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A	surprising piece	of	information

2



A	surprising	piece	of	information
Messerli,	F.	H.	(2012).	Chocolate	Consumption,	Cognitive	Function,	and	Nobel	Laureates.	

New	England	Journal	of	Medicine,	367(16),	1562–1564.

3



This is a question referring to uncertain quantities. Like almost all scientific

questions, it cannot be answered by deductive logic. Nonetheless, quantitative

answers can be given – but they can only be given in terms of probabilities.

Our question here can be rephrased in terms of a conditional probability:

𝑝 𝑁𝑜𝑏𝑒𝑙 𝑙𝑜𝑡𝑠 𝑜𝑓 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 = ?

To answer it, we have to learn to calculate such quantities. The tool for this is

Bayesian inference.

So	will	I	win	the	Nobel	prize	if	I	eat	lots	of	chocolate?
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Calculating	with	probabilities:	the	setup
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We	assume	a	probability	space	Ω	with	subsets	𝐴	and	𝐵

In	order	to	understand	the	rules	of	probability,	we	need	to	understand	
three	kinds	of	probabilities

• Marginal	probabilities	like	𝑝(𝐴)

• Joint	probabilities	like	𝑝(𝐴, 𝐵)

• Conditional	probabilities	like	𝑝(𝐵|𝐴)

Ω
𝐴 𝐵



Marginal	probabilities
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Ω

𝐴𝐴 𝐵

𝑝(𝐴)



Joint	probabilities
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Ω

𝐴 𝐵

𝑝(𝐴, 𝐵)



What	is	‘marginal’	about	marginal	probabilities?
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• Let	𝐴	be	the	statement	‘the	sun	is	shining’
• Let	𝐵	be	the	statement	‘it	is	raining’
• 𝐴̅	negates	𝐴,	 $𝐵	negates	𝐵
Consider	the	following	table	of	joint	probabilities:

Marginal	probabilities	get	their	name	from	being	at	the	margins	of	tables
such	as	this	one.

! !" Marginal
probabilities

# $ #, ! = 0.1 $ #, !" = 0.5 $ # = 0.6

#̅ $ #̅, ! = 0.2 $ #̅, !" = 0.2 $ #̅	 = 0.4

Marginal
probabilities $ ! = 0.3 $ !" = 0.7

Sum	of	all	
probabilities
2$ 3,3 = 1



Conditional	probabilities
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• In	the	previous	example,	what	is	the	probability	that	the	sun	is	shining	given	that	it	is	not	raining?

• This	question	refers	to	a	conditional	probability:	𝑝(𝐴| %𝐵)

• You	can	find	the	answer	by	asking	yourself:	out	of	all	times	where	it	is	not	raining,	which	proportion	
of	times	will	the	sun	be	shining?

• This	means	we	have	to	divide	the	joint	probability	of	‘sun	shining,	not	raining’	by	the	sum	of	all	joint	
probabilities	where	it	is	not	raining:

𝑝 𝐴 %𝐵 =
𝑝(𝐴, %𝐵)

𝑝 𝐴, %𝐵 + 𝑝(𝐴̅, %𝐵)
=
𝑝(𝐴, %𝐵)
𝑝( %𝐵)

=
0.5
0.7

≈ 0.71

! !" Marginal
probabilities

# $ #, ! = 0.1 $ #, !" = 0.5 $ # = 0.6

#̅ $ #̅, ! = 0.2 $ #̅, !" = 0.2 $ #̅	 = 0.4

Marginal
probabilities $ ! = 0.3 $ !" = 0.7

Sum	of	all	
probabilities
2$ 3,3 = 1



Considerations	like	the	ones	above	led	to	the	following	definition	of	the	
rules	of	probability:	

1. 	∑! 𝑝 𝑎 = 1																											 	 (Normalization)

2. 	𝑝 𝐵 = ∑! 𝑝 𝑎, 𝐵 														 	 (Marginalization	–	the	sum	rule)

3. 	𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝 𝐴 	 (Conditioning	–	the	product	rule)

These	are	axioms,	ie	they	are	assumed	to	be	true.	Therefore,	we	cannot	test	
them	the	way	we	could	test	a	theory.	However,	we	can	see	if	they	turn	out	to	
be	useful.

The	rules	of	probability
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• The	product	rule	of	probability	states	that

𝑝 𝐴 𝐵 𝑝 𝐵 = 𝑝 𝐵 𝐴 𝑝 𝐴

• If	we	divide	by	𝑝 𝐵 ,	we	get	Bayes’	rule:

𝑝 𝐴 𝐵 =
𝑝 𝐵 𝐴 𝑝 𝐴

𝑝 𝐵 =
𝑝 𝐵 𝐴 𝑝 𝐴
∑! 𝑝 𝐵|𝑎 𝑝(𝑎)

• The	last	equality	comes	from	unpacking	𝑝 𝐵 	according	to	the	product	and	sum	
rules:

𝑝 𝐵 =*
!

