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7.1 Original Contributions

This thesis has described a number of computational tools that can be used for both functional

image analysis, and computational neuro-anatomy. These include various registration approaches,

and image segmentation. Many of the methods have been incorporated into the SPM99 package,

are already used widely by a large number of researchers in the �eld of functional imaging, and

are also increasingly used in studies of morphometry.

A number of original contributions have been made within this thesis. Some of these may be

completely original (or independently re-invented), but others simply involve combining di�erent

parts of pre-existing methods in a new way. For example, most of the techniques developed in

Chapters 2 and 3 are signi�cant improvements to methods previously presented by Friston et. al.

(1995c). Within Chapter 2, the original contributions were predominantly in Section 2.6, which

described a new approach to between modality registration. Although the approach is not as


exible as mutual information registration methods, it generally performs well when the various

assumptions are satis�ed.

The main novel component of Chapter 3 is the fast algorithm for computing the Hessian

matrix (ignoring second derivatives) for the Gauss-Newton optimisation scheme. A simpli�ed

version of this same algorithm is also used for estimating intensity modulation �elds in Chapter

5. In addition, Friston's original registration scheme (Friston et al., 1995c) was placed within an

Empirical Bayesian framework.

Chapter 4 introduced two main original ideas. The �rst is the use of prior probability distri-

butions that are the same for both the forward and inverse deformations. The more pure version

assumes log-normal distributions for length, area and volume changes. Because the computations

required for this version would be prohibitively slow, a much faster approximation was also de-
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vised. The second main idea involves methods for making deformations internally consistent by

simultaneously matching several images at the same time. A method for inverting deformation

�elds was also included in order to facilitate combining deformations with the inverses of other

deformations.

A number of novel ideas can be found in Chapter 5. These include the use of prior probability

maps to assist classi�cation, and some aspects of the intensity non-uniformity correction. These

include the use of a third-order regularisation scheme, and a rapid algorithm similar to that of

Chapter 3.

The �rst original contribution in Chapter 6 are the evaluations of the applicability of the statis-

tical parametric modelling component of SPM99 to voxel-based morphometry. The deformation-

based morphometry section describes the use of standard multivariate statistical methods for

comparing deformation �elds among groups. Finally, a method of identifying regional shape dif-

ferences is presented, which is based on applying multi-variate statistical tests to strain tensors.

A few recurring themes are encountered within this thesis. The �rst of these is about achieving

consistency, not only in terms of between di�erent data-sets, but also between di�erent processing

steps. A certain amount of modularity may need to be sacri�ced in order to achieve optimal

consistency between procedures. A second theme is the problem of assigning optimal hyper-

parameters (weights) to di�erent components of the various procedures. Although none of the

chapters so far have presented any good methods for doing this, a section is included here that

may provide a useful framework in which future methods may achieve this end.

7.2 Modularity

Currently, di�erent image processing components are often thought of as distinct modules, whereby

one set of processing is completed before another one begins. However, this may not be the best

approach. A few examples will now be given that suggest that the whole should be considered

greater than the sum of the parts.

Chapter 2, includes a section on between modality image registration. Part of the method

includes simultaneously spatially normalising a pair of source images to corresponding templates,

while maintaining a rigid body relationship between the source images. This component could

be extended to include nonlinear warping in addition to the current zooms and shears. In theory,

this should provide a framework for improved rigid registration, as well as better estimates of

the deformations that spatially normalise the images. One of the themes of the thesis is about

improving internal consistency, of which this is another example, as all the information would be

included within the same internally consistent registration model. Another matching criterion

such as mutual information could also be recruited at the same time, which should e�ectively

bring additional information to the problem, further enhancing the �nal result. The more useful

information that is included, then the better the parameter estimates should be { providing that

the optimal weighting for the di�erent components can be found.

