UCL

Bayesian Inference

Chris Mathys

London SPM Course

Thanks to Jean Daunizeau and Jérémie Mattout for
previous versions of this talk



A surprising piece of information

BB @ Signin News  Sport  Weather  iPlayer

NEWS MAGAZINE

|
World UK England N.lIreland Scotland Wales Business Politics Health Education Sci/E

Video & Audio Magazine Editors'Blog In Pictures Also in the News | Have Your Say Special Repor

19 November 2012 Last updated at 18:19 [ 44K JeS Share |l RN =)

Does chocolate make you clever?

By Charlotte Pritchard
BBC News

Eating more chocolate improves a nation's chances of producing
Nobel Prize winners - or at least that's what a recent study appears to
suggest. But how much chocolate do Nobel laureates eat, and how
could any such link be explained?



A surprising piece of information

Messerli, F. H. (2012). Chocolate Consumption, Cognitive Function, and Nobel Laureates.

New England Journal of Medicine, 367(16), 1562-1564.
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.
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So will Il win the Nobel prize if I eat lots of chocolate?

This is a question referring to uncertain quantities. Like almost all scientific
questions, it cannot be answered by deductive logic. Nonetheless, quantitative

answers can be given - but they can only be given in terms of probabilities.

Our question here can be rephrased in terms of a conditional probability:

p(Nobel | lots of chocolate) =?

To answer it, we have to learn to calculate such quantities. The tool for this is

Bayesian inference.



Calculating with probabilities: the setup

We assume a probability space (2 with subsets A and B

4 )

& Y
In order to understand the rules of probability, we need to understand
three Kinds of probabilities

* Marginal probabilities like p(A)
« Joint probabilities like p(4, B)
* Conditional probabilities like p(B|A)



Marginal probabilities




Joint probabilities




What is ‘marginal’ about marginal probabilities?

* Let A be the statement ‘the sun is shining’

* Let B be the statement ‘it is raining’

« A negates A, B negates B

Consider the following table of joint probabilities:

— Marginal
B B probabilities
A p(4,B) =01 | p(4,B)=0.5 | p(4) =0.6
A p(A,B) =0.2 |p(4,B)=02 | p(A)=04
Sum of all
; _ probabilities
Marginal p(B)=03 | p(B)=07

probabilities

ZP(-,-) =1

Marginal probabilities get their name from being at the margins of tables

such as this one.




Conditional probabilities

* In the previous example, what is the probability that the sun is shining given that it is not raining?

«  This question refers to a conditional probability: p(A|B)

*  You can find the answer by asking yourself: out of all times where it is not raining, which proportion
of times will the sun be shining?

= Marginal
B B probabilities
A p(4,B)=0.1 | p(4,B)=05 | p(4) =06

p(4,B) =02 |p(4,B)=02 | p(A) =04

|

Sum of all
Marginal _ probabilities
— p(B)=03 | p(B) =07
probabilities Zp(,’.) -1

*  This means we have to divide the joint probability of ‘sun shining, not raining’ by the sum of all joint
probabilities where it is not raining:
p(A, B) _p(AB) 05

_ — =— =" ~071
r(4,B) +p(4,B) pB) 07

p(A|B) =



The rules of probability

Considerations like the ones above led to the following definition of the
rules of probability:

1. Yapla)=1 (Normalization)

2. p(B) =Y,p(a,B) (Marginalization - the sum rule)
3. p(A4,B) =p(A|B)p(B) = p(B|A)p(A) (Conditioning - the product rule)
These are axioms, ie they are assumed to be true. Therefore, we cannot test

them the way we could test a theory. However, we can see if they turn out to
be useful.
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Bayes' rule
e The product rule of probability states that

p(A|B)p(B) = p(B|A)p(A4)

» If we divide by p(B), we get Bayes’ rule:

p(B|A)p(A) _ p(B|A)p(A)
p(B) YaP(Bla)p(a)

p(A|B) =

» The last equality comes from unpacking p(B) according to the product and sum
rules:

p(B) = ) p(B,@) = ) p(Bla)p(a)
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Bayes’ rule: what problem does it solve?

 Why is Bayes' rule important?

