
Chapter 2

Rigid Body Registration
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2.1 Introduction

Rigid body registration is normally used for registering images of the same subject. This chapter

describes methods of within subject registration for images of the same or di�erent modalities.

For every image registration, the spatial transformation should be described by a set of pa-

rameters. In three dimensions, rigid registration requires six parameters: three translations and

three rotations. There are two steps involved in registering a pair of images together. There is the

registration itself, whereby the parameters describing a transformation are estimated. Then there

is the transformation, where one of the images is transformed according to the set of parameters.

At its simplest, image registration involves estimating a mapping between a pair of images.

One image is assumed to remain stationary (the target or template image), whereas the other

(the source image) is spatially transformed to match it. In order to transform the source to match

the target, it is necessary to determine a mapping from each voxel position (x) in the target to a

corresponding position (y) in the source. The source is then resampled at the new positions. The
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vector function y can be thought of as a function of x, and a set of transformation parameters q

that are estimated in order to register the images.

This chapter will touch �rst on how rigid transformations are parameterised in terms of aÆne

transformations. The next section explains how the images are transformed via the process of

resampling, before the optimisation section explains how the best values for the parameters (q)

are estimated. The simplest form of within subject registration involves registering together two

images of the same modality. A method for doing this is brie
y described, before the �nal section

describes a more complex technique for performing between modality registration.

2.2 AÆne Transformations

Rigid body transformations are a subset of the more general aÆne transformations. For each

point (x1; x2; x3) in an image, an aÆne mapping can be de�ned into the co-ordinates of another

space (y1; y2; y3). This is expressed as:

y1 =

y2 =

y3 =

m11x1 + m12x2 + m13x3 + m14

m21x1 + m22x2 + m23x3 + m24

m31x1 + m32x2 + m33x3 + m34

(2.1)

This mapping is often expressed as a simple matrix multiplication (y =Mx):2
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The elegance of formulating these transformations in terms of matrices is that several trans-

formations can be combined simply by multiplying the matrices together to form a single matrix.

This means that repeated resampling of data can be avoided when reorienting an image.

Translations

Translations are simple to implement. If a point x is to be translated by q units, then the

transformation is simply:

y = x+ q (2.3)

In matrix terms, this transformation can be considered as:2
66664
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y3

1

3
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1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1
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77775 (2.4)

Rotations

In two dimensions, a rotation is described by a single angle. Consider a point at co-ordinate

(x1; x2) on a two dimensional plane. A rotation of this point to new co-ordinates (y1; y2), by �
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radians around the origin, can be generated by the transformation:

y1 = cos(�)x1 + sin(�)x2

y2 = �sin(�)x1 + cos(�)x2
(2.5)

This is another example of an aÆne transformation. For the three dimensional case, there are

three orthogonal planes that an object can be rotated in. For simplicity, the planes of rotation

are normally expressed as being around the axes. A rotation of q1 radians about the �rst (x) axis

is normally called pitch, and is performed by:2
66664
y1

y2

y3

1

3
77775 =

2
66664
1 0 0 0

0 cos(q1) sin(q1) 0

0 �sin(q1) cos(q1) 0

0 0 0 1

3
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Similarly, rotations about the second (y) and third (z) axes (called roll and yaw respectively) are

carried out by the following matrices:

2
66664

cos(q2) 0 sin(q2) 0

0 1 0 0

�sin(q2) 0 cos(q2) 0

0 0 0 1

3
77775 and

2
66664

cos(q3) sin(q3) 0 0

�sin(q3) cos(q3) 0 0

0 0 1 0

0 0 0 1

3
77775.

Rotations are combined by multiplying these matrices together in the appropriate order. The

order in which the operations are performed is important. For example, a rotation about the

�rst axis of �=2 radians followed by an equivalent rotation about the second axis would produce

a very di�erent result to that obtained if the order of the operations was reversed.

Zooms

The aÆne transformations described so far will perform purely rigid mappings. Zooms are needed

to change the size of an image, or to work with images whos voxel sizes are not isotropic, or

di�er between images. These merely represent scalings along the orthogonal axes, and can be

represented via: 2
66664
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A single zoom by a factor of -1 will 
ip the object (see Section 2.2.3). Two 
ips in di�erent

directions will merely rotate the object by � radians (a rigid body transformation). In fact, any

aÆne transformation that has a negative determinant will render the object 
ipped.
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Shears

Shearing by parameters q1, q2 and q3 can be performed by the following matrix:2
66664
1 q1 q2 0

0 1 q3 0

0 0 1 0

0 0 0 1

3
77775

A shear by itself is not a rigid body transformation, but it is possible to combine shears in

order to generate rigid rotations. For a simple two dimensional case, a matrix encoding a rotation

of � radians about the origin (see Section 2.5) can be constructed by multiplying together three

matrices that e�ect shears:2
64

cos(�) sin(�) 0

�sin(�) cos(�) 0

0 0 1

3
75 �

2
64
1 tan(�=2) 0

0 1 0

0 0 1

3
75
2
64

1 0 0

sin(�) 1 0

0 0 1

3
75
2
64
1 tan(�=2) 0

0 1 0

0 0 1

3
75 (2.8)

This approach has been useful for rigid registration of MR images (Eddy et al., 1996), and

subsequently improved by a more eÆcient reformulation for three dimensional transformations

(Cox & Jesmanowicz, 1999).

