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Abstract

In this thesis, a method is presented that incorporates anatomical information into
the statistical analysis of functional neuroimaging data. Available anatomical informa-
tion is used to explicitly specify spatial components within a functional volume that
are assumed to carry evidence of functional activation. After estimating the activity by
fitting the same spatial model to each functional volume and projecting the estimates
back into voxel-space, one can proceed with a conventional time-series analysis such
as statistical parametric mapping (SPM). The anatomical information used in this
work comprised the reconstructed grey matter surface, derived from high-resolution
T1-weighted magnetic resonance images (MRI). The spatial components specified in
the model were of low spatial frequency and confined to the grey matter surface. By
explaining the observed activity in terms of these components, one efficiently captures
spatially smooth response components induced by underlying neuronal activations lo-
calised close to or within the grey matter sheet. Effectively, the method implements a
spatially variable anatomically informed deconvolution and consequently the method
was named anatomically informed basis functions (AIBF). AIBF can be used for the
analysis of any functional imaging modality. In this thesis it was applied to simu-
lated and real functional MRI (fMRI) and positron emission tomography (PET) data.
Amongst its various applications are high-resolution modelling of single-subject data
(e.g. fMRI), spatial deconvolution (PET) and the analysis of multiple subject data
using canonical anatomical bases.
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Symbols and Abbreviations

MR Physics
M magnetization
m magnetization in rotating coordinate system
T time
B magnetic field strength
γ Larmor constant
f frequency
ω angular frequency, ω = 2πf
φ phase
ρ spin density
µ magnetic permeability
χ magnetic susceptibility
G magnetic field gradient

General
N quantity, number of
Y observed data vector
B spatiotemporal parameter matrix
β, γ parameter vector
l location
R residual vector
I identity matrix
P residual forming projection matrix
ε error vector
t t-value
f f-value
ν degrees of freedom
σ standard deviation
c, C contrast vector, contrast matrix
Z search volume
q,Q CVA images, CVA image matrix

Temporal model
M design matrix
K convolution matrix

Spatial model
S surface graph
V vertex matrix
F face matrix
f,g arbitrary functions
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L spatial convolution matrix
b spatial basis function
MG, G, A spatial model matrices
w width
λ regularization factor
θ hyper-parameters
W weighting matrix
n normalization function

Quantities
NY number of images, scans
NK number of functional voxels
Np number of basis functions
NVG number of grey matter vertices
NW number of regularization constraints

Subscripts
i image, scan
j parameter, basis function
l voxel
G grey matter surface
I inflated surface
F flattened surface
Y in voxel-space
L convolved in voxel-space
0 interface between white and grey matter

Abbreviations
MRI Magnetic Resonance Imaging
fMRI functional Magnetic Resonance Imaging
EPI Echo Planar Imaging
TE Echo Time
TR Repetition Time
RF Radio Frequency
BOLD Blood Oxygen Level Dependent
HRF Haemodynamic Response Function
PET Positron Emission Tomography
SPECT Single Photon Emission Computed Tomography
EEG Electroencephalogram
MEG Magnetoencephalogram
CBF Cerebral Blood Flow
CSF Cerebrospinal Fluid
FWHM Full Width at Half Maximum
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PSF Point Spread Function
AR Auto Regression
CVA Canonical Variates Analysis
TMS Transcranial Magnetic Stimulation
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Chapter 1

Introduction

Over the last few years, functional brain imaging has become a rapidly developing
part of neuroscience. Functional brain imaging involves the design of experiments
followed by the acquisition and spatiotemporal characterization of functional brain
data to characterize the underlying neuronal or metabolic events. Several modalities
are used by researchers to acquire brain data, which are mainly functional magnetic
resonance imaging (fMRI), positron emission tomography (PET), electroencephalo-
gram/magnetoencephalogram (EEG/MEG), transcranial magnetic stimulation (TMS)
and single photon emission computed tomography (SPECT). MRI and PET measure
metabolic responses, whereas EEG/MEG and TMS measure neuronally mediated elec-
trical and induced magnetic activity. This thesis is about the analysis of MRI and PET
data in the context of functional brain imaging.

Many methods have been proposed for analyzing fMRI or PET data. Because ex-
perimentally controlled factors inducing signal changes over time are used to detect
activations in voxel-space, the challenge is to find an appropriate temporal model to
characterize the functional data. This temporal model can then be fitted at each voxel.
These methods are called voxel-based methods and will be referred to as conventional
methods in the remainder of this thesis. One common feature of many conventional
methods is that they implicitly specify a spatial model by convolving the data with
some spatial lowpass filter prior to the temporal analysis. Since the convolution kernel
is the same at each voxel-position, the spatial model specified by this approach assumes
spatial invariance with respect to the underlying tissue and cannot take into account the
convoluted brain structure. One can apply conventional voxel-based methods without
any prior filtering, but this also implies an invariant spatial model where all activation
clusters have sub-voxel size. In both cases, the spatial models are spatially invariant and
anatomically uninformed. After fitting the temporal model at each voxel, conventional
methods have to solve the ensuing multiple comparison problem to make meaningful in-
ferences about the data. This can be done by using results from Gaussian random field
theory. Here, the resulting statistical maps are characterized over space, but because
no anatomical information was introduced at an earlier processing stage, the inference
is also anatomically uninformed. Voxel-based methods usually apply some masking of
the functional data prior to the temporal modelling after smoothing to exclude voxels
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at uninteresting positions, e.g. in the extracranial space. This binary masking should
not be confused with a spatial modelling, because masking is just a device to exclude
uninteresting time-series from the analysis.

There might be various reasons why it is not common practice to introduce spatial infor-
mation into a functional analysis: (i) It is not yet really clear, how neuronal responses
are related to the underlying neuroanatomy, (ii) an appropriate way to include anatom-
ical knowledge into a spatiotemporal model may not be known, (iii) a spatiotemporal
model would spoil the simplicity of temporal analyses, where one can analyze func-
tional data independently of structural data, (iv) as it will be shown in this thesis, the
specification and fitting of a spatial or spatiotemporal model is demanding in terms of
computational resources and finally (v) a valid temporal model is an absolute necessity
for proper characterization of the data, whereas one can analyze the data with a simple
spatially invariant model.

In this thesis, a method is proposed to incorporate anatomical information into the
analysis of functional data that resolves many of these problems. First it is assumed that
such a model is separable in terms of its spatial and temporal components. The ensuing
spatial model is based upon an approximation of the cortical grey matter sheet and uses
a linearized approach to transform the functional data to a sparser representation. This
new spatial representation enhances spatial components, which are assumed to carry
interesting signal components and attenuates other components. These components
are estimated for each time point and then analyzed over time, where one can use
time-series analysis implemented in conventional methods. In the remainder of this
thesis, the spatial model and the proposed method is called anatomically informed
basis functions (AIBF).

The important point about AIBF is that it allows one to incorporate any anatomical
knowledge, which can be described in the form of a set of spatial basis functions. In
this work, the reconstructed cortical sheet was used as a basis for the spatial model.
By making the assumption that the activations originate in the cortical grey matter
sheet or from a location nearby, one can specify a model to capture spatial low-frequency
components, which are considered to carry evidence of the blood oxygen level dependent
(BOLD) effect (fMRI) or other metabolic responses (PET). There are many ways to
model low frequency distributions in the two-dimensional cortical sheet embedded in the
three-dimensional image space. Basis functions were used in this thesis, which can fit
two-dimensional low-frequency components in each image. Two general classes of basis
functions were employed. The first is a local basis function set, which captures a range
of frequencies localized in space. The concept underlying this set of basis functions
is similar to the Gabor transform as used in low-bandwidth compression of natural
images. The other class of models we consider is essentially a global discrete cosine set
encompassing the whole cortical sheet such that the distribution on the cortical sheet
is decomposed into non-localized frequencies. This is similar to a Fourier transform.

The main aim of this work is to provide a proof of concept that AIBF can improve the
characterization and interpretation of functional brain images. Three fundamentally
different applications of AIBF are proposed. The first is concerned with high-resolution
modelling of single subject fMRI data. It is foreseen that with increasing image reso-
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lution in fMRI and accumulating knowledge about the relationship between MR mea-
surements and underlying neurophysiology, spatially precise modelling will become a
useful tool for the neuroimaging community. In this application, the focus lies on the
anatomically informed, high-resolution of the resulting statistical maps.

The second application is the analysis of data, where the width of the image point
spread function (PSF) is wider than the voxel-size. This is the case for PET and
SPECT data, where AIBF can be used as a tool to implement anatomically informed
spatial deconvolution.

The third application is the analysis of multi-subject data. The location of a functional
area, which shows activation in response to a specific task, varies in a standardized
anatomical frame over subjects. In conventional analyses, this variability is treated by
convolution with a wide low-pass filter kernel such that the individuals’ activations are
smeared together. In other words, one trades resolution for sensitivity. With AIBF,
one essentially does the same thing, but it is assumed that the anatomical variability
consists of two components. One is the translational error tangential to the underlying
cortical surface and the other is in the direction orthogonal to the cortical surface
to provide a characterization that is much more precise in the orthogonal (normal)
direction. By essentially projecting the data onto a smooth canonical grey matter
surface the latter component can be removed from the data. It is shown in chapter 6
that this approach, combined with anatomically informed spatial deconvolution, offers
advantages in comparison to the conventional way of analyzing group data.

The arrangement of the chapters is as follows: In the second chapter, some basics
about MRI measurements are reviewed and the conventional voxel-based approach is
outlined. The third chapter deals with the reconstruction of cortical surfaces. The
fourth chapter is the core of the thesis. The spatial model is described and the mathe-
matical foundation for specifying instances of the model is laid. The fifth chapter uses
simulated activation data to explore the features of AIBF and it is shown that under
ideal conditions AIBF provide better localization and increased sensitivity as compared
to voxel-based methods. In the sixth chapter, AIBF is applied to real fMRI and PET
data.

In more detail, chapter 2 deals with the basic background of this work and is divided into
two sections. The first gives a brief overview of MR imaging, as it is typically employed
in functional brain imaging experiments. The second describes a conventional voxel-
based method (Statistical Parametric Mapping, SPM) to analyze functional data. Note
that the temporal model used by SPM is also used to analyze the components extracted
by AIBF.

The subject of chapter 3 is the surface reconstruction and flattening of an individual’s
brain. The described techniques have been implemented in various software packages.
In this thesis, the Brainvoyager (Brain-Innovations, Rainer Goebel) software was used
to extract surfaces and transform them to a flat map.

Chapter 4 is the core of this thesis. The framework of the spatial model that embodies
anatomical information is introduced and described. Making an inference using AIBF
consists of several processing stages. First, a spatial model based on the cortical grey
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matter sheet is specified. This model is then fitted to each functional observation
giving an estimated parameter matrix. After re-projecting these estimates back into
voxel-space for each time point, one can analyze the projections over time and make
inferences about the effects observed in image space (or indeed in the space of basis
functions).

In chapter 5, AIBF is applied to simulated fMRI and PET data. This is done to validate
the method, explore and discuss its salient features in relation to a conventional voxel-
based method (SPM99). It is shown that AIBF offers, under ideal conditions, better
resolution and/or sensitivity.

In chapter 6, AIBF is applied to real fMRI and PET data. Here, the conditions are
less ideal, because various sources of error are introduced e.g. mis-registration of the
structural and functional images, residual distortions in echo planar imaging (EPI), mis-
estimation of the cortical surface, false assumptions about the distribution of activation
on the cortical sheet and artefactual signal sources. Nevertheless, it is shown that AIBF
is a useful tool to analyze functional data and can improve the resolution or sensitivity
of the statistical tests.

In chapter 7, the method, its applications and potential pitfalls are discussed.

Finally, a summary in German is given in chapter 8.
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Chapter 2

Basics

The basic background for the thesis is provided in this chapter. The first section deals
with the concepts of magnetic resonance imaging (MRI) with respect to structural (T1-
weighted) and functional (T ∗2 -weighted) brain imaging. A fairly full account of the MR
physics is provided, because both the functional data characterized and the anatomical
information used by AIBF depend on MRI. However, the main focus of this chapter is
the treatment of MRI data after acquisition.

After dealing with the physical basics of imaging data, the process of analyzing func-
tional brain data with a univariate, voxel-based method is outlined. This is done based
on the theoretical background and implementation of the Statistical Parametric Map-
ping software package in its current version, SPM99.

There are several reasons for this choice. SPM is essentially a package of documented,
maintained and open-source routines, which are programmed in a modular and general
way such that they could be adapted to other applications, as was done in this the-
sis. SPM has also become some kind of standard, in the neuroimaging community, for
analysis of PET and fMRI data, i.e. it is well tested and offers a wide range of standard
models for analysis of functional data. Additionally, its latest version, SPM99, pro-
vides an automated batch mode, which can be used to analyze functional data without
user interaction. This feature was extensively used for analyzing numerous simulation
studies.

2.1 Magnetic Resonance Imaging

2.1.1 Spins in a magnetic field

In the following, the behaviour of spins in the presence of a magnetic field is described
in terms of a classical model. If protons are exposed to a homogeneous magnetic
field with field strength B0 [Tesla], they can have one of two possible states, a low
or a high energy state. The directions of the spins are a function of their states and
are parallel or antiparallel to the direction of the magnetic field. Additionally, in the
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presence of the magnetic field, each spin precesses with the Larmor frequency, which
is fL = γB0, where γ is the Larmor constant and equals roughly 42.58 MHz/T. At
magnetic equilibrium, at room temperature, there are more spins in the low than in
the high energy state, which means that after reaching equilibrium there will be a
longitudinal magnetization M0 in the direction of the magnetic field. The process of
getting to the magnetic equilibrium from a non-equilibrium state is characterized by
two subprocesses: (i) spin-lattice relaxation: The spins exchange energy with the lattice
(in the brain: liquid, water) until the equilibrium is reached. This process is governed
by the longitudinal relaxation time T1. (ii) spin-spin relaxation: Spins experience,
due to their surrounding spins, slightly different magnetic field strength such that
their precessing frequencies vary over space on a microscopic level. This leads to a
dephasing of spins (given that they were in phase initially, see next section) such that
transverse magnetization decays over time. This kind of relaxation is parameterized by
the transverse relaxation time T2. The dynamics of the magnetization components can
be described by the Bloch equations:

Ṁx = γ(M×B)x −Mx/T2 (2.1)

Ṁy = γ(M×B)y −My/T2 (2.2)

Ṁz = γ(M×B)z − (Mz −M0)/T1 (2.3)

where × denotes the outer product of two vectors, M is the magnetization vector and
Mx,My and Mz are its components in x-, y- and z-direction.

2.1.2 Radio frequency pulses

The concept of acquiring MRI data is based on emitting radio frequency (RF) pulses
in the presence of the magnetic field with strength B0 in z-direction. The RF pulse will
generate a magnetic field with strength B1, which rotates in the x-y-plane at frequency
ω0 such that the resulting magnetic field is given over time as

B(t) = B1cos(ω0t)ex −B1sin(ω0t)ey +B0ez (2.4)

where ex, ey and ez are unit vectors in x-, y- and z-direction.

After transforming the Bloch equations to a rotating frame of reference, the magneti-
zation in this rotating coordinate system is denoted by mx, my and mz. The Bloch
equations in the rotating system are

ṁx = (γB0 − ω0)my −mx/T2 (2.5)
ṁy = −(γB0 − ω0)mx + ω1mz −my/T2 (2.6)
ṁz = −ω1my − (mz −M0)/T1 (2.7)

where ω1 = γB1. Choosing ω0 = γB0 and assuming the actual duration of the RF
pulses will be small compared to the relaxation times T1 and T2, the equations simplify
to
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ṁx = 0 (2.8)
ṁy = ω1mz (2.9)
ṁz = −ω1my (2.10)

In summary, a short duration RF pulse as specified in Eq. 2.4, and emitted at the
Larmor frequency of the precessing spins, generates a rotating magnetic field, which
decreases the strength of the longitudinal z-component, but increases the strength of
the transverse y-component as a function of the duration and strength of the RF pulse.

2.1.3 Magnetic gradient fields

To measure 2- or 3-dimensional images of some MRI parameter, one has to render the
measured output a function of the location. This is done by applying magnetic gra-
dient fields in addition to the homogeneous magnetic field B0. A gradient is defined
by G = ∆B/∆x, i.e. the field will change for a distance ∆x by ∆B, where G is typi-
cally measured in [mT/m]. Note that the direction of the magnetic component always
points in the same (z-)direction as the B0-component, but the magnetic field amplitude
induced by G is a function of location. Since the Larmor frequency fL is a function of
the actual field strength, an applied gradient field changes the Larmor frequency as a
function of location in the direction of the gradient. The Larmor frequency at location
x is then given by

ω(x) = γxG (2.11)

and the phase at location x and after time t is

φ(x, t) = γx

∫ t

0
G(τ)dτ (2.12)

or as a further approximation: φ(x, t) = γGxt (2.13)

2.1.4 Measuring images

In the following, the concepts of a 2-dimensional gradient-echo sequence will be de-
scribed. First, three different uses of gradient fields are introduced.

A slice-selective excitation means a combination of a gradient and a RF pulse. First, a
gradient field is applied in the z-direction such that the Larmor frequency of the spins
is dependent on their position along the z-axis. Then a short RF pulse can be applied
which effects only spins in a specific frequency range so that a transverse magnetic
component is generated only for a confined x-y-slice. However, the gradient will rapidly
dephase the spins because of the location-dependent Larmor frequencies. Therefore a
negative gradient in the z-direction is applied after the first (positive) gradient to bring
the spins back into phase.

A phase-encoding gradient is a gradient field applied in the y-direction. According
to Eq. 2.12 the phase φ of the precessing spins is then a function of location in the
y-direction and the gradient-time product.
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A frequency-encoding gradient is a gradient field applied in the x-direction. The fre-
quency ω of the spins will be a function of location (Eq. 2.11) in the x-direction.

After the slice-selective excitation a phase-encoding gradient GP is applied. At the
same time, the spins are dephased by a negative frequency-encoding gradient GR, also
called the read-gradient. The read-gradient is then inverted and after some time the
spins are back in phase and a gradient echo signal is formed, which is measured over
time. This process is iterated for different values of GP ranging from −GP0 to GP0 .
For a single iteration, let tP be the duration of GP , then the phase of the spins at a
position (x, y) during acquisition of the signal is given by

φ = γGP ytP (2.14)

and their frequency by

ω = γGRx (2.15)

meaning that the signal measured at (x, y) is

exp(i(ωt+ φ)) = exp(iγGRxt) exp(iγGP ytP ) (2.16)

Let ρ(x, y) be the spin density in the excited slice, then the total measured signal for
the slice for one phase-encoding step is

S(t, GP ) =
∫
x

∫
y
ρ(x, y) exp(iγGRxt) exp(iγGP ytP )dxdy (2.17)

After defining kx = γGRt and ky = γGP tP , this can be written as

S(kx, ky) =
∫
x

∫
y
ρ(x, y) exp(ixkx) exp(iyky)dxdy (2.18)

which is the Fourier transform of the spin density. By retransformation one can compute
ρ(x, y).

The space, in which the signal is measured at discrete coordinates (kx, ky) is called the
K-space. The resolution in retransformed image space depends on the gradient-time
product. This can be seen by transforming the definition of a gradient:

∆x =
2π

γGRtA
(2.19)

∆y =
2π

γGP tP
(2.20)

where tA is the time from the centre of the excitation pulse to the end of acquisition. In
other words, there are theoretically two ways to increase the resolution in image space.
The first is to prolong times tP and tA and the second is to apply stronger gradients.
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2.1.5 Parameters

Longitudinal relaxation time T1

The following observation is the basis of measuring the distribution of T1 in a sample.
Without the influence of magnetic fields other than B0 the magnetic component MZ

approximates the magnetic equilibrium M0 in the z-direction over time as characterized
by

Ṁz = (M0 −Mz)/T1 (2.21)

as can be seen from Eq. 2.3. If one defines the initial state MI = Mz(0), the solution
of the equation yields

Mz(t) = M0 + (MI −M0) exp(−t/T1) (2.22)

Assuming that one can invert the equilibrium magnetization M0 in the z-direction at
t = 0 such that Mz(0) = −M0, then

Mz(t) = M0(1− 2 exp(−t/T1)) (2.23)

The inversion of M0 can be done by application of a 1800 pulse. A suitable sequence
for measuring T1 is to apply a 1800 pulse, wait time Tw, apply a 900 pulse and measure
the resulting signal. To quantify T1, one has to sample Eq. 2.23 several times for a
range of Tw and find a monoexponential fit with parameters T1 and M0. Note that, if
Tw = T1ln2, Mz(Tw) vanishes and T1 is known. However, this process of quantifying T1

takes a rather long time due to the need to measure several TI and is not necessary for
measuring a brain image which reflects the differences in T1 of the tissues. In general,
such a T1-weighted image is measured by sampling Eq. 2.23 once. Further details about
the T1-weighted sequence used in this thesis is provided in 2.1.6.