» Itallows us to invert conditional probabilities, ie to pass from p(B|A) to p(A|B):

p(B|A)p(A)
p(B)

p(A|B) =

* In other words, it allows us to update our belief about A in light of observation B
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Bayes’ rule and the chocolate example

In our example, it is immediately clear that P(Nobel|chocolate) is very different from
P(chocolate|Nobel). While the first is hopeless to determine directly, the second is

much easier to find out: ask Nobel laureates how much chocolate they eat. Once we

know that, we can use Bayes’ rule: likelihood
(hocol (Nobel? prior
(Nobel|chocolate W
. nocoltate)
posterior
evidence

Inference on the quantities of interest in neuroimaging studies has exactly the same

general structure.
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Inference in SPM

forward problem

p(dly, m)

_—eam =

inverse problem
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Inference in SPM

Prior:

0.7

\
0.6~ likelihood
0.5F1 prior
0.4l posterior
03 ......................................

Likelihood:

p(y|9,m)

p(¥|m)

Bayes’ theorem: p(J9|y,m)

_ p(y|Y9, m)p(I|m)

p(ylm)
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A simple example of Bayesian inference
(adapted from Jaynes (1976))

This example comes with its own interactive Jupyter notebook:

https://github.com/chmathys/bayesian-inference-example

Two manufacturers, A and B, deliver the same kind of components that turn out to

have the following lifetimes (in days):

A: 59.5814 B: 48.8506
] 37.3953 48.7296
47.5956 59.1971
40.5607 51.8895
48.6468
36.2789
31.5110
31.3606
45.6517

Assuming prices are comparable, from which manufacturer would you buy?
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https://github.com/chmathys/bayesian-inference-example

A simple example of Bayesian inference

First: how not to analyze these data - an illustration of the dangers of

blindly applying recipes
* Let'sdo a t-test (but first, let’s compare variances with an F-test):

>> [fh,fp,fci,fstats] = vartest2(xa,xb)

fh e fp e fci s fstats =
0 0.329 0.2415 fstat: 3.5114
19.0173 dfl: g

df2:
Variances not significantly different!

= stats =
-21.0191 tstat: =2.0367
0.8151 df: 11
sd: 8.2541

Means not significantly different!

[s this satisfactory? No, so what can we learn by turning to probability

theory (i.e., Bayesian inference)?
17



A simple example of Bayesian inference

How to go about it:

* Determine your question of interest («What is the probability that...?»)

» Specify your model (likelihood and prior)

* Justify your model from first principles and/or prior predictive simulation
* Determine the posterior distribution

* Answer your question using posterior predictive simulation

All of this is illustrated in detail in the notebook:

https://github.com/chmathys/bayesian-inference-example
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A simple example of Bayesian inference

The model:

@model function gaussians(y, c, o_p =0, ao =1, 6 = 1)

e

nc = length(unique(c))

a ~ filldist(Normal(a_u, a_c), nc)
o ~ filldist(Exponential(®@), nc)

for i in eachindex(y)
y[il ~ Normal(a[c[i]l], olc[i]])
end
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A simple example of Bayesian inference

Prior predictive simulation:

Density

40 50 60
Lifetime



A simple example of Bayesian inference

After fitting the model to the data, we can do inference on means of

lifetimes (as does the t-test):

sum(mean_b - mean_a .> 3) / length(posterior_sample)

The t-test recipe said that the difference of means was not significant,
but probability theory (i.e., Bayesian inference) says that, under
plausible assumptions, there’s a 95% probability that the median

lifetime of parts from B is at least 3 days longer!
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A simple example of Bayesian inference

The real question:

What is the probability that the components from manufacturer B

have a longer lifetime than those from manufacturer A?

More specifically: given how much more expensive they are, how

much longer do I require the components from B to live.

Example of a decision rule: if the components from B live 3
hours longer than those from A with a probability of at least

50%, I will choose those from B.

To determine this, we need to look at the posterior predictive

distribution
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A simple example of Bayesian inference

Posterior predictive simulation:

0.08 -
0.06

0.04

Density

0.02

W >

0.00

25 50 75
Lifetime

100
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A simple example of Bayesian inference

Inference on lifetimes (answer to the real question):

sum(t_b - t_a .> 3) / length(posterior_predictive_sample)

0.713125

So our decision rule says: buy from B. (But we could have chosen
another decision rule, and neither the data nor statistical procedures

can give us decision rules. We have to reason about the real world to get

them.)
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Bayes'’ rule for odds

* The odds of A relate to the probability of A in the following way

_pd)  pld)
(=@ T T-pd
o4
P =170

* Bookmakers offer odds against events. For example, odds of 3:1 on a horse
imply a probability of 3%1 = 0.75 for the horse not to win, ie a probability of
1 —0.75 = 0.25 for the horse to win.
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Bayes'’ rule for odds

In terms of odds, Bayes rule is

(H|y) p(yleg(H) (y|H)p(H) pQlH)
_pb\ry) — py _pyld)p p(y
U = ) = 0@~ pOID e~ po1m) °H
p(y)
In sum:
p(y|H)

o(Hly) = o1 24 o(H)

posterior ~——— prior

odds likelihood gdds

ratio

The likelihood ratio is sometimes called the Bayes factor. This is because
multiplying the prior odds with this factor gives the posterior odds.