𝑝 𝐵, 𝑎 =*
!

𝑝 𝐵|𝑎 𝑝(𝑎)

Bayes’	rule
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• Why	is	Bayes’	rule	important?
• It	allows	us	to	invert	conditional	probabilities,	ie	to	pass	from	𝑝 𝐵 𝐴 	to	𝑝 𝐴 𝐵 :

𝑝 𝐴 𝐵 =
𝑝 𝐵 𝐴 𝑝 𝐴

𝑝 𝐵

• In	other	words,	it	allows	us	to	update	our	belief	about	𝐴	in	light	of	observation	𝐵

Bayes’	rule:	what	problem	does	it	solve?
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In	our	example,	it	is	immediately	clear	that	𝑃 𝑁𝑜𝑏𝑒𝑙 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 	is	very	different	from	

𝑃 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 𝑁𝑜𝑏𝑒𝑙 .	 While	 the	 first	 is	 hopeless	 to	 determine	 directly,	 the	 second	 is	

much	 easier	 to	 find	 out:	 ask	Nobel	 laureates	 how	much	 chocolate	 they	 eat.	 Once	we	

know	that,	we	can	use	Bayes’	rule:

𝑝 𝑁𝑜𝑏𝑒𝑙 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 =
𝑝 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒 𝑁𝑜𝑏𝑒𝑙 𝑃 𝑁𝑜𝑏𝑒𝑙

𝑝 𝑐ℎ𝑜𝑐𝑜𝑙𝑎𝑡𝑒

Inference	 on	 the	 quantities	 of	 interest	 in	 neuroimaging	 studies	 has	 exactly	 the	 same	

general	structure.

Bayes’	rule	and	the	chocolate	example
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forward	problem

likelihood

inverse	problem

posterior	distribution

Inference	in	SPM

𝑝 𝜗 𝑦,𝑚

𝑝 𝑦 𝜗,𝑚
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Likelihood:

Prior:

Bayes’	theorem:

q

generative	model	𝑚

Inference	in	SPM

𝑝 𝑦 𝜗,𝑚

𝑝 𝜗 𝑚

𝑝 𝜗 𝑦,𝑚 =
𝑝 𝑦 𝜗,𝑚 𝑝 𝜗 𝑚

𝑝 𝑦 𝑚
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A	simple	example	of	Bayesian	inference
(adapted	from	Jaynes	(1976))

Assuming prices are comparable, from which manufacturer would you buy?

A: B:

This	example	comes	with	its	own	interactive	Jupyter notebook:

https://github.com/chmathys/bayesian-inference-example	

Two	manufacturers,	A	and	B,	deliver	the	same	kind	of	components	that	turn	out	to	

have	the	following	lifetimes	(in	days):
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https://github.com/chmathys/bayesian-inference-example


First: how not to analyze these data – an illustration of the dangers of

blindly applying recipes

• Let’s do a t-test (but first, let’s compare variances with an F-test):

Is this satisfactory? No, so what can we learn by turning to probability

theory (i.e., Bayesian inference)?

Means	not	significantly	different!

Variances	not	significantly	different!

A	simple	example	of	Bayesian	inference
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A	simple	example	of	Bayesian	inference

How	to	go	about	it:

• Determine	your	question	of	interest	(«What	is	the	probability	that...?»)

• Specify	your	model	(likelihood	and	prior)

• Justify	your	model	from	first	principles	and/or	prior	predictive	simulation

• Determine	the	posterior	distribution

• Answer	your	question	using	posterior	predictive	simulation

All of this is illustrated in detail in the notebook:

https://github.com/chmathys/bayesian-inference-example
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A	simple	example	of	Bayesian	inference

The	model:
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A	simple	example	of	Bayesian	inference

Prior	predictive	simulation:
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A	simple	example	of	Bayesian	inference

After	 fitting	 the	model	 to	 the	 data,	 we	 can	 do	 inference	 on	means	 of	

lifetimes	(as	does	the	t-test):
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The	 t-test	recipe	said	 that	 the	difference	of	means	was	not	significant,	

but	 probability	 theory	 (i.e.,	 Bayesian	 inference)	 says	 that,	 under	

plausible	 assumptions,	 there’s	 a	 95%	 probability	 that	 the	median	

lifetime	of	parts	from	B	is	at	least	3	days	longer!



A	simple	example	of	Bayesian	inference

The	real	question:

• What	is	the	probability	that	the	components	from	manufacturer	B	

have	a	longer	lifetime	than	those	from	manufacturer	A?

• More	specifically:	given	how	much	more	expensive	they	are,	how	

much	longer	do	I	require	the	components	from	B	to	live.