2.2.1 Parameterising a Rigid Body Transformation

When registering a pair of images together via a rigid body transformation, it is necessary to

estimate six parameters that describe the rigid-body transformation matrix. There are many

ways of parameterising a rigid body transformation in terms of six parameters (q), but the

parameterisation chosen here is:

M = TR (2.9)

where:

T =

2
66664
1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1

3
77775 (2.10)

and:

R =

2
66664
1 0 0 0

0 cos(q4) sin(q4) 0

0 �sin(q4) cos(q4) 0

0 0 0 1

3
77775

2
66664

cos(q5) 0 sin(q5) 0

0 1 0 0

�sin(q5) 0 cos(q5) 0

0 0 0 1

3
77775

2
66664

cos(q6) sin(q6) 0 0

�sin(q6) cos(q6) 0 0

0 0 1 0

0 0 0 1

3
77775
(2.11)

Extracting the parameters q from M is relatively straightforward. Determining the transla-

tions is trivial, as they are simply contained in the fourth column of M. This just leaves the

rotations:

R =

2
66664

c5c6 c5s6 s5 0

�s4s5c6 � c4s6 �s4s5s6 + c4c6 s4c5 0

�c4s5c6 + s4s6 �c4s5s6 � s4c6 c4c5 0

0 0 0 1

3
77775 (2.12)
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where s4, s5 and s6 are the sines, and c4, c5 and c6 are the cosines of parameters q4, q5 and q6

respectively. Therefore, providing that c5 is not zero, then:

q5 = sin�1(r13)

q4 = atan2(r23=cos(q5); r33=cos(q5)

q6 = atan2(r12=cos(q5); r11=cos(q5) (2.13)

where atan2 is the four quadrant inverse tangent. See Section 6.4 for more on decomposing aÆne

transformations containing zooms and shears.

2.2.2 Working with Volumes of Di�ering or Anisotropic Voxel Sizes

Image voxel sizes need be considered when performing rigid body registration. Often, the images

(say f and g) will have voxels that are anisotropic. The dimensions of the voxels are also likely

to di�er between images of di�erent modalities. For simplicity, a Euclidean space is used, where

measures of distance are expressed in millimetres. Rather than interpolating the images such

that the voxels are cubic and have the same dimensions in all images, one can simply de�ne

aÆne transformation matrices that map from voxel co-ordinates into this Euclidean space. For

example, if image f is of size 128� 128� 43 and has voxels that are 2:1mm� 2:1mm� 2:45mm,

the following matrix can be de�ned:

Mf =

2
66664
2:1 0 0 �134:4

0 2:1 0 �134:4

0 0 2:45 �52:675

0 0 0 1

3
77775 (2.14)

This transformation matrix maps voxel co-ordinates to a Euclidean space who's axes are parallel

to those of the image and distances are measured in millimetres, with the origin at the centre of

the image. A similar matrix can be de�ned for g (Mg). Because modern MR image formats such

as SPI (Standard Product Interconnect) generally contain information about image orientations

in their headers, it is possible to extract this information to automatically compute values forMf

or Mg. This makes it possible to easily register images together that were originally acquired in

completely di�erent orientations.

The objective of any co-registration is to determine the rigid body transformation that maps

the co-ordinates of image g, to that of f . To accomplish this, a rigid body transformation matrix

Mr is determined, such thatMf
�1Mr

�1Mg will map from voxels in g to those in f . The inverse

of this matrix maps from f to g. Once Mr has been determined, Mf can be set to MrMf . From

there onwards the mapping between the voxels of the two images can be achieved by Mf
�1Mg.

Similarly, if another image (h) is also co-registered to image g in the same manner, then not

only is there a mapping from h and g (via Mg
�1Mh), but there is also one from h to f which is

simplyMf
�1Mh (derived fromMf

�1MgMg
�1Mh).

2.2.3 Left- and Right-handed Co-ordinate Systems

Positions in space can be represented in either a left- or right-handed co-ordinate system (see

Figure 2.1), where one system is a mirror image of the other. For example, the system used by

the Talairach Atlas (Talairach & Tournoux, 1988) is right-handed, because the �rst dimension
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Figure 2.1: Left- and right-handed co-ordinate systems.

(often referred to as the x direction) increases from left to right, the second dimension goes from

posterior to anterior (back to front) and the third dimension increases from inferior to superior

(bottom to top). The axes can be rotated by any angle, and they still retain their handedness. An

aÆne transformation that maps between left and right-handed co-ordinate systems has a negative

determinant, whereas one that maps between co-ordinate systems of the same kind will have a

positive determinant. Because the left and right sides of a brain have similar appearances, care

must be taken when reorienting brain image volumes. Consistency of the co-ordinate systems

can be achieved by performing any reorientations using aÆne transformations, and checking the

determinants of the transformation matrices.

