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Passive word 
listening
versus rest

7 cycles of 
rest and listening

Blocks of 6 scans
with 7 sec TR

Question: Is there a change in the BOLD 
response between listening and rest?

Stimulus function

One session

A very simple fMRI experiment
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Mass-univariate analysis: voxel-wise GLM
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Model is specified by
1. Design matrix X
2. Assumptions about e

N: number of scans
p: number of 
regressors

eXy += b

The design matrix embodies all available knowledge about 
experimentally controlled factors and potential confounds.
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• one sample t-test
• two sample t-test
• paired t-test
• Analysis of Variance 

(ANOVA)
• Analysis of Covariance 

(ANCoVA)
• correlation
• linear regression
• multiple regression

GLM: a flexible framework for parametric 
analyses



Parameter estimation

eXy += b
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Objective:
estimate 
parameters to 
minimize
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Ordinary least squares 
estimation (OLS) (assuming 

i.i.d. error):
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A geometric perspective on the GLM
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Design space 
defined by X

x1

x2 b̂ˆ Xy =

Smallest errors (shortest error vector)
when e is orthogonal to X

Ordinary Least Squares (OLS)
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Problems of this model with fMRI time series

1. The BOLD response  has a delayed and dispersed 
shape.

2. The  BOLD signal includes substantial amounts of 
low-frequency noise (eg due to scanner drift).

3. Due to breathing, heartbeat & unmodeled neuronal 
activity, the errors are serially correlated. This 
violates the assumptions of the noise model in the 
GLM.



Boynton et al, NeuroImage, 2012.

Scaling

Additivity

Shift
invariance

Problem 1: BOLD response
Hemodynamic response function (HRF):

Linear time-invariant (LTI) system:

u(t) x(t)hrf(t)

𝑥 𝑡 = 𝑢 𝑡 ∗ ℎ𝑟𝑓 𝑡
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Convolution operator:



Convolution model of the BOLD response

Convolve stimulus function 
with a canonical 
hemodynamic response 
function (HRF):

Ä HRF

ò -=Ä
t

dtgftgf
0

)()()( ttt



blue = data
black = mean + low-frequency drift
green = predicted response, taking into 
account low-frequency drift
red = predicted response, NOT taking 
into account low-frequency drift

Problem 2: Low-frequency noise 
Solution: High pass filtering

discrete cosine 
transform (DCT) 

set
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Problem 3: Serial correlations

𝑒~𝑁(0, 𝜎!𝐼)i.i.d:
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Solution : Whitening the data
BUT this requires an estimation of V 
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Multiple covariance components

= l1 + l2
Q1 Q2

Estimation of hyperparameters l with ReML (Restricted Maximum Likelihood).

V

enhanced noise model at voxel i

error covariance components Q 
and hyperparameters l
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The AR(1)+white noise model may 
not be enough for short TR (<1.5 s)

=	𝜆# +𝜆$ +𝜆% +𝜆& +𝜆'
V 𝑄! 𝑄" 𝑄# 𝑄$ 𝑄%

+ …

The flexibility of the ReML enables the use of any 
number of components of any shape 



Summary
q Mass univariate approach. 

q Fit GLMs with design matrix, X, to data at different 
points in space to estimate local effect sizes, 

q GLM is a very general approach 

q Hemodynamic Response Function

q High pass filtering

q Temporal autocorrelation

b



A mass-univariate approach

Time

Summary



Estimation of the parameters
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noise assumptions:

Pre-whitening:   𝑋( = 𝑊𝑋	 𝑦( = 𝑊𝑦	 𝜀( = 𝑊𝜀

!𝛽! = 3.9831

!𝛽!"# = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770,−64.8189}
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Contrasts &
statistical parametric maps

Q: activation during 
listening ?

c = 1 0 0 0 0 0 0 0 0 0 0

Null hypothesis: 01 =b
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