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1.1 Motivation and Aims

The initial motivation for this work was to develop improved methods of image registration for

functional imaging. Much of it has now been incorporated into the SPM99 package, and is used

by several hundred researchers around the world for analysing functional imaging data. The

second motivation was to facilitate the development of methods for studying brain shape among

di�erent populations. Recently, the term computational neuroanatomy has been coined for this

area of research. These areas are now reviewed in more detail.

1.1.1 Functional Imaging

The principle behind detecting activations using functional imaging methods such as Positron

Emission Tomography (PET) or functional Magnetic Resonance Imaging (fMRI) is essentially

a voxel by voxel t-test on a series of images acquired under di�erent conditions (Friston et al.,

1995d; Worsley & Friston, 1995). This analysis results in a statistical parametric map (SPM)

showing signi�cant di�erences in cerebral blood 
ow that are explained according to the di�erent

conditions experienced by the subject (or subjects) in the scanner.

The �rst modalities used for this type of study were PET and SPECT (Single Photon Emission

Computed Tomography). Recent advances in MR methods, the large number of existing scanners,

coupled with the relatively high cost of producing radioactive tracers, and the invasive nature of

PET and SPECT have meant that most studies currently use fMRI.

PET and SPECT methods involve generating images from the photons of radiation emitted

by tracers injected into, or inhaled by, the subjects. Tracers used in PET studies emit positrons
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when they decay, and include 11C, 15O and 18F, although most studies are based on identifying

regional di�erences in cerebral blood 
ow, and involve injecting the subject with 15O labelled

water, or the subject breathing 15O labelled carbon dioxide. When a positron meets an electron,

the two annihilate each other resulting in the emission of two gamma ray photons in opposite

directions. By recording the paths of the gamma ray pairs, it is possible to reconstruct a three

dimensional image of the tracer concentration. For PET studies, a typical protocol may involve

about 12 scans, with an injection of 15O labelled water prior to each of them. The subject may

have one task to do for six of the scans, and a di�erent task for the other six. More active brain

regions have a higher rate of blood 
ow, and so receive the tracer earlier than the other areas.

By imaging the brain as the radioactivity is entering, and comparing the images resulting from

the di�erent tasks, it is possible to create a picture of where the tasks have most in
uence over

the cerebral blood 
ow.

The mechanisms of MRI are very di�erent from those of PET, and rely on the nuclei of certain

atoms (normally 1H) absorbing and then re-emitting radio waves when in a magnetic �eld. The

frequency of the absorbed and emitted waves depends on the strength of the magnetic �eld, so by

varying the �eld over the head it is possible to record waves of di�erent frequencies from di�erent

regions. Fourier transform methods are used to reconstruct images of where the signals emanate

from. Depending on the properties of the surrounding tissue, the amplitudes of the signals will

decay at di�erent rates, so not only does MRI produce a map of the density of 1H atoms, but it

also says something about the environment in which the atoms are found.

Currently, the index of neuronal activity most commonly used for fMRI is the Blood Oxy-

genation Level Dependent (BOLD) contrast (Ogawa et al., 1990). The assumption is that an

increase in neuronal activity within a brain region results in an increase in local blood 
ow, lead-

ing to reduced concentrations of deoxyh�moglobin in the blood vessels. Unlike oxyh�moglobin,

deoxyh�moglobin has a di�erential magnetic susceptibility in relation to the surrounding tissue.

Therefore, relative decreases in deoxyh�moglobin concentration lead to a reduction in local �eld

inhomogeneity and a slower decay of the MR signal, resulting in higher intensities in the images.

fMRI allows whole brain images to be collected in about six seconds, giving it a much better

temporal resolution than PET (as there is typically a wait of about 10 minutes between scans

in order for the radiation from the previous scan to decay). This means that hundreds of fMRI

volumes are often collected for each subject.

Image registration is important in many aspects of functional image analysis. In imaging

neuroscience, particularly for fMRI, the signal changes due to any h�modynamic response can

be small compared to apparent signal di�erences that can result from subject motion, so it is

important that the images are as closely aligned as possible prior to performing the statistical

tests. Subject head movement in the scanner can not be completely eliminated, so motion cor-

rection needs to be performed as a preprocessing step. Most current algorithms for movement

correction consider the head as a rigid object. In three dimensions, six parameters are needed

to de�ne a rigid body transformation (three translations and three rotations). The �rst step in

the correction is image registration, which involves determining the parameter values for a rigid

body transformation that optimise some criteria for matching each image with a reference image.

In order to be e�ective, the accuracy of the registration needs to be within a fraction of a voxel.

