
Testing hypotheses with SPM & DCM

Peter Zeidman, PhD Wellcome Centre for Human Neuroimaging University College London

Inverse problems

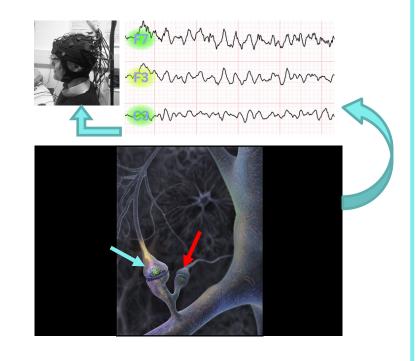
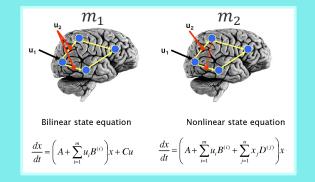


Image credits: Pekachu, Anastasiia Starikova, Kelvinsong from Wikipedia

Empirical science

Which hypothesis (model) offers the best explanation for my data?


Likelihood ratio

(Bayes factor)

Model evidence (marginal likelihood)

 $p(y|m_1)$ $p(y|m_2)$

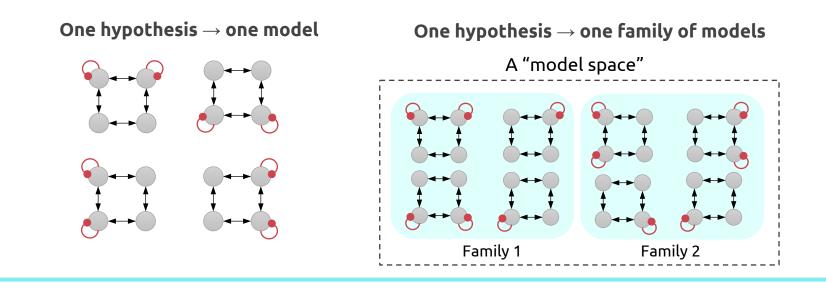
Bayesian model comparison

Eight steps to DCM for fMRI success

- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and pre-processing
- 4. Functional localisation
- 5. First-level DCM
- 6. Group analysis using Parametric Empirical Bayes (PEB)
- 7. Bayesian model comparison
- 8. Assess predictive validity
- 9. (Write the paper)
- 10. (Nobel Prize)

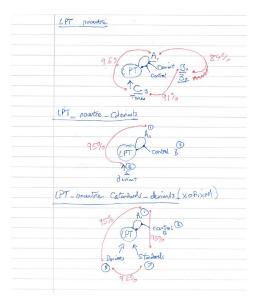
1. Write down some hypotheses

DCM is a tool for scoring the evidence for different hypotheses. It is not an exploratory technique.


Commonalities

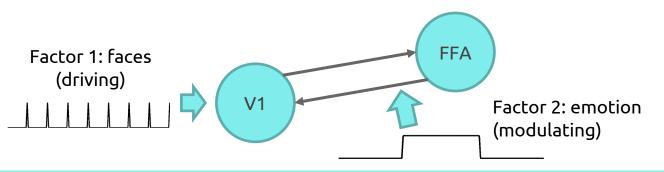
"I hypothesise that top-down connections from parietal cortex are modulated by attention to visual stimuli."

Differences


"I hypothesise that people with a diagnosis of Mild Cognitive Impairment (MCI) have weaker modulation of top-down connections by attention."

1. Write down some hypotheses

Drawing a diagram for each hypothesis can help!


- 1. Write down some **hypotheses**
- 2. **Design** an experiment
- 3. Data collection and **pre-processing**
- 4. Functional localisation
- 5. First-level DCM
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess **predictive** validity

2. Design an experiment

Use a factorial design where possible

e.g. [2 x 2] design:

Factor 1: faces or upside down faces Factor 2: attend to emotion or attend to hair colour

2. Design an experiment

Favour controlled tasks over resting state where possible

Rest is great when...

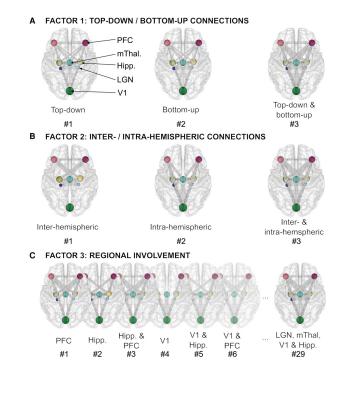
- Participants cannot perform tasks
- You are interested in resting state brain dynamics

Any others?