Effective transverse relaxation time T ∗2

The transverse relaxation time T2 is assumed to be related to two underlying effects.
The first is the spin-lattice relaxation, which is an energy transfer of the spins and results
not only in an increase of longitudinal, but also a loss of transverse magnetization. The
other effect is related to the microscopic inhomogeneities of the magnetic field, resulting
in a dephasing of spins due to different precessing frequencies. It follows directly from
this that T2 must always be shorter than T1, since the dephasing of spins affects only
T2.

Additionally, due to local field inhomogeneities on a macroscopic level, spin assemblies
experience different magnetic fields and dephase even faster. The transverse relaxation
time associated with this effect is T ′2. The effective transverse relaxation time is given
by

1
T ∗2

=
1
T2

+
1
T ′2

(2.24)
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The magnetic field inhomogeneities associated with T ′2 are assumed to be constant
over (experiment) time, whereas the microscopic spin-spin relaxation effects associated
with T2 are not. This means that signal loss due to T ′2 can be recovered by a spin-echo
sequence and T2 without the T ′2 contribution can be measured (described in e.g. (Haacke
et al., 1999)).

A T ∗2 -weighted image can be measured in principle by a gradient-echo sequence as
described in section 2.1.4.

2.1.6 Structural sequence

In this thesis, two different sequences were used to acquire structural data. Most of the
T1-weighted anatomical images were acquired on a clinical 1.5 T Siemens Vision unit
(Siemens GmbH, Erlangen) with a 3D FLASH-sequence with repetition time (TR) = 15
ms, echo time TE = 5 ms, flip angle = 300. Each image matrix consisted of 256 × 256
voxels, 192 partitions, sagittal orientation, voxel size 1 × 1 × 1 mm3. The repetition
time TR is the time between two RF pulses. The echo time TE in a gradient-echo
sequence is the time between RF-pulse and the time point when applied negative and
positive gradient lobes add to zero gradient-time product.

Another set of T1-weighted images was acquired using the inversion recovery sequence
as described in (Deichmann and Turner, 2000).

2.1.7 BOLD effect

The BOLD (blood oxygen level dependent) effect is used to detect differences or changes
in local oxygenation states of the blood in the brain.

It is known that deoxygenated blood is slightly more susceptible than oxygenated blood,
where the susceptibility is defined as

χ =
µ

µ0
− 1 (2.25)

where µ0 is the permeability of empty space and µ the permeability of a location in
an object. For diamagnetic material, µ < 1 and for paramagnetic material µ > 1 such
that χ is negative for diamagnetic and positive for paramagnetic material.

A susceptibility gradient along brain tissue causes a variation in the local magnetic field,
which in turn leads to different Larmor frequencies along this susceptibility gradient.
This is measured as a signal loss in a T ∗2 -weighted sequence due to a shorter T ′2.

In the brain, oxygenated blood in vessels have a similar susceptibility to the surrounding
tissue, whereas deoxygenated blood is more paramagnetic so that there is a measurable
signal loss around blood vessels due to a susceptibility gradient.

Neural activity triggers a vascular mechanism that supplies the area of neural activity
with fresh oxygenated blood to compensate for the increased metabolic demand for
oxygen. However, this supply is higher than the actual uptake. Although there is an
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increase of deoxygenated blood due to the uptake, the increased flow renders the blood
more oxygenated as compared to the state prior to the neural activity. This process
results in a signal increase during the increased flow. Parameterized models of the
haemodynamic response function were proposed by (Friston et al., 1994b; Lange and
Zeger, 1997; Cohen, 1997). In Fig. 2.1, a model of the BOLD effect consisting of two
parameterized Gamma functions is shown.
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Figure 2.1: Model of haemodynamic response function consisting of the sum of two
gamma functions

Note that the typical BOLD response curve not only shows a latency, but also a dis-
persion of some seconds. It was shown by Aguirre et al. (1998) that the exact shape
of the BOLD effect in a given brain area varies across subjects, but there are less
variations intra-subject over time. In (Kastrup et al., 1999), it was observed that the
hypercapnia-induced BOLD response varies across brain regions, reflecting regionally
specific influence of factors such as cerebral blood flow, volume, oxidative metabolism
and vascular anatomy.

2.1.8 Functional sequence

Echo planar imaging (EPI) is, because of the speed of acquisition, the most often used
sequence class to measure T2∗-weighted images, i.e. evidence of the BOLD effect. The
important point about an EPI sequence is that one RF pulse is used to sample multiple
echos. In a typical two-dimensional gradient-echo EPI sequence, the aim is to cover all
K-space positions in a slice by using one RF pulse followed by rapid x- and y-gradient
switching. The z-gradient would select the slice, followed by a strong negative phase-
encoding gradient and switching on of a read-gradient (frequency-encoding) during
sampling one line in K-space. Between lines, a positive blipped phase-encoding gradient
is applied to prepare sampling the next line in K-space while switching on the inverted
read-gradient. This procedure is repeated with alternating read-gradients until all
positions in K-space for the given slice are covered. Clearly, because T2∗ is around 60
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ms, TE should be around this time. This imposes some constraints on the gradient-
hardware used. For instance, one constraint is that the read-gradient must be able to
alternate, in a short time, between positive and negative values.

The functional data were acquired on a clinical 1.5 T Siemens Vision unit (Siemens
GmbH, Erlangen) with TR = 168 ms, TE = 79 ms, flip angle = 900. Each image
consisted of 128 × 128 voxels, 20 slices, transverse orientation, voxel size 1.8 × 1.8 ×
3 mm3. Note that in a two-dimensional EPI sequence with enough slices covered, the
flip-angle can be 900, because the time between RF pulses of the same slice is long.

A disadvantage of EPI, which is of particular importance in this work, is that EPI
data is subject to geometrical distortions and, like other T2∗-measuring sequences,
to signal dropouts. This is caused by local field inhomogeneities existing at tissue
interfaces. Typically, in functional images such local inhomogeneities and geometric
distortions can be observed around the petrous bone and the frontal sinuses. Local
field inhomogeneities cause local magnetic gradients resulting in two types of artefacts.
The first is a signal dropout, i.e. a decrease in signal intensity, in the presence of local
magnetic gradients, which cause a complete dephasing of spins such that no gradient
echo can be measured in these regions. This artefact is caused by a long TE, i.e. the
more time elapses between RF pulse and gradient-time product cancelling, the more
dropout occurs. Dropout effects can be reduced by decreasing TE, but the BOLD effect
cannot be detected well at a shorter TE then say 30 ms. The other type of artefact
is geometric distortion along the phase encoding direction when using a trapezoidal
K-space sampling as described above. This is caused by the fact that neighbouring
points in K-space in the x-direction are measured with minimal delay such that nearly
no additional dephasing of spins can occur. However, neighbouring points in K-space in
the y-direction are measured with a much longer time interval such that more dephasing
can occur and distortions in the phase-encoding direction can be observed.

Post-processing schemes based on field maps can be employed to estimate an image
transformation to correct geometric distortions (Jezzard and Balaban, 1995).

2.2 Voxel-based analysis

In this section, the concepts of univariate, voxel-based analysis of functional data in
voxel-space are described. Generally, any analysis process can be subdivided into three
parts: preprocessing, model estimation and statistical inference.

In the preprocessing stage, the raw data (reconstructed MR or PET images) are trans-
formed such that the coordinate systems of all images are aligned to the same anatom-
ical space. This has the effect that a set of transformed image coordinates describes
the same anatomical location in each image. The preprocessing stage also includes any
spatial filtering.

In the modelling step, all prior temporal knowledge or assumptions about the expected
response are summarized within a linear model (described by a user-specified design
matrix) and the data is fitted, in a least-squares fashion, to the model yielding an
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estimated parameter vector at each voxel.

The inference step assesses using an F-test, whether a projection of the data into a
subspace, spanned by a particular set of linear functions of the design matrix columns,
is large compared to some measure of the residual variance. The F-ratio is used to
reject the null hypothesis that the additional compound of regressors do not explain
more of the data than the reduced model. As a special case of an F-test, one can also
employ a t-test, where the projection subspace is one-dimensional. The F or t statistic
for each voxel constitutes a statistical parametric map, or SPM, upon which inference
is based.

2.2.1 Preprocessing

In this subsection, the concepts of the necessary preprocessing steps prior to the analysis
of functional data are described. The overall goal of the various preprocessing steps
is to ensure that the voxel-space of each image relates to the same anatomical space.
This is accomplished by registering the images together using affine and non-linear
transformations. In neuroimaging, one can differentiate between two cases of registering
a pair of images: (i) Intra- or inter-modality intra-subject registration and (ii) inter-
subject registration.

Intra-modality intra-subject registration

Subject movements have to be expected, even if the subject is highly motivated and
instructed to lie still. Subject movements tend to be between 0.5 and 1 mm, where the
amplitude of movements usually increases with the duration of experiment. The main
reason for applying some kind of post-hoc registration is to remove motion artefacts
from the data and thereby increase the sensitivity of the analysis. For example, it is
quite common to observe a linear translation of the subject’s head in the z-direction
over time. If there is an underlying activation, the subject’s movement would appar-
ently smear this activation in the z-direction. By registering all images to a common
spatial frame, this smearing effect is largely removed and, depending on the shape of
the activation, the sensitivity of the analysis with respect to the activation is increased.
The most commonly used approach is to assume that a six parameter rigid-body trans-
formation of each image to a common spatial frame solves the realignment problem.
Such a transformation can be found e.g. by minimizing the sum of squares of the image
difference between a pair of images (Woods et al., 1992; Friston et al., 1995a). One
way to do this is via a Gauss-Newton optimization as implemented in SPM. Note that
there are several reasons why a rigid-body transformation can only be an approximation
for fMRI data. Two important issues are that (i) spatial distortions in fMRI images
are partially a function of location within the magnetic field such that large subject
movements can locally change brain shape (Jezzard and Clare, 1999) and (ii) a fMRI
volume is acquired as a set of slices, so movement during acquisition of a volume intro-
duces non-rigid transformations. In PET, large movements can render the attenuation
correction incorrect (Andersson et al., 1995).
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Inter-subject registration

Registration of different subjects’ brain images is an important concept in neuroimag-
ing. It is used to transform images from different subjects to the same anatomical
standard space, e.g. the space defined in Talairach and Tournoux (1988). Its applica-
tion is critical in the analysis of functional multiple-subject data and reporting results
within a standardized frame. An incidental but interesting analysis is to use information
derived from the transformations to make inferences about differences in brain shape
over subjects (Ashburner et al., 1998; Gaser et al., 1999; Ashburner and Friston, 2000).
With respect to functional studies, the definition of a goal function of the inter-subject
registration is difficult, because it is known that a one-to-one registration of functional
anatomy does not exist between any two brains. Therefore, a typical assumption is
that some residual variability cannot be removed from the data even after applying
an inter-subject registration. This residual anatomical uncertainty is then resolved by
applying a spatial smoothing operation prior to the estimation procedure (see section
2.2.1). This is why constraints for inter-subject registration can be of a low-frequency
nature (with respect to the resolution of the functional data), i.e. the transformation
used for functional analysis does not need to incorporate high-resolution constraints.
In SPM, inter-subject registration is parameterized by a twelve-parameter affine trans-
formation, followed by a nonlinear transformation with a low-frequency discrete cosine
set (Ashburner and Friston, 1999). Other commonly used methods based on multiscale
or polynomial basis functions are (Collins et al., 1994; Woods et al., 1998).

Inter-modality intra-subject registration

For different sequences or modalities (e.g. functional MRI, structural MRI, PET), the
image intensity distributions for the brain tissues are different. Therefore intensity
difference minimization as applied in inter-modality registration is not an appropriate
goal function to find a transformation. Instead, one can reduce the problem to a mix-
ture of inter-subject registration and segmentation problems (Ashburner and Friston,
1997). First, one uses the inter-subject registration to transform the target to a tem-
plate image of the same modality, where this registration is a twelve-parameter affine
transformation subject to a minimization of a function of image intensity differences.
Given a probabilistic map of the brain tissue distribution in the template images, one
can segment the original images based on this information. Once the three major brain
partitions, grey matter, white matter and CSF are estimated, these can be registered
separately using both template and target segments. The final transformation is then
given by the mean of the transformations of the three partitions. Note that functional
EPI images can be locally distorted with respect to the underlying neuroanatomy. This
problem is of particular importance for this thesis and will be treated in more detail in
section 3.4.
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Spatial smoothing

Having transformed all images to the same spatial frame, the decision must be made
about whether to apply a spatial smoothing filter to the data prior to the statistical
analysis. Generally, a smoothing filter will decrease the spatial resolution of the data
while increasing the sensitivity to signal sources of the same width as the filter kernel
(Friston et al., 1996; Kruggel et al., 1999).

Given that one generally employs a conventional analysis in voxel-space, it is a good idea
to apply a smoothing filter, because the measured BOLD-effect can have an intrinsic
width of several millimetres, whereas the voxel-size in fMRI is usually smaller than
this. A smoothing filter of the same width as the underlying signal (comprising several
voxels) will enhance the signal-to-noise ratio. Activations can then be detected over
time by a voxel-based approach, which will be described in the next section.

Accepting the usefulness of spatial smoothing, the question is, which filter should be
chosen. Since the underlying, presumably non-stationary, spatial haemodynamic re-
sponse is not known, one generally employs a spatially invariant, three-dimensional
lowpass-kernel (e.g. Gaussian) with a full width at half maximum (FWHM) of two to
three times the voxel-size in each direction (i.e. 4 to 8 mm).

Another reason to smooth the data with a spatial low-pass filter kernel is the need
to make adjustments to the statistical inferences about the data. As described in
Section 2.2.4, the theory of random fields can be employed to assess the significance
of observations, but one of the necessary assumptions is that the analyzed spatial
volume is a good lattice representation of a smooth continuous random field, which is
approximately true after the smoothing operation.

As mentioned in section 2.2.1, smoothing sacrifices resolution to reduce the negative
side effects of residual anatomical and functional variability so that smoothing appears
to be mandatory for multiple-subject studies.

The important question, which spatially invariant smoothing kernel should be used,
cannot be answered without having assumptions about the size of the underlying acti-
vations. Since these are presumably unknown and activations of different widths might
co-exist, the usual approach is to choose the smoothing filter by experience, i.e. choose
a filter that produced sensitive results in a former study. Another technique is to use a
subset of the data to explore the space of smoothing kernel parameters and choose the
filter with the best performance. In this context, multi-scale space techniques (Worsley
et al., 1995) have been proposed to detect signals with smoothing kernels of different
FWHM in the framework of four-dimensional random fields.

2.2.2 Linear models

It is apparent from the literature that linear models dominate functional brain imaging.
At first glance, this is unexpected, because the human brain is a complex system
exhibiting extremely non-linear features, presumably at any level of description. The
important point to note is that methods like PET and fMRI merely show the noisy
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image of blurred metabolic responses due to underlying neuronal activations at a rather
macroscopic level. Therefore it is not really surprising that linear models have proved
to be appropriate for most studies. They are robust and are good at describing smooth
spatiotemporal signal sources measured at a low signal-to-noise ratio. Also, by using
non-linear basis functions, the linear model can be extended to model non-linearities.

Basically, linear methods can be described as a projection to a subspace of the data
space. This subspace is spanned by the columns of the so-called design matrix, where
a column is called a regressor, explanatory variable or a basis function. Basis functions
as used here do not need to be orthogonal or orthonormal, although this enhances the
interpretability of the fitted effects.

In functional brain imaging, the usual way to analyze a set of data (consisting of a
time-series of three-dimensional images) is to fit the time-series at each voxel with a
linear combination of the basis functions, resulting in a vector of estimated parameters.
One then makes inferences about these estimates using hypothesis tests. The design
matrix is the same at each voxel location.

The specification of the design matrix is the critical modelling task. A neuroimaging
experiment usually consists of a sequence of well-defined experimental conditions, where
the basis functions are chosen such that the expected experimentally induced effects
over time can be captured for each condition.

In the following, the key equations of the general linear model and subsequent inference
are outlined.

2.2.3 The univariate model

In the remainder of this section, the subscript l denoting voxel location is omitted,
because the model and related equations are the same at each voxel. The general linear
model at each voxel position is given by

Y = Mβ +KIε (2.26)

where Y is the observed image intensity vector for images i = 1, . . . , n, M is the n× p-
design matrix of the model, β a p-dimensional parameter vector, ε is a vector of errors,
normally distributed with ε ∼ N(0, σ2I) and KI is the intrinsic temporal correlation
matrix such that the serially correlated errors KIε ∼ N(0, σ2KIK

T
I ).

For PET, KI is assumed to be In, the identity matrix. For fMRI, the measurements
are serially correlated. In the typically employed regime of two to five seconds for
whole brain measurement, KI must be estimated to assess the variance of the weighted
estimated parameters β̂ (see below). Estimating KI allows pre-whitening of the data
by pre-multiplication of K−1

I and subsequent estimation of β. This is the most efficient
(Worsley and Friston, 1995; Friston et al., 2000) estimator, but can lead to biased
estimates of σ2, if the assumptions about KI are wrong.

Another solution, adapted by SPM, is to multiply Eq. 2.26 by KE , where KE is some
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convolution matrix. This changes the model to

KEY = KEMβ +KEKIε (2.27)

The autocorrelation matrix is then given by K = KEKIK
′
IK
′
E . A wrong assumption

about KI still biases the estimate of σ2, but depending on the form of KE , the bias is
attenuated at the cost of efficiency (Friston et al., 2000). In SPM, the most often chosen
KE is a bandpass filter such that low-frequency drifts and high frequencies above the
expected spectrum of the haemodynamic response function (HRF) are removed from
the time-series. KI can be estimated using an AR(1)-model or simply assumed to be
In, given that KEKIK

T
I K

T
E ≈ KEK

T
E .

Let (KEM)+ = ((KEM)′KEM)−1(KEM)′ be the pseudoinverse of KEM , then the
residual forming projection matrix P is given by (Rao and Toutenburg, 1995)

P = In −KEM(KEM)+ (2.28)

After estimating β by the least-squares method, the residuals are given by

R = KE(Y −Mβ̂) = PKEY (2.29)

and Ri are the residual fields consisting of Ri(l) for all voxel positions l.

The variance σ2 is estimated by dividing the sum-of-squares of the convolved residuals
by its expectation, i.e.

σ̂2 =
R′R

trace(PK)
(2.30)

2.2.4 Statistical maps

The estimated parameters are simply

β̂ = (KEM)+KEY (2.31)

Inferences about contrasts c′β̂ are made using the t-statistic

t =
c′β̂

(c′σ̂2(KEM)+K(KEM)+Tc)1/2
∼ tν (2.32)

where tν denotes a t-distribution with ν degrees of freedom. The hypothesis tested is
that c′β = 0, where c is a suitable contrast vector (Frackowiak et al., 1997) and

ν =
trace(PK)2

trace(PKPK)
(2.33)

are the effective degrees of freedom (Worsley and Friston, 1995).
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2.2.5 Theory of Random Fields

The null-hypothesis is that c′β = 0. Any effect that is captured by fitting the basis
functions can cause c′β to deviate from zero and would cause a negative or positive shift
of the t-value. By computing the probability p(t) that a given t-value t(l) is generated
by a t-distribution with ν degrees of freedom, one can reject the null hypothesis at a
voxel, if p(t(l)) ≤ α, where α is a specified error level. This scheme is a classical t-test
and operates on the improbability (the probability of random occurrence) of a single
observation. The same principle applies to an F-map, where one tests a whole subspace
spanned by the basis functions weighted by a contrast matrix C.

In a spatially correlated statistical map, the null hypothesis c′βl = 0 is tested at each
location l ∈ Z, where Z is the search volume. It is obvious that here the probability
of observing a given t-value at any voxel location l should also be a function of the
number of observations and the level of autocorrelation. The so-called multiple com-
parison problem is to assess the probability of a given observation in a statistical map
encompassing a large number of other observations.

To solve this problem, one could assume independence of t-values in the statistical map
and apply a Bonferroni correction, but because of the spatial correlation, this method
would yield very conservative probabilities of random occurrence (Holmes, 1994).