The Bayes factor is a measure for how much making observation y favours
hypothesis H over hypothesis H.
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Model comparison

The fact that the Bayes factor is a measure of strength of evidence can be
used for model comparison

Consider hypotheses (i.e., models) H, and H;. Then Bayes’ rule for the odds
of H; over Hy is

p(Hyly) _ p(y|Hy) p(Hy)
p(Holy) p(yIHy) p(Hy)

The likelihood ratio is the ratio of marginal likelihoods (also called model
evidences):

p(ylH,) = j p(y19;, HOp (8| H) o,

In terms of log-model evidences, the log-Bayes factor is simply the difference

p(y|H;)
p(y|Hyp)

log = logp(y|H,) — logp(y|H,)
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Model comparison: negative variational free energy F
log - model evidence :=log p(y|H)
0 ,9|/H)dd
> Oog j p(y,9|H)

sum rule
p(y, 9|H)
— Slog | q(®) q(9) dd a lower bound on the

q(9) log-model evidence

multiply by 1 = 7
p(y,9|H)
9)1 do
P @jCI( ) log q(9) /

Jensen’s inequality =: —F = negative variational free energy

_ p(y,9|H)
—F ._Jq(ﬁ) log ) dd

Kullback-Leibler divergence
pOI9, H)p(IH) o

product rule

= [a@)i0gp018,1ya9  ~@g(9), p(o1H)]

- Complexity

v

Accuracy (expected log—likelihood)
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Remarks on model comparison / model selection

* There is a range of scores that help in choosing a well-performing model: AIC
(Akaike information criterion), BIC (Bayesian information criterion), Bayes
factors, LME (log-model evidence), free energy, etc.

* Each model gets a particular score (which is on its own uninterpretable!)
* The difference in score between models is what counts

* However, model selection is not straightforward. AIC and BIC penalize complexity
based on simple heuristics, which may not reflect complexity accurately. LME is
better on that count, but is very sensitive to the modeller’s choice of priors.

* The three decisive considerations:
1. Does the model allow me to answer my question of interest?
2. Does the prior predictive distribution of observations make sense?
3. Does the posterior predictive distribution of observations make sense?

When the answer to all three is yes, the model is fine.

29



A note on uninformative priors

* Using a flat or «uninformative» prior doesn’t make lead to inferences that are
more «data-driven». It's a modelling choice that requires just as much
justification as any other.

* For example, if you're studying a small effect in a noisy setting, using a flat prior
means assigning the same prior probability mass to the interval covering effect
sizes -1 to +1 as to that covering effect sizes +999 to +1001.

« Far from being unbiased, this amounts to a bias in favor of implausibly large
effect sizes. Using flat priors is asking for a replicability crisis.

* Put another way, priors which are too uninformative amount to an implausible
prior predictive distribution

* One way to address this is to collect enough data to swamp the inappropriate
priors. A cheaper way is to use more appropriate priors.

« Classical tests often imply flat priors. But also in a Bayesian context, priors which
are too flat are common because they can give a higher model evidence (which is
a limitation of the concept of model evidence).
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Applications of Bayesian inference in neuroimaging
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segmentation posterior probability dynamic causal multivariate
and normalisation maps (PPMs) modelling decoding
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Segmentation (mixture of Gaussians-model)

class variances

V histogram

ith voxel

S

grey matter white matter CSF .,



fMRI time series analysis

PPM: regions best explained
by short-term memory model

short-term memory
design matrlx (X)

prior variance
of GLM coeff

images

o
prior variance O AR coeff
of data noise (correlated noise)

GLM coeff @/{9
PPM: regions best explained

Y by long-term memory model

fMRI time series long-term memory
design matrix (X)




Dynamic causal modeling (DCM)

M- mo M3 My

attention attention attention

attention

models marginal likelihood estimated
‘ .| effective synaptic strengths
15 § lnp(y|m) \ J for best model (my)
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W s
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stim —
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, (\ =
p
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differences in log- model evidences

Model comparison for group studies

lnp(y‘ml)‘lnp(y‘mz) TN

-4t
S~ 2 3 4 5 6 7 & 9 10 ~
Y
subjects
Fixed effect Assume all subjects correspond to the same model
Random effect Assume different subjects might correspond to different models
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Thanks
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