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Small Deformation Approximation
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Small Deformation Model

Should fit a model to the data (as opposed to fitting the data
to the model).

The objective function for least-squares fitting is often
expressed as:

E =
1

2
||Lv||2 +

1

2σ2
||f − µ (Id− v) ||2

f is our image (data).
µ is the template (model).
v is a displacemet field.
Id is an identity transform.
L is a differential operator.
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Linear Elasticity Operator

The differential operator used is essentially the same linear
elasticity operator used by Christensen (where D indicates
computing the Jacobian:

||Lv||2 =

∫
x∈Ω

(
λ1

4
||Dv + (Dv)T ||2 + λ2tr(Dv)2 + λ3||v||2

)
dx

This has three terms that penalise different things.

1 Length changes (Dv + (Dv)T ).

2 Volume changes (tr(Dv)).

3 Absolute displacement (v – needed to make the operator
invertable).
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Discretisation

Images and deformations are really stored discretely, and made
continuous by interpolation.

Generalised interpolation involves representing fields etc by
linear combinations of basis functions.

Linear interpolation, which involves very local triangular basis
functions (bi (x)), so:

v(x) =
∑
i

wibi (x)
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Differential Operator in 1D

In 1D, a simple operator could compute the gradients by Gw,
where:

G =


−1 1 0 0 . . .
0 −1 1 0 . . .
0 0 −1 1 . . .
0 0 0 −1 . . .
...

...
...

...
. . .


Penalty (||Lv||2) could be the sum of squares of the gradients.

Computed by (Gw)T (Gw) ≡ wTGTGw ≡ wTAw.

Note that the norm ||Lv|| (ie
√
wTAw) can be thought of as

a distance.
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Differential Operator in 2D

For more dimensions, we can use Kroneker tensor products.

G⊗ B =

g11B . . . g1nB
...

. . .
...

gm1B . . . gmnB


So, computing horizontal and vertical gradients of a square
image (reshaped to a column vector) may be achieved using
the following matrix: (

I⊗ G
G⊗ I

)
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Differential Operator for Computing Jacobians (2D)

If we stack the x component of the displacement field on top
of the y component, then we can compute elements of the
Jacobians by: 

I⊗ G 0
G⊗ I 0
0 I⊗ G
0 G⊗ I

w

The divergence of the displacement is simply the trace of the
Jacobian, so can be computed using:(

I⊗ G G⊗ I
)
w
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Symmetric and Anti-symmetric Matrices

A square matrix (J) can be decomposed into the sum of a
symmetric and anti-symmetric (skew symmetric) matrix.

The symmetric part is (J + JT )/2.
The anti-symmetric part is (J− JT )/2.

The symmetric elements of the Jacobian of the displacement
can be obtained from: I⊗ G 0

0 G⊗ I
1
2G⊗ I 1

2 I⊗ G

w

Similar large sparse matrices can be generated for 3D data.
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Matrix Exponentials

A matrix exponential (“expm” in MATLAB) is given by:

eJ =
∞∑
k=0

1

k!
Jk

For matrices very close to zero, eJ ' I + J.

The determinant |eJ| may be computed from etr(J).

If J is anti-symmetric, then eJ is orthogonal (ie a rigid
rotation).

J = w1

 0 1 0
−1 0 0
0 0 0

+ w2

0 0 −1
0 0 0
1 0 0

+ w3

0 0 0
0 0 1
0 −1 0


We do not wish to penalise rotations, so only penalise the
symmetric parts of the Jacobians.
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Greens Function

Note that the Green’s
function (K) of the operator
may be computed from the
(pseudo)inverse of A,
although it is often easier to
use Fourier methods.

