Consideringthe testing of a suprathreshold cluster with attribigey, (if
Pr(lsm)=1) < a then Ry(sm)UOPj¢(Sy, My). Sincethe iso-cumulative curves do not

cross. Since )P s(ssm), (sm) is in the rejection region and themnibus null
hypothesis for the suprathreshold cluster of voxels is rejected.

Since direct estimation dhe rejection region frorsimulated statistiamages is
difficult, Poline & Mazoyer (1994jassumed a Poisson distribution fag;r{), suggested
by thelaw ofrare events. Then, Prgif)=1) = 1-eE[(SM] andonly E[I(sm)] needs to
be estimated to apply the test.

It remains to estimatE[l(s,m)]. For agiven image, an empirical iso-cumulative

curve can be computed as the boundarQi,q(sl?n) ={(s,m)dP: Ce,m) < C(s,m}, a
step functionpassingthrough §m). This gives an estimaté\(sln), of I(s,m as the
number of objects immage withattributes Q,M)D/F\’inf(s,n). Computing themean of
/I\(s,n) over many simulated images gives an estimate of,Ejl(

Comments

The descriptiorgiven above differslightly to that of Poline & Mazoyer(1994a),
which wasnot as rigorous iits definition ofthe isecumulative curves. Aummary of
the approach appears in Poline & Mazoyer (1994b).

A simplerapproach would be to approximate tbe-cumulative curves with some
function f, as §m) =c. The function f then constitutes a statistlescribing a
suprathreshold portion of the statisimsage. Thenull distribution of f,5, the largest
f-value for clusters in a single imageahgneasilysimulated, anthe appropriatguantile
for alevela testbased on the f-values of clusters estimaléds avoidshe necessity of

the Poisson assumption and kaegthy computation of (s;m) for each object from the
simulated data.
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Hierarchical decomposition

In addition to the bivariate approach for suprathreshold clusters, Poline & Mazoyer
(1994a) propose a hierarchical decomposition ofirtfegeinto objectswhose size and
mean amplitudeare analysed thus avoiding having tochoose a threshold for cluster
identification. Essentiallyhe local maximaare iteratively “cut off” to form the objects.
Fig.93 illustrates the objects after hrefacal decomposition of simple D image.(For
rigorousdefinitions andurther explanatiorthe reader is referred Roline & Mazoyer
(1994a) and the references thefléhjs represents an interesting direction. However, the
hierarchical nature of the decompositigads to objects whose attributese not
independent. The effect of this is probably negligible.

-~

S

Figure 93
Hierarchical decomposition of a continuous one-dimensional “image”.
The means and sizes for “objects& D are shown.
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