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MORAVEC'S PARADOX

Rodney Brooks explains that, according to
early Al research, intelligence was “best
characterized as the things that highly
educated male scientists found challenging”,
such as chess, symbolic integration, proving
mathematical theorems and solving
complicated word algebra problems. “The
things that children of four or five years could
do effortlessly, such as visually distinguishing
between a coffee cup and a chair, or walking
around on two legs, or finding their way from
their bedroom to the living room were not
thought of as activities requiring intelligence.”

Moravec’s paradox. (2015, April 25). In Wikipedia, The Free Encyclopedia. Retrieved
14:46, June 17, 2015, from https://en.wikipedia.org/w/index.php?title=
Moravec%27s_paradox&oldid=659139375
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WHEN A USER TRKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEYRE IN A NATIONAL PARK ...
SURE, ERSY GIS LOOKUR
GIMME A FEW HOURS.
.. AND CHELK WHETHER
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https://xkcd.com


https://en.wikipedia.org/w/index.php?title=Moravec%27s_paradox&oldid=659139375
https://en.wikipedia.org/w/index.php?title=Moravec%27s_paradox&oldid=659139375
https://xkcd.com

INTRODUCTION PIPELINES Vv MODELS
A SIMPLE(ISH) MODEI PROBABILITY THEORY
LEARNING SHAPE AND APPEARANCE MEDICAL IMAGE COMPUTING

Way IMAGE PROCESSING SEEMS EASY

Neurons for visual processing take up
30% of the brain’s cortex (as opposed to
about 8 % for touch and 3 % for
hearing).
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PIPELINES

In software engineering, a pipeline consists of a chain of
processing elements (processes, threads, coroutines, functions, etc.),
arranged so that the output of each element is the input of the next

Pipeline (software). (2015, May 1). In Wikipedia, The Free Encyclopedia. Retrieved 16:50, June 17, 2015, from
https://en.wikipedia.org/w/index.php?title=Pipeline_(software)&oldid=660291081
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OPTIMISING TWO PARAMETERS
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BOTTOM-UP & TOP-DOWN PROCESSING IN THE BRAIN

@ Pipelines are a purely bottom up approach, with no top-down
control.

@ Data processing in the brain involves both top-down and
bottom-up processing.

@ Can not expect to achieve optimal understanding from a
purely bottom-up approach.
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GENERATIVE MODELS

A generative model is a model for randomly generating observable
data, typically given some hidden parameters. It specifies a joint
probability distribution over observation and label sequences.
Generative models are used in machine learning for either
modeling data directly (i.e, modeling observations draws from a
probability density function), or as an intermediate step to forming
a conditional probability density function. A conditional distribution
can be formed from a generative model through Bayes’ rule.

Generative model. (2015, April 30). In Wikipedia, The Free Encyclopedia. Retrieved 16:46, June 17, 2015, from
https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=660109222

JOHN ASHBURNER GENERATIVE MODELS


https://en.wikipedia.org/w/index.php?title=Generative_model&oldid=660109222

INTRODUCTION PIPELINES Vv MODELS
A SIMPLE(ISH) MODEI PROBABILITY THEORY
LEARNING SHAPE AND APPEARANCE MEDICAL IMAGE COMPUTING

ProsAILITY THEORY

“Probability theory is nothing but common
sense reduced fo calculation.”

— Laplace

Desiderata of probability theory:

© Representation of degree of plausibility by real
numbers.

@ Qualitative correspondence with common sense.

© Consistency.

Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.
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Product Rule

ply. x) = ply|x)p(x)
= plx|y)ply)

Sum Rule

ply) = > ply. )
X
or for continuous x

ply) = / ply, x)dx

JOHN ASHBURNER

p(x) is the probability of x.

p(x,y) is the joint probability of x
and y.

p(x|y) is the probability of x
conditional on y.
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Baves RULE

Combining the sum and product rules, gives Bayes rule:

p(X[0)p(0) p(X|6)p(0)

POX) = =) = T, pX[B)pl6)d0

In words:

Likelihood x Prior

Posterior = -
Evidence
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IGNORANCE PRIORS

@ Sometimes we don’t have previous observations
to formulate priors.

