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Estimation of the parameters

𝑦	 = +𝜀
𝛽

𝜀~𝑁(0, 𝜎!𝐼)

*𝛽 = (𝑋"𝑋)#$𝑋"𝑦

i.i.d. assumptions:

OLS estimates:

!𝛽! = 3.9831

!𝛽!"# = {0.6871, 1.9598, 1.3902, 166.1007, 76.4770,−64.8189}

!𝛽" = 131.0040
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Contrasts q A contrast selects a specific effect of interest.

ð A contrast 𝑐 is a vector of length 𝑝.

ð 𝑐!𝛽 is a linear combination of regression 
coefficients 𝛽.

𝑐 = [1	0	0	0	 … ]!

𝑐!𝛽 = 𝟏×𝛽" + 𝟎×𝛽# + 𝟎×𝛽$ + 𝟎×𝛽% +⋯
 =	𝜷𝟏

𝑐 = [0	1	 − 1	0	 … ]!

𝑐!𝛽 = 𝟎×𝛽" + 𝟏×𝛽# + −𝟏×𝛽$ + 𝟎×𝛽% +⋯
	 = 	 𝜷𝟐 − 𝜷𝟑

[1 0 0 0 0 0 0 0 0 0 0 0 0 0][0 1 -1 0 0 0 0 0 0 0 0 0 0 0]

𝑐" *𝛽~𝑁 𝑐"𝛽, 𝜎!𝑐"(𝑋"𝑋)#$𝑐



Hypothesis Testing

q Null Hypothesis H0

     Typically what we want to disprove (no effect).
     ð The Alternative Hypothesis HA expresses outcome of interest.

To test a hypothesis, we construct “test statistics”.

q Test Statistic T
     The test statistic summarises evidence 

about H0.
     Typically, test statistic is small in 

magnitude when the hypothesis H0 is true 
and large when false. 

     ð We need to know the distribution of T 
under the null hypothesis. Null Distribution of T



Hypothesis Testing

q p-value:
     A p-value summarises evidence against H0.
     This is the chance of observing value more 

extreme than t under the null hypothesis.

Null Distribution of T

q Significance level α:
     Acceptable false positive rate α.
                                                   ð threshold uα
     Threshold uα controls the false positive rate 

t

p-value  

Null Distribution of T

a

ua

q Conclusion about the hypothesis:
     We reject the null hypothesis in favour of the 

alternative hypothesis if t > uα

)|( 0HuTp aa >=

𝑝 𝑇 > 𝑡|𝐻,



cT = 1 0 0 0 0 0 0 0

T = 

contrast of
estimated

parameters

variance
estimate

box-car amplitude > 0 ?
=

b1 = cTb> 0 ?

b1 b2 b3 b4 b5 ...

T-test - one dimensional contrasts – SPM{t}

Question:

Null hypothesis: H0: cTb=0 

Test statistic:
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T-contrast in SPM
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q For a given contrast c:
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T-test: a simple example

Q: activation during 
listening ?

cT = [ 1 0 0 0 0 0 0 
0]

Null hypothesis: 01 =b

q Passive word listening versus rest

SPMresults:
Height threshold T = 3.2057  {p<0.001}
voxel-level

p uncorrectedT ( Zº)
mm mm mm

13.94 Inf 0.000 -63 -27  15
12.04 Inf 0.000 -48 -33  12
11.82 Inf 0.000 -66 -21   6
13.72 Inf 0.000 57 -21  12
12.29 Inf 0.000 63 -12  -3
9.89 7.83 0.000 57 -39   6
7.39 6.36 0.000 36 -30 -15
6.84 5.99 0.000 51   0  48
6.36 5.65 0.000 -63 -54  -3
6.19 5.53 0.000 -30 -33 -18
5.96 5.36 0.000 36 -27   9
5.84 5.27 0.000 -45  42   9
5.44 4.97 0.000 48  27  24
5.32 4.87 0.000 36 -27  42

1

𝑡 =
𝑐" *𝛽

var 𝑐" *𝛽



T-test: summary

q T-test is a signal-to-noise measure (ratio of estimate to 
standard deviation of estimate).

q T-contrasts are simple combinations of the betas; the T-
statistic does not depend on the scaling of the regressors 
or the scaling of the contrast.

H0: 0=bTc vs     HA: 0>bTc
q Alternative hypothesis:



Scaling issue

q The T-statistic does not depend on 
the scaling of the regressors.
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Ø Be careful of the interpretation of the 
contrasts          themselves (eg, for a 
second level analysis):

                 sum ≠ average

q The T-statistic does not depend on 
the scaling of the contrast.
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q Contrast          depends on scaling.b̂Tc



F-test - the extra-sum-of-squares principle
q Model comparison:

Null Hypothesis H0: True model is X0 (reduced model)

Full model ? 

X1  X0

or Reduced model? 

X0 Test statistic: ratio of 
explained variability and 
unexplained variability (error)

n1 = rank(X) – rank(X0)
n2 = N – rank(X)

RSS
å 2ˆ fulle

RSS0

å 2ˆreducede



F-test - multidimensional contrasts – SPM{F}
q Tests multiple linear hypotheses:

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

cT  =

H0: b4 = b5 = ... = b9 = 0

X1  (b4-9)X0

Full model? Reduced model?

H0: True model is X0

X0

test H0 :  cTb = 0 ?

SPM{F6,322}



F-contrast in SPM
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F-test example: movement related effects

Design matrix
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F-test: summary
q F-tests can be viewed as testing for the additional variance 

explained by a larger model w.r.t. a simpler (nested) model 
ð model comparison.
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q In testing uni-dimensional contrast with an F-test, for example 
b1 – b2, the result will be the same as testing b2 – b1. It will be 
exactly the square of the t-test, testing for both positive and 
negative effects.

q F tests a weighted sum of squares of one or several 
combinations of the regression coefficients b.

q In practice, we don’t have to explicitly separate X into [X1X2] 
thanks to multidimensional contrasts.

q Hypotheses:

0  : Hypothesis Null 3210 === bbbH
0 oneleast at   : Hypothesis eAlternativ ¹kAH b



Variability described by 𝑋!Variability described by 𝑋"

Orthogonal regressors

Variability in Y
Testing for 𝑋$ Testing for 𝑋! 



Correlated regressors
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Design orthogonality

q For each pair of columns of the 
design matrix, the orthogonality 
matrix depicts the magnitude of the 
cosine of the angle between them, 
with the range 0 to 1 mapped from 
white to black.

q If both vectors have zero mean then 
the cosine of the angle between the 
vectors is the same as the correlation 
between the two variates.



Correlated regressors: summary
q We implicitly test for an additional effect only. When testing for the 

first regressor, we are effectively removing the part of the signal that 
can be accounted for by the second regressor:
ð implicit orthogonalisation.

q Orthogonalisation = decorrelation. Parameters and test on the non 
modified regressor change.
Rarely solves the problem as it requires assumptions about which 
regressor to uniquely attribute the common variance.
ð change regressors (i.e. design) instead, e.g. factorial designs.
ð use F-tests to assess overall significance.

q Original regressors may not matter: it’s the contrast you are testing 
which should be as decorrelated as possible from the rest of the 
design matrix 
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x2x^
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2x^ = x2 – x1.x2 x1
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