There's a DCM for that

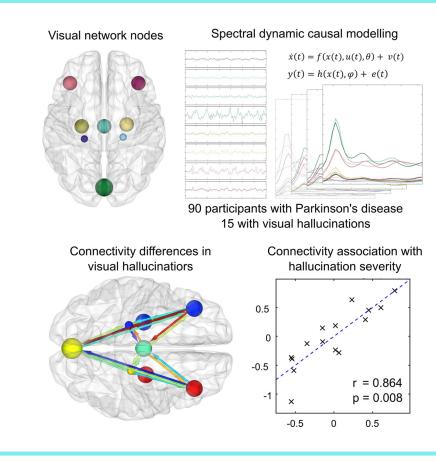
- Use DCM for cross-spectral densities (Spectral DCM)
- Studies often have a factorial design at the betweensubjects level (e.g. two groups, pre- and post-intervention)

Friston, K.J., Kahan, J., Biswal, B. and Razi, A., 2014. A DCM for resting state fMRI. Neuroimage, 94, pp.396-407.


Resting state example

"Are visual hallucinations in Parkinson's disease explained by **impaired bottom-up integration** of sensory information and **overweighting of top-down perceptual priors** within the visual system?"

Participants:


- 15 Parkinson's disease visual hallucinators
- 75 Parkinson's disease non-visual hallucinators.

Model space

Thomas, G.E., et al., 2023. Brain Communications, 5(1)

Resting state example

Thomas, G.E., et al., 2023. Brain Communications, 5(1)

2. Design an experiment

Favour controlled tasks over resting state where possible

Rest is great when...

- Participants cannot perform tasks
- You are interested in resting state brain dynamics

Any others?

There's a DCM for that

- Use DCM for cross-spectral densities (Spectral DCM)
- Studies often have a factorial design at the betweensubjects level (e.g. two groups, pre- and post-intervention)

Friston, K.J., Kahan, J., Biswal, B. and Razi, A., 2014. A DCM for resting state fMRI. Neuroimage, 94, pp.396-407.

- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and **pre-processing**
- 4. Functional localisation
- 5. First-level DCM
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess **predictive** validity

3. Data collection and pre-processing

No special considerations for DCM

Functional MRI acquisition and image reconstruction

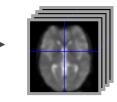
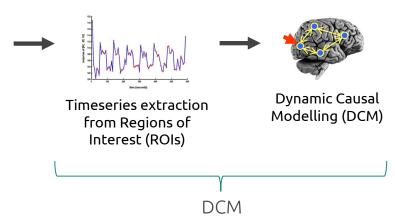



Image preprocessing (realignment, coregistration, normalisation, smoothing)

Statistical Parameter Mapping (SPM) / General Linear Model

- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and **pre-processing**
- 4. Functional localisation
- 5. First-level DCM
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess **predictive** validity

4. Functional localisation

A network consists of nodes (brain regions) and connections. We need to select the nodes.

Task based experiments

The purpose of DCM is to infer the underlying neural connectivity that gave rise to your SPM results.

→ Select Regions of Interest using your contrasts

Resting state experiments

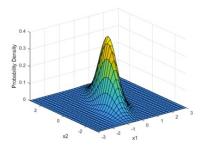
The purpose of DCM is to infer the underlying neural connectivity that caused the functional connectivity (correlations or crossspectral density) among preselected brain regions.

→ Select Regions of Interest from previous literature, anatomical hypotheses or an initial PCA or ICA

- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and **pre-processing**
- 4. Functional localisation
- 5. First-level DCM
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess **predictive** validity

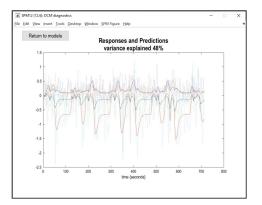
5. First level DCM

Two outputs:


Free energy

Approximation of the log model evidence P(Y|m)

 $F \approx \log P(Y|m) = \operatorname{accuracy} - \operatorname{complexity}$


Estimated parameters

Posterior (multivariate Gaussian) probability $P(\theta|Y, m)$

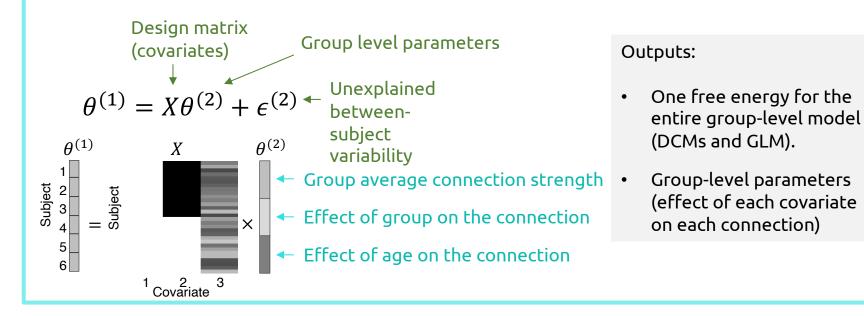
5. First level DCM

Check the variance explained by your models

spm_dcm_fmri_check(DCM);