Following the registration, the images are transformed by resampling according to the determined

parameters.
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Motion correction is especially important for experiments where subjects may move in the

scanner in a way that is correlated with the di�erent conditions (Hajnal et al., 1994). Even tiny

systematic di�erences can result in a signi�cant signal accumulating over numerous scans. With-

out suitable corrections, artifacts arising from subject movement correlated with the experimental

paradigm may appear as activations. A second reason why motion correction is important is that

it increases sensitivity. The t-test is based on the signal change relative to the residual variance.

The residual variance is computed from the sum of squared di�erences between the data and the

linear model to which it is �tted. Movement artifacts add to this residual variance, and so reduce

the sensitivity of the test to true activations.

For studies of a single subject, sites of activation can be accurately localised by superimpos-

ing them on a high resolution structural image of the subject (typically a T1 weighted MRI).

This requires registration of the functional images with the structural image. As in the case of

movement correction, this is normally performed by optimising a set of parameters describing

a rigid body transformation, but the matching criterion needs to be more complex because the

structural and functional images normally look very di�erent. A further use for this registration

is that a more precise spatial normalisation can be achieved by computing it from a more detailed

structural image. If the functional and structural images are in register, then a warp computed

from the structural image can be applied to the functional images.

Sometimes it is desirable to warp images from a number of individuals into roughly the same

standard space to allow signal averaging across subjects. This procedure is known as spatial

normalisation. Because di�erent people may have di�erent strategies for performing tasks in the

scanner, spatial normalisation of the images is useful for determining what happens generically

over individuals. A further advantage of using spatially normalised images is that activation sites

can be reported according to their Euclidian co-ordinates within a standard space (Fox, 1995).

The most commonly adopted co-ordinate system within the brain imaging community is that

described by Talairach & Tournoux (1988), although new standards are now emerging that are

based on digital atlases (Evans et al., 1993; Evans et al., 1994; Mazziotta et al., 1995).

1.1.2 Computational Neuroanatomy

A large number of approaches for characterising di�erences in the shape and neuroanatomical

con�guration of di�erent brains have recently emerged due to improved resolution of anatomical

human brain scans and the development of new sophisticated image processing techniques.

One of the simplest morphometric approaches involves identifying shape changes within single

subjects by subtracting coregistered images acquired at di�erent times. The changes could be

because of a number of di�erent reasons, but most are related to pathology. Because the scans

are of the same subject, the �rst step for this kind of analysis involves registering the images

together by a rigid body transformation.

Other approaches require the images of multiple subjects to be registered together by some

form of spatial normalisation. The primary result of spatially normalising a series of images

is that they all conform to the same stereotactic space, enabling region-by-region comparisons

to be performed. A second result is a series of deformation �elds that describe the spatial

transformations required to match the di�erent shaped brains to the same template. Encoded

within each deformation �eld is information about the individual image shapes, which can be
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Figure 1.1: The term \deformation-based morphometry" will be used to describe methods of

studying the positions of structures within the brain (left), whereas the term \tensor-based mor-

phometry" will be used for methods that look at local shapes (right). Currently, the main

application of tensor-based morphometry involves using the Jacobian determinants to examine

the relative volumes of di�erent structures. However, there are other features of the Jacobian

matrices that could be used, such as those representing elongation and contraction in di�erent

directions. The arrows in the panel on the left show absolute displacements after making a global

correction for rotations and translations, whereas the ellipses on the right show how the same

circles would be distorted in di�erent parts of the brain.

further characterised using a number of statistical procedures.

The terms deformation-based and tensor-based morphometry will be used to denote meth-

ods of studying brain shape that are based on deformation �elds. When comparing groups,

deformation-based morphometry (DBM) uses deformation �elds to identify di�erences in the rel-

ative positions of structures within subjects' brains. Tensor-based morphometry (TBM) refers to

those methods that identify di�erences in the local shape of brain structures (see Figure 1.1).

Characterisation using DBM can be global, pertaining to the entire �eld as a single obser-

vation, or can proceed on a voxel by voxel basis to make inferences about regionally speci�c

positional di�erences. This simple approach to the analysis of deformation �elds involves treat-

ing them as vector �elds representing absolute displacements. However in this form, in addition to

shape information, the vector �elds also contain information on position and size that is likely to

confound an analysis. Much of the confounding information is �rst removed by global rotations,

translations and a zoom of the �elds (Bookstein, 1997a).