If you think of applying a
differential operator as a
convolution, then applying
the Green’s function is a
deconvolution.
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Gauss-Newton Optimisation

An iterative procedure, using both first and second derivatives.

w(i+1) = w(i) −
[
∂2E
∂w2

∣∣∣∣
w(i)

]−1 [
∂E
∂w

∣∣∣∣
w(i)

]

∂E
∂w

= Aw + g

∂2E
∂w2

= A + H
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Gradients

g =



g11

g21

g31
...

gI1
g11

g21

g31
...

gI1



Using trilinear interpolation to
represent the displacement fields,
where the density of the control
points is equal to the pixel
spacing. Therefore
ϑ(xi ) = [xi1 − wi1, xi2 − wi2].

gil =
1

σ2
(f (xi )− µ(ϑ(xi ))) ((∇lµ) ◦ (ϑ(xi )))
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Hessian

H =



h111 0 0 . . . 0 h121 0 0 . . . 0
0 h211 0 . . . 0 0 h221 0 . . . 0
0 0 h311 . . . 0 0 0 h321 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . hI11 0 0 0 . . . hI21

h112 0 0 . . . 0 h122 0 0 . . . 0
0 h212 0 . . . 0 0 h222 0 . . . 0
0 0 h312 . . . 0 0 0 h322 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . hI12 0 0 0 . . . hI22


hilm =

1

σ2
((∇lµ) ◦ ϑ(xi ))((∇mµ) ◦ ϑ(xi ))
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Matrix Solution

A multigrid approach used to
solve (A + H)−1(Aw + g). Based
on a relaxation scheme at several
resolutions. See Numerical
Recipes (2nd edition onwards) for
more details.
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At The Solution

At the solution, the derivatives of the objective function are zero.

∂E
∂w

= Aw + g = 0

Therefore

w = A−1g

We see that the displacements are a smoothed version of a
difference image multiplied by the warped gradients of the
template.

v = K ((f −µµµ(ϑ))((∇µµµ) ◦ ϑ))
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Nonlinearity of Shapes

According to David Mumford (Fields Medal,
1974):

“Shapes are the ultimate non-linear
sort of thing”

Relative shapes can not be added and
subtracted (ie, they are nonlinear). Instead,
deformations should combined by composing
them together.
Deformations that are smooth and invertable
are known as diffeomorphisms, and form a
mathematical group.

µ f

µ ° θ f ° φ

φ

|J
φ
|

θ

|J
θ
|
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Linear Methods for Data on Manifolds

We are
dealing with
non-
Euclidean
geometry, so
conceptualise
the curved
spaces as
manifolds
embedded in
higher
dimensions.
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Diffeomorphism Groups

A group is a set, G , together with an operation, ◦, that combines
any two elements a and b to form another element, denoted a ◦ b.
To qualify as a group, the set and operation must satisfy four
requirements known as the group axioms:

Closure. For all a, b in G , the result of the operation, a ◦ b,
is also in G .

Associativity. For all a, b and c in G , (a ◦ b) ◦ c = a ◦ (b ◦ c).

Identity element. There exists an element Id in G , such that
for every element a in G , the equation Id ◦ a = a ◦ Id = a
holds.

Inverse element. For each a in G , there exists an element b
in G such that a ◦ b = b ◦ a = Id .

The order in which the group operation is carried out matters for
diffeomorphisms (a ◦ b 6= b ◦ a). They are not abelian.
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Tiny Small Deformation Approximation

Positive real numbers form a group under the multiplication
operation. We can not multiply numbers together by addition, but
if they are very close to 1 (the identity element of the group), then
we almost can. For example
1.3× 0.8 = 1.04, 1 + (1.3− 1) + (0.8− 1) = 1.1
1.03× 0.98 = 1.0094, 1 + (1.03− 1) + (0.98− 1) = 1.01
1.003× 0.998 = 1.000994, 1 + (1.003− 1) + (0.998− 1) = 1.001

Similarly, we can treat extremely small displacement fields as
almost linear.
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Large Deformations

We can consider a large deformation as the composition of a series
of small deformations:

ϕ1 =
(
Id +

vtN−1

N

)
◦
(
Id +

vtN−2

N

)
◦ ... ◦

(
Id +

vt1

N

)
◦
(
Id +

v0

N

)
The inverse of the deformation can be computed from:

ϑ1 =
(
Id− v0

N

)
◦
(
Id− vt1

N

)
◦ ... ◦

(
Id−

vtN−2

N

)
◦
(
Id−

vtN−1

N

)

φ
1

θ
1

John Ashburner Geodesic Shooting



Small Deformation Model
Large-Deformation Diffeomorphic Metric Mapping

Geodesic Shooting

Diffeomorphisms & Geodesics
LDDMM Itself

Geodesic Distances

By modelling the trajectories as piecewise linear, geodesic distances
(locally shortest distances along a curved manifold) can be
computed using:

d =
1

N

N−1∑
n=0

√
vTtnAvtn =

1

N

N−1∑
n=0

||Lvtn ||

If N approaches infinity, the evolution of a deformation may be
conceptualised as integrating the following equation:

dϕ

dt
= vt(ϕ)