2.3 Resampling Images

Once there is a mapping between the original and transformed co-ordinates of an image, it is

necessary to resample the image in order to apply the spatial transform. Spatially transforming

images is usually implemented as a \pulling" operation (where pixel values are pulled from the

original image into their new location) rather than a \pushing" one (where the pixels in the

original image are pushed into their new location). This involves determining for each voxel in

the transformed image, the corresponding intensity in the original image. Usually, this requires

sampling between the centres of voxels, so some form of interpolation is needed.

The simplest approach is to take the value of the closest neighbouring voxel. This is referred

to as nearest neighbour or zero-order hold resampling. This has the advantage that the original

voxel intensities are preserved, but the resulting image is degraded quite considerably.

Another approach is to use tri-linear interpolation (�rst-order hold) to resample the data. This

is slightly slower than nearest neighbour, but the resulting images have a less \blocky" appearance.

However, tri-linear interpolation has the e�ect of losing some high frequency information from

the image.

Figure 2.2 will now be used to illustrate bilinear interpolation in two dimensions. Assuming
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Figure 2.2: Illustration of image interpolation in two dimensions. Points a through to p represent

the original regular grid of pixels. Point u is the point who's value is to be determined. Points q

to t are used as intermediates in the computation.

that there is a regular grid of pixels at co-ordinates xa; ya to xp; yp, having intensities va to vp,

and that the point to resample is at u. The value at points r and s are �rst determined (using

linear interpolation) as follows:

vr =
(xg � xr)vf + (xr � xf )vg

xg � xf

vs =
(xk � xs)vj + (xs � xj)vk

xk � xj
(2.15)

Then vu is determined by interpolating between vr and vs:

vu =
(yu � ys)vr + (yr � yu)vs

yr � ys
(2.16)

The extension of the approach to three dimensions is trivial.

Rather than using only the 8 nearest neighbours (in 3D) to estimate the value at a point, more

neighbours can be used in order to �t a smooth function through the points, and then read o�

the value of the function at the desired location. Polynomial interpolation is one such approach

(zero- and �rst-order hold interpolations are simply low order polynomial interpolations). It is

now illustrated how vq can be determined from pixels a to d. The coeÆcients (q) of a polynomial

that runs through these points can be obtained by computing:

q =

2
66664
1 0 0 0

1 (xb � xa) (xb � xa)
2 (xb � xa)

3

1 (xc � xa) (xc � xa)
2 (xc � xa)

3

1 (xd � xa) (xd � xa)
2 (xd � xa)

3

3
77775

�1 2
66664
va

vb

vc

vd

3
77775 (2.17)
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Figure 2.3: Sinc function in two dimensions, both with (right) and without (left) a Hanning

window.

Then vq can be determined from these coeÆcients by:

vq =
h
1 (xq � xa) (xq � xa)

2 (xq � xa)
3

i
q (2.18)

To determine vu, a similar polynomial would be �tted through points q, r, s and t. The

Vandermonde matrices required for polynomial interpolation are very ill conditioned, especially

for higher orders. A better way of doing polynomial interpolation involves using Lagrange poly-

nomials (see Press et al.(1992) or Jain (1989)).

The optimum method of applying rigid body transformations to images with minimal inter-

polation artifact is to do it in Fourier space. In real space, the interpolation method that gives

results closest to a Fourier interpolation is sinc interpolation. This involves convolving the image

with a sinc function centred on the point to be resampled. To perform a pure sinc interpola-

tion, every voxel in the image should be used to sample a single point. This is not feasible due

to speed considerations, so an approximation using a limited number of nearest neighbours is

used. Because the sinc function extends to in�nity, it is often truncated by modulating with a

Hanning window (see Figure 2.3). Because the function is separable, the implementation of sinc

interpolation is similar to that for polynomial interpolation, in that it is performed sequentially

in the three dimensions of the volume. For one dimension the windowed sinc function using the

I nearest neighbours would be:

IX
i=1

vi

sin(�di)

�di

1
2
(1 + cos (2�di=I))PI

j=1

sin(�dj)

�dj

1
2
(1 + cos (2�dj=I))

(2.19)

where di is the distance from the centre of the ith voxel to the point to be sampled, and vi is the

value of the ith voxel.

Sinc interpolation is slow when many neighbouring voxels are used. A slightly better alterna-

tive may be to use a Fourier interpolation method for e�ecting a rigid body transformation. In one

dimension, a translation is simply a convolution with a translated delta function. For translations

that are not whole numbers of pixels, the delta function is replaced by a sinc function centred
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at the translation distance. The use of fast Fourier transforms means that the convolution can

be performed most rapidly as a multiplication in Fourier space. It is clear how translations can

be performed in this way, but rotations are less obvious. One way that rotations can be e�ected

involves replacing the rotations by a series of shears as described previously (Section 2.2). A

shear simply involves translating di�erent rows or columns of an image by di�erent amounts, so

each shear can be performed by a series of one dimensional convolutions in Fourier space. Alter-

natively, the method of rotating and translating using shears can also be done using a windowed

sinc or polynomial interpolation. Each interpolation is in just one dimension, requiring much less

computation than it would in three dimensions.