The method usually chosen to solve the multiple comparison problem is to treat the
statistical map under the null hypothesis as being generated by random fields so that
one can estimate the probabilities of observed events.

Worsley et al. (1996) show how the Euler characteristic of various statistical fields can
be used to approximate, for high thresholds, the probability that a given maximum in a
search volume exceeds a threshold tthres. The search volume of the statistical map can
have any shape, although the best approximation will be achieved, if the search volume
is convex. The theory provided in Worsley et al. (1996) can also be used to estimate
p-values for peak height in search volumes with a dimension smaller than three. This
is important, if one wants to infer about statistical maps on a two-dimensional cortical
surface. The approximation of the p-value for peak height in a search volume can be
combined with results derived in Friston et al. (1994a) to estimate the probability of
the size of a cluster that exceeds a user-specified spatial extent threshold.

The application of Gaussian field theory does not change the SPM but simply adjusts
p-values to protect against family-wise false positives over Z, the search volume. The
adjustment is a function of the spatial smoothness of the SPM component fields (usually
approximated by the residual fields in Eq. 2.29).
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Chapter 3

Surface Reconstruction and
Transformations

In this chapter, the reconstruction and various transformations of a subject’s grey mat-
ter surface are described. Additionally, some applications based on the reconstructed
surface are discussed.

The aim of a reconstruction is to find a surface representation in three-dimensional
space, which best approximates the unknown grey matter surface. The reconstruction
is typically based on a subject’s high-resolution T1-weighted MR image.

From a historical point of view, computerized surface reconstruction was motivated by
manual cortical flattening approaches used for the study of visual areas, e.g. (van Essen
and Zeki, 1978). With developing computing power, computerized surface reconstruc-
tion based on high-resolution T1-weighted MR imaging became feasible. Algorithms
for flattening polyhedral surfaces were proposed by Schwartz and Merker (1986) and
Schwartz et al. (1989). More holistic approaches solving the problem of transforming
a given T1-weighted MR image to a reconstructed and flattened surface were proposed
by Dale and Sereno (1993), Carman et al. (1995), van Essen and Drury (1997), Dale
et al. (1999) and Fischl et al. (1999b).

As described in these papers, after reconstruction, the surface can be transformed to
other less folded representations by decreasing local curvature at the costs of cuts and/or
distortions. In particular, the focus in this thesis lies on the flattened cortical surface,
i.e. the folded grey matter sheet projected to a plane. Other possible representations
are the inflated surface and projections onto spheres or ellipsoids. In functional brain
imaging, these projections are mostly used for visualization of functional data or for
detection of shape differences over subjects. In this thesis the projections define a
manifold that contains the AIBF that are used to characterize the functional data per
se.
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3.1 Voxels and Vertices

The representation of images in three-dimensional voxel space is a commonly used
concept in neuroimaging, because it is a natural way to store images aligned on a reg-
ularly sampled grid. A voxel is sometimes described or understood in neuroimaging as
something that represents a small cuboid volume. This view is convenient, but slightly
misleading, because one effectively only deals with a discretely sampled measurement
of a volume, i.e. a grid of measurements. The latter view is largely compatible with
the first description, but has the advantage that a measured image volume can be seen
as a graph with vertices (nodes), edges and faces, where the volume itself does not
play a role. In such a voxel-space the positions of the vertices are ordered on a regular
grid such that all vertex coordinates, the set of edges and faces are implicit in the
specification of the three dimensions of this graph, i.e. one does not need to store all
this information explicitly. One only needs to record the intensities measured at the
vertices. The disadvantage of this representation is that the sampling of the grid is
rigid, i.e. one cannot locally increase the resolution of the graph or remove irrelevant
information by pruning vertices. The alternative to a graph specified in voxel-space
is a graph where one explicitly specifies vertices, faces and/or edges. Here one has
the advantage that one only describes relevant information, but at the price of storing
additional information about vertices and faces. In the following, such a representation
will be called a vertex-space representation, whereas the rigid-grid representation will
be called voxel-space.

The cortical surface can be approximated both in voxel- and in vertex-space. A descrip-
tion of this surface in voxel-space is e.g. given by the segmentation of the grey matter
sheet. However, this representation is only a coarse approximation to the smooth un-
derlying extensively folded surface. The cost in space of increasing the resolution in
voxel space is prohibitive and therefore surface reconstruction techniques use a first
segmentation in voxel space to generate a graph in vertex space. This new represen-
tation can then be modified by employing a smoothness constraint to minimize the
discretization error, evident in the jagged segmentation in native voxel-space.

In vertex space, the surface is described by a graph S = (V, F ), where V is a NV × 3-
matrix and F is a NF × x-matrix, NV and NF are the number of vertices and faces,
x is 3 or 4, i.e. faces are triangles or quadrangles. Such graphs can provide good ap-
proximations to smooth surfaces with minimal discretization error. In practice, the
visualization of triangular meshes can be efficiently implemented by using an Applica-
tion Programming Interface (API) like OpenGL.

Throughout this work, we used the software package BrainVoyager (version 3.8, Brain
Innovations, Rainer Goebel), which deals with triangle-based representation of surfaces.

3.2 Surface reconstruction

For surface reconstruction, a structural MRI-sequence as described in Section 2.1.6 is
used.
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A surface reconstruction has two aims: (i) to identify a surface that best approximates
the cortical grey matter and (ii) topology, i.e. connectivity along the surface.

The basic strategy, to reconstruct an individual’s surface of the cerebrum, consists of
three steps: (i) segment the white matter volume of each hemisphere, (ii) triangulate
the outer (closed) white matter surface of each hemisphere and (iii) adjust the surface
by using an iterative intensity-based optimization routine.

For simplicity, later stages of the reconstruction process require one filled white matter
partition of each hemisphere. This is done by removing the cerebellum and declaring
ventricles and internal grey matter structures (e.g. thalami) as white matter. The
surface of this white matter partition is triangularized by identification of the outside
voxel faces and partitioning each of these faces into two triangles. This gives the
surface S0 = (V0, F ), where V0 is an NV0 × 3-matrix of vertex coordinates, F is an
NF × 3-matrix of vertex indices, NV0 and NF are the number of vertices and faces. An
important feature of this approach is that only those vertices are connected (part of
the same face), which are also adjacent in terms of the underlying true cortical surface,
i.e. the topological structure of the cortical surface is correctly mapped to S0. This
holds for most brain volumes, because the minimal distance between the grey-white
interface of the banks of a sulcus is typically larger than the structural resolution of
the T1-weighted MRI. However, there are cases when this approach fails, especially
in brain regions with a rather thin grey matter sheet like the occipital lobe. Here,
topological defects of the resulting surface S0 can sometimes be observed, e.g. vertices,
which are close to each other in Euclidean image space, but remote from each other on
the brain surface, are part of a face. Currently, no sophisticated algorithm is known
to automatically detect and remove topological defects. This means the user must
manually intervene, i.e. one identifies the source of error, mostly errors due to partial
volume effects, and changes the white matter segmentation by removing (or adding)
voxels.

Since the underlying grey matter surface is smooth (i.e. the local curvature is bound
by some finite value), the first rough approximation S0 is improved by smoothing
each vertex coordinate with respect to its local vertex neighbourhood such that V0 is
transformed to a smooth representation of the white matter surface SW = (VW , F ). In
a next step, a surface lying within the grey matter sheet is identified by translating the
vertices in VW using a local iterative intensity-based optimization routine, which gives
a representation of the pial surface SG = (VG, F ).

An important technical point to note here is that all brain surfaces derived from a
structural T1-weighted MR image are a modified version of S0, in the sense that the face
coordinates matrix F never changes, only the vertex coordinates matrices VW and VG
are modified to describe different surfaces. In this way, the coordinate transformation
between the different surfaces is implemented by an exchange of vertex coordinates
matrices.

It would be desirable to estimate a surface, which approximates a given grey matter
layer, e.g. layer IV. However, this is not feasible due to the structural MRI resolution [1
1 1] mm, which is high enough to find a surface approximation within the grey matter
sheet, but not within a certain layer. However, it is possible to find rather accurate
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estimates of the white-grey interface and the pial surface due to the intensity differences
between tissues and CSF. Another interesting application is then to estimate the local
thickness of the grey matter sheet (Fischl and Dale, 2000; Jones et al., 2000; MacDonald
et al., 2000).

3.3 Inflation and Flattening

To compute an inflated version SI = (VI , F ) of the grey matter sheet SG, the vertex
coordinates VG are locally smoothed such that local curvature is reduced. To prevent
serious local distortions, the optimization is subject to the further constraint that the
original geometrical distances between adjacent vertices in SG should remain the same.
By user-dependent regularization between those two constraints, the result is an inflated
version of SG, in which both sulci and gyri are fully visible.

After placing several cuts on the medial side of a hemisphere, the inflated surface is
projected onto the y-z-plane. Surface parts on the former medial side are folded outside
such that the whole brain surface (except for the cuts) is visible in the y-z-plane.
This first step guarantees that the starting condition of the following optimization
necessary to remove residual distortions will not end in a minimum associated with a
mirror-image configuration (Fischl et al., 1999b). Since a simple projection of a highly
folded structure to a plane implies serious distortions, these are largely removed by
a subsequent iterative optimization with the two constraints (i) the surface is kept
in the y-z-plane and (ii) the lengths between adjacent vertices as measured in SG
are restored. However, there is no isometric mapping, i.e. one cannot obtain a flat
and undistorted cortical map, because the Gaussian curvature of the convoluted brain
differs from a surface in a plane. The resulting flat map SF = (VF , F ) is a locally
distorted representation of the grey matter sheet SG. The distribution of distortions
depends on the location of cuts made to enable the surface unfolding. In the example
shown below, five cuts were used.

The transformation from SG to SI is implemented by an exchange of the vertex co-
ordinate matrices VG with VI . In the case that a surface contains only a subset of
the original vertices and faces, this information must be stored either in the form of a
binary visibility or an index reference vector with respect to the full surface.

3.4 Coregistration

As pointed out in section 2.2.1, an accurate co-registration between functional and
structural data is mandatory for any valid inference about activation locations within
the anatomical reference frame. Most of the functional MR imaging studies employ EPI
sequences, which are subject to geometrical distortions due to susceptibility effects near
the tissue-air and tissue-bone interfaces (Jezzard and Balaban, 1995). This prevents the
reduction of the co-registration of the distorted functional to an undistorted structural
image to a 6-parameter rigid-body problem. The pattern of geometric distortions in
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an EPI sequence depends not only on the anatomy of the subject, but also on field
strength B0 and the measured matrix size. The distortions measured with a 3 Tesla
scanner and a 128 × 128-matrix would be greater than in images measured on a 1.5
Tesla scanner with a 64 × 64-matrix. A principled solution to the distortion problem
is to apply an unwarping scheme to correct for the geometrical distortion. This can
be done by acquisition of a field map using a double-echo gradient recalled echo image
(Jezzard and Balaban, 1995) so that the field inhomogeneity map can be calculated.
This field inhomogeneity map is then employed to unwarp the geometrical distortions
in the phase encoding direction, assuming that the distortions in read gradient direction
are negligible.

3.5 Applications

Surface reconstruction is a computationally intensive and partially interactive process.
Usually, the reconstructed surface of one hemisphere consists of roughly 150,000 vertices
and 320,000 faces, which requires a system with excellent computing power and graphics
performance for generation and visualization (at least in December 2000). Given such
a system, the interactive elimination of defects can be time-consuming. A legitimate
question is then, what the benefits of this effort are. These benefits are now discussed.

Generally, the approximation of the cortical surface is a representation of the structure
and topology of an individual’s grey matter sheet. This information is implicitly ac-
cessed by the human observer of a structural MR image, but this anatomically informed
knowledge cannot be specified in the original voxel-space. Surface reconstruction pro-
vides an explicit description of the topological structure of an individual’s grey matter
sheet and in particular, this representation is accessible to further automated manipu-
lation.

The computation of geodesic (minimal) distances on the reconstructed surface is a
non-trivial problem. As a first approximation, one can estimate the minimal distance
along the edges of the faces using Dijkstra’s shortest-path algorithm (Fischl et al.,
1999b). Obviously, this is an overestimate of the true shortest path. A better method
is proposed in (Kimmel and Sethian, 1998), which can be used to find minimal paths
along the reconstructed surface, i.e. the path does not need to follow edges, but can
cross faces.

Given coregistered statistical maps in (functional) voxel-space, one can attempt to
project these onto the individual’s surface or its transforms as in several studies, mostly
concerning the visual cortex (Sereno et al., 1995; Engel et al., 1997; Tootell et al.,
1997). The assessment of retinotopy in voxel-space is a demanding task, but simplified
in unfolded vertex-space. Other examples, where this kind of projection provides a
useful tool, include the characterization of somatotopical and tonotopical maps.

However, the projection of statistical maps onto surfaces is a complex issue. A sim-
ple scheme would involve interpolating the intensity value of the surrounding statis-
tical voxel intensities at each vertex. This is comparable to overlaying the statistical
map onto an individual’s structural MRI. An important point to note here is that
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the smoothness of the statistical map, which is primarily due to the functional reso-
lution and any exogenous lowpass filter, can cause an incorrect topological mapping
and spoils the benefit of the reconstructed high-resolution surface. There are several
countermeasures to tackle this problem: (i) one can increase the applied threshold of
the statistical map to generate more focal projections, but this can exclude weaker (but
still significant effects) from the characterization, (ii) one can decrease the width of the
applied lowpass filter or even omit it, but this means that sensitivity for extended acti-
vations is decreased and (iii) one can choose a projection surface different from the grey
matter surface, e.g. the white-grey interface such that large activation clusters origi-
nating in the grey matter or in adjacent CSF are projected onto a smaller and possibly
more interpretable set of vertices. However, the use of all these techniques speaks to
the fundamental underlying issue that a projection from three-dimensional functional
voxel-space to a high-resolution surface does not change the analysis’ sensitivity or its
intrinsic spatial resolution. To conclude, the projection of statistical data in voxel-
space onto surfaces can be a helpful visualization tool for functional MRI studies, if the
intrinsic spatial structure of the activations is rendered more obvious on the surface.
However, the primary features of such a surface, i.e. its sub-voxel resolution, intrinsic
topological structure and geometry are not used during the statistical analysis per se.

The projection of a brain surface to a plane offers the advantage of a surface coordinate
system such that distance and orientation can be easily assessed on the flat map. The
unfolded surface has been proposed as a reference system or atlas system (van Essen and
Drury, 1997), because the coordinate system of a flat map directly reflects the topology
of the grey matter sheet. But as discussed by Fischl et al. (1999b), the price paid is
high: (i) The cuts introduce a topologically (and geometrically) incorrect mapping,
i.e. cuts destroy neighbourships, and (ii) the flattened cortical surface is not convex,
i.e. there are points in the coordinate systems that have no reference on the folded
surface.

Another coordinate system, employing the unfolded map, is given by the projection of
the surface onto a sphere or ellipsoid (Fischl et al., 1999b). Here, no cuts prior to the
projection are necessary and the topology can be fully retained. However, the impact
of residual distortions is still an issue. Distance and orientation can be assessed, even
though not as conveniently done on a plane.

Once the reconstructed surface is unfolded, a surface-based normalization can be ap-
plied to transform the individual’s map to the reference system. A disadvantage of any
surface-based reference systems is that the distribution of distortions are dependent on
the definition of the atlas, i.e. it might be that distortions due to the unfolding are
large in brain areas one is particularly interested in.

Another useful application of surface-based normalization is morphometry analyses
based on surface features like curvature or thickness of the grey matter sheet (Thompson
et al., 1997).

In (Fischl et al., 1999a), it has been proposed that surface-based normalization can
improve the sensitivity of functional analyses in comparison to affine normalization in
voxel-space. Although it would have been more appropriate to compare a (non-linear)
surface-based normalization to a non-linear normalization in voxel-space, this line of
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research addresses the interesting question, whether a surface-based normalization pro-
vides a better normalization than one in voxel-space. This would be certainly the case,
if functional areas are rigidly located in any subject to macroscopic landmarks given
by the gyral pattern. Cytoarchitectonical studies (Amunts et al., 2000) show that this
is e.g. approximately true for primary visual areas, but most certainly not in higher
order areas (Amunts et al., 1999). This finding means that increasing the accuracy
of the normalization with respect to aligning structural landmarks visible on the T1-
weighted MRI is not necessary for multi-subject studies, because the variability of the
exact location of functional areas over subjects with respect to structural landmarks is
too high. This issue of anatomical variability is related to the results presented in this
thesis and will be further discussed in chapter 7.
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Figure 3.1: Different surfaces representations of one hemisphere. (a) folded surface SG,
(b) inflated surface SI and (c) flattened surface SF .
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Chapter 4

Model specification

4.1 Introduction

The problem addressed by anatomically informed basis functions can be stated as
follows:

Given the assumptions that: (i) the measured metabolic effects are located somewhere
on the cortical surface and (ii) can be characterized by a spatially smooth distribution on
that surface, what is the spatial distribution of the metabolic signal, which best explains
the functional observations?

If both assumptions are valid, one can describe an anatomically informed model to
characterize any measured fMRI or PET data directly on the cortical surface. As it
is shown later there are three major advantages of the technique when compared to
voxel-based methods: (i) the method does not use an isotropic spatial lowpass filter, but
defines a spatially variant model at each voxel-position, (ii) the method can enhance
the resolution of statistical results with respect to the underlying neuroanatomy and
(iii) AIBF can be used to increase the sensitivity of functional data analysis. This
includes both single-subject and multi-subject analyses.

Additionally, AIBF can also be used to implement an anatomically constrained least-
squares deconvolution for low-resolution data. This applies when the intrinsic point
spread function (PSF) is large relative to voxel size, which is e.g. the case for PET
data.

In the following, the approach is described in three sections. First, the spatial model
that embodies anatomical a priori knowledge about a functional observation is specified.
In the second section, the anatomical model is fitted to a series of functional volumes
observed over time, to generate a spatiotemporal parameter matrix. The third section
deals with inference about effects in the time domain. In this work, it is assumed that
the spatiotemporal basis set can be factorized into a spatial and temporal basis set,
where the latter corresponds to conventional regressors in a design matrix. In this way,
one can first estimate the spatial distribution of sources at each time point and then
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estimate, and make inferences about, their expression over time.

4.2 The spatial domain

4.2.1 The spatial equation system

It is assumed that the individual grey matter surface SG = (VG, F ) is a good approxi-
mation to the real underlying grey matter surface in the individual’s anatomical space.
Given a functional observation vector Y in voxel-space, the overall aim is to estimate a
smooth distribution f on the vertices VG of the reconstructed grey matter surface that
best (in some sense) explains the observed Y , i.e.

Y = g(f(VG)) + ε (4.1)

where ε is the residual component and g is an operator (to be described later), which
transforms intensities defined in vertex-space to the voxel-space of Y . Typically, one
reconstructed hemisphere consists of roughly 130,000 vertices, whereas the number of
observed grey matter voxels in one hemisphere (e.g. 20 slices, 128 × 128-matrices, voxel
size 1.8×1.8×3 mm3) is much less, roughly 12,000, i.e. the problem is underdetermined.
One key to solve this problem is the assumption about the smoothness of f , i.e. any focal
neuronal activation will manifest as a smooth distribution on or close to the cortical
surface. This smooth distribution can be modelled by less parameters Np than the
number of vertices NVG so the idea is to approximate f by a model that is determined
by a small set of parameters.

In this thesis, the distribution f was modelled with two kinds of spatial bases, both
capable of modelling smooth distributions. The first was a linear combination of local,
smooth and partially overlapping spatial basis functions defined on VG, which are called
local basis functions in the context of this thesis. Fig. 4.1 illustrates the concept behind
this approach. The other model consisted of a set of discrete cosine functions at various
low frequencies, which are named global basis functions.

Figure 4.1: Concept of smooth overlapping local spatial basis functions defined on
the surface SG: The distribution on the left hand side can be expressed as a linear
combination of the three basis functions on the right.

A necessary prerequisite for the specification of spatial basis functions on the surface SG
is the existence of a two-dimensional coordinate system, but due to the folded nature
of the grey matter surface, there is no simple way to define such a coordinate system.
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However, the cortical flat map SF = (VF , F ) is the result of a coordinate transformation
from the vertex coordinates VG to a plane, i.e. for any vertex coordinate vG on SG its
associated location on SF is stored in vF . Since there is a two-dimensional coordinate
system available on the cortical flat map SF , we define the basis functions on SF and
re-project them onto the cortical sheet SG by a coordinate exchange.