DBM can be applied on a global scale to simply identify whether there are signi�cant di�er-

ences in overall shapes (based on a small number of parameters) among the brains of di�erent

populations. Generally, a single multi-variate test is performed using parameters describing the

deformations - often after parameter reduction with singular value decomposition. The Hotelling's
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T2 statistic can be used for such simple comparisons between two groups of subjects (Bookstein,

1997a; Bookstein, 1999), but for more complex experimental designs, a multi-variate analysis of

covariance can be used to identify di�erences via the Wilk's � statistic.

An alternative approach to DBM involves producing a statistical parametric map that locates

any regions of signi�cant positional di�erences among the groups of subjects. An example of

this approach involves using a voxel-wise Hotelling's T2 test on the vector �eld describing the

displacements at each and every voxel (Thompson & Toga, 1999; Gaser et al., 1999). The

signi�cance of any observed di�erences can be assessed by modelling the statistic �eld as a T2

random �eld (Cao & Worsley, 1999). Note that this approach does not directly localise brain

regions with di�erent shapes, but rather identi�es those brain structures that are in relatively

di�erent positions.

If the objective is to localise structures whos shapes di�er among groups, then some form of

tensor-based morphometry is required to produce statistical parametric maps of regional shape

di�erences. A deformation �eld that maps one image to another can be considered as a discrete

vector �eld. By taking the gradients at each element of the �eld, a Jacobian matrix �eld is

obtained, in which each element is a tensor describing the relative positions of neighbouring

elements. Morphometric measures derived from such a tensor �eld can be used to locate regions

with di�erent shapes. The �eld obtained by taking the determinants at each point gives a map of

structural volumes relative to those of a reference image (Freeborough & Fox, 1998; Gee & Bajcsy,

1999). Statistical parametric maps of these determinant �elds can then be used to compare the

anatomy of groups of subjects. A number of other measures derived from tensor �elds have been

used by other researchers, and these are described by Thompson and Toga (1999).

Another form of morphometry involves examining the local composition of brain images. Grey

and white matter voxels can be identi�ed by image segmentation, before applying morphometric

methods to study the spatial distribution of the tissue classes. These techniques will be referred to

as voxel-based morphometry (VBM). Currently, the diÆculty of computing very high resolution

deformation �elds (required for TBM at small scales) makes voxel-based morphometry a simple

and pragmatic approach to addressing small scale di�erences that is within the capabilities of

most research units.

To summarise, computational neuroanatomic techniques can either use the deformation �elds

themselves or use these �elds to normalise images that are then entered into an analysis of

regionally speci�c di�erences. In this way, information about overall shape (deformations �elds)

and residual anatomic di�erences inherent in the data (registered images) can be partitioned.

1.2 Overview of Chapters

The remaining chapters of this thesis are organised as follows.

Rigid Body Registration

Rigid body registration is one of the simplest forms of image registration, so this chapter provides

an ideal framework for introducing some of the concepts that will be used by the more complex

registration methods described in later chapters. The shape of a human brain changes very little
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with head movement, so rigid body transformations can be used to model di�erent head positions

of the same subject. Registration methods described in this chapter include within modality, or

between di�erent modalities such as PET and MRI. Matching of two images is performed by

�nding the rotations and translations that optimise some mutual function of the images. Within

modality registration generally involves matching the images by minimising the sum of squared

di�erence between them. For between modality registration, the matching criterion needs to be

more complex. A method for co-registering brain images of the same subject that have been

acquired in di�erent modalities is presented. The basic idea is that instead of matching two

images directly, one performs intermediate within modality registrations to two template images

that are already in register. One can use a least squares minimisation to determine the aÆne

transformations that map between the templates and the images. By incorporating suitable

constraints, a rigid body transformation that directly maps between the images can be extracted

from these more general aÆne transformations. A further re�nement capitalises on the implicit

normalisation of both images into a standard space. This facilitates partitioning both original

images into homologous tissue classes. Once extracted, the partitions are jointly matched further

increasing the accuracy of the co-registration.

Image Warping with Basis Functions

This chapter describes the steps involved in registering images of di�erent subjects into roughly the

same co-ordinate system, where the co-ordinate system is de�ned by a template image (or series

of images). The method only uses up to a few hundred parameters, so can only model global brain

shape. It works by estimating the optimum coeÆcients for a set of bases, by minimising the sum

of squared di�erences between the template and source image, while simultaneously maximising

the smoothness of the transformation using a maximum a posteriori (MAP) approach. In order

to adopt the MAP approach, it is necessary to have estimates of the likelihood of obtaining the

�t given the data, which requires prior knowledge of spatial variability, and also knowledge of the

variance associated with each observation. True Bayesian approaches assume that the variance

associated with each voxel is already known, whereas the approach developed here is a type of

Empirical Bayesian method, which attempts to estimate this variance from the residual errors.