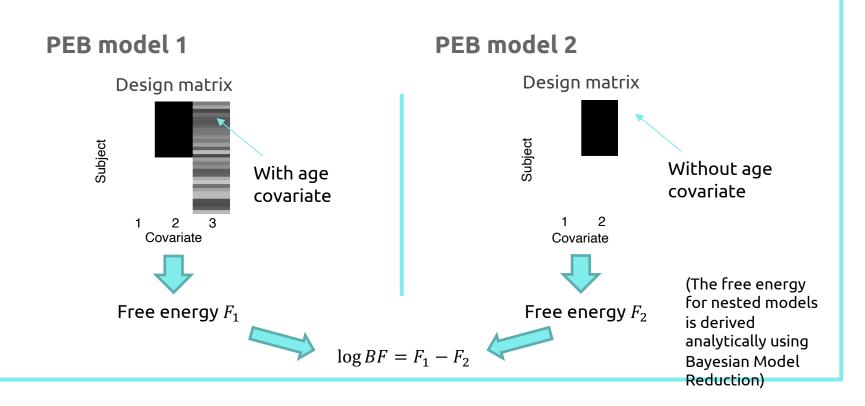
(10% or more is considered non-trivial)

- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and **pre-processing**
- 4. Functional localisation
- 5. First-level DCM
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess **predictive** validity

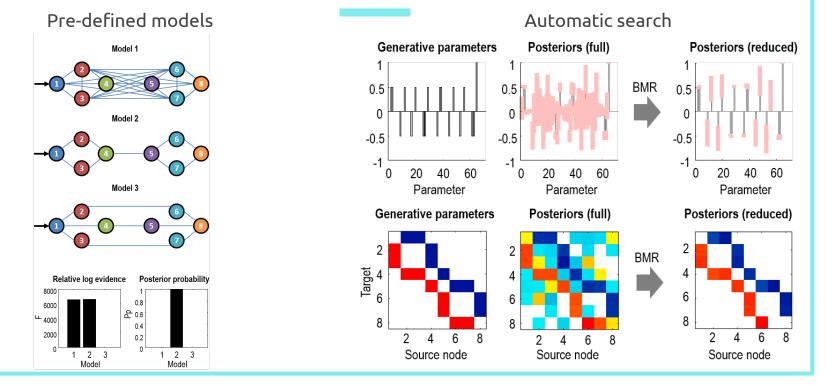

6. Group analysis using Parametric Empirical Bayes (PEB)

Group-level questions:

- Are the strength of particular connections changed by an experimental manipulation?
- Does belonging to a diagnostic **group** determine the strength of these connections?
- Does the strength of the connections correlate with **behavioural or clinical variables**?
- Could we **predict** a new participant's disease status or behavioural scores using our estimate of their connections?


6. Group analysis using Parametric Empirical Bayes (PEB)

The connectivity parameters are taken to the group level and modelled using a General Linear Model



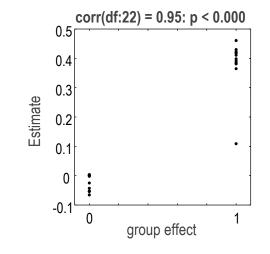
- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and **pre-processing**
- 4. Functional localisation
- 5. First-level DCM
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess **predictive** validity

7. Bayesian model comparison

Bayesian model reduction

Friston, Parr, Zeidman. *Bayesian model reduction*. arXiv preprint arXiv:1805.07092.

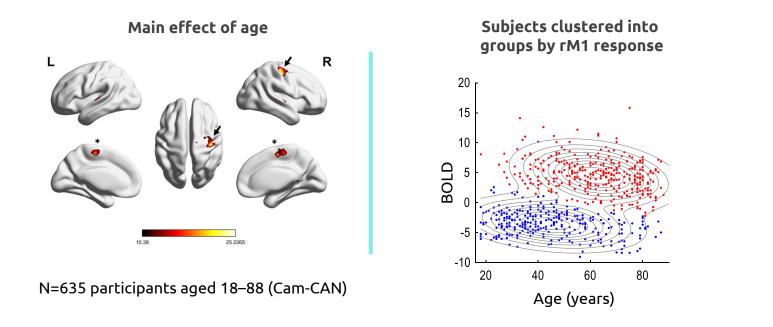
- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and **pre-processing**
- 4. Functional localisation
- 5. First-level DCM
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess **predictive** validity


8. Assess predictive validity

The question

Are the effect sizes I detected large enough to predict the group membership or clinical scores of **new** participants?

