Contrasts & Statistical Inference

Vasileia Kotoula, PhD

Lecture outline

√ What is a t-contrast?

√What is an f-contrast?

✓ Orthogonality of regressors

What do we use contrasts for?

A contrast is a linear combination of variables (parameters or statistics) whose coefficients add up to zero, allowing comparison of different treatments.

Within fMRI we use contrasts to:

- 1. Examine whether task conditions produce brain activity that is significantly different (increase or decrease) compared to signal noise (t-contrast)
- 2. Examine whether brain activity between two conditions is significantly different (increase or decrease) for one compared to the other (t-contrast)
- 3. Compare multiple regressors (parts of your model) and/or between conditions to see if is any difference between the two (f-contrast)

The story so far...

Data acquisition Data preprocessing Task Design task conditions + regressors of no interest Contrasts – Statistical inference

Mass-univariate approach

Your Design Matrix -Estimation of the parameters

$$\beta \sim N(\beta, \sigma^2(X^TX)^{-1})$$
 $\sigma^2 = \frac{\varepsilon^T \varepsilon}{N - p}$

$$\beta_{2-7} = \{0.678, 2.465, 1.309, 4.985, 6.784, 0.0021\}$$

$$\beta_8 = 181.005$$

The beta value are random variables that are distributed around their true value and their estimate depends on the variability of our residuals (σ^2).

Contrasts – t-contrasts

Contrasts allow you to isolate specific effects of interest

A contrast is a c vector of length p

A contrast $\mathbf{c}^{\mathsf{T}}\boldsymbol{\beta}$ is a linear combination of your regressor coefficients, β

If we are interested in the effects of β_1

$$\mathbf{c}^{\mathsf{T}}\boldsymbol{\beta} = \mathbf{1}\boldsymbol{x}\boldsymbol{\beta}_1 + \mathbf{0}\boldsymbol{x}\boldsymbol{\beta}_2 + \mathbf{0}\boldsymbol{x}\boldsymbol{\beta}_3 + \dots + \mathbf{0}\boldsymbol{x}\boldsymbol{\beta}_8$$

Contrasts – t-contrasts

Contrasts allow you to isolate specific effects of interest

A contrast is a c vector of length p

A contrast $\mathbf{c}^{\mathsf{T}}\boldsymbol{\beta}$ is a linear combination of your regressor coefficients, β

If we are interested in the effects of β_1 compared to β_5

$$c^{\mathsf{T}}\beta = \mathbf{1}x\beta_1 + 0\chi\beta_2 + 0\chi\beta_3 + 0\chi\beta_4 - \mathbf{1}\chi\beta_5 + \dots$$

$$\beta_1 - \beta_5$$

The million-dollar question...

Is the beta in my conditions of interest statistically significant?

Null Hypothesis – H₀

In this case, that our beta of interest, <u>does not</u> statistically significantly explain any variance in our model

We are trying to reject the H₀

$$H_0$$
: $cT\beta = 0$

The alternative hypothesis is what we expresses the outcome of interest

$$H_1$$
: $cT\beta \neq 0$

To test hypotheses, we need to calculate a **t-statistic**

What is the t-statistic?

T-statistic: the ratio of the difference in a number's estimated value form its assumed value over its standard error.

Test statistic: $T = \frac{\text{contrast of estimated parameters}}{\text{variance estimate}}$

Acceptable false positive rate $\alpha \longrightarrow$ threshold u_{α}

We reject the null hypothesis when t> u_{α}

A p-value contains information around the evidence against the $\rm H_0$. It gives the probability of observing a value more extreme than the t under the null hypothesis

An example

P _{FWE-CORR}	P _{FDR-CORR}	т	mm	mm	mm
0.000	0.002	7.91	0	-4	59
0.002	0.010	6.81	-26	-22	63
0.003	0.014	6.50	-41	-15	59

How about scaling?

- The T-statistic is the signal to noise ration
- The T-statistic does not depend on the scaling of your regressors
- The T-statistic does not depend on the scaling of your contrasts

However, there are scenarios where scaling is important..

Contrasts - F-contrast

When we want to compare models

 X_0

Partial model

F-statistic:

explained variance/unexplained variance

$$RSS_0 F = \frac{RSS_0 - RSS}{RSS}$$

*RSS: Residual sum of Squares

Measures the level of variance in the error term, or residuals in a regression model

Contrasts - F-contrast

An example

P _{FWE-CORR}	P _{FDR-CORR}	F	mm	mm	mm
0.000	0.003	62.50	0	-4	59
0.003	0.010	46.37	-26	-22	63
0.007	0.014	42.23	-41	-15	59

A final note...

Orthogonality: reflects how much your regressors correlate with one another

A final note...

Orthogonality: reflects how much your regressors correlate with one another

A final note...

Orthogonality: reflects how much your regressors correlate with one another

Orthogonality

Design orthogonality

Measure: abs. value of cosine of angle between columns of design matrix

Scale: black - colinear (cos=+1/-1)

white - orthogonal (cos=0)
gray - not orthogonal or colinear

- Orthogonal regressors are regressors that do not share any variability
- ✓ To account for a degree of shared variability we regress out the effect that is shared between regressors
- ✓ A lot of share variability, however, does not leave enough signal that is attributed to single regressors
- ✓ You can design your orthogonality matrix and check it before you do your experiment.

Thank you!