4.2.2 Specification of basis functions on the flattened cortex

Three different sets of basis functions were used. Two of them were sets of local basis
functions and the third set consisted of global basis functions. In the following, the
basis function sets are defined and their features are outlined.

There are three conditions a local basis function set must conform to: (i) each basis
function must cover a small patch of SF , (ii) the linear combination of basis functions
is able to model smooth distributions on SF and (iii) the approximation of f at any
vertex location is implemented as sparsely as possible. Any form of two-dimensional
Gaussian, sinc-function or similar lowpass-kernel functions fulfill the first two criteria,
provided that each basis function overlaps with its neighbours to a certain degree. The
third condition means that this overlap is not unnecessarily large.

Two different sets of local basis functions were used. One employed circular Gaussian
basis functions. The other set consisted of circular Sinc-functions. Both sets were
arranged in a hexagonal configuration such that the centre of each basis function had
a fixed (user-specified) distance to the centre of its six neighbours.

The global set of basis functions was a discrete cosine set. Each basis function covers the
whole surface of SF and encodes two specific spatial frequencies, one in the x-direction
and one in the y-direction. The only parameter the user has to choose, when using this
global basis function set, is the range of spatial frequencies the model contains.

Gaussian basis functions

Given a two-dimensional coordinate system on the cortical flat map SF , the basis
function bjF with its centre at coordinates (xj , yj) is defined by

bjF (x, y) = c1 exp
(
−((x− xj)2 + (y − yj)2)

2w2

)
(4.2)

where c1 is a constant and w is the (user-specified) width of the Gaussian basis function
in the x- and y-directions. The hexagonal pattern of the centres of the basis functions
are defined by induction, i.e. given that (xj , yj) is the centre of bjF , then the centres of
its six neighbouring basis functions are (x+d/2, y+do), (x+d, y), (x+d/2, y−do), (x−
d/2, y − do), (x− d, y), (x− d/2, y + do), where d is the fixed distance between centres
and do = sin(600)d. The basis functions are discretely sampled at vertex positions.

The position of the first basis function is chosen arbitrarily. A basis function is defined
only if its centre is enclosed by a face of the cortical flat map SF and its actual support
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area on SF is larger than some specified proportion of its potential support area. The
latter condition can be used to implement boundary conditions.

Sinc basis functions

Similarly, a Sinc basis function with its centre at (xj , yj) is defined by

bjF (x, y) = sinc(x− xj , w) · sinc(y − yj , w) (4.3)

where

sinc(x,w) =

{
1 x = 0,
sin(x/w)

x otherwise.
(4.4)

The width w is specified by the user and the locations of the centres are specified as in
the case of Gaussian basis functions.

Specification of discrete cosine basis functions

Each basis function of the global set encompasses the whole surface SF . The two
dimensional discrete cosine set (Gonzalez and Wintz, 1987) is defined by

dct(x, y, u, v) =

{
1

Nmax
u = 0, v = 0,

1
2N3

max
cos((2x+ 1)uπ)cos((2y + 1)vπ) otherwise

(4.5)

where x and y specify coordinates of SF , u = 0, . . . , Nu and v = 0, . . . , Nv, Nmax is
the maximum possible order of the discrete cosine set, Nu and Nv are the maximum
order basis functions incorporated into the set in the x- and y-directions. Nmax is
determined by the maximum side length of SF measured in mm on the cortical surface.
Additionally, 0 < Nu, Nv < Nmax − 1. In practice, because one assumes that the
distribution of spatial frequencies does not differ in the arbitrarily chosen x- and y-
direction, the user chooses an order of the DCT-set (discrete cosine transform) that is
interpreted as the order for the direction (in the x- or the y-direction), in which the
flattened surface has maximum length. The order of the other direction is adjusted
accordingly such that the maximum frequencies in the x- and y-directions are roughly
equal. Note that the actual spatial frequencies with respect to SF modelled by a basis
set is not only a function of Nu and Nv, but also of the actual size of SF in the x- and
y-direction.

4.2.3 Reprojection and transformation

After specification of the basis functions on the cortical flat map bjF , j = 1, . . . , Np,
where Np is the number of basis functions, each bjF is re-projected onto the original
folded surface SG by a vertex coordinate exchange between VF and VG to give folded
basis functions bjG. Since the bjG are still in vertex-space, the next step is to embed each
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basis function bjG into the voxel-space. To do this, an operator g (Eq. 4.1) is defined,
which integrates over each voxel k the surface of a given basis function bjG multiplied
by the height of the basis function, i.e. g returns the integral of each basis function in
folded vertex-space encompassed by the voxel.

To do this, one assumes that the activity distribution on a given face is a linear function
of activity in the three vertices of this face. Then an NK×NVG matrix G can be defined,
where NK is the number of functional voxels. Each column j of G specifies the observed
activity in voxel-space given some activity in vertex j.

The matrix-vector multiplication GbjG transforms the basis functions bjG in vertex-space
to bjY (bjY = bjY1

, . . . , bjYNK
) in voxel-space.

The process of transforming a Gaussian basis function from its initial representation
on the cortical flat map, to its intermediate state on the folded cortical map, and to its
final representation in fMRI voxel-space is shown in Fig. 4.2.

4.2.4 Convolution by an additional point spread function

If the width of the image point spread function (PSF) is larger than the voxel size,
one has to apply an additional convolution LI to the basis functions in voxel-space bjY ,
giving bjLI . This is not necessary for fMRI, since here it is assumed that LI = I, where
I is the identity matrix such that bjY = bjLI .

For example with PET (positron emission tomography) data, one could model the
positron travel, the effects of the measurement process and the reconstruction filter by
convolution of bjY with an isotropic lowpass filter kernel. Obviously, a spatially station-
ary kernel LI is only an approximation to the underlying presumably non-stationary
PSF, but the important point is that the width of LI in voxel-space roughly matches the
image smoothness induced by the unknown image PSF. In PET one generally assumes
that the PSF is stationary.

This basis set is now used to model, in a linear combination, the functional observation
Y .

4.2.5 Estimating the spatial distribution of activity for one time point

Let AG be a NVG × Np-matrix, where column j of AG is the basis function bjG in
vertex-space, i.e. AG = [b1G, . . . , b

Np
G ].

As described above, let G be an NK × NVG-matrix, where G encodes the effect of
activity in vertex-space observed in voxel-space. Let LI be an NK × NK convolution
matrix to model a stationary image PSF. Let LE be a NK ×NK convolution matrix to
model an additional exogenous smoothing filter applied to both the data and model.
L = LELI implements the effective PSF after spatial smoothing. AL = n(LGAG),
where n normalizes each column of a matrix such that the sum of squares of the

39



column is unity.

Then, the model is
LEY = ALβ + LEε (4.6)

where Y is the NK-dimensional observation vector in voxel-space, β is a Np-dimensional
parameter vector and ε is a NK-dimensional error vector.

AL is then a NK × Np-matrix, where column j of AL is the convolved basis function
n(bjL) in voxel-space. Similarly, let A be a NK ×Np-matrix, where column j of A is the
basis function n(bjY ). For fMRI, it is assumed that LI = I.

The unknown parameter vector β is assessed by a regularized least-squares estimate
(Press et al., 1992), which yields

β̂ = (ATLAL + λW TW )−1ATLLEY (4.7)

where λ is a regularization factor and W is a NW × Np-matrix imposing additional
smoothness constraints on the solution (see next section).

4.2.6 Regularization

Depending on the specified basis function matrix AL, regularization can help to stabilize
the solution and prevent wildly oscillating parameters over space. Most regularization
techniques specify some smoothness constraint in W as prior knowledge about the
underlying solution. When using basis functions as proposed in this thesis, this is
not strictly necessary, because a smooth set of basis functions already implements a
smoothness constraint. As a special case, however, towards the limit that AG is an
identity matrix, i.e. no basis functions are used, regularization of the solution becomes
absolutely essential, because the solution would be otherwise underdetermined.

As it will be shown in sec. 5.2.4, regularization should be used when the overlap between
local basis functions is high. In such cases, regularization of the least-squares solution
with an additional smoothness constraint decreases the spatial variance of the estimated
parameters β̂ such that the influence of high spatial frequencies within the spectrum
of the basis functions is diminished.

Two regularization constraints have been used. The first was a zeroth order regulariza-
tion with respect to the parameter space. Here, W = INp , thereby implicitly imposing
the constraint on the solution to minimize the 2-norm of the vector β̂. The second
regularization was of first order in the voxel-space, i.e. minimizing the sum of the 2-
norm of the first partial derivatives of the fitted image in all three directions. This
can be implemented by setting W =

∑3
i=1(ȦL)i, where i denotes the direction of the

derivative.

Given the regularization constraints, a question remains how λ should be chosen. There
is a literature describing schemes to find the optimal λ given that Y , AL and W are
known (Harville, 1974; Hansen, 1992; Engl and Grever, 1994; Press et al., 1992).
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One computationally inexpensive approach (Press et al., 1992) is to estimate λ by

λ =
trace(ATLAL)
trace(W TW )

(4.8)

A more sophisticated algorithm is given by the restricted maximum likelihood (ReML)
algorithm (Harville, 1977).

The ReML method uses an iterative optimization as follows: Initialize the estimate of
two unknown hyper-parameters θ1 and θ2 with two positive values and estimate β by

β̂ = (θ−1
1 ATLAL + θ−1

2 W TW )−1θ−1
1 ATLLEY (4.9)

Compute the residuals

r =
(

r1

r2

)
=
(
Y −ALβ̂
W β̂

)
(4.10)

The degrees of freedom for the estimate of β are given by

ν1 = trace((θ−1
1 ATLAL + θ−1

2 W TW )−1θ−1
1 ATLAL) (4.11)

ν2 = Np − ν1 (4.12)

The updates of the estimates of θ1 and θ2 are

θ̂1 =
rT1 r1

NK − ν1
(4.13)

θ̂2 =
rT2 r2

NW − ν2
(4.14)

After convergence, λ (Eq. 4.7) is assessed by

λ =

(
θ̂1

θ̂2

)1/2

(4.15)

4.2.7 Global basis function

As an extension to Eq. 4.6, one can model a globally coherent component by adding a
global basis function to the basis set. In this thesis, two different global basis functions
have been evaluated. Both are an extension to Eq. 4.6. The first global basis function
is uniform over the grey matter encompassed, i.e.

AL = n(LG[AG|1]) (4.16)

and the second uses the mean of the observed images as a basis function such that

AL = n(L[GAG|Ȳ ]) (4.17)
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The regularization matrix W is modified accordingly by having zero entries for the
global basis function, i.e. the fit of the global basis function is not regularized or penal-
ized.

4.3 The temporal domain

Given a series of functional observations Y1, . . . , YNY , we estimate for each Yi a param-
eter vector β̂i by Eq. 4.7 to assemble an (NY ×Np) estimated parameter matrix

BT = [β̂1| . . . |β̂NY ] = (ATLAL + λW TW )−1ATLLE [Y1| . . . |YNY ] (4.18)

which represents the estimate of functional observations, projected into the space of
anatomically informed basis functions.

4.3.1 Reprojection of parameters and deconvolution

The estimated signal in voxel-space subject to convolution by L is given by

BL = BATL (4.19)

Similarly, if LE 6= INK , one can project the estimated parameters to voxel-space subject
to convolution with LI (only) by

BLI = BATLI (4.20)

The estimated signal in voxel-space, but without convolution by L is

BA = BAT (4.21)

By omitting the spatial convolution matrices LE or LI one is effectively implementing
a least-squares deconvolution in the sense that the estimates are those that obtain prior
to convolution.

Equivalently, let the columns of matrix Avertex be the folded basis functions in vertex-
space bjG, then the estimated signal in vertex-space is given by

Bvertex = BATvertex (4.22)

Eqs. 4.19 to 4.22 can also be expressed in an alternative way. For example, by substi-
tuting B in Eq. 4.19,

BL = [Y1| . . . |YNY ]TLTEAL(ATLAL + λW TW )−TATL (4.23)
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Let
PAL = LTEAL(ATLAL + λW TW )−TATL (4.24)

such that

BL = [Y1| . . . |YNY ]TPAL (4.25)

PAL is a NK ×NK matrix that projects the data convolved with LE to the fitted data
BL. Note that PAL represents an anatomically informed spatially variable filter kernel
at each voxel, where each column k of PAL encodes the spatial filter kernel image at
voxel k. A projection matrix that represents an anatomically informed deconvolution
of the data (Eq.4.21) is given by

PA = LTEAL(ATLAL + λW TW )−TAT (4.26)

4.4 Inferences about evoked responses over time

To make inferences about evoked responses, one has to characterize the parameter
matrix B in the temporal domain. This could be done at four levels: (i) the first is in
the parameter space (Eq. 4.18), (ii) the second is in the vertex-space (Eq. 4.22) and
(iii) one can also project B back into voxel-space given by Eq. 4.21 or (iv) into the
voxel-space specified by Eq. 4.19 and proceed with a conventional voxel-based analysis
in both cases.

Either a univariate or a multivariate technique could be used at all four levels.

In the following, the different levels will be called parameter space (Eq. 4.18), vertex-
space (Eq. 4.22), A-space (Eq. 4.21) and AL-space (Eq. 4.19). The latter two spaces
are called voxel-spaces.

4.4.1 Univariate inferences

Given a temporal design matrix M , one can model the spatial parameter matrix over
time by

B = Mγ + εB (4.27)

such that the least-squares estimate of γ is given by

γ̂ = (MTM)−1MTB (4.28)

This estimate can then be used to make inferences by using the framework of voxel-
based methods as described in sec. 2.2.3.
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Interestingly, any other inference in the spaces defined by AL, A and Avertex could be
directly derived from γ̂, because e.g. for the space defined by A the projected estimated
parameter matrix BA (Eq. 4.21) can be modelled by

BA = MγBA + εBA (4.29)

such that using Eq. 4.27

(Mγ + εB)AT = MγBA + εBA

which means

γAT = γBA (4.30)

εBA
T = εBA (4.31)

In short γ needs to be estimated only once and the other temporal parameter matrices
γvertex, γA and γAL in the spaces of Avertex, A and AL can be derived by a simple
projection. Building on this, any other variables (e.g. the residuals) necessary for the
assessment of a t- or F-field in the vertex- or voxel-spaces can be assessed by projection
of the associated variable in the parameter space defined by B. This procedure can
only be employed, if the temporal design matrix M is the same for projection and
parameter space. The other straight-forward way of assessing a t- or F-field in vertex-
or voxel-space is to project B into voxel- or vertex-space (e.g. Eq. 4.21) and estimate the
temporal parameters in this space. The advantage of projecting γ̂ instead of estimating
e.g. γA based on BA is that one avoids reiterated estimation of the parameters, which
includes handling, multiplication and inversion of potentially large temporal design
matrices as in the case of event-related fMRI.

The problem of multiple comparisons over voxels can be overcome by application of the
results from the theory of random fields as is standard practice in SPM. The smoothness
of non stationary residuals in voxel-space BA and BL can be estimated using results
from (Worsley et al., 1999). Using anatomically informed basis functions, one has to
take into account that BA features a spatially non-stationary smoothness distribution
because of the re-folding of the flat basis functions bFj into voxel-space. In (Worsley
et al., 1999), it is shown that it is sufficient to estimate the smoothness based on
the expectation of the determinants of the partial derivatives of the residual fields to
estimate the (local) smoothness at any voxel. This technique allows the appropriate
adjustments of the p-values in a statistic image with non-stationary smoothness using
results from differential topology.

The theory of random fields cannot be applied to the graph of t- or F-values based
on the parameter matrix γ̂, because this representation is not a discretized version of
an underlying continuous field. The spatial noise covariance matrix (estimated on the
standardized residual components) is related to the smoothness of a statistical field,
but only the projection to some image space establishes the assumption of a sampled
version of a continuous field. The Bonferroni correction can be applied, although it is
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clear that this method yields overly conservative p-values for a single basis function due
to the large covariance between spatially neighbouring parameters of (e.g. Gaussian)
basis functions. Additionally, an important question is whether a significant p-value of
a basis function supports the interpretation of the functional data. In the case of local
basis functions, the interpretation of a significant effect in parameter space can be that
there is some activation in the volume defined by the basis function. In other words,
the localization property of a single Gaussian or Sinc basis function is poor as compared
to a test within a voxel. Discrete cosine basis functions have no localization power at
all. The information given by the parameter of a single DCT basis function is that
there is some spatial frequency component in the direction of the cortical sheet, which
on its own unlikely to be useful. These considerations speak to inferences about all the
parameters collectively, i.e. the inference that the brain has responded somewhere. To
adopt this approach one leaves the mass-univariate methodology of SPM and turns to
multivariate inferences.

4.4.2 Multivariate inferences

In this section, an approach making multivariate inferences about the parameter ma-
trix B is described. This multivariate method was first described in (Friston et al.,
1995b) and is based on a combined approach of singular value decomposition (SVD),
multivariate analysis of covariance (ManCova) and canonical variates analysis (CVA)
(Chatfield and Collins, 1980).

As with a conventional analysis in voxel-space (e.g. in SPM99), various types of tem-
poral basis functions or regressors were used: (i) condition encoding vectors, (ii) a
constant and (iii) a vector of global mean intensities. The condition encoding basis
functions are the covariates of interest, the remainder generally represent covariates of
no interest. If the data were acquired with fMRI, a temporal band-pass filter is applied
to the functional data prior to fitting the model.

In what follows it is assumed that the band-pass filter accounts for temporal auto-
correlations, which are especially prominent at lower frequencies (Zarahn et al., 1997;
Aguirre et al., 1997).

Let the temporal basis functions be M = [M1M2], where M is an NY ×NM -matrix, NM

is the number of temporal basis functions, M1 and M2 are NY ×NM1- and NY ×NM2-
matrices, M1 and M2 are orthogonal to each other, and NM = NM1 +NM2 . M1 contains
the covariates of interest and M2 the covariates of no interest. A multivariate analysis
proceeds as follows:

First, the effects of no interest are removed by

BC = B −M2(MT
2 M2)−1MT

2 B (4.32)

The SVD of the corrected parameter matrix BC is given by

BC = BUBVBW
T (4.33)
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where BU and BW are orthogonal matrices and BV is a diagonal matrix. Let BP =
BJ
UB

J
V a NY ×NJ -matrix, where the columns of BP contain the temporal expression of

the first NJ spatial modes over observations. NJ is found by thresholding the associated
singular values contained in BV as described by Friston et al. (1995b) and BJ

U and BJ
V

are the accordingly reduced versions of BU and BV . In neuroimaging this dimension
reduction is necessary to ensure that the number of observations greatly exceeds the
number of variates.

Then the temporal model is given by

BP = M1γ + εM (4.34)

where γ is a NM1 ×NJ -matrix and εM a NY ×NJ -error matrix.

The least-squares estimate of γ is

γ̂ = (MT
1 M1)−1MT

1 BP (4.35)

Then the sums of squares and products due to error are

RE = (BP −M1γ̂)T (BP −M1γ̂) (4.36)

The sum of squares and products due to the effects of interest are

H = (M1γ̂)T (M1γ̂) (4.37)

and the sum of squares and products under the null hypothesis (that the effects due to
M1 do not exist) are

R0 = BT
PBP (4.38)

The significance of the effects of interest can be tested with Wilk’s Lambda

Λ =
|RE |
|R0|

(4.39)

as described in (Chatfield and Collins, 1980).

The characterization of the significant effects employs CVA, i.e. one finds a matrix of
canonical imagesQ = [q1, . . . ,qNJ ] such that the variance ratio (qmTHqm)/(qmTREqm)
is maximized successively for m = 1, . . . , NJ under the condition that cov(qm,qn) = 0
for any m,n with 1 ≤ m,n ≤ NJ and m 6= n.

4.5 Summary

The outline of the proposed algorithm is presented in Figs. 4.3 and 4.4 in the form
of flow charts. In Fig. 4.3, the information flow from the measured functional and
structural images to the temporal analysis is described. Fig. 4.4 represents the critical
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part of AIBF model generation in more detail. Both flow charts are described in the
following.