In addition to resampling images, many image registration methods also require the image

gradients to be computed. This procedure is similar to the straightforward interpolation methods

described above.

2.4 Optimisation

The objective of optimisation is to determine the values for a set of parameters for which some

function of the parameters is minimised (or maximised). One of the simplest cases involves deter-

mining the optimum parameters for a model in order to minimise the sum of squared di�erences

between a model and a set of real world data (�2). Normally there are many parameters, and it is

not possible to exhaustively search through the whole parameter space. The usual approach is to

make an initial parameter estimate, and begin iteratively searching from there. At each iteration,

the model is evaluated using the current parameter estimates, and �2 computed. A judgement

is then made about how the parameter estimates should be modi�ed, before continuing on to

the next iteration. The optimisation is terminated when some convergence criterion is achieved

(usually when �2 stops decreasing).

The image registration approach described here is essentially an optimisation. One image

(the source image) is spatially transformed so that it matches another (the target image), by

minimising �2. The parameters that are optimised are those that describe the spatial trans-

formation (although there are often other nuisance parameters required by the model, such as

intensity scaling parameters). For rigid registration, the algorithm chosen (Friston et al., 1995c)

is Gauss-Newton optimisation, and it is illustrated here:

Suppose that bi(q) is the function describing the di�erence between the source and target

images at voxel i, when the vector of model parameters have values q. For each voxel, a �rst

approximation of Taylor's Theorem can be used to estimate the value that this di�erence will

take if the parameters q are decreased by t:

bi(q � t) ' bi(q) � t1
@bi(q)

@q1
� t2

@bi(q)

@q2
: : : (2.20)

This allows the construction of a set of simultaneous equations (of the formAt ' b) for estimating

the values that t should assume to in order to minimise
P

i bi(q � t)
2
:

2
664
@b1(q)

@q1

@b1(q)

@q2
: : :

@b2(q)

@q1

@b2(q)

@q2
: : :

...
...

. . .

3
775
2
664
t1

t2
...

3
775 '

2
664
b1(q)

b2(q)
...

3
775 (2.21)
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From this, an iterative scheme can be derived for improving the parameter estimates. For iteration

n, the parameters q are updated as:

q(n+1) = q(n) �
�
ATA

�
�1
ATb (2.22)

where A =

2
664
@b1(q)

@q1

@b1(q)

@q2
: : :

@b2(q)

@q1

@b2(q)

@q2
: : :

...
...

. . .

3
775 and b =

2
664
b1(q)

b2(q)
...

3
775.

This process is repeated until �2 can no longer be decreased - or for a �xed number of iterations.

There is no guarantee that the best global solution will be reached, because the algorithm can

get caught in a local minimum. To reduce this problem, the starting estimates for q should be

set as close as possible to the optimum solution. The number of potential local minima can also

be decreased by working with smooth images. This also has the e�ect of making the �rst order

Taylor approximation more accurate for larger displacements. Once the registration is close to

the �nal solution, it can continue with less smooth images.

In practice, ATA and ATb from Eqn. 2.22 are often computed `on the 
y' for each iter-

ation. By computing these matrices using only a few rows of A and b at a time, much less

computer memory is required than is necessary for storing the whole of matrix A. Also, the

partial derivatives @bi(q)=@qj can be rapidly computed from the gradients of the images using

the chain rule.

It should be noted that element i of ATb is equal to 1
2

@�2

@qi
, and that element i; j of ATA is

approximately equal to 1
2

@2�2

@qi@qj
(one half of the Hessian matrix, often referred to as the curvature

matrix - see Press et al.(1992), Section 15.5). Another way of thinking about the optimisation

is that it �ts a quadratic function to the error surface at each iteration. Successive parameter

estimates are chosen such that they are at the minimumpoint of this quadratic (illustrated for a

single parameter in Figure 2.4).

2.5 Within Modality Image Registration

Within modality image registration has a number of uses, both within morphometry and for

processing functional images. Morphometric studies sometimes involve looking at changes in brain

shape over time, often to study the progression of a disease such as Altzheimers, or to monitor

tumour growth or shrinkage. Di�erences between structural MR scans acquired at di�erent times

are identi�ed, by �rst co-registering the images and then looking at the di�erence between the

registered images. Rigid registration can also be used as a pre-processing step before using

nonlinear registration methods for identifying shape changes (Freeborough & Fox, 1998).

The most common application of within modality registration in functional imaging is to re-

duce motion artifacts by realigning the volumes in image time-series. The objective of realignment

is to determine the rigid body transformations that best map the series of functional images to

the same space. This can be achieved by minimising the sum of squared di�erences between each

of the images and a reference image, where the reference image could be one of the images in the

series. For slightly better results, this procedure could be repeated, but instead of matching to

one of the images from the series, the images would be registered to the mean of all the realigned

images. Because of the nonstationary variance in the images, a variance image could be computed
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Figure 2.4: The optimisation can be thought of as �tting a series of quadratics to the error surface.