@ Jaynes suggests using a maximum entropy prior.

@ An ignorance prior is a prior probability
distribution where equal probability is assigned
to all possibilities.

@ Ignorance priors can be motivated via
invariance/symmetry (transformation groups).

Jaynes, Edwin T. Probability theory: the logic of science. Cambridge university press, 2003.
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PRIORS FOR POSITIVE VALUES
Gaussian prior on log(x)
0.1
0.08
@ Some things can not be less than o0
7€ro0. 3 "
T 0.04
o Counts of observed photons.
o Multiplicative “bias” fields. 002
o Lengths, areas, volumes, efc. % = 5 s
. log(x)
@ Formulate the model via
. ) . Gaussian prior on log(x)
logarithms, and impose a prior on 02
these. 0.15
Jeffreys, Harold. “An invariant form for the prior probability in % 01
estimation problems.” In Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, vol. 186, no. 1007, pp. 0.05 exp(u)
453-461. The Royal Society, 1946.
0
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MacKay, David JC. “Bayesian
\L)/ interpolation.” Neural
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GOLDILOCKS AND THE THREE BAVES. oo

—— p(Data [ Model,)
e P(Datta | Model,))
e P(Data | Modela)

“Everything
should be

made as
g /This model was too simple simple as
s possible,
et but not
This model was too complex S impler, 7

— Einstein (possibly)

Data
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GENERAL AIM OEF MEDICAL IMAGE COMPUTING

Given an image or a set of images x*, best predict y*.
Here, y may be:

@ A diagnosis.

@ An optimal treatment decision.

@ Another image, for example:

o A cleaned up version of the same image.

o A map of where a neurosurgeon should best avoid.

e A map of gamma ray absorption for attenuation correction in
MR/PET.

@ etc
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GENERAL AIM OF MEDICAL IMAGE COMPUTING

Often a collection of training data to work from (X and Y).
The aim becomes of of determining p(y*|x*, Y, X).
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GENERAL AIM OEF MEDICAL IMAGE COMPUTING

Predictions are based on some model, 7. Usually, a model has
parameters, 0:

ply* X", Y, X, 1) — /p(y*,@]x*,Y,X, 91)do
0
_ / ply*|x*, Y, X, 6, 1) pl6] I%)d6
0

Predictions may also be made by averaging over models.

PIY* X", Y, X) = " ply|x*, Y, X, 1) P(IL;)
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UNEORTUNATELY...

“In theory, there is no difference between theory and
practice. But, in practice, there is.”

Many of the integrations needed to compute model evidence are
not computationally feasible in medical image computing
applications. Workarounds include:

@ Use maximum a posteriori (MAP) estimation, and
approximate probability distributions via a delta function.

0 — arg maxlog p(X, 0)
0
@ Model selection via cross-validation.
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© A SIMPLE(ISH) MODEL
@ Tissue appearance
@ Tissue priors
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T1SSUE PRIORS

INCORPORATING “BIAS” CORRECTION

: =)
Zlog Z Yk 2 exp | — p;(ﬁ)

k=1 27rp(ﬁ) pi(B)2

Original Corrected Original Corrected

\
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TISSUE PRIORS

INCORPORATING “BIAS” CORRECTION

1 K ) - 2
& — — Zlog 0i(B) Z 7k exp <_(P/(ﬁ)f: Fik) >
i=1

2
20,

Original Corrected Field
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INCORPORATING DEFORMABLE TISSUE PRIORS

! K
&= —Zlog pl(ﬁ) ?/kbik(a) exp <_M>

K 2
i=1 Zk:l l}/kbl'k(a) k=1 27'[6[3 2Ok

JOHN ASHBURNER GENERATIVE MODELS



A SIMPLE(ISH) MODEL
TISSUE PRIORS

INCORPORATING DEFORMABLE TISSUE PRIORS

1 \ K 1) 2

i by (p; B)f; —

8=-Y log Kp,LB) D) 7k ’ka)exp(fp'ﬁ"zul‘) )
i1 ko1 Yk bik@) ;3 /ZJTUf \ 20}
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LATENT VARIABLES

Optimisation done via EM.