In Fig. 4.3, the processing graph can be divided into three parts. On the left hand
side, the aligned functional images are preprocessed, while on the right hand side the
structural image is transformed to the surface representation and the AIBF model is
generated. The fusion of both information streams is implemented in the model fitting
stage (see Eq. 4.6) such that images can be projected to inference space (Eqs. 4.19 to
4.22) and a temporal analysis can be performed. More specifically, as a first step, the
mean of the functional (aligned) images is computed and co-registered to the structural
image. Optionally, this mean image can be anatomically normalized. The normaliza-
tion transformation is then applied to all functional images. On the structural side,
the brain surface is reconstructed from the T1-weighted MR image. Optionally, the
surface can be normalized using the normalization transformation derived from the
functional mean image. The flattened representation is computed from the extracted
(non-normalized) folded surface and the AIBF model is generated using the flattened
surface, the normalized or non-normalized surface and the user specified AIBF param-
eters. This step is described in more detail in the text below (see also Fig. 4.4). After
the model generation step, one has (normalized) functional images and a (normalized)
AIBF model in the same voxel-space. Each image is fitted (Eq. 4.6) and projected to
the desired space of inference (Eqs. 4.19 to 4.22). Inference can then be made using
uni- or multivariate methods.

Fig. 4.4 depicts the processing flow of the AIBF model generation. A set of basis
functions is specified on the flattened surface SF . These two-dimensional basis functions
are transformed (in vertex-space) to the folded surface representation and projected to
voxel-space. Here, additional convolutions LI and/or LE can be applied to the basis
functions. The convolved basis functions are finally assembled column-wise in a matrix
and fitted to the functional data to give the estimated parameter matrix B (Eq. 4.18).
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Figure 4.2: Different representations of a Gaussian basis function. (top) two-
dimensional Gaussian kernel with 1 mm width in x- and y-direction, (middle) the same
basis function transformed to the original reconstructed cortical surface, (bottom) a
transverse slice of its representation in fMRI voxel-space.
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Figure 4.3: Flowchart describing the information flow from functional and structural
images to the temporal analysis of the fitted and projected images. Solid arrows:
transform of data, dashed arrows: transfer of information. A detailed description can
be found in the text.
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Figure 4.4: Flowchart describing the AIBF model generation. Solid arrows: transform
of data, dashed arrows: transfer of information. A detailed description can be found in
the text.
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Chapter 5

Features of the method

In this chapter, various features of AIBF are described and demonstrated by applying
it to some examples. In this context, using real data has the disadvantage that the
true underlying signal is unknown such that it is difficult to make inferences about
the validity of the method. Therefore, simulated data are used to examine the salient
features, the technical behaviour, face validity and construct validity in relation to
existing methods. Clearly, results with simulated data should be treated with the
caveat that the simulation can only be an approximation to the real world.

In this chapter, the application to simulated data is used extensively to describe and
discuss important features of the method in an ideal world, where the data largely
conform to the assumptions required by the method. In the next chapter, AIBF is
applied to real data.

5.1 Generation of simulated data

In this work, the process of generating functional data (fMRI and PET) is primarily
based on one assumption: any activation is localized in or close to the grey matter
sheet. The same assumption is made for the generation of the anatomically informed
model, i.e. any potential activation elsewhere is not modelled and cannot be detected.
Clearly, for fMRI data this assumption is likely to be incorrect, because it is known
that some proportion of the signal comes from draining veins, which do not necessarily
adhere to the grey matter sheet. This issue will be treated in the next chapter.

For both PET and fMRI, the information used to simulate an individual’s functional
data were a set of (null) functional data, a high-resolution structural T1-weighted image
and the grey matter surface generated from this image. The following describes how
the simulated data were generated for the fMRI and PET modalities.

51



5.1.1 Functional magnetic resonance data

Assuming that any activation arises from the grey matter sheet, one way of simulating
functional data is to acquire a functional null (activation-free) data set and to add a
simulated spatiotemporal signal based on regressors in the temporal design matrix and
the reconstructed grey matter surface.

93 scans were acquired under a continuous rest condition, i.e. the subject was instructed
to lie still and think of nothing for the whole session. The first 2 scans were discarded to
avoid T1-effects, leaving 91 scans for the preprocessing and statistical analysis. As ex-
pected, this null data set showed no significant activations when analyzed with SPM99
based on a blocked design (maximum t-score 4.39, corresponding to a p-value of 0.93,
corrected for multiple comparisons). In particular, there were no activations in the
region of the left primary sensorimotor cortex, which was chosen as the region to in-
troduce simulated activations.

The next step was the addition of some well-defined simulated activations. The left
hemisphere of the individual’s reconstructed cortical surface SF and condition encoding
temporal basis functions were used to define the activation signal. A subset of vertices
of VF (e.g. a circle of 3 mm diameter on the surface SF ) was selected and defined
as the source of a BOLD effect. Then, a (signal) time series was specified in each
vertex consisting of a compound of the condition encoding basis function. This signal
was embedded into voxel-space as described in Chapter 4. The signal time-series in
voxel-space was scaled such that the maximum intensity difference between conditions
was x% of the intracortical global mean signal of the null data, where x was typically
chosen from the range between 0 to 10%. Finally, the simulated signal in voxel-space
was added to the null data.

5.1.2 Positron emission tomography data

The PET data was generated in a similar way. However, the author felt that the costs
of scanning PET null data with respect to administering radioactively labelled water to
a subject were too high compared to the benefit of generating a test vehicle for AIBF.

Alternatively, another appropriate procedure is to select an individual’s PET scans
from another activation study and assume that there is a region, which is virtually free
of activation. Clearly, it cannot be shown that the activity in the selected ROI is not
somehow affected by the experimental design, but at least a specific prior anatomical
hypothesis and a statistical test can indicate that the effect size of an experimentally
induced activation in the ROI is small.

Given such a PET data set, the same procedure was used as in the fMRI simulations.
In addition, the signal time series were convolved with an isotropic Gaussian filter.
This emulates the image point spread function generated by effects like positron travel,
deviations from the 1800 angle and the reconstruction filter. After the convolution, the
simulated signal was scaled to match a given percentage of the grey matter mean. The
FWHM of this Gaussian filter was chosen to be [6 6 8] mm3 lying in the estimated
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range of the effective PSF.

5.1.3 Ideal assumptions

Obviously, the simulated data resembles real data and has most of the properties of real
data. However, there are several assumptions of the analysis that are met intrinsically
by the generation process:

• the forward model of the BOLD-effect is correct, i.e. the effect of neuronal activa-
tions within the grey matter and the measurement process are modelled correctly
by the matrix AG

• All the signal is exclusively generated in the reconstructed grey matter surface

• The reconstruction of the grey matter surface is error free.

• Distortions between flat map and folded surface do not play a role.

• The realignment of the data is error free.

• fMRI: There are no distortions in the EPI sequences.

• The time course of the signal follows exactly the basis function used for the
temporal analysis of the data.

5.2 Simulated studies

In the remainder of this chapter, five simulated experiments are presented. The first
four use simulated fMRI data, whereas the fifth deals with simulated PET data. The
first two show the performance of AIBF with respect to sensitivity and localization. In
the third, the parameter space of different AIBF sets is explored. The fourth section
discusses the effects of the regularization used to constrain the spatial solution as given
in Eq. 4.7. The fifth section revisits some of the above issues using simulated PET
data.

The analysis of all simulated data sets followed the same stages. All data sets were
analyzed with both SPM99 and AIBF.

In SPM, the conventional approach was taken: smoothing of data, specification of a
temporal design matrix, estimation of parameters and estimation of corrected p-values
based on a t-map SPM{t}. In all experiments, this process was also repeated using
unsmoothed data, i.e. data to which no spatial smoothing had been applied prior to the
analysis. This highlights some characteristics of AIBF in relation to these two types of
voxel-based analyses.

The procedure for AIBF was as follows: after specification of the spatial model (Eq. 4.6)
and estimation of its parameters for each image (Eq. 4.7), the parameter matrix was
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projected back to voxel-space (Eq. 4.19 and 4.21). These images were then analyzed
with SPM99 in the temporal domain. The latter step had mainly two advantages. The
first was that an existing implementation of a voxel-based approach could be used to
compute statistical results for projected AIBF images. The second was that the use
of the same temporal analysis and inference for both methods facilitated the cross-
validation of AIBF and SPM.

Furthermore, to save computer resources, only a volume of interest (VOI) around the
known simulated source was analyzed. This VOI was chosen as a rectangular patch
on the flat map encompassing the simulated signal. After projecting this surface patch
to voxel-space, a cuboid containing the patch was defined. Search volumes for the
estimation of corrected p-values (section 2.2.5) were based on this VOI for all analyses.
To facilitate the comparison of AIBF with SPM results, the analysis search volumes for
both methods were rendered as similar as possible. Note that one cannot use the same
search volume for AIBF (in A-space, Eq. 4.21) and a SPM analysis on smoothed data,
because the AIBF search volume in A-space is constrained by definition to the (sparse)
AIBF support volume. Smoothed activations might (partially) fall outside this search
volume leaving SPM on smoothed data with a disadvantage. Therefore, two different
search volumes were used. The first was the AIBF support in A-space and the second
was a smoothed version of this search volume, where the kernel was the same as used
for smoothing the functional images. This convolution increased the second search
volume in comparison to the first search volume by a factor of 3 - 6 (depending on
kernel widths). The first search volume was used for the AIBF-analyses in A-space and
for the SPM analyses on unsmoothed data. The second search volume was used for
the SPM-analyses on smoothed data. The use of two search volumes had the overall
advantage that any simulated activation can be detected by SPM on smoothed data
making the results of AIBF and SPM more comparable. The disadvantage is that the
corrected p-values computed by SPM on smoothed data are slightly increased because
of the larger second search volume.

5.2.1 Sensitivity

Introduction

One feature of AIBF is its sensitivity to extended sources confined to the grey matter
surface. If the grey matter surface has been correctly identified by the surface recon-
struction step and the activation is located close to this surface, then AIBF provides an
accurate and sparse spatial model to characterize the observed signal in voxel-space.

In the following experiment, it is shown that AIBF for this simulated data is indeed
more sensitive to an underlying non-focal source of activity than a conventional voxel-
based method (e.g. SPM99).
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Simulations

The simulated data were generated as described in section 5.1.1. The source of activa-
tion was defined as a circle with a diameter of 3 mm on the flat map located on the
anterior bank of the central sulcus at the presumed hand level. The temporal activation
pattern was specified according to a blocked on-off design convolved with a linear com-
bination of two gamma functions to emulate the effects of the haemodynamic response
function. The maximum signal intensity of the temporal activation pattern was varied
from 0 to 10 % of the global intracortical mean intensity of the functional scans in
1%-steps, giving 10 data sets of 91 images each.

Both AIBF and SPM99 were used to analyze the simulated data sets.

With AIBF, Gaussian basis functions with a distance of 2 mm and FWHM of 2 mm on
the flat map were used to construct the model matrix A. The regularization parameter
λ was assessed according to Eq. 4.8.

Results

Fig. 5.1 shows the results for each simulated data set. On the left, the maximum t-
values for each statistical map are plotted for increasing signal intensities. On the right,
the maximum corrected p-values for both methods are shown. At a signal intensity of
2% of the global intracortical mean intensity, AIBF identifies a significant (p < 0.05)
activation. With SPM99, the signal intensity must be higher than 5 % to result in a
significant p-value at the 0.05 level.
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Figure 5.1: Left: t-values computed for 10 data sets with simulated signal using AIBF
(red line) and SPM99 (blue line), Right: Same data sets, maximum corrected p-values
estimated using AIBF (red line) and SPM99 (blue line)
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Discussion

It is obvious from Fig. 5.1 that AIBF outperforms a voxel-based analysis like SPM99
on simulated data sets in terms of sensitivity. The key difference between the two types
of analysis is that different forms of feature extraction have been applied to the images
prior to the temporal analysis. In a conventional voxel-based analysis like SPM, one
typically smooths the images with a spatially invariant three-dimensional convolution
kernel. In AIBF, the fitting of basis functions essentially extracts a spatial component
from the images, which is confined to the grey matter sheet and is smooth only within
this sheet.

Given the assumption that all activity comes from the grey matter sheet or a spatially
proximate location, the overall aim is to detect specific spatiotemporal patterns on this
surface. The best way to detect these patterns is to find a proper anatomical model
describing known features of these patterns and constrain their possible location to the
grey matter sheet (c.f. the matched filter theorem).

The conventional way of detecting and localizing activation is to convolve the images
with a spatially invariant filter prior to the temporal analysis. The effects of such a
smoothing are mainly increases in signal-to-noise ratio and sensitivity, because the in-
teresting signal width is usually greater than the voxel-size, whereas noise also resides
in the high spatial frequencies. Note that this smoothing kernel implements its own
version of an anatomical model, which is that the observed functional voxel intensi-
ties are independent of the underlying anatomy and that activation can be expressed
uniformly at all locations in the brain. This is clearly not an ideal model, because
it ignores the convoluted nature of the human cortex. If the cortical sheet was a flat
surface, convolution with a stationary two-dimensional smoothing kernel prior to the
analysis would be a good thing to do, because the kernel exactly reflects the neighbour-
hood relationships of the underlying neural tissue at any position. However, given the
convoluted grey matter sheet embedded in three-dimensional space, a spatially invari-
ant three-dimensional low-pass kernel is no longer informed about the topology of the
signal source and cannot be the optimal spatial model.

AIBF, on the other hand, works without any exogenous isotropic smoothing filter.
Instead, spatially smooth basis functions located in the grey matter sheet are defined
and fitted to each functional observation. Any smooth and extended signal in the grey
matter sheet will be captured by this fitting procedure. There are three important
features of such a fit: (i) The basis functions follow the grey matter sheet, (ii) the basis
functions are informed about the distance measure on the grey matter sheet and (iii)
signal from neighbouring structures, like white matter or cerebrospinal fluid (CSF), are
attenuated or even removed, because the basis functions have their support largely in
grey matter.

Given a smooth activation in the grey matter sheet as simulated in the data, AIBF
extracts this spatiotemporal signal from the original image, whereas higher frequency
components and signals from outside the support area are precluded from the fitted
data. Therefore, the model fitting and the subsequent reprojection of the spatiotem-
poral parameter matrix B into the voxel-space can be conceived as a spatially variant
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anatomically informed smoothing operation, where the smoothing is constrained to the
cortical sheet.

As described in 2.2.5, the corrected p-value is approximated by probabilities based on
the Euler characteristic in resel space. This renders the corrected p-value in a three-
dimensional t-map largely a function of the observed t-value, the search volume, the
surface of the search volume and smoothness in the three directions.

The surface area of the AIBF search volume is not much larger than that of the
smoothed search volume. This is because the support of the basis functions usually
not only covers the grey matter, but neighbouring voxels such as the CSF within a
sulcus, although basis function intensities are rather low in these locations. Therefore
the AIBF search volume does not have a surface area equal to the total inward and
outward side area of the grey matter, but only a fraction of it. Clearly, this fraction
depends on the voxel-size and the individual CSF distribution.

Finally, the estimated smoothnesses of the SPM and AIBF are slightly different. The
smoothness of the t-map of the SPM analysis is governed by the applied smoothing ker-
nel, whereas the smoothness of the AIBF t-map is a mixture between the width of the
basis functions and the regularization used. The latter’s effect will be discussed in sec-
tion 5.2.4. When averaged over all voxels, the measured smoothness in the SPM t-maps
was [4.5 4.5 6.8] mm3 FWHM, which approximates the applied Gaussian smoothing
filter of [4 4 6] mm3 FWHM. In the AIBF t-map, the estimated smoothness was [5.8
4.9 7.6] mm3 FWHM, i.e. the resel count is smaller in the AIBF than in the SPM t-map
further decreasing the corrected p-value in favour of AIBF.

5.2.2 Localization

Introduction

Another feature of AIBF is that the model intrinsically introduces spatial superres-
olution into the statistical result. This superresolution is because the spatial basis
functions are well resolved in the direction orthogonal to the grey matter surface.

This high resolution in the orthogonal direction can be used to better differentiate
between sources close to each other in Euclidean image space, but rather distant on
the grey matter sheet. A simple example of such a configuration are two juxtaposed
sources on opposite banks of a sulcus. If one can resolve such a source configuration
with fMRI, this would facilitate the interpretation of statistical maps. With a voxel-
based analysis, one would expect that the initial smoothing replaces the two activation
sites by a single large one, given that the FWHM of the smoothing kernel is large in
relation to the distance between the activations.

In this section, the two activation configuration is analyzed with different AIBF sets and
SPM. It will be shown that AIBF can indeed differentiate between the two underlying
activations.
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Simulations

The simulated data were generated as described in section 5.1.1. For activations, two
circles each with a diameter of 3 mm were placed oppositely on the anterior and the
posterior bank of the central sulcus at the presumed hand level (Fig. 5.2). Note that
the anterior activation is at the location where one would typically find an activation
due to a finger opposition paradigm.

Figure 5.2: Left: Transverse slice and intersecting 3D reconstructed surface at the
presumed hand level showing, in white, the location of the simulated activations, Right:
(Zoomed-in) region of central sulcus showing the locations of simulated signals

The maximum signal intensity of the temporal activation pattern (see 5.2.1) was 8 %
of the global intracortical mean intensity of the functional scans.

With AIBF, two sets of basis functions were used. The first consisted of Sinc basis
functions with a distance of 2 mm and width of 3 as defined in Eq. 4.4. The second
set comprised Gaussian basis functions with a distance of 2 mm and a width of 2 mm
FWHM. The regularization parameter λ was assessed according to Eq. 4.8.

In SPM99, the images were smoothed prior to the analysis with a Gaussian filter ([4 4
6] mm FWHM).

Results

Two sources:
Both AIBF and SPM99 detect the original signal (Fig. 5.3). The best result, in terms
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of the smallest p-value, was found by Gaussian AIBF (1.8e−13) and with Sinc AIBF
a minimum p-value of 1.4e−7. SPM99 on smoothed data detected the signal with a
minimum p-value of 1.5e−7, on unsmoothed data with a p-value of 0.016. The results
in terms of t-maps are shown in Fig. 5.4, Fig. 5.5 and Fig. 5.6.

Both SPM99 on smoothed data and AIBF generate statistical maps, which show ev-
idence of only one cluster, which renders the two different sources undistinguishable
and mislocates the maximum of the original signal. SPM99 on non-smooth data seems
to detect two separate sources, but only at rather high corrected p-values as compared
to the other analyses. The estimated temporal parameter images of both sets of AIBF
bear a clearer resemblance to the original signal, i.e. one can differentiate between the
two signal sources. The overall pattern generated by the two AIBF sets is similar to
the original source configuration (Fig. 5.3).
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Figure 5.3: Original spatial pattern generated by the two sources configuration in
voxel-space

Discussion

In the localization simulations, it was shown that AIBF can differentiate between two
underlying activations. This is evident from the temporal parameter images, although
not from the t-maps.

Using the statistical maps of SPM on smoothed data or AIBF, one can only identify a
single cluster, whose maximum is located half-way between the two underlying sources.
In the case of SPM, this result was expected, because the smoothing operation prior
to the analysis would merge the two activations into a large one. The AIBF t-maps
look similar to the SPM t-map, i.e. one would interprete the result as evidence for one
activation between the two banks of the sulcus. The reason for this finding is that the
temporal analysis of AIBF is performed on re-projected data such that the temporal
noise variance is scaled with the same factor as the underlying parameter. In other
words, if one only re-projects only one basis function to voxel-space, one would find a
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Figure 5.6: Two sources, Left: t-map generated by Sinc AIBF, Right: parameter map
generated by Sinc AIBF

constant t-value across the support area of this basis function. If two overlapping basis
functions get a high t-value, the maximum t-value will be found in their overlap area,
although the estimated temporal parameter is low. This is what can be observed in
the AIBF t-maps (Fig. 5.5 (left) and 5.6 (left)).

In contrast, the AIBF temporal parameter maps preserve information about the form
of the basis function. Since the basis functions are specified such that the highest basis
function values are located within grey matter voxels, the fitted temporal parameters
reflect this pattern (Fig. 5.5 (right) and 5.6 (right)).

Although SPM on unsmoothed data seems to be capable of differentiating between the
two sources, this comes at the cost of losing sensitivity such that one can differentiate
between adjacent activations, but detecting them at all is difficult.

5.2.3 Exploration of parameter space

Introduction

In the two preceding sections, the focus was on the characteristics of AIBF with respect
to sensitivity and localization power. The choice of parameters to detect the unknown
signal was rather intuitive and not based on any theoretical consideration about the
optimal parameter set. In this section, the AIBF parameter space is explored more
thoroughly. Given the same underlying activation on the cortical surface, various basis
function sets are used to model it. This exploration is presented for all three types of
basis sets. The results are characterized by assessing the minimum corrected p-value
related to the signal change. Finally, the results are discussed in relation to choosing
AIBF parameters for unknown signals.
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Simulations

A single configuration was defined in terms of a circle with a diameter of 3 mm, located
on the anterior bank of the central sulcus at the presumed hand level. The maximum
signal intensity of the temporal activation pattern (s. 5.2.1) was 8 % of the global
intracortical mean intensity of the functional scans.