Each parameter update is such that it falls at the minimum of the quadratic.

at the same time as the mean, in order to provide better weighting for the registration. Voxels

with a lot of variance should be given lower weighting, whereas those with less variance should

be weighted more highly.

2.5.1 Methods

To register a source image f to a reference image g, a six parameter rigid body transformation

(parameterised by q1 to q6) would be used. To perform the registration, a number of points in

the reference image (each denoted by xi) are compared with points in the source image (denoted

by Mxi, where M is the rigid body transformation matrix constructed from the six parameters).

The images may be scaled di�erently, so an additional intensity scaling parameter (q7) may be

included in the model. The parameters (q) are optimised by minimising the sum of squared

di�erences1 between the images according to the algorithm described in Sections 2.2.1 and 2.4

(Eqn. 2.22). The function that is minimised is:

X
i

(f(Mxi)� q7g(xi))
2 (2.23)

1Strictly speaking, it is the mean squared di�erence that is minimised, rather than the sum of squared di�er-

ences. Inevitably, some values of Mxi will lie outside the domain of f , so nothing is known about what the image

intensity should be at these points. The computations are only performed for points where both xi and Mxi lie

within the �eld of view of the images.
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where M = Mf
�1Mr

�1Mg, and Mr is constructed from parameters q (refer to Section 2.2.2).

Vector b is generated for each iteration as:

b =

2
664
f(Mx1)� q7g(x1)

f(Mx2)� q7g(x2)
...

3
775 (2.24)

Each column of matrix A is constructed by di�erentiating b with respect to parameters q1 to q7:

A =

2
664
@f(Mx1)

@q1

@f(Mx1)

@q2
: : :

@f(Mx1)

@q6
�g(x1)

@f(Mx2)

@q1

@f(Mx2)

@q2
: : :

@f(Mx2)

@q6
�g(x2)

...
...

. . .
...

...

3
775 (2.25)

Because non-singular aÆne transformations are easily invertible, it is possible to make the

registration more robust by also considering what happens with the inverse transformation. By

swapping around the source and reference image, the registration problem also becomes one of

minimising:

X
j

(g(M�1yj)� q�17 f(yj ))
2 (2.26)

In theory, a more robust solution could be achieved by simultaneously including the inverse

transformation to make the registration problem symmetric (Woods et al., 1998a). The cost

function would then be:

�1
X
i

(f(Mxi) � q7g(xi))
2 + �2

X
j

(g(M�1yj) � q�17 f(yj))
2 (2.27)

Normally, the intensity scaling of the image pair will be similar, so equal values for the weighting

factors (�1 and �2) can be used. Matrix A and vector b would then be formulated as:

b =

2
666666666664
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(2.28)

and

A =

2
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(2.29)

Symmetric formulation of registration problems is a theme that will be returned to in Chapter 4.
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2.5.2 Residual Artifacts from PET and fMRI

Even after realignment, there may still be some motion related artifacts remaining in functional

data. After retrospective realignment of PET images with large movements, the primary source of

error is due to incorrect attenuation correction. In emission tomography methods, many photons

are not detected because they are attenuated by the subject's head. Normally, a transmission

scan (using a moving radioactive source external to the subject) is acquired before collecting

the emission scans. The ratio of the number of detected photon pairs from the source, with and

without a head in the �eld of view, produces a map of the proportion of photons that are absorbed

along any line-of-response. If a subject moves between the transmission and emission scans, then

the applied attenuation correction is incorrect because the emission scan is no longer aligned with

the transmission scan. There are methods for correcting these errors (Andersson et al., 1995),

but they are beyond the scope of this thesis.

In fMRI, there are many sources of motion related artifacts. The most obvious ones are:

� Interpolation error from the resampling algorithm used to transform the images can be one

of the main sources of motion related artifacts. When the image series is resampled, it is

important to use a very accurate interpolation method such as sinc or Fourier interpolation.

� When MR images are reconstructed, the �nal images are usually the modulus of the initially

complex data, resulting in any voxels that should be negative being rendered positive. This

has implications when the images are resampled, because it leads to errors at the edge of

the brain that can not be corrected however good the interpolation method is. Possible

ways to circumvent this problem are to work with complex data, or possibly to apply a low

pass �lter to the complex data before taking the modulus.

� The sensitivity (slice selection) pro�le of each slice also plays a role in introducing artifacts

(Noll et al., 1997).

� fMRI images are spatially distorted, and the amount of distortion depends partly upon the

position of the subject's head within the magnetic �eld. Relatively large subject movements

result in the brain images changing shape, and these shape changes can not be corrected

by a rigid body transformation (Jezzard & Clare, 1999).

� Each fMRI volume of a series is currently acquired a plane at a time over a period of a few

seconds. Subject movement between acquiring the �rst and last plane of any volume leads

to another reason why the images may not strictly obey the rules of rigid body motion.