• Example	 of	 a	 decision	 rule:	 if	 the	 components	 from	 B	 live	 3	

hours	longer	than	those	from	A	with	a	probability	of	at	least	

50%,	I	will	choose	those	from	B.

• To	 determine	 this,	 we	 need	 to	 look	 at	 the	posterior	 predictive	

distribution
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A	simple	example	of	Bayesian	inference

Posterior	predictive	simulation:
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A	simple	example	of	Bayesian	inference

Inference	on	lifetimes	(answer	to	the	real	question):

24

So	 our	 decision	 rule	 says:	 buy	 from	B.	 (But	 we	 could	 have	 chosen	

another	 decision	 rule,	 and	 neither	 the	 data	 nor	 statistical	 procedures	

can	give	us	decision	rules.	We	have	to	reason	about	the	real	world	to	get	

them.)



• The	odds	of	𝐴	relate	to	the	probability	of	𝐴	in	the	following	way

𝑜 𝐴 =
𝑝(𝐴)
𝑝(𝐴̅)

=
𝑝(𝐴)

1 − 𝑝(𝐴)

𝑝 𝐴 =
𝑜(𝐴)

1 + 𝑜(𝐴)

• 	Bookmakers	 offer	 odds	 against	 events.	 For	 example,	 odds	 of	 3:1	 on	 a	 horse	
imply	 a	 probability	 of "

"#$
= 0.75	 for	 the	 horse	not	 to	win,	 ie	 a	 probability	 of

1 − 0.75 = 0.25	for	the	horse	to	win.

Bayes’	rule	for	odds
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• In	terms	of	odds,	Bayes	rule	is

𝑜 𝐻 𝑦 =
𝑝(𝐻|𝑦)
𝑝( ;𝐻|𝑦)

=

𝑝 𝑦 𝐻 𝑝 𝐻
𝑝 𝑦

𝑝 𝑦 ;𝐻 𝑝 ;𝐻
𝑝 𝑦

=
𝑝 𝑦 𝐻
𝑝 𝑦 ;𝐻

𝑝 𝐻
𝑝 ;𝐻

=
𝑝 𝑦 𝐻
𝑝 𝑦 ;𝐻

𝑜(𝐻)

• In	sum:

𝑜 𝐻 𝑦

𝐩𝐨𝐬𝐭𝐞𝐫𝐢𝐨𝐫
𝐨𝐝𝐝𝐬

=
𝑝 𝑦 𝐻
𝑝 𝑦 ;𝐻

𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝
𝐫𝐚𝐭𝐢𝐨

𝑜(𝐻)

𝐩𝐫𝐢𝐨𝐫
𝐨𝐝𝐝𝐬

• The	 likelihood	 ratio	 is	 sometimes	 called	 the	 Bayes	 factor.	 This	 is	 because	
multiplying	the	prior	odds	with	this	factor	gives	the	posterior	odds.

• The	 Bayes	 factor	 is	 a	 measure	 for	 how	 much	 making	 observation	 𝑦	 favours	
hypothesis	𝐻	over	hypothesis	 ;𝐻.

Bayes’	rule	for	odds
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• The	fact	that	the	Bayes	factor	is	a	measure	of	strength	of	evidence	can	be
used	for	model	comparison

• Consider	hypotheses	(i.e.,	models)	𝐻%	and	𝐻$.	Then	Bayes’	rule	for	the	odds
of	𝐻$	over	𝐻%	is

𝑝 𝐻$ 𝑦
𝑝 𝐻% 𝑦

=
𝑝 𝑦 𝐻$
𝑝 𝑦 𝐻%

𝑝 𝐻$
𝑝 𝐻%

• The	likelihood	ratio	is	the	ratio	of	marginal	likelihoods	(also	called	model
evidences):

𝑝 𝑦 𝐻& = =𝑝 𝑦 𝜗& , 𝐻& 𝑝 𝜗& 𝐻& d𝜗&

• In	terms	of	log-model	evidences,	the	log-Bayes	factor	is	simply	the	difference

log
𝑝 𝑦 𝐻$
𝑝 𝑦 𝐻%

= log 𝑝 𝑦 𝐻$ − log 𝑝 𝑦 𝐻%

Model	comparison
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Model	comparison:	negative	variational	free	energy	F
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𝐥𝐨𝐠	–𝐦𝐨𝐝𝐞𝐥 𝐞𝐯𝐢𝐝𝐞𝐧𝐜𝐞 ≔ log 𝑝 𝑦 𝐻

= log=𝑝 𝑦, 𝜗 𝐻 d𝜗

= log=𝑞 𝜗
𝑝 𝑦, 𝜗 𝐻
𝑞 𝜗 d𝜗

≥ =𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝐻
𝑞 𝜗 d𝜗

=:−𝑭 = 𝐧𝐞𝐠𝐚𝐭𝐢𝐯𝐞 𝐯𝐚𝐫𝐢𝐚𝐭𝐢𝐨𝐧𝐚𝐥 𝐟𝐫𝐞𝐞 𝐞𝐧𝐞𝐫𝐠𝐲Jensen’s	inequality

sum	rule

multiply	by	1 = - .
- .