Geodesic distances (from zero) are then measured by:

d =

∫ 1

t=0
||Lvt ||dt
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LDDMM

Large Deformation Diffeomorphic Metric Mapping is an image
registration algorithm that minimises the following:

E =
1

2

∫ 1

t=0
||Lvt ||2dt +

1

2σ2
||f − µ

(
ϕ−1

1

)
||2

where ϕ0 = Id,
dϕ

dt
= vt (ϕt)

The first term minimises the squared distance measure of the
deformations, whereas the second term simply minimises the
difference between the warped template and the individual scan.
The objective is to estimate a series of velocity fields (vt).
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Change of Variables

When we warp images, we should usually account for
expansion/contraction via a change of variables.∫

x∈ϕ(Ω)
f (x)dx =

∫
x∈Ω

f (ϕ(x))|(Dϕ)(x)|dx

where (Dϕ)(x) means the Jacobian of ϕ at x.
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Matching Term

φ
1

φ
t

−1

φ
1
 ° φ

t

−1

The matching term of the objective function is:

1

σ2

∫
x∈Ω

(f ◦ x− µ ◦ϕ−1
1 ◦ x)2dx

This may be re-written (including a change of variables via
ϕ1 ◦ϕ−1

t ) as:

1

σ2

∫
x∈Ω
|D(ϕ1 ◦ϕ−1

t ) ◦ x|(f ◦ϕ1 ◦ϕ−1
t ◦ x− µ ◦ϕ−1

t ◦ x)2dx
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Matching Term

φ
1

φ
t

−1

φ
1
 ° φ

t

−1

After registration.

f (x) matches µ(ϕ−1
1 (x)).

µ(x) matches f (ϕ1(x)).

f (ϕ1(ϕ−1
t (x))) matches µ(ϕ−1

t (x)).
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Derivatives for LDDMM (need to check these equations)

For n = 0..N, the objective function is:

1

σ2

∫
x∈Ω
|D(ϕ1 ◦ϕ−1

n
N

) ◦ x|(f ◦ϕ1 ◦ϕ−1
n
N
◦ x− µ ◦ϕ−1

n
N
◦ x)2dx

We can create two images f ′ = f ◦ϕ1 ◦ϕ−1
n
N

and µ′ = µ ◦ϕ−1
n−1
N

, as

well as some weights p = |D(ϕ1 ◦ϕ−1
n
N

)|. This (almost) means

that the updates at each time step can be treated as small
deformations.

Et =
1

2
||Lvt ||2 +

1

2σ2

∫
x

p(x)

(
f ′(x)− µ′(x− vt(x)

N
)

)2

dx
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Derivatives for LDDMM

The derivatives for the matching term turn out to be:

1

σ2
|D(ϕ1 ◦ϕ−1

t )|(∇(µ ◦ϕ−1
t ))(f ◦ϕ1 ◦ϕ−1

t − µ ◦ϕ−1
t )

Note that:

∇(µ ◦ϕ−1
t ) = (Dϕ−1

t )T ((∇µ) ◦ϕ−1
t )

|D(ϕ1 ◦ϕ−1
t )| = |Dϕ−1

t |(|Dϕ1| ◦ϕ−1
t ).

(f ◦ϕ1 ◦ϕ−1
t − µ ◦ϕ−1

t ) = (f ◦ϕ1 − µ) ◦ϕ−1
t

ϕ−1
t = ϑt

So the derivatives can be re-written:

1

σ2
|Dϑt |(|Dϕ1| ◦ ϑt)(Dϑt)

T ((∇µ) ◦ ϑt) ((f ◦ϕ1 − µ) ◦ ϑt)

|Dϑt | (Dϑt)
T

((
1

σ2
|Dϕ1|(∇µ)(f ◦ϕ1 − µ)

)
◦ ϑt

)
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Gradient Descent for LDDMM

LDDMM is optimised via gradient descent on the so called Hilbert
gradient:

v
(i+1)
t = v

(i)
t − εv

(i)
t −

εK

(∣∣∣Dϑ
(i)
t

∣∣∣ (Dϑ
(i)
t

)T (( |Dϕ
(i)
1 |

σ2
(∇µ)(f ◦ϕ(i)

1 − µ)

)
◦ ϑ(i)

t

))

Note that Gauss-Newton can not easily be used because of
covariance between velocities at different times.
Also note that lots of deformations and velocity fields need to be
computed, which either involves using loads of memory, or writing
loads of temporary files to disk.