� After a slice is magnetised, the excited tissue takes time to recover to its original state, and

the amount of recovery that has taken place will in
uence the intensity of the tissue in the

image. Out of plane movement will result in a slightly di�erent part of the brain being

excited during each repeat. This means that the spin excitation will vary in a way that is

related to head motion, and so leads to more movement related artifacts.

� Ghost artifacts in the images do not obey the same rigid body rules as the head, so a rigid

rotation to align the head will not mean that the ghosts are aligned.

� The accuracy of the estimated registration parameters is normally in the region of tens

of �m. This is dependent upon many factors, including the e�ects just mentioned. Even
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the signal changes elicited by the experiment can have a slight e�ect (a few �m) on the

estimated parameters.

These problems can not be corrected by simple image realignment, and so may be sources of

possible stimulus correlated motion artifacts. Systematic movement artifacts resulting in a signal

change of only one or two percent can lead to highly signi�cant false positives over an experiment

with many scans. This is especially important for experiments where some conditions may cause

slight head movements (such as motor tasks, or speech), because these movements are likely to

be highly correlated with the experimental design. In cases like this, it is diÆcult to separate true

activations from stimulus correlated motion artifacts. Providing there are enough images in the

series and the movements are small, some of these artifacts can be removed by using an ANCOVA

model to remove any signal that is correlated with functions of the movement parameters (Friston

et al., 1996). However, when the estimates of the movement parameters are related to the the

experimental design, it is likely that much of the true fMRI signal will also be lost. These are

still unresolved problems.

2.6 Between Modality Image Registration

Co-registration of brain images of the same subject acquired in di�erent modalities has proved

itself to be useful in many areas, both in research and clinically. Two images from the same subject

acquired using the same modality or scanning sequences generally look similar, so it suÆces

to �nd the rigid-body transformation parameters that minimise the sum of squared di�erences

between them. However, for co-registration between modalities there is nothing quite as obvious

to minimise.

Older methods of registration involved the manual identi�cation of homologous landmarks in

the images. These landmarks are aligned together, thus bringing the images into registration.

This is time-consuming, requires a degree of experience, and can be rather subjective. One of

the �rst widely used semi-automatic co-registration methods was that known as the \head-hat"

approach (Pelizzari et al., 1988). This method involved extracting brain surfaces of the two

images, and then matching the surfaces together. Another method that has been widely used for

a number of years for registering PET to MR images is AIR (Woods et al., 1992). This method

divides the MR images into a number of partitions based on intensity. The registration is based on

minimising the standard deviation of the corresponding PET voxel intensities for each partition.

It makes a number of assumptions about how the PET intensity varies with the MRI intensity,

which are generally valid within the brain, but do not work when non-brain tissue is included.

Because of this, the method has the disadvantage of requiring the MR images to be pre-processed,

which normally involves laborious manual editing in order to remove any non-brain tissue.

More recently, the idea of matching images by maximising the mutual information in their

histograms is becoming more widespread (Collignon et al., 1995). For this elegant approach, the

2D histogram is normalised so that the bins integrate to unity. This is considered as an I by J

matrix (H, see Figure 3.7 for examples based on smooth images), and the registration involves

maximising the following objective function (where element i; j of H is denoted by hij):

JX
j=1

IX
i=1

hijlog

 
hij

(
PJ

k=1 hik)(
PI

l=1 hlj)

!
(2.30)
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Maximising mutual information is a very general approach, which has been successfully applied

to the registration of a wide variety of imaging modalities.

The work developed here concentrates on a di�erent fully automatic method of registering

magnetic resonance (MR) images with positron emission tomography (PET) images, and on

registering MR images from di�erent scanning sequences. The assumption that it makes is that

brains consist of two tissue types (grey and white matter) that can clearly be identi�ed from the

images.

2.6.1 Methods

This image co-registration method relies on images other than those that are to be registered (f

and g). These are template images of the same modalities (tf and tg respectively), and prior

probability images of grey matter (GM), white matter (WM) and cerebro-spinal 
uid (CSF). The

template images and probability images conform to the same anatomical space, and examples of

these are shown in Figure 3.6 on page 55.

The between modality co-registration is a three step approach that essentially reduces the

problem to a series of within-modality approaches:

1. Determine the aÆne transformations that map between the images and templates by min-

imising the sum of squared di�erences between f and tf , and g and tg. These transfor-

mations are constrained such that only parameters that describe rigid body component are

allowed to di�er between the two registrations.

2. Segment or partition the images using the probability images and a modi�ed mixture model

algorithm (described in Chapter 5). The mapping between the probability images to images

f and g having been determined in step 1.

3. Co-register the image partitions generated by the previous step using the rigid body trans-

formations computed from step 1 as a starting estimate an using a within modality approach.