Section 2.6 also suggests another move away from a modular image processing stream. Si-

multaneous rigid registration and spatial normalisation has just been mentioned, but the section

also includes a segmentation component. Segmentation can be performed more eÆciently when

the prior probability of each voxel belonging to particular tissue classes is known, and in order
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to achieve this, the images need to be in register with prior probability images. Although the

chapter only describes using aÆne registration to e�ect this mapping, more accurate results could

be expected after nonlinear matching. Conversely, segmented images can be useful for image reg-

istration. For example, a number of nonlinear image registration methods are based on matching

brain surfaces together, either in 3D (Thompson & Toga, 1996), or in 2D on a 
attened cortical

surface (see Drury et. al. (1999) or Thompson and Toga (1999)). It seems that segmentation

and spatial normalisation could be performed most accurately when both done simultaneously.

Many issues relating to morphometry are also applicable to image warping. Image registration

methods generally involve some model of how brains should deform. These can generally be

thought of as some form of multi-dimensional probability distribution. Similarly, morphometric

methods also require models of brain shape variability. It is envisaged that future work on

morphometry should develop in concurrence with the methods used for estimating deformations.

The parameter distributions imposed upon the deformations by the registration method could be

used in the morphometry studies. Similarly, knowledge of the variability of brain shapes obtained

frommorphometry could be used as a priori information for Bayesian image registration methods.

Both �elds would clearly bene�t by having a compact and concise representation of the anatomical

variability of brains.

The link between warping methods and morphometric methods may be even tighter. Not only

do they both need similar models of shape variability, but they also need the hyper-parameters

that describe the amount of variability. These can not be estimated properly by warping a number

of images to the same template, followed by simply computing the variance of some features of the

resulting deformation �elds. This is because the amount of regularisation used by the warping

model would greatly in
uence the estimated result. In order to obtain unbiased estimates of

shape variability, this estimation would need to be a component of the warping model. The next

section elaborates on this theme.

7.3 Hyper-parameter estimation

An ongoing argument in the �eld of image registration is something to the e�ect of \if you use

too many parameters in a registration model, then the model will be over�tted", versus \if not

enough parameters are used, then the images can not be registered properly". Increasing the

relative weighting of the prior potential component e�ectively reduces the search space of the

optimisation problem, so this argument can be rephrased in terms of the relative weights used

for the likelihood and prior potential components. This section elaborates on a possible approach

that may help to resolve these issues.

This thesis contains many examples of problems where a model is used, but optimal weights

for determining the best parameter estimates are not known. These problems occur in situations

where the optimised functions consist of several terms, where each term is weighted di�erently.

For example, in Section 2.6, more than one pair of images is registered simultaneously. Optimal

results are obtained only when the contribution from each image pair to the cost function, is

properly balanced. Another area is in image warping, in which it is necessary to know the

optimal balance between prior and likelihood potential (see Sections 3.2.1 and 4.2.2). Also, some

method of estimating the a priori variability of the non-uniformity is needed to improve the
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segmentation (see Section 5.2.3). In order to obtain the most accurate results, optimal weighting

should be assigned to the di�erent components of the problems.

One method of choosing weights empirically is by using L-curves, whereby a model is �tted

using a range of di�erent weights. After all the �ts are complete, the logs of one cost function

term are plotted against the logs of the other, over the range of di�erent weights. The weighting

is deemed optimal for values that fall close to the in
ection of the plot. This method is time

consuming, and is not practical for complex models where there may be many di�erent terms.

Fortunately, there may be more practical solutions to the problem of hyper-parameter estimation,

which would allow the unknown weights, in addition to the parameters of interest, to be estimated.

So far, any hyper-parameter estimation in this thesis has been performed in a pragmatic, but

rather ad hoc manner. In particular, the estimation of the degrees of freedom in the models

has involved slightly questionable methods. There now follows a more rigorous framework for

hyper-parameter estimation that could be used for future work. As an illustration, consider the

iterative parameter updating scheme from Chapter 3. After rearranging and a slight modi�cation

to the notation1, Eqn. 3.6 can be written as:

q(n+1) = q(n) �

�
�1A1

TA1 + �2C0
�1
�
�1 �

�1A1
Tb1 + �2C0

�1
�
q(n) � q0

��
(7.1)

Obtaining the best balance between minimising the residual squared di�erence between the

images, and maximising some form of deformation smoothness, can be considered as �nding some

optimum estimates for �1 and �2. It is possible to do this from the data using an empirical Bayes

approach, providing that a few assumptions about the forms of the errors are made. In this

example, both the parameters themselves and the residual di�erence between the image pair

are assumed to be independent and identically distributed. An algorithm similar to expectation

maximisation (EM) can be used for estimating the hyper-parameters.