Only AIBF was employed to analyze the data. Three different types of basis functions
were used, i.e. (i) Gaussian, (ii) sinc and (iii) discrete cosine sets. For each set, the
user-specified parameters were varied to produce a range of different models.

For Gaussian basis functions, the distance between centres ranged between 0.8 and 2.4
mm with a step-size of 0.2 mm, giving nine distances. Each of these distance parameters
was applied with a set of basis function widths, ranging between 1.0 to 5.0 mm FWHM
with a step-size of 0.4 mm, giving eleven different widths. This resulted in 99 Gaussian
basis function sets.

Similarly, for sinc basis functions, the distance between centres ranged between 1.0 and
2.4 mm with a step-size of 0.2 mm, giving eight distances. The widths ranged between
0.1 to 0.8 with a step-size of 0.1, giving eight widths. This resulted in 64 Sinc basis
functions sets.

In the case of the discrete cosine sets, the highest spatial frequency was varied, starting
from Ku = 2 to Ku = 24 with a step-size of one and Kv = Ku as defined in Eq. 4.5.
All frequencies below the highest frequency were included in a basis set. This resulted
in 23 different sets, where the spatial frequencies with respect to the underlying surface
SF ranged between 0.0125 to 0.2674 cycles/mm on the flattened cortical surface.

The regularization parameter λ was determined according to Eq. 4.8.

Results

For each type of basis function (Gaussian, Sinc, discrete cosine), the maximum t-value
and corresponding minimum corrected p-value with respect to the simulated signal
change were assessed. In the case of Gaussian and Sinc basis functions, this resulted in
two-dimensional result maps as a function of the generating parameters distance and
width (Fig. 5.7 and 5.8). For the discrete cosine basis functions, the minimum corrected
p-value and maximum t-value of each set were plotted as a function of the set order
(Fig. 5.9). In all cases, the maximum t-values resulting from the analysis within native
parameter space B were computed and plotted.

Discussion

The parameter maps shown in Figs. 5.7, 5.8 and the plot in Fig. 5.9 offer some important
insight into the relationship between the user-specified parameters and the width of the
underlying activation.
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Figure 5.7: Maps of AIBF-results with Gaussian basis functions using a simulated
source consisting of a circle with 3 mm diameter. The x-direction encodes the dis-
tance between centres and the y-direction the width of basis functions. (Top left) Map
of maximum t-values in voxel-space after reprojection (Top right) Map of the nega-
tive logarithm of the minimum corrected p-values after reprojection (Bottom) Map of
maximum t-values in parameter space
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Figure 5.9: Plot of AIBF-results with discrete cosine basis functions using a simulated
source consisting of a circle with 3 mm diameter. The x-axis encodes the order of the
set. (Left) Maximum t-value in voxel-space after reprojection (blue) and maximum
t-value in parameter space (red), (Right) negative logarithm of minimum corrected
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First of all, it can be seen that the overall maximum t-value assessed for each type of
set (Gaussian, Sinc, dct) is between 9 and 10. This corresponds to a minimum p-value
smaller than 10−10. These results mean that all three types of sets are suitable for
the detection of the underlying focal signal. In comparison to this, SPM computes
a maximum t-value of 6.58 on smoothed data and 5.50 on unsmoothed data. This
corresponds to minimum corrected p-value of 1.1 · 10−4 and 6.6 · 10−3.

It can also be seen from Fig. 5.7 and 5.8 that in the case of Gaussian and Sinc basis
functions, the width of the basis functions plays a crucial role with respect to sensitivity.
For Gaussian basis functions, the minimum p-values were obtained, when the width, as
defined in Eq. 4.2, was between 1.8 and 2.2 mm FWHM. For Sinc basis functions, the
optimal width (Eq. 4.3) appears to be 0.3 to 0.4 mm. At this width, good sensitivity
can be observed for a wide range of distances. This is a reassuring result, because
it means that the exact spacing of the basis function centres does not really matter
provided that the width corresponds roughly to the width of the underlying signal. A
Gaussian FWHM around 2.0 mm roughly corresponds to the size of the signal. A Sinc
function with a width of 0.3 to 0.4 mm is slightly narrower than this Gaussian.

One can also see that small distances appear to lead to better results, even if the width
is larger than the signal. This is because the positioning of the basis functions is better
with respect to the location of the signal for a denser sampling. Effectively, this means
that one should choose not only the optimal width, but also a distance that oversamples
the signal.

The choice of parameter gets much more critical if one analyses the estimated param-
eters B directly in their native space. In the case of Gaussian basis functions, the
region of maximal sensitivity is much more confined. The reason for this is that high
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sensitivity in parameter space can only be reached if the support of a single basis func-
tion covers most of the underlying signal. This is typically the case when the overlap
is small and the basis functions are well positioned. In Fig. 5.7 this becomes obvious
because the area of high sensitivity in the top right corner in the map of maximum
t-values is virtually absent in the map of maximum t-values in parameter space. For
Sinc basis functions, the maximum t-values are rather low in comparison to those in
the equivalent Gaussian analyses. This might be because Sinc basis functions, with
negative side lobes, are a suboptimal basis set to model the simulated signal.

For discrete cosine sets, it can be seen that the t-value and minimum p-value rise until
the order of the basis set reaches 22 and then levels off and slightly decreases. The
actual maximum side length (Eq. 4.5) of the surface patch was 43 mm, which means
for an order 22 the highest frequency basis function has a frequency of 10.5 cycles/43
mm, i.e. 1 cycle/4.10 mm. A half-cycle would then cover 2.05 mm, which is less than
the underlying signal width of 3 mm. This lower value is not unexpected, because the
spatial form of the underlying signal is not sinusoidal, but rectangular such that higher
frequencies are necessary to fit the signal perfectly.

It is reasonable to assume that the overall fit to the signal still improves for higher
order sets, but this does not imply better sensitivity. Fitting higher frequencies pro-
duce temporal noise through overfitting such that the numerator of the ensuing t-value
remains the same, but the denominator increases.

The maximum t-values of the discrete cosine sets in parameter space remain very low
for all sets, reflecting the fact that the fit of a discrete cosine set is distributed over all
basis functions and any single basis function cannot capture the effect.

Clearly, the choice of basis function width or order of a discrete cosine set is a critical
parameter. It depends on the prior expectation about the width of the unknown signal.
This issue is the same as in conventional voxel-based analyses, where an exogenous
smoothing kernel width has to be specified by the user. Usually, in fMRI, the width of
the 3-dimensional smoothing kernel will range somewhere between zero and four times
the voxel size, depending on the question asked.

For local AIBF (Gaussian and Sinc), one should capture the signal with basis functions
that are larger in extent than one voxel with a width equal to the expected signal width.
In this thesis, it is assumed that focal signals induce a BOLD effect that has a width of
roughly 3 - 5 mm on the cortical surface. The results of this section suggest that one
should ensure that the distance between centres oversamples the expected signal width.
Given a width of 3 mm, as used for the simulated signal, a Gaussian basis functions
set with distance 1.2 mm and width 1.8 to 2.2 mm FWHM would be an appropriate
choice.

For discrete cosine sets one should specify an order where the highest frequency is
around 1/3 to 1/5 cycle/mm.
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5.2.4 Regularization

Introduction

Regularization is a device used in inverse filtering, image restoration and virtually any
inverse problem. Prior knowledge or assumptions about the underlying solution are ex-
ploited to compromise between fitting the data and the model. The latter incorporates
assumptions about the solution. Given that there are many more parameters to be
estimated than observations, regularization is one way to resolve the inverse problem,
because one effectively restricts the solutions to be associated with a likely model. In
this way, regularization can be understood as incorporating soft constraints into the
solution. However, in this thesis, regularization is not the key principle. The aim is
rather to effectively reduce the number of parameters before fitting the model, i.e. the
approach is to project the observations to a low-dimensional subspace using constraints
on the anatomy and about the smoothness of the solution. In contradistinction to regu-
larization, this scheme enforces a hard constraint, because a whole subspace of possible
solutions have been discounted. The question might be raised, if additional regulariza-
tion is useful at all, given that the basis function approach already implements some
smoothness constraints.

In the following, it is shown that regularization in the context of AIBF can further
improve sensitivity.

Simulations

The simulated data was generated as described in sections 5.1.1. One source configura-
tion was specified, which was a circle with a diameter of 3 mm located on the anterior
bank of the central sulcus at the presumed hand level. The maximum signal intensity
of the temporal activation pattern (see 5.2.1) was 8 % of the global intracortical mean.

Only AIBF models were employed to analyze the data in the spatial domain. All three
different types of bases, i.e. (i) Gaussian, (ii) sinc and (iii) discrete cosine were used.
The basis parameters were chosen on the basis of the preceding sections as optimal or
close to optimum. For Gaussian sets, 1.4 mm separation and 1.8 mm FWHM were
used, for Sinc sets 1.4 mm separation and 0.3 mm width and for the discrete cosine set
the order was 22.

For each basis set, two techniques to compute λ were applied to two different regu-
larization constraints (section 4.2.6). In the following, application of Eq. 4.8 will be
denoted by estimator 1 and the ReML algorithm by estimator 2. The two regular-
ization constraints will be referred to as constraint 1 (zeroth order regularization in
parameter space) and constraint 2 (first order regularization in voxel-space).

Additionally, minimum p-values (for all basis sets, constraints and techniques) were
computed as a function of λ to examine the effects of different degrees of regularization.
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Results

Fig. 5.10 plots the minimum p-values for different basis sets and two constraints as a
function of λ. The values of λ assessed by the two estimators described in section 4.2.6
are also provided.

Discussion

In this section the effects of regularization on the sensitivity of AIBF was explored.
In the following, the relationship among the form of the basis functions, regularization
and sensitivity is discussed.

The overlap between adjacent local basis functions is controlled by the width and
separation. Decreasing the separation while fixing the width, increases the variance of
the estimated AIBF parameters. This is because the model has more freedom for fitting
the data. One could argue that this overfitting is not really an issue, because one is not
concerned with the variance of the estimated parameters, but the estimates themselves.
However, an increased variance means that more high frequency components enter the
fitted data. If these high frequency components are not signal-related, the sensitivity
of the analysis will decrease, because the denominator of the t-value will increase.

This has important implications for the choice of local basis functions and the regular-
ization applied. As concluded, one should choose the separation of basis functions such
that the signal is oversampled in relation to its width. As discussed above, the disad-
vantage is that decreasing separation increases the overlap and sensitivity decreases.
This reflects a trade-off between the sensitivity to detect changes and the anatomical
precision at which these changes are detected. This trade-off can be moderated by a
regularization which dampens the parameter estimates and decrease its variance.

As expected, regularization improves the solution with respect to sensitivity, if the
width of the basis functions matches roughly the width of the signal and the sepa-
ration is small. Such a parameter configuration is given by 1.8 mm FWHM and 1.4
mm separation. In (Fig. 5.10), the plot for the Gaussian set shows that without the
regularization the minimum p-value is ca. 10−4 and experiences a decrease to ca. 10−10,
when λ = 1 and constraint 1 is used. Constraint 2 appears to have deleterious effects
in the sense that the sensitivity only increases marginally for local basis functions and
decreases for the DCT set.

Note that the smoothness of the solution increases with increasing λ (under both con-
straints). For example, when λ = 0, one resel is estimated as 4.04 voxels, whereas for
λ = 1, one resel is 15.49 voxels. If one wants maximum resolution, the obvious choice
is to set λ = 0, i.e. to apply no regularization but at the cost of sensitivity.

If one increases the separation to 2 mm (data not shown), the unregularized solution
results in a minimum p-value of 6.27e−8 (1 resel = 9.61 voxels) and the regularized
solution (constraint 1, λ = 1) improves this to 7.80e−10 (1 resel = 17.91 voxels). This
result indicates that zeroth order regularization at λ = 1 can be used to find a solution
which does not interact with the separation of local basis functions with respect to the
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Figure 5.10: Regularization with two constraints and three basis sets. Each graph
displays the negative log of the minimum p-values in voxel-space as a function of λ.
The red squares mark λ found by using estimator 1, (s. Eq. 4.8). The green squares
show the results of estimator 2, the ReML estimator described in section 4.2.6. Top
row: Gaussian basis set, middle row: Sinc basis set, bottom row: Discrete cosine set.
Left column: constraint 1 (0th-order regularization in parameter space), right column:
constraint 2, (1st-order in voxel-space)
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sensitivity to the solution.

The results for the Sinc basis functions (Fig. 5.10, middle row) are similar. The same
argument about enhancing high frequency components with increasing overlap applies
to Sinc functions.

For the global DCT set, the results are slightly different. A DCT set without regular-
ization is more sensitive than local basis function sets. At λ = 0 the minimum p-value
is 2.39e−11 with 1 resel = 9.3 voxels. At λ = 1 the minimum p-value is 2.43e−12 with 1
resel = 12.40 voxels. Regularization with constraint 2 does not improve the sensitivity
of a DCT set.

5.2.5 Spatial deconvolution

Introduction

In this section, the application of AIBF to PET data based on simulated activations is
presented to illustrate the potential role of AIBF with low resolution data. To a first
approximation, the effects of the PET point spread function (PSF) can be characterized
by convolution with a Gaussian kernel. In Eq. 4.6, this convolution is implemented by
multiplication with a convolution matrix LI .

In this way, the AIBF model for PET, or any other imaging modality that has a point
spread function wider than the voxel-size, is effectively an extension of the AIBF model
for fMRI. Furthermore, it will be shown that one can apply an additional convolution
to both data and model to render the parameter estimation more robust with respect
to registration errors between the grey matter surface and functional data.

Fitting such a convolved model allows back-projection of the estimated parameters not
only into the smooth AL-space (Eq. 4.19), but also into the A-space (Eq. 4.21), i.e. the
effects of the PSF and any additional convolution are removed from the fitted data
in AL-space. Effectively, this is a spatial deconvolution of the functional data that is
guided by anatomical information. In the following, application of AIBF to simulated
PET activation data and the effect of convolution with an additional stationary lowpass
kernel is demonstrated.

Simulations

The simulated data were generated as described in section 5.1.2. The PET data used
for generating simulated activation data were acquired from a single-subject experiment
consisting of twelve scans. A description of this data is in section 6.2.1. The simulated
activation varied in an on-off fashion over scans.

A circular source of 16 mm diameter was defined on the cortical surface in the parietal
lobe. The maximum signal intensity of the temporal activation pattern (see 5.2.1) was
3 % of the mean grey matter intensity of the functional scans (a small activation). For
all AIBF analyses, Gaussian AIBFs with 12 mm separation and 12 mm FWHM were

70



Type of analysis correct surface misregistered surface
AIBF, A-space 0.22 0.68
smoothed AIBF, A-space 0.20 0.16
AIBF, AL-space 0.44 0.84
smoothed AIBF, AL-space 0.35 0.29
SPM (unsmoothed data) 0.79 0.99
SPM (smoothed data) 0.53 0.57

Table 5.1: Minimum corrected p-values for peak t-values. Correct surface: There was
no registration error between reconstructed surface and functional data. Misregistered
surface: The correct surface was shifted by 8 mm in the x-direction. The AIBF pa-
rameters were 8 mm separation and 8 mm FWHM. The smoothed AIBF set involved
applying an isotropic Gaussian smoothing to the data and the model. The SPM analy-
ses were performed on smoothed (12 mm FWHM in each direction) and on unsmoothed
data.

used. These data were analyzed with two different convolution matrices. The first
was a convolution matrix LI ([8 8 8] mm FWHM) to emulate the effects of the PET
PSF. In the second simulation, both the data and model were further multiplied with a
convolution matrix LE of [12 12 12] mm FWHM. In the following, the first simulation
is referred to as the AIBF model, and the second is the smoothed AIBF model.

These two simulations were repeated, where surface misregistration was emulated by
shifting the reconstructed surface by 8 mm (4 voxels) in the positive x-direction. In a
conventional SPM-analysis, a Gaussian smoothing filter of [12 12 12] mm FWHM was
employed.

Results

In table 5.1, the minimum p-values of all analyses are listed. In Fig. 5.11, the simulated
signal, the structural MRI and the p-values for each analysis are displayed through a
coronal slice.

Discussion

In this section, it has been shown how AIBF can be applied to PET data by using an
extension of the proposed AIBF model for fMRI. This obtains by multiplying the model
with a convolution matrix (Eq. 4.6), which emulates the effect of the PET point spread
function. Furthermore, it has been demonstrated that additional isotropic smoothing
can be applied to both the data and model to render the AIBF model more robust with
respect to registration errors between the anatomical and functional data.

In tab. 5.1, the minimum p-values for peak t-values are listed for various analyses. One
can see that the AIBF analyses based on the correct surface are more sensitive than a
SPM analysis. Interestingly, the sensitivity is roughly the same in both AIBF analyses.
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Figure 5.11: Maps showing the negative log of p-values for three analyses. Top row:
simulated activation and structural MRI, middle row: AIBF analyses (parameters de-
scribed above) in A-space, bottom row: SPM analysis
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Figure 5.12: Maps showing the negative log of p-values for three analyses, where the
AIBF analyses are based on a misregistered surface. Top row: AIBF analyses (param-
eters described above) in A-space, bottom row: SPM analysis

73



Although this is a reassuring result, it should not be expected for all data, because
sensitivity depends critically on the width of the underlying signal.

When using a misregistered surface, AIBF without additional smoothing is obviously no
longer able to capture all of the underlying signal and sensitivity decreases. Sensitivity
is restored if additional smoothing is employed. The minimum p-values are even slightly
lower than with the correct surface.

Note that the minimum p-value of the SPM analysis on unsmoothed data decreases,
when the translated surface is used. This is because the same search volume was used
as in the AIBF analysis in A-space, which is essentially a narrow ribbon following
the cortical sheet. In the analysis where the translated surface was used, the voxel
location showing maximum evidence of an activation was simply excluded from the
search volume. Obviously, this means that constraining the search volume has the
advantage that the sensitivity to detecting an activation increases within the search
volume, but this kind of constraint is not very robust with respect to an ill-informed
choice of the search volume.

The minimum p-value of the SPM analyses on smoothed data varies slightly which is
because of different estimates of the resel count within the two search volumes.

In Fig. 5.11, one can observe the effect of the additional smoothing filter on the AIBF
model fit. In the middle row, two coronal slices of the two AIBF maps (correct surface)
are shown. The image on the right hand side shows enhanced evidence for an activation
at those locations that are close in image space to the true underlying activation.
Although no activation was placed at e.g. position (15, 24), the smoothed AIBF analysis
finds a p-value of 0.5 there, because this location is quite close in image space to the
true activation.

The applied shift of 8 mm to the surface to simulate a registration error between
structural and PET data is rather unlikely to occur for single subject data. From
experience and simulated studies (Kiebel et al., 1997), the registration error between
PET and MRI image is at most 2 mm. However, there are two important cases where
registration errors on this scale play a role.

The first is if the surface reconstruction is partially incorrect. For instance, this could
be caused by low contrast in parts of the structural MRI between grey and white
matter tissue. The temporal lobes are a region of the brain where this can happen
because of its off-center location and the thin white matter tracts in this region that
incur partial volume effects. The principled solution is obviously to improve the surface
reconstruction, but it is worthwhile to keep in mind that a second option is to smooth
both model and data to ensure robustness of the solution. Although this degrades
image resolution, it is better to have a suboptimal model as a first approximation than
to have a model highly susceptible to slight errors. The same applies to fMRI data,
where EPI distortions can cause wrong registration between structural and functional
MRI data.

The second reason to apply a smoothing filter to both data and model is given by
multi-subject studies. As it will be demonstrated in the next chapter, the basic idea
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is to stereotactically normalize the functional data from different subjects and choose
a canonical surface, which can be e.g. the normalized surface of one subject. In this
thesis, an image-based normalization was used (Ashburner and Friston, 1999) such that
surface registration errors between different subjects are possible. However, as it was
demonstrated in this section, convolution with a lowpass filter can be used to overcome
the registration error between canonical surface and individual activation. This issue
will be further discussed in the next chapter.
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Chapter 6

Applications

In the previous chapter, AIBF was validated and tested on simulated data. Some
guidelines were derived pertaining to what parameter combinations are appropriate to
model data. In this chapter, AIBF is applied to real fMRI and PET data. For fMRI,
data from five subjects were analyzed in a series of single-subject studies and in a
group study. For PET, AIBF is applied to two group studies. It is shown that AIBF
offers a way of controlling the balance between resolution and sensitivity. In particular,
two applications are studied in detail. The first is the case where one is interested
in enhancing the spatial resolution by employing an accurate anatomical model of the
underlying individual neuroanatomy. This is most useful in the analysis of single subject
fMRI statistics. The second application employs AIBF for group studies of fMRI or
PET data, where one can increase the sensitivity at the expense of resolution tangential
to the cortical surface but retain high resolution normal to it.