Determining the mappings from images to templates

It is possible to obtain a reasonable match of images of most normal brains to a template image

using just a twelve parameter aÆne transformation. One can register image g to template tg,

and similarly register f to tf using this approach. These transformation matrices will be called

Mgt andMft respectively. Thus a mapping from voxels in g to those in f isMf
�1MftMgt

�1Mg

(see Section 2.2.2 for a description of matricesMg and Mf ). However, this aÆne transformation

between f and g has not been constrained to be rigid body. This simple approach is modi�ed

in order to incorporate this constraint, by decomposing matrix Mgt into matrices that perform

a rigid body transformation (Mgr), and one that performs the scaling and shearing (Mta). i.e.,

Mgt =MgrMta. SimilarlyMft =MfrMta, whereMta is common to bothMgt andMft so that

the same zooms and shears are used for registering both images to their respective templates.

Now the mapping becomesMf
�1Mfr(MtaMta

�1)Mgr
�1Mg, and is a rigid body transformation.

These matrices are parameterised by 18 elements of a vector q.
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Mgr =

2
66664
1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1

3
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3
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3
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Mta =

2
66664
q13 0 0 0

0 q14 0 0

0 0 q15 0

0 0 0 1

3
77775

2
66664
1 q16 q17 0

0 1 q18 0

0 0 1 0

0 0 0 1

3
77775 (2.31)

The parameter set q can now be optimised in order to determine the transformations that

minimise the sum of squares di�erence between the images and templates. The iterative optimi-

sation method described in Section 2.4 is used, which generally converges within a few iterations.

The chance of �nding a local minimum is reduced by using smoothed data (typically by con-

volving with an 8mm full width at half maximum [FWHM] Gaussian kernel). Each iteration

involves generating a linear approximation to the problem using Taylor's Theorem. This can be

expressed as computing q(n+1) = q(n) � (ATA)
�1
ATb. The vector q(n) contains the parameter

estimates at iteration n, and vector b contains the di�erences between the templates and the

images that have been spatially transformed according to the latest parameter estimates. A is a

matrix of derivatives of b, with respect to changes to each element of q. For the purpose of this

optimisation, two matrices, M1 =Mf
�1Mft

�1Mt and M2 =Mg
�1Mgt

�1Mt, are de�ned:

b =

2
666666666664
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1
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1 (f(M1x1)� q19tf (x1))

�
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...
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1

2

2 (g(M2x1) � q20tg(x1))

�
1

2

2 (g(M2x2) � q20tg(x2))
...

3
777777777775

(2.32)
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The parameters describing the non-rigid transformations (q13 to q18) could in theory be derived

from either f or g. In practice, a better solution is obtained by estimating these parameters using

both images, and by biasing the result so that the image that �ts the template better has a

greater in
uence over the parameter estimates. This is achieved by weighting the rows of A and

b that correspond to the di�erent images. The weights (�1 and �2) are derived from the residual

variance between the template and source images, obtained from the previous solution for q.

These are:

�1 =
�1PI

i=1(f(M1xi)� q19tf (xi))2
and �2 =

�2PI

i=1(g(M2xi) � q20tg(xi))2
(2.34)

where �1 and �2 are the degrees of freedom for the two parts of the problem. Also note that this

�rst step is made more robust by including the regularisation that will be described in the next

chapter.

Once the optimisation has converged to the �nal solution, the rigid body transformation that

approximatelymaps between g and f can be obtained, and also the aÆne transformation matrices

that map between the source images and templates. These are used by the next step.

Partitioning the Images

The result of the previous step includes aÆne mappings between source and template images,

which are used to assist image segmentation by allowing prior probability images GM, WM and

CSF to be automatically overlaid on to the source images. The extraction of GM and WM

proceeds as described in Chapter 5 (although no correction for image intensity nonuniformity is

included for the evaluations). The result of the partitioning are images representing the proba-

bility of the voxels belonging to each tissue class. All voxel intensities are between zero and one,

and most lie close to one or the other extreme.

Co-registering the Image Partitions

The previous step produces images of GM and WM from the original images f and g. These

image partitions can then be simultaneously co-registered together to produce the �nal solution.

This optimisation stage only needs to search for the six parameters that describe a rigid body

transformation. A voxel-to-voxel aÆne transform matrix M is de�ned by (Mf
�1Mfg

�1Mg),

where the rigid body transformation matrixMfg is parameterised by q1 to q6. Starting estimates

for q are obtained by extracting them from the rigid transformation matrix MgrMfr
�1 as de-

scribed in Section 2.2. Convergence should be achieved within a few iterations because of the
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good starting estimates obtained from the �rst step. No scaling parameters are needed, because

the probability images derived from f have similar intensities to those derived from g. Again,

the method described in Section 2.4 is used to optimise the parameters, where (using notation

where pg1(x2) means `probability of voxel at x2 from image g belonging to cluster 1') b and A

are de�ned by:

b =

2
66666666664

pf1(Mx1)� pg1(x1)

pf1(Mx2)� pg1(x2)
...

pf2(Mx1)� pg2(x1)
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...

3
77777777775

(2.35)
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(2.36)

The �nal solution is obtained after this co-registration. It is now possible to map voxel x of

image g, to the corresponding voxelMx of image f . Examples of PET/T1-MRI and T1/T2-MRI

co-registration using this approach are illustrated in �gures 2.5 and 2.6.