John Ashburner Geodesic Shooting



Small Deformation Model
Large-Deformation Diffeomorphic Metric Mapping

Geodesic Shooting

Generating Deformations from Initial Velocities
Optimising the Initial Velocities
Initial Momentum
Examples

Outline

1 Small Deformation Model
Differential Operator
Optimisation

2 Large-Deformation Diffeomorphic Metric Mapping
Diffeomorphisms & Geodesics
LDDMM Itself

3 Geodesic Shooting
Generating Deformations from Initial Velocities
Optimising the Initial Velocities
Initial Momentum
Examples

John Ashburner Geodesic Shooting



Small Deformation Model
Large-Deformation Diffeomorphic Metric Mapping

Geodesic Shooting

Generating Deformations from Initial Velocities
Optimising the Initial Velocities
Initial Momentum
Examples

Euler-Lagrange Equations

At the solution, the derivatives of the objective function are zero,
which means that the velocity at any time point is given by:

vt + K

(
|Dϑt | (Dϑt)

T

((
1

σ2
|Dϕ1|(∇µ)(f ◦ϕ1 − µ)

)
◦ ϑt

))
= 0

If we introduce something that we’ll call initial momentum:

u0 = Av0 =
1

σ2
|Dϕ1|(∇µ)(µ− f ◦ϕ1)

we see that the velocity at any time point is determined by the
initial momentum (or velocity), according to:

vt = K
(
|Dϑt |(Dϑt)

T (u0 ◦ ϑt)
)
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Geodesic Shooting

This all means that we do not need to estimate a series of velocity
fields. We just need to estimate an initial velocity (v0), from which
we compute the initial momentum by u0 = Av0.
We set the deformation at time 0 to an identity transform
(ϕ0 = Id), and then evolve the following dynamical system for unit
time:

dϕ

dt
= vt(ϕt)

vt = K
(
|Dϕ−1

t |(Dϕ−1
t )T (u0 ◦ϕ−1

t )
)
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Evolution

Template and gradients Residuals Momentum (u) Velocity (v) θ |J
θ
| φ |J

φ
|

John Ashburner Geodesic Shooting



Small Deformation Model
Large-Deformation Diffeomorphic Metric Mapping

Geodesic Shooting

Generating Deformations from Initial Velocities
Optimising the Initial Velocities
Initial Momentum
Examples

Objective Function

LDDMM objective function:

E =
1

2

∫ 1

t=0
||Lvt ||2dt +

1

2σ2
||f − µ

(
ϕ−1

1

)
||2

A possible Geodesic Shooting objective function:

E =
1

2
||Lv0||2dt +

1

2σ2
||f − µ

(
ϕ−1

1

)
||2

The objective function I use:

E =
1

2
||Lv0||2dt +

1

2σ2

∫
x∈Ω
|(Dϕ1) ◦ x| (f (ϕ1(x))− µ(x))2 dx
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Gradient Descent for Geodesic Shooting

Could simply optimise v0 via gradient descent:

v
(i+1)
t = v

(i)
t − εv

(i)
t − εK

(
|Dϕ

(i)
1 |

σ2
(∇µ)(f ◦ϕ(i)

1 − µ)

)

We no longer need save a series of deformations and velocity fields.
Note also that Gauss-Newton can now be used because all the
parameters are in v0 - so no covariance to worry about.
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Gauss-Newton Algorithm

Set the initial velocity v0 (parameterised by w) to zero.