−𝐹 ≔=𝑞 𝜗 log
𝑝 𝑦, 𝜗 𝐻
𝑞 𝜗 d𝜗

= =𝑞 𝜗 log
𝑝 𝑦 𝜗, 𝐻 𝑝 𝜗 𝐻

𝑞 𝜗 d𝜗

= =𝑞 𝜗 log 𝑝 𝑦 𝜗, 𝐻 d𝜗

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 (𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝 𝐥𝐨𝐠6𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝)

− 𝐾𝐿 𝑞 𝜗 , 𝑝 𝜗 𝐻

𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲

product	rule

Kullback-Leibler	divergence

a	lower	bound	on	the
log-model	evidence



Remarks	on	model	comparison	/	model	selection

• There	is	a	range	of	scores	that	help	in	choosing	a	well-performing	model:	AIC	
(Akaike	information	criterion),	BIC	(Bayesian	information	criterion),	Bayes	
factors,	LME	(log-model	evidence),	free	energy,	etc.	

• Each	model	gets	a	particular	score	(which	is	on	its	own	uninterpretable!)

• The	difference	in	score	between	models	is	what	counts

• However,	model	selection	is	not	straightforward.	AIC	and	BIC	penalize	complexity	
based	on	simple	heuristics,	which	may	not	reflect	complexity	accurately.	LME	is	
better	on	that	count,	but	is	very	sensitive	to	the	modeller’s	choice	of	priors.

• The	three	decisive	considerations:

1. Does	the	model	allow	me	to	answer	my	question	of	interest?

2. Does	the	prior	predictive	distribution	of	observations	make	sense?

3. Does	the	posterior	predictive	distribution	of	observations	make	sense?

When	the	answer	to	all	three	is	yes,	the	model	is	fine.
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A	note	on	uninformative	priors

• Using	a	flat	or	«uninformative»	prior	doesn’t	make	lead	to	inferences	that	are	
more	«data-driven».	It’s	a	modelling	choice	that	requires	just	as	much	
justification	as	any	other.

• For	example,	if	you’re	studying	a	small	effect	in	a	noisy	setting,	using	a	flat	prior	
means	assigning	the	same	prior	probability	mass	to	the	interval	covering	effect	
sizes	-1	to	+1	as	to	that	covering	effect	sizes	+999	to	+1001.

• Far	from	being	unbiased,	this	amounts	to	a	bias	in	favor	of	implausibly	large	
effect	sizes.	Using	flat	priors	is	asking	for	a	replicability	crisis.

• Put	another	way,	priors	which	are	too	uninformative	amount	to	an	implausible	
prior	predictive	distribution

• One	way	to	address	this	is	to	collect	enough	data	to	swamp	the	inappropriate	
priors.	A	cheaper	way	is	to	use	more	appropriate	priors.

• Classical	tests	often	imply	flat	priors.	But	also	in	a	Bayesian	context,	priors	which	
are	too	flat	are	common	because	they	can	give	a	higher	model	evidence	(which	is	
a	limitation	of	the	concept	of	model	evidence).
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Applications	of	Bayesian	inference	in	neuroimaging
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realignment smoothing

normalisation

general linear model

template

Gaussian 
field theory

p <0.05

statistical
inference

segmentation
and normalisation

dynamic causal
modelling

posterior probability
maps (PPMs)

multivariate
decoding
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grey matter CSFwhite matter

…

…

yi ci l

µk

µ2

µ1

s1 s 2 s k

class variances

class
means

ith voxel
value

ith voxel
label

class
frequencies

Segmentation	(mixture	of	Gaussians-model)
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PPM: regions best explained
by short-term memory model

PPM: regions best explained 
by long-term memory model

fMRI time series

GLM coeff

prior variance
of GLM coeff

prior variance
of data noise

AR coeff
(correlated noise)

short-term memory
design matrix (X)

long-term memory
design matrix (X)

fMRI	time	series	analysis

34



m2m1 m3 m4

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

V1 V5stim

PPC

attention

m1 m2 m3 m4

15

10

5

0

V1 V5stim

PPC

attention

1.25

0.13

0.46

0.39
0.26

0.26

0.10
estimated

effective synaptic strengths
for best model (m4)

models marginal likelihood

ln p y m( )

Dynamic	causal	modeling	(DCM)
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Fixed	effect

Random	effect

Assume	all	subjects	correspond	to	the	same	model

Assume	different	subjects	might	correspond	to	different	models

Model	comparison	for	group	studies
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Thanks
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