EM is an iterative approach that alternates between two steps: the expectation (E) step

and the maximisation (M) step (see Chapter 5). The algorithm is initialised by assigning some

(non-zero) starting estimates to the hyper-parameters (�1 and �2). The �rst E step involves

computing the expectation of a set of unobserved parameters while holding the hyper-parameters

constant. Within a Bayesian registration scheme, this would involve computing a minimum

variance estimate of the parameters (q). This is where this approach deviates from a pure EM

algorithm, as a MAP estimate of q is used instead, as it is much faster to compute. This can be

achieved by repeated application of Eqn. 7.1 until convergence is attained.

The M step involves re-estimating the hyper-parameters such that the likelihood of observing

the data is maximised, while holding the parameters �xed. The hyper-parameters are computed

from the reciprocals of variance estimates derived from the observations and parameters. This

step involves estimating the residual variance attributed to the di�erent parts of the model,

divided by the appropriate degrees of freedom, computed by:

p1 = m1 � tr

��
�1A1

TA1 + �2C0
�1
�
�1

�1A1
TA1

�

p2 = m2 � tr

��
�1A1

T

A1 + �2C0
�1
�
�1

�2C0
�1

�
(7.2)

where m1 is the number of rows an A1, and m2 is the number of columns (also the same as the

1
C0, A, b and �2 become �2C0, A1, b1 and 1=�1 respectively.
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number of rows or columns of C0
�1. The new estimates of �1 and �2 are then:

�1 =
p1

(b1 �A1q)
T

(b1 �A1q)

�2 =
p2

(q� q0)
T

C0
�1 (q� q0)

(7.3)

This alternating EM procedure is continued until a stopping criterion is reached.

More generally, Eqn. 7.1 can be expressed as:

q(n+1) = q(n) �
�
ATC�1A

�
ATC�1b (7.4)

where A �

"
A

I

#
, b �

"
b1

q(n) � q0

#
and C �

"
�
�1
1 I 0

0 �
�1
2 C0

#
.

This EM approach maximises the likelihood of the data given the hyper-parameters:

p(bj�) =

s
jATAj

(2�)m�njCjjATC�1Aj
e
�

1

2
(b�Aq)TC�1(b�Aq) (7.5)

This is equivalent to minimising the restricted maximum likelihood (REML) objective function

(Patterson & Thompson, 1971; Harville, 1974):

� log(p(bj�)) =
1

2
log jATC�1Aj+

1

2
log jCj+

1

2
(b�Aq)C�1 (b�Aq) + const (7.6)

There are a number of more general EM approaches for solving these problems (Harville, 1977),

but their complete description is beyond the scope of this thesis. The idea would be to estimate

coeÆcients for a linear combination of basis functions that parameterise C such that the REML

objective function is optimised2. For image registration methods with nonlinear priors, such as

those described in Chapter 4, the covariance matrices would be replaced by inverse Hessian ma-

trices (second partial derivatives of the prior potential with respect to changes in the parameters -

see Section 2.4). An extension of the scheme described in Section 4.3.3 could allow spatially vary-

ing estimates of �1 and �2 to be obtained. A more useful model of spatial variability would allow

anisotropic variability, with di�erent amounts of distortion in di�erent directions, and possibly

also model some covariance among distortions in di�erent directions, and also among distortions

of neighbouring tetrahedra. This could be based on a multi-normal model of Hencky tensor ele-

ments (see Section 6.4). With more complex models of structural variability, and lots of example

datasets, it should be possible for algorithms to empirically learn to represent neuroanatomical

variability. Given improved variability models, the estimates of the deformations should become

more accurate, which, in turn should lead to better representations of neuroanatomical variability.

2In the current example, the coeÆcients are ��1
1

and ��1
2

, with basis functions

"
I 0

0 0

#
and

"
0 0

0 C0

#
.