2.6.2 Evaluation

The co-registration methods were evaluated for PET to T1 weighted MRI, using data from the

\Evaluation of Retrospective Image Registration" project (National Institutes of Health, Project

Number 1 R01 NS33926-01, Principal Investigator, J. Michael Fitzpatrick, Vanderbilt University,

Nashville, TN.) (West et al., 1996; West et al., 1997). This involved obtaining both PET and

MRI data fromVanderbilt University, and performing inter-modality registrations on the volumes.

Fiducial markers during the acquisition of these datasets enabled investigators at Vanderbilt to

know the true registration parameters, but any visible traces of these markers had been removed

from the images prior to their distribution to other investigators.

Registrations were performed on 11 volume images. Four of the images had been geometry

distortion corrected at Vanderbilt using their own software that uses a pair of distorted images

acquired with reversed readout gradients. Seven of the images had not been corrected. The regis-

trations were done using only the �rst step of the registration process (constrained simultaneous

aÆne registration) and also using all the steps. The evaluations were performed on a Sun SPARC

Ultra 2, using an implementation of the method written in C and Matlab (from The Mathworks,

Natick, Mass., USA). The starting estimates for the registration parameters matched the centres

of each volume together, and assumed that the images were in the same orientation. No manual
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Figure 2.5: An example of PET-MRI co-registration, achieved using the techniques described

here.
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Figure 2.6: An example of T1-weighted and T2-weighted MR images of the same subject registered

using the techniques described here.
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First step only All three steps

Uncorrected Corrected Uncorrected Corrected

mean error (mm) 5.57 3.77 4.14 3.20

median error (mm) 5.11 3.17 4.20 3.36

maximum error (mm) 11.62 8.54 7.46 5.76

N 7 4 7 4

Table 2.1: Errors for PET-MRI registration. Errors are presented, for both the uncorrected and

the distortion corrected MR images. The results in the left hand column were derived after using

only the �rst step of the registration process. The right hand column shows the results of using

all three steps of the registration process.

BA CO HA HI MAI MAL

median error uncorrected 4.6 3.6* 2.8* 3.2* 3.5* 4.2*

median error corrected 3.2* 2.8* 3.6 2.5* 3.9 3.6

maximum error uncorrected 11.5 12.7 12.1 9.3 10.6 8.5

maximum error corrected 6.0 3.7* 17.7 6.0 7.7 8.4

NO PE RO3 RO4 WO1 WO2

median error uncorrected 3.6* 2.9* 4.0* 3.4* 2.3* 3.1*

median error corrected 3.9 2.8* 3.8 3.6 2.0* 2.0*

maximum error uncorrected 11.4 10.0 9.4 5.9* 5.8* 6.0*

maximum error corrected 14.2 7.9 7.3 8.9 4.3* 5.0*

Table 2.2: Errors for PET-MRI registration from other methods. Asterisked values indicate

results from methods that performed better than or the same as the one presented here. Method

NO involved matching manually speci�ed landmark pairs. Methods BA, HA, MAI, MAL, PE,

RO3 and RO4 involved matching surfaces, contours or edges. WO1 and WO2 both used the AIR

software (Woods et al., 1992), but with di�erent amounts of manual editing. CO and HI were

based on maximising mutual information.
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intervention was involved. The �rst step of the registration process (including the initial smooth-

ing) took an average of 66 seconds, whereas the complete three step registration required about

350 seconds.

The resulting parameter estimates were communicated back to Vanderbilt, where their ac-

curacy was evaluated. The results presented in Table 2.1 are the mean, median and maximum

errors for the registration, and can be compared directly with those in Table 2.2 (taken from

West et al.(1997)). They show that the �rst step of the process quickly registered the images

to within about 6 mm, before the remaining steps further re�ned the parameters. The median

registration errors using the current approach tended to be slightly larger than those from most

other methods, although the maximum errors were generally smaller. Registration using AIR

was found to produce the most consistently accurate solutions, but this requires initial manual

pre-processing of the images.

Although the accuracy of the registrations was found to be comparable with the other tech-

niques evaluated by West et al., the data used in the evaluation did violate a number of the

assumptions made by the current approach. Image intensity nonuniformity and low grey/white

matter contrast resulted in a considerable amount of tissue misclassi�cation of the MR images.

Also, the assumption that brain tissue can be broadly classi�ed as grey or white matter was com-

plicated by the presence of tumours, which were classi�ed as grey matter in the MR images, and

white matter in the PET images. This would be expected to introduce additional registration

errors, because the �nal step is based upon matching corresponding image partitions together.

The registration should be much more accurate for images where the assumptions hold, as has

been shown by more recent evaluations of SPECT and MRI co-registration methods (Barnden

et al., 2000).

In summary, the current technique is valid in relation to existing techniques. Unlike some

of the existing approaches, the present method does not require manual intervention. The only

occasional intervention that may be needed is to provide starting estimates to the �rst step. The

procedure has so far been successfully applied to registering T1 weighted MRI to PET (blood


ow), T1 to T2 weighted MRI, and T2 weighted MRI to PET.