 \rightarrow Leave-one-out (LOO) cross-validation

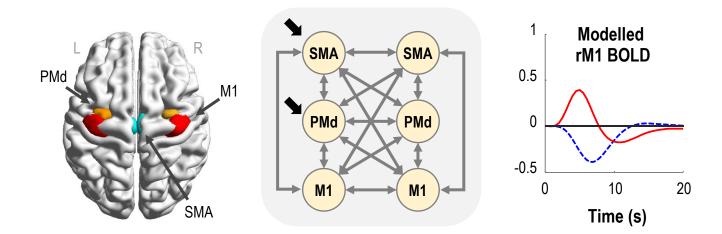

Predicted vs actual covariates

- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and pre-processing
- 4. Functional localisation
- 5. First-level **DCM**
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess predictive validity

The ageing brain: ipsilateral M1

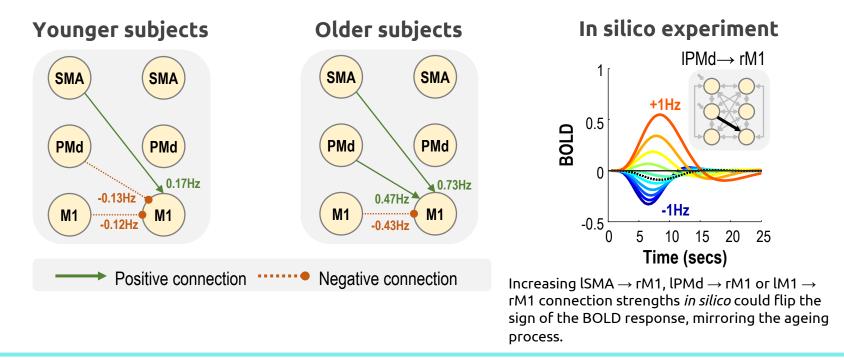


The ageing brain: DCM


Dynamic Causal Modelling (DCM) for fMRI

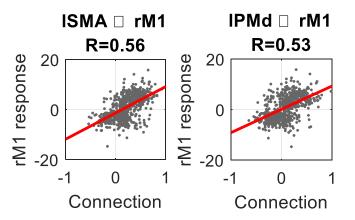
Neural model

Haemodynamic Model



The ageing brain: model structure

The model successfully captured the difference in the right M1 BOLD response between younger and older responders.


The ageing brain: model parameters

The ageing brain: cross-validation

Only the ISMA \rightarrow rM1 and IPMd \rightarrow rM1 connections correlated with rM1 BOLD across subjects.

Total variance explained: 44%

- 1. Write down some **hypotheses**
- 2. Design an experiment
- 3. Data collection and pre-processing
- 4. Functional localisation
- 5. First-level **DCM**
- Group analysis using Parametric Empirical Bayes
 (PEB)
- 7. Bayesian model comparison
- 8. Assess predictive validity

Further reading

Tutorial papers:

Zeidman, P., Jafarian, A., Corbin, N., Seghier, M.L., Razi, A., Price, C.J., Friston, K.J. A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI. NeuroImage, 200, pp. 174-190. 2019.

Zeidman, P., Jafarian, A., Seghier, M.L., Litvak, V., Cagnan, H., Price, C.J., Friston, K.J. **A guide to group effective connectivity analysis, part 2: Second level analysis with PEB.** NeuroImage, 200, pp. 12-25. 2019.

Technical papers:

- Friston, K., Parr, T. and Zeidman, P., 2018. Bayesian model reduction. arXiv:1805.07092.
- Friston, K.J., Litvak, V., Oswal, A., Razi, A., Stephan, K.E., Van Wijk, B.C., Ziegler, G. and Zeidman, P., 2016.
 Bayesian model reduction and empirical Bayes for group (DCM) studies. Neuroimage, 128, pp.413-431.
- Zeidman, P., Friston, K. and Parr, T., 2022. A primer on Variational Laplace. https://doi.org/10.31219/osf.

"What I cannot create I do not understand." —Richard Feynman

wellcome