Repeat the following until convergence or for a fixed number
of iterations

Shoot from the initial velocity v0 to obtain ϕ1.
Compute the objective function, and approximate gradient and
Hessian (E , g and H), using the current ϕ1.
Check E improves.
Gauss-Newton update of the coefficients, which parameterise
v0.
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Gradients

g =



g11

g21

g31
...

gI1
g11

g21

g31
...

gI1


gil =

1

σ2
|Jϕ1 (xi )| (f (ϕ1(xi ))− µ(xi )) ((∇lµ) ◦ xi )
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Hessian

H =



h111 0 0 . . . 0 h121 0 0 . . . 0
0 h211 0 . . . 0 0 h221 0 . . . 0
0 0 h311 . . . 0 0 0 h321 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . hI11 0 0 0 . . . hI21

h112 0 0 . . . 0 h122 0 0 . . . 0
0 h212 0 . . . 0 0 h222 0 . . . 0
0 0 h312 . . . 0 0 0 h322 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . hI12 0 0 0 . . . hI22


hilm =

1

σ2
|Jϕ1 (xi )|((∇lµ) ◦ xi )((∇mµ) ◦ xi )
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Initial Momentum

Remember that

u0 =
1

σ2
|Dϕ1|(∇µ)(µ− f ◦ϕ1)

If a population of subjects are all aligned with the same template
image, 1

σ2 (∇µ) will be the same for all subjects. Deviations from
the template are encoded by the residuals, |Dϕ1|(µ− f ◦ϕ1).
This is a scalar field, and in principle is all that is needed (along
with the template) to reconstruct the original images.
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Evolution

Template and gradients Residuals Momentum (u) Velocity (v) θ |J
θ
| φ |J

φ
|

John Ashburner Geodesic Shooting



Small Deformation Model
Large-Deformation Diffeomorphic Metric Mapping

Geodesic Shooting

Generating Deformations from Initial Velocities
Optimising the Initial Velocities
Initial Momentum
Examples

Example Images

Some example images.
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Residuals

Residuals after aligning the example images to a common template.
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Reconstructed Images

Images reconstructed using just the template and residuals.
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Parameterisations

µ f

µ ° θ f ° φ

φ

|J
φ
|

θ

|J
θ
|
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Geodesic Shooting versus Dartel

µ ° θ f ° φ

φ

|J
φ
|

θ

|J
θ
|

µ ° χ f ° χ
−1

χ
−1

|J
χ

−1

|

χ

|J
χ
|
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Convergence of Gauss-Newton
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Template (IBSR18)

John Ashburner Geodesic Shooting



Small Deformation Model
Large-Deformation Diffeomorphic Metric Mapping

Geodesic Shooting

Generating Deformations from Initial Velocities
Optimising the Initial Velocities
Initial Momentum
Examples

Label Overlaps (IBSR18)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L Angular gyrus
L Occipital fusiform gyrus

R Supracalcarine cortex
R Occipital fusiform gyrus

L Supracalcarine cortex
R Angular gyrus

R Temporal frontal cortex, ant. division
R Cuneal cortex

R Frontal gyrus 3, pars triangularis
R Inf. temporal gyrus, ant. division

L Cuneal cortex
L Inf. temporal gyrus, ant. division

R Sup. parietal lobule
L Temporal frontal cortex, ant. division

L Sup. parietal lobule
L Middle temporal gyrus, ant. division
L Supramarginal gyrus, post. division

L Middle temporal gyrus, temperooccipital part
L Frontal gyrus 3, pars triangularis

R Sup. temporal gyrus, ant. division
L Parietal operculum cortex

L Sup. temporal gyrus, ant. division
R Parietal operculum cortex

R Supramarginal gyrus, post. division
R Middle temporal gyrus, ant. division

L Supramarginal gyrus, ant. division
L Supplementary motor cortex

L Inf. temporal gyrus, temperooccipital part
L Intracalcarine cortex

R Frontal operculum cortex
L Heschl’s gyrus 1

R Inf. temporal gyrus, temperooccipital part
L Temporal occipital fusiform cortex

R Middle temporal gyrus, temperooccipital part
L Paracingulate gyrus

R Temporal frontal cortex, post. division
R Temporal occipital fusiform cortex

R Supplementary motor cortex
R Inf. temporal gyrus, post. division

R Heschl’s gyrus 1
L Inf. temporal gyrus, post. division
R Frontal gyrus 3, pars opercularis

R Paracingulate gyrus
L Frontal medial cortex

L Lateral occipital cortex, inf. division
R Planum polare

L Lingual gyrus
L Parahippocampal gyrus, post. division
L Temporal frontal cortex, post. division