6.1 Functional magnetic resonance data

In this section, AIBF and SPM are applied to fMRI data. Data from five subjects are
used to demonstrate how AIBF can be used for three kinds of analyses. Two models
are used for single subject analyses, where the first analysis achieves good resolution
on the cortical surface. The second AIBF model puts more weight on sensitivity than
resolution. The third model is used to analyze the five data sets as a group study,
where one assumes that the anatomical variance can be decomposed into two error
components, one is the residual transverse error along the position of the canonical
surface relative to the true surface and the second the translational misregistration
along or normal to the surface.

The paradigm is fingertapping, a common experimental test in fMRI, because it evokes
robust activations in the contralateral primary sensorimotor cortex. It is not clear
whether the activation detected with fMRI in finger opposition tasks is truly a picture
of what happens at the neuronal level. However, it is known that finger opposition
tasks generate strong evidence for a BOLD effect at the so called hand knob, which
is a macroscopic anatomical feature easy to identify on high-resolution structural MR
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images (Yousry et al., 1997). This hand knob is located in the anterior bank of the
central sulcus at z ∼ 48 in Talairach coordinates. Given this robust paradigm, the
primary interest in this study was to compare different models with respect to sensitivity
and resolution for activations located around the hand knob.

6.1.1 Single subject studies

Data acquisition and design

Data from five right-handed subjects were analyzed, where each subject performed a
finger opposition task. Subjects opposed the middle finger and thumb of the right hand
at a self-paced frequency of 0.5 Hz. All subjects were right-handed.

The functional data (EPI, gradient echo) were acquired on a clinical 1.5 T Siemens
Vision unit (Siemens GmbH, Erlangen) with TR = 168 ms, TE = 79 ms, flip angle =
900. Each image consisted of 128 × 128 voxels, 20 slices, transverse orientation, voxel
size 1.8 × 1.8 × 3 mm3. For each subject, the position and orientation of the slices
were chosen to cover the brain volume superior to the corpus callosum, in particular
the primary sensorimotor hand area.

The design was blocked and each epoch consisted of seven scans. Rest and activation
epochs were alternated. 94 scans were acquired, where the first three scans were dis-
carded to allow for a steady state of the transverse magnetization to be obtained. The
first condition was rest, giving seven rest and six activation epochs.

Analysis

The focus of interest, in this study, was activation in the left central sulcus at the
presumed hand level. Therefore a rectangular VoI on the reconstructed flattened surface
was chosen to cover roughly 3600 mm2 of the flattened grey matter surface in the
left hemisphere encompassing the central sulcus. The exact VOI varied slightly over
subjects. All data were normalized to facilitate a later group study and comparison of
the single subject results within a common anatomical frame.

SPM99 was used on non-smoothed and smoothed functional data, where the Gaussian
smoothing kernel had a FWHM of [4 4 6] mm, i.e. roughly twice the voxel-size in each
direction.

The first AIBF analysis aimed at maximizing the effective resolution of the results.
Gaussian basis functions were used to generate the spatial model. The parameters
were 1.5 mm separation and 1.5 mm FWHM in each direction on the cortical surface.

The goal of the second AIBF analysis was to enhance the sensitivity of the AIBF model.
To do this, the data were smoothed prior to spatial modelling with a Gaussian filter of
[2 2 3] mm FHWM. The model was smoothed with the same filter kernel. The Gaussian
basis function parameters were 3 mm separation and 3 mm FWHM.
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Subject SPM unsmoothed SPM smooth
1 1.1e−6 -38/-26/51 1.2e−11 -40/-22/54
2 4.7e−11 -44/-24/63 1.1e−11 -42/-24/60
3 2.2e−16 -46/-27/54 2.2e−16 -44/-27/69
4 2.7e−12 -42/-22/54 2.7e−14 -44/-22/69
5 2.8e−15 -47/-17/60 2.2e−16 -49/-24/60

Table 6.1: Minimum corrected p-values for maxima and their locations in Talairach
space

Subj. AIBF(resolution) AIBF (sensitivity)
1 1.5e−9 -38/-24/51 2.6e−13 -38/-24/51
2 5.1e−12 -40/-26/63 3.8e−14 -37/-24/60
3 2.2e−16 -46/-29/54 2.2e−16 -44/-24/54
4 5.6e−13 -40/-27/51 2.2e−14 -40/-24/66
5 2.2e−16 -49/-26/63 4.4e−16 -47/-20/63

Table 6.2: Minimum corrected p-values for maxima and their locations in Talairach
space

The search volumes of AIBF and SPM on unsmoothed data were given by the volume of
support of the basis functions in voxel-space. The search volume of SPM on smoothed
data was a smoothed version of the AIBF search volume, where the smoothing filter
applied was the same as used prior to the SPM analysis, i.e. [4 4 6] mm FWHM. Note
that the estimator of the corrected p-values is a function of search volume (section
2.2.5).

Results

In all five subjects and across all analyses, strong evidence for an activation was found
in the primary sensorimotor area in the left hemisphere. In tables 6.1 and 6.2, the
minimum corrected p-value for each subject is listed for each method. Note that the
minimal corrected p-value for SPM99 is 2.22e−16 because of a ceiling effect in its com-
putation.

To further characterize the distribution of activation along the z-axis, the maximum
t-value for each plane in normalized space was plotted against the z-height (Fig. 6.1).

In Fig. 6.2, the t-maps of subject 4 around height z=51 mm are shown for each analysis.
Subject 4 showed a typical activation, representative of the other subjects.
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Subject 5

Figure 6.1: t-values as a function of normalized z-height for five subjects. (Blue) Max-
ima of SPM on unsmoothed data, (Red) Maxima of SPM on smoothed data, (Green)
AIBF (resolution), (Black) AIBF sensitivity
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Figure 6.2: t-maps at z=51 mm for 4 different analyses on subject 4, thresholded at
p(t) < 0.001 (uncorrected). First row: SPM on unsmoothed data, second row: SPM
on smoothed data, third row: AIBF (resolution) and bottom row: AIBF (sensitivity)
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Discussion

In this section, SPM and AIBF were used to analyze five single subject data sets.
Gaussian AIBFs were applied with two different parameters, giving two spatial models.

The first AIBF model captures low frequency components located in the grey matter
sheet such that signal components from outside the grey matter sheet are suppressed.
This results in a statistical map with evidence for signal changes that have two spatial
characteristics: (i) they are confined to the grey matter sheet and (ii) they consist of
spatial low-frequency components distributed along the direction of the cortical sheet.
Note that the first constraint is subject to the resolution of the measured data and
the anatomical validity of the model, i.e. through partial volume effects and potential
surface misregistration, signal components originating from extra-parenchymal space
can influence the estimates. Nevertheless, this particular AIBF model extracts signal
components such that sensitivity for smooth BOLD effects located in grey matter is
enhanced while other signal sources are attenuated.

The second AIBF model weakens the constraint about the location of signal and ex-
plicitly allows sources close to the grey matter to contribute to the solution. This is a
consequence of smoothing the data and the AIBF model with an isotropic filter prior to
the parameter estimation. The estimated parameters are then projected to the voxel-
space defined by the unconvolved model and analyzed over time. The key point here is
that the AIBF step can also be understood as a projection of the functional data onto
the grey matter surface followed by tangential smoothing along the cortical surface.

The most sensitive results, with respect to an activation within the VOI, were found
for SPM on smoothed data and the second AIBF model. The first AIBF model is more
sensitive than SPM on unsmoothed data. Note that the p-values are only compara-
ble between the smoothed SPM and the AIBF analyses in a limited way because of
the different search volumes. As discussed in section 5.2, the search volume of SPM
on smoothed data is roughly five times larger than the search volume of SPM on un-
smoothed data or of both AIBF models. The smoothness is lowest for SPM with
unsmoothed data, where one resel is ca. 4 voxels. One resel with smoothed data is
about 20 voxels. One resel for the first AIBF model is roughly 40 voxels and about 150
voxels for the second AIBF model.

Resolution can be seen from two points of view in spatial modelling. In voxel-based
analyses of single subject data, the resolution is governed by the reconstruction filter
and the exogenous isotropic smoothing filter. Fitting AIBF models can be thought of as
applying a non-stationary smoothing filter where the characterization of the smoothness
in terms of a Gaussian three-dimensional kernel is an abstract one. This can be seen in
Fig. 6.2, where it is clear that the AIBF t-map is very smooth tangential to the cortical
surface, but rough in the orthogonal direction. This means that AIBF, in this example,
resolves less acutely than SPM along the cortical surface. But there are two important
advantages. The first is that AIBF attenuates or removes confounding signal sources.
In other words, one can increase the smoothness (and sensitivity) along the surface
without incorporating unwanted signal sources that lie outside the cortex. The second
advantage is that the resolution of AIBF might be degraded along the surface, but it is
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excellent in image space. For instance, if two activations are close in image space, but
remote along the surface, AIBF can resolve them well. Note that this means that one
can increase the smoothness of the AIBF statistical maps using wider basis functions
without smearing activations together.

The t-maps from all methods show one activation cluster elongated in the z-direction,
from roughly 48 mm to 70 mm superior to the AC-PC (anterior commissure-posterior
commissure) line (Fig. 6.1). One explanation for this observation might be that a
large area of the primary sensorimotor cortex is activated. Another explanation is that
an activation, roughly at hand level (say z = 48 to 54 mm) accounts for the ventral
component and the dorsal part of the activation is caused by a BOLD effect from
draining veins. This explanation is supported by the fact that the most dorsal part of
the activation is clearly located outside the grey matter. This effect is most evident
in the SPM analyses of smoothed data. There the most dorsal part of the activation
is clearly located in CSF and reaches z = 70 to 85 mm, whereas the AIBF approach
locates the most dorsal part roughly 10 mm more ventrally. Note that SPM using
unsmoothed data works on masked images, where the mask conforms to the support of
the AIBF basis functions. This means that if there are sources outside the grey matter,
SPM with unsmoothed data, as used here, would not show it.

Interestingly, if one characterizes the activation by a single maximum (peak-value) one
can see from Tab. 6.1 that SPM on smoothed data locates the minimum p-value in all
subjects (except for subject 1) somewhere in the dorsal part of the activation. This is
especially marked in subjects 3 and 4, where SPM on smoothed data finds a minimum
that is located very dorsal to the presumed hand level and outside the grey matter.
This is not the case for AIBF and SPM with unsmoothed data. Both methods locate
the minimum p-value in subjects 3 and 4 adjacent to the hand knob.

For all other subjects, the locations of the maxima found by the three methods are
similar. Visual inspection of the overlay of each statistical map showed that all maxima
identified by AIBF were indeed close to or located within grey matter. In subjects 2
and 5, all methods located the minimum p-value around z = 60 mm. In Fig. 6.1, it can
be observed that SPM with smoothed data finds a local maximum t-value around z =
50 mm. These are indeed close to the hand knob, but outside grey matter. The first
AIBF analysis discards these activations, whereas the SPM analysis on smoothed data
and the second AIBF analysis estimate a less significant p-value around this location.

6.1.2 Multiple subject study

The same five fMRI data sets of the previous section were also analyzed as a group
study. In this application, the AIBF model is based on a canonical surface, which is
regarded as representative of all the individual surfaces. The important point, made
in this section, is that AIBF offers a new way of inter-subject pooling. In conventional
analyses, a large stationary smoothing filter is applied to overcome the anatomical
variance, i.e. the difference in functional anatomy among subjects. The problem of
anatomical variance is that functional localization does not seem to depend on macro-
scopic structural landmarks except in primary areas, where some relationship between
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function and structure has been established (e.g. the hand knob feature). In other
words, one cannot predict the exact location of functional areas given only structural
information. This fundamental problem cannot be solved by AIBF, but it offers a way
to effectively project the sources onto a canonical surface in which their overlap is en-
sured by smoothing within this surface. This can be implemented by smoothing the
data and the AIBF using a Gaussian three-dimensional filter as in the previous section.
Here the aim is to render the method robust to intersubject variations in sources (as
opposed to misregistration errors). After fitting the data to a smooth AIBF model, one
projects the estimated parameters back to the (unsmoothed) voxel-space and analyzes
the resulting images over time. The advantage of this approach is that the data is
effectively smoothed along the canonical surface with a non-stationary filter, which is a
convolution along the surface and a deconvolution transverse to it. The deconvolution
component can be thought of as undoing the smearing due to intersubject variability.

Analysis

Two SPM and two AIBF analyses were performed. For the SPM analyses, the data
were smoothed with a Gaussian filter of [6 6 9] mm FWHM and [8 8 12] mm FWHM.
These two filter kernels were found to be optimal for this data set among Gaussian
kernel widths ranging from 0 to 18 mm FWHM in each direction. The first AIBF
parameter set was Gaussian with 3 mm separation and 3 mm FWHM on the surface
combined with a Gaussian LE of [2 2 3] mm FWHM. The second was a Gaussian AIBF
set with 3 mm separation and 3 mm FWHM and a Gaussian LE with [4 4 6] mm
FWHM.

Results

In Fig. 6.3, the t-value maxima of each slice for each analysis are plotted against z-
height. Fig. 6.4 shows the thresholded t-maps of all four analyses at z-height 63 mm.

Discussion

The most telling result is displayed in Fig. 6.3. One can see that all analyses find highly
significant t-values between z-height 55 mm and 68 mm above the AC-PC line. The
AIBF analyses tender higher t-values than any of the SPM analyses. The highest t-value
(and most significant) result is given by AIBF applied to smoothed data, where the
three-dimensional filter kernel implemented by LE had [4 4 6] mm FWHM. Generally
the most sensitive result is obtained if one specifies a filter which has roughly the shape
of the elongated activation found in the single subject analyses. This is most efficiently
implemented with AIBF, because, with an anatomically informed basis, one can model
smooth components following the cortical surface. The three-dimensional Gaussian
filter controls the distance from which signal from locations close to the cortical surface
enter into the estimate. AIBF is, for these data, ideally suited to extract smooth spatial
components subtending the activation.
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Figure 6.3: t-value maxima as a function of z-height (vertical position) for five subjects.
(Blue) Maxima of SPM, [6 6 9] mm FWHM, (Red) Maxima of SPM [8 8 12] mm FWHM,
(Green) AIBF [2 2 3] FWHM, (Black) AIBF [4 4 6] FWHM
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Figure 6.4: t-maps at z=63 mm for 4 different analyses of subject 4, thresholded at p(t)
< 0.01 (corrected). (first row) SPM [6 6 9] mm FWHM, (second row) SPM [8 8 12]
mm FWHM, (third row) AIBF [2 2 3] mm FWHM and 3 mm/3mm separation/width,
(bottom row) AIBF [4 4 6] mm FWHM and 3 mm/3mm separation/width
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6.2 Positron emission tomography

This section deals with the application of AIBF to PET data. The method can be
applied to single subject PET data as shown in (Kiebel and Friston, 2000). In this
section, two group data sets consisting of stereotactically normalized images from ten
and five subjects are analyzed.

6.2.1 Multiple subject analysis

In the first analysis, it is shown that one can increase the size of local basis functions
without compromising sensitivity. In contrast, a similar increase in the width of an
isotropic Gaussian kernel in a conventional analysis is precluded by the matched filter
theorem which requires the convolution kernel to match the spatial distribution of the
signal. Furthermore, a three-dimensional smoothing filter degrades spatial resolution
and confounds areas which are close in image space but quite remote on the cortical
surface.

Acquisition and design

The data were obtained from five subjects scanned 12 times (every eight minutes) while
performing one of two verbal tasks. Scans were obtained with a CTI PET camera
(model 953B CTI Knoxville, TN USA). 15O was administered intravenously as radi-
olabelled water, infused over two minutes. Total counts per voxel during the buildup
phase of radioactivity served as an estimate of regional blood flow. Subjects performed
two tasks in alternation. One task involved repeating a letter presented aurally at one
per two seconds (word shadowing). The other was a paced verbal fluency task, where
the subjects responded with a word that began with the letter presented (intrinsic word
generation).

Analysis

For the first set of data, the VOI encompassed roughly 40,000 mm2 of the flattened
canonical surface of the left hemisphere, in particular most of the grey matter of the
lateral frontal and parietal lobe. SPM99 was applied to smoothed data, with four
different widths of an isotropic Gaussian kernel (16, 24, 32 and 40 mm FWHM). Four
different Gaussian AIBF sets with separation/FWHM 8/10, 12/16, 16/22, 24/40 [mm]
were applied with an LI of [8 8 8] mm FWHM and an LE of [16 16 16] mm FWHM.
All AIBF results were projected into A-space, i.e. the effects due to L = LELI were
discarded.
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Results

In Fig. 6.5, one can see the maximum intensity projection (MIP) of the SPM based
on smoothed data (16 mm FWHM). On the right hand side of the figure, the design
matrix and the contrast are shown. This temporal model was used for all subsequent
AIBF and SPM analyses.

Figure 6.5: SPM analysis. Left: Maximum intensity projection (MIP) of the t-map.
The red arrow marks the activation detected by all analyses. Right: design matrix and
contrast used in the statistical analysis

Tables 6.3 and 6.4 list the minimum p-value for each analysis and its location in nor-
malized anatomical space.

Discussion

In this section, AIBF and SPM were applied with large smoothing filters. Filter widths
of 32 and 40 mm FWHM are usually not used for functional brain imaging analyses.
However, an important point can be made by these analyses that can be generalized
to other more conventional situations.

By comparing tables 6.3 and 6.4, one observes that the minimum p-value of the SPM
analysis increases with increasing filter width from 3.4e−8 to 3.6e−5. An increase can
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Filter FWHM [mm] p-value location
16 3.4e−8 -50/20/-6
24 3.6e−7 -48/26/-6
32 5.0e−7 -50/26/-6
40 3.6e−5 -52/24/-10

Table 6.3: Verbal fluency study: Minimum corrected p-values computed by SPM and
their locations in voxel-space for different filter widths

Parameters [mm] p-value location
distance/width

8/10 1.2e−10 -52/20/-2
12/16 9.7e−10 -50/20/-2
16/22 3.0e−9 -52/20/-2
24/40 2.5e−9 -46/32/-2

Table 6.4: Verbal fluency study: Minimum p-values computed by AIBF and their
locations in voxel-space for different basis function widths

also be seen for the AIBF analyses, but only by one order of magnitude (3.4e−10 ≤
p ≤ 2.5e−9). The estimated smoothness of the AIBF and SPM analyses, where the
largest filters were used, are very similar at around 40 mm FWHM. The increase of
the minimum p-value returned by SPM can be attributed to the wide smoothing kernel
employed that induces partial volume effects in relation to the activation.

One feature of AIBF is that the user is given the choice between increasing smoothness
in image space (via a three-dimensional stationary isotropic smoothing kernel) and
increasing the smoothness on the cortical surface (by increasing the width of local
basis functions). As demonstrated, the smoothing implemented by a combination of
a moderate isotropic smoothing (16 mm FWHM) and a high degree of smoothness on
the surface, provides a more sensitive analysis than using an isotropic smoothing of 40
mm FWHM. One could imagine the spatial model implemented by AIBF as a broad
three-dimensional ribbon (the convolved basis functions) following the cortical surface,
whereas the isotropic filter is an ellipsoid aligned with the image axes. The aim when
specifying a smoothing width is to choose a filter size that allows a linear combination
of basis functions to pick up the activation. Ideally, activations are close to the cortical
sheet, but in cases when this is not true or when the spatial normalization does not
find a transformation that registers the individuals’ cortical surfaces and the canonical
surface, one should apply an initial isotropic smoothing. This decreases resolution, but
increases the robustness of the method.

Convolving the functional images with a very wide isotropic kernel decreases image
resolution and can lead to the situation where two or more neighbouring sources in
voxel-space cannot be resolved in the t-map. The same thing happens along the grey
matter surface when one uses extremely wide basis functions, but the fundamental
difference is that an isotropic kernel decreases resolution in Euclidean space, whereas

88



AIBF smoothing decreases resolution only along the cortical surface.
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Chapter 7

Discussion

In this thesis, it has been shown that anatomically informed basis functions offer a new
kind of functional data analysis. To the author’s knowledge, AIBF is the first attempt
to explicitly include neuroanatomical knowledge into the analysis of functional imaging
data like fMRI and PET. This is in the sense that AIBF treats the analysis as a source
reconstruction, as opposed to an image reconstruction problem. While conventional
analyses pre-smooth the data with an isotropic spatial filter, which is not informed
about the underlying neuroanatomy, AIBF effectively implement a spatially variable
filter. This spatial modelling of experimentally induced effects is more efficient for
brain responses distributed along the cortical surface than conventional voxel-based
methods. This efficiency depends on the user-defined AIBF parameters that can be
used to enhance sensitivity to the underlying activation, or increase the anatomical
resolution.