Because the registration is based on smooth images, correlations between neighbouring voxels

are considered when estimating the variance. This makes the same approach suitable for the

spatial normalisation of both high quality MR images, and low resolution noisy PET images. A

fast algorithm has been developed that utilises Taylor's Theorem and the separable nature of the

basis functions, meaning that most of the nonlinear spatial variability between images can be

automatically corrected within a few minutes.

The approach begins by matching the images using an aÆne transformation. Unlike Chapter

2 { where the images to be matched together are from the same subject { zooms and shears are

needed to register heads of di�erent shapes and sizes. Knowledge of the variability of head sizes

is included within a Bayesian framework in order to increase the robustness and accuracy of the

method. Following this step, gross di�erences in head shapes, that can not be accounted for by

aÆne normalisation alone, are corrected by a nonlinear spatial normalisation procedure. In order

to reduce the number of parameters to be estimated, the nonlinear warps are described by a linear

combination of low spatial frequency discrete cosine transform basis functions. Regularisation

of the problem involves biasing the warps to be smooth by simultaneously minimising their
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membrane energy.

High Dimensional Image Warping

This chapter is also about warping brain images of di�erent subjects to the same stereotactic

space. However, unlike Chapter 3, this method uses thousands or millions of parameters, so is

potentially able to obtain much more precision. A high dimensional model is used, whereby a

�nite element approach is employed to estimate translations at the location of each voxel in the

template image. Bayesian statistics are used to obtain a maximum a posteriori (MAP) estimate

of the deformation �eld. The validity of any registration method is largely based upon the prior

knowledge about the variability of the estimated parameters. In this approach it is assumed

that the priors should have some form of symmetry, in that priors describing the probability

distribution of the deformations should be identical to those for the inverses (i.e., warping brain

A to brain B should not be di�erent probablistically from warping B to A). The fundamental

assumption is that the probability of stretching a voxel by a factor of n is considered to be

the same as the probability of shrinking n voxels by a factor of n�1. The penalty function of

choice is based upon the singular values of the Jacobian matrices having log-normal distributions,

which enforces a continuous one-to-one mapping. A gradient descent algorithm is presented that

incorporates the above priors in order to obtain a MAP estimate of the deformations. Further

consistency is achieved by registering images to their \averages", where this average is one of

both intensity and shape.

Segmentation

A tissue classi�cation method was originally developed to be part of the between modality regis-

tration procedure described in Chapter 2, but the classi�cation results are also useful for various

types of morphometry, as well as having potential applications in other registration techniques.

This chapter describes a method of segmenting MR images into di�erent tissue classes, using a

modi�ed Gaussian Mixture Model. By knowing the prior spatial probability of each voxel being

grey matter, white matter or cerebro-spinal 
uid, it is possible to obtain a more robust classi�ca-

tion. In addition, a step for correcting intensity non-uniformity is also included, which makes the

method more applicable to images corrupted by smooth intensity variations. Evaluations of the

method show that the non-uniformity correction improves the segmentation of images containing

this artifact.

Morphometry

The chapter on morphometry covers three principle morphometric methods, that will be called

voxel-based, deformation-based and tensor-based morphometry.

At its simplest, voxel-based morphometry (VBM) involves a voxel-wise comparison of the local

concentration of grey matter between two groups of subjects. The procedure is relatively straight-

forward, and involves spatially normalising high resolution MR images from all the subjects in the

study into the same stereotactic space. This is followed by segmenting the grey matter from the

spatially normalised images, and smoothing these grey-matter segments. Voxel-wise parametric
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statistical tests are performed which compare the smoothed grey-matter images from the groups.

Corrections for multiple comparisons are made using the theory of Gaussian random �elds. This

chapter describes the steps involved in VBM, and provides evaluations of the assumptions made

about the statistical distribution of the data.

Deformation-based morphometry (DBM) is a method for identifying macroscopic anatomical

di�erences among the brains of di�erent populations of subjects. The method involves spatially

normalising the structural MR images of a number of subjects so that they all conform to the

same stereotactic space. Multivariate statistics are then applied to the parameters describing the

estimated nonlinear deformations that ensue. To illustrate the method, the gross morphometry

of male and female subjects are compared. Brain asymmetry, the e�ect of handedness, and the

interactions among these e�ects are also assessed.

Tensor-based morphometry (TBM) is introduced as a method of identifying regional structural

di�erences from the gradients of deformations �elds. Deformation �elds encode the relative

positions of di�erent brain structures, but local shapes (such as volumes, lengths and areas) are

encoded in their gradients (Jacobian matrix �eld). Various functions of these tensor-�elds can be

used to characterise shape di�erences.