R Frontal medial cortex
R Parahippocampal gyrus, post. division

R Intracalcarine cortex
R Supramarginal gyrus, ant. division

R Parahippocampal gyrus, ant. division
L Frontal gyrus 3, pars opercularis

L Parahippocampal gyrus, ant. division
R Lateral occipital cortex, inf. division

R Planum temporale
L Planum polare

L Planum temporale
R Lingual gyrus

L Frontal operculum cortex
L Middle temporal gyrus, post. division

L Sup. temporal gyrus, post. division
R Middle temporal gyrus, post. division

R Occipital pole
L Postcentral gyrus

L Cingulate gyrus, ant. division
L Occipital pole

R Postcentral gyrus
L Frontal gyrus 1

R Frontal orbital cortex
R Sup. temporal gyrus, post. division

R Precuneus cortex
R Frontal gyrus 1

L Precuneus cortex
R Lateral occipital cortex, sup. division

L Precentral gyrus
L Central opercular cortex

L Cingulate gyrus, post. division
R Precentral gyrus

R Frontal gyrus 2
L Frontal orbital cortex

L Frontal gyrus 2
L Subcallosal cortex

L Lateral occipital cortex, sup. division
R Subcallosal cortex

R Cingulate gyrus, ant. division
R Cingulate gyrus, post. division

R Central opercular cortex
R Temporal pole
L Temporal pole

R Frontal pole
L Frontal pole

R Insula cortex
L Insula cortex

Overlap

IBSR18
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Template (LPBA40)
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Label Overlaps (LPBA40)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R lateral orbitofrontal gyrus
R superior occipital gyrus

L lateral orbitofrontal gyrus
L superior occipital gyrus

L angular gyrus
R angular gyrus

R cuneus
L inferior temporal gyrus

L precuneus
L inferior occipital gyrus
R supramarginal gyrus

L cuneus
L supramarginal gyrus

L middle orbitofrontal gyrus
R middle orbitofrontal gyrus

L gyrus rectus
L middle temporal gyrus

R precuneus
R inferior occipital gyrus
R middle occipital gyrus

R inferior temporal gyrus
L middle occipital gyrus

R gyrus rectus
R parahippocampal gyrus

R cingulate gyrus
R fusiform gyrus

L cingulate gyrus
L parahippocampal gyrus

L fusiform gyrus
R middle temporal gyrus

L postcentral gyrus
L superior parietal gyrus
R superior parietal gyrus

L lingual gyrus
R postcentral gyrus

R inferior frontal gyrus
L inferior frontal gyrus

R lingual gyrus
L superior temporal gyrus

L hippocampus
R precentral gyrus

R caudate
R hippocampus

R superior temporal gyrus
L caudate

R putamen
L precentral gyrus

L putamen
R insular cortex

L middle frontal gyrus
R middle frontal gyrus

L insular cortex
R superior frontal gyrus

brainstem
L superior frontal gyrus

cerebellum

Overlap

LPBA40
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Convergence (LPBA40)
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Convergence (LPBA40)
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More GS versus Dartel

To assess the effects of larger displacements, the IBSR40 images
were all translated along the anterior-posterior direction by 12mm
(8 voxels), and re-registered with the template previously
generated from un-translated versions of the data.
Reproducibility was assessed from correlation coefficients with
original GS velocities:

rab =
wT

a Awb√
wT

a Awa

√
wT

b Awb

No Translations Poor Estimates Good Estimates
GS 0.98 0.52 0.98

Dartel 0.84 0.19 0.47
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More GS versus Dartel
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Inverse Consistency

Could have achieved inverse consistency by aligning scans to a
template at the “half-way point”.
The objective here was to try to achieve inverse consistent
registration, but with the template aligned to one of the original
scans:

E =
1

2

∫ 1

t=0
||Lvt ||2dt +

1

2σ2
||f1 − µ

(
ϕ−1

1

)
||2 +

1

2σ2
||f0 − µ||2

where ϕ0 = Id,
dϕ

dt
= vt (ϕt) , µ = (|Jϕ1 |f1(ϕ1) + f0)/(|Jϕ1 |+ 1)
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Inverse Consistency
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