Marginalised with respect to
latent variables (z), which encode
tissue class memberships.

plf.0) = [ plf.z 0)dz
where

0 ={poyBal
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TISSUE APPEARANCE
TISSUE PRIORS

@ Ashburner, John, and Karl J. Friston. “Unified segmentation.” Neuroimage
26, no. 3 (2005): 839-851.

@ http://www.fil.ion.ucl.ac.uk/spm/software/spml2/,
spm12/spm_preproc_run.m.

JoHN ASHBURNER GENERATIVE MODELS


http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

INTRODUCTION
A SIMPLE(ISH) MODEL
LEARNING SHAPE AND APPEARANCE

EQUATIONS
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© LEARNING SHAPE AND APPEARANCE
@ Equations
@ Examples

JoHN ASHBURNER GENERATIVE MODELS



EQUATIONS

) X ) EXAMPLES
LEARNING SHAPE AND APPEARANCE

PriNcIPAL COMPONENT ANALVSIS

Given a P x N matrix F, decompose it into a P x K matrix H and
a K x N matrix W, such that:

F =~ HW

The EM algorithm is:
o E-step: W « (HTH)"'HTF
e M-step: H — FWT(WwT)"!

Roweis, Sam. “EM algorithms for PCA and SPCA.” Advances in neural information processing systems (1998): 626-632.
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PriNcIPAL COMPONENT ANALVSIS

Minimise the following w.rt. H and W:

8 =Y I = 201 hiewin 2

Or this, wrt g, H and W:

& =N = 8 w2
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GENERALISED PRINCIPAL COMPONENT ANALYSIS

If F is binary, we could fit a logistic version by
minimising the following w.rt. H and W:

Logistic Sigmoid

N P !
8= =" "logl0pn)fon + log(l — Gpn)(1 — fon)
n=1p=1 éiw
where -
1 4 -2 BTXO*-'J 2
Opn =

1+ exp(Z}f=1 hpk Win)

The EM algorithm involves logistic regression.
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PRINCIPAL GEODESIC ANALYSIS

Could combine diffeomorphic registration with PCA by minimising:
N _
& = anl %Hfﬁ _IIOCPanz + %HVHH%/

where H encodes principal components of initial velocity for
computing diffeomorphisms:

K
Vp = Zk=1 hywin

¢, = Explv,) (via geodesic shooting)

Zhang, Miaomiao, and P. Thomas Fletcher. “Probabilistic principal geodesic analysis.” In Advances in Neural Information
Processing Systems, pp. 1178-1186. 2013.

Zhang, Miaomiao, and P. Thomas Fletcher. “Bayesian Principal Geodesic Analysis for Estimating Intrinsic Diffeomorphic
Image Variability” Medical Image Analysis (2015).
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CoMBINED PCA/PGA MODEL

Could combine diffeomorphic registration with PCA by minimising
the following w.rt. g, H, A and W:

& = Yai1 Hlfo — () 0 @ 17 + ZIral? + 3Ival5

where:

K
Vi = k-1 hkWin
P, = EXp (Vn)
K
n = Y k=13kWkn
Note: Some form of metamorphoses approach may be better.
Richardson, Casey L., and Laurent Younes. “Metamorphosis of Images in Reproducing Kernel Hilbert Spaces.” arXiv

preprint arXiv:1409.6573 (2014).
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ORIGINAL IMAGES
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RANDOM SAMPLES (1)
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RANDOM SAMPLES (2)
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“

To recognize shapes, first learn fo generate images”

Geoffrey E Hinton (2007)
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D'Arcy Thompson
On Growth and Form
(Dundee, 1917)
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