7.1 Applications

There are two important applications of AIBF. The first is a high-resolution charac-
terization of functional data. Within the AIBF framework one attempts to model the
neuroanatomical structures, the neurophysiological processes and the physical measure-
ment process that provide useful constraints on the data. This approach affords high
spatial resolution in the statistical results and improves localization of the activation
sources with respect to the underlying neuroanatomy. The second application is the
analysis of multi-subject data. Here one fully exploits the AIBF property that smooth
activations along the cortical surface are detected more efficiently than when using a
spatially invariant filter kernel. Although excellent spatial normalization algorithms
are available, the anatomical variance, i.e. the spatial variance in the location of a
functionally specialized area with respect to macroscopic structural landmarks, makes
it difficult to map individual activations to one location. Without further information,
this mapping problem can only be solved by applying a spatial lowpass filter to the
functional data, such that evidence for a common activation is found at the cost of reso-
lution. AIBF can be used in combination with an isotropic spatial filter, to smooth the
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data along the cortical surface. In this way, the smoothing only smears activations close
to each other on the cortical surface, but leaves activations that may be neighbours in
image space well resolved. Both applications are now discussed more thoroughly.

7.1.1 High-resolution modelling

An important aspect of fMRI is that the signal changes are not confined to the grey mat-
ter, but at 1.5 Tesla also originate from locations within the CSF. The exact localization
of activation is not important if one is interested in a rather macroscopic characteri-
zation of activation with respect to underlying anatomical structures. However, in the
context of applications like establishing detection of somatotopical or tonotopical maps,
exact spatial localization can be important. Activation can be expressed, at low field
strength, millimeters downstream in draining veins. This signal dislocation depends on
the vasculature of the brain area and the scanning parameters. In this situation, one
way of tackling this localization problem is to combine measured BOLD effects with
prior knowledge about the individual’s neuroanatomy and the physical measurement
process.

In the five fMRI data sets analyzed (sec. 6.1) such downwashing of BOLD effect are
likely be present to a greater or lesser degree. In some subjects, the most significant
activation could be identified as arising from CSF. In all subjects, the resolution of
1.8× 1.8× 3 mm3 was not sufficient to prevent partial volume effects in voxels at the
grey matter/CSF interface. It was therefore not possible to make a statement about
the exact origin of the inferred activations. However, analyzing data with AIBF models
provides a more anatomically informed picture by enhancing coherent responses within
the cortical surface while attenuating other components. One might anticipate that
a combination of high-resolution sequences and improved spatial or spatiotemporal
models of individual neuroanatomy will improve the effective anatomical resolution of
fMRI measurements, given an AIBF framework.

In practice, modelling at this high level of resolution is a rather demanding task, because
a precise model encompassing the distribution of a neuronal response must be known
or be estimated. This model is then augmented with a model that predicts how the
neuronal response is measured by MRI.

As an example, a first step towards high-resolution models is to explicitly model sources
in CSF, i.e. the draining veins. Given that one can obtain venograms with high-
resolution, the location of veins and their connectivity in voxel-space can be established.
This would allow specification of smooth one-dimensional basis functions embedded in
three-dimensional space that was confined to the veins. One assumption e.g. might
be that activation at a neuronal site can cause extended activation in a vein draining
this site. Knowing the orientation of a vein at any location, it should be possible
to construct a forward model of how activation along this vein would be measured
by any fMRI sequence. After fitting, responses observed in a given image could be
attributed to their neuronal sources. In this way the signal draining veins can be
used to increase sensitivity without mis-attribution of the source. Once the sources are
estimated the veins can be removed from the forward model so that they are discounted
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in the projection back to voxel-space. This is an extension of the approach discussed in
chapter 5 where the PSF was removed from the forward model to effect a deconvolution
(i.e. projection into A-space).

7.1.2 Group studies and sensitivity

As demonstrated in Ch. 6, group studies can be performed with AIBF to increase
sensitivity. The spatial model is derived from a single surface, which is called a canonical
surface to stress the assumption that this stereotactically normalized surface is a valid
representation of all the individuals’ surfaces.

In the first fMRI multisubject study, all assumptions for application of AIBF were
met. The central sulci were properly aligned with a maximal translational error of
roughly 1 - 2 mm. The individual activations consisted of an elongated activation
cluster along the surface and anatomical variability was presumably small and confined
to the surface. The result, an increase in sensitivity and better effective resolution
compared to a conventional analysis was compelling. Only a small Gaussian isotropic
filter was required to allow for misregistration of individual activations. The second
example, a PET study, was used to show the difference between conventional smoothing
and AIBF. The point was made that the effective smoothing with AIBF follows the
surface such that less non-signal related intensity confounds the parameter estimation
as compared to a conventional analysis based on an isotropic invariant filter.

The key point about AIBF is that, for each image location, it effectively implements a
filter kernel that resembles the shape of the signal given the underlying neuroanatomy.
As a result, the difference in sensitivity between AIBF and SPM depends on the closer
approximation to the activation’s shape. If the signal width is large, AIBF will find
a better filter than a voxel-based method. However, if the signal width is at the sub-
voxel level, no spatial smoothing provides the best model. Generally, the wider the
signal on the cortical sheet the more sensitive AIBF is in comparison to a conventional
method. This is because, for wide signals on the cortical sheet, the most efficient AIBF
smoothing ensues, if the resulting smoothing kernel at each voxel has a ribbon-like
elongated shape following the sheet. These smoothing kernels can only be generated
by AIBF parameters, where the width of the basis functions tangential to the cortical
sheet is large compared to the width in the normal direction. If this is not the case
(i.e. the width of the kernel in normal direction is larger than in tangential direction
of the surface), the AIBF smoothing kernel at each voxel would resemble the shape of
an isotropic invariant smoothing kernel and the advantage of an anatomically informed
smoothing kernel would be lost.

With AIBF, the user can choose which space the fitted parameters are projected onto.
The space in which the parameters are estimated is called AL-space. In this space the
basis functions have maximum smoothness because of the convolution with LI and LE
and the corresponding statistical maps will be very smooth. This space can be used
to assess group results because the convolution with LE smears individual activations
(c.f. the smoothing filter applied in conventional voxel-based analysis). The A-space,
i.e. the space without the effects of convolution with LE or LI can be used to find the
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locations of underlying activations on the cortical surface. Together with the choice of
basis functions, AIBF provides a large range of possible spatial models.

The approach described in this thesis uses transformation parameters derived from the
structural MRI where the normalization is based on the constrained minimization of
the difference between the image and the template image, but not of a function of a
surface and its template. For higher-order brain areas it does not seem to be possible
to infer the localization of specific functional areas from structural macroscopical land-
marks (Amunts et al., 1999). For primary areas there seems to be some relationship
between structural and functional features as indicated by Amunts et al. (2000). In
these cytoarchitectonic studies, the variability of macroscopic landmarks in relation to
cytoarchitectonicly defined functional areas were estimated. This generates probabil-
ity maps, which encode the estimated probability of a given cytoarchitectonic area in
a population at a given coordinate in Talairach-space (after affine transformations of
MRI-registered post-mortem brains). These studies (Amunts et al., 2000) indicate that
there is some anatomical variability of functional borders even in primary areas like
Brodmann area (BA) 17, i.e. V1 (visual area 1). However, given the typical resolution
of functional data (e.g. 4 - 8 mm FWHM), it appears that anatomical variability in BA
17 is low compared to the resolution of statistical results. It was also shown in (Amunts
et al., 2000) that the anatomical variability of BA 18, i.e. V2 (visual area 2) is higher
than in BA 17. The anatomical variability is even higher in areas like BA 44/45. These
results speak to a non-stationary distribution of anatomical variability in voxel-based
Talairach-space, where it is least in primary areas and increases in higher-order areas.
Clearly, probability maps as assessed in (Amunts et al., 1999) would be most naturally
represented on the cortical surface space, because it is in this space where probability
maps are assessed. An interesting question is whether it is worthwhile applying surface-
based normalization for studies in which one is interested in areas with low anatomical
variability. A surface-based normalization would align individuals’ surfaces such that
residual anatomical variability is tangential to the cortical surface. This would make
sense in primary areas, where a non-linear image-based normalization does not align
surfaces properly, leaving some residual error in the normal direction. As found in
the first experiment (fMRI), this error is small in the central sulcus. Presumably this
is because the central sulcus is a sharp-edged feature embedded within homogeneous
white matter such that an intensity-based normalization can easily align this feature
across subjects. One has to keep in mind that the resolution of the analysis is related
to the voxel-size, i.e. a residual surface alignment error of 1 mm would, in most studies,
translate to an error of only a third or half a voxel. Given that anatomical variability
within a functional area has yet to be quantified, it is questionable that a surface-based
normalization would improve the sensitivity of an analysis in the primary sensorimotor
areas. Other candidates for surface-based normalization would be e.g. primary audi-
tory and visual areas. However, as long as anatomical variability in these areas remains
unquantified and in the absence of comparing a non-linear intensity-based normaliza-
tion to a surface-based one, no conclusion can be drawn about the relative benefits of
intensity- and surface-based normalization.
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7.2 Error sources and Limitations

There are some potential error sources and limitations to AIBF as it has been imple-
mented in this thesis. None of these compromise the concept of AIBF, but the tolerance
of AIBF can be rather narrow, in particular when the aim is to maximize resolution. If
one increases the robustness of the model by smoothing both the data and the model
with an isotropic filter, most of the error sources are less of an issue.

The first obvious potential error is the distortion in the most often used fMRI sequence,
EPI. The cortical surface is reconstructed based on a structural sequence, which is
undistorted. This mismatch can preclude an exact registration of surface and functional
data. The principled way of solving this problem is to apply a distortion correction to
the functional data.

Another error source is the coregistration between structural and functional images.

The surface reconstruction is a potentially large source of error. Although the quality
of the surface reconstructions used within this thesis was sufficient to define a spatial
model, there are some potential pitfalls that can compromise the anatomical model.
For completeness, these are as follows: The structural sequences have to be of high-
resolution (i.e. at least 1×1×1 mm3 voxel-size). Most surface reconstructions computed
by the author produced a small number of defects, i.e. some topology of the surface was
incorrectly assessed. Most of these effects are negligible and do not have a substantial
effect on the model specification or the model fit. However, care must be taken to
remove large defects from the surface reconstruction before specifying an AIBF model.
Another issue is the white-grey contrast in the structural T1-weighted image. Most
structural sequences have only optimal contrast near to the centre of the image and
less contrast away from the centre. This can effect the proper localization of the grey-
white matter interface and consequently inhomogeneity correction should be applied
prior to surface reconstruction. Even at a high-resolution, partial volume effects at the
grey-white interface occur. In brain regions where the white matter volume enclosed
between the banks of two adjacent sulci is close to the voxel-size, the white matter
volume is underestimated. This can happen in the lower parts of the temporal lobes,
even when using a voxel-size of [1 1 1] mm3.

The AIBF model is based on a flattened surface. There are two problems to deal
with. The first is that the transformation from folded to flattened surface introduces
geometrical distortions in the surface, i.e. distances between two points on the surface
are changed. While the distribution of local basis functions defined on the flattened
surface can be described by the two parameters (separation and width), this is no longer
true on the folded surface, because all basis functions experience local distortions.
Although it might be perceived that this is a weakness in the model specification,
it should be noted that this only alters the local smoothness of the basis functions.
Consequently, the fit can reflect this variation in smoothness. In other words, the local
smoothness of the fit depends on the distribution of surface distortions. In this work, all
brain regions were distorted at most by roughly 10%, which is negligible given that one
is only interested in a smooth distribution on the cortical surface. Another potential
problem is the introduction of cuts to flatten the surface. Clearly, if a cut is made
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through an activation location, the ensuing spatial model is no longer valid.

In practice, one limitation of the current implementation is that subcortical structures
are not modelled, e.g. thalamic or cerebellar activation is not detectable. This can be
overcome by specifying basis functions for these structures.

Storing the basis functions and solving the equations needs a large amount of memory.
In the current implementation, this problem is overcome by only analyzing a volume
of interest, where the maximum possible size of the volume depends on the size of the
examined voxels, the number of basis functions and their width on the cortical surface.
Another approach is to apply matrix inversion algorithms that exploit the sparse nature
of most AIBF models.
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Chapter 8

Zusammenfassung

Ein Teilgebiet der Neurowissenschaften ist die Erforschung des menschlichen Gehirns
mittels makroskopisch bildgebender Verfahren wie funktionelle Magnetresonanztomo-
graphie (fMRT) oder Positronenemissionstomographie (PET). Beide Verfahren messen
u.a. durch neuronale Aktivität induzierte metabolische Prozesse und bieten eine räumliche
Auflösung im Millimeter-Bereich an. Die Kenntnis der zeitlichen Abfolge experimenteller
Bedingungen erlaubt es, durch das Experiment verursachte Effekte zu detektieren und
zu interpretieren. Fast alle für die Analyse von Gehirnbilddaten entwickelten Metho-
den haben ihren Schwerpunkt auf die Modellierung zeitlicher Effekte gelegt, während
vergleichsweise wenig Entwicklungsarbeit in die angemessene Charakterisierung der
räumlichen Information geflossen ist. Das üblicherweise verwendete räumliche Modell
der Aktivierungen benutzt nicht die (verfügbaren) neuroanatomischen Informationen
über den Probanden oder eine Gruppe von Probanden, sondern die implizite Annah-
men, daß (i) an jeder Stelle innerhalb des Gehirn Aktivierung gleichwahrscheinlich ist
und (ii) die räumliche Verteilung der Aktivierung am besten durch einen dreidimen-
sionalen, invarianten und mit den Bildachsen ausgerichteten Tiefpaßfilter beschrieben
wird. Beide Annahmen sind umso inkorrekter, desto höher die räumliche Auflösung
des Meßapparats ist.

In dieser Arbeit wird die Methode der anatomisch informierten Basisfunktionen (AIBF)
beschrieben, mit der existierende neuroanatomische Informationen in die Analyse funk-
tioneller Gehirnbilddaten eingebracht werden können. Eine offensichtliche Wahl anato-
mischer Information ist die Oberfläche, die in einem individuellen Gehirn die graue Sub-
stanz approximiert. Für die Oberflächenextraktion wurde das Software-Paket Brain-
voyager 3.8 (Rainer Göbel, Brain Innovations) benutzt, das auf einem hochauflösenden
(1× 1× 1 mm3) T1-gewichteten MRT-Bild arbeitet. Gegeben die zwei Annahmen, daß
(i) Aktivierungen in oder nahe der grauen Substanz lokalisiert sind und (ii) Aktivierun-
gen räumlich glatt in Richtung der Oberfläche der grauen Substanz verlaufen, kann ein
räumliches lineares Modell formuliert werden. Dieses Modell erklärt für jedes Bild
einer funktionellen Bildserie die Verteilung der Bildintensitäten durch eine Linearkom-
bination von räumlich niederfrequenten Basisfunktionen, die entlang der Oberfläche
der grauen Substanz definiert sind. Die Schätzung der zugehörigen Modellparame-
ter implementiert eine Reduktion von zehntausenden von Voxelintensitäten auf wenige
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hundert Parameter. Die Rückprojektion dieser Parameterschätzungen in den Voxel-
raum ist äquivalent zu der Schätzung eines variablen, räumlichen Filters, wobei die
Form des lokalen Filters durch den Verlauf der gyralen Struktur der grauen Substanz
bestimmt wird. Die zeitliche Analyse der geschätzten oder rückprojizierten Parame-
ter kann dann mit klassischen Methoden, z.B. statistical parametric mapping (SPM)
durchgeführt werden. Der wesentliche Verarbeitungsschritt liegt in der Reduktion der
funktionellen Bilder auf die geschätzte räumlich-zeitliche Parametermatrix. Hierbei
werden nur jene Komponenten extrahiert, die räumlich niederfrequent entlang der ko-
rtikalen Oberfläche verlaufen. Falls die obigen beiden Annahmen korrekt sind, dann
wird diese anatomisch informierte Filtermethode einen experimentell induzierten Ef-
fekt mit hoher Sensitivität detektieren. Es wird ebenfalls erwartet, daß die effektive
Auflösung zwischen Aktivierungsquellen im Vergleich zu konventionellen Filtermetho-
den steigt, weil der anatomisch informierte Filter nur entlang der Oberfläche glättet
und im Bildraum benachbarte Quellen (die aber auf der kortikalen Oberfläche weit
entfernt liegen) unterscheidbar läßt.

Mittels simulierter Daten wurde gezeigt, daß AIBF bei Erfüllung der Annahmen tatsäch-
lich sensitiver ist als konventionelle auf räumlich invarianten Filtern basierende Meth-
oden.

Bei Anwendung von AIBF auf reale fMRT- und PET-Daten werden drei verschiedene
Anwendungen demonstriert. Die erste ist eine exakte räumlich hochauflösende Mo-
dellierung der funktionellen Daten eines einzelnen Probanden in Bezug auf bekannte
physiologische, physikalische und sonstige Effekte, so daß es möglich ist, ein räumliches
Modell zu generieren, mit dem der experimentell induzierte BOLD-Effekt sehr genau
in einem Probanden lokalisiert werden kann. Es wurde gezeigt, daß die Benutzung der
kortikalen Oberfläche als anatomisches Wissen die Generierung eines Modell erlaubt,
mit dem prinzipiell anatomisch spezifischere Aussagen getroffen werden können. In den
vorliegenden realen fMRT-Daten war es z.B. möglich, tendentiell zwischen Aktivierung
innerhalb von zerebraler Flüssigkeit und grauer Substanz zu unterscheiden, so daß der
Ursprung von Aktivierungen besser lokalisiert werden kann.

Die zweite Anwendung hat nicht die Verbesserung der anatomischen Präzision zum Ziel,
sondern die Sensitivität und Robustheit der AIBF-Methode. Hierzu wurde anhand von
fMRT-Daten gezeigt, daß ein zusätzlicher auf das anatomisch informierte Modell und
die Daten angewandter räumlich invarianter Tiefpaß-Filter anatomisch nicht korrekt
modellierte Aktivierungen auf Kosten der Auflösung zu detektieren vermag.

Die dritte Anwendung ist vielleicht die interessanteste: Die Methode wird zur Anal-
yse von Gruppendaten eingesetzt. Auf den ersten Blick macht das nicht viel Sinn,
weil die sogenannte anatomische Variabilität (die unterschiedliche Lokalisierung des
Ortes einer Funktion in räumlicher Relation zu makroskopisch markanten strukturellen
Punkten gemessen über Probanden) die anatomisch exakte Modellierung der Funk-
tion eines stereotaktisch normalisierten Areals verhindert. In dieser Situation wird in
Gruppenstudien bei konventionellen Methoden ein räumlicher, relativ weiter, dreidi-
mensionaler, invarianter Tiefpaßfilter benutzt um die durch den Einfluß der anatomis-
chen Variabilität verteilten individuellen Aktivierungen zu verschmieren und die Grup-
penaktivierung dann mit hoher Sensitivität im Überlappungsgebiet der individuellen
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Aktivierungen zu detektieren. Die hier vorgeschlagene und implementierte Methode
ist ähnlich, nur daß der räumliche Tiefpaßfilter aus zwei Komponenten besteht. Die
erste modelliert mittels Basisfunktionen die Verteilung der individuellen Aktivierungen
entlang der kortikalen Oberfläche und die zweite erklärt durch einen dreidimensionalen,
invarianten Filter u.a. alle Effekte in die Normalenrichtung der Oberfläche. Nach der
Parameterschätzung wird bei der Rückprojektion allerdings in den Raum projiziert,
der nur die erste Komponente entlang der Oberfläche modelliert. Hierdurch wird eine
anatomisch informierte Entfaltung implementiert, so daß die Effekte des invarianten Fil-
ters aus den statistischen Ergebnissen entfernt werden. Diese Anwendung erlaubt Grup-
penstudien mit erhöhter Sensitivität und einer höheren anatomischen Lokalisierung.

98



Acknowledegments

Ein großer Teil meiner Dankbarkeit gebührt zwei Männern: Cornelius Weiller